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Abstract

It is well-known that there are many types of differential equations and
each type has its own applications and solution, one of these types known as
neutral delay linear differential equations. This type of equations has
solutions divided into three shapes: oscillatory, almost oscillatory, and
nonoscillatory solutions. And to decide whether the solution is oscillatory or
nonoscillatory, we have some necessary and sufficient conditions that must
satisfied .

In this thesis, we study the oscillation of nontrivial real valued solutions y(t)

to the third order linear neutral delay differential equations of the form

d d d _
7| 2O | n® (@O +p@OyE—D) | |+f®Oy(t—0)=0  (IN1-A4)

d d d

=m0 (n(t) 7 @O+ p(t)y(r(t»)) HfOYE®)=0  (IN1-B)
d d? B

7 | 70 75 (GO +p@yE®))) | +f@ye@) =0 (1N2 — B)
d? d

] (r(t) 7 @ +p@Oy(t - r))) +f(®y(t-0)=0 (2N 1-4)
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d2 d
=7 (r(t) = (o + p(t)y(r(t)))) +f®Oy(o(®) =0 (2N1 - B)

where

p), f) €C([to,»),R), f(©) 20, rn(®), (1), r(t) € C* ([ty, ), R*)

and 7, o€[0,t).

The purpose of this thesis is to examine sufficient conditions established so

that every solution to equations (1N1—A4) , (IN1-B),(2N1—-A), (2N1—-B),
(IN2 — A), (1N2 — B) is either oscillatory or converge to zero.In particular , we

extend the results that obtained in K. V.V. Seshagiri Rao to the equation

d d?
- ( r© — ((© +p@y(e - r)))> +fOY(E-0) =0 (1N2 = 4)

and follow the similar steps that used specially in Tongxing Li in studying
equation (1N1— B) to examine oscillatory properties that presented for the
equation (1N1 — A) when the function r;(t) = 1. These criteria improve and
complement those results in the literature. Moreover, we give the proof of the

comparison lemma that appear in Seshagiri Rao , and some illustrating examples.

vii



Introduction

Many important and significant problems in engineering, physical sciences,

and social sciences when formulated in mathematical terms, require the
determination of a function satisfying an equation that has one or more
derivatives of an unknown function, which may be a function of time ¢ . Such

equations are called differential equations . Newton’s second law of motion

d?u(t) du(t)
= F |t u(t), 1
m— ( u(),— )
for the position u(t) of the particle acted on aforce F is a good example, the
. L du(®)
position u(t), and the velocity It

If the differential equation of the form
F(t,y(t),y’(t),y”(t), Ce y(")(t)) =0 (2)

or  y™W© =7 (t,y0.,y'©®,y"®, ..., y"©) 3)

n € N is called nth order differential equation, where only the function y(t) and
its derivatives are used in determining if the differential equation is linear,

see [31].

A solution of equation (3) on the interval (a,f)is afunction @ such that
@'(t),0"(t), ..., @™ D(t) exist and satisfy

8® () = £ (£,0(6),0'(6), 9" (), ..., B"V()) for every t € (a,f).

We will assume that the function f is real valued function and we are interested
in obtaining real valued solutions y = @(t) in our work.Now, if the solution

y = @(t) has arbitrary large zeros on interval (t,, ) then this solution is said to
be oscillatory ; Otherwise, it is said to be nonoscillatory. If all solutions are
oscillatory or converge to zero asymptotically then the differential equation is

said to be almost oscillatory .



A type of differential equation in which the derivative of the unknown function
at certain time (t) is given in terms of the values of the function at previous
times (t — 7) are called delay equations.It is also called time-delay-systems,
equation with deviating argument. The simplest constant delay has the form
Y(©=f(t,y®,yt—1),y(t -1, ..., ¥(t—10) Q)

where the delays (lags) t;’s are positive constants. More generally, state
dependent delays may depend on the solution that is 7; = Tj(t,y(t)).
Oscillation problems for first order ordinary differential equation with deviating
arguments are interesting from a theoretical as well as the practical point of
view. In fact, Bernoulli (1728), while studying the problem of sound in atube
with finite size, investigated the properties of solutions of first order ordinary
differential equation with deviating argument, this was the first work in this
area. Myskis investigated several oscillation problems of this type of equations,
see [7].

Now a differential equation in which the highest order derivative of the unknown
function appears both with and without delays is called Neutral Delay
Differential Equation (NDDE). Concerning existence, uniqueness and continuous
dependence for (NDDE), we refer to Driver [25, 26 ].

There has been great interest in studying the oscillatory behavior of differential
equations, since there are many types of them not easy to solve and has many
applications , see [7,9,10,16, 18] and the references cited therein.In fact
oscillation theory of neutral delay differential equations has grown rapidly and
has many interesting applications from the real world in many fields. Delay
differential equations are important class of dynamical systems, so they often
arise in either natural or technological control problems. In these systems, a

controller monitors the state of the system, and makes adjustments to the system



based on its observations. Since these adjustments can never be made
instantaneously, a delay arises between the observation and the control action.
They also have applications to electric networks containing lossless transmission
lines. Such networks appear in high speed computers where lossless transmission
lines are used to interconnect switching circuits. They also occur in problems
dealing with vibrating masses attached to elastic bar and in some variational
problems, see [12, 22, 28] . In addition to that, they now occupy a place of central
importance in the biological applications since they give a better description of
fluctuations, in population dynamics and epidemiology, see [1, 8,21, 23] for more
applications. Lastly, they appear in dynamical economics as a delay differential
equation models of cyclic economic behavior, and it is now known that a broad
spectrum of dynamic behaviors can be found in nonlinear delay differential
equations, see Saari [5], Mackey [17], Franke [27], and the references cited therein.
In the last forty years, there has been many researches that study the

oscillatory behavior of linear neutral delay differential equations of the form:

dn
dtn

® +pOyt— )+ f(Oy(t—0) =0 (5)

where ne N, t-t <t,t-o0 <t ,see[6].For n=1, equation (5) has been
studied by Ladas and Sficas [6], Grammatikopoulos, Grove Ladas [19], and Zhang,
Wang[32], in these papers they established conditions for the oscillation of

all solutions of first order linear neutral delay differential equations. For n=2
equation (5) has been studied by M. K. Grammatikopoulos, Grove Ladas and

A. Meimaridou[20] and Philo[4], Dzurina, and Stavroulakis [11], Agarwal Shieh and

Yeh [29], Seshagiri Rao and Sai Kumar [14] in these papers they established

conditions for the oscillation of all solutions of second order linear neutral delay



differential equations. For n=3 , third order linear neutral delay differential

equations have received less attention compared to first and second order.

This research concerned with third order linear neutral delay differential equations of

the form:

d d d

A RERKT (rl(t) o (y@® +p(®Oy(t - r))) +f@®)y(t—-0)=0 (IN1-A4)
d d d

= | O <r1(t) 7 0O+ p(t)y(r(t)))) +f@Oy@®)=0  (IN1-B)

Some researches study equations (1N1 — A) and (1N1 — B) when p(t) =0 and
r,(t) = 1, for that we mention the works of Cemil [3], Erbe [15], and Paul [24].
And for p(t) # 0 equation (1N1 — A) was studied by Seshagiri Rao and Sai Kumar
[13], and references therein. For p(t) # 0 . Equation (1N1 — B) was studied by
Tongxing Li, Chenghui Zhang, and Guojing Xing, see [30] and references cited
therein .

From now, by solution of equations (1N1 — A) and (1N1 — B) we mean a nontrivial
function y(t) € C ([ty ) 00)) ,where t, > t, which satisfies (IN1 — A) and (1IN1 — B)
on [ty ,00) .We consider only those solutions of y(t) of (1N1 — A)and (1N1 — B)
which satisfy sup{|y(t)|:t =T} >0 for all T >t, of (IN1—-A) and (1N1 - B)
possesses such solution. Also when we write a functional inequality, it will be
assumed to hold for sufficiently large ¢ in our subsequent discussion .

The purpose of this research isto examine oscillatory behavior of third order

linear neutral delay differential equations (1N1 — A) and (1N1 — B) and to



establish some sufficient conditions which ensure that any solution of this type of
equations are oscillate or converge to zero. We give examples to illustrate the
main results.

This thesis consists of four chapters:

Chapter One: is devoted to introduce basic definitions lemmas and

theorems needed in our proofs.

Chapter Two: is devoted to discuss the conditions that guarantee oscillation of

every solution of third order linear neutral delay differential equation of the form

d
- (r(t) — (6© +pOy( - r)))> +fOY(E=0)=0 (IN2—4)

( ® 2 - (0w + p(t)y(r(t))))> +f(Oy(e@®) =0 (IN2-B)

Chapter Three: is devoted to discuss the main result and the conditions that
guarantee oscillation of every solution of third order linear neutral delay

differential equation of the form

2

d
= (r(t) = (O +p@y(t - r)) Hf@y(E-0)=0  (2N1-4)

d2
FTo) <r(t) — (y(®) + p(t)y(f(t))> +f(®)y(a(®)) =0 (2N1-B)
Chapter Four: is devoted to answer the problem that appear in the summary of

Seshagiri Rao and Sai Kumar[13], and to give conditions guarantee oscillatory of

equation (1N1 — A) and generalize it to the equations of the form (1N1 — B).



Chapter One

Preliminaries

This chapter contains some basic inequalities definitions and results which are

essential for the proofs and studying the main results of this research.
1.1 Some Basic Lemmas and Theorems
Lemma 1.1.1 [13]

, u >0.

2
v
Let u,v,x €ER then vx —ux? < ”

IS

Proof :

It is clear that if u,v,x in R then (w—2ux)?>0

which implies v2 —4vux +4u?x2 >0,

so v2>4vux—4u’x?,

dividing by 4u , we get

1]2

vx—ux® <

. The proof is complete . g

I

u

Lemma 1.1.2: [13]

Suppose x(t) is twice continuously differentiable real valued function on the

Interval [ty , o) such that x(t) >0, x'(t) =0, x"(t) <0 on [t;,) for some

ty =ty and o >0, then for each K with 0 < K <1, there exists t, = t;



such that

t >t (1.1.1)

Proof:

Let x: [t-o0,t] > R,o > 0. Given the function x(t) is continuous on the
interval [t- o,t] c [ty,) and differentiable on the interval (t- o,t) so
x(t) satisfies Lagrange’s Mean Value Theorem. And so, there exists

& e(t— a,t) such that

x(t) —x(t—0) |
o) = x'(&). (1.1.2)

But x'(t) > 0and x"(t) <0 for each t; > t,, so for t> & >t—o , we have

0< x'(t) <x'(&) < x'(t — o).

Using x'(§) < x'(t — o) and equation (1.2.2), we have

D -0,
S0
x(t) —x(t—0)<x't-0)(t—(t—-0)),
S0
x(®) <x(t—o)+x'(t—0o)(t—(t—-0)),
hence



x(t) x'(t — o)
m <1+ m(t—(t—d’)). (1.1.3)

Once again, applying Lagrange ’s Mean Value Theorem on x(t) on the interval
[ty,t-0]c [ty,0)for t-0 > t; > ty, so there exists ne(ty,t- o) where

x(t—o)—x(ty)
(t—o)—t;

=x'(n). (1.1.4)

But x'(t) is non increasing, therefore

t—o>n>t => 0<x'(t—0) <x'(n) <x'(t;).

Using x'(n) = x'(t — o) and equation (1.2.4), this implies

x(t—o0)—x(ty)
(t-0)—t

>x'(t—o),
hence

x(t—0o)—x(t)=x'(t—0o)((t—0)—1ty) . (1.1.5)
Since x(t;) >0, we get

x(t—o)=x'(t—0)((t—0)—ty)

and since x'(t —o) > 0, we have

x(t —o)

xl(t_o_) = (t_a)_tl
x(t—o) t1
x'(t—o) = (1_(t—0))(t_0)'

Take any t, <t such that t; <t, —0 <t—o0, this implies



hence

ty
tz_o-

0<1- <1.

So if given constant K€ (0,1), then we can find t,— 6> t;,0 >0, or
t, = t; + o such that

t; x(t — o)

K=1_(t2—0) andx(t o) =

>K(t—o) for t > t, .

From (1.1.3) and for every t >t, , we have

() "t -
T S e ()
or
x(t) 1
o) 31+—x(t_0) (t—(t—0))
x'(t — o)
x(t) 1
x(t—o) = +K(t— )( ~(t-0)
x(t) t (t — o) t 1 t 1
-0 S T KGE—o) KGt=0) ~ ”m‘rm‘(rl)'
or

x(t) < t 1-K
x(t—a)_K(t—a)_( )



1
But 0< K <1, so e >0, hence

x(t) t
x(t—0o) = K(t—o0)

)

but x(t) and x(t — o) are positives , hence

x(t— o) (t—o0)
o ST

And this completes the proof .
Lemma 1. 1. 3 : Error! Reference source not found.

Assume that x(t) >0, x'(t) =0, x"(t) <0 on (t;,o), then for each

k € (0,1) there exists a t; =t, such that

xga(g)) >k @ fort>t,, o(t) <t

Proof:

The proof is the same as the proof of lemma1.2.2. See lemma3 in[1]. m

Lemma 1.1.4:[13]

Let z(t) = y(t) + p(t) y(t — t) where z(t)is three contiuously differentiable real
valued function on [t,,o ) and suppose that z(t) >0, z'(t) >0, z"(t) >0 and
z"(t) <0 on [t;,o) for some t; =t,. Then there exists t, > t; such that
2() 22 Mtz'(t), t= t, , for each M; 0<M<1.

10



Proof:

Define afunction H(t) for t>t, > t; as

M(t —t,)?

> Z'(¢). (1.1.6)

H(t) = (t = t)z(t) -

It is clear that H(t,) =0 and H(t) is adifferentiable function , so
M M
H' () = (t — t)2' (£) + 2(t) — {?. 20t = t,)2'(0) + 5 (¢ - tz)zz"(t)}.

H'(t) = z(t) + (¢ — t2)(1 = M)z'(0) —%(t —t)%2"(0). (1.1.7)

Now we need to prove that H'(t) >0 and H(t) >0

Using Taylor's Theorem and z”(t) is nonincreasing function , we have

R
2(0) 2 2(t) + (¢~ 1) 20) + 2 (),

and substituting it in equation (1.1.7), we get

(t—t5)° M
H'({t) = z(t) + (t —t) z' () + — z"(t) + (t — ) (A —M)z'(t) — 3(1: —t)%2"(t)

1-M

H'(6) 2 2(t) + (t — t2) 2'(t2) + (t — ) (L = M)Z'(D) + (—;

)t —t,)%z"(t). (1.1.8)

All terms on the right side in (1.2.8) are positive terms , hence H'(t) >0 .

So for

t>t, = H(t)>H(t,) =0,

hence

H(t) >0 for all t € [ty, ™) .

11



So

(t —t;)?

M
(t— ty) z(t) — > z'(t)>0 forall t>t, .

Hence

_ 2
(t— tyz(t) > M z'(t) .

So

z(t) M(t—t,)
70 2

which gives

since 0 <M <1 and t, > t,; >0, we have

)

z (t) - Mt
"= 2

N

hence
z(t) = %Mtz’(t), for all t > ¢, .
This completes the proof . m
1.2 Some Basic Definitions:
Here are some basic definitions that needed later in our literature.

Definition 1.2.1:[1]

A delay differential equation is an ordinary differential equation where the

12



derivative at any time t depends on the solution at prior times, where the
time delays (lags) are positive quantities.

For example :

y (b =f(1:,y(t),y(t—r1 )y(t—12), ., y(t — )) T >0V =123, ...
is the general form of the simplest constant delay equations.

Definition 1.2.2: [13]

A solution of adelay differential equation is called oscillatory if it has
arbitrarily large zeros on the interval [t,,) ; otherwise it is called
nonoscillatory .

This definition means that a solution y(t) of adelay differential equation is
oscillatory if and only if there is asequence {t;};=; such that t; — o as
[ o and y(t;)=0 for all (i=1,2,3, ...), and nonoscillatory if and
only if y(t)#0 for all large ¢.

Definition 1.2.3 : [30]

A solution of adelay differential equation is called almost oscillatory if it has

arbitrarily large zeros or converge to zero asymptotically on the interval

[ty %)

13



Definition 1.2.4 :[13]

A delay differential equation is said to be oscillatory if all its solutions are

oscillate and nonoscillatory if at least one of its solutions is nonoscillate.

Definition 1.2.5 : [26]

A differential equation in which the highest order derivatives of the unknown

function appears both with and without delays is called neutral delay

differential equation .

For example , the following differential equations:

@® +p@®OyE)) + f®y(e®) =0, (1.2.1)
(at®) (v +p@yE®))') +FOy(o®) =0, (12.2)

[a® (6 (® +pOYE©))] +FOy(e®) =0, (123)
% (r(t) j—; (y(®) + p(t)y(r(t))> +f(®y(a(®)) =0, (1.2.4)

where 0<p(t)<land 0<7t(t)<t, 0<o0(t)<t, are neutral delay differential

equations .

14



Chapter Two

Oscillation of Solution of the Equation of the Form

(IN2—-A)and (1N2—-B)

2.1 Introduction:

We shall consider in this chapter the two forms of athird order linear neutral

delay differential equations

d d?
(IN2 — A): T (r(t) T (y(@®) +p@©y(t - T)) +f(Oy(t—0)=0
and
d d?
(1N 2-B): wr (r(t) 2z (V@O + p(t)y(f(t))) +f®y(a(®) =0

K. V. V. Seshagiri Rao [13] has discussed the first form (1N2 — A) and established
sufficient conditions for oscillation of solutions of this type of linear neutral

delay differential equations when

p(t), f(t) €C([ty,o),R) and f(t) =0, r(t) € C* ([ty,),(0,))

c o1
r'(t) = 0and f—dszoo.
r(s)
to

15



2.2 Oscillation Conditions of the Solution of the Equation (1N2 — A)

Theorem 2.2.1: [13]

Assume that :
(H): r(®) € €[ty ,0),(0,0)), 7'(t) = 0 for t = t,.
(Hy)): p(t) e C([ty ,o),R), where 0 < p(t) <p <1 and p is constant.

(H3): f(t) € C([ tO ) OO), [ 0 ) OO))
(H,): There exists a positive decreasing function q(t) such that f(t) > q(t)

for t € [ty, o). (or q(t) >0, q'(t) <0,q(t) <f(@t) Vt=ty)

(Hs): ft:of:o [ﬁf:’f(s)dsl dudv = o,

LONPN
S

(Hg): girg sup f [2q(s)(1—p(s—0))KM (s —0)? —

t1

forsome K, M € (0,1) for sufficiently large t; > ¢, .

t (s —0)? 1

S TR | BT

(H,): £Lror(L) sup ] [2 q(s)(l —p(s — a))K M

t2

hold for some K, M € (0,1) for sufficiently large t, > t,, where
R(t) = f —— ds,
¢ T

then equation (1N2 — A) is almost oscillatory.

16



Proof :

Let z(t) =y(t) +p(t) y(t — 7). (2.2.1)
Suppose that equation (1N2 — A) has anonoscillatory solution y(t).
Without loss of generality suppose that y(t) is positive solution of
equation (1N2 — A) ,thatis y(t) > 0. Then there exist three possible
cases for z(t)
(H z@®)>0, z'(t) <0, z'(t) >0, z"(t) <0,
(n z@) >0, z'(t) >0, z"(t) >0, z"(t) <0,
(U z() >0, z'(t) >0, z"(t)<0,(r@®)(z"()) <0,

fort >t >t

Casel: z(t) >0, z'(t)<0, z'(t)>0, z"(t) <0,
Since z(t) is a positive decreasing function, there exists finite limit

girg z(t) = k. We shall prove that k = 0.
Assume that k > 0. Then for any € > 0, there is t, > t; such that

k+e>z(t)>k, for t>t,. (2.2.2)

We have kK >0 and 1 >p > 0, this implies k> kp >0,

SO

k—kp>0,

17



hence

k(1 - p)>
14

0,

k(1-p)

so we can choose 0<¢e< and adding k, we get

k(1-p)

k< k+e< k+ = pk<plk+e)<k

From equation (2.2.1), we have
y() = z(t) —p®)y(t - 1),
but z(t) >k >0 which implies y(t) >k —p(t)y(t—1).
Since z(t) >y(t) >0 = z(t—1) > y(t—1),
hence
k=—p@®yt -1 >k-p®)z(t—-1),

which implies from equation (2.2.3)

y@®) >k —p®)z(t —1),

but
k+e>z(t)>z(t—1),
so
plk+e)>pz(t—1),
hence

18
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k—plk+ ¢€)

yit) >k—plk+e)= y(t) > k+o) (k+¢).

Letting

_ k—plk+¢)

(k+¢)
this implies
y() >m(k+e¢)

and using equation (2.2.2) , we get

y() >mz(t) . (2.2.4)

Now from equation (IN2 —A), we have

d d?
- (r(t) =5 (Y© +p(Oy (e - r))) = —f(Oy(-0)

SO

d d>2
% <T'(t) dtz Z(t)) = _f(t)y(t—O') )

but from equation (2.2.4) , we have y(t) >mz(t) and f(t) > 0, hence

f@®yt—-0)=f®)mz(t-o) ,

hence

—f®yt—0)<-ft)mz(t-o),

hence

r@®zZ"®)' < —f®mz(t-o) ,
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~(r® 2"(®) = fOmzt-o) .

Integrating the last inequality from t to o , we get

_ foo( r(s) Z"(S))’ds > m foof(s) z(s — o) ds
—1r(s)z"(s)] = m foof(s) z(s —o0)ds
— (/1lim r(A)z"(A) — r(t)z”(t)> > m foof(s) z(s—o)ds ,
—00 ¢

r(t)z"(t) = /1ll_>nolo r(A)z"(A) + m j;oof(s) z(s—o)ds .
But z"(t) positive decreasing function and 0 < r(t) < o, so /{erlor(/l)z”(/l) >0,
hence
r(t)z"(t) = m Jtoof(s) z(s—o)ds .

Using the fact that z(t —0) > k , we obtain

r(t)z"(t) = m Jtoof(s) kds ,
hence

r(t) z"(t) = mkj;oof(s) ds ,

dividing both sides by r(t) >0 , we get

n 1 *
z"(t) = mk (m Jt f(s)ds),
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and integrating the last inequality from t to oo, we get

o)

ftmz”(s)ds > mk f[r(%) foof(s) ds]du,

t

(0]

z (s) f [ j? (s) ds] du ,

(0]

. ! ! 1 [
lll_)rrgoz(/l)—z(t)z mk f @ ff(s)ds du

t
—Z (t)>—llmz(/1)+ mk f[ ff(s)ds]

but z'(t) negative increasing function, so — /1lim z'(1) > 0 and we obtain

[o.0] 1 [o/0)
—-z'(t)= mk [— f(s) ds] du ,
tj r(w) 1[

Integrating this inequality from t; to o , we get

oo (o)

_fz’(t)dtz mk j‘of[r(lu) ff(s)ds] dudv ,

t1 t1

—z(O]; ff[% foof(s) ds] dudv ,
[ 1
r(u)

z(ty) = }Ergoz(l)+ mk ff[ f (s) ds] dudv ,

t1

( lim z(2) — z(tl) f f

t1

ff(s) ds] dudv ,
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but z(t) positive decreasing function, so

z(t;) = mk ff r(%) ff(s)ds] dudv ,

ty v

dividing by mk >0, we obtain

ff[ﬁ ff(s)ds] du dv SZT(nt;) < oo,

t
This contradicts (Hg) , so we must have k=0 .
But 0 <y(t) <z(t), so
fp0=fpy® =l =0 = iy =0
Now consider

Casell: z(t) >0, z'(t) >0, 2"(t) >0, z"(t) <0 .

Let
z(t) =y(@®) +p®y(t—1) >0,
we obtain
y(@) = z(t) —p(Oy(t —1) ,
so

y(t—o0)=z(t—o0)—p(t— a)y((t —0)— T) . (2.2.5)

But z(t) is increasing and z(t) > y(t) so
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z(t — o) Zz((t—a)—r) Zy((t—o)—r) ,
hence equation (2.2.5) gives

y({t—0)=zz(t—0)—plt—-o)z(t—o),

which implies
y(t—o0) = (1—p(t—a))z(t—0) .

Now again from equation (1IN2 —A) , we have

d d?
- (r(t) =5 (7(©) +p(Oy(t - r))) = —f(Oy(-0) ,

SO

d d?
it (r(t) q2 Z(t)) = —f()y(t—o0) .

