• English
    • العربية
  • English 
    • English
    • العربية
  • Login
View Item 
  •   DSpace Home
  • AQU Research Network Clusters
  • AQU researchers publications
  • View Item
  •   DSpace Home
  • AQU Research Network Clusters
  • AQU researchers publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It

Thumbnail
View/Open
molecules-25-01340.pdf (1.095Mb)
Date
2020-03-16
Author
Breijyeh, Zeinab
Jubeh, Buthaina
Karaman, Rafik
Metadata
Show full item record
Abstract
Antimicrobial resistance represents an enormous global health crisis and one of the most serious threats humans face today. Some bacterial strains have acquired resistance to nearly all antibiotics. Therefore, new antibacterial agents are crucially needed to overcome resistant bacteria. In 2017, the World Health Organization (WHO) has published a list of antibiotic-resistant priority pathogens, pathogens which present a great threat to humans and to which new antibiotics are urgently needed the list is categorized according to the urgency of need for new antibiotics as critical, high, and medium priority, in order to guide and promote research and development of new antibiotics. The majority of the WHO list is Gram-negative bacterial pathogens. Due to their distinctive structure, Gram-negative bacteria are more resistant than Gram-positive bacteria, and cause significant morbidity and mortality worldwide. Several strategies have been reported to fight and control resistant Gram-negative bacteria, like the development of antimicrobial auxiliary agents, structural modification of existing antibiotics, and research into and the study of chemical structures with new mechanisms of action and novel targets that resistant bacteria are sensitive to. Research e orts have been made to meet the urgent need for new treatments; some have succeeded to yield activity against resistant Gram-negative bacteria by deactivating the mechanism of resistance, like the action of the -lactamase Inhibitor antibiotic adjuvants. Another promising trend was by referring to nature to develop naturally derived agents with antibacterial activity on novel targets, agents such as bacteriophages, DCAP(2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2(hydroxymethyl)propane1,3- diol, Odilorhabdins (ODLs), peptidic benzimidazoles, quorum sensing (QS) inhibitors, and metal-based antibacterial agents.
URI
https://dspace.alquds.edu/handle/20.500.12213/5697
Collections
  • AQU researchers publications [753]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV