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Abstract 

Wireless Mesh Networks (WMNs) are multi-hop wireless networks consists of Mesh 

Clients (MCs) and Mesh Routers/Access Points (MAPs), where MCs are mobile, battery 

constrained, and connecting among themselves over possibly multi-hop paths with or 

without the involvement of MAPs. The MAPs are typically stationary and energy rich 

devices and form the backbone of WMNs. Shared medium access, open peer-to-peer 

network topology, severe resource constraints, and highly dynamic topology, are 

reasons to make WMNs vulnerable to various kinds of security threats. 

Hybrid Wireless Mesh Protocol (HWMP) the standard routing protocol for WMNs 

defines secure links between MPs, but it does not provide end-to-end security. It’s also 

doesn’t specify routing security or forwarding functionality. Routing information 

elements are transferred in plain text and are prone to various types of routing attacks 

like flooding, route re-direction, spoofing. 

In this thesis, we developed a secure protocol (TAWMP) that provides end-to-end 

authentication to WMN by dividing authentication process into two phases. In first phase 

(MAP Phase) we provide protection for MAPs using asymmetric authentication to 

generate a secret session key in order to provide node-to-node protection; while in 

second phase (MC Phase) we depend on symmetric authentication to generate Ticket 

contains necessary keys for transferring data between communicated MCs using (EAP-

TTLS) which is more suitable for wireless communications in order to provide end-to-

end protection. TAWMP depends on adding authentication server to the WMN; which 

will increase end-to-end delay in the network. TAWMP provides link protections 

between hops in addition to end-to-end authentication. TAWMP has been tested using 

Network Simulator NS-2 version 2.34 in order to evaluate our proposed protocol and 

compare it to HWMP. 
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1.1  Introduction 

With rapid growth of internet, WMNs is emerging as a practical solution for 

providing community broadband connection. These networks are dynamically self-

organized and self-configured with the existing nodes in the network by automatically 

establishing and maintain mesh connectivity among the nodes [1]. 

Typical WMNs consist of MAPs and MCs [2], MAPs are static and power-rich 

devices it form WMNs backbone through multi-hop communications, MAPs cover same 

area as conventional routers do with much less transmission power. On the other hand 

MCs are battery dependent devices that have necessary mesh functions for behaving like 

mesh routers and for transmission of data in the network [2-4]. 

The architecture for WMN can be classified into three main categories [1, 5]: 

Infrastructure/Backbone WMN: This type of WMNs can be build using various 

type of radio technology in addition to IEEE 802.11 technologies. With gateway 

functionality, this type of WMNs can be connected with internet and with various types of 

wire/wireless networks [6, 7]. 

Client WMNs: MCs form network through peer-to-peer connectivity 

using on type of radios on client devices. In this type of WMNs, client nodes 

perform routing and configuration functionality in addition to end user 

applications to customer which of course increases the requirements on end-user 

devices. In this type of architecture a packet destined to a node in the network 

hops through multiple nodes to reach the destination [3,8]. 
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Hybrid WMNS: this type of WMNs is combination of infrastructure and client 

networks, were MCs can access the network through MAPs as directly connect with 

nearby MCs [5]. Since Hybrid architecture combines both type of devices; energy-rich 

MAPs and battery dependent MCs, Hybrid Wireless Mesh Protocol (HWMP) is the default 

protocol for IEEE 802.11s WLAN mesh networking, and combine reactive and proactive 

components, which uses MAC address to identify destination and to construct routes. 

HWMP is based on AODV routing protocol [9, 10]. In reactive component, when a source 

wants to send data to a destination for which it does not have a path yet, it initiates a path 

discovery, in which the source node broadcasts a path request message (PREQ). The 

destination responds with a path reply message (PREP), which is sent to the source by 

unicast. The accumulated path metric, stored in the PREQ and the PREP respectively, 

determines the best path according to the used path selection metric [9, 11]. The HWMP 

sequence number in path selection messages prevents loops that would have been caused 

by outdated path selection information. On the other hand proactive mode spread the 

broadcasts periodically in the mesh. This generates a root selection in tree structure using 

PREQ or RANN [10, 12]. 

 

Figure1.1. Hybrid wireless Network. 
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Some features such as the multi-hop connection, dynamic mesh topological 

changes and the attack prone wireless medium access of WMNs are making it vulnerable 

to different security threats both active and passive attacks [13, 14]. Were passive attacks 

would compromise confidentiality; active attacks would violate availability, integrity, 

authentication, and non-repudiation. Wireless networks have high probability for physical 

threat, unlike wired networks were routers are protected and hard to reach, wireless routers 

and access points may installed on roofs of building or street lamps which make physical 

protection harder and cause like stealing private key for authentication stored in the router 

or replacing the router with malicious one [15]. 

1.2  Problem Statement 

Hybrid Wireless Mesh Protocol (HWMP) is the standard security protocol for 

WMN, HWMP defines security for multi-hop network using node-to-node authentication 

which is fast and suitable for wireless scalable networks. 

Dependency in node-to-node authentication in HWMP leaves the network 

vulnerable to various types of routing attacks such as flooding, route disruption and 

diversion; in addition HWMP doesn’t protect mutable fields in the routing information 

elements. 

1.3  WMNs Security Challenges 

Detecting malicious nodes  since router/access points in wireless networks are 

highly prone to physical attacks and because of dynamic mesh topological changes, 

mesh network’s nodes have highly possibility to passive or active attack, which can 
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seriously disrupt routing process, this make it critical for WMNs to identify 

compromised nodes[15]. 

Protecting multi-hop mechanism  different type of threats attacks routing 

mechanism and the functionality of WMN by changing the routing message or the state 

of one or more of the nodes[16]. 

1.4  WMNs Security Requirements 

To ensure security of WMN, the following requirements must be achieved: 

Confidentiality  which means that certain data is only accessible by authorized 

users. Confidentiality cannot be achieved without authenticity i.e. without knowing you 

are talking to right person. After achieving authenticity, confidentiality becomes matter 

of encrypting transferring data[17]. 

Authenticity  authentication is vital at any type of communication to make 

sure the connection is done with true destination, without authentication impersonators 

can gain access to confidential data [15]. 

Congestion  since several nodes in WMN are working as repeater. Bandwidth 

is dependent on the number of nodes surrounding repeater node in addition to the 

throughput of this repeater node. Some attacks aims to increase the message path to 

increase the latency or to change the path to specific node in order to cause congestion 

and reduce bandwidth share [18]. 
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Integrity  it’s crucial for WMN to guarantee message integrity since a 

transferred message in wireless medium can be subjected to altering. [17] has defined 

two ways in which integrity can be done in as  

Malicious altering, which can be done by adversary. 

Accidental altering, such as transmission error. 

Availability  one of the most dangerous attacks wireless network can be prone 

to is Denial of Service (DoS) attacks, in which all nodes in the network can be attack 

target, therefore some selfish nodes make some of the network services unavailable 

[15]. This type if attacks can be done at any layer of the network. It can be done by 

launching jamming signal to interfere with communication on physical channels. Or an 

adversary can interrupt the routing protocols and disconnect the network. Availability 

ensures the survivability of network services despite attacks.   

1.5  Security Attacks of WMNs 

Wireless mesh networks proposed to several kinds of attacks which can be 

categorized into [15, 16, 18, 19]: 

1. Passive attacks  in this type of attacks, attacker will not involve any disruption servers, 

it will only listen and analyze the network traffic to capture sensitive information.  

1.1. Eavesdropping  the eavesdropper can get topological information or capture and 

listen to on-going traffic of communication channels, eavesdropper can get benefit 

of sniffer which is application or device which is able to read and capture network 

packets. This attack is less severe for the wireless network. 
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1.2. Network analysis  in this type of attacks, network traffic is intercepted and 

analyzed for many reasons such as  

o To locate the source and destination nodes. 

o People in communication. 

o Military intelligence. 

WMN is vulnerable to such attack since its multi-hop nature compared 

with IEEE 802.11 which is single-hop.  

2. Active attacks  in this type of attacks, the attacker harms the network intentionally be 

altering data and flooding network or cut of some nodes from their network so they 

cannot use its services effectively anymore.   

2.1. Denial of Service (DoS)  this type of attacks normally can be done by flooding 

centralized resource in the network, so that it no longer operate correctly or stop 

completely. It also can be done on MAC layer which called Selfish attack, in 

which selfish node reduces the resource of wireless channel, thereby affect 

network performance or interrupt network service. 

2.2. Impersonate attack  in this type of attacks, compromised node manage to join the 

network, so it will be able to send false routing information or succeed to access 

the management system of the network.  
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1.6  Research Objective  

1. Develop an efficient and reliable solution for node-to-node vulnerability in 

HWMP authentication. 

2. Evaluate the effectiveness of the proposed protocol for addressing security 

threats facing node-to-node protection. 

3. Demonstrate the effectiveness of performance of the proposed protocol in 

WMN environment. 

1.7 Thesis Contribution 

To achieve the main goal of this thesis we developed a new routing protocol 

Securing Ticket Authentication Wireless Mesh Networks Protocol (TAWMP) that provide 

end-to-end protection for transferred messages between authenticated devices in the 

network in addition to provide node-to-node protection for between MAPs in the WMN. 

The contributions of this thesis can be summarized as follows: 

1. We developed a new routing protocol that provides both an end-to-end protection 

for transferred data between authenticated devices and also provides a node-to-node 

protection for between MAPs in the WMN.  

2. We specified a threat model by determining several attacks that WMNs are prone 

to; these attacks are passive and active ones such as flooding attack, route 

disruption attack, route redirection attack, and routing loops attack. We defined 

these attacks in order to limit our scope to specific issues so we can develop a 

suitable authenticating protocol that can address these issues 
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3. We adopted hybrid approach in designing TAWMP by dividing the authenticating 

protocol to two phases, where the first phase called MAP phase which depends on 

Diffie-Hellman authentication based protocol to provide authentication for new 

connected MAPs in the WMN, and the second phase, MC phase depends on server-

side certificate authentication protocol such as EAP-TTLS.  

4. We used an authentication server in order to provide authentication for authorized 

MAPs and MCs in the WMN. 

1.8 Thesis Organization 

The remaining chapters of this thesis are organized as follows: 

Chapter 2 presents an overview of WMN. This chapter describes the concepts 

used in WMNs, architecture and types of WMNs, and routing protocols used in WMNs 

such as On-Demand routing protocols and proactive routing protocols of WMN, 

Chapter 3 presents an overview of cryptography. This chapter explains the basic 

cryptography concepts which are essential for the clarity of this thesis. These concepts 

include symmetric cryptography, asymmetric cryptography, hash functions, authentication 

and digital signatures. 

Chapter 4 presents the design and analysis of TAWMP protocol. We present the 

protocol basic approach, protocol properties, and authentication process in details and how 

TWMP protocol protects WMN from different security threats. 
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Chapter 5 presents protocol simulation and results. We explain how to generate 

and simulate our network by ns-2 simulator and discuss the parameters used to evaluate 

our protocol such as: packet delivery ratio, network throughput, and end to end delay. 
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2.1 Overview of Wireless Mesh Networks 

Demand on wireless networks is expanding and the desired for ubiquitous wireless 

connectivity is deriving the demand for coverage extension of WLANs. IEEE 802.11 relies on 

wired backbone to interconnect to non-208.11 networks and on bridging functionalities, this 

dependency limits deployment of wireless infrastructure and its coverage [20]. This 

dependency cause several issues since its costly and inflexible as WLAN coverage cannot go 

beyond backhaul deployment, in addition that centralized structures work inefficiently with 

new applications, such as wireless gaming, require peer-to-peer connectivity. Also, a fixed 

topology prohibits stations from choosing a better path for communication [21]. 

Conventional WLANs relay on IP layer for multi-hop communication, this 

dependency has a number of disadvantages since wireless links are less reliable than wired 

ones, and IP layer cannot perceive the radio environment [22]. To address these issues the 

Mobile Ad hoc Networks (MANET), the group of the Internet Engineering Task Force’s 

(IETF’s) [23] developed special ad hoc routing protocols that constantly broadcast routing 

messages to acquire reasonable metrics. MAC-based multi-hop address different IP-layer 

issues so an integrated mesh networking solution developed in IEEE 802.11Task Group S 

which deals with mesh support [20]. 

2.2 Architecture and Network Design 

In the following section we describe both IEEE 802.11 and 802.11s architectures. 

2.2.1 IEEE 802.11 Architecture 

The most basic entity in 802.11 is a station (STA), which is any device satisfy 

requirement of an IEEE 802.11 standard compliant Medium Access Control (MAC) and 
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Physical Layer (PHY). A basic service set (BSS) can be formed using two stations, where the 

station provides an integration service to other stations referred to as an access point (AP). In 

IEEE 802.11 the term link is defined from the MAC layer’s point of view. 

As the BSS forms a wireless single-hop network where all participating stations send 

and receive frames via the AP, the AP operates as relay between them. Deferent AP can get 

benefit from Distribution System Service (DSS) to interconnect their BSS so that stations can 

roam within their BSS.  

 

 

 

 
  

 

2.2.2 IEEE 802.11s Architecture 

The basic entity in IEEE 802.11s is the Mesh Point (MP), which is every IEEE 

802.11-based entity (AP or STA) that fully or partially supports mesh functionalities like 

neighbor discovery, channel selection and association forming with its neighboring MPs. 

Number of MPs interconnected to each other, enabling automatic topology learning and 

dynamic path configuration forms an Extended Service Set (ESS). Mesh connectivity is 

established by applying multi-hop mesh techniques to specify a wireless distribution system 

(WDS) building a wireless infrastructure among nodes. 

 

Figure 2.1. IEEE 802.11 Architecture 
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MAPs are specific MPs but can act as APs as well. Mesh Portal Point (MPP) is 

another type of MPs that has the ability of acting as a bridge or gateway between the mesh 

cloud and external network. 

 

 

 

 

 

 

2.3 Routing Protocols 

Routing protocols for WMNs are mostly based on protocols designed for mobile ad 

hoc networks [24]. These can be classified in the three categories, proactive, reactive, and 

hybrid routing protocols [25] 

2.3.1 Proactive Routing Protocols 

Proactive routing protocols maintain a table for each node representing the entire 

network topology which is regularly updated in order to maintain the freshness of routing 

information [26]. At any given time, any node knows how to reach another node of the 

network. This approach minimizes the route discovery delay at the cost of exchanging data 

periodically, which consumes network bandwidth. Proactive protocols are preferred for small 

networks because of low routing, table lookups. Destination Sequenced Distance Vector 

 

Figure 2.2. IEEE 802.11s Architecture 
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(DSDV) [27], Optimized Link State Routing (OLSR) [28], Topology dissemination Based on 

Reverse-Path Forwarding (TBRPF) [28] are some of proactive routing protocols. [9] and [10] 

approve that OLSR has minimum delay over DSDV and less power consumption. 

Optimized Link State Routing (OLSR) 

Optimized Link State Routing (OLSR) protocol is a proactive routing protocol where 

the routes are always immediately available when needed [29]. OLSR is an optimization 

version of a pure link state protocol in which the topological changes cause the flooding of the 

topological information to all available hosts in the network [30]. OLSR may optimize the 

reactivity to topological changes by reducing the maximum time interval for periodic control 

message transmission. Furthermore, as OLSR continuously maintains routes to all 

destinations in the network, the protocol is beneficial for traffic patterns where a large subset 

of nodes are communicating with another large subset of nodes, and where the source-

destination pairs are changing over time. 

OLSR protocol is well suited for the application which does not allow the long delays 

in the transmission of the data packets [31]. The best working environment for OLSR 

protocol is a dense network, where the most communication is concentrated between a large 

numbers of nodes[32]. OLSR reduce the control overhead forcing the Multi Point Relays 

(MPR) to propagate the updates of the link state, also the efficiency is gained compared to 

classical link state protocol when the selected MPR set is as small as possible [33]. But the 

drawback of this is that it must maintain the routing table for all the possible routes, so there 

is no difference in small networks, but when the number of the mobile host increases, then the 
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overhead from the control messages is also increasing. This constrains the scalability of the 

OLSR protocol [24], the OLSR protocol work most efficiently in the dense networks [21]. 

2.3.2 Reactive Routing Protocols 

In reactive routing protocols [34], nodes are not aware of the network topology. A 

routing is constructed on-demand. They find routes by flooding network with route requests. 

This leads to higher latency due to the fact that the route has to be discovered, however it 

minimizes control traffic overhead. Usually, reactive routing protocols are better suited in 

networks with low node density [21]. Proactive protocols are more efficient in dense networks 

with burst traffic due to the continuous exchange of topology information, reducing route 

discovery delay. Reactive protocols are preferred for high mobility networks [35]. Dynamic 

Source Routing (DSR) [36], Ad hoc On-Demand Vector (AODV) [37] and some other 

extensions derived from AODV are reactive routing protocols 

Ad-Hoc on Demand Distance Vector (AODV) Protocol 

AODV is one of the most popular on-demand routing protocol and it’s the base for 

HWMP, routes to the destination are only discovered when required thus avoiding memory 

overhead and less power [38].  

A node using AODV does not need to discover and maintain a route to 

another node until the two nodes need to communicate with each other [39]. The 

routing messages do not contain information about the whole route path, but only 

about the source and destination [40]. Therefore, routing messages are not increasing 

in size. All these features enable AODV to be a suitable routing protocol for 

MANET.  
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AODV uses a destination sequence number, which is generated, by the destination 

itself for each route entry [37]. The destination sequence number ensures loop freedom and if 

two similar routes to a destination exist, then the node chooses the one with the highest 

sequence number. AODV uses Route Request (RREQ), Route Reply (RREP) and Route Error 

(RERR) messages for route discovery and maintenance.  

The routing operations of AODV generally consist of two phases: route discovery 

and route maintenance. In figure 2.3, Route discovery is performed through broadcasting 

RREQ messages.  

 

 

 

 

 

 

 

 

When a source node desires a route to a destination for which it does not already have 

a route, it broadcasts a route request (RREQ) packet across the network. RREQ carries Source 

ID, Destination ID, Source Sequence Number, Destination Sequence Number and a Broadcast 

 

Figure 2.3. Route Discovery in AODV Protocol 
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ID. When an intermediate node receives a RREQ, it sends a route reply (RREP) if it is either 

the destination or if it has a route to the destination with corresponding sequence number 

greater than or equal to that contained in the RREQ. The intermediate node also stores the 

previous node information in order to forward the data packet to this next node towards the 

destination. When the RREQ reaches the destination, a RREP will be generated by the 

destination node as a response to the RREQ. The RREP will be transmitted back to the 

originator of the RREQ in order to inform the route. If an intermediate node has an active 

route towards the destination, it can reply the RREQ with a RREP, which is called Gratuitous 

Route Reply. The intermediate node will also send an RREP to the destination node. The 

RREP will be sent in reverse route of RREQ if a bidirectional link exists. Whenever there is a 

link break in the routing path, the RERR message will be broadcasted by the link break 

identifying node to the neighbor nodes to update or delete the routes through that node and the 

source initiates another RREQ broadcast to find fresh routes to the destination. 

2.3.3 Hybrid Routing Protocols 

Hybrid routing protocols are mixed design of two approaches mentioned above [31]. 

The protocols typically use a proactive approach to keep routes to neighborhood nodes (nodes 

within the vicinity of the source). But for the nodes beyond the vicinity area the protocol 

behaves like a reactive one. Alternatively, multiple algorithms can be used simultaneously, if 

WMN is segmented into clusters. Within each cluster a proactive algorithm is used, whereas 

between clusters a reactive algorithm is used. The challenge is to choose a point, a point from 

which the protocol should change from proactive to reactive. 
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2.4 Hybrid Wireless Mesh Protocol (HWMP) 

IEEE 802.11s specifies multi-hop MAC functions for mesh nodes using a mandatory 

path selection mechanism named HWMP (Hybrid Wireless Mesh Protocol) [1] and also 

provide a path selection framework for alternative mechanisms and future extensions. 

Routing in HWMP 

HWMP is the default routing protocol for IEEE 802.11s WLAN mesh networking. It 

has both reactive and proactive components. The foundation of HWMP is an adaptation of Ad 

hoc On-demand Distance Vector (AODV) protocol. It has four messages frames path request 

(PREQ), path replay (PREP), path error (PERR) and root announcement (RANN) [20]. 

HWMP uses destination sequence numbers in order to detect outdated routing information. 

Newly received routing information with a smaller sequence number than the sequence 

number of the corresponding information already known to the mesh point will be discarded, 

because it’s outdated. HWMP has two types of routing, proactive and reactive [3].  

