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FITTING GENERAL LINEAR MODEL FOR LONGITUDINAL 
SURVEY DATA UNDER INFORMATIVE SAMPLING 

 
 

ABDULHAKEEM A.H. EIDEH1

Sampling designs for surveys are often complex and informative, in the sense that the 
selection probabilities are correlated with the variables of interest, even when 
conditioned on explanatory variables. In this case conventional analysis that 
disregards the informativeness can be seriously biased, since the sample distribution 
differs from that of the population. Most of the studies in social surveys are based on 
data collected from complex sampling designs. Standard analysis of survey data often 
fails to account for the complex nature of the sampling design such as the use of 
unequal selection probabilities, clustering, and post-stratification. The effect of the 
sample design on the analysis is due to the fact that the models in use typically do not 
incorporate all the design variables determining the sample selection, either because 
there may be too many of them or because they are not of substantive interest. 
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ABSTRACT 
 

The purpose of this article is to account for informative sampling in fitting 
superpopulation model for multivariate observations, and in particular multivariate 
normal distribution, for longitudinal survey data. The idea behind the proposed 
approach is to extract the model holding for the sample data as a function of the 
model in the population and the first order inclusion probabilities, and then fit the 
sample model using maximum likelihood, pseudo maximum likelihood and 
estimating equations methods. As an application of the results, we fit the general 
linear model for longitudinal survey data under informative sampling using different 
covariance structures: the exponential correlation model, the uniform correlation 
model, and the random effect model, and using different conditional expectations of 
first order inclusion probabilities given the study variable. The main feature of the 
present estimators is their behaviours in terms of the informativeness parameters.  
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However, if the sampling design is informative in the sense that the outcome variable 
(variable of interest) is correlated with the design variables not included in the model, 
even after conditioning on the model covariates, standard estimates of the model 
parameters can be severely biased, leading possibly to false inference. Pfeffermann 
(1993, 1996) reviews many examples reported in the literature that illustrate the 
effects of ignoring the sampling process when fitting models to survey data and 
discusses methods that have been proposed to deal with this problem, see also 
Skinner, Holt, and Smith (1989), Kasprzyk, Duncan, Kalton and Singh (1989), Hoem, 
(1989), and Chambers and Skinner (2003). It should be emphasized that standard 
inference may be biased even when the original sample is a simple random sample, 
due to non-response, attrition and imperfect frames that results in de facto a posterior 
differential inclusion probabilities.  
 
To overcome the difficulties associated with the use of classical inference procedures 
for cross sectional survey data, Pfeffermann, Krieger and Rinott (1998) proposed the 
use of the sample distribution induced by the assumed population models, under 
informative sampling, and developed expressions for its calculation. Similarly, Eideh 
and Nathan (2006) fitted time series models for longitudinal survey data under 
informative sampling. Furthermore, Eideh (2008) fitted random effects or subject-
specific effects models for analyzing normal data, which are assumed to be correlated, 
under the concept of informative sampling. 
 
The plan of this paper is as follows. In Section 2 we define sample distribution and 
sample likelihood. In Section 3 we extract the sampled distribution of the multivariate 
normal distribution under informative sampling. In Section 4 we fit the general linear 
model for longitudinal survey data. Section 5 provides a discussion of the results. 
 
 
2.  Sample distribution and sample likelihood 
 
Let { }NU ,...,1=  denote a finite population consisting of N units. Let y  be the target 
or study variable of interest and let iy  be the value of y  for the thi  population unit. 
Let ix , Ui∈  be the value of an auxiliary variable(s), x , and { }Nzz ,...,1=z  be the 
values of a known design variable, used for the sample selection process but not 
included in the working model under consideration. In what follows we consider a 
sampling design with selection probabilities 0)Pr( >∈= siiπ , and sampling weight 

iiw π1=  ; Ni ,...,1= . In practice, the iπ ’s may depend on the population values 
( )x,y,z . We express this by writing: )|Pr( x,y,zsii ∈=π . The sample s  consists of 
the subset of U  selected at random by the sampling scheme with inclusion 

probabilities .,...,1 Nππ  Denote by ( )′= NII ,...,1I  the N  by 1 sample indicator 
(vector) variable such that 1=iI  if unit Ui∈  is selected to the sample and 0=iI  if 
otherwise. The sample s  is defined accordingly as { }1,| =∈= iIUiis  and its 
complement by { }0,| =∈== iIUiisc . We assume probability sampling, so that 

