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ABSTRACT

The purpose of this article is to account for informative sampling in fitting
superpopulation model for multivariate observations, and in particular multivariate
normal distribution, for longitudinal survey data. The idea behind the proposed
approach is to extract the model holding for the sample data as a function of the
model in the population and the first order inclusion probabilities, and then fit the
sample model using maximum likelihood, pseudo maximum likelihood and
estimating equations methods. As an application of the results, we fit the general
linear model for longitudinal survey data under informative sampling using different
covariance structures: the exponential correlation model, the uniform correlation
model, and the random effect model, and using different conditional expectations of
first order inclusion probabilities given the study variable. The main feature of the
present estimators is their behaviours in terms of the informativeness parameters.

Key words: General Linear Model, Informative sampling, Longitudinal Survey Data,
Maximum Likelihood, and Sample distribution.

1. Introduction

Sampling designs for surveys are often complex and informative, in the sense that the
selection probabilities are correlated with the variables of interest, even when
conditioned on explanatory variables. In this case conventional analysis that
disregards the informativeness can be seriously biased, since the sample distribution
differs from that of the population. Most of the studies in social surveys are based on
data collected from complex sampling designs. Standard analysis of survey data often
fails to account for the complex nature of the sampling design such as the use of
unequal selection probabilities, clustering, and post-stratification. The effect of the
sample design on the analysis is due to the fact that the models in use typically do not
incorporate all the design variables determining the sample selection, either because
there may be too many of them or because they are not of substantive interest.
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However, if the sampling design is informative in the sense that the outcome variable
(variable of interest) is correlated with the design variables not included in the model,
even after conditioning on the model covariates, standard estimates of the model
parameters can be severely biased, leading possibly to false inference. Pfeffermann
(1993, 1996) reviews many examples reported in the literature that illustrate the
effects of ignoring the sampling process when fitting models to survey data and
discusses methods that have been proposed to deal with this problem, see also
Skinner, Holt, and Smith (1989), Kasprzyk, Duncan, Kalton and Singh (1989), Hoem,
(1989), and Chambers and Skinner (2003). It should be emphasized that standard
inference may be biased even when the original sample is a simple random sample,
due to non-response, attrition and imperfect frames that results in de facto a posterior
differential inclusion probabilities.

To overcome the difficulties associated with the use of classical inference procedures
for cross sectional survey data, Pfeffermann, Krieger and Rinott (1998) proposed the
use of the sample distribution induced by the assumed population models, under
informative sampling, and developed expressions for its calculation. Similarly, Eideh
and Nathan (2006) fitted time series models for longitudinal survey data under
informative sampling. Furthermore, Eideh (2008) fitted random effects or subject-
specific effects models for analyzing normal data, which are assumed to be correlated,
under the concept of informative sampling.

The plan of this paper is as follows. In Section 2 we define sample distribution and
sample likelihood. In Section 3 we extract the sampled distribution of the multivariate
normal distribution under informative sampling. In Section 4 we fit the general linear
model for longitudinal survey data. Section 5 provides a discussion of the results.

2. Sample distribution and sample likelihood

Let U = {1 N} denote a finite population consisting of N units. Let y be the target
or study variable of interest and let y, be the value of y for the ith population unit.
Let x;, i eU be the value of an auxiliary variable(s), x, and z = {z,,...,z, } be the

values of a known design variable, used for the sample selection process but not
included in the working model under consideration. In what follows we consider a

sampling design with selection probabilities 7, = Pr(i € s) > 0, and sampling weight
w, =1/, ; i=1..,N. In practice, the z;’s may depend on the population values
(x,y,z). We express this by writing: 7, = Pr(i € s| x,y,z). The sample s consists of
the subset of U selected at random by the sampling scheme with inclusion

!

probabilities 7,,...,z,. Denote by I=(l,,..,1,) the N by 1 sample indicator
(vector) variable such that 1, =1 if unit i €U is selected to the sample and |, =0 if
otherwise. The sample s is defined accordingly as s={i|ieU,l, =1} and its
complement by c=5={i|ieU,l, =0}. We assume probability sampling, so that
7; =Pr(i e s)>0 forall units i e U.



We now consider the population values vy;,...,y, as random variables, which are

independent realizations from a distribution with probability density function
f(y; Ix,,0), indexed by a vector parameter 6.