Reactive Routing in HWMP 

The foundation of HWMP is an adaption of the reactive Ad hoc On-demand Distance 

Vector routing protocol (AODV) called Radio-Metric AODV (RM-AODV) [33]. While 

AODV works on layer 3 with IP addresses and uses the hop count as routing metric, RM-

AODV works on layer 2 with MAC addresses and uses a radio-aware routing metric for the 

path selection [1]. In RM-AODV, it is assumed that each node has some mechanism to 

determine the metric cost of the link to each of its neighbors. In order to propagate the metric 

information between nodes, a metric field is used in the RREQ and RREP messages.  
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If a source MP needs to find a route using the on demand routing mode, it broadcasts 

a RREQ with the destination MP specified in the destination list and the metric field 

initialized to zero [6]. When a MP receives a RREQ, it creates a route to the source or updates 

its current route if the RREQ contains a greater sequence number, or the sequence number is 

the same as the current route and the RREQ offers a better metric than the current route. If a 

new route is created or an existing route modified, the RREQ is also forwarded. Each MP 

may receive multiple copies of the same RREQ that originated in the source, each RREQ 

traversing a unique path from the source to the MP. Whenever a MP forwards a RREQ, the 

metric field in the RREQ will be updated to reflect the cumulative metric of the route to the 

RREQ’s source. After creating or updating a route to the source, the destination MP sends a 

unicast RREP back to the source. Intermediate MPs create a route to the destination on 

receiving the RREP, and also forward the RREP toward the source. When the source receives 

the RREP, it creates a route to the destination. If the destination receives further RREQs with 

a better metric, then the destination updates its route to the source to the new route and also 

sends a fresh RREP to the source along the updated route. Thus a bidirectional, best metric 

end-to-end route is established between the source and destination 

Proactive Routing in HWMP 

There are two mechanisms for proactively spreading routing information for reaching 

the root MP. The first method uses a proactive Route Request (RREQ) message and is 

intended to create routes between the root and all MPs in the network proactively. The second 

method uses a Root Announcement (RANN) message and is intended to distribute route 

information for reaching the root but the actual routes to the root can be built on-demand. 
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Proactive PREQ Mechanism 

The RREQ tree building process begins with a proactive Route Request message sent 

by the root MP, with the destination address set to all ones (broadcast address). The RREQ 

contains the distance metric (set to 0 by the root) and a sequence number. The proactive 

RREQ is sent periodically by the root, with increasing sequence number [11, 29]. Any MP 

hearing a proactive RREQ creates or updates its forwarding information to the root MP, 

updates the metric and hops count of the RREQ, records the metric and hops count to the root, 

and then transmits the updated RREQ. Each MP may receive multiple copies of a proactive 

RREQ, each traversing a unique path from the root to the MP. A MP updates its current route 

to the root if and only if the RREQ contains a greater sequence number, or the sequence 

number is the same as the current route and the RREQ offers a better metric than the current 

route to the root [29].If the proactive RREQ is sent with the “Proactive RREP” bit set to 0, the 

recipient MP may send a gratuitous RREP if required (for example, if the MP has data to send 

to the root and requires establishing bidirectional route with the root). If the RREQ is sent 

with a “Proactive RREP” bit set to 1, the recipient MP shall send a gratuitous RREP. The 

gratuitous RREP establishes the route from the root to the MP. When the route from an MP to 

a root changes, and the root RREQ was sent with a “Proactive RREP” bit set to 1, it shall send 

a gratuitous RREP to the root containing the addresses of the MPs which have established a 

route to the root through the current MP [41]. 

Proactive RANN Mechanism 

The root periodically floods a RANN message into the network. The information 

contained in the RANN is used to disseminate route metrics to the root. Upon reception of a 
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RANN, each MP that has to create or refresh a route to the root will send a unicast RREQ to 

the root via the MP from which it received the RANN. The unicast RREQ will follow the 

same processing rules defined in the on demand mode [33]. The root sends a RREP in 

response to each RREQ. The unicast RREQ creates the reverse route from the root to the 

originating MP, while the RREP creates the forward route from the MP to the root. When the 

route from an MP to a root changes, it may send a RREP with the addresses of the MPs which 

have established a route to the root through the current MP [42]. 
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3.1 Introduction 

Security and networking has very constrained bonds, since wireless networks are 

prone to various networks attacks because of its multi-hop communicating nature, dynamic 

mesh topological changes, and its shared wireless medium access.  

Cryptography is the scientific study of techniques for securing digital 

information, transactions, and distributed computations [43]. Cryptography aims to transfer 

readable data into a form which cannot be understood for the purpose of securing data. 

Cryptography involves different distinct mechanisms [48]: encryption, authentication, 

digital signatures and hashing. 

In this chapter we describe some cryptography elements that will be used 

throughout this thesis that include symmetric and asymmetric cryptography, Diffie-

Hellman key exchange protocol, and digital signatures. 

3.2 Encryption 

The fundamental task for cryptography is to provide confidentiality by encryption 

methods. Encryption provides protection against passive attacks such as eavesdropping. 

The message to be transmitted is called plaintext. The sender applies encryption 

algorithms to encrypt the message into cipher-text and sends it to the receiver in order to 

decrypt the cipher-text. 

3.2.1 Symmetric Encryption 

Symmetric cryptography is based on using same key for encrypting and decrypting 

[44]. In the process of exchanging cipher-text over network sender encrypts data with a 

key normally referred as symmetric key or secret key K and using and encrypting 
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algorithm Ek(x), on the other hand receiver is using decrypting algorithm Dk(x) and the 

same key K to decrypt cipher-text C and restore the plaintext m. 

C= Ek(m) 

Dk(C)=Dk(Ek(m))= m 

 This leads us to keep in mind two important requirements to use symmetric 

cryptography: 

1. In symmetric encryption, it is essential that the sender and receiver have a secure 

channel to exchange secret keys.  

2. It’s vital to use a strong encryption algorithm. What this means is that if someone 

has a cipher text, a corresponding plain text message and the encryption algorithm, 

they still cannot determine the key or decrypt another cipher text. In other words, 

someone who has a plain text for a given cipher text and the algorithm should not 

be able to break the cipher, however. Sharing a key with each possible 

communicating entity, even in a closed group of entities, is a very high constraint, 

and rapidly leads to a big number of keys to be managed. Thus, it is better 

automating the establishment of these keys [45]. 

 

 

 

 

Figure3.1. Symmetric Cryptography 

 Insecure channel 

C 

K 

M 

 E 
Secure key 
exchange 

 

C 

M 

 D K 



Chapter Three: Cryptography  
 

26 
 

 

The most well-known symmetric algorithms are, DES (Data Encryption Standard), 

3DES (“Triple DES”), and AES (Advanced Encryption Standard) [46]. DES was invented 

by IBM as the public encryption algorithm with secret keys of 56 bits and input of 64-bits 

data blocks. DES is based on combinations of mechanisms and exclusive OR gates. These 

fast operations make DES highly efficient, but brute force attacks are still able to crack the 

56-bits keys by trying any combinations of keys [47].  

The 3DES algorithm was more robust and was successor of DES; 3DES applies 

DES three times, one after the other; the 3DES key is maximum 168 bits (3*56=168) and 

applies to the same input block size (64 bits). The 3DES algorithm is not always efficient 

from an encryption rate point of view, robustness to brute-force attacks, so AES algorithm 

was selected for its fast processing time, several supported key lengths, and it relies on 

inputs of 128-bit blocks and key lengths of 128, 192 or 256 bits [48].  

 

 

 

 

 

Figure3.2. DES Encryption Process 
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successful attacks against it. However, the main disadvantage of symmetric encryption is 

the large number of keys required and the distribution of these keys between all parties in 

the network where each two parties have to exchange their keys before starting secure 

communications. For example, assume a network with  nodes, each need to 

communicate securely, then the number of required keys is . This is a big 

number, in particular, for large networks [48]. 

However, symmetric encryption can be used to implement the authentication 

security services. Symmetric encryption is fast which make it compatible with mobile 

devices, the main problem with symmetric cryptography is to have secure channel in order 

to exchange secret keys between communicating devices. 

3.2.2 Asymmetric Encryption 

Asymmetric or public key cryptography relies on two different keys, called 

“asymmetric keys”. Both keys are generated at the same time and play a complementary 

role in the encryption process, the encryption is done using one of the keys needs to be 

decrypted with the other key. Each key plays a specific role [48]. The private key Kr must 

be known by only one entity and can be used for authenticating itself for instance. The 

public key Ku can be largely published and it is better that public keys are largely 

published in order that any other entity can perform authentication. Knowledge of Ku does 

not enable us to deduce Kr. Therefore, asymmetric cryptography is the opposite of 

symmetric cryptography in safety, since it doesn’t require sharing the secret key between 

the sender and the receiver [49]. This is the main difference between symmetric and 

asymmetric encryption. 
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C= Eku(m) 

Dkr (C)=Dkr(Eku(m))= m 

Sender encrypts the message with Ku of receiver and then forwards that encrypted 

message to the receiver over the network. Now on receiving that encrypted data, only 

receiver can decrypt it with the help of its corresponding Kr. No other user can decrypt that 

message, until, unless, has the knowledge about the secret key of the receiver. 

 

 

 

 

Figure3.3. Asymmetric Cryptography 

Sender encrypts the message with Ku of receiver and then forwards that encrypted 

message to the receiver over the network. Now on receiving that encrypted data, only 

receiver can decrypt it with the help of its corresponding Kr. No other user can decrypt that 

message, until, unless, has the knowledge about the secret key of the receiver. 

We must understand that all the difficulty is related to the guarantee provided that 

a public key is truly associated with the unique identified entity. This association 

entity/public key is fundamental. With no such reliable guarantee, it is useless 

implementing security over a network. Different solutions have been developed to 

guarantee the entity/public association 
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1. First idea would be that each entity previously registers every public key of its 

correspondents.  

2. A second solution consists of defining a trusted third party, that is, an entity in 

which a large number of entities have trust. This trust is created by the knowledge 

of a public key associated with the trusted third party [35]. This trusted third party 

can for instance take the form of a certification authority CA whose role is to issue 

electronic, i.e. some data structures binding a public key to an entity, and signed by 

the certification authority. 

On the other hand, asymmetric encryption deals with plaintext as a group of 

numbers which are manipulated in mathematics, while symmetric encryption deal with 

plaintext as group of symbols and characters. The encryption process may change these 

symbols or may substitute one symbol by another. Therefore, asymmetric encryption is 

slower and very complicated in calculations than symmetric encryption. The advantage of 

asymmetric encryption is that the key used for encryption can be published for use by 

anyone, while the key used for decryption must be kept secret. Also, the number of keys is 

much smaller than that in symmetric encryption since, in N nodes each node needs N 

public keys which much smaller than the number of  key required in 

symmetric encryption [48]. However, asymmetric encryption can be used to implement the 

authentication and digital signature, and for integrity assurance. 

In the following we describe two public-key algorithms Diffie-Hellman Key 

Exchange and RSA Algorithm. 
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Diffie-Hellman key Exchange  

Whitfield Diffie and Martin Hellman provide a solution for key 

generation and distribution in symmetric cryptography. Diffie-Hellman algorithm 

depends for its effectiveness on the difficulty of computing discrete logarithms. 

