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Abstract

The most famous control method used to control the induction machine (IM)

is vector control or field oriented control method (FOC). The purpose of this

thesis is to drive an induction machine using FOC by minimizing the total en-

ergy measure in the IM based on optimal control theory.

In this thesis, the linear and non linear quadratic optimal control problems

using second and third order model of IM are treated.

A second order model based on vector control approach relating motor fluxes

(states) and currents (controls) is considered to obtain an optimal state and con-

trol trajectories of IM.

Linear quadratic optimal control problem is solved by solving algebraic Rac-

citi equation (ARE).

Moreover, a third order nonlinear model described in arbitrary rotating frame

of IM is used with a quadratic performance index. This problem is solved us-

ing the quasilineraization method which converts the nonlinear optimal control

problem into a sequence of linear quadratic optimal control problems. The op-

timal trajectories of fluxes, speed, currents, and torque that represent the model

states and controls of IM are obtained

Rather than building the system, digital simulation program (Matlab and

Simulink) is used to show the final result of IM controls and states.
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Chapter 1

Introduction

The most commonly used machines of one horsepower and more are three-

phase induction machines. Induction machines consist of two main parts: stator

and rotor. These machines require no electrical excitation for the rotor winding

(squirrel cage). The rotor windings are short circuited. Magnetic flux flows

through air gap links, this closes the rotor circuit, and then voltages are induced

in the rotor; causing of currents to flow.

The rotor current arises from induction, and the operating speed of the rotor is

slightly less than the synchronous speed in the motor mode and slightly greater

than synchronous speed in generator mode (Mcpherson et al, 1990).

1.1 Induction Machine

Induction machines are usually induction motors (operated in motor mode),

and they have many advantages. They are rugged, have small size, relatively

inexpensive, require very little maintenance, and found in wide power ranges.

Their speed is nearly, but not quite, constant, dropping a few percent in go-

ing from no load to full load. They have greater efficiency and lower torque

than other motors (Mcpherson et al, 1990, Novotny et al, 1995). The main dis-

advantages of the induction motors are:

1. The speed is not easily controlled.

1



2. The starting current may be five to eight times full load current.

3. The power factor is low and lagging when the machine is lightly

loaded.

When the three-phase voltages are applied to the stator winding terminals,

a balanced three phase-currents flows in the phase windings, so the rotating

Electro-Magnetmotive Force (MMF) field is produced in the air gap of the ma-

chine. The speed of the rotating MMF field is given by equation:

=
4

where : synchronous speed, : frequency of the stator voltages and cur-

rents, and is the number of poles of the windings.

The magnitude and frequency of the rotor voltages depend on the speed of

the relative motion between the rotor and flux crossing in the air gap ( ). The

slip speed expresses speed of the rotor speed ( ) relative to the field speed

( ), and it is given by:

slip speed =

where the per unit slip, usually called slip ( ), is defined as follows:

= (1.1)

1.2 Induction Machine Circuit

The induction machine, in certain aspects, is a rotating transformer. However

the three-phase induction motors are of two types: squirrel cage and wound

2



rotor (Mcpherson et al, 1990, Novotny et al, 1995, Dubey, 1995).

In squirrel cage motors, which are the types mostly used, the rotor consists

of the longitudinal conductor-bars shorted by circular connectors at the two

ends. Both squirrel cage motor and wound rotor motor have a per phase equiv-

alent circuit of three-phase induction motor as shown in Figure (1.1a) with `

and ` , rotor resistance and inductance, respectively referred to the stator.

and are stator resistance and inductance respectively. is a magnetizing

inductance.

Since the stator impedance drop is generally negligible compared to terminal

voltage V , the equivalent circuit can be simplified to the one shown in Figure

(1.1b).

From figure (1.1b) the following equation is got:

= ³
+

`
´
+

³
+ `

´ (1.2)

Rs Ls R
’
r L

’
r

(1-s)R
’
r/s

Lm(V) (E)

Is Ir

(a)

Rs Ls R
’
r L

’
r

(1-s)R
’
r/s(V) (E)

Is Ir

(b)

Lm

Figure 1.1: Per phase stator referred equivalent circuit of induction motor
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And the developed torque is as shown in (Dubey, 1995, Rashid, 2004):

=
1 3 ` 2³

+
`
´2
+
³

+ `
´2 (1.3)

Analyzing the mechanical characteristic equation (1.3), the developed torque

is a function of slip. A typical plot of developed torque as a function of slip or

speed is shown in figure (1.2) (Rashid, 2004).

There are several methods to control an induction motor torque, speed, or

position. These methods can be categorized in two groups: the scalar and vector

control (Texas Instrument, 1996).

1.3 Induction Machine Control Literature Review

1.3.1 Scalor Control:

Scalar control means that variables are controlled only in magnitude, and

the feedback and command signals are proportional to DC quantities. This

technique drives the stator voltage or current as a command and mainly deals

with characteristic equation (1.3). The speed and torque control (Rashid, 2004,

Bose, 2002) can be done using one of the following control methods:

a) Stator Voltage Control:

This method stands on varying terminal voltages of the stator, so the mo-

tor torque is proportional to the square of stator voltages as indicated in (1.3)

(Rashid, 2004, Bose, 2002).

Stator voltage can be varied by three phase AC voltage controller, three phase
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voltage-fed variable DC link inverter, and three phase pulse width modulation

(PWM).

This method is mainly used in low power application, and may be used for

starting high power induction motors to limit the inrush currents (Rashid, 2004).

b) Rotor Voltage Control:

This method used only in a wound rotor induction motor, because the ro-

tor has acssesable terminals. An external three-phase resistance may be con-

nected to the termials, and the developed torque is varied by varying this three

phase resistor. To analyze this method, this resistor is added to the rotor and

the developed torque are determined by applying characteristic equation (1.3)

(Rashid, 2004, Bose, 2002).

This is an inefficient method, while there would be imbalance in voltages and

current if the resistor is not uniform. In addition this method increase starting

torque while limiting the starting current.

The three phase resistors may be replaced by three-phase diode rectifier and

DC converter. This converter may be a DC converter with parallel resistor

or AC inverter with step up transformer; and the secondary winding of the

transformer are connected to the three phase supply. This type of drive is known

as static Kramer drive.

Again, by replacing three phase resistor with three phase dual converter

(or cycloconverter), a rotor voltage control occurs, this method is called sta-

5



tic Scherbiuse drive.

The last two methods (static Kramer drive and static Scherbiuse drive) are

used in large power pump and limited range of speed applications.

c) Frequency Control:

This method stands on changing the supply frequency. If the frequency above

certain value is increased, the flux and torque would decreas. The synchronous

angular frequency corresponding to rated frequency can be defined as ,then

the synchronouse frequency at any other frequency becomes:

=

and

= = 1

The characteristic equation then becomes:

=
3 ` 2³

+
`
´2
+
³

+ `
´2 (1.4)

And figure (1.3) (Rashid, 2004) shows torque behavior by changing

d) Voltage and Frequency Control:

This method depends on keeping the voltage to frequency ratio constant, so

the motor flux remains constant, and then maximum torque can be maintained

approximately constant. In addition, at low frequencies, the air gap flux is re-

duced due to the drop in the stator resistance and the voltage has to be increased

to maintain the torque level (Dubey, 1995, Rashid, 2004, Bose, 2002).
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Figure 1.2: Torque-Speed Characteristic

1.0

0.75

0.50

0.25
0.0

=constant mbm TT

Torque 

Speed

Figure 1.3: Torque-speed characteristic with frequency control.
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This method is called volt/hertz control, and it is efficient and widely used in

industry.

e) Current Control:

This method stands on varying the rotor current to control the induction mo-

tor torque. The input (stator) current is varied instead of rotor current using

three phase current source inverter. Figure (1.4) (Dubey, 1995, Rashid, 2004)

shows the torque speed characteristic by current controller.

f) Voltage, Current, and Frequency Control

The mechanical characteristic equation (1.3) depends on the type of control.

It may be necessary to vary the voltage, frequency and current to obtain the

mechanical requirements.

Figure (1.5) (Rashid, 2004) shows the control variables versus frequency,

where there are three regions. In the first region we can vary speed with voltage

(or current) control at a constant torque. In the second region, the motor is

operated at a constant current and variable slip. In the third region, the speed is

controled by frequency at reduced stator current (Rashid, 2004).

1.3.2 Vector Control:

The vector control refers not only to the magnitude but also to the phase of

these variables. Matrices and vectors are used to represent the control quanti-

ties, and this method is also known as Field Oriented Control (FOC). Moreover,

it allows a squirrel cage induction motor to be driven with high performance and

8
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Figure 1.4: Torque-speed characteristic by current control.
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Figure 1.5: Control variables versus frequency
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similar to the characteristic of a DC motor (Novotny et al, 1995, Leonard, 1985,

Vas, 2000, Mohamad, 2000, Ho, Sen, 1988).

This method considers real mathematical equations that described the motor

itself, and decouples the components of the stator current: one providing the

air gap flux and another producing the torque that provides independent control

of flux and torque. Although the induction motor have very simple structure;

its mathematical model is complex due to the coupling factor between large

number of variables and nonlinearities. To solve this problem, vector control

uses the two primary transformations (NEC corporation, 2002). The first one is

called Clark transformation and the other is called Park transformation. Clark

transformation transforms the three stator currents ( , , and ) to two or-

thogonal current representations in stationary frame or frame attached to the

stator ( , ). To apply Clark transformation we have to measure only two of

the phases currents (e.g. , and ).

Park transformation transforms the stationary currents from stationary frame

into rotating frame or frame attached to the rotor using the angle ( ) between

them, and to do so measuring the mechanical speed of the induction motor is

needed.

In chapter two Clark, Park transformations and vector control implementa-

tion will be presented.

An induction machine model using vector control algorithm has been applied
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by several researchers in control, for example H. Zidan (Zidan et al, 2000) suc-

cessfully applied the estimation method to control the induction motor drives

without using speed sensors; they used simple speed estimation method for IM

drive at low speed, this method uses the current and the input voltages in closed

loop for rotor parameter estimation.

While, B. Hovingh et al, (Hovingh et al, In Press) presented an algorithm to

estimate the rotor’s speed and torque from the terminal voltage and input current

to the motor. They showed that measurement of the stator voltage and currents

are sufficient to determine the rotor position, speed and torque of an induction

motor during any conditions, whether transient or steady state. Their work is

being performed to analyze the response of a Field Orientated Control system

when the estimated waveforms are used as an input into the control loop.

On the other hand, Ramirez and Canudas (Ramirez et al, In Press) presented

experimental results of a nonlinear torque-flux optimal control for induction

motor drives. This controller minimizes the stored magnetic energy and the coil

losses, while satisfying torque tracking control objectives. They also presented

an optimal design for current induction motor drives.

In addition, H. Rasmussen (Rasmussen, 2002) used an adaptive approach

leading to a completely a new method called Field Angle Adaptation (FAA).

The new contribution to the conventional current control system in rotor field

oriented dq-coordinates is a signal added to the field angle in the transformation

11



from rotor field coordinates to stator fixed coordinates. This signal adapts the

field angle estimate to the correct rotor field angle.

Okoro (Okoro, 2003) used the vector control algorithm to simulate the dy-

namic performance of the induction motor by assuming the main flux induc-

tance, stator, and rotor leakage inductances vary with the magnetization cur-

rent.

Barambones (Barambones, In Press) presented indirect field oriented motor

drive with sliding mode controller, including rotor speed estimation from mea-

sured stator terminal voltage and currents. The estimated speed is used as a

feedback in an indirect vector control system achieving the speed control with-

out the use of the shaft mounted transducer.

While Kim et al (Kim et al, 2001) used neural network technique to estimate

rotor speed of the induction motor. They use backpropagation algorithm, and

the training starts simultaneously with induction motor working. They realized

speed sensorless drive.

On the other hand, Bose (Bose et al, 1997) showed the implementation of

simple direct torque neuro-fuzzy control (DTNFC).

In this thesis, the optimal solutions of the induction motor (IM) fluxes and

currents that minimize the total energy measure of the motor will be presented.

The optimal control theory is used to solve a linear and nonlinear IM models

based on vector control approach.

12



Following this introductory chapter, the vector control is disscussed in chap-

ter two. In chapter three will discuss the optimal control theory and chapter

four formulates the optimal control problem by applying optimal control the-

ory on IM model. Chapter five shows the optimal control problem solution and

simulation of the controller. Finally, conclusion and future work are discussed

in chapter six.

13



Chapter 2

Vector Control

Vector control algorithm uses the dynamic equivalent circuit of the induction

motor, and this equivalent circuit enables the induction motor to be controlled

in a method similar to DC motor(Okoro, 2003).

Two primary famous transformation are used: Clark transformation which

transforms the three stator current into two DC currents in stationary frame,

and Park transformation which transforms the two DC currents into direct and

quadrature axis or rotating frame as shown in figure (2.1).

Vector Control Implementation:

Figure (2.2) (NEC corporation, 2002) shows a block diagram of the vector

control implementation with desired input ( , ) (Mathwork, 2002).

The purpose of this chapter is to describe the element of Clarck and Park

transformations and flux estimation bolcks shown in figure (2.2) and to obtain

the induction motor model using vector control technique.

isa

isb

isc

id

iq

jq

d

jq

d

Figure 2.1: 3-phase to d-q equivalents

14



2.1 Direct and Quadrature Axis Transformation

Direct and quadrature axis transformation (Park transformation) was used to

convert the three sinusoidal phase voltages and currents (with phase shift be-

tween any two phases: 120 degree) to two orthogonal voltages and currents

respectively, this transformation can represent the machine parameters in a

rotating d-q frame, and the following equation initialize d-q transformation:

(Rashid, 2004, Okoro, 2003, Barambones, In Press, Marino et al, 1993):¸
= (2.1)

¸
=

where

=
2

3

cos cos
¡

2
3

¢
cos
¡

4
3

¢
sin sin

¡
2
3

¢
sin
¡

4
3

¢ ¸

and

= ( )

where and are stator currents in abc frame, and are sta-

tor voltages in abc frame, and are stator currents in dq rotating frame,

and are stator voltages in dq rotating frame, : the phase angle between ro-

tating frame and stationary frame, represent the relative speed between

synchronously rotating reference frame (stationary) and frame attached to rotor

(rotating frame). This difference is called slip speed( ) (Rashid, 2004).
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2.2 Induction Machine Model

When the induction machine is modeled the following assumptions must be

considered: (Okoro, 2003):

1. The machine is symmetrical with linear air-gap magnetic circuit.

2. Neglecting the saturation effect.

3. Neglecting skin, and temperature effects.

4. Neglecting harmonics content of MMF wave.

5. The stator voltages are balanced.

The suitable way to obtain the induction machine performance is through

reducing the machine into two axis coils (d-q axis) model on both stator and

rotor, as described by Krause and Tomas (Krause et al, 1965).

Figure (2.3) (Rashid, 2004, Okoro, 2003, Ozpineci et al, 2003) shows d-q

equivalent circuit for three phase symmetrical induction reffered to arbitrary

rotating frame.

From the dynamic equivalent circuit, the induction motor parameters can be

expressed in matrix equation (2.2), regarding that the rotor bars in squirrel cage

induction motor are shorted out and the rotor voltages equal zero (Rashid, 2004,

Bose, 2002).

0
0

=

+
+

( ) + ( )
( ) ( ) +

(2.2)

16



Inverse 

Park

PWM

inverter 

Inverse

Clark

Flux Estimation

M

3~

Clark 
Transformation 

Park 
Transformation 

PI

PI E

ia
ib
ic

ia

ib

ic

isq

isd

w m

i*sd

i*sq +

         -
+

         -
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Figure 2.3: Dynamic equivalent circuit for induction motor.
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and

= +

= +

Where are stator, rotor resistance per phase respectively, are

stator, rotor inductance per phase respectively, = operator, are syn-

chronous and rotor speeds respectively, and scripts and represent leakage

and magnetizing inductances, respectively. The stator flux linkages are given

by matrix equation (2.3): ¸
=

¸ ¸
(2.3)

While rotor flux linkages are given by matrix equation (2.4):¸
=

¸ ¸
(2.4)

Solving equation (2.4) for we obtain equation (2.5):¸
=

¸ 1 ¸
(2.5)

The air gap flux linkages are given by matrix equation (2.6):¸
=

¸ ¸
(2.6)

From equation(2.2) we obtain equation (2.7):¸
=

¸
( )

¸
(2.7)

Substituting equation (2.5) in equation (2.7), we get the second order model of

the three phase induction machine as follows:

˙

˙ = ( )

( )
+ (2.8)
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This model (2.8) is a second order nonlinear model because ( ) is function

of the states and the controls as shown in equation 2.13. It will be used to

determine the optimal fluxes and input currents of the induction motor using

optimal control theory. In addition, the torque developed by induction machine

is given by (Rashid, 2004):

=
£ ¤

(2.9)

Substituting equation (2.5) in equation (2.3), the following equation is yielded:

¸
=

¸" 2
#

(2.10)

and by substituting equation (2.10) in equation (2.9), the following equation is

yielded:

=
£ ¤

(2.11)

The mechanical model of the induction motor is described by:µ ¶
= (2.12)

Where is the moment of inertia, is viscose friction coefficient, is the

load torque. By substituting equation (2.11) in equation (2.12), the following

differential equation is obtained (Ouhrouche et al, 2000):

˙ =
2 ¡ ¢

(2.13)

Rewriting equations (2.8) and (2.13) in matrix form, we get the following dif-
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ferential equation:

˙

˙

˙
=

2 2
+

(2.14)

Equation (2.14) represents the nonlinear third-order model for the induction

machine which will be used to determine the optimal fluxes, input currents,

speed and load torque of IM using nonlinear optimal control theory.
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Chapter 3

Optimal Control

There are several methods to control different systems.To determine the con-

trol signals that will cause a process to satisfy a physical constrains and at the

same time minimize (or maximize) some performance index, the optimal con-

trol theory should be used. In addition, optimal control approach helps to deal

with modern and complex systems.

3.1 General Optimal Control Problem

Assuming that the plant is described by nonlinear time varying dynamical

differential equation:

˙ ( ) = ( ( ) ( ) ) (3.1)

Where ( ) is the states of the plant, ( ) is the control input.

With the system associate performance measure:

( 0 ) = ( ( ) ) +

Z
0

( ( ) ( ) ) (3.2)

While [ 0 ] is the interval of interest. The final weighting function ( ( ) )

depends on the final state and final time, and the weighting function ( ( ) ( ) )

depends on the state and input at intermediate times in [ 0 ] (Lewis et al, 1995).

Now the optimal control problem is to find the input ( ) on the time interval

to control the plant equation (3.1) along trajectories ( ) that minimize the cost

function (3.2) as shown in figure (3.1).
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After the mathematical model of the system (equation 3.1) is determined, and

the physical boundary values 0, , ( 0), ( ) are also determined, the next

step is to define the physical performance measure. Section 3.2 shows some

useful performance measures (or performance indices) and their meanings.

3.2 Useful Performance Indices

In this section, some common performance indices will be discussed, so

one of them could be selected for system equation (3.1) (Lewis et al, 1995,

Pryson et al, 1975, Kirk, 1970):

3.2.1 Minimum Time Problem:

Assuming that the control input ( ) should be found to drive the system

from the given initial states ( ( 0) = 0) to a desired final states in minimum

time, this performance index could be selected:

= 0 =

Z
0

In this case, the final weighting function ( ( ) ) = 0 and the

Controller 

)),(),((

)(

ttutxf

tx y(t)=x(t)u
*
(t)

-

Figure 3.1: Optimal control problem representation
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weighting function ( ( ) ( ) ) = 0 or equivalently ( ( ) ) = 0 and

( ( ) ( ) ) = 1 (Kirk, 1970).

3.2.2 Minimum Fuel Problem:

Assuming that the control input ( ) should be found to drive the system

from the given initial states ( ( 0) = 0) to a desired final states at fixed

time using minimum fuel, this performance index could be selected:

=

Z
0

| ( )|

In this case, the final weighting function ( ( ) ) = 0 and the weighting

function ( ( ) ( ) ) = | ( )|

3.2.3 Tracking Problem:

Assuming that the control input ( ) should be found to drive the system

with a closed state vector ( ( )) to a desired state vector ( ( )) as possible at

fixed time . this performance index could be used:

=

Z
0

( ( ) ( )) ( ( ) ( ))

Where is a real ( × ) positive definite and symmetric state weighting

matrix ( 0)

In this case, the final weighting function ( ( ) ) = 0 and the weighting

function ( ( ) ( ) ) = ( ( ) ( )) ( ( ) ( )) (Kirk, 1970).

3.2.4 Minimum Energy Problem:

Assuming that the control input ( ) should be found to minimize the en-
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ergy of the final state, and intermediate states, and also controls at fixed time ,

this performance index could be used (Kirk, 1970):

=
1

2
+
1

2

Z
0

¡
+

¢
where and are real ( × ) a positive semidefinite and symmetric state

weighting matrix ( 0), and is real ( × ) positive definite symmet-

ric control weighting matrix ( 0).

In this case, the final weighting function ( ( ) ) = 1
2 and the

weighting function ( ( ) ( ) ) = 1
2 + 1

2

Using this performance index corresponds keeping the state vector ( ) and

control vector ( ) close to zero (Kirk, 1970).

In this thesis, minimum- energy problem to minimize the total energy in

the induction motor is used, which is the sum of the stored magnetic energy

in the inductance, the dissipated energy in the rotor and stator resistances, the

dissipated energy due to core losses (eddy currents and magnetic hysteresis),

and mechanical energy (Ramirez et al, In Press, Georges et al, In Press-a).

3.3 Linear Quadratic Optimal Control Problem

Section 3.1 showed the optimal control problem statement for general non-

linear system. Now we will consider the linear time invariant system:

˙ ( ) = ( ) + ( )
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Where , with associate quadratic performance index:

=
1

2
( ) ( ) +

1

2

Z
0

¡
( ) ( ) + ( ) ( )

¢
(3.3)

The time interval over which were interested in the behavior of the plant is

[0 ] we have to determine the control vector ( ) on [0 ] that minimizes

the performance index (3.3) for feedback control.

The initial system state (0) is given, state weighting matrices and are

symmetric positive semi-definite, and control weighting matrix is symmetric

positive definite for all [0 ].

The solution of this optimal control problem is shown in (Lewis et al, 1995,

Pryson et al, 1975, Kirk, 1970) in detail, and the result of this solution is:

( ) = ( ) (3.4)

Where K is called the Kallman gain and is defined by:

( ) = 1

Where is the solution of the following algebraic differential equation:

˙ = + 1 +

The control system shown in equation (3.4) is a time varying state feedback.

The closed loop plant can be written as:

˙ ( ) = ( ) ( )
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Since , , , and are time invariant, this can be used to find the optimal

state trajectory ( ) given any ( )

For the case of time invariant and lim ( ) = 0, the optimal control

problem is given by:

Min =
1

2

Z
0

¡
( ) ( ) + ( ) ( )

¢
subject to the system equation

˙ ( ) = ( ) + ( )

The optimal state feedback control that solves this problem is given by:

( ) = ( )

And the Kallman matrix is given by:

= 1

where is the solution of the following Algebraic Ricatti Equation (ARE)

(Lewis et al, 1995, Pryson et al, 1975, Kirk, 1970):

+ 1 + = 0 (3.5)

3.4 Linear System with Known Disturbance

For any linear time invariant systems with known disturbance ( ):

˙ ( ) = ( ) + ( ) + ( )

Where , with associate performance index:

=
1

2
( ) ( ) +

1

2

Z
0

¡
( ) ( ) + ( ) ( )

¢
The initial system state ( 0) is given, state weighting matrices and are
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symmetric positive semi-definit, and control weighting matrix is symmetric

positive definite for all [ 0 ].