According to Krieger and Pfeffermann (1997), the (marginal) sample probability
density function of y; is defined as:

fs(yi |Xi’0’7/): fp(yi | X, 0,7, ES)
_ Pl’(i eslxi’yi’y)fp(yi |Xi1‘9)
Pr(i es|x,,6,7)
Ep(”i |Xi’yi’7/)fp(yi |Xi’9)
Ep(”i |Xi'0’7)

1)

where @ is the parameter of the population distribution, y is the parameter indexing
Priies|x,y,,7) and

|X|’0 IE |X|’y|’7/ (yi|xi’H)jyi

Having derived the sample distribution, Pfeffermann, Krieger and Rinott (1998)
proved that if the population measurements y, are independent, then as N — oo (with

nfixed, where n is the sample size), the sample measurements are asymptotically
independent, so we can apply standard inference procedures to complex survey data
by using the marginal sample distribution for each unit. Based on the sample data

{yi,xi,wi; ie s}, we can estimate the parameters of the population model in two
steps:

Step-one: According to Pfeffermann and Sverchkov (1999), estimate the
informativeness parameters y using the following relationship:

Es(Wi|Xivyi17):1/Ep(”i|Xivyiv7) (2)

Thus the informativeness parameters can be estimated using regression analysis.
Denoting the resulting estimate of y by y .

Step-two: Substitute » in the sample log-likelihood function, and then maximize the
resulting sample log-likelihood function with respect to the population parameters, 4

n

Irs(elj;') srs zlogE T |X|’0 )
- 3)

n

=14, (0)+ > logE, (W, | x;,6,7)

i=1

where | (6?,77) is the sample log-likelihood after substituting » in the sample log-
likelihood function and where



.(0)=>" _loglf,(y; %.6)}

is the classical log-likelihood obtained by ignoring the sample design.

3. Multivariate normal distribution under informative sampling

Most classical methods of multivariate analysis of continuous data are based on an
examination of the structure of population mean vectors and covariance matrices. We
consider the problem of estimating the mean vector p and the covariance matrix V of

a vector of study variables y, from survey data obtained under informative sampling.
The original theoretical basis for this is the multivariate normal distribution. The
existing work in this area deals with the estimation problem when the sampling
scheme is noninformative; see for example Smith and Holmes (1989).

The following theorem focuses on multivariate normal distribution under different
modeling of the population conditional expectation of first order inclusion
probabilities.

Theorem 1. Assume that the population distribution is g-dimensional multivariate
normal with mean vector p and covariance matrix V, that is:

Vi = (Vi Vi )’;Nq(p,v),i=1,...,N

Let Ep(yij):yj and Covp(yij,yik):vjk, i=1..,N; j,k=12,..,0.
1. Under the exponential inclusion probability model — exponential sampling:

Ep(”i |Yi): eXp(ao +a'yi)

: (4)
= eXp(ao )H eXp(aj Yii )
j=1
The sample probability density function of vy, is:
fly,)=(20) V] exp] -08ly, ~(u+ Vel Vil - vall]  ©)

That is, y, :(yil,...,yiq )' ~N,(p+Va,V)i=1,..,n.So that,

Es(yi): Ep(yi |i€5)
=p+Va=E_(y,)+Va
and



Vars (yi)zvarp (yl | I € S)
=V =Var, (yi)

2. Under the linear inclusion probability model — linear sampling:
Ep(”i |yi): b, + by,

q (6)
=b, + by,
t=1

The sample probability density function of vy, is:

fs(yi): (bo +b'y; )(271')_0'5q |V|7o'5 eXp{‘O-S(yi —u),Vfl(yi —H)}

by + /(1) "

Furthermore,
Vb

b, +b'n

Vb
=FE )
P(yl)+ bo +bru

Es (yi): "+
(8a)

and

(Vb)Vb)
(b, +b'p)’
(Vb)Vb)

(b, +b'p)’

Vars (yl ) = COVS (yl ) =V-
(8b)
:Varp (y| )_

Proofs:
1. As an extension of equation (1), the sample probability density function of y, is

given by:

fly)=1f,(yilies) === 9)

So that,

f(y,)= expla'y N2x) V[ *° expl-0.5(y, —w) V2 (y, —)]
adk exp(a’n +0.5a'Va) (10)

—(27) V| ** exp(~ 0.5a'Va)exp(~ 0.5Q)

where Q =(y, —p) V(y, —p)-2a(y, —p).