But from (H,), 3q(t):qt) >0, q'(t) <0, qt) <f(t),Vt=t,, so
) y(t—a) < fOy(t—-o0) ,

—fOyt-0)< —q®)y(t-0)<0,

hence

(r@®)z"()) <= —q(®) y(t - o)

and using (2.2.6) we have

(r@®z"®)' < —q®(1-pt-0a))z(t-0),

SO
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(r(®)z"(t))' <0.

r(t) z"(t)

Define the function ¢@(t) =t 70 , t = ty. It is clear that @(t) >0

o T 2"(0) r®)z"(@®) \
=0 “( PT0) )

a1 Z"() Z@®[r@®)z"@®)] — r@) z"(t)z"(t)
==t < @) )

o T 2" () zZ'(®)[r) z" ()] r(t) z"(t)?
vO=—"m YT or T o)

yon 1 r(t) z"(t) [r(t) z"(D)] r(t) z"(t)\ z"(t)
=7 <t 2@ >+t 70 (t 0 ) 0

o1 (r(t) 2" (®))' 2" (t)
@' (t) =7 pt)+t z’—(t) - o(t) (0

0@ ,, (O2©®)

(p,(t) — n Z"(t) tT(t)

270 O T Tre

using the inequality (2.2.7) , we get

, @(t) —q®)(1-p(t—0))z(t—0) r(®)z"(®)\ 1
P s ==+t z' () - @ (t Z'(t) ) tr(t)
, p)  —tq®(1—-pt—o0))zt—o) 1
¢ <+ T = 0000 T
@(t) z(t—o) @)?

Q'(t) < i t q(t)(l —p(t— a)) PI0) -7 O (2.2.8)

Also from Lemma 1.1.2 , we have
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x(t — o) (t— o)
x(t) =K t ’

Setting x(t) = z'(t) and x(t—0) =2z'(t—0), we have

z'(t — o) - K(t— o)

, t—o=ty,
z'(t) t 7=t
Itiplying both sides b ! >0
multiplying both sides by (=0 ,
1 - K (t— o) 1 for ¢ S b >y
zZ'(t) © t Zt—o) o= h=R

Multiplying by z(t—o0) >0

z(t — o) - K({t— o) z(t—o)
z'(t) t zZ'(t—o)

By Lemma 1.1.4 , we have
1
z(t) > 5 Mtz'(t) for each M€ (0,1),
SO

z(t—o)> %M(t—a)z’(t—a)

At-0) _ K(t—o0) 3 ME=0)Z(t=0)
z'(t) — t z'(t — o)

z(t — o) - K({t—o0) M(t—o)
z'(t) t 2

z(t — o) - KM (t —o0)?
70 - 2 I

(2.2.9)
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Substituting (2.2.9) in (2.2.8) , we get

, (t) KM (t—0)* o@(t)?
' (© === - a1 - plt - ) —— — fr(t) .
Rearrange the last inequality we obtain
KM (t —o0)? 1
O < —tq@ (1-p-) 5 =k (200 - 0 7)
Using Lemma 1.1.1 with x = ¢@(t), u= m, v = 1? , we have
1 2
1 () 100
(00~ 7o) < N
tr(t)
hence
1 -0)? 1
'(t) < —tq(t)(l—p(t—a))7KM (¢ ta) Zr(tt) .
Hence
1 1 r(t)
(1 -pt—0))ZKM (t-0)* - 7 — < —¢'(t)
or
r(t)
2q®)(1—p(t—0)) KM .(t —0)? - < —4¢'(t) . (2.2.10)

Integrating the inequality (2.2.10) from t, to t, we obtain

j [2 q(s)(l —p(s — 0)) KM .(s —0)? — r(S_s) ds <4 @(t,) —4 (), () >0.
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qu<s>(1—p<s—a>)KM -0t - "D as<ape) <o
hence
t
. 5 ( )
girorg supf 2q(s)(1—p(s—a))KM.(s—a) ds < oo,
t

This is a contradiction to (Hy).

We now consider
Case (III) : z(t) >0, z'(t) >0, z"(t) <0,(r(®) Z”(t)), <0.

r(t) z"(t) f s

Define the function @ by @(t) = 70 , >
It is clear that @(t) < 0. And from the decreasing function r(t) z"(t), we get
r(s)z"(s) < r(t) z"(t) , for  s=>t=>t,.

Dividing the above inequality by the positive function r(s) , we get

r(s) z"(s) - r(t) z"(t)

r(s) = r(s)
hence we obtain

; r(t) z"(t)

z"(s) ST

Integrating the last inequality from t to [, we obtain

l
[roe s [1050,,

t
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which gives

l 1 ! 1
2'()]E < r(t) 2" (t) f o) ds= z'(1) — z'(t) < r(t) 2" (t) ] ) ds

l
1
zZ(M) < Z'@®)+ r(t) z"(t) f@ ds ,

!
1
But (H,) assumes R(t) = fm ds as | > o,

t

and since z'(t) is a positive decreasing function , we have
0< z'(t)+ r(t) z"(t) R(t)
-r(®)z"(t)RE) < Z'(t) ,

dividing the last inequality by z'(t) >0 , we have

r(t)z"(t) -
zZ'(t)

— R(t)

but

r(t) z"(t)

PO w

= —ROOD) < 1. (2.2.11)

Differentiating the function @(t)

@'(t) = (r(tz), (Zt)(t)>

2 (®)(r(@) 2" () — r(©) 2" ()" (2)
(z'(0))?

0'() =
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_ZOC®2'0) 22

(2 () (2 ()
N G0 ') (rO 'O\’  ®z'®) RO
B z'(t) z'(t) z'(t) z'(t) z'(t)
L (r® ") 2’ @) (r®z'®) r(0)z"(£)\ 1
"O=""n "Ornro = 20 “Z’(”( 70 >r(t)
BN GOEEG)) 1
o'(t) = O Q)(t)q)(t)r(_t) :
Thus ,
Q),(t)=(r<t) 2®) (6®) _ .

z'(t) r(t) —
By assumption z'(t) >0, z"(t) <0, so (r(t) z”(t))’ <0 and r(t)>0,
hence @(t) is anegative decreasing function. But from (2.2.7) , in proving
case (II) , we have
(r®z"(®)) < —q®)(1 - pt—0) z(t - ),

z(t — o) - KM (t —o0)?
70 - 2 I

—qa@W(1-pt—0)z(t—0) (8(6)°

O 2 (0 00

t—o) (8()* |

z(
0'(0) < =41 -pt =)= ~m

By (2.2.9), we have
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KM (t—0)* (2(8)°
t rit)

9'(t) < —q®)(1-p(t—0))

multiplying this inequality by the positive function R(t) , we have

R®®'() < —q®)(1 —p(t — ) —— A 0)2 R(®) - (Q;((?))Z R(®) . (2.2.12)
Integrating (2.2.12) from t; >t; to t, we get
fR(s)(Z)'(s)dsSf —q()(1 = p(s — ) L (S_S—“)ZR(S) (¢(( ))) (s)] ds
t3 t3
hence

t t

, KM (s— 0)2 ?(s)
jR(s)(b(s)dsS—]q(s)(l—p(s—a)) ~—~ R(s)ds —j( ) R(s) ds
t3 t3
Using integration by parts with
u=R(s) = du=R'(s)ds = r_(s) ds , since R(s) = ﬁ ds ,
and dv = @'(s)ds = v = 0(s) ,
hence
R(s) 0(5) T, - f o) ds < - f © (1t~ 0) 2 OV gy a5 | JEOI
ts t (s t q p ; r(s) '
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t

R(t) @(t) — R(t3) O(t3) — f_—l(b(s) ds

; r(s)
: KM (s —0)? ] 2
< - fq(s)(l—p(s—a))—2 (s Sa) R(s) ds — J((i((?)) R(s)ds.
R(t) () — R(t3) ®(t3) + fr(l—s)w(s) ds + f q(s) (1 —p(s — a))% (s _SU) R(s) ds
((0®)’
+tf ) R(s)ds <0
. (0w’ 1
(t) O(t) — R(t3) O(t3) + f ) R(s)ds + TS)Q)(S) ds
t3 ts
; _ 2
+ jq(S) (1-p(s— 0))% (s—9) R(s)ds <0
t3
g R 1
ROBO —R(E) 0t + | [% (-06))" - > (—@(s))l ds
t3
t
+ fq(s) (1-p(s— a))% (s _SU) R(s)ds <0

Letting u = % , v =@ , x=—0@(s) and using Lemma 1.1.1 ,
we have
T (00) - 5 (-0) > -4 ol
r(s) r(s) -~ 4 R((s)) 4 R(s)7r(s)
r(s
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] 1 1
R(t) @(t) — R(t3) O(t3) + f [— 1 m] ds

t

+ fq(s> (1-p(s— o)

t3

KM (s —o0)?
2

R(s)ds <0

£ _ 2
[ o= pts - a5 E52

R(s) < R(t3) @(t3) — R(t) O(¢) .

1
4 R(s) r(s)l ds
But from (2.2.11) , we have —R(t)@(t) <1, so

d KM (s —0)? 11
j lq(s)(l —p(s - 0))_2 Sk R(s) - 4 R(s) r(s)
t3

ds < R(t3) O(t3) + 1.

Multiplying by 4 and take the limit sup as t - o , we have

(s — 0)? R 1
s ()~ R(s) r(s)

lim sup f [Zq(s)(l —p(s — 0))KM ] ds < lim sup 4 (R(t3) B(t3) +1) < o

This is a contradiction to (H,). Therfore, all the solutions of the equation
(IN2 — A) are oscillatory. This completes the proof. m

2.3 Oscillation Conditions of the solution of the equation (1N2 — B)

Consider the delay differential equation :

d d?
— (r(t) = O+ p(t)y(r(t») +f©Y(0() =0 (N2 - B)
In fact , equation (1N2 — B) is a general form of equation (1N2 — A). Also ,

This form is a special case which appears in [1] which is studied by B.Baculicova
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and J.Dzurina when y=1.

This generalizes Theorem 2.2.1 for linear functions 7(t) , o(t) where

0<t(t)<tand 0<o(t) <t for every time t to be as in the next theorem.

Theorem 2.3.1:

Assume that (H;) — (Hs) in Theorem 2.2.1 hold and

(He): lim sup j [2 q(s) (1 - p(o(s)))K M (0(5))2 _ri_s) ds = oo, for some
K, M €(0,1) for sufficiently large t; > ¢, .
. ‘ (a(s))* 1

(Hy): lim sup L 24q(s) (1 —p(G(s)))KM S RGN ds =,

for some K, M € (0,1) and sufficiently large t, >t, where

*° 1
R(t)=]t T'(_S)ds’

holds, then equation (1N2 — B) is oscillatory.
Proof:
Let z(t) = y(t) + p(t) y(z(t)) . (2.3.1)
Suppose that equation (1N2 — B) has anonoscillatory solution y(t) and
suppose y(t) is positive solution. So, the rest of the proof will be similar as

in Theorem 2.2.1 if we replace t— 1 by ©(t)and t—o by a(t). The proof is

complete . ]
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2.4 Illustrating Examples:

Example 2.4.1:

Consider the linear neutral delay differential equation

(o & ( (©) +2y(t 2) LI (t 7”)—0 2.4.1
ac \¢ a2 \V py(t—2m 25y )= (2.4.1)
where t > 0. We have

1
T'(t) = et € C’([tO,OO), (O,oo)) ,T’(t):€t>0, p(t): E EC([tO ’OO)’]R)

f@®) = %et € C([ty,®), [0,0), =21, 6 =—

1
q(t) = o >0, q'(t) = =7t <0 and q(t) < f(t) for t € [ty,), where

to = 0.9, so q(t) positive decreasing function.

Applying Theorem 2.2.1, all conditions (H1 — H7) are satisfied , so every
solution of equation (2.4.1) is oscillatory, and one of these solutions is
y(t) = sint.

Example 2.4.2

Consider the third order neutral delay differential equation

d{ d t k,
a(t @ <y(t)+k1y(5)>>+ t_z y(t) =0 (2.4.2)
where k; €[0,1) , k, >0, t=>1.
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t

Here r(t) =t , p(t) = ky ,f(t)— e ,T(t)—z , at)=t<t.
: ks L
Applying Theorem (2.3.1), and take q(t) = o 0<k;<k,, itis clear

that q(t) is decreasing function and q(t) < f(t).