The optimal state feedback control that solves this problem is:

( ) = ( ) + 1 ( )

And the Kallman matrix is given by:

= 1

Where is the solution of the following algebraic differential equation:

˙ = + 1 +

And is the solution of the differential equation:

˙ ( ) = ( ) ( ) + ( )

For the case of time invariant and lim ( ) = 0, the optimal contorl prob-

lem will become:

Min =
1

2

Z
0

¡
( ) ( ) + ( ) ( )

¢
subject to the system equation

˙ ( ) = ( ) + ( ) + ( )

Then, the optimal state feedback control that solves this problem can be given

by:

( ) = ( ) + 1 ( )
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where the Kallman matrix is given by:

( ) = 1

and is the solution of the following Algebraic Riccati Equation (ARE):

+ 1 + = 0

And is given by:

( ) =
³
( )

´ 1

( )

3.5 Nonlinear Optimal Control Problem

Since many problems are described by a strongly nonlinear differential equa-

tion, or consist of nonlinear or complex performance index, we must apply

a numerical method to solve the optimal programming and control problem

(Pryson et al, 1975).

Moreover, several methods have been proposed to solve a nonlinear optimal

control problem. For example, discretization method, parameterization method

(Goh, Teo, 1988, Frick et al, 1995), steepest decent method, and quazilineariz-

tion method (Vlassenbroeck et al, 1988, Jaddu, Shimemura, 1999).

Converting an optimal control problem into mathematical programming prob-

lem using discretization technique or parameterization technique is classified

as direct technique (Jaddu, 2002). In addition, steepest decent method converts

a nonlinear optimal control problem into a mathematical programming prob-
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lem using gradient of Hamiltonian function and considering an analog calculus

problem.

On the other hand, quazilineariztion method can be used in nonlinear optimal

control problem in two different ways (Bellman et al, 1965):

1. Linearizing two point boundary value problem (TPBVP).

The widely used method is to linearize the Euler-Lagrange system of differ-

entialequations around nominal trajectories, and the optimal control problem

can be solved by solving successively a sequence of two linear point boundary

value problem.

2. By solving a sequence of linear quadratic optimal control problems.

In this method, the performance index were expanded up to the second order,

and we linearize the system differential equation around nominal trajectories.

Therefore, the original optimal control problem can be solved be solving se-

quence of linear quadratic (LQ) problems

In this thesis a quasilineariztion method will be used by solving a sequence

of LQ problem to optimize the induction machine performances.

3.6 Quazilineariztion Method

First, let us define the problem statement:

Find the optimal control ( ) that minimizes the performance index:

=
1

2

Z
0

¡
+

¢
(3.6)
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subject to the nonlinear system equation:

˙ ( ) = ( ( ) ( ) ) (3.7)

and initial states

(0) = 0 (3.8)

Where ( ) is the states of the plant, ( ) is the control in-

put, [0 ] is real ( × ) a positive semidefinite and symmetric state

weighting matrix ( 0), and is real ( × ) positive definite symmetric

control weighting matrix ( 0).

Applying the quazilineariztion method, the optimal control problem equa-

tions (3.6) to (3.8) can be replaced with following linear quadratic optimal con-

trol problem (Jaddu, 2002):

Find the optimal control
( +1)

( )that minimizes the performance index:

=
1

2

Z
0

³
( +1) ( +1) + ( +1) ( +1)

´
subject to the linearized system state equation (3.9):

˙ ( +1) = ( ) ( +1) ( ) + ( ) ( +1) ( ) + ( ) ( ) (3.9)

with initial condition:

( +1)(0) = 0

where script represents the iteration number, ( ) and ( ) can be writ-

ten:

( ) =
˙ ( )

| ( ) ( )
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( ) =
˙ ( )

| ( ) ( )

( ) ( ) = ˙ ( ) ( ) ( ) + ( ) ( )

By considering the term ( ) ( ) is disturbance input for the system and =

, an optimal control problem is solved by the theory presented section 3.4.

So that the optimal state feedback control is:

( +1) = ( +1) ( +1) + 1 ( ) ( +1)

( +1) = 1 ( ) ( +1)

while ( +1) solve the Algebraic Racciti Equation:

( ) ( +1) + ( +1) ( ) ( +1) ( ) 1 ( ) ( +1) + = 0

and

( +1) =
³

( ) ( ) ( +1)
´ 1

( +1) ( )

We guess the values (0)( ) (0)( ) at the beginning to find the matrices

(0) (0) (0), then we solve the problem as a linear quadratic optimal problem

with disturbance input to find (1) (1) (1) (1) and (1). Then by using

(1) and (1) we find (1) (1) and (1) for next iteration, and so on, until an

acceptable convergence is reached.
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Chapter 4

Induction Machine Optimal Control

Chapter two showed the induction machine model using attractive method

“Field Oriented Algorithm”, and chapter three presented directed approaches

that were used to analyze and control certain systems, satisfying physical con-

strains and maintaining certain performance index at the same time.

In this chapter, the optimal control problem of the induction motor model,

which is a very famous physical system, is formulated.

Because the induction motors are widely used in industry, especially in high

power ranges of motors, reducing (or increasing efficiency) the total energy

consumed by induction motor is a very important aspect for engineers. Optimal

control method help us to approach these aspects.

To apply the optimal control theory on the induction machine system, first

we will study the energy measure of the induction motor.

4.1 Energy Measure of the Induction Motor

The total energy consumed by induction motor is equal to the total energy in

the electro mechanical system, which are:

1. Stored magnetic energy inductance.

2. Dissipated energy in the rotor and stator resistances (Copper losses).

3. Dissipated energy causes by fluctuate currents and hystersis (Core
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Loses).

4. Mechanical energy measure.

The previous four energy measures were discussed to obtain the total energy

measure in the induction motor.