0)Pr( >∈= siiπ  for all units .Ui∈  
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We now consider the population values Nyy ,...,1  as random variables, which are 
independent realizations from a distribution with probability density function 

( )θ,| iip xyf , indexed by a vector parameter θ . 
According to Krieger and Pfeffermann (1997), the (marginal) sample probability 
density function of iy  is defined as: 
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where θ  is the parameter of the population distribution, γ  is the parameter indexing 

( )γ,,|Pr ii yxsi∈  and  
 

( ) ( ) ( ) iiipiiipiip dyxyfyxExE ∫= θγπγθπ ,|,,|,,|  
                    
Having derived the sample distribution, Pfeffermann, Krieger and Rinott (1998) 
proved that if the population measurements iy  are independent, then as ∞→N (with 
n fixed, where n  is the sample size), the sample measurements are asymptotically 
independent, so we can apply standard inference procedures to complex survey data 
by using the marginal sample distribution for each unit. Based on the sample data 
{ }siwxy iii ∈  ;,, , we can estimate the parameters of the population model in two 
steps: 
 
Step-one: According to Pfeffermann and Sverchkov (1999), estimate the 
informativeness parameters γ using the following relationship: 
 

( ) ( )γπγ ,,|1,,| iiipiiis yxEyxwE =                                     (2) 
 

Thus the informativeness parameters can be estimated using regression analysis. 
Denoting the resulting estimate of γ  by γ~ . 
 
Step-two: Substitute γ~  in the sample log-likelihood function, and then maximize the 
resulting sample log-likelihood function with respect to the population parameters, θ : 
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where ( )γθ ~,rsl  is the sample log-likelihood after substituting γ~  in the sample log-
likelihood function and where  
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( ) ( ){ }∑∈
=

si iipsrs xyfl θθ ,|log  
 
 is the classical log-likelihood obtained by ignoring the sample design. 
 
 
3.  Multivariate normal distribution under informative sampling 
 
Most classical methods of multivariate analysis of continuous data are based on an 
examination of the structure of population mean vectors and covariance matrices. We 
consider the problem of estimating the mean vector μ  and the covariance matrix V of 
a vector of study variables y , from survey data obtained under informative sampling. 
The original theoretical basis for this is the multivariate normal distribution. The 
existing work in this area deals with the estimation problem when the sampling 
scheme is noninformative; see for example Smith and Holmes (1989). 
 
The following theorem focuses on multivariate normal distribution under different 
modeling of the population conditional expectation of first order inclusion 
probabilities.  
 
Theorem 1. Assume that the population distribution is q -dimensional multivariate 
normal with mean vector μ  and covariance matrix V , that is: 
 

( ) ( ) NiNyy qpiqii ,...,1 ,,~,...,1 =′= Vμy  

 
 Let ( ) ( ) .,...,2,1 ,  ;,...,1  ,,  and  qkjNivyyCovyE jkikijpjijp ==== µ  
 
1. Under the exponential inclusion probability model – exponential sampling: 
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The sample probability density function of iy  is: 
 

( ) ( ) ( ){ } ( ){ }



 +−′+−−= −−− VaμyVVaμyVy ii

q
isf 15.05.0 5.0exp2π             (5) 

 

That is, ( ) ( ) niNyy qiqii ,...,1 ,,~ ,...,
s1 =+′= VVaμy . So that, 
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2. Under the linear inclusion probability model – linear sampling: 
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The sample probability density function of iy  is: 
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Furthermore,  
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and 
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Proofs: 
1. As an extension of equation (1), the sample probability density function of  iy  is 
given by: 
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So that, 
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where ( ) ( ) ( )μyaμyVμy −′−−′−= −
iiiQ 21 . 