Setting C, =y, —pn , then Q can be written as: Q = Ci’V‘lCi —2a’'C, .Using theorems

in multivariate statistical analysis, see Johnson and Wichern (1998), page 68, we
have:



Q — Cilv—O.Sv—O.SCi _ 2a!Vo.5v—0.5c:i
Now letD, = V°°C_, then:

Q=D, D, -2a'vV*®D,
=D, D, -2a'V*°D, +a'V*®V"a-a'v**Vv®°a

~ (D, - v°%a) (D, - V%a,)-a'Va

But C, =y, —pn and D, =V °°C, ,sothat Q can be expressed equivalently as:

Q

(V—o.s ((yi _n)- Vo.svo.5a))’ (V—o.s ((yi _n)- Vo.svo.sa))_ a'Va
= (v, —(n+Va)) V(y, - (n+Va))-aVa

Thus after substituting this expression of Q in (10), we get (5).

Hence the multivariate normal distribution in the sample is the same as in the
population, except that the mean is shifted by the constant Va . Notice that the sample
probability density function does not depend on a, . Note also:

Es(yij):yj FaV, Fo Vv et agy, (11a)
and
Vars(yij):vjj,Covp(yij,yik):vjk, j#k=1..,q (11b)

2. Substitute (6) in (9) we get (7).

Let us now compute the first two moments of this sample pdf. In order to do this we
will use the moment generating function technique. The moment generating function
of the sample probability density function is given by:

M, (u,) = Elexpluly, )= [(expluty, )25 £ (y, )ay,

b, +b'p
b, dM p(ui)
= bO Mp(ui)—’_&
b, +b'p b, +b'p

where
M, (u;) = exp(ufp + 50V, )

and



Thus we have:
M,
by +b'p

N—"

M. (u;) (b +b'( + Vou; ) (12)

This equation gives explicitly the relationship between the population and the sample
moment generating functions. Notice that the sample and population moment
generating functions are different unless b =0, in which case the sampling
mechanism is noninformative.

Let R,(u;)=1logM,(u,). Differentiating this expression twice and setting u, =0, we
get (8a) and (8b).
From (8a) and (8b), we can see that:

£ (y"):ﬂ_ . bV +..+bv; +..+bv (13a)
P " by by by b
Var (y..):v.. ~ (blvjl+...+ijjj +...+bqvjq)2 (13b)
VU o+ by by gy 44 by,
COVp(yij,yik)=V,-k ~ (blvjl +otbvy o +bvy, Xblvkl +.. 4Dy +...+bqvkq), (130)

(bo +byuy +..bjp; +. b )2
fori=1..,nj=k=12,..,q.

Also Var, (yij )SVarp (yij) and the equality holds if and only if b =0, that is when the

sampling mechanism is noninformative. On the other hand, if b0, then the means the
variances and the covariances change, in contradiction to what happens for the sample
probability density function (5), where only the means change.

To illustrate the results, from now on, we only consider the particular cases of the
exponential inclusion probability model — exponential sampling, see equation (4).

The following are special cases of Theorem 1.

Corollary 1. (Univariate normal distribution, g =1)
Let E (y,)= s and Var,(y;)=Vv,,. Under the exponential sampling:

Ep(”i | Vi) =expla, + a‘lyil) (14)
We get the following result:

Yir N N (/U1 +a,Vyy, V11) (15)



Corollary 2. (Bivariate normal distribution,q = 2).

Let Ep (yil) = Hy, Ep (yiz ) = Hy, Varp (yil) =V, Varp (Yiz ) =V, COVp (yi1! Yio ) =V
and Cor, (yy,Y;,)= py, - Under the exponential sampling:

Ep(”i | yilyyiz):eXp(ao +a1yil+a2yi2) (16)

and using the properties of multivariate normal distribution, see Johnson and Wichern
(1998), page 171, we obtain the following results:

1. The joint sample probability density function of (yil, yiz) is:

! aVv aVv Vv v
(yi1'yi2) :Nz{[ﬂl"' 1V T8,V }[ 11 12}} (17a)

My .V +V5 )|V Yy

2. The sample marginal probability density functions of y, and y,, are respectively
given by:
Yit N N (/11 +a,Vy; +a,Vy, vvn) (17b)

and
Yiz N N (ﬂz +a,Vy + azvzz’vzz) (17¢)

3. The conditional sample probability density function of y, given y., is univariate
normal distribution with conditional mean:

