Variation in the optical sensing properties of dithiocarbamate polymer microspheres as function of surface morphology

Date
2012-11-01
Authors
Odeh, Imad
Shakhsher, Ziad
Amayreh, Mousa
Khatib, Mahmoud
Karmi, Abeer
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Research Publishing Agency
Abstract
Three polymers with N-ethanolamino-, N-benzylamino-, and N-t-butylamino-dithiocarbamate groups were synthesized from polyvinylbenzylchloride. Each of the three polymers was incorporated in a hydrogel membrane (PVA) cross-linked with glutaraldehyde to form a sensing element. The latter was, then, evaluated for its optical sensing behavior by subjecting it to varying concentrations (1.0x10-5 up to 0.1 M) of metal ions (Zn2+, Cd2+, Pb2+, Hg2+,Ca2+, Mg2+, K+, Na+, Cr3+, Ni2+, Cu2+). Significant response was observed for the Hg2+ ions while the others showed negligible or no response. The turbidity absorbance increased consecutively from the dithiocarbamate polymer derived from N-t-butylamine towards that from ethanolamine as the concentration of the Hg2+ solution increased. The response time measured for the three polymer microspheres ranged between 2 and 30 minutes. The aminodithiocarbamate polymers were stable at normal temperatures (25ο - 40 ο C) and as pH was changed between 2 and 7. In addition, the polymers demonstrated excellent stability with time and a capacity of 3.967, 3.787, 3.355 mmol Hg2+ ions per gram of polymer for the N-ethanolamino-, N-benzylamino-, and N-t-butylamino-dithiocarbamate respectively. SEM and Eds analyses showed an increase in size of about 25% in the case of complexation with N-ethanolamino-, no size change with N-benzylamino-, and a 16.6% decrease in size with N-t-butylamino-dithiocarbamate.
Description
Keywords
Dithiocarbamate polymer microspheres, optical sensing, heavy metals, SEM, Eds
Citation