Mathematics
Permanent URI for this collection
Browse
Browsing Mathematics by Author "افنان محمود مصطفى الشيخ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGeneralized Log-Logistic Proportional Hazard Model with Applications in Survival Analysis(Al-Quds University, 2022-08-10) Afnan Mahmoud Mustafa AL-sheikh; افنان محمود مصطفى الشيخProportional hazard (PH) models can be formulated with or without assuming a probability distribution for survival times. The former assumption leads to parametric models, whereas the latter leads to the semi-parametric Cox model which is by far the most popular in survival analysis. However, a parametric model may lead to more efficient estimates than the Cox model under certain conditions. Only a few parametric models are closed under the PH assumption, the most common of which is the Weibull that accommodates only monotone hazard functions. We study and investigate a generalization of the log-logistic distribution that belongs to the PH family. It has properties similar to those of log-logistic, and approaches the Weibull in the limit. These features enable it to handle both monotone and nonmonotone hazard functions. Application to four data sets and a simulation study revealed that the model could potentially be very useful in adequately describing different types of time-to-event data. يمكن صياغة نماذج المخاطر النسبية Proportional Hazardمع أو بدون افتراض توزيع احتمالي لأوقات البقاءSurvival Time. يؤدي الافتراض الأول إلى نماذج بارامترية Parametric، في حين أن الأخير يؤدي إلى نموذج كوكس Coxشبه البارامتي الذي يعد الأكثر شيوعًا في تحليل البقاء على قيد الحياة. ومع ذلك، قد يؤدي النموذج المعياري إلى تقديرات أكثر كفاءة من نموذج كوكس في ظل ظروف معينة.عدد قليل فقط من النماذج البارامترية في ظل افتراض PHتكون مغلقة، وأكثرها شيوعًا هو Weibull الذي يستوعب اقترانات الخطر أحادية الاتجاه فقط في هذا البحث سوف ندرس ونتوسع في تعميم التوزيع اللوجيستي الذي ينتمي إلى عائلة PH. لها خصائص مشابهة لتلك الخاصة باللوجستيات ، وتقترب من Weibull في النهاية. هذه الميزات تمكنه من التعامل مع اقترانات الخطر monotone and nonmonotone hazard function .تم تطبيق هذا النموذج على مجموعات مختلفة من البيانات وكذلك دراسة محاكاة، تبين أن النموذج يمكن أن يكون مفيداً جداً في وصف الأنواع المختلفة من بيانات الوقت إلى الحدثtime-to-event بشكل مناسب.
- ItemGeneralized Log-Logistic Proportional Hazard Model with Applications in Survival Analysis(Al-Quds University, 2022-08-10) Afnan Mahmoud Mustafa AL-sheikh; افنان محمود مصطفى الشيخيمكن صياغة نماذج المخاطر النسبية Proportional Hazard مع أو بدون افتراض توزيع احتمالي لأوقات البقاء Survival Time. يؤدي الافتراض الأول إلى نماذج بارامترية Parametric، في حين أن الأخير يؤدي إلى نموذج كوكس Cox شبه البارامتي الذي يعد الأكثر شيوعًا في تحليل البقاء على قيد الحياة. ومع ذلك، قد يؤدي النموذج المعياري إلى تقديرات أكثر كفاءة من نموذج كوكس في ظل ظروف معينة. عدد قليل فقط من النماذج البارامترية في ظل افتراض PH تكون مغلقة، وأكثرها شيوعًا هو Weibull الذي يستوعب اقترانات الخطر أحادية الاتجاه فقط في هذا البحث سوف ندرس ونتوسع في تعميم التوزيع اللوجيستي الذي ينتمي إلى عائلة PH. لها خصائص مشابهة لتلك الخاصة باللوجستيات ، وتقترب من Weibull في النهاية. هذه الميزات تمكنه من التعامل مع اقترانات الخطر monotone and nonmonotone hazard function .تم تطبيق هذا النموذج على مجموعات مختلفة من البيانات وكذلك دراسة محاكاة، تبين أن النموذج يمكن أن يكون مفيداً جداً في وصف الأنواع المختلفة من بيانات الوقت إلى الحدث time-to-event بشكل مناسب.