Diffie-Hellman defines two publicly known numbers: a prime number q and an 

integer α that is a primitive root of q.  

Diffie-Hellman model supposes user A and user B, were user A selects a random 

integer XA < q and computes YA= αXA mod q. Similarly, user B independently selects a 

random integer XB < q and computes YB= αXB mod q. Each side keeps the X value 

private and makes the Y available publicly to the other side. User A computes the key as K 

= (YB)XA mod q and user B computes the key as K = (YA)XB mod q. these two 

calculations produce identical results: 

 
K = (YB)XA mod q 

      = (αXB mod q)XA mod q 
    = (αXB)XA mod q 
   = αXBXA mod q 

      = (αXA) XB mod q 
     = (αXA mod q)XB mod q 

  = (YA)XB mod q 
 

Since X values are private, an adversary only has {q, α, and Y} values to work 

with. Thus the adversary is forced to take a discrete logarithm to determine the key. 
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The following table depicts Diffie-Hellman Key Exchange protocol. 

Table 3.1. Diffie-Hellman Generation Key Model 

Global Public Elements  

q prime number 

α α < q and α is a primitive root of q 

User A Key Generation 

Select private XA XA < q 

Calculate public YA YA= αXA mod q 

User B Key Generation 

Select private XB XB < q 

Calculate public YB YB= αXB mod q 

Generation of Secret Key by user A 

K = (YB)XA mod q 

Generation of Secret Key by user B 

K = (YA)XB mod q 

 

 

 

 

 

Figure3.4. Diffie-Hellman generating key between node A and B  
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RSA Algorithm 

 RSA encrypts plaintext in blocks, with each block having a binary value less than 

some number n. the block size must be equal or less than log2(n) + 1. RSA makes use of 

an expression with exponentials. Encryption and decryption are of the following form, for 

some plaintext block m and cipher-text block C: 

C = me
 mod n 

m = Cd mod n = (me)d mod n = med mod n 

Both sender and receiver must know the value on n. the sender knows the value of 

e, and only the receiver knows the value of d. then the public key of Ku = {e,n} and a 

private key of  Kr = {d,n}. RSA must satisfy the following requirements: 

1. It is possible to find values of e, d, n such that med mod n = m for all m < n. 

2. It is relatively easy to calculate me mod n and Cd mod n for all values of m < n. 

3. It is infeasible to determine d given e and n.  

4. In RSA every device computes a public and private key which can be used to 

encrypt/decrypt messages and to digitally signed messages after exchanges keys 

with other devices in the network, on the other hand Diffie-Hellman aims in to 

exchange shared secret key with other device on the network without the need to 

secure channel between them. 

The following table depicts the process of generation keys in RSA algorithm. 
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Table 3.2. RSA Public key generation model 

Key Generation 

Select p,q p and q both prime, p≠q 

Calculate n = p × q  

Calculate ϕ(n) = (p-1)(q-1) 

Select integer e gcd (ϕ(n),e) = 1; 1< e < XA < 

ϕ(n) 

Calculate d de mod ϕ(n) = 1 

Public key Ku = {e,n} 

Private key Kr = {d,n} 

Encryption 

Plain text 

Cipher-text 

m < n 

C = me
 mod n 

Decryption 

Cipher-text 

Plain 

C 

m = Cd mod n 

 

Table 3.3. Public key algorithms comparison 

Algorithm Encryption/Decryption Digital Signature Key Exchange 

Diffie-Hellman No No Yes 

RSA Yes Yes Yes 
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3.3 Digital Signature 

Digital signature provides message authentication in terms of source 

authentication and data integrity. The digital signature uses a pair of asymmetric keys. 

Sender A uses his private key KrA to encrypt the hashed message, while the receiver B 

uses A s public key KuA to decrypt the cipher-text. This proves the following to B: 

1. The message has been encrypted by A. 

2.  The message has not been altered since no one has A’s private key. 

3. The message has been authenticated in terms of source and data integrity. 

In the previous scheme the entire message has been encrypted which means that 

the entire message represents a digital signature. In the other hand the encryption can be 

done to the hash of the message and append it to the message in this case the digital 

signature with provide authentication without confidentiality. 

 

 

 

 

Figure3.5. Digital Signature Scheme 
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computes a fixed-length output string called the hash, digest or fingerprint value. The main 

purpose of hash functions is to produce a value that indicates whether the content of sent 

message has modified or not or to check the integrity of received message [48]. Since it’s 

computationally infeasible to find two different messages with the same hash values, the 

application of hash functions in cryptography is mostly used in techniques that are applied 

to guarantee message authentication such as digital signatures.  

According to [49] secure hash function most generally has the following six 

properties: 

1. Hash function (H) can be applied to a block of data of any size. 

2. H produces a fixed-length output. 

3. H (M) is relatively easy to compute for any given message M, making both 

hardware and software implementations practical. 

4. For any given digest m, it is computationally infeasible to find M such that 

H(M)=m 

5. For any given message M, it is computationally infeasible to find another message 

M’≠ M with H (M’) = H (M). 

6. It is computationally infeasible to find any pair (M, M’) such that H(M) = H(M’). 

Examples of well-known hash functions are Message Digest 5 (MD5)[51] and 

Secure Hash Algorithm (SHA-1) [52]. 
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3.5 Authentication 

Authentication is any process through which one proves and verifies certain 

information. Sometimes one may want to verify the origin of a document, the identity of 

the sender, the time and date a document was sent and/or signed, the identity of a computer 

or user, and so on. 

Authentication mechanisms are becoming more and more sophisticated on the 

information system security market. They are designed to provide users and administrators 

with a certain ease of use, a minimal administration, great robustness, high reliability and 

ubiquity of its usage. 

In order to diversify the authentication methods, the IETF has standardized a 

generic authentication protocol called EAP for [53]. This protocol is generic, in that it is 

independent of the authentication method, and its role is limited to the transportation of 

authentication data between a client and a server. The content of these exchanges is not 

interpreted by the software layer EAP, but by the selected EAP method. As such, it brings 

the advantage that an EAP method suddenly detected as vulnerable can easily be changed 

to another more robust method while keeping the same EAP protocol. This makes the 

security equipment more flexible and able to evolve at low cost. 

The EAP protocol is mainly operated in PPP or 802.11 (wireless) environments. 

Because of its limited role in encapsulation of authentication data, it is extremely simple 

and includes only four types of messages request, response, success and failure. Today, 

there are more than 40 EAP methods, but few of them are standardized like EAP-TLS, 

EAP-MD5 or EAP-SIM  
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EAP model has defined three types of entities involved in the authentication 

process: 

Supplicant This is the port that wishes to or requests access to the services offered 

by the authenticator’s system. Typically, the supplicant would be the client system, such as 

a laptop or a PDA. 

Authenticator This is the port or device that enforces authentication before 

allowing access to services that are accessible via that port. In the basic WLAN 

configuration, the AP would typically be the authenticator. 

Authentication Server (AS) This is the entity that performs the authentication 

function necessary to check the credentials of the supplicant, on behalf of the authenticator. 

The resulting decision consists of whether or not the supplicant is authorized to access the 

authenticator’s services.  

The supplicant converses with the AS as the other endpoint of the handshake, an 

authenticator must function as a pass-through entity. This means that the pass-through 

authenticator must relay the EAP packets to its corresponding peer. Depending on the 

direction of the conversation, the peer of the authenticator will be the supplicant on one 

side and the AS on the other side. The pass-through authenticator must verify the fields of 

the packets before forwarding them. The forwarding model for a pass-through 

authenticator is shown in Figure 3.6 [2]. 
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Figure3.6. EAP Layer Model 

Lower layer It is responsible for transmitting and receiving EAP frames between 

the peer and authenticator. This layer includes Point-to-Point Protocol (PPP), Ethernet 

wired LAN, wireless LAN, etc. 

EAP layer It receives and transmits EAP packets via the lower layer; implements 

duplicate detection and retransmission, and deliver and receive EAP messages to and from 

the EAP peer and authenticator layers. 

EAP peer or EAP authenticator layer The EAP layer demultiplexes incoming 

EAP packets to the EAP peer and authenticator layers. Typically implementation on a host 

only will support either peer or authenticator functionality, but it is possible for a host to 

act as both. 

EAP method layer implements the authentication algorithms, receives and 

transmits EAP messages via the EAP peer and authenticator layers. 

There are many types of EAP methods available today using different kinds of 

mechanisms or technologies such as passwords, digital certificates, challenge-response, 

hash message, smart card, etc. Some of the available EAP methods are the following. 
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3.5.1 Ticket-based authentication 

Massachusetts Institute for Technology (MIT) in the early 1980s has developed an 

authentication protocol called Kerberos [63]. Kerberos is a network authentication system 

based on using tickets [62]. Authority in Kerberos is built on two servers: 

The Key Distribution Server (KDS) is responsible for issuing a ticket to the client. 

The ticket enables the client to contact the Ticket Granting Server (TGS) server securely 

by certifying the request is authentic and by establishing a session key KMC-TGS between 

the client and the TGS. To do so, the KDS sends a randomly generated key KMC-TGS 

encrypted with the client’s public key and communicates the same key to the TGS using 

the ticket that is encrypted with the public TGS key. The ticket, which is not readable by 

the client, is forwarded unchanged by the client to the TGS. The ticket also contains the 

identifiers of the client and the TGS; 

The TGS issues another ticket to the client. The principle of the ticket remains the 

same as before, i.e. the TGS receives from the client the ticket generated by the KDS and 

the ID encrypted with the key KMC-TGS. The TGS decrypts the ticket, deduces the key 

KMC-TGS, then decrypts the message built by the client and verifies the consistency between 

identifiers specified by the client and the KDS in the ticket.  

In the case of consistency, this means that the request issued by the client is 

authentic because the client knows the key KMC-TGS, and to decipher KMC-TGS it was 

necessary to know its private key.  

The TGS server then proceeds similarly to the KDS generating a key KMC-APP. 

Likewise, TGS communicates this key to the client and application by sending the client 
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the key KMC-APP encrypted with KMC-TGS, and issuing a ticket for the application encrypted 

with the public key of application. This Kerberos architecture, which is useful in 

establishing a secure channel between a client and an application, is very heavy: it requires 

implementing two Kerberos servers. For the first access by Kerberos, five exchanges of 

messages are needed with several encryption/decryptions. When accessing a second 

application, the procedure is lighter with only three messages between the client and the 

TGS, and the client and the application.  

Some applications suggest controlling the access with a Kerberos ticket. This 

requires two Kerberos server architecture to be operational and that these servers are first 

contacted by the client. 

 

 

 

 

 

 

Figure3.7. Ticket-based Authentication 
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3.5.2 Certificate-based Authentication 

This type of authentication is based on asymmetric cryptography and makes it 

necessary to manage private keys of the entities and usually managing electronic 

certificates through PKIs. 