Setting  μyC −= ii , then  Q can be written as: iii CaCVC ′−′= − 2Q 1 .Using theorems 
in multivariate statistical analysis, see Johnson and Wichern (1998), page 68, we 
have: 
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iii CVVaCVVC 5.05.05.05.0 2Q −−− ′−′=  
 

 then,let  Now 5.0
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But    μyC −= ii and  5.0

ii CVD −= , so that Q  can be expressed equivalently as: 
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Thus after substituting this expression of Q  in (10), we get (5). 
Hence the multivariate normal distribution in the sample is the same as in the 
population, except that the mean is shifted by the constant Va . Notice that the sample 
probability density function does not depend on 0a . Note also: 
 

( ) jqqjjjjjijs vavavayE +++++= ......  11µ                        (11a) 
and 

( ) ( ) qkjvyyCovvyVar jkikijpjjijs ,...,1,,, =≠==                     (11b) 
 

2. Substitute (6) in (9) we get (7).  
 
Let us now compute the first two moments of this sample pdf. In order to do this we 
will use the moment generating function technique. The moment generating function 
of the sample probability density function is given by: 
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( ) ( ) 5.exp iiiipM Vuuμuu ′+′=  
 

and 
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Thus we have:  
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This equation gives explicitly the relationship between the population and the sample 
moment generating functions. Notice that the sample and population moment 
generating functions are different unless 0b = , in which case the sampling 
mechanism is noninformative. 
 
Let ( ) ( )isis MR uu log= . Differentiating this expression twice and setting 0u =i , we 
get (8a) and (8b). 
From (8a) and (8b), we can see that: 
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for .,...,2,1 ,,...,1 qkjni =≠=  
 
Also ( ) ( )ijpijs yVaryVar ≤  and the equality holds if and only if 0b = , that is when the 
sampling mechanism is noninformative. On the other hand, if b≠0, then the means the 
variances and the covariances change, in contradiction to what happens for the sample 
probability density function (5), where only the means change.  
 
To illustrate the results, from now on, we only consider the particular cases of the 
exponential inclusion probability model – exponential sampling, see equation (4). 
The following are special cases of Theorem 1. 
 
Corollary 1.  (Univariate normal distribution, 1=q ) 
Let ( ) ( ) 11111   and  vyVaryE ipip == µ . Under the exponential sampling:  
 

( ) ( )1101 exp iiip yaayE +=|π                                       (14) 
 

We get the following result: 
 

                          ( )1111111 ,~ vvaNy
si +µ                                              (15) 
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Corollary 2. (Bivariate normal distribution, 2=q ). 
Let ( ) ( ) ( ) ( ) ( ) 12212221112211 ,  ,  ,  , , vyyCovvyVarvyVaryEyE iipipipipip ===== µµ  
and ( ) 1221 , ρ=iip yyCor . Under the exponential sampling: 
 

( ) ( )2211021 exp, iiiiip yayaayyE ++=|π                               (16) 
 
and using the properties of multivariate normal distribution, see Johnson and Wichern 
(1998), page 171, we obtain the following results: 
 
1. The joint sample probability density function of ( )21, ii yy  is: 
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2. The sample marginal probability density functions of  1iy  and 2iy  are respectively 
given by: 
 

( )1112211111 ,~ vvavaNy
si ++µ                                        (17b) 

and 
( )2222221122 ,~ vvavaNy

si ++µ                                       (17c) 

 
3. The conditional sample probability density function of 1iy  given 2iy  is univariate 
normal distribution with conditional mean: 
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and conditional variance: 
 

( ) ( ) ( )21
2
121121 |1| iipiis yyVvyyV =−= ρ                               (17e) 

 
That is,  

( ) ( ) ( ) ( ){ }2
1211

2
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5.0
221112121 1,1~| ρρµρµ −−+−+ vvayvvNyy isii      (17f) 
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Notice that: 
 

( ) ( ) ( )2112121 ||  |  iipiipiis yyVayyEyyE +=                               (17g) 
 
4. Similarly, the conditional sample probability density function of 2iy  given 1iy  is:  
 

( ) ( ) ( ) ( ){ }2
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112212212 1,1~| ρρµρµ −−+−+ vvayvvNyy isii         (17h) 

 
Thus the sample and population probability density functions are different, but belong 
to the same family of distribution, which is normal. Also the change occurs only for 
the means and conditional means, whereas the variances, conditional variances, and 
covariance do not change.  
 