4.1.1 Magnetic Energy Measure:

The total stored magnetic energy in the induction motor is (Ramirez et al, In Press):

=
1

2
1

2
¸ ¡

2 + 2
¢
+

1

2

¡
2 + 2

¢
=
1

2
1

2
¸ £ ¤ ¸

+
1

2

£ ¤ ¸

=
1

2
+
1

¸

while =
£ ¤

=
£ ¤

and =
h
1

2
i

4.1.2 Copper Losses Measure:

The copper losses measure equal the total energy dissipated by stator and

rotor resistances ( and ), and it is given by the integral of the coil losses:

=
1

2
2 +

1

2
2 +

1

2
2 +

1

2
2

=
1

2

£ ¤ ¸
+
1

2

£ ¤ ¸
(4.1)

Substituting equation (2.5) in equation (4.1), the total coil losses will be:

=
1

2

µ
+

2
¸ £ ¤ ¸

+
£ ¤ ¸¶

=
1

2

µµ
+ 2

¶
+

¶
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while =
¡

+
¢

.

4.1.3 Core Losses Measure:

Core losses are the losses due to fluctuate currents and hystersis, and they are

very difficult to model . In addition , they do not make matter compared with

copper losses, especially in well design induction machines. Therefore, we

will not consider them here (Ramirez et al, In Press, Georges et al, In Press-a,

Georges et al, In Press-b).

4.1.4 Mechanical Energy Measure:

Mechanical energy usually is defined by the desired acceleration and velocity

time profile, so that no mechanical energy minimization is required. However,

the desired or load torque profile is computed from the mechanical equation

(2.12), and the mechanical energy is the integral of the equation (4.2):

= (4.2)

4.1.5 Total Energy Measure:

From the second order model of equation (2.8), we can easily write the flux

norm variation as:"
2

#
= 2 ( ) 2 + ( )

£ ¤ ¸
(4.3)

Noting that the value ( ) is very small, and term (( ) ) is also
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a very small value with respect to
³

2
´

, equation (4.3) could be rewritten

as: "
2

#
=

And the total energy measure using the flux norm variation equal the integral

of the value:

=
1

2

½µ
+

2
2

¶
2

1 ¡ ¢¾
(4.4)

Since the integral of the last term in equation (4.4) depends on the boundary

values [0 ], this means that:

=
1

2

Z
0

¡ ¢
=

1

2

£
( ) ( ) (0) (0)

¤
This value of losses does not change the energy dissipated by coil losses with

the interval [0,T], so that we can omit this term.

To summarize , the suitable energy , on the form of cost function to be mini-

mized could be (Ramirez et al, In Press):¡ ¢
= 1 + 2

¯

=
1

2

µ
1

µ
1

2
¶
+

µ
2

µ
+

2

2

¶ ¶

+

µ
1 2

2

¶ ¶

=
1

2

¡
+

¢
Where ¯ = + 1

2

¡ ¢
1 0 2 0 satisfy ( 1 2 0)

used to scale quantities in defined power energy combined convex criteria.
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at least is semi-definite positive matrix, and is positive definite matrix.

Minimizing the stored energy and coil losses causes maximizing the machine

efficiency, and maximum efficiency is usually obtained at rated operating points

(rotor and stator currents, rotor and stator fluxes, and torque) (Ramirez et al, In Press,

Leonard, 1985, Seleme et al, 1992). By choosing weighting matrix R and Q

different optimal solutions can be obtained.

4.2 Problem Formulation

The optimal control problem as presented in section 3.1 was applied on the

induction machine plant to minimize the total stored energy and coil losses or

maximize machine efficiency. This is stated as:

Find the state feedback control that minimize the performance index

= ( ( ) ) +

Z
0

( ( ) ( ) )

subject to machine state equation

˙ ( ) = ( ( ) ( ) ) ( (0) = 0)

And the induction machine run on the interval [0 ], i.e. it runs in continu-

ous duty or 1 duty(Dubey, 1995), and weighting function ( ( ) ) = 0.

So that the optimal control problem becomes:

Find the state feedback control that minimizes the performance index

=

Z
0

( ( ) ( ) )
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subject to machine state equation

˙ ( ) = ( ( ) ( ) ) ( (0) = 0)

Here ( ( ) ( ) ) = 1
2

¡
+

¢
, and state vector = =£ ¤

and control vector = =
£ ¤

In this thesis, we have two problems to be treated :

Problem I: Based on the first model (2.8), two linear optimal control prob-

lems are solved, which are obtained by linearizing the nonlinear model (2.8)

using some properties of IM.

The optimal control problem then states: find the control input ( ) to min-

imize the performance index

=
1

2

Z
0

¡
+

¢
(4.5)

subject to the IM model equation (2.8).

Problem II: Based on the second model (2.14), two cases of nonlinear op-

timal control problem are solved. In the first case the torque is considered as

input and in the second case the torque is considered as a fixed load.

Then optimal control problem: find the control input ( ) to minimize the

performance index equation (4.5) subject to the IM model equation (2.14).

In the next chapter, these problem solutions and the simulation results are

shown.
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Chapter 5

Induction Machine Optimal Control Problem Solution

Chapter 4 showed the design theory for optimal state feedback control to the

induction motor, this design should be stable and make the system run with

minimum energy or maximum efficiency.

In this chapter, the optimal control technique shown in chapter 4 is applied

to induction motor models equations (2.8) and (2.14) to find the IM states and

controls. Moreover, the behavior and response of these controls will be shown

for different cases.

To demonstrate the presented solutions for different cases “either in linear or

nonlinear cases” digital simulation programs were used, and they are MATLAB

7.0.1 and SIMULINK 6.1 (see Appendices A1, and A2).

Built in functions by MATLAB 7.0.1 like (lqr, and care) were used. These

functions help us to solve the continuous Algebraic Ricatti Equation.

Moreover, to demonstrate the simulations we used the following motor pa-

rameters: Power= 1hp, Rated speed =1440 rpm, z= 2 pole pairs, = 1.15 ,

=1.44 , =0.144 H, = = 0.156 H , = 0.013 kg.m2 = 0.002

Nm.s/rad.

5.1 Linear Optimal Control Cases

To over come the problem of nonlinearity of the induction machine equation
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(2.8), we will consider two cases based on the induction machine properties:

Case 1 Frequency difference between the synchronous speed and mechanical
speed is zero, i.e. (Mathwork, 2002, Ismail et al, In Press):

= 0

Therefore the optimal control problem becomes: Find the state feedback con-

trol vector
³

= =
£ ¤ ´

that minimizes the performance index

=
1

2

Z
0

¡
+

¢
subject to the induction motor model:h i

=
h

0

0

i h i
+

h i
For simplicity, this system can be rewritten in a compact form " = +

" with =
h

0

0

i
, and =

"
0

0

#
.

This problem can be solved using the optimal control technique presented in

section 3.3, i.e.

= =

Kallman Gain: = 1

+ 1 + = 0

Case 2 Frequency difference between the synchronous speed and mechanical
speed equals slip speed (Mcpherson et al, 1990, Novotny et al, 1995, Rashid, 2004),
i.e:

slip speed = =

Therefore the optimal control problem becomes:

Find the state feedback control vector
³

= =
£ ¤ ´

that min-
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imizes the performance index

=
1

2

Z
0

¡
+

¢
subject to the induction motor model: ˙ = + , while =h i

=

"
0

0

#

Also, this problem can be solved using optimal control theory presented in

section 3.3 similar to the previous case.

5.2 Simulation of Linear OCP

To simulate the linear optimal control problem (OCP) solved in section 4.2,

different weighting matrices = 1 0
0 2

¸
and = 1 0

0 2

¸
have been

considered, with their eigenvalues 1 2 0 , and 1 2 0

The simulation has been performed using five sets of ( and ); 1 2 =

0 01 0 1 1 10 100 , and 1 2 = 0 01 0 1 1 10 100 respectively and with

initial state 0 = [ 5 5] weber .

Figures (5.1), (5.2), and (5.3) show the simulation result of case 1. Figure

(5.1) the state feedback control vector (stator currents).

Figure (5.2) shows the phases currents ( ) of IM.

While figure (5.3) shows the optimal system state trajectories (rotor fluxs).

Moreover, to show the simulation result of the rotor speed, we used the speed

differential equation (2.13), and figure (5.4) shows the mechanical speed under

constant torque 1.5Nm and zero initial speed .
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Second

Ampere 

Figure 5.1: State feedback control ( ) using LQR method for 1hp, 4 poles
IM and load torque 1.5 Nm (case1)
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Figure 5.2: Phases currents simulation usnig LQR OCP ( ) for 1hp, 4
poles IM and load torque 1.5 Nm (case1)

Second

Weber

Figure 5.3: States ( ) using LQR method for 1hp, 4 poles IM and load
torque 1.5 Nm (case1)
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Figure 5.4: Speed simulation ( ) result using LQR method for 1hp, 4 poles IM
and load torque 1.5 Nm (case1)

(b)

Second

Ampere

Figure 5.5: State feedback control ( ) using LQR method for 1hp, 4 poles
IM and load torque 1.5 Nm (case2)

Figures (5.7), (5.5), and (5.8) show the simulation results of the case 2 of

section 4.2. Where figure (5.7) shows the state feedback control trajectories

(fluxes), figure (5.5) shows the state trajectories (currents), and figure (5.8)

shows the motor speed trajectories under constant torque 1.5 Nm.

Figure (5.6) shows the phases currents ( ) of IM.

From previous simulations, we notice that changs in weighting matrices do

not affect the optimal controls or optimal states.
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Figure 5.6: Phases currents simulation usnig LQR OCP ( ) for 1hp, 4
poles IM and load torque 1.5 Nm (case2)

Second

Weber

Figure 5.7: States ( ) using LQR method for 1hp, 4 poles IM and load
torque 1.5 Nm (case2)

5.3 Nonlinear Optimal Control Cases

The second approach to solve the optimal performance measure for the in-

duction motor is solving a nonlinear optimal control problem. Therefore, we

used the third order model of the induction motor equation (2.14). In addition,

we did not make any modification on the induction motor model.

Thus, the nonlinear optimal control problem given by:

Find the input control vector ( ) that minimizes the performance index

=
1

2

Z
0

¡
+

¢
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Figure 5.8: Speed simulation ( ) result using LQR method for 1hp, 4 poles IM
and load torque 1.5 Nm (case2)

subject to the induction motor model equation (2.14)

And this nonlinear optimal control problem can be solved using optimal con-

trol technique presented in section 3.6.

Moreover, we will consider two cases while we are solving this problem.

Case 3 Load torque is control input for the induction motor system (e.g. brake).

Thus, the third order model is ( ˙ = + ), the control vector =£ ¤
and the state vector is =

£ ¤
To convert our nonlinear optimal control problem to a sequence of linear

quadratic optimal control problem as presented in section 3.6, we must linearize

the model around known trajectories, so that:

˙
( +1)

˙ ( +1)

˙ ( +1)
= ( )

( +1) ( )
( +1)

( )
( +1)

( )

+ ( )

( +1)
( )

( +1)
( )

( +1)
( )

+ ( ) ( ) (5.1)
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where

( ) =

+
( ) ( )

( ) ( )

2
( )

2
( )

( ) =

0 0
0 0

2
( )

2
( )

( ) ( )=

( ) ( )

( ) ( )

2 ( ) ( )
+

2 ( ) ( )

Then the optimal control problem becomes:

Find the state feedback control vector
³

=
£ ¤ ´

that mini-

mizes the performance index:

=
1

2

Z
0

µ³
( +1)

´
( +1) +

³
( +1)

´
( +1)

¶
(5.2)

Subject to the state equation (5.1).

We guess the values (0)( ) (0)( ) at the beginning to find the matrices

(0) (0) (0), then we solve the problem as linear quadratic problem to find

(1) (1), then finding (1) (1) and (1). . . .etc. (Sequence of LQ Problems).

Anyway, the solution of this optimal control problem at any iteration ( ) is:

( +1) = ( +1) ( +1) + 1 ( ) ( +1)

( +1) = 1 ( ) ( +1) Kallman Gain

while ( +1) solves the algebraic racciti equation:

( ) ( +1) + ( +1) ( ) ( +1) ( ) 1 ( ) ( +1) + = 0
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and

( +1) =
³

( ) ( ) ( +1)
´ 1

( +1) ( )

( +1) (0) =
( +1)
0

With initial guess (0)( ) (0)( ) .

Case 4 Load torque is constant, or it is an input disturbance to the induction
motor model.