Several EAP methods have been derived from the TLS protocol. The EAP-TLS 

method [53] standardized by the IETF supports the mutual authentication of client and 

server by using their private keys and certificates. The difficulty of EAP-TLS is in 

providing each user with private/public keys and ensuring good maintenance of them, in 

particular by ensuring that the private key of the client remains confidential. 

EAP with Transport Layer Security (EAP-TLS)  

 EAP-TLS provides mutual authentication between Authentication server and 

client through an encrypted transport layer and the capability to dynamically change the 

keys. On the other hand, EAP-TLS is based on digital certificates and thus requires an 

infrastructure to manage issue, revoke, and verify certificates and keys. 

EAP-TLS was also the first TLS-based EAP method for authentication shipped by 

Microsoft for the Windows platform, thereby achieving wider availability compared to 

other more recent proposals. EAP-TLS has found a strong following in many enterprise 

networks that seek strong security through authentication using strong credentials such as 

digital certificates. As implemented by Microsoft, EAPTLS requires both client-side and 

server-side certificates. For enterprises already running a PKI either internally or using a 

public CA and issuing employee certificates, the step to choosing EAP-TLS is a natural 

one. The choice of EAPTLS by enterprises is also made easier by the fact that the 



Chapter Three: Cryptography  
 

42 
 

Microsoft Windows Server (version 2000 or later) comes shipped with a CA Server, which 

allows enterprises to run their own private CA internally, and have seamless integration 

with the Microsoft directory-related products. This method considered as the strongest 

EAP method currently. 

 

Figure3.8. EAP-TLS Authentication steps 

 

Protected EAP (PEAP).  

PEAP is actually EAP over TLS for the wireless domain. The PEAP is similar to 

EAP-TLS. The main difference is that PEAP does not require client authentication. The 

protected EAP (PEAP) method offers a solution to this need of user identity protection. 
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The other main difference is in compatibility with older methods and platforms which 

PEAP is less compatible compared to EAP-TTLS.  PEAP allows users to submit their 

credential which may contain their identity after the TLS session has been established, and 

therefore have their credential passed to the server under the protection of the TLS session. 

PEAP also allows the server to request various forms of credentials from the client. 

PEAP session can be divided into two phases: 

Phase1: Here a TLS session is negotiated and established. The server authenticates 

itself to the client using server-side certificate, and optionally the client to the server. The 

resulting key is used to encipher the exchanges in phase2.  

 

Figure3.9. EAP-PEAP Authentication Steps-phase1 
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Phase 2: Within the TLS session, zero or more EAP methods are carried out 

between the client and server, with a success/failure indication protected by the TLS 

session. Identity establishment is part of this phase. 

 

Figure3.10. EAP-PEAP  
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EAP-TTLS (Tunneled Transport Layer Security) 

The EAP-TTLS extends EAP-TLS to exchange additional information between 

client and server by using the secure tunnel established by TLS negotiation. Then the client 

can be authenticated using any of the methods like username/PW, CHAP, and 

MSCHAPv2. This is called tunneled authentication. What this achieves is that the client 

does not require a digital certificate; only the authentication server needs one. This 

capability simplifies the client credential management. Organizations can also use 

currently available/legacy authentication methods (usually password-based schemes). An 

EAP-TTLS negotiation comprises two phases: the TLS handshake phase and the TLS 

tunnel phase.  

During handshake phase, TLS is used for the client to authenticate the server. 

Optionally, the server can also authenticate the client. Similarly as in EAP-TLS, the 

authentication is done by using certificates. A secure TLS tunnel is also established after 

the phase-one handshake.  

In TLS tunnel phase, the secure TLS tunnel can be used for other information 

exchanges, such as additional user authentication key, communication of accounting 

information, and so forth. In a WLAN environment, the EAP-TTLS usually is used as 

follows. In phase one, TLS is used as a supplicant to authenticate the authentication server 

by using a certificate. 

Once the authentication server is authenticated, the authentication server 

authenticates the supplicant by using the supplicant’s username and password in phase 

two. The message exchanges are protected by the TLS tunnel established in phase one. The 
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authentication of supplicant in phase two can use any non-EAP protocols such as PPP 

Authentication Protocols, PPP Challenge Handshake Authentication Protocol, Microsoft 

PPP CHAP Extensions, or Microsoft PPP CHAP Extensions, Version 2. Because only the 

authentication server needs to have a valid certificate, EAP-TTLS is more manageable than 

EAP-TLS.  

Table 3.4. Comparison of authentication mechanisms. 

 EAP-TLS EAP-TTLS PEAP 
Server authentication Public key 

(certificate) 
Public key 
(certificate) 

Public key 
(certificate) 

Supplicant 
authentication 

Public key 
(certificate or 
smart card) 

Certificate, EAP, or 
non EAP protocols 

Certificate or EAP 
protocols 

Mutual 
authentication 

Yes Yes Yes 

Dynamic key deliver Yes Yes Yes 
Basic protocol 
architecture 

Establish TLS 
session and 
validate 
certificates for 
both client and 
server 

1. Establish TLS 
between client and 
TTLS server 

2. Exchange 
attribute-value 
pairs between 
client and server 

1. Establish TLS 
between client and 
PEAP server 

2. Run EAP 
exchanges over TLS 
tunnel 

Server certificate Required Required Required 
Client certificate Required Optional Optional 
Protection of user 
identity 

NO protected by TLS protected by TLS 

Security Risks Identity Exposed MITM Attack MITM Attack and 
identity exposed in 
phase 1 

 

3.6 Security in IEEE 802.11s 

IEEE 802.11s ensures link security by using Mesh Security Association (MSA) 

services. 802.11s extends the security concept of 802.11 by a key hierarchy, inherits 
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functions of 802.11i and uses 802.1X for initial authentication [2]. The operation of MSA 

relies on mesh key holders, which are functions that are implemented at MPs within the 

WMN. 

 

Figure3.11. Key Establishment procedure in 802.11s 

Two types of mesh key holders are defined: mesh authenticators (MAs) and mesh 

key distributors (MKDs). A single MP may implement both MKD and MA key holders, an 

MA alone and no key holders. Fig. 7 depicts the key establishment procedure between two 

MPs in IEEE 802.11s. The first level of link security branch, PMK-MKD is mutually 

derived by the supplicant MP and MKD, from the Master Session Key (MSK) that is 

created after the initial authentication phase between supplicant MP and MKD or from a 

pre-shared key (PSK) between MKD and supplicant MP, if exists. The second level of link 

security branch PMK-MA is also derived by the supplicant MP and MKD. MKD then 
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delivers the PMK-MA to the MA and thus permits to initiate MSA 4-way handshake which 

results in deriving a PTK of 512 bits between supplicant MP and MA. During the MSA 4-

way handshake, an MA receives the GTK of the supplicant MP. After the completion of 

MSA 4-way handshake, a group handshake is used to send the GTK of the MA to the 

supplicant MP. The GTK is a shared key among all supplicant MPs that are connected to 

the same mesh authenticator (MA).  

3.7 Summery 

In this thesis we have used asymmetric cryptography depending on Diffie-

Hellman exchange key model to obtain a secret shared session key between MAPs. 

We have developed or protocol based on Diffie-Hellman rather than RSA since 

Diffie-Hellman provides perfect forward secrecy which means that if either node’s key 

are compromised, the past sessions keys remain secure, while RSA can only provide 

perfect forward secrecy if a one-time RSA key pair is generated by one node who sends 

the public key to the other, and the other node returns a symmetric key encrypted with the 

public key which take much time than Diffie-Hellman [19]. 

We have used symmetric encryption using EAP-TTLS to authentication session 

between connected MCs, we have used EAP-TTLS over PEAP and TLS, since EAP-

TLS requires client certificate which is not available all the time in mobile clients, and 

PEAP uses transport mode which provide protection for upper-layer protocols keeping the 

original IP header, but in EAP-TTLS encapsulates an entire IP packet within an IP packet 

to ensure that no part of the original packet is changed as it is moved through a network.  
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4.1 Introduction 

IEEE 802.11s standard defines secure links between MPs, but it does not provide 

end-to-end security. It also doesn’t specify routing security or forwarding functionality. 

Routing information elements are transferred in plain text and are prone to various types of 

routing attacks like flooding, route misdirection, spoofing. The main reason is that 

intermediate nodes need to modify mutable fields such as hop count, TTL, and metric in 

the routing elements before forwarding and re-broadcasting them. Since other nodes will 

act upon those added information, these must also be protected somehow from being 

forged or modified. 

However, only source authentication does not solve this problem, because the 

information is added or modified in intermediate nodes. This motivates us to include node-

to-node authentication in our proposal. More specifically, each node that adds information 

in the control packet should authenticate the added information in such a way that each 

other node acts upon that information should be able to verify its authenticity. 

We developed a Ticket-based Authentication Wireless Mesh Protocol (TAWMP) 

for providing end-to-end security. TAWMP take into consideration WMN architecture and 

hybrid nature of routing protocol for mesh network, TAWMP protects WMN using hop-

by-hop in addition to end-to-end authentication. 

TAWMP divides the authentication process into two phases: the MAP phase in 

which a new MAP conducts the network, and the MC phase in which a new MC conducts 

the network. At the MAP phase, the protection is done by using authenticated Diffie–
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Hellman key exchange model. On the other hand, MC devices in the second part of the 

authentication use an EAP-TTLS server-side certificate. 

4.2 Threat Model 

In this section we describe several attacks IEEE 802.11s is vulnerable to: 

4.2.1 Flooding Attack 

It is very easy for a malicious node to flood the network with a PREQ messages destined 

to an address which is not present in the network. As the destination node is not present in 

the network, every intermediate node will keep forwarding the PREQ messages. As a 

result, a large number of PREQ messages in a short period will consume the network 

bandwidth and can degrade the overall throughput. As shown in Figure 4.1, the malicious 

node M initiates route discovery with a PREQ for a destination that is not in the network. 

So that intermediate nodes rebroadcasts PREQ and within a short time the network is 

flooded with fake requests. 

 

Figure 4.1 Flooding Attack 
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4.2.2 Route Disruption 

By launching a route disruption attack, an adversary can prevent discovering a 

route between two legitimate nodes. In other word, if there an established route between 

the two victim nodes, but due the malicious behavior of the attacker, the routing protocol 

cannot discover it. In HWMP, route-disruption attacks can easily be launched by a 

malicious node as shown in figure 4.2. The malicious node M can prevent the discovery of 

routes between nodes S and D. M can modify the metric field value to zero on the PREQ 

message it receives from A or B and re-broadcast. So, after receiving the modified PREQ, 

D will choose M as the next hop in the reverse path and unicast PREP to M. Now, M can 

prevent the route discovery by dropping the valid PREP message destined for S. 