In particular if 02 =a , that is the inclusion probabilities depend only on 1iy  (which is 
the case in panel surveys), then we have: 
 
1. The joint sample probability density function of ( )21, ii yy  is: 
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2. The marginal sample probability density functions of  1iy  and 2iy  are respectively 
given by: 
 

( )1111111 ,~ vvaNy
si +µ                                               (18b) 

and 
( )2212122 ,~ vvaNy

si +µ                                               (18c) 

 
3. The conditional sample probability density function of  1iy  given 2iy  is: 
 

( ) ( ) ( ) ( ){ }2
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4. The conditional sample probability density function of 2iy   given 1iy  is: 
 

( ) ( ) ( ){ }2
122211

5.0
112212212 1,~| ρµρµ −−+ vyvvNyy isii                     (18e) 

 
Notice that the sample and population probability density functions of 12 | ii yy  are 
same, while the other sample and population distributions are different.  
 
Birnbaum et al. (1950) studied the effect of selection performed on some coordinates 
of a multi-dimensional population, but in different point of view.  
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Notice that the sample and population pdf’s of 12 | ii yy  are same, while the other 
sample and population distributions are different.  
 
Corollary 3. (Bivariate normal distribution, 2=q ). 
Let ( ) ( ) ( ) ( ) ( ) 12212221112211 ,  ,  ,  , , vyyCovvyVarvyVaryEyE iipipipipip ===== µµ  
and ( ) 1221 , ρ=iip yyCor . Under the linear model: 
 

( ) 2211021 , iiiiip ybybbyyE ++=|π  
 

and using the properties of multivariate normal distribution, we have the following 
results: 
 
1. The joint sample probability density function of ( )21, ii yy  is: 
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3. Similarly, integrating (19a), with respect to 1iy , we obtain the following marginal     
sample probability density function of 2iy :  
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4. Using (19a), (19b), and (19c), we get the following conditional sample probability 
density function of  1iy  given 2iy : 
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( ) ( ) ( )12
011122

02211
12 |

|
| iip

iiip

ii
iis yyf

bybyyEb
bybyb

yyf












++
++

=                      (19e) 

where  

( ) ( )11

5.0

11

22
12212 | µρµ −








+= iiip y

v
vyyE  

 
Thus in this case we see that the sample probability density functions and population 
probability density functions are very different. Also notice that formulas (19b, c) are 
true, not only for the bivariate normal distribution, but for any joint probability 
density function of ( )21, ii yy , provided that the marginal and conditional distributions 
and the corresponding moments are exist.  
 
The following theorem provides the maximum likelihood estimators of the mean 
vector μ  and covariance matrix V . 
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Theorem 2. Assume ( ) ( ) NiNyy qpiqii ,...,1 ,,~ ,...,1 =′= Vμy  are independent. Let 

nyy ,...,1  be a sample of size n  selected by informative sampling.  
1. Under the exponential sampling – equation (4): the maximum likelihood estimators 
of μ  and V are given by: 
 

aVyμ ~ˆˆ −=                                                      (20a) 
and 
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i
i sn ==′−−= ∑

=

− VyyyyV ˆˆ
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where a~  is the least square estimator under the model: ( ) ( )iiis awE yay ′−−=| 0exp , 
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k
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2. Under the linear sampling – equation (6): the maximum likelihood estimators of μ  
and V are defined by the equations: 
 

( )( )   ~ˆˆ~~ˆ 0 bVμbμy =′+− b                                         (21a) 
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( )( )′−−=∑
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i
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where b~  and  ~

0b  are the least squares estimators under the 
model: ( ) ( )iiis bwE yby ′−−=| 01 . Solve (21a) and (21b) iteratively. Start with 
classical maximum likelihood estimators. 
 
Proofs:  
1. Exponential sampling. Using the two-step method of estimation. 
 
Step-one.  Estimation of informativeness parameters a  and  0a  via the relationship 
(2). 
 
Step-two.  After substituting a~ in (5), the resulting sample log-likelihood is given by: 
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where aVμμ ~* += .  
 
According to Johnson and Wichern (1998), page 182, the maximum likelihood 
estimators of *μ and V are given by: 
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yμ =*ˆ  
and 

( )( )′−−= ∑
=

− yyyyV i

n

i
in

1

1ˆ . 

 
Hence the result – equation (20). 
 