\"
Es(yil | yi2): Es(yil)+p12 Vi(yiz - Es(yiz))

11

Vv
=MtV FaV, o) i(yiz - (/Uz +a,Vy +a,Vy ))
# (17d)
Viy V122
=t Py _(yiz _,uz)"' Q| vy ——
Vo, Vi
V.
=t Py i(Yiz —H, )"’ alvll(l_ /3122)
2
and conditional variance:
Vs(yil | yi2)=V11(1_p122):Vp(yil | Yiz) (17¢)

That is,
Yia | Yiz Z N {:ul + 01, (V11 /V22 )0'5 (yi2 — M, )+ a,Vy, (1_ p122 )’ Vip (1_ p122 )} (17f)



Notice that:
E (Va | Vi2) = Ep(¥ia | Viz)+aV, (Vi | Vi) (17g)

4. Similarly, the conditional sample probability density function of y., given vy, is:

Yio | Vit N N {ﬂz + 01, (sz /Vll )0'5 (yil - ﬂ1)+ a,Vy, (1_ p122 )’ Vi (1_ p122 )} (17h)

Thus the sample and population probability density functions are different, but belong
to the same family of distribution, which is normal. Also the change occurs only for
the means and conditional means, whereas the variances, conditional variances, and
covariance do not change.

In particular if a, =0, that is the inclusion probabilities depend only on vy, (which is
the case in panel surveys), then we have:

1. The joint sample probability density function of (yil, yiz) Is:

! Hy+aNV, |V Vp
(Vies ¥ir) =N {( M }} (18a)
BRI Hy+tapVy, ) [ Vy Vyp

2. The marginal sample probability density functions of vy, and y,, are respectively
given by:

Yit N N (/ul + a1V11’V11) (18b)
and
Yie 7 N (,Uz TV, sz) (18c)
3. The conditional sample probability density function of 'y, given vy;, is:
Vi | Viz N N {/’ll +a,vy, (1_ p122 )+ P12 (V11/V22 )0'5 (Yiz —H; )’ Vi (1 - p122 )} (18d)
4. The conditional sample probability density function of y,, given vy, is:

Yiz | Vi N N {,uz + P (sz A )0'5 (yil —H )v Vo (1_ p122 )} (18e)

Notice that the sample and population probability density functions of y,, |y, are
same, while the other sample and population distributions are different.

Birnbaum et al. (1950) studied the effect of selection performed on some coordinates
of a multi-dimensional population, but in different point of view.
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Notice that the sample and population pdf’s of vy, |y, are same, while the other
sample and population distributions are different.

Corollary 3. (Bivariate normal distribution,q = 2).
Let Ep (yil) = Hy Ep (yiz ) = Hy, Varp (yil) =V, Varp (Yiz ) =V, COVp (yi1! Yio ) =V
and Cor, (yy, Y;,)= py, - Under the linear model:

Ep(”i | Vi yiz):bo +by,; +b,yi,

and using the properties of multivariate normal distribution, we have the following
results:

1. The joint sample probability density function of (yil, yiz) is:

b, +b, Y, +b,Y;
f oY) = 0 1Ji1 27i2 f LV 19a
S(yll y|2) bo + bl,Lll + bZ,UZ p(yll y|2) ( )

2. Integrating (19a), with respect to y,,, we have:

by +b,y;, +b, Vi,
by + by ey +b, 42,

fs(yil):'[ fs(yil’yiz)dyiz :I fp(Yil:Yiz)jYiz

B b, +blul1 +b, 1, (Jbo fo (Vi vie My +jb1yilfp(yi1! yiz)dyiz)+
b, + blull +b, 41, Ju¥ia T (v i
) by +b1,ull +b, 1, qbo o (Vius Vi Y. +_[b1yi1 fo (Vi yiz)dyiz)+
by +bl,ul1 +b, 1, J.bzy‘Z (Vi) o (Vi i ol
b, +b1,111 b, (0o o (yia)+ by () b2 £ (v JE (vl )+
1

[0,y T (v )F o (Vi via v

by + by +b,u,

05
\Y
b, +by; + {ﬂz + 05 [szj (Yi1 - )J

11

= f )
by + by, +b, 1, o) (19b)

3. Similarly, integrating (19a), with respect to y, , we obtain the following marginal
sample probability density function of vy;,:
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22

f.ly.,)= f oy, 19
s(y|2) bo + bl,ul + bZ,UZ p(y|2) ( C)