 

Figure 4.2 Route Disruption 

4.2.3 Route Misdirection Attack 

A malicious node M may divert traffic to itself by advertising a route to a 

destination with a destination sequence number (DSN) greater than the one it received 

from the destination. For example, the malicious node M in Figure 4.3 receives a PREQ 

from A which was originated from S for a route to node D.  

As HWMP allows intermediate PREP, M may unicast PREP to A with a higher 

DSN than the value last advertised by D. So, A will misdirect all subsequent traffic 
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destined for D to the malicious node M. Route misdirection attack can also be launched by 

modifying the mutable metric field used in the HWMP’s PREQ messages. A malicious 

node can modify the mutable metric field to zero to announce a better path to a destination. 

As depicted in Figure 4.4, M can decrease the metric field in the PREQ to zero and re-

broadcasts it to the network. So, the reverse path created should go through the malicious 

node M. As a result, all traffics to the destination D will be passed through the attacker. 

 

Figure 4.3 Route Misdirection Attack – Increasing DSN 

 

Figure 4.4 Route Misdirection Attack- Decreasing Metric 
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4.2.4 Routing Loops 

A malicious node may create routing loops in a mesh network by spoofing MAC 

addresses and modifying the value of the metric field. Consider the following network 

scenarios in Figure 14 where a path exists between the source S and destination X that goes 

through node B and C. Also, there exists a path from A to C through D. 

Assume that a malicious node M, as shown in Figure 4.5a, is present in the vicinity 

where it can listen to the PREQ/PREP messages that pass through A, B, C and D during 

route discovery process. It may create a routing loop among the nodes A, B, C and D by 

impersonation combined with modification of metric field in PREP message. First, it 

impersonates node A’s MAC address and moved out of the reach of node A and closer to 

node B. And then it sends a PREP message to node B indicating a better metric value than 

that of the value received from C. So, node B now re-establishes its route to X that should 

go through A as shown in Fig 4.5b. At this point, the malicious node impersonates node B 

and moves closer to node C and sends PREP to node C indicating a better metric then the 

one received from E. So, node C will now choose B as the next hop for its route to the 

destination X as shown in Figure 4.5c. Thus a loop has been formed and the destination X 

is unreachable from all the four nodes. 

 

Figure 4.5 Routing Loops Information 
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4.3 Ticket Authentication Wireless Mesh Network Protocol (TAWMP) 

TAWMP is an end-to-end authentication protocol that provides hop-to-hop 

security in addition to end-to-end authentication, in this integration protection TAWMP 

provides protection for the end-to-end communication between the device and its home 

network in general, and to protect the application content from being eavesdropped or 

modified during its transmission in particular. WMN as conventional WLAN is prone to 

several security threats and attacks because of its shared medium access, open peer-to-peer 

network topology, severe resource constraints, and highly dynamic topology, in addition to 

its multi-path connection [64]. TAWMP provides this protection by two phase 

authentication process which we describe in the following sections. 

4.3.1 Assumptions 

In our proposed protocol we assume an existing WMN that have at least: 

1. One Authentication server (AS) attached to Mesh Access Point that has 

high processing capabilities in order to handle high bit rate and throughput 

during authentication process. 

2. This Authentication Server has a pre-defined list of the valid MAP’s MAC 

address who’s allowed to connect the WMN. 

3. This Authentication Server has a database of a hashed value for 

(username/password) for each MC who’s allowed to the WMN. 
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4.3.2 MAP Phase 

This phase aims to provide protection for backbone network by using Diffie–

Hellman function for the key agreement and Harn’s scheme [65], when a MAP is 

connected to a WMN during setup stage; it has to share a secret key with AS in order to 

exchange public keys: 

1. MAP sends its details including the type (1 for MAP / 0 for MC) to an Authentication 

Server (AS). 

MAP  AS:      {Type|| IDMAP || Nonce} H(MAC| Type|| IDMAP || Nonce)  

MAP sends this massage using hashed value of MAC address to guarantee integrity of the 

message since the AS already has the MAC address of specific IDMAP, so the MAP will not 

send MAC within the message. 

2. After receiving this message AS check the integrity of the message by calculating the 

hash function of (MAC, ID of the MAP, Type, and Nonce), after verifying the integrity 

of the message AS selects a short-term private key Kr(AS) and computes a short-term 

public key Ku(AS) using the equation. 

                     Ku(AS) = (α)Kr(AS) mod p                                                             (4.1) 

Where p is a prime number, α is generator with order q, q is factor of p-1. 

After computing Ku, AS starts to transmit the following message to MAP. 

AS   MAP:  {Ku(AS) || Nonce} H(MAC|| Ku(AS) || Nonce)) 
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AS sends Ku(AS) with a hashed value of (MAP’s MAC address and Ku(AS)) in order to 

guarantee the integrity of the message. 

3. In response to receiving Ku(AS). MAP selects his short-term private key Kr(MAP) and 

computes the following values  

• A short-term public key Ku(MAP). 

• A shared secret key between AS and connecting MAP Kr(AS-MAP)which will 

be used to decrypt messages from AS to MAP.  

• A long-term private key KR(MAP) in order to obtain MAP’s signature S(MAP) 

which will be used later. 

• A long-term public key KU(MAP) which will be send to AS. 

 

Kr(AS-MAP) =  (Ku(AS)) Kr(MAP) mod p  (4.2) 

S(MAP) = (Kr(AS-MAP))-1 (KR(MAP) – Ku(MAP) Kr(MAP)) mod q (4.3) 

KR(MAP) = Ku(MAP) Kr(MAP) + S(MAP) Kr(AS-MAP) mod p (4.4) 

                                   KU(MAP) = (α)KR(AS) mod p                                                       (4.5) 

4. MAP sends Ku(MAP) along with KU(MAP) and signed the message using  S(MAP). 

MAP  AS: S(MAP){ Ku(MAP) || KU(MAP) }|| Nonce 
 

5. AS computes Ku(AS-MAP) that used to encrypt messages from AS to MAP. 

          Ku(AS-MAP) =  (KU(MAP)) Kr(AS) mod p                                       (4.6) 
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Then AS verifies S(MAP) and Ku(AS-MAP) by checking if the following equation is valid 

          KU(MAP) = (KU(MAP)) Ku(MAP) (α)S(MAP)Kr(AS) mod p            (4.7) 

 

After a successful verification AS convinced that S(MAP) signed by MAP and that 

Ku(MAP)and KU(MAP)  is selected by MAP, since S(MAP) is a signature of both values. 

AS computes A shared secret key between connecting MAP and AS Kr(MAP-AS)which will 

be used to decrypt messages from MAP to AS.  

          Kr(MAP-AS) =  (Ku(MAP)) Kr(AS) mod p                              (4.8) 

AS computes KR(AS) which used to obtain S(MAP) as the following equations: 

                                    KR(AS) = Ku(AS) Kr(AS) + S(AS) Kr(MAP-AS) mod p              (4.9) 

           S(AS) = (Kr(MAP-AS))-1 (KR(AS) – Ku(AS) Kr(AS)) mod q      (4.10) 

6. AS sends KU(AS) signed in the message using  S(AS). 

AS   MAP: S(AS){ KU(AS) }|| Nonce 
 

7. MAP computes Ku(MAP-AS) that used to encrypt messages from MAP to AS. 

           Ku(MAP-AS) =  (KU(AS)) Kr(MAP) mod p                              (4.11) 

MAP verifies S(AS) and Ku(MAPS-AS) by checking if the following equation is valid 

                                KU(AS) = (KU(AS)) Ku(AS) (α)S(AS)Kr(MAP-AS) mod p                 (4.12) 
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After a successful verification AS convinced that S(AS) signed by AS and that 

KU(AS)  is selected by MAP, since S(AS) is a signature  for KU(AS). Furthermore since MAP 

calculates Ku(MAP-AS) based on  KU(AS), MAP is convinced that  Ku(AS) has been sent be AS. 

As we can see in figure4.6 a flowchart depicts the process of conducting a new MAP to 

WMN. 
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Figure 4.6  Flow chart depicts MAP Phase 
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4.3.3 MAP-to-MAP authentication 

As it has been mentioned before, MAP depends on proactive protocols in order to 

build routing table through periodical exchanges of connectivity information, when a MAP 

discovers a new neighboring MAP, a secure route must be established by doing the 

following steps: 

1. The first MAP sends both its identifier and the identifier of destination MAP to the AS, 

which in turn looks up both identifiers in its database in order to verify the validity of 

both clients. 

MAP1   AS:  {IDMAP1, IDMAP2} Ku(MAP1-AS) || Nonce 

2. AS sends a shared secret key KMAP1-2 and primitive values required for generating 

shared keys between two MAPs along with Authenticating_Data which contains 

KMAP1-2 and IDMAP1 is encrypted with Ku(AS-MAP2). This Authenticating_Data provides 

MAP2 with the shared key and proof that this is the right shared key to use with MAP2 

at this time. 

 

AS   MAP1:   {KMAP1-2|| IDMAP2} Ku(AS-MAP1) || {KMAP1-2 || IDMAP1} Ku(AS-MAP2) || Nonce 

 

MAP1 sends a message to MAP2 contains IDMAP1, IDMAP2, Authenticating_Data, and 

primitive values required to generate keys encrypted with KMAP1-2.  

 

MAP1      MAP2:   {KMAP1-2|| IDMAP1 } Ku(AS-MAP2) ||α, q, p ||IDMAP1, IDMAP2 || Nonce 



Chapter Four: Ticket Authentication Wireless Mesh Networks Protocol (TAWMP) 
 

62 
 

3. After receiving this message MAP2 decrypts Authenticating_Data with Kr(AS-MAP2) to 

obtain KMAP1-2 which in turn used to secure connection between the two MAPs while 

they generating authenticating keys. 

MAP2 selects a short-term private key Kr(MAP2) and computes a short-term public key 

Ku(MAP2) using equation (4.1), Then MAP2 starts to transmit Ku to MAP1. 

MAP2  MAP1:{Ku(MAP2) || Nonce} KMAP1-2  
 

4. In response to receiving Ku(MAP2). MAP1 selects his short-term private key Kr(MAP1) and 

computes the following values: 

•  A short-term public key Ku(MAP1) using equation (4.1), and a shared secret 

key Kr(MAP2-MAP1) using equation (4.2) which will be used to decrypt 

messages from MAP2 to MAP1.  

• A long-term private key KR(MAP1) using the equation (4.4) . 

• A long-term public key KU(MAP1) using equation (4.5) which will be send to 
MAP2. 

