A Mathematical-Based Model for Estimating the Path Duration of the DSDV Routing Protocol in MANETs

Saeed Salah
Raid Zaghal
Mada Abdeljawad
Journal Title
Journal ISSN
Volume Title
Mobile Ad Hoc Networks (MANETs) are kind of wireless networks where the nodes move in decentralized environments with a highly dynamic infrastructure. Many well-known routing protocols have been proposed, with each having its own design mechanism and its own strengths and weaknesses and most importantly, each protocol being mainly designed for specific applications and scenarios. Most of the research studies in this field used simulation testbeds to analyze routing protocols. Very few contributions suggested the use of analytical studies and mathematical approaches to model some of the existing routing protocols. In this research, we have built a comprehensive mathematical-based model to analyze the Destination-Sequenced Distance Vector protocol (DSDV), one of the main widely deployed proactive protocols and studied its performance on estimating the path duration based on the concepts of the probability density function and the expected values to find the best approximation values in real scenarios. We have tested the validity of the proposed model using simulation scenarios implemented by the Network Simulator tool (NS3). The results extracted from both the mathematical model and the simulation have shown that the path duration is inversely proportional to both the speed of the node and the hop count. Furthermore, it had shown that the path duration estimated from the DSDV protocol is less than the actual path duration, due to the implementation of the settling time concept and keeping the “periodic routes’ update” parameter at a constant level, despite the fact that the node’s speed reduces the effective path utilization.