Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis
Date
2018-11-27Author
Abu Ammar, Aiman
Nasereddin, Abed
Ereqat, Suheir
Dan-Goor, Mary
Jaffe, Charles L.
Zussman, Eyal
Abdeen, Ziad
Metadata
Show full item recordAbstract
Cutaneous leishmaniasis (CL) is an infectious, parasitic disease caused by the protozoan Leishmania. Amphotericin B (AMB) is
a macrolide polyene antibiotic presenting potent antifungal and antileishmanial activity, but due to poor water solubility at
physiological pH, side effects, and toxicity, its therapeutic efficiency is limited. In the present study, poly(lactic-co-glycolic acid)
(PLGA) nanoparticles (NPs) loaded with AMB were generated to reduce drug toxicity and facilitate localized delivery over a
prolonged time. AMB NPs were characterized for particle size, zeta potential, polydispersity index, and degree of aggregation.
In vitro assessments demonstrated its sustained activity against Leishmania major promastigotes and parasite-infected macrophages.
A single intralesional administration to infected BALB/c mice revealed that AMB NPs were more effective than AMB
deoxycholate in terms of reducing lesion area. Taken together, these findings suggest thatAMB NPs improve AMB delivery and
can be used for local treatment of CL.