5. MAP1 sends Ku(MAP1) along with KU(MAP1). 

MAP1  MAP2: {{Ku(MAP1) || KU(MAP1) }|| Nonce} KMAP1-2  
 
6. MAP2 computes Ku(MAP2-MAP1) that used to encrypt messages from MAP2 to MAP1. 

                                     Ku(MAP2-MAP1) =  (KU(MAP1)) Kr(MAP2) mod p                         (4.13) 

7. MAP2 sends KU(MAP2) to MAP1. 

MAP2  MAP1:{{ KU(MAP2) }|| Nonce} KMAP1-2 
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8. MAP1 computes Ku(MAP1-MAP2) that used to encrypt messages from MAP1 to MAP2 

using equation (4.11). 

As we can see in figure 4.7 a flowchart depicts the steps required to connect two MAPs in 
a WMN. 
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Figure 4.7  Flow Chart depicts MAP-MAP Authentication 
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4.3.4 MC phase 

When a new MC is connected to the WMN, it has to provide credentials to the AS. 

These credentials can be user-name/ID-number and password via EAP-TTLS server-side 

certificate. After successful authentication, the mobile node will have a secret key that 

shares with the AS. 

The following are the steps that MC has to go through in order to be authenticated: 

1. MC sends EAPOL to AS via authenticator (MAP) 

MC  AS:EAPOL_start  

2. AS sends an EAP-Request/Identity packet to MC 

AS  MC:req_id  
 

3. MC responds with an EAP-Response/Identity packet to AS containing the client’s 

userID/sessionID 

MC  AS:MC_id|| S_id 

4. AS responds with an EAP-type Start packet (EAP-TTLS) 

AS  MC:EAP_start 

5. MC starts TLS handshake process by sending “Client hello” message to the server, 

along with the client’s random value (nonce). 

MC  AS:MC_hello||Nonce 
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6. AS responds with “Server hello” message to the client, along with the server’s random 

value (nonce), its certificate signed by itself (self-signed certificate) with an assumption 

that the server is already known to trusted by the clients as the certificate authority , 

and the “Server hello done” message. 

AS  MC:AS_hello|| S_id|| Cert{AS_id, Ku(AS)}||Nonce 

7. Client generates a random Pre-Master Secret (PMS) which is treated as Nonce since 

it’s randomly generated.  

MC encrypts the PMS with the public key from the server’s certificate and sends it to AS. 

MC generates a shared secret key depending on PMS. 

MC  AS:{PMS}ku(AS)||{H(M, S_id, MC_id, AS_id, Nonce)} ku(MC-AS) 

8. Server and Client each generate the Master Secret and session keys based on the Pre-

Master Secret and the nonce using pseudo-random-number function. 

MC  AS:{H(M, S_id, MC_id, AS_id, Nonce)|| Nonce} ku(MC-AS) 

9. Client sends “Client cipher spec” notification to Server, to indicate that the client will 

start using the new session key for hashing and encrypting messages. After AS receives 

“Client cipher spec” it switches to symmetric encryption using session keys. 

In figure 4.8 we can see a flowchart depicts the steps of conducting new MC to a 
WMN 
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Figure 4.8 Flow chart depicts MC Phase 

4.3.5 Client-to-Client authentication 

For Client–to-Client Authentication, our proposed model uses EAP authentication 

with a modified version of a scheme known as a four-pass Kerberos protocol. 

Whenever an MC wants to establish a secure connection with another MC it 

approaches the AS and follows the protocol as following steps: 

1. the first Client MC1, sends its identifier and the identifier of destination client MC2 

to the AS, which in turn looks up both MCs in its database in order to verify the 

validity of both clients. 

MC1       AS:  { IDMC1 || IDMC2} ku(MC1-AS)|| Nonce 
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2. AS sends ticketMC2 which contains KMC12 and the lifetime of that key, this ticket will 

be sent to MC1 along with the Authenticating_Data which provides MC1 with the 

shared key and proof that this is the right shared key to use with MC2 at this time. 

AS        MC1:   ticketMC2 || IDMC1 || {KMC12, lifetime, Nonce, IDMC2} ku(MC1-AS) 

 

3. MC1 decrypts Authenticating_Data in order to validate its information and creates a 

new message; this message contains both identifiers in addition to ticketMC2  

MC1 MC2:   ticketMC2 ||  {IDMC1 || IDMC2} kMC12|| Nonce 

 
4. MC2 decrypts ticketMC2 with KMC2 to obtain KMC12, MC2 generates a new session key 

and encrypt it with KMC12. And sends it to MC1 

MC2   MC1: {KMC1-MC2} KMC12 

 
In figure 4.9 we can see the steps required to connect two MCs in a WMN. 
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Figure 4.9 Flow chart depicts MC-MC Authentication 

 

4.4 TAWMP Protection Integrity 

TAWMP provides a secret session key between every communicated MAPs, this 

session key provides node-to-node authentication and secure links between MAPs. In 

addition, TAWMP provides a secret session key between communicated MCs in order to 
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provide end-to-end protection. The integration protection between end-to-end and node-

to-node protects WMN from different several attacks as ones we described in section 4.2. 

MC Phase uses EAP-TTLS authentication that provides protection for the origin 

source and destination address by encapsulating under Encapsulating Security Payload 

(ESP), EAP-TTLS includes the original IP header in the encapsulation process, and a new 

IP header is created for tunnel routing information. This method protects the mutable fields 

in HWMP and protects the origin message during routing in the mesh network. Figure 4.10 

depicts EAP-TTLS authentication process. 

 

 

 

 

 

 

 

Figure 4.10 EAP-TTLS Packet Format. 

As shown in figure 4.11, TAWMP uses a symmetric encryption in MAP Phase in 

order to provide Node-to-Node protection for backhaul network, while MC Phase uses 

symmetric encryption between source MC and destination one in order to provide End-to-

End authentication. 
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Figure 4.11 Symmetric and Asymmetric encryption in TAWMP. 

 

When the source MC sends a packet to the destination MC through two MAPs, it 

will encrypt the packet using EAP-TTLS and encapsulate the packet by adding a new 

header, then the source MC sends this encapsulated message to the neighbor MAP which 

in turn encrypt the message using Asymmetric encryption.  

4.5 Security Analysis 

Preventing Flooding: In the proposed TAWMP, a node can participate in the 

route discovery process only if it has successfully establishes a secure link with the server 

and pass through steps of key distribution mechanism of TAWMP in case of MC device or 

MAP device, Thus it will not be possible for a malicious node to initiate a route discovery 

process with a destination address that is not in the network. Again, as the PREQ message 

is encrypted during transmission, a malicious node cannot insert new destination address. 
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2) Preventing Route Disruption: This type of attack is caused by the malicious 

behavior of a node through modification of a mutable field and dropping routing 

information elements. Note that, in our proposed scheme only authenticated nodes can 

participate in the route discovery phase. Moreover, routing information elements are 

authenticated and verified per hop. So, it is not possible to launch a route disruption attack 

in TAWMP. 

3) Preventing Route Diversion: The root cause of route diversion attack is the 

modification of mutable fields in routing messages. These mutable fields are authenticated 

in each hop. If any malicious node modifies the value of a field in transit, it will be readily 

detected by the next hop while comparing the new MAC with the received one. It will find 

a miss-match in comparing the message authentication code (MAC) and the modified 

packet will be discarded. 

4) Avoiding Routing Loops: Formation of routing loops requires gaining 

information regarding network topology, spoofing and alteration of routing message. As all 

the routing information is encrypted between nodes, an adversary will be unable to learn 

network topology by overhearing routing messages. Spoofing will not benefit the 

adversary as it will require authentication and key establishment to transmit a message 

with spoofed MAC. Moreover, fabrication of routing messages is detected by integrity 

check. So, proposed mechanism ensures that routing loops cannot be formed. 
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4.6 Complexity 

In this section we analyze the complexity of TAWMP against network attacks 

demolish the secure protocol. TAWMP depends on user to provide certain credentials to 

access the network. So user password is the first line of defense which impose to be 

immune against cracks, according to [57] who reported the panel discussion at RSA 2005 

conference, “Password will be with us forever”, because “We’ve got to make security 

simpler to use if it’s going to be effective”, [58]  mentioned that long and complex 

passwords makes it less likely that attackers will guess or crack them, but it also makes the 

passwords harder for users to remember, and thus more likely to be stored insecurely 

which increase the possibility that users will store their passwords insecurely and expose 

them to attackers. [58] defines the quality of a password by “how different it is from the 

dictionary words, how long it is, and how big the password character set is”. We can define 

ten character set to generate a password as sown in table 4-1, with [a-z] we denote all the 

lower case alphabet letters, and with [A-Z] all the upper case alphabet letters. Considered 

symbols are ! " # $ % & ’ * + , - . / : ; \ < = > ? @ ( ) [ ] ˆ _ { }| ~ 

We notice that the number of passwords equals the number of characters (N) in the 

character set raised to the length of password (L)  

# of possible passwords =                           (4.14) 

This formula shows that increasing the length of a password has a greater effect 

than increasing the number of possible characters 
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On One of major attacks on password based authentication is brute force attack, in 

which every possible must be tried until the password is reviled, while long complex 

password make it harder to brute force attack to expose the password, it’s so important to 

change the password every 2-3 months. 

After valid credentials have been provided an EAP-TTLS authentication process 

took place, we have mentioned in table 3.4 that EAP-TTLS is vulnerable to Main-in-the-

Middle Attack, EAP-TTLS is a transformation of EAP-TLS.  

Table 4.1      Character Set to generate passwords 

Character Set # Set Chars 

1 Digits 10 

2 [a-z] or [A-Z] 26 

3 Symbols 32 

4 Digits + ([a-z] or [A-Z]) 36 

5 Symbols + Digits 42 

6 [a-z] + [A-Z] 52 

7 Symbols + ([a-z] or [A-Z]) 58 

8 Digits + ([a-z] + [A-Z]) 62 

9 Symbols + ([a-z] + [A-Z]) 84 

10 Digits + Symbols +([a-z] + [A-Z]) 94 
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According to [60] whenever the server is authenticated, the channel is secure 

against man-in-the-middle attacks, but completely anonymous sessions are inherently 

vulnerable to such attacks. [61] mentioned that tunneling approach is vulnerable to Man-

in-the-Middle attack in case the legacy client authentication protocol is used in other 

environments, e.g., plain EAP without any tunneling, or without any encapsulation at all.  

TAWMP specifies in step 7 in MC Phase from this chapter that Authentication 

Server (AS) sends a self-signed certificate to the connecting MC, so if a legacy client tries 

to connect it fails and connection terminate at this step. By this way TAWMP is protected 

against Man-in-the-Middle attack.  