05
V.
by, +b,y;, + bl[/ﬁ +p12{vllJ (yiz —H, )J

4. Using (19a), (19b), and (19c), we get the following conditional sample probability
density function of y, given vy,,:

fo (Y Yi
fs(yil | Yiz): slgy(lly y)Z)
s\Ji2
_ b, +0,y;, +0,Yi, ) by +b,Yi, +blEp(yi2|yil)
= fp( i1 iz)T fp(yiz)
bo + byt + 0,11 by + D0yt +by 11,
(19d)
_ by + b,y + b, Y5 fp(yil’yiz)
b, +blEp(yil | Yiz)+b2Yi2 fp(Yiz)
by + b,y + b, Y5
= folyi i
{bo +B,E, (Vi | Vi2)+b, i, o i)
where

05
V
Ep(yil | yi2)= Hy +,012(Vi] (yiz _ﬂz)

22

5. Similarly, the conditional sample probability density function of y., given vy, is:

b,y, +b,y;, +b
f ) )= 1Ji1 27i2 0 f ) ) 19
S(ylz | yll) {bZED(in | yil)+blyil +b0} p(yIZ | yll) e

where

05
\Y
Ep(Yiz | yil): Hy +p12(vﬁj (yil _ﬂl)

11

Thus in this case we see that the sample probability density functions and population
probability density functions are very different. Also notice that formulas (19b, c) are
true, not only for the bivariate normal distribution, but for any joint probability
density function of (y,,,y,,), provided that the marginal and conditional distributions

and the corresponding moments are exist.

The following theorem provides the maximum likelihood estimators of the mean
vector p and covariance matrix 'V .
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Theorem 2. Assume . =(yil,...,yiq)' ~N,(n,V),i=1..,N are independent. Let
p

Y., Y, beasample of size n selected by informative sampling.

1. Under the exponential sampling — equation (4): the maximum likelihood estimators
of n and V are given by:

p=y-Va (20a)
and

V=n* ” YNy -y ' {\A/ij}:{sij} (20b)

where @ is the least square estimator under the model: E_(w; | y,)=exp(-a, —a'y,),

72(371,...,7q)’ Vi = n_lzn: y; and V; =s; = n_lzn:(yik —Yi )(yl'k B yi)'
=L k=

2. Under the linear sampling — equation (6): the maximum likelihood estimators of p
and V are defined by the equations:

(y- ﬁ)(l;o + E’ﬁ): Vb (21a)
and

AV v (21)

i=1

where 50 and b are the least squares estimators under  the
model: E (w; | y,)=1/(-b, —b’y;). Solve (21a) and (21b) iteratively. Start with
classical maximum likelihood estimators.

Proofs:
1. Exponential sampling. Using the two-step method of estimation.

Step-one. Estimation of informativeness parameters a, and a via the relationship

).
Step-two. After substituting a in (5), the resulting sample log-likelihood is given by:

!

1 (1, V) = ~0.5ng log 27 — 0.5nlog V|~ 0.5y, —p* ) V2 (y, —p°) (22)
i=1

where p" =p+Va.

According to Johnson and Wichern (1998), page 182, the maximum likelihood
estimators of p”and V are given by:



13

=y
and

V=n"Y(y,-y)y;-)

i=1
Hence the result — equation (20).
2. Linear model. Using the two-step method of estimation.

Step-one. Estimation of informativeness parameters, b, and b via the relationship

).

Step-two. After substituting 50 and b in (7), the resulting sample log-likelihood is
given by:

n

1 1 1 oo ~ -~
1 (0, V) = =2 nalog 2z —ZnlogV| =23y, —1) V7, —p)-nlog(b, +b'n) (23)
i=1
Now differentiating 1 _(u,V) with respect top andV, we can show that the

maximum likelihood estimators of p and V are defined by equation (21).

The following corollary provides the maximum likelihood estimators of the mean u

and the variance o when the population model is univariate normal and the

sampling process is exponential and linear, which is a particular case of Theorem 2

with g =1.

Corollary 4. Assume vy, ~N(,u,02),i =1,...,N are independent. Let vy,,...y, be a
p

sample of size n selected under the following sampling schemes.
1.Exponential sampling. The maximum likelihood estimators of x and o are given

by:

p=y- 51(}2 (24a)
and

52 =s>=n(y, -y) (24b)

i=1

where a, is the least square estimator of the informativeness parameter a, .