2. Linear model. Using the two-step method of estimation. 
 
Step-one.  Estimation of informativeness parameters, b  and  0b  via the relationship 
(2). 
 
Step-two.  After substituting b~  and  ~

0b  in (7), the resulting sample log-likelihood is 
given by: 
 

( ) ( ) ( ) ( )μbμyVμyVVμ ′+−−′−−−−= ∑
=

− ~~log
2
1log

2
12log

2
1, 0

1

1 bnnnql
n

i
iirs π   (23) 

 
Now differentiating ( )Vμ,rsl  with respect to Vμ  and  , we can show that the 
maximum likelihood estimators of μ  and V are defined by equation (21). 
 
The following corollary provides the maximum likelihood estimators of the mean µ  
and the variance 2σ  when the population model is univariate normal and the 
sampling process is exponential and linear, which is a particular case of Theorem 2 
with 1=q . 
 
Corollary 4.  Assume ( ) NiNy

pi ,...,1 ,,~ 2 =σµ  are independent. Let n,...,yy1  be a 

sample of size n  selected under the following sampling schemes. 
1.Exponential sampling. The maximum likelihood estimators of µ  and  2σ  are given 
by: 
 

2
1 ˆ~ˆ σµ ay −=                                                        (24a) 

and  

( )∑
=

− −==
n

i
i yyns

1

2122σ̂                                         (24b)  

                                                                                              
where 1

~a  is the least square estimator of the informativeness parameter 1a . 
 
2. Linear sampling. The maximum likelihood estimators of µ  and 2σ  are given by: 
 

( ) ( ) 0ˆ~~~ˆ
ˆ
1

1

1

1012 =+−−∑
=

−n

i
i bbbny µµ

σ
                                   (25a) 

and 
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( )∑
=

− −=
n

i
iyn

1

212 ˆˆ µσ                                                  (25b) 

 
where 10

~  and ~ bb  are the estimators of the informativeness parameters 10   and bb . 

Corollary 5. Assume ( ) ( ) NiNyy
piii ,...,1 ,,~, 221 =′= Vμy .  Under the exponential 

sampling – equation (4): the maximum likelihood estimators of 21,µµ , 112211 ,, vvv and   
are given by:  

12211111
~~ˆ sasay −−=µ                                                (26a) 

12122222
~~ˆ sasay −−=µ                                                (26b) 

{ } 2,1,,ˆ
2221

1211 ==







= jis

ss
ss

ijV                                      (27) 

 
 

4.  Application – fitting general linear model for longitudinal survey data under 
informative sampling 
 
4.1 Population model: 
 
Let TtNiyit ,...,1 ;,...,1 , ==  be the measurement on the i-th subject at time Tt ,...,1= . 
Associated with each ity  are the (known) values, pkxitk ,...1, = , of p  explanatory 
variables. We assume that the ity  follow the regression model: 
 

                ititppitit xxy εββ +++= ...11                                       (28) 
 
where itε  are random sequence of length T  associated with each of the N  subjects. 
In our context, the longitudinal structure of the data means that we expect the itε  to be 
correlated within subjects. 

Let ( )′= iTii yy ,...,1y , ( )′= itpitit xx ,...,1x  and let ( )′= pββ ,...,1β  be the vector of 
unknown regression coefficients. The general linear model for longitudinal survey 
data treats the random vectors Nii ,...,1, =y  as independent multivariate normal 
variables, that is  
 

 ( )Vβxy ,~ iqpi N                                                  (29) 

 
where ix  is the matrix of size T by p  of explanatory variables for subject i , and V 
has ( ) thjk −  element, ( ) Tkjyyv ikijpjk ,...,1,,,cov == ; see Diggle, Liang and Zeger 
(1994). 
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4.2 Covariance structure of iy : 
 
It is useful at this stage to consider what form the matrix V might take. We consider 
three cases: the exponential correlation model, the uniform correlation model; see 
Diggle, Liang and Zeger (1994), and the random effect model; see Skinner and 
Holmes (2003). 
 
Case1: The exponential correlation model: 
 
In this model, the ( ) th, −st  element of V has the form: 
 

( ) Tstyyv st
isitpts ,...,1,,,cov 2 === −ρσ                                   (30) 

 
Note that the correlation, 2σtsv , between a pair of measurements on the same unit 
decays toward zero as the time separation between the measurements increases.  
 
