• English
    • العربية
  • العربية 
    • English
    • العربية
  • دخول
عرض المادة 
  •   الرئيسية
  • AQU Research Network Clusters
  • AQU researchers publications
  • عرض المادة
  •   الرئيسية
  • AQU Research Network Clusters
  • AQU researchers publications
  • عرض المادة
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fitting general linear model for longitudinal survey data under informative sampling

Thumbnail
عرض/افتح
RES_61_JOURNAL_paper_4.pdf (154.8Kb)
التاريخ
2010-12-10
المؤلف
Eideh, Abdulhakeem A.H.
واصفات البيانات
عرض سجل المادة الكامل
الخلاصة
The purpose of this article is to account for informative sampling in fitting superpopulation model for multivariate observations, and in particular multivariate normal distribution, for longitudinal survey data. The idea behind the proposed approach is to extract the model holding for the sample data as a function of the model in the population and the first order inclusion probabilities, and then fit the sample model using maximum likelihood, pseudo maximum likelihood and estimating equations methods. As an application of the results, we fit the general linear model for longitudinal survey data under informative sampling using different covariance structures: the exponential correlation model, the uniform correlation model, and the random effect model, and using different conditional expectations of first order inclusion probabilities given the study variable. The main feature of the present estimators is their behaviours in terms of the informativeness parameters.
المكان (URI)
https://dspace.alquds.edu/handle/20.500.12213/798
حاويات
  • AQU researchers publications [769]

DSpace software copyright © 2002-2016  DuraSpace
اتصل بنا | ارسال ملاحظة
Theme by 
Atmire NV
 

 

استعرض

جميع محتويات المستودعالمجموعات & الوحداتحسب تاريخ النشرالمؤلفونالعناوينالمواضيعهذه الوحدةحسب تاريخ النشرالمؤلفونالعناوينالمواضيع

حسابي

دخول تسجيل

DSpace software copyright © 2002-2016  DuraSpace
اتصل بنا | ارسال ملاحظة
Theme by 
Atmire NV