2. Linear sampling. The maximum likelihood estimators of x and o2 are given by:

19 . ~
> 2 (i —it)- b (b, +B,2) " =0 (25)

and
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&2 =n"> (y, - i) (25b)
where 50 and 51 are the estimators of the informativeness parameters b, and b;.

Corollary 5. Assume vy, :(yil,yiz)' ~N,(u,V),i=1..N. Under the exponential
p

sampling — equation (4): the maximum likelihood estimators of s, 1,y Vi;,V,,,V;;and
are given by:

=Y, — &8, —a,5, (26a)
,[lz = 72 - 52822 - a1312 (26b)
~ S S
v{ n 12}:{sij},i,j:1,2 27)
Sy Sy

4. Application — fitting general linear model for longitudinal survey data under
informative sampling

4.1 Population model:

Let y,,i=1..,N;t=1..T be the measurement on the i-th subject at time t=1,...,T .
Associated with each vy, are the (known) values, x,,,k =1,...p, of p explanatory
variables. We assume that the y, follow the regression model:

Yie = BiXin +t B X + & (28)

where ¢, are random sequence of length T associated with each of the N subjects.

In our context, the longitudinal structure of the data means that we expect the ¢, to be
correlated within subjects.

!

Let Y, =(Yiyron Vir )', X, :(xm,...,xitp)' and let B=( 1,...,ﬂp) be the vector of
unknown regression coefficients. The general linear model for longitudinal survey
data treats the random vectors y,,i=1...,N as independent multivariate normal
variables, that is

Vi = Ny(xB.V) (29)

where x; is the matrix of size T by p of explanatory variables for subject i, and V
has (jk)—th element, v, =covp(yij,yik ) J,k=1,...,T; see Diggle, Liang and Zeger
(1994).
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4.2 Covariance structure of vy, :

It is useful at this stage to consider what form the matrix V might take. We consider
three cases: the exponential correlation model, the uniform correlation model; see
Diggle, Liang and Zeger (1994), and the random effect model; see Skinner and
Holmes (2003).

Casel: The exponential correlation model:

In this model, the (t,s)—th element of V has the form:
Vi :covp(yn,yis):azp“‘s‘,t,s:1,...,T (30)

Note that the correlation,v,. /o, between a pair of measurements on the same unit
decays toward zero as the time separation between the measurements increases.

Case2: The uniform correlation model:

In this model, we assume that there is a positive correlation, o, between any two
measurements on the same subject. So that the (t,s)—th element of V has the form:

Ve =COV, (Vi Vi) =0’pt#s=1..T ; v, =0’ t=01..T (31)
Case3: Random effects models:

Under this model the multivariate outcomes Yy, =(y,.,... Vs ),i=21..,N are
independent with mean vector and covariance matrix given respectively by:

E,(v:)=(BrmBr)=n (32a)
cov,(y;)=0ld; +0°V; =% (32b)

where J; denotes the T by T matrix all of whose elements are one, and the (t,t')—th
element of \V; is p" it,t'=....T.

4.3 Sampling design:

We assume a single-stage informative sampling design, where the sample is a panel
sample selected at time t=1 and all units remain in the sample till time t=T .
Examples of longitudinal surveys, some of which are based on complex sample
designs, and of the issues involved in their design and analysis can be found in Herriot
and Kasprzyk (1984), and Nathan (1999). In many of the cases described in these
papers, a sample is selected for the first round and continues to serve for several
rounds. Then it is intuitively reasonable to assume that the first order inclusion
probabilities, 7, depend on the population values of the response variable at the first
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occasion only, the values y;;, and on X :(xm, o ,m) and the values of known

design variable, z ={z,...,zy }, used for the sample selection, but not included in the
working model under consideration.