Case2: The uniform correlation model:  
 
In this model, we assume that there is a positive correlation, ρ , between any two 
measurements on the same subject. So that  the ( ) thst −,  element of V has the form: 
 

( ) Tstyyv isitpts ,...,1,,cov 2 =≠== ρσ  ;  Ttvtt ,...,1,2 == σ             (31) 
 
Case3: Random effects models: 
 

Under this model the multivariate outcomes ( )′= iTii yy ,...,1y , Ni ,...,1=  are 
independent with mean vector and covariance matrix given respectively by: 
 

( ) ( ) μy == TipE ββ ,...,1                                                (32a) 
 

( ) ∑=+= TTuip VJy 22cov σσ                                          (32b) 
                                                 

where TJ  denotes the T by T matrix all of whose elements are one, and the ( ) thtt −′,  

element of TV  is Ttttt .,...,,; =′′−ρ .  
 
4.3 Sampling design:  
 
We assume a single-stage informative sampling design, where the sample is a panel 
sample selected at time 1=t  and all units remain in the sample till time Tt = . 
Examples of longitudinal surveys, some of which are based on complex sample 
designs, and of the issues involved in their design and analysis can be found in Herriot 
and Kasprzyk (1984), and Nathan (1999). In many of the cases described in these 
papers, a sample is selected for the first round and continues to serve for several 
rounds. Then it is intuitively reasonable to assume that the first order inclusion 
probabilities, iπ , depend on the population values of the response variable at the first 



 16 

occasion only, the values 1iy , and on ( )′= piii xx 1111 ,,x , and the values of known 
design variable, { }Nzz ,...,1=z ,  used for the sample selection, but not included in the 
working model under consideration.  
 
4. 4 Sample distribution:  
 
Under exponential inclusion probability model:  
 

( ) ( )pipiiiiiip xaxaxayaayE 112211110011 ...exp,| +++++= ∗xπ               (33) 
 

Using (29), (33) and Theorem 1, we have: 
 

 ( )Vμθxy ,,, *
0 ~ q

s
ii Na                                             (34) 

 
where,  

[ ]′+′+′+′= TiTii vavava 1012021101
* ,...,, βxβxβxμ  

 

Note that, let ( )′=− iTiiTi yyy ,,, 321, y . Alternatively, the sample probability density 
function of iy  is can be written as: 
 

( ) ( ) ( )iiTipiisiis yfyff xyxxy ,| 11,11 −=                                (35) 
 

where 

( ) ( ) 







−′−−= 2

11011
1111

11 2
1exp

2
1,, vay

vv
yf iiiis βxγθx

π
                  (36) 

 

( )
( )

( ) ( ) ( )



 −′−−= −−

−∗
−−−

∗
−

−− 11,
1

1,011,21

1,0
111, 2

1exp
2

1,|  TTiTTTi

T
TiiTip V

V
yf μyμyxy

π
 (37) 

 
[ ]

( ) ( )
′









′−+′′−+′=

=

∗

∗

∗

∗

−−

βxβxβxβx

xyμ

11
11

1
11

11

21
2

11,1

,...,        

,|

ii
T

iTiii

iiTipT

y
v
vy

v
v

yE

  

 
with general term: 
 

( ) 1,11,1
1

111,1 +′+
−

+′+′ −= tttttt vvvvv ; 1,...,1, −=′ Ttt . 
 

So that we have the following sample model: 
 

.,,2,1 ;      

...110

ni

xxy

iti

ititppitit

=+=

++++=
∗∗ ε

εβββ

βx
,                               (38) 
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where 1100 va=β , ( )′=∗
pβββ ,...,, 10β , ( )ii x1x ,=∗  and the itε  are a random 

sequence correlated within subjects .  
Note that if 00 =a , that is the sampling design is noninformative, then the population 
and sample models are the same. 
 
4.5 Estimation: 
 
We consider three method of estimation, namely: unweighted maximum likelihood, 
pseudo maximum likelihood, and two-step estimation based on the sample 
distribution. 
 
4.5.1 Unweighted maximum likelihood: 
 
Maximum likelihood for the case where the sampling design is ignorable: the value of 

( )Vβθ ,=  that satisfy: 
 

( ) ( ) ( )








−′−++
∂
∂

−=
∂
∂ ∑

=

−
n

i
iisrs nnql

1

1log2log
2
1, μyVμyV

θ
Vμ

θ
π       (39) 

 
 4.5.2 Pseudo maximum likelihood:  
 
The pseudo maximum likelihood estimator of  ( )Vβθ ,=  is defined as the solution of: 
 

( ) ( ){ } ( ){ } 0ln2ln
2
1ˆ 1 =



 +−′+−++

∂
∂

−= −

∈
∑ VaμyVVaμyV

θ
θ ii

si
iw qwU π    (40) 

 

( ) ( ){ } ( ){ } 0,|lnlnˆ
11,11 =

∂
∂

+
∂
∂

= −
∈∈
∑∑ iiTip

si
iis

si
iws yf

n
NyfwU xy

θ
x

θ
θ               (41)  

 
For more discussion, see Eideh and Nathan (2006). 
 
4.5.3 Two-step method:                        
 
Step one. Estimate 0a  via the model: ( ) ( )110011 exp,| iiiiis yaaywE xax ′−−−= ∗ . 
 
Step two. Using Theorem 2, the maximum likelihood estimators of  ∗β   and V  are 
defined as the solution of:  
 

( ) ( ) ( ) 0log2log
2
1,

1

1 =








−
′

−++
∂
∂

−=
∂
∂ ∑

=

∗−∗∗
n

i
iirs nnql μyVμyV

θ
Vβ

θ
π    (42) 

 

where ( )′=∗
pβββ ,...,, 10β  and [ ]′+′+′+′= TiTii vavava 1012021101

* ,...,, βxβxβxμ . 
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4.6  Variance estimation: 
 
For variance estimation we use the inverse of Fisher information matrix and the 
bootstrap approach for variance, see Pfeffermann and Sverchkov (1999, 2003) and 
Eideh and Nathan (2006). 
 
(a) Fisher information matrix approach: 
 
The inverse of the observed Fisher information matrix evaluated at ( )Vβθ ˆ,ˆˆ =  is given 
by: 
 

( ) ( )[ ]
( )

1

ˆ

2

1

1         

ˆˆˆ
−

=

−





















∂′∂

∂
−=

=

θθ
θθ
θ

θθ

l
n

IV ss

                                      (43) 

 
(b) Bootstrap approach: 
 
Let  ( )Vβθ ˆ,ˆˆ =  be the sample maximum likelihood estimator of ( )Vβθ ,=  based on 
any of the equations (39-42) and ( )bbb Vβθ ˆ,ˆˆ =  be the ML estimator computed from 
the bootstrap sample Bb ,...,1= , with the same sample size, drawn by simple random 
sampling with replacement from the original sample – the sample drawn under 
informative sampling design. The bootstrap variance estimator of  ( )Vβθ ˆ,ˆˆ =  is 
defined as: 
 

( ) ′





 −




 −= ∑

=
bootb

B

b
bootbboot B

V θθθθθ ˆˆˆˆ1ˆˆ
1

                           (44) 

where 

∑=
B

b
bboot B
θθ ˆ1ˆ   . 

 
 

5.  Conclusions 
 
In this paper, we extend the definition of univariate sample distribution into 
multivariate random variables. Also, we consider a new method of estimating the 
parameters of the superpopulation model for analyzing multivariate normal 
observations from finite population when the sampling design is informative.   
Furthermore, the general linear model for longitudinal survey data under informative 
sampling using different covariance structures: the exponential correlation model, the 
uniform correlation model, and the random effect model, was fitted under informative 
sampling. 
The main feature of the present estimators is their behaviours in terms of the 
informativeness parameters.  
The paper is purely mathematical. The role of informativeness of sampling 
mechanism in adjusting various estimators for bias reduction, based on simulation 
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study, under different population models and different modeling of conditional 
expectations of first order inclusion probabilities given response variable and 
covariates, can be found in Pfeffermann and Sverchkov (1999, 2003), Nathan and 
Eideh (2004), Eideh (2008), and Eideh and Nathan (2006, 2009). 
I hope that the new mathematical results obtained will encourage further theoretical, 
empirical and practical research in these directions. 
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