JIB [ o] wo e [ [T e o

t1

t
k S
*f [25—2(1— kl)KMsz—E]dsz f[2k3(1— kDKM — 1]ds
(%1

t1

=Qk;(1— kDKM — 1)(t—t;), where 2k;(1— kKM > 1,

t
. k3 2 N
so gir[r}losupj [28—2(1—k1)KMs —E]ds—oo
t1

t t

ks s? 1 1

*j 25—2(1—k1)KM?—T ds = J[2k3(1—k1)KM§]dS
0 fs adu.s L,

t

ty
So

s? 1
llmsupj 2—(1—k1)KM——T ds = o,
Jg zdu.s
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Hence (H1 — H7) are satisfied , so every solution y(t) of equation (2.4.2) is

oscillatory .
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Chapter Three

Oscillation of Solution of the Equation of the Form
(2N1-A4)and (2N1-B)
3.1 Introduction

In this chapter, we will display the main results which are concerned with

the oscillatory behavior of solutions of equations

d? d
(2N 1-A): pre) <T(t) at (y® +p©y(t - T))) +f@®)y(t—-0)=0

d? d
@N1-B): -5 <r(t) = (v + p(t)y(f(t)))) +f®y(e®) =0

where p(t), f(t) € ([ty,®),R), and f(t) =0, r(t) € C*([ty,)),

[0e]

1
r(t) >0, Vt=>t, and R(t) = mdt.
to

Also, we need the following in our discussion :

(Hy): r(t) € Cz([to ,00),(0,00)) , r(t) >0 and r"(t) = 0for t = t,.
(Hy): p(©) € C([t ,), R), 0<p(t) <1

(H3): f(©) € C*([to ,0),[0,))

(H,): There exists a positive decreasing function q(t) such that f(t) = q(t)

for t € [ty, o) .
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(Hs): f[%fvw foof(s)ds duldv = o,

3.2 Main Results:

Oscillation of Solution of the Equation of the Form (2N1 — 4)

In this section,we will study the oscillation of solution of the equations of the

form (2N1 —A) and (2N1—-B).
Theorem 3.2.1:

Assume that (H;) — (H5) hold, and

T NGO
s7(s) p(s) -

t
pr@M@Xl—Ms—w)KM

where K,M € (0,1), p(t) € C1([ty,»), (0,)) for sufficiently large t; > t,
and for t; >t, > t;. Then equation (2N1 — A) is almost oscillatory . Where

T, o constants, 0<t<t, 0<o<t and tlim(t—r)ztlim(t—a) = oo,
—00 — 00

Proof:
Let y(t) be anonoscillatory solution of equation (2N1—A4) .
Suppose y(t) is apositive solution , and suppose
z(t) =y(@®) +pOy(t—1) . (3.2.1)
So, there exists two possible cases:
(D zt)>0, z'(t) <0, (r(Oz')) >0, (r@®z' ()" <0,
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(n z@) >0, z'(t) >0, (@O () >0, (r@®Oz'@®)"<0,
Case (:z(t) >0, z'(t) <0, (r()z'(®) >0, (r(®z'(t))" <0,
which means that z(t) is apositive decreasing function , r(t) z'(t) is a negative

!
increasing function and (r(t)z’(t)) is a decreasig function.

By (2N1 — A), we have

(r@O(y® +p@yE-1)) +f@yE-0) =0 ,

SO

(rO(® +pOyE D)) = ~fOyE -0,

using (3.2.1) , we have

r®z'®)" = -fOyt-0),
From inequality (2.2.4), we have
y(®) zmz(t)
s0
y(t—0)zmz(t—o),
multiplying this inequality by f(t) >0 , we have
—f@®)y(t—0) < -mf() 2(t o) ,

hence

(r@®z'®)" < -mf(t) z(t — o) ,
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SO

—(r)z®) =2mf) z(t — o) ,

integrating the previous inequality from t to oo, we obtain

~[Gwr@) asz [ mieas-oas

_ ( (Ali_rﬁo r(/l)z’(/l)), - (r(t)z’(t))’ ) > J mf(s) z(s — o)ds ,
t
hence
(r@®z'©®) = (lim r(/l)z’(/l)), + J mf(s) z(s — o)ds
t
)
(r(t)z’(t))’ > f mf(s)z(s —a)ds .

From inequality (2.2.2) , we have z(t—0) =k

hence
(r()z'(®)) = f mk f(s)ds ,

integrating this inequality from t to co , we get

f (r(wz' W) du > Jw f mk f(s) ds du
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ll%r(l)z’()l) —r(t)z'(t) =m kf f f(s)ds du ,

hence

—r(t)z'(t) = —Ali_rz(l)o r(D)z'(A) +m k] f f(s)dsdu,

—r(®)z'(t) =m kf f f(s)dsdu,
t u
dividing by r(t) > 0 gives
I <
z'(t) < "

integrating from t;, to oo obtaining
(00} (00}

fz’(v)dv < f%ffﬂs)dsdudv,

to

hence

[0'e) (o] 1 o0 00

z(w)] < —mkj(—JJf(s)dsdudv,

to to v ou

SO
All_)n;LoZ(ﬂ.) —z(t;)) < —mk f b(v)ff f(s)dsdudv,
v u

hence
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mkfifff(s)dsdudv Sz(tl)—/llingoz(/l),

f(s)dsdudv < z(ty) ,

:
=~
\8
-
o
§\8
:%8

hence

fij“ jof(S)ds du d”SZ(t;c)<oo

r(v) m
to

This contradicts (H5) so we must have k=0 .

And again from 0 < y(t) < z(t), we obtain ﬁg y(t)=0

Case(ID) : z(t) >0, z'(t) >0, (r(Dz'(®)) >0, (r(Oz'®) <0,

which means that z(t) is a positive increasing function , r(t)z'(t) is a positive
increasing function and (r(t)z’(t))’ is a positive decreasing function .

Let

(r()z'(@®)

O(t) = p(t) OYIO)

Jt=>t, pt)>0, p'(t)>0 (3.2.2)

it is clear that ®(t) > 0.

Integrating the function (r(t)z’(t))’ from t; to t where t > t; > t,
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t
f (r(u)z’(u))’ du=rt)z'(t) —r(t,)z'(t;) , where t >t; > t,,

t1

hence
t
r(t)z'(t) + f (r(u)z’(u))’ du=1r(t)z'(t)
ty

and

f (r(u)z’(u))’ du <r(t)z'(t), since r(t))z'(t;) > 0.
t1

For t>s>t; >t,, we have

(r()z'(s)) = (r(®z'(®))

integrating the last inequality from t; to t, we get

j(r(s)z'(s))’ds > (r(t)z’(t))’ st
t1 t1

- J (r()z'(s)) ds = (r®z'®) (¢ —t)
t1

= r()z'(t) — r(t)z () = (r()z'(®) (¢ — t,)

hence

r()z'(t) = r(t)z' () + (r(®)z'(®)) (¢ — t;)

SO
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r()z'(t) = (r(®)z'(®)) (¢t —t;)

hence

0 = (r(®)z'(®) (t—t) —r(®)z'(¢). (3.2.4)

Dividing inequality (3.2.4) by the positive quantity (¢t —t;)?, we have

&an%aYu—a)—moza)So

(t—1t)?
hence
(Nﬂf@D>'
—_— <0. 3.2.5
< ) (3:2)
r()z'(t) . . .
So =1t is adecreasing function. Hence for t >s >0, we have
- Uu

r(t)z'(t) - r(s)z'(s)
t—t) = (s—ty)

which gives

, r(®z'(t) (s—t)
O e e O (3.2.6)

Integrating (3.2.6) from t, to t where t > t, >t; >t, , we get

r@© 2O [ (s—t)
z(t) — z(t,) = t—t) ) ds ,

hence
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r©)2'® [ (s—t)
z(t) = z(t,) + =) ) ds ,

t2

but z(t,) >0, so

r® 7 [ (-t
S N A R

IO F(s—t)
r(t)z'(t) — (t_tl)t r(s)

2

ds, fort > t, >t; = ¢,.

Differentiating ®(t) = p(t)% gives

roz®m)\ . Orm)
rozo | TPOTor0

(1) = p(t)(

(r)2 ) (r@®)z'(®)" - (2 ®) (r®z'®) ) oD (r(©)z' (@)

d'(t) = p(t) ( (r(t)z,(t))z r(t)z'(t)

SO

(0r©) (roz®))

0z O) p
r(©)z'(t) r®z'©®)’

¥ =P O

+p(0)

N2
e (rm2©®) (roz®)" 1 , (w2 ®))
0= <”(” 107 @ )“’“) o7 po\*Y rorey

(3.2.7)

From (3.2.2) and (3.2.7) we have
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p'(®) (rwz®)"  (e®)°

d'(t) = m(b(t) + p(t) = OrI0) e (3.2.8)
z(t) is increasing function, and using (2.2.6), we have
y(t—0) = (1-p(t—0))z(t — o).

But f(t) >0 and q(¢) < f(6) = —q@) = —f (D),
so we have

—f@y(t—0) < —fO)(1 - p(t - 0))z(t - o)
and since

(r®z®)" = -fOy - o),

we have

(r®z'®)" < —q)(1 - p(t — 0))z(t — o). (3.2.9)

Using (3.2.9) in (3.2.8), we get

NL ) —q®(1-pt—0))z(t—0) (0®)
TR 2070 D
SO
o0 = £D 0w - pa(1 - ot - ) 22 (CO)
G r0z® p®
SO
L0 2(t-0) Z(t-0) 1 (0®)°
(1) < 75 @0 —p0aDA - pt - 9) Zo— N — T T T o0

(3.2.10)
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Using r(t) >0, r'(t)=0, r"(t)=0, (r(t)z’(t))’ >0, and (r(t)z’(t))” <0
for t>t,, we have z"(t) >0, z"(t) <0. Applying Lemma 1.1.2 and

Lemma 1.1.4 , we have

zt—o) 1 z'(t — o) (t—o0)
Z'(t—O')Z EM(t—a) and 200 > ;

, where K,M € (0,1) .

Hence

z(t — o) z’(t—a)> KM (t—-o0)?
zZ'(t—o) z'(t) ~— 2 t '

and using it in (3.2.10), we get

KM (t-0)? (CD(t))2
2 tr(t) p(t)

p'(t)

o= Lo

D) — p(Dq®(1 —p(t — 0))

SO

KM (t—0)* [p'(b) 1
2 o o *Pm

o'(t) < —p(H)g()(1 - p(t — o)) (@®)*].

(3.2.11)
Let v= p’(t) u :—1 x = ®(t) and applying Lemma 1.1.1
p(t) ’ p(t) ’ '
we have
®) | (28
,D_ 4 2 1 p(t
o0 PO 5 (PO)] = 3 L)
p(t)
SO
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p'(t) 1 2 (p'(£))?
o0 PO "5 (PO) | =T

(3.2.12)

Using (3.2.12) in (3.2.11), we have

KM (t—-0)* (p'(t)?
2 tr(t) 4p(t) '

Q'(t) < —p(®)q®)(1 - p(t — 0))

hence

(t—0)* (p'(O)?
tr(t) p(t)

2pq(1—pt—0)KM < —4P'(b).

Integrating the previous inequality from t; to t, where t>t; > t, >t; >t

(s—0)* (p'(s))?
sr(s) p(s)

ds S—f‘lcb’(s)ds,

t3

t
f [z p()q(s)(1 = p(s — 0)) K M

SO

(s—0)* (p'(s))?
s(s) p(s)

t
f lZp(s)q(s)(l —p(s— 0))1( M ds <4D(t3) — 4P(t).

But ®(t) >0, so

(s—0)* (p'(s)?
s(s) p(s)

t
f lZ p(s)q(s)(1—p(s — o)) MK ds < 4 D(t3),

hence

t

tim sup | [2 p() 4(5)(1 = p(s — ))MK

t3

(s—0)* (p'(s)?
sr(s) p(s)

ds <4 P(t;) <

which is a contradiction to (H6). Hence every solution of equation (2N1—A) is
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oscillatory . The proof is complete . m

Now , we can generalize this theorem for general delay terms as the next
theorem .

Theorem 3.2.2:

Assume that (H;) — (H5) hold and if

(6()"  (p'(s))?

srs) | p) | BT

th_)n; sup j [2 p(s)q(s) (1 — p(a(s))) KM

t3
for sufficiently large t; > t, and for t; >t, > t; holds, where 7, o € C[ty, )
0<t(t)<t, 0<o(t)<t, tlirg(r(t)) = girglo(a(t)) = o and
p(t) € C'([ty,),(0,00)), then equation (2N1 — B) is almost oscillatory.
Proof:
Let y(t) be anonoscillatory solution of equation (2N1 — B). And suppose
that y(t) is a positive solution, where
z() =y(®) +p@®) y(z(®)) , (3.2.13)
so, there exist two possible cases :
(H z)>0, z'(t) <0, (r@®)z'(t)' >0, (r()z'(t)" <0,
an z) >0, z'(t) >0, (r()z'@®) >0, (r()z' ()" <0.

Consider
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Case (:z(t) >0, z'(t) <0, (r(®z'(t)) >0, (r()z'®) <0,

(r®) (¥ +p©OY(©®)) ) +F©O¥(e®) =0

SO

(r® (y® +p@y(®))) = ~FO¥(®)
using (3.2.13) we have
r®z'®)" = -f©Oy(e®),
but q(t) < f(t), so
—f®y(e®) < —q®y(o(®)
But from inequality (2.2.4) , we have y(t) = mz(t) , so
y(e®) zmz(c(®),
multiplying this inequality by f(t) > 0, we have
—f®y(o(®) < —m f©) 2(c(®)),
hence
(r@®z'®)" < -mf®) z(e®) ,
50
—(r@®z'®) =mf®) 2(c®) ,

integrating the previous inequality from t to oo
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- f (r()z'(s))" ds = f m f(s) z(a(s))ds
50
~( Lim (r()z ()’ - (rz'®)") fo mf(s) z(a(s))ds ,
50
(r()z' @®) 2}L7r§o(r(/1)2’(/1))'+jomf(5) z(a(s))ds ,
?

but /1lim (r(/l)z’()l))’ <0, so

(r(t)z’(t))’ > f mf(s) z(a(s))ds.

From Theorem 2.2.1, we have z(a(t)) >k,

hence

(r(z'®) = J mk f(s) ds.
t

And the rest of the proof of this case is the same as the proof of case (I)

in Theorem 3.2.1.
Case (II): z(t) >0, z'(t) >0 , (r()z’(®) >0, (r(®Oz'(t)) <0,

z(t) is an increasing function , so for t = o(t) >0 = z(t) > Z(U(t)).
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Also t > 1(t) >0 = o(t) = T(a(t)) >0.

But
z(t) = y(®©) +pOy(z (),
50
2(0(®) = y(o®) + p(a®) y (1(a(®))) , (3.2.14)
hence

y(6(®) = 2((®) = p(c(®)y ((c(®)),

but t=t(t)and t =0(t) , so t= a(t) =1(a(t)), and

z(t) 2 z(a(t)) = z (T(a(t))) =y (T(O’(t))) )

y(e(@®) = z(a(®) — p(a(®))z(a(®)),

hence
y(a(t)) > (1 — p(a(t))) Z(O‘(t)). (3.2.15)

Integrating (r(u)z’(u))' from t; to t gives
t
f (r(u)z’(u))’ du=rt)z'(t) —r(t,)z'(t;) , where t >t; > t,
ty

And following the same steps used in proving case (//) in Theorem 3.2.1, we

get again
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(Wt_)zl(t)) > <0 . (3.2.16)

(t—ty)

z(t) - 1 : (s —t1)

r0z® 0] T ds., (3.2.17)
fort > t, >t =>t¢t,.
Define a function
_ w7 ®)
p(t) = p(t)m .

Differentiating ¢(t) and following the same steps used in proving case (II)

in Theorem 3.2.1, we have again

o P'® 0z ©®)"  (p)’
v'O= T 0 PO Tmr e T e

We consider f(t) >0, so from (3.2.14) and q(t) < f(t) = —q(t) = —f (1),

we have

—f@©y(e®) < —£®) (1 - p(a()) 2(a(®))

and since (r(t)z’(t))” = —f(t)y(a(t))

= (r(z'(®)" < —q(©) (1 - p(a(t)))z(a(t)) , (3.2.18)
hence
, o' (®) ~4(0) (1-p(e(®)) 2(0®) (p(0))*
v = Ty o +r®) NGO 1o
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SO

102 000 on o) 250} 120
So
@'(t) < p((t)) ) — p(t)q(t) (1 p(o(t))) z(c®) 2'(¢e®) 1 (p®) 3219

z(a(®) z'@® r@©®  p@®)
Using r(t) >0, r'(t)=0, r"(t) =0, (r(t)z’(t))’ >0, and (r(t)z’(t))” <0
for t>t,, we have z"(t) >0, z"(t) <0. Applying Lemma 1.1.2 and

Lemma 1.1.4 , we have

z(a(t))

Z’(a(t)) K (a(t))
z (a(t)) N t

> M (o@) ana 27>

, where K,M €(0,1) .

Hence

z(a(t)) z'(t — 0) KM (U(t))z
z(e(®) z’@® — 2 t ’

and using it in (3.2.19), we get

KM (@) [p@ . 1
220) p(t) 40 (t)( o)’ (3.2.20)

¢'(©) < =p®q® (1-p(0(®)) =

p'(t) 1 :
Now let v=——=, u=——, x=¢(t) and applying Lemma 1.1.1,
0 P Y PPV

we have
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"(t) 1
60 )] < 5
p(t))
or
p'(t) (p'(©)?
S50 o) | < G

and using (3.2.21) in (3.2.20), we have

KM (o(t) N (p'(1))?

?'® < =090 (1-r(00)) 5=+

hence

KM (00 (@) _

oo 4 = YO

p®a® (1-p(0(®)) =

Integrating the last inequality from t; to t where t >t; > t, >t; = ¢,

t 2 , 2 t
][2 p(s)q(s) (1—10(0(5))) KM(:EZ% B (pp((?)) ]ds < - f4<p’(5) ds,

t3 t3
SO
t

| [z p)a() (1~ p(o(s))) K M

t3

(6()"  (p'(s))?
stGs) ()

] ds <4¢(t3) — 49 (t)

but ¢(t) > 0, hence

t

| [z p(sq(s) (1 - p(o())) K M

t3

(6()" (' (s))?
stG) p(s)

]ds <4 p(t3).
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Take the lim;_., sup , we get

' 2
()" (P )
sr(s) p(s)

llm sup f lZ p(s)q(s) 1 — p(a(s))) KM ds <4 ¢(t;) <

which is a contradiction to (H6). Hence every solution of equation (2N1 — B) is
oscillatory. The proof is complete. =

3.3 Illustrating Examples :

Example 3.3.1:

Consider the neutral delay differential equation ,

d? . d 1
FTo < I <y(t) + - y(t— 2n)>> +3e ty(t—-m) =0 (3.3.1)
Here o =m, 1=2m, r(t) = e, p(t)—— f®)=e™, qt) =(S_S—n)2 )
[ee] 1 (o]
and take p(t) =1. R(t) = J e_ = j = oo, and applying
t

Theorem 3.2.1, then all conditions are satisfied. Hence all solutions of

(3.3.1) are oscillatory or converge to zero. One of these solutions is

y(t) = sint.
Example 3.3.2:

Consider the third order neutral delay differential equation

d? d
dat? < dt (y(t) T y(z))) + kot y() =0 (3.3.2)
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kye[0,1), k=0, t >1.

1
Here! p(t):]-! T(t): t, p(t):kl ) f(t): thl q(t):t_z
1
and R(t)=| —ds =,
I

applying Theorem 3.2.1, then all conditions are satisfied. Hence all solutions

of equation (3.3.2) are oscillatory or converge to zero.
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Chapter Four

Oscillation of Solution of the Equation of the Form
(1N1 - A) and (1N1 - B)
4.1 Introduction:

This chapter discusses the oscillation of solutions for the third order neutral

delay differential equation of the form

d d d ~
= O 2 [ 1O 2 GO +pOYE-D) ] |+ fOyE-0 =0  AN1-4)

which is appeared at the end of the paper of K.V.V.Seshagiri Rao [13] .
So , we will prove theorems concerning this form . And we will also

consider the more general delay form

d d d
| =0 2 <r1(t) o (y(®) + p(t)y(r(t)))) +f®y(e()=0. (IN1-B)

In this chapter we always assume that

(H1): 1 (®) , (8), p(®), f(©) €C([ty,®)), r(t) >0, n(t) >0, p(t) >0,
f(©) >0, r(t) € C¥([ty, ) , () € C[ty,®)), ') =0, r,"(£) =0

(H2):0<p@®) <p1 <1, p() €C([ty,®)).

(H3): There exists a positive decreasing function q(t) such that f(t) = q(t)
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for t € [ty, ). (ie: q(t) >0, ¢'(t) <0,qt) <f(t) Vt=ty)

And set
ro1 Fo1
Rl(t) = .t[- rl(s) dS ) Rz(t) = ! 1‘2(5') dS.

There are three possibilities for R;(t) and R,(t)

R,(t) =f ! ds = , R,(s) =f ! ds = oo, (4.1.1)
/ r1(s) / 72(8)
ro1 ro1

Rl(t) = .f rl(s) dS = oo , Rz(t) = -]- Tz(s) dS < o, (412)
o1 o1

R, (t) = ! ) ds <o , R,(t) = ! ) ds < oo . (4.1.3)

4.2 Oscillation of Solution Conditions of the Equation (1N1 — 4)
Theorem 4.2.1 :

Assume that (4.1.1) and (H1) — (H3) hold and if for some function

p(t) € C*([ty, ) ,(0,)) for all sufficiently large t; > ¢, and for t3 > t, > t;

where p(t) >0, p'(t) =0, one has

£ ts_d[ tvr é )du T é )] dv T (S)(P'(S))Z
L@im supf p(s)q(s)(1 —p(s — o) : 1 Sz ul - - 4p(s) do=c0
o [ ——du PR
s 11, (u)
(4.2.1)

or
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IﬁTlv) frleu) ff(s)ds dudv = o, (4.2.2)
Then (1N1 — A) is almost oscillatory , where 0 <7<t, 0< o <t,

o, T constants and tlir&(t —17) = tlir&(t —0) =

Proof:

Suppose that y(t) is a positive solution and

z(t) =y(t) +p(O)y(t —1). (4.2.3)

There exists two possible cases:
(D z(t) >0, 2(t) >0, (rn®z' () >0, [rz(t)(rl(t)z’(t))’], <0,
(D z() >0, z(t) <0, (rn(®z' () >0, [rz(t)(rl(t)z’(t))']' <0,
for t > t;,t; is large enough.
Case (I):z(t) > 0,z'(t) >0, (rl(t)z’(t))' >0, [rz(t)(rl(t)z’(t))’], <0.

Let

n®(n®z'©®)

w(t) = p(t) NOLAO)

, t=>t, pt)>0, p'(t)>0 (4.2.4)

it is clear that ¢(t) >0,

z(t) is anincreasing function , so for t>t—0 > 0= z(t) = z(t — og)

z(t) =y(®) +pOy(t—71) = z(t) 2 y(t) and z(t —0) 2y(t—-o0) ,

60



hence z(t) = y(t — o)
So, z(t) <y(t) + p(t)z(t — o) and so z(t) < y(t) +p(t)z(t),
hence z(t) — p(t)z(t) < y(t) which implies
y(@®) = (1-p(®)z(®) (4.2.5)
f (rl(s)z’(s))’ ds = rl(s)z’(s)j = rn(t)z'(t) —r(t)z'(t) ,

t1

the function r;(t)z'(t) is positive increasing and t > t;, so we get

t
f (r(s)2'(s)) ds < ()2 () (4.2.6)
%1
Since rz(t)(rl(t)z’(t))’ is positive decreasing function and

(rl(t)z’(t))’ > 0 we have

t2s = nM)(n®z'®) < r6)(nE)z' ()

! po 1
= (7)) 2 nO(nO7O)

t

j (r()Z'(s)) ds = J ) (n®Oz' ®)
t1

t1

! d
S,
12(s)

hence

t , , t 1
j (n(9)2'(s)) ds =rO(n©®7®) J ¢

t1

. (4.2.7)
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From (4.2.6) and (4.2.7) , we get

t

r(t)z'(t) = J.

t1

1
12(s)

r,(s) (r(s)z'(5))’
rz(s)

s = r,0(n 7 ®) [

From (4.2.8) , we have

' g 1
RO(n©2©O) [ == ds=n©7® <0,

L)

t 2
1
dividing by r,(t f ds|] >0, we get
g by 2()<t ) ) g

ROnHOO) f} 5 ds = n®z2©

ds . (4.2.8)

(4.2.9)

n - <0.
t
n®(Jh g %)
So we have
t)z'(t
<:1()1Z()> <o
Jure) @

r(®)z'(t) . . . .
hence -1 s positive nonincreasing function for t >¢; .

Sty @

For t > s >t; we have

r()z'(t) - r1(s)z'(s)
¢ _1 du T du

S on) S en)
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t t

But J.Z’ (s)ds = z(t) — z(t,) , so z(t) = z(t,) + fz’ (s)ds

ts t2

since z(t) is increasing and t >t, , we have

t

z(t) > fz’ (s)ds ,

t2

multiplying and dividing by 7;(s) f du the last inequality becomes

r,(u)

t

r1(s) ftt r(Lu) du

z(t) Zf z' (s) ds .
ta rl(S)f (u)
Arranging the last inequality gives
t N 1
, —— d
z(t) = f N7 @ ds

J ts1 T, (1u) du 1)

using the previous inequality and (4.2.10) , we get

s 1
> t n 0z’ (1) ftlrz(u) du d
€0 2 | S
& Sy
so, we have
nOr© |
Z(t) = 1— fT'I(—S) ds,

t
mm b
hence
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t[rs 1 1
2O N [ftl ~en) d”] ne) %

rn(0z'(t) IN % du

(4.2.11)

where t>t, >t;.

Differentiating w(t) = p(t)(z((tt))—zzll((tt))) gives
1

RO(n®Z®)\ | mO(nOz®)
(07 )“’ GO

w'(t) = p(t)<

n®z O [rO(rnOz®)] - nO(nOZ®) (nO0)
(n®z®)°

w'(t) = p(t)

r(®)(r(®)z' ()
1 (0)z' ()

+p' (1)

(07O [O(n©7©)] o PO 07 ©) (O @)
(n®z'(®)° (n(®Oz(®)

w'(t) = pt)

r(®)(r(®)z' ()
ri(t)z'(t)

+p' ()

[ (nz®)] RO[ROZO)]  p© pOrRO(nO7©)
—p(t +
1 (0)z' (1) (rn®z' ()" p(t) 1 ()z'(t)

w'(t) = p)

[20(n©7©)]  (pw) -O) [(n@z®)]
()2’ (t) p(t) 2 () ( o (t)z,(t))z

w'(t) = pt)

p'(t) (rn®z'@®)

0 PO 070

Using w(t) in o'(t) gives
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[20(n07©)]  (o©)’ LW

YOO Gre  p0n® o “P
o0 =555 w0+ 500 - (t)r(lg?'g)(t))l]l - 5(?3(2 gt) ' (4.212)
But
[0 (rz®)] = -f©yE-o)
and using (4.2.5) , we have
—p(®) fOy(t —0) < —p(&) fF(O)(1 ~ p(t — 0))z(t — 0). (4.2.13)

Putting (4.2.13) in (4.2.12) , we get

O Lt (e®)
/O =y O PO SO0 ) o T D
SO
. p'(t) 3 B B z(t—o0) n(t—o0)z'(t—o) B ( a)(t))2
@O = O OO0 PN Gt = =0 @ RO
hence
) p'(t) z(t — o) rn(t—0)z'(t — o)
o' (1) < o w(t) = p®) FO(1 —p(t —0)) Y s v s R SEO)
~ (e®)
o(0) 750 it

Using (4.2.9) and definition of nonincreasing functions and positivity, we have for

r(t)z'(t) - rn(t—0)z'(t — o)

t 1 - t-c 1
hnem® b e

t>2t—-o= 0<
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t-o 1
r(t—0)z'(t —o) < ftl rz(s)

r(Dz'(0) o %) s
Liry(s

= 0<

(4.2.15)

Using (4.2.11) and (4.2.15) in (4.2.14) , we have

t-o[rs 1 1 t-o
® ok ]n(—gd 5% (o)
w(t)_ww(t) P(t)f(t)(l—p(t—d)) P g T OO
ty r(u) t11,(s)
hence
t-c[prs 1 1
L P® o Vnmtg @ n o (o)’
W'() <7050 —p0) fO(1 = p(t =) L u OO
t115(s)
so
t-o[prs 1 1
[ —— du| —= ds
W () < —p(®) FO(1 - p(t - 0)) = [t”i(”)l |5
——ds
ta75(s)
p'(t) 1 2]
ot — 4.2.16
oo O s ne (@) (+216)
Using u = 1 , V= P , x = w(t) and applying Lemma 1.1.1,
p(t) 2 (t) p(t)
we have

p'(t)
p(t)

(e9y
1

w(t) — (0(@®)" < <1
p(t) 1, (t) 4 (_)
p () 1,(t)

which gives
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P 1 : _ 1 @ ®)
p(t).w(t) p(t)rz(t)(a)(t)) =2 PO . (4.2.17)
Substituting (4.2.17) in (4.2.16) and using f(t) = q(t) gives
t-c[rs 1 1
v emw M Ee® 1 nO@ o)
o' () < —p(®) g (1 —p(t —0)) [ }Zt(i 1:1(5) +2 ik p((pt) ) ,
ti7,(s)
hence
t-c[rs 1
t [fm(u) ]n(s) n®(p'®)’ :
p(®) q(®)(1 - p(t - 0)) = - S e .
tiry(s

Integrating the last inequality from t; to t where t> t; > t, >0, we get

1
; dv N ¢
f[p(s) q(s)(l —p(s—a)) [ 17”2(10 ] 7’1(77) _ Tz(s)(P (5)) ‘ds < fw,(s) ds

f1 TZ(S) ds 4p(5) t3
t s—o fv 1 du 1 dv , 2 t3
[ e a1 =pts =)= [“’"i(“)l lzm e _ OO o< sy as
ts ftlm ds
: ft ftvrlu rlv dv (S ’S 2
flp(s)q(s)(l—p(s—a» : [”f L ok Z(jffzs()))}ds < w(t;) ~ (0
But w(t) >0, so

S—0 v 1

), 1))

f p(s) q(s)(l p(s—a)) [t rzt(u)l ] i) ) — TZ(Z)E)'[ES()S)) \ds < w(tz) <
tlm ds

Which contradicts (4.2.1) .
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Case (II): z(t) >0, z'(t) <0, (r()z'(®) >0, [rz(t)(rl(t)z’(t))’]’ <0.

From equation (1N1—A), we have

[0 (n©® 6© +pOyE-1))] =FO¥E-0)

and using equation (4.2.3) , we have

[RO(r®2©®)] =-f©yE-o) .
In proving case (I) in Theorem 2.2.1, we had equation (2.2.4) which is
y(t) > mz(t),
so
y(t—o)=zmz(t—o),
multiplying this inequality by f(t) >0, we have
@Oyt —0) < ~m f(©) 2(t ~ o),

hence

[RO(n®2®)] <-mf@zt-0),

SO

~[nO(r@®Z®)] 2mf@ -0 .

Integrating the previous inequality from t to oo
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- [ & (@ 7E)] ds= [ mfe) a6 -ods

SO

~(lim () Z@) - O(r®O2©®) )= ] mf(s) z(s — o)ds ,

hence

() (11 (6) z’(t))’ > )Lll_tTOlo (D1 (D) z’(/l))’ + j mf(s) z(s — o)ds.
t

Using inequality (2.2.2) , we have
z(t—o) =k ,

hence

rnM(rn@ @) = j m k f(s)ds ,
t

dividing by r,(t) >0, we get

mk

(n0 @) = 7

ff(s) ds.

Integrating this inequality from t to oo gives

o0}

r : F mk
j(rl(u) z’(u)) du = J rzn(u) [ ff(s) ds] du

T
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/{Z’(}oﬁ(A)Z’(ﬂ)— r()z'(t) = mkf Tzzu) [ff(s) ds] du

So

- nz'(t) = - llm rn(Dz' )+ mk f @ [ ff(s) ds] du
)

r,(u)z'(u) is anegative continuous increasing function , hence

- nz'(t) = mkf o [ff(s) ds] du

dividing by — r(t) <0 , we get

— T'l(t)Z,(t) —mk [
—7.(b) = rl(t) Tz(u) [f f ) ds]

[0e]

—-mk
z'(t) < rl(t) rz(u) [ff(s) ds]

Integrating the last inequality from ¢, to t, we get

t

fz’(v)dv <-mk f[rl(lv) f(rz(lu) ff(s) ds) du] dv

to

SO

z(t) — z(t)) < —mk ! ! du | dv
; r(v) S\ T (w)

hence



oo

1 Ff o
z(t) + mk![rz(v)f D) ff(S) ds | du | dv < z(t;)

But z(t) >0 , so

t

mkf ! foo ! ff(s)ds du|dv < z(ty) .

r(v) ()

t1

Thus

co

t o
f(s < z < oo
fl ! f ! f )ds | du| dv < (t;{')

r1(v) r,(u) m

This is acontradiction to (4.2.2), hence k must be zero.

But 0 <y(t) <z(t), so
fmo<jmy®<limzt)=0 = lmyt)=0.
And the proof is complete . ]
Theorem 4.2.2 :
Assume that (4.1.2) and (H1) — (H3) hold, if for some function
p(t) € C*([ty, ) ,(0,2)) for all sufficiently large ¢; >t and for t3>t, >t;

where p(t) >0, p'(t) =0, one has equations (4.2.1) and (4.2.2). If

t

tim sup [ | R a@a-pGs-a) |

t2

dv 1
() 4R, (s)ri(s)

ds=o (4.2.18)

o)

where R,(t) :=f

t

1
ds, 0<t<t, 0<o0<t, o, Tt constants and
12(s)
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tlim (t—1) = tlim (t — o) = ©.Then equation (1N1— A) is almost oscillatory .

Proof:
Suppose that y(t) is apositive solution and
z(t) =y() + p()y(t —1). (4.2.19)

There are three possible cases (I),(II) as in Theorem 4.2.1, and

l

UID () >0, 2() >0, (rl(t)zl(t))’ <0, [rz(t) (rl(t)zr(t))’] <0.

Assume that case (I) and case (II) hold , respectively . We can obtain the

conclusion of Theorem 4.2.2 by applying the proof of Theorem 4.2.1.

Assume case (III) holds. rz(t)(rl(t)z’(t))' is a negative continuous decreasing
function from [rz(t)(rl(t)z’(t))'] <0.So for s=>t>t; =0,we have

1(s)(n(92'()) < @ (n®MZ©®),
dividing by 7,(s) > 0 we have
! ! 1
(r()2'(s)) < r(O)(r ()2’ () G

integrating from t to oo we have

oo

: (1
f(rl(s)z’(s)) ds < rz(t)(rl(t)z’(t)) f % ds

t
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1
lim i, (D7 () =1 (07 (®) < H@O(n©O7®) f >

L4

hence
L1
—nr(t)z'(t) < —Alirr(}orl(/l)z’(/l) + rz(t)(rl(t)z’(t)) J ) ds,
SO
1
nOZ@® < nO(nOZ®) j 5
t

hence

1
- nO(OZO) [ Z=ds < n©ZO

L4

dividing by 7 (t)z'(t) > 0 gives

nO(nOZ®) (1 @z
GO O R OZIG

SO

_n@(nOzm) [ 1
Oz (©) J () ds<1. (4.2.20)

oo

Using R,(t) = f Tzzs) ds in (4.2.20) we have
- rZ(t)(rl(t)Z,(t)),R ® <1 4221
noz@ W=t 22D
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We define the function 3 by

r ) (r(®z' ()

Y(t) = OO (4.2.22)
where t>t; >0 .
Using (4.2.21) and (4.2.22) , we get
—R,(t) Yp(¥) <1 (4.2.23)

Differentiating (4.2.22), we obtain

n®7® [nO(rO70)] - 2O(ROZ®) (1©OO)

W'(t) = ;
(rn(®z'(®)
r()z'(t) [r(6)( rl(t)z’(t))']' r,®(r(®)2'(®) ()2 (@)
P (t) = . - ;
(n®z'®) (n®z'®)
1’ 12
o - [20(n®7®)]  nO[(n®O7®)]
- r(0)z'(¢) (r(®z'(®)"
@ - [2O(n©7®)]  re RO [(nwz@)]
Y OELC) 20 (norO)
' 172
, [O(mEe70)] 1 [O(O7o)]
Vo = r (6)z'(¢) N0) (n®z®)° ' (4.2.24)
Using (4.2.22) in (4.2.24) , we get
n®(n©O7®)]
P () = [ )] ! (v(©)” . (4.2.25)

r(t)z' () ()
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Since

[rz(t)(rl(t)z’(t))’]’ <0, rn(®)z'(t) >0 and n,(t) >0,
we have

Y'(t) <0,

hence Y (t) is negative decreasing function.
But [r,(6)(11(0)2'())'| = —f(O)y(t — o) and using (4.2.5), we have

—f@Oy(t—0)< —f(O(1 -pt—0))z(t —0) (4.2.26)
putting (4.2.26) in (4.2.25) , we obtain

1 1
n®)z' () @

P (1) < — FO(1 - plt—0)z(t — 0) (W(©®)*

z(t — o) 1
n(®)z' () ()

P () < — FO(1-p(t—0)) (v(®)°. (4.2.27)

But r(t)z'(t) is a positive continuous decreasing function , so

Vs <t = n()z(s) =2 n®)z'(0)

1
= z'(s) = r(t)z'(t) )
t t
= fz’(s) ds > f r(t)z'(t) " ES) ds , wheret>1t; =0
y 1
= z(t) — z(ty) = r(t) z’(t)f ) ds ,
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hence

t
1
t) = z(t t) z'(t ds ,
2(0) 2 20) + 170 [ —=ds
t
so
y 1
t) = "(t d 4.2.2
20 = 170 | —ds (42.28)
t1
S0
z(t
© > n(6) z'(0),
IN L g
t1 71(s)
but r(t)z'(t) >0 , so
, z(t)
ROz - —F— <0,
ok
" 2
1
dividing the last inequality by the positive quantity r;(t) [ f ) ds] gives
1
iy

Rz - —20

t 7 (s) 4

mﬂﬁﬁ%wr

hence

z(t)
ds

INA
o

6]
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z(t)

Thus , -1 is apositive nonincreasing function ,
ftl w ds
1
so fort—o < t, we have % > # >0,
ftl T'l(—S) ds ftl T'l(—S) ds
hence
o 1
_ ft ——ds
Z(z(t;) > tlt rll(s) (4.2.29)
o ey 9
Refaring to (4.2.27)
, - 1
VO < -0 -p-0) Z T8 - = ()
, — 1
P'©) < - FO0-plt-o) rlé)(g(t) Z(i(t)a) - (p(©®)°. (4.2.30)
Using (4.2.28) and (4.2.29) in (4.2.30) , we get
r(t) z'(t) ftt % ds ft_g s
, _ _ B 1 14(s) tr 1y(5) 1 2
P £ -fOA-pt-0) 070 ff r_%s) RO (¥®)
11
t—-o 1 1
’ 2
YO < -0 -pi-0) f 5%~ (Vo)

Multiplying the last inequality by R,(t) , we have

_ R, ()
1,(t)

t—-o
' 1
R,(OY'(®) < —R,(®) FO(1 —p(t — ) f ~O) ds (p(®)* (4.2.31)
ty
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Rz ®)
15 (t)

t—o
R FOU-p-0) [ 5 ds+ 25 (WO) < ~ROP©
21

Using f(t) = q(t) and ntegrating (4.2.31) from t, to t where t, > t; >0

t

J

t2

t

ds < f —R,(s)Y'(s)ds

ta

o) [ v 2O ey
Ro(s) 4(5)(1 = p(s - ) f 7 W ey (V)

f R()
2

t2

S —0 1 ,
RO fO(1-pG-0) [ —=d > (s ))‘ds< Ry()Y/ (s) ds

(4.2.32)
Using integration by parts with u = R,(s) = du= R';(s)ds
dv=vY'(s)ds = v = Y(s)

t

J

t2

S—0 1
Rz(s)q(s)(l—p(s—a))f 5 v+ 2()(w< ))]

t,
<RI W] - [ WR, (5)ds
t

z()

y (WG )’ |d

S —0 1
Ry(s) q()(1 = p(s — @) j 5 d
t1

< Ry(t) $(ts) — Ra(6) Y(0) — f YR, (s) ds |

using (4.2.23) which is — R(t) ¥(t) <1 in the last inequality , we have
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t

f[&(s)q(s)(l—p(s—a))f —d +

%)

z( ) ds

y (G )’

< Ry(t) () + 1+ f W(IR,'(s) ds

t

ds — fl/l(s)Rz'(s) ds

ty

t

J

ty

z()

y (WG )’

S—0 1
Ry (s) ¢(s)(1 - p(s — 0)) f 5

< Ry(t) ¥(tp) +1

t

J

t2

Ry (s)
r2(s)

(9()) ]d - f Y(s)R,'(s) ds

S—0 1
Ry (s) 4(s)(1 - p(s — 0)) f =

< Ry(t) ¥(t) +1

t

J

t2

S —0 1
Ry(s) q(s)(1 ~p(s — 0)) f oy Wt ( 2()(¢(s>) —R, <s>¢(s))]

< R(t) () +1 .

[00]

Using R,(s) = ]

N

1

ds = R,'(s) = )

1
15(s)

and substituting it in the previous inequality , we get

t

J

t2

T R
Rz(s)q(s)(l—p(s—cr))f ﬁ(—v)d”( 2()(¢() —ﬁw( ))

< Ry(t,) Y(t,) + 1. (4.2.33)
Applying L 1.1.1 with Ry() ! d W(s)
1n emma 1.1. W1 u= , U= dan X = S),
PPN r5(s) r5(s)
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we have

1 2
R,(s) 2 1 1 [W]
ne (YO TGV = - T Rey
12(8)
hence
Ry(s) 21 < ! 4.2.34
ne (YO TLGYO = - TR Ene (4238
Putting (4.2.34) in (4.2.33) and we have
t S—0 1 1
tj R,(s) q(s)(l—p(s—a))tf rl(_v)dv T IRORG) ds
< R(ty) Y(ty) +1 . (4.2.35)
Take tlimoo sup to (4.2.35) , we get
. t S—0 1 1
tll_)moo sup j R,(s) q(s)(l—p(s—a)) j m dv —m ds < oo,
t, t1

and this is acontradiction to (4.2.18) , hence equation (1IN1 — A) is almost
oscillatory . And this completes the proof . m

Theorem 4.2.3:

Assume that (4.1.3) and (H1) — (H3) are holds, if for some function

p(t) € Cl([to ,0) ,(0,00 )) for all sufficiently large t; > t, and for t; >t, > t;

where p(t) >0, p'(t) =0 ,one has equations (4.2.1), (4.2.2) and (4.2.18). If
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t v u
' 1 1 Ri((s—0)—1) —
Jim sup | (mm! l @ f ) (1 T RG-o PCT ‘”) fals =) ds‘ d“) o=

ty

(4.2.36)
[ee] v u
f - - ff( )ds dud (4.2.37)
or s)ds dudv = o 2.
r(v) r,(u)
t1 ty t1
h R,(t) foold R,(t) fld 0<7<t,0< o<t
where = S, = S, <7t<t, 0 0<t,
! J 1(5) 2 / 72(5)

o, T constants and tlim (t—1) = tlim (t —0) = oo .Then equation
—00 —00

(IN1 — A) is almost oscillatory .
Proof:
Suppose that y(t) is a positive solution and
z(t) =yt) +p®)y(t—1). (4.2.38)

There are four possible cases (I), (II), (III) as in Theorem 4.2.2 , and

(V) 2(0) >0, Z(t) <0, (rl(t)z’(t)) <0, [rz(t) (rl(t)z’(t)) ] <o.
Assume that case (I), case (II) and case (III) hold, respectively. We can
obtain the conclusion of Theorem 4.2.3 by applying the proof of Theorem 4.2.2.

Assume case (IV) holds . Since [rz(t)(rl(t)z’(t))’] <0 and r,(t) >0, the

function rz(t)(rl(t)z’(t)), is negative continuous decreasing .

So for s>t >t; = 0,we have
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R (n©z() < nO(nO7®),
r(t) z'(t) is anegative decreasing function, so when
s=>2t>0 = nr(s)z'(s) < rn()z'(t)
or
—1n(s)z'(s) = —r(t)z'(t) = L, where L >0,

hence

1 - 1
n(s) — n(s)

-z'(s) = —n(t)z'(t)

Integrating the previous inequality from t to oo, we get

(o] [0e] (0]

, ~ , 1 1
—f z'(s) ds = j r(t)z'(t) ds > tJL ds

r1(s) r1(s)
t t

oo}

. 1
— <)Lll_)Tr()lo z(A) — Z(t)> > —r(t)z'(t) f ds > L f

ds

1
r1(s) r1(s)

o

1
ds 2/1lim z(A) +Lf
t

1(8)

ds .

Oo 1
= z(t) = ,1ll—>"olo z(A) — T'1(t)Z’(t)f ()

[ee]

Using z(t) positive decreasing function and R,(t) = f ds , so

1
1(s)

zt) =2 —r (@) z'(t) R, (t) = LR(t) >0, (4.2.39)
hence
r () z'(t) R (8) + z(t) =0,
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dividing by the positive quantity 7, (t) R;*(t) and using R;'(t) =

we get
hence
z(t)
hence
R, (t)

() z'(t) Ry (t) — (—z(t) ) >0
r1(6) R,%(0) -

TORY
(m) >0,

is apositive increasing function.

r(t)’

(4.2.40)

Using z(t) is positive decreasing function and the previous result implies for

we have

RO - Re-0 0T RO - 20 °

t=>t—1t>0,

z(t) - z(t —1) R,(t—1) - z(t — 1) -

Using equation (4.2.38) , we have

y(©) = z() -pOy(t-1) .

And using z(t) =y(t) = z(t—-t)=y(t—1),

hence

y@®) = z(t) —p(t) z(t — 1)

z(t —1)
y(©) = ( 1-p() o )z(t),

83
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using (4.2.40) in the previous inequality gives

Ri(t—1)
y(@) = ( 1-p(© W)Z(t) )
hence
Ri((t —0) — 1))
y(t—o)Z(l—p(t—a) R.(C— o) )Z(t—a) .
Using (4.2.42) and f(t) >0 we have
Ri(t—1)
~FO(t-0) < —f(®) (1 Pt~ o)~ s ) 20) .
From (4.2.44) and the equation
[O(n®2®)] =~F© yt~0) and 2(t) <zt —0) ,
we have
, P Rl((t—O')—T)
[2O(n®7©)] =-fO(1-pe- TP ) 2t=a) .
Using (4.2.39) we have
zZ(t—o)=L R(t—0) >0,
and putting it in (4.2.45) , we get
" R, ((t—0) —
[O(nOzO)] <0 (1 pe-0 G2 ) L R0
Ri(t—0)—1)

[rz(t)(rl(t) Z’(t))’]’ +Lf(t) (1 - p(t—o) R,(t—0)

Integrating (4.2.46) from t; to t and using f(t) = q(t) , we have
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(4.2.43)

(4.2.44)

(4.2.45)

>R1(s -0) <0 (4.2.46)



Rl((s —0) —T)
Ri(s —0)

t t
f [r2()(ri() /()| ds +L f q(s) (1— p(s —0)
ty 1

)Rl(s_o')ds SO
t

() (1(®) 2’ (1)) — 1oty )1t ) 2'(8))

+L fq(s) <1— p(s—J)Rl(lgf(;f)agr)>Rl(s—a)ds <0,
r(g(r@)z@nﬂ+Lf @)Gf—(s—a#has_a)_ﬂ>R(s—aﬁk
2 1 J q p R.(s — o) 1

<1yt ) (it ) 2'(,)) <0,

hence

Rl((s —0)— T)
Ri(s — o)

t
r(®)(r(®) 2’ (1) + L jq(s) <1 — p(s —0) >R1(s ~0)ds<0,

t

dividing the previous inequality by n,(t) >0, we have

t

[ (1 (s —0)

ty

Ri((s—0)—1)
Ri(s — o)

(n(®2©®) + )Rl(s—a) ds <0 .

L
1, (t)
Integrating the previous inequality again from t; to t

_t [ Ri((s—0)—1)
rz(u)JCI(S)(l—P(S—a) R —0) >R1(S_U)d5‘duso

t t
f( ri(s) 2'(s)) ds + L f
ty ty

t

nan%w—nuozuo+Lf

ty

rtu) J-q(s) <1 _p(S—U)%)Rl(s—g) ds“ du<o

t

(@) z'(t) +L f

t1

T iu) fq(s) <1 —pls—o) %) Ris = o) ds] du<mn(t)z'(t) <0,
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hence

t

rn@)z'(t)+L f

ty

Ri((s—0)—1)

1 u
Tz(u) tf Q(S) (1—27(5—0) Rl(S—O') )Rl(s—o') dsl du<o0 .

Dividing the previous inequality by r;(t) >0 gives

Ri((s—0) —1)

z'(t) + L f ! f(s) 1-—p(s—o0) Ri(s—0) ds|ldu<0
n® )| mw )1 P RiG-0) ) |

Integrating the previous inequality from t; to t , we get

t t v u

f’()d +Lf ! f ! f ()<1 ( )Rl((s_a)_f))ze( Yds|du |dv <0
Z \V v S — S—0)————————— S—0 S u v

t I\mww ) | mw )1 P RiGs—0) )

1 [ Ri((s—o0)—1)
(W) J () (1 —p(s=0) W)ﬂs —0) ds\ du> dv <0

z(t) —z(t)) + L f(rl(lv) fl

i1
t

1 ¢l 1 [ o Ri((s—0)—71) ~
j(ﬁ(”)!lrz(u)tjq(s)(l p(s —0) R (s —0) >R1(S G)ds‘du>dv

ty

< z(ty) — z(t) < Z(tl)’
L L

L>0.

Taking the tlim sup
t

_ 1 1 Ri((s—0) — 1)
tlimoo sup f(rl(v) tf[ Tz(u)tf q(s) (1—p(s—a) Ri(s—0) )Rl(s—a)ds‘ du)dv

ty

z(t
< lim sup (1)<

t - ©
which is a contradiction to (4.2.36), so L must be zero .

Return to inequality (2.2.4), we have
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y(t) > mz(t)
SO
y(s—o)=mz(s—o),
multiply this inequality by f(t) >0, we have

—fO)y(s —0) < —mf(t) z(s - o) ,

hence

[nO(n®2®)] < -mf©) 2 -0)

multiplying by — 1 and integrating the previous inequality from t; to t

_ f[rz(s)(rl(s) Z'(S))I]IdSZ fmf(s) z(s—o)ds , where t> t;>0,
t1

t1

SO

t t
rE(nE©) ) ] > j mf(s) z(s — o)ds
t t

t
—(n®O(n® 2®) - R (n(8) /(1)) = f mf(s) z(s — 0)ds ,

but from anegative continuous decreasing function , we have
rz(t)( () Z'(t)) < 1y( t1)( r(t) z'( t1))

= —(n@®O(n® 2©®) - R(t)(n(6) 2(6)) ) < —r@O(n© 2/ ©)
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— rz(t)( ry(t) Z’(t)), > f mf(s)z(s —o)ds,

but from inequality (2.2.2) , we have
zZ(s—o)=>k ,

hence
—r,(0)(n(t) 2' (1)) = f m k f(s)ds ,
L1
dividing by 7 (t) >0 , we get
- (@ 7@) > 25 J f(s)ds .

integrating this inequality from t; to t, we get

t

— f(rl(u) z’(u))’ du > f mk) [uff(s) ds] du

ry(u
%1

o (w)

— (rl(t)z’(t) — nr(t)z'( tl)) > mk f ! l ff (s) ds‘ du .
t; t;

Since 1 (u)z'(u) is negative continuous decreasing function , we have
r(0)z'(6) < n(t)z'(¢) <0,

hence

t

0>n(t)z'(ty) = rn)z'(t) + mk f ! [ ff(s) ds‘ du ,

/ r,(w)
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_rl(t)z(t)>mkf o [ ff(s)ds] du ,

dividing by r(t) >0, weget

—n®Z@) _ mk |
n©® - ) Tz(u) [ f f(s) ds‘ du

4] (t) rz (u)

—-z'(t) = m k [ ff(s) ds] du

Integrating the previous inequality from t; tot , we get

—fz’(v)dv > mkf ! ! ff(s)ds du |dv ,
J ; r(v) ; () ;

SO

t 1 v 1 u
) J(Tz(—u)tff(s)ds>du‘dv ,

—(z(t) — Z(tl)) >mk J [
t

hence

t
mk f[rl(v) (rz(u) ff(S) dS) du] dv < —(z(t) — z(ty)) .

But z(t) >0, so

mkflrl(l) f(rz() ff(s)ds)du] dv < z(ty)

t1

Thus ,
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t 4 u
1 1 z(ty)
”n(v) tf(rz(u) tf”‘”‘“) ‘ VS Tk

This contradiction (4.2.37). Thus, we must have k =0.
So every solution of equation (1N1 — A)is oscillatory. The proof is
complete . =

4.3 Oscillation of Solution Conditions of the Equation (1N1- B)

In this section we will introduce four theorems that generalize Theorem 4. 2. 1,
Theorem 4.2.2 and Theorem 4. 2. 3.

Theorem 4.3.1:

Assume that (4.1.1) and (H1) — (H3) hold, if for some function

p(t) € C*([ty, ) ,(0,)) for all sufficiently large t; > t, and for t3 > t, > t;
where p(t) >0, p'(t) =0, one has

cr(s)
[ t r2<u) rl(v)] W n©E )’

tim sup [ |p)a(s)1 = p(a(s)) . 20 s = oo
t t11y(w)
(4.3.1)
( ! ( ds dudv = 4.3.2
tfn(v)yrz(u)uff(s)s wdv =, (43.2)

where t(t), o(t) € C([to ,00)) , 0<t(t)<t, 0<o(t)<t and
gim(r(t)) = tlim(a(t)) =oo. Then (1N1— B) is almost oscillatory .
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Theorem 4.3.2:
Assume that (4.1.2) and (H1) — (H4) hold, if for some function
p(t) € Cl([to ,0),(0,00 )) , for all sufficiently large t; > t, and for t; >t, > t;

where p(t) >0, p'(t) =0 one has equations (4.3.1) and (4.3.2). If

t a(s)

lim supf Rz(S)q(S)(l—P(G(S))f

ty

dv B 1
r(v)  4Ry(s)ri(s)

ds = oo, (4.3.3)

oo

where R,(t) :=j
t

1
0 ds, 7(t), o(®) €C([ty,©)), 0 <7(t) <t,

0< og(t)<t, and tlirg(r(t)) = gi%(a(t)) = oo.Then equation (1IN1— B)

is almost oscillatory .

Theorem 4.3.3:

Assume that (4.1.3) and (H1) — (H3) hold, if for some function

p(t) € C*([ty, ) ,(0,)) for all sufficiently large t; > t, and for t3 > t, > t;

where p(t) >0, p'(t) =0 ,one has equations (4.3.1),(4.3.2) and (4.3.18). If

t

, 1ol 1o Ry (z(0)) _
L sup f <r1 ©) J l W f 1) (1 "R (0(5) ”("(S))) R(a(s) ds] d“) dv=c

t1

(4.3.4)
o0 oo 1
where R,(t) := jrl(_s) ds, R,(t):= frz(s) ds ,t(t), o(t) € C([to,oo)) ’

0<t(®)<t, 0< o(t)<t, and gim(r(t)) = gim(a(t)) = oo. Then equation
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(1N1 — B) is almost oscillatory .
Theorem 4.3.4:
Assume that (4.1.3) and (H1) — (H3) hold, if for some function
p(t) € C*([ty, ) ,(0,)) for all sufficiently large t; > t, and for t3 > t, > t;

where p(t) >0, p'(t) =0, one has equations (4.3.1), (4.3.2) and (4.3.3). If

foo 1 (1 juf()ddd—oo (4.3.5)

IEONEIOI R ”
[o%e) 1 09} 1

Where Rl(t) = !rl(s) ds; Rz(t) = _!T'Z(S) ds ) T(t)l O-(t) EC([to,OO)) )

0 <t®)<t, 0< o(t)<t, and gim (t) = gim o(t) = co. Then equation

(1N1 — B) is almost oscillatory .

Theorem 4.3.1 and Theorem 4.3.2 have the same as the proofs of
Theorem 4. 2.1 and Theorem 4. 2. 2, respectively. Theorem 4.3.3 and
Theorem 4. 3.4 have the same as the proof of Theorem 4.2.3, just
replace 7(s), o(s) and 7(o(s)) instead of s—7, s—o and (s—o0)—7,
respectively, in the proofs . For more details to the proofs see [30].

4.4 Illustrating Examples :

Here are some illustrative examples .
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Example 4.3.1:

Consider the third order neutral delay differential

df d(14d 1 Ly 3wy
E ta ﬁ% <_’y(t)+5y(t—3ﬂ')> +E( t+ﬁ>y(t_7>_0’ (4.3.6)

where t > 1.

1
Let p(t) =1. It is clear that r (t) = r(t)=t, p(t) = R

1
—\/E )

1 3 _
f(t) = E(\/f+ ) , T=3m, and 0 = - Applying Theorem 4.2.1,

1
4 t3
then every solution y(t) of (4.3.6) is oscillatory or converge to zero. One such
solution is y(t) =cost .

Example 4.3.2 :

Consider the third order neutral delay differential equation

d d d 1/t
E t2 E (tz E(y(t) + § y(z)>> + Atzy(t) =0 (4.3.7)

where A >0, t >1.

[SSRIE

r(t) = t?, n ()= t?, T(t)=%£t, c®)=t<t, p()) == €[0,1)

and f(t) = 1t?.
Let p(t) =1 and applying Theorem 4.3.3 , then every solution y(t) of

(4.3.7) is oscillatory or lim y(t) =0.
t > ©
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4.5 Remarks:

Remark 4.5.1:

It is interesting to study equations (2N1 — A) and (2N1 — B) for the case

when
R,(t) f°° ! ds < R,(s) f ! d
= S (ee] , S) = S = O
1 .(s) 2 r5(5)
t t
Remark 4.5.2:

It is interesting to find other conditions which guarantee that every

solution of equations (1N1—A4), (IN1—-B), (2N1—-A) and

(2N1—-B), (1N2 — A) and (1N2 — B) is oscillatory .
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Alalal)l Al g1V s2a ey ¢4y Aaldll ala 3ok 4y Aalall dlead) adlipla
DAl Heall gas) (Je 6 Al aValaall eog sl e g Aalatiadl Adadll
xS A o ) Qe 4l gl (LYl ge Sl Yoo A ol @) die L)
SV e osSleie 5, 0N e Ly e (Oiall ) o alaall JAT 85 el e
b Al o aSally dpdd je dbbeadl oS50 ldia pe dalaal)l o2 Jsla aal
A Al Ll lle WSall GISYL 05 Led <ol 1) Jagod s Y 5l Al
AN e
Alalal) Al L)l p(p) Adal) Jolall b il du) o &5 Al w2

3‘)};4]\ ‘_;c g;\]\

d d
T (rz(t) T <T1(t) — (y® +p®)y(t - T)))) +f®y(t—-0)=0  (IN1-4)

d d d
o (rza) o <7‘1(t) —= (0 + p(t)y(r(t)))>> HfOYO®)=0  (N1-B)

d
o (r(t) 2 (OO+ p(t)y(r(t))))> +f(OY(@) =0 (1N2 - B)
d2
o (r(t) 7 @ +p@®y (e - r))) +fOY(E-0)=0 (2N 1-4)
2 d
T ( r© — (y©+ p(t)y(r(t)))) +f®Oy(a(®) =0 (2N1 - B)

p(t) lf(t) €C ([tOIOO)!R) ,f(t) = O,rl(t),rz(t),r(t) € Cl ([tO,OO), R+)
T, cg€[0,t).

(IN1 — 4) Adalal aVabedl Jelal il b i jlial o Ale )l 228w S



(IN2—B)« (IN2—A)« (2N1—B)« (2N1—A)« (IN1—B)
Al i shal Jilae e gl A (e Jiall e colailly il
b‘))m” cald ddalesidll :\:\LAM @La\.ﬂl\ 4dalel 4\:1;.1 (.g "K V.V. Seshag]rl Rao"

2

d d
o <r<t> 77 (6@ +p@y(t - m)) +f(OY(E=0)=0 (1N2 — 4)

* " Tongxing Li " slladl &l ghd med udi gldl JOA (e Lyl s ¢ Ledsla i dag a5
by pas & sl @AY Ly ds (1IN — 4) ddbeall du )y (8 aadiiaddl diay
Shw Ay o) =108 oS aie (IN1 — 4) sl bl Jeda il
Ljad) dpmd la oy Aol oda ciiecad LS @l gl S 8 Al o3 il
o Al AdlaYl o disy 4 "K V. V. Seshagiri Rao " alladl Lgeddinl Al 3ae il

C ALY ad dasca gl ALY