4. 4 Sample distribution:

Under exponential inclusion probability model:
Ep(”i | yil’Xil): EXp(ag T+ Xy +3,X5, +ot apxllp) (33)

Using (29), (33) and Theorem 1, we have:

Vil 0.8, ~N,(u",V) (34)

where,

!

p = [Xglﬂ + aoVn’X;zB +agVipse Xi’TB +a,Vyr ]

Note that, let y;; , = = (Yips Yigreeor Vir )’. Alternatively, the sample probability density
function of y, is can be written as:

o (yifx )= fo (Vi) Fo (i s | Yia i) (35)
where
1 1
fs(yi1|xi1'9’7): W eXp{_ 2V11 (yil - X;lB - a0V11)2:| (36)
1
fp(yi,T—llyilixi): (27[)T1;/* ‘1/2 exp{_%( T _uT—l),( OT—l) ( iT-1 "T—l)i| (37)
0T-1

By = Epl_yi,T—l | yil'XiJ

!
* *

' V2 V
:|:Xi2B+V* ( |1 |1B) " |TB+ V (yll |1B)}

11 11

with general term:
-1 . ’
Vi = Ve — (Vu) ViadVipas LU= 5..T-1.
So that we have the following sample model:

Yic = Bo + BiXig ot BpXip + &

, (38)
=X B +¢e,;i=12,...,n



17

where S, =a,v,, B = (ﬂo,ﬂl,...,ﬁp)', x/ =(1,x;) and the &, are a random
sequence correlated within subjects .

Note that if a, =0, that is the sampling design is noninformative, then the population
and sample models are the same.

4.5 Estimation:

We consider three method of estimation, namely: unweighted maximum likelihood,
pseudo maximum likelihood, and two-step estimation based on the sample
distribution.

4.5.1 Unweighted maximum likelihood:

Maximum likelihood for the case where the sampling design is ignorable: the value of

0 = (B, V) that satisfy:

L) =2 2 natog2r e nlogV 3, w0, )} 9

4.5.2 Pseudo maximum likelihood:

The pseudo maximum likelihood estimator of @ = (B, V) is defined as the solution of:

A~

Uw(e)=—%2wi a—i[qln2ﬂ+ln|V|+{yi (et Va)l vy, —(u+Va)}} 0 (40)

ies

G 0)= 3w 00 {, (vl o 3L in{f, (v s | yiox, )} =0 (41)

ies ae n ies ae
For more discussion, see Eideh and Nathan (2006).
4.5.3 Two-step method:

Step one. Estimate a, via the model: E_(w, | y,,,X; )= exp(— a, —a,Yi —a'xil).

Step two. Using Theorem 2, the maximum likelihood estimators of B* and V are
defined as the solution of:

n

0 . 0 2\ \ g .
a—elrs([i ,V)=—%%{nq IogZ7z+nIog|V|+iZl:(yi —n )V 1(yi -1 )}=0 (42)

where B :(ﬂO’ﬁl""’ﬂp) and p” = [X;lB+aovll’X;ZB_i_a0V12""’X;TB+aOVlT] :



18

4.6 Variance estimation:

For variance estimation we use the inverse of Fisher information matrix and the
bootstrap approach for variance, see Pfeffermann and Sverchkov (1999, 2003) and
Eideh and Nathan (2006).

(a) Fisher information matrix approach:

The inverse of the observed Fisher information matrix evaluated at = (ﬁ\?) IS given

by:
}1 (43)

Let 0= (ﬁ\?) be the sample maximum likelihood estimator of @ = (B,V) based on

any of the equations (39-42) and éb = (ﬁb,\7b) be the ML estimator computed from
the bootstrap sample b =1,...,B, with the same sample size, drawn by simple random
sampling with replacement from the original sample — the sample drawn under

informative sampling design. The bootstrap variance estimator of 9=(ﬁ,\7) IS
defined as:

(b) Bootstrap approach:

1E /A = ~ = '
= EZ[BD - 9boot )(Bb - 9boot) (44)
b=

where

5. Conclusions

In this paper, we extend the definition of univariate sample distribution into
multivariate random variables. Also, we consider a new method of estimating the
parameters of the superpopulation model for analyzing multivariate normal
observations from finite population when the sampling design is informative.
Furthermore, the general linear model for longitudinal survey data under informative
sampling using different covariance structures: the exponential correlation model, the
uniform correlation model, and the random effect model, was fitted under informative
sampling.

The main feature of the present estimators is their behaviours in terms of the
informativeness parameters.

The paper is purely mathematical. The role of informativeness of sampling
mechanism in adjusting various estimators for bias reduction, based on simulation
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study, under different population models and different modeling of conditional
expectations of first order inclusion probabilities given response variable and
covariates, can be found in Pfeffermann and Sverchkov (1999, 2003), Nathan and
Eideh (2004), Eideh (2008), and Eideh and Nathan (2006, 2009).

I hope that the new mathematical results obtained will encourage further theoretical,
empirical and practical research in these directions.
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