Residential exposure to extremely low frequency electric and magnetic fields in the city of Ramallah-Palestine

Date
2018-04-01
Authors
Abuasbi, Falastine
Lahham, Adnan
Abdel-Raziq, Issam Rashid
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Abstract
This study was focused on the measurement of residential exposure to power frequency (50-Hz) electric and magnetic fields in the city of Ramallah-Palestine. A group of 32 semi-randomly selected residences distributed amongst the city were under investigations of fields variations. Measurements were performed with the Spectrum Analyzer NF-5035 and were carried out at one meter above ground level in the residence’s bedroom or living room under both zero and normal-power conditions. Fields’ variations were recorded over 6-min and some times over few hours. Electric fields under normal-power use were relatively low; ~59% of residences experienced mean electric fields <10 V/m. The highest mean electric field of 66.9 V/m was found at residence R27. However, electric field values were log-normally distributed with geometric mean and geometric standard deviation of 9.6 and 3.5 V/m, respectively. Background electric fields measured under zero-power use, were very low; ~80% of residences experienced background electric fields <1 V/m. Under normal-power use, the highest mean magnetic field (0.45 μT) was found at residence R26 where an indoor power substation exists. However, ~81% of residences experienced mean magnetic fields <0.1 μT. Magnetic fields measured inside the 32 residences showed also a log-normal distribution with geometric mean and geometric standard deviation of 0.04 and 3.14 μT, respectively. Under zero-power conditions, ~7% of residences experienced average background magnetic field >0.1 μT. Fields from appliances showed a maximum mean electric field of 67.4 V/m from hair dryer, and maximum mean magnetic field of 13.7 μT from microwave oven. However, no single result surpassed the ICNIRP limits for general public exposures to ELF fields, but still, the interval 0.3–0.4 μT for possible non-thermal health impacts of exposure to ELF magnetic fields, was experienced in 13% of the residences.
Description
Keywords
Citation