In MAP phase, we have kept in mind several attacks threats during designing 

stage, at the first step MAP1 sends to AS a massage using hashed value of MAC address to 

guarantee integrity of the message.  

Since the AS already has the MAC address of specific IDMAP, so the MAP will 

not send MAC within the message, by doing so we guarantee the message safety during 

transmission. 

In response, AS reply with Ku(AS) encrypted using hashed of its MAC address 

and its ID to guarantee confidentiality and integrity during transmission time. 

At the end of MAP phase, connected MAP has private and public keys, these keys 

will be valid for a period of time (lifetime/expiration time) then keys will be revoked and 

regenerated again in order to protect keys from brute force attacks. Lifetime calculations 

are out of scope of this thesis. 
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In MAP-MAP phase and MC-MC phase, the connection will be secured using 

keys between MAPs and AS. TAWMP provides forward secrecy, which means that if 

either node’s key are compromised, the past sessions keys remain secure. This will keep 

connection secure even if one of the keys revealed.  
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5.1 Introduction 

Due to the difficulty of providing a realistic environment to evaluate our protocol, we can 

use network simulators as an alternative solution. These simulators are considered as a 

prominent and effective tool for analyzing and evaluating wide variety of researches 

problems that require considerable network infrastructure to perform huge number of 

experiments. However, the simulation tools have a significant role in evaluating proposed 

network protocols.  

In this chapter, we use the Network Simulator version 2 (NS-2) [62] to conduct our 

simulation and evaluate the TAWMP protocol based on some performance metrics such as 

packet delivery ratio, network throughput, protocol overhead and the average end to end 

delay and then compare our results with HWMP protocols. 

5.2 Network Simulation 

Network simulators are now widely used in a variety of civilian and military 

applications to evaluate the performance of network infrastructure or the implemented 

mechanisms to secure routing protocols. There are many network simulators such as NS-2, 

J-sim [64] and OMNeT++ [65]. 

In our thesis, we use NS-2 to perform network simulation because it’s widely 

deployed network simulator for network protocols evaluation. It supports the AODV and 

OLSR protocol, Also, its free source for researchers, according to [66] NS-2 has less time 

consumption in implementation over other wireless network simulators and include more 

routing protocol such as DSR. In order to generate a reasonable router-level representation 

of the internal AS in the Internet, we create our topology by Georgia Tech Internetwork 
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Topology Models (GT-ITM ) [63] topology generator to generate the topology of the 

802.11 based WMNs here exists three types of nodes, MAPs, MPs and STAs. 

 Without routing functionality, STAs should associate with MAPs to obtain network 

access. MAPs provide connectivity to STAs and relay traffic together with MPs among 

STAs or between STAs and other networks. This means, the topology of WMNs is 

hierarchical. The generated topology in a 1000m×1000m area consists of 30 MAPs, 20 

MPs, and 300 STAs which are randomly distributed in the area.  

MAPs are equipped with two wireless interfaces, one access interface and one relay 

interface. MPs are equipped with just one relay interface. STAs are equipped with one 

interface to connect with MAPs. One of the MAPs is connected to the Internet through 

wired cable. The maximum transmission range of all the nodes is 150m. In our rate 

adaptation strategy, we use a simple wireless channel model in which the data transmission 

rate depends only on the distance between transmitters and receivers. Specifically, the data 

rate is 1Mbps.  

Our simulation is implemented with network simulator NS-2 version 2.34, running on a 

PC with the following main specifications: OS: Linux Ubuntu 10, CPU: Intel Core- 2 Duo 

2.2GHz and RAM: 2GB. In our simulation, we choose the AODV as routing protocol 

between MAPs and OLSR between MCs. The network simulation parameters for our 

simulation are summarized in Table 4. In addition, each node implements the TAWMP 

protocol to detect malicious nodes in the network.  

So, according to the malicious nodes ratio in the network, we can evaluate the 

network performance based on some performance metrics as shown in the next section. On 

the other hand, to measure the running time of MAP phase authentication with 195 bit key 
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size for MC keys and 256 bit key size for MAP key, we run TAWMP with 1500 Bytes on 

our PC. 

In order to ensure the rationality, each simulation experiment is repeated 15 times 

and their average is used to calculate the simulation results. However, we use the Tool 

Command Language (TCL) script files to configure NS-2 simulator and setup the 

parameters for our simulation experiments.  

 Also, the simulation results can be resolved from the trace files produced by the 

NS-2 simulator. These trace files contains a huge number of lines. So, it’s nontrivial to deal 

with these files directly. Instead, we can use other tools such as the Linux command “grep” 

to extract the intended information from trace files. This technique minimizes  

The size of original trace files and makes them more convenient to read and 

analyze. In addition, we use the “awk” files to analyze trace files and get the required 

results and graphs based on network performance metrics. The overall steps of simulation 

model are shown in figure 5.1.   

 

Figure 5.1 The overall steps of the simulation model 

Note that “nam” files are not used in the analysis. They are only used to visualize 

the network traffic. 
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5.3 Performance Evaluation Metrics 

To evaluate the performance of the network in the presence of malicious nodes and 

compare it with the performance of our protocol and other proposed protocols, we can use 

some performance metrics such as packet delivery ratio, throughput, protocol overhead and 

average end-to-end delay. This section provides an overview of these metrics. 

 

Table 5.1. Network Simulation Parameter 

Parameters Value 

Reactive Routing Protocol AODV 

Proactive Routing Protocol OLSR 

Number of MAPs 30 

Number of MPs 20 

Number of STA 300 

Data packet size 1500 Byte 

Data rate 1Mbps. 

Queue type DropTail/PriQueue 

Traffic type Constant Bit Rate (CBR) 

Simulation time 1000 s 
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5.3.1 Packet Delivery Ratio 

Packet Delivery Ratio (PDR) is the ratio of the number of data packets received at 

the destinations to the number of data packets generated by the CBR sources. It in turn 

determines the efficiency of the protocol to discover routes successfully Mathematically, 

PDR can be expressed as:  

                                                  𝑃𝑅𝐷 =
�   𝑟𝑖

𝑁
𝑖=1

�   𝑠𝑖
𝑁
𝑖=1

                                                   (5.1) 

Where 𝑟𝑖 is the received data packet, 𝑠𝑖 is the sent data packet and 𝑁 is the number 

of packets. 

This metric measures the reliability, effectiveness and efficiency of protocols. 

Therefore, the protocol that has better PDR is considered more reliable.  

5.3.2 Throughput 

Throughput (TH) is the total size of data packets delivered to the destinations divided by 

the time interval. The throughput is usually measured in bits per second (bit/s or bps). 

Mathematically, TH can be expressed as: 

                                                   TH = ∑   𝑟𝑖×𝑝𝑠𝑁
𝑖=1

T
                                                     (5.2) 

Where 𝑟𝑖 is the received data packet, 𝑝𝑠is the packet size and T is the time interval.  

This metric measures the speed or actual data rate in the channel and indicates the 

effectiveness of a protocol. 
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5.3.3 Protocol Overhead 

Communication overhead or protocol overhead (OH) is defined by the number of 

routing messages required to establish a secure path between sender and receiver. 

Mathematically, OH can be expressed as:  

                                                 𝑂𝐻 = cost𝛼 + 𝒏 × cost𝛽                                 (5.3) 

Where cost𝛼 the number of routing messages sent in MC phase, cost𝛽 the 

number of routing messages sent in MAP phase, and 𝒏 the number of MAPs in the secure 

path. 

This metric reflects how much cost will be added by the protocol over available 

bandwidth. Therefore, it’s desired to keep the OH as low as possible to increase the 

network throughput.  

However, the control packets added by our protocol are the RREQ and RREP 

packets which are used for the route authentication process. 

5.3.4 Average End-to-End Delay 

Average End-to- End Delay (E2ED) is the average delay for data packets to traverse from 

the source nodes to the destination nodes. This includes all possible delays caused by the 

sender buffer, the delay in the interface queue, the delay of links between routers in the 

route and the hardware latency. In general, this metric measures the total delay time from a 

source to a destination. Mathematically, E2ED can be expressed as: 

                                             𝐸2𝐸𝐷 = ∑   𝑇𝑟𝑖−𝑇𝑠𝑖𝑁
𝑖=1
∑   𝑟𝑖𝑁
𝑖=1

                                            (5.4) 

Where 𝑇𝑟𝑖 is the received time, 𝑇𝑠𝑖 is the sent time and 𝑟𝑖 is the received data packet.  
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5.4 Simulation Results 

In our simulation, we create several network environments and investigate the performance 

metrics (PDR, TH, E2ED and OH) as a function of Malicious Nodes Ratio (MNR) which 

is the total number of malicious nodes divided by the total number of nodes in the network. 

Mathematically, E2ED can be expressed as: 

                                  𝑀𝑁𝑅 = ∑   𝑚𝑖
𝑀
𝑖=1
∑   𝑛𝑖𝑁
𝑖=1

                                                               (5.5) 

Where: 𝑛 is a network node, 𝑚 is a malicious node, 𝑁 is the total number of nodes and 𝑀 

is the total number of malicious nodes. 

 This metric can be used to measures the effect of malicious nodes on the network   

performance, in particular, the effect on PDR, TH and E2ED.  

5.4.1 Packet delivery ratio  

As shown in Figure 5.2, when the network is free from malicious nodes, the PDR 

achieves its highest value which is rather stable at 0.96. While, the PDR decreases from 1 

to 0.96 due to packet dropping resulting from normal network congestion and buffers 

overflow. When the malicious nodes appear in the network, the PDR starts decreasing and 

fluctuating. When the network has 5% malicious nodes, the PDR decreases to the mean 

value 0.93 and fluctuates between (0.941 - 0.922). When the network has 10% malicious 

nodes, the PDR decreases to the mean value 0.835 and fluctuates between (0.806 - 0.852). 

 We noticed in figure 5.2 that the malicious nodes can strongly affect the PDR. 

Besides, as the number of malicious nodes increases the PDR decreases and the network 

becomes less stable. This is due to malicious nodes behavior, whereas, each malicious 

node floods network with PREQ causing traffic congestion and less-bandwidth and more 
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collisions. Therefore, the packet dropping will increase because the links buffers will 

overflow. 

 

Figure 5.2 PDR as a function of time with the impact of malicious nodes in the network 

 

 

Figure 5.3 PDR as a function of time with the impact of increasing number of 
communicating pairs in the wireless mesh network. 
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On the other hand, figure 5.3 shows the impact of malicious nodes on the PDR in 

different environments. This figure compares the average PDR with number of connected 

pairs in WMN contains 10% malicious nodes in two cases: the first case shows the impact 

of malicious nodes over PDR in the network running HWMP while; the second case shows 

the PDR after applying the TAWMP protocol