Thus the control vector =
£ ¤

, state vector =
£ ¤

and the induction motor model :

˙

˙

˙
=

2 2
+

0

0
0

The statment of the optimal control problem for a new case will be:

Find the state feedback control vector
³

=
£ ¤ ´

that minimize

the performance index equation (5.2) subject to the state equation:

˙ ( +1) = ( ) ( +1) ( ) + ( +1) ( ) + ( ) ( )

while

( ) =

+
( ) ( )

( ) ( )

2
( )

2
( )

( ) =

0
0

2
( )

2
( )
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( ) ( )=

( ) ( )

( ) ( )

2 ( ) ( )
+

2 ( ) ( )

Again, to solve this optimal control problem, we may use the same technique

that was used in the pervious case.

5.4 Simulation of Nonlinear OCP

To simulate the nonlinear optimal control problem (OCP) solved in section

4.2, different weighting matrices have been considered:

=
1 0 0
0 2 0
0 0 3

=
1 0 0
0 2 0
0 0 3

for case 3 and = 1 0
0 2

¸
for case 4, with their eigenvalues 1 2 3 0 , and 1 2 3 0.

The simulation has been performed using five sets of ( and ); 1 2 =

0 01 0 1 1 10 100 , and 1 2 = 0 01 0 1 1 10 100 respectively.

Figures (5.9), (5.10), and (5.11) show the simulation result to nonlinear op-

timal control problem (case3), the simulation performed with initial states

0 =
£

0 0 0

¤
=
£

5 5 100
¤

, and initial guess and

(0) =
h

(0) (0) (0)
i

=
£
1 1 1

¤
and

(0) =
h

(0) (0) (0)
i

=
£
1 1 1

¤
Figure (5.9) shows the state trajectories (motor fluxes and speed).

Figure (5.6) shows the phases currents ( ) of IM in case 3 .

While figure (5.11) shows control trajectories (input currents and load torque)

On the other hand, figures (5.12), (5.13) and (5.14) show the simulation result
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Figure 5.9: States ( ) using Quasilinearization method for 1hp, 4
poles IM and brake torque (case 3).
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Figure 5.10: Phases currents simulation usnig Quasilinearization method
( ) for 1hp, 4 poles IM and load brake torque (case3)

Figure 5.11: States ( ) using Quasilinearization method for 1hp, 4
poles IM and brake torque (case3)
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Figure 5.12: States ( ) using Quasilinearization method for 1hp, 4
poles IM and load torque 1.5 Nm (case 4)
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Figure 5.13: Phases currents simulation usnig Quasilinearization ( ) for
1hp, 4 poles IM and load torque 1.5 Nm (case 4)

to nonlinear optimal control problem (case3), the simulation performed with

initial states:

0 =
£

0 0 0

¤
=
£

5 5 100
¤

, and initial guess and

(0) =
h

(0) (0) (0)
i

=
£
1 1 1

¤
and (0) =

h
(0) (0)

i
=
£
1 1

¤
Where figure (5.12) shows the state trajectories (motor fluxes and speed).

Figure (5.6) shows the phases currents ( ) of IM in case 4

And figure (5.14) shows control trajectories (input currents) at fixed load

torque.
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Figure 5.14: State feedback control ( ) using Quasilinearization method for
1hp, 4 poles IM and load torque 1.5 Nm (case 4)
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis obtained optimal trajectories of induction motor states (rotor fluxes

and mechanical speed) and controls (stator currents and load torque).

These trajectories are obtained by minimizing the quadrature performance

measure or performance index that represents a measure of total energy caused

by magnetizing energy, core and copper losses, and mechanical energy of the

induction motor.

On the other hand, these trajectories are composed using vector control algo-

rithm, and rotating direct quadrature axis, and they give final compact, attrac-

tive, simple, and controllable model of the induction machine.

Because of nonlinearity of the obtained model, an optimization was done

using to different approaches: first, by simplifying the motor model using some

of induction machine properties, and the second approaches is dealing with

obtained nonlinear model then solve nonlinear optimal control problem.

After simplifying the obtained model using some useful properties, we got

a linear model of the induction motor, so that we made the optimization to the

linear quadratic optimal control problem to minimize the total energy of the

motor. We did the optimization by solving an algebraic Riccati equation (ARE)
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for our problem and using different weighting matrices Q and R.

In addition, we solve the nonlinear optimal control problem using quasilin-

eariztion technique by converting the problem to sequence of linear quadratic

optimal control problems. These problems were easily solved by solving alge-

braic Riccati equation (ARE) and ordinary differential equation.

Finally, the simulation of the optimizations are carefully done in two ap-

proaches to obtain controls (stator currents and/or load torque) and states (rotor

fluxes and/or mechanical speed) using digital computer programs which are

MATLAB and SIMULINK programs.

Using different state and control weighting matrices (Q and R) didn’t af-

fect the response of fluxes, currents, speed, and torque as shown in simulation

figures, and this shows the stability and robustness for the IM state feedback

controllers.

The responses of induction machine using linear optimal control theory are

similar to those obtained by using nonlinear optimal control theory.

6.2 Recommendation and Future Work

This thesis presented the mathematical design and simulation of optimal tra-

jectories of the induction motor system (rotor fluxes, stator currents, rotor or

mechanical speed, and load torque) with field oriented algorithm. We recom-

mend for future work, an implementation of these controllers by building, and

tuning.
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Appendix A .

Induction motor ratings: Power= 1hp, Rated speed =1440 rpm, z= 2 pole

pairs, = 1.15 , =1.44 , =0.144 H, = = 0.156 H , = 0.013

kg.m2 = 0.002 Nm.s/rad.

A.1 Simulink Charts for Linear Optimal Control Problem Cases 1 and

2

Figure A.1: Simulink chart for case 1 and
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Figure A.2: Block contents of subsystems speed1 to speed 5 for cases 1 and 2

A.2 Simulink Charts for Nonlinear Optimal Control Problem Cases

3and 4

Figure A.3: Simulink chart for case 3 and case 4
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Figure A.4: Subsystem input for cases 3 and 4

Figure A.5: Phase currents calculations
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Figure A.6: Block contents of subsystem for cases 3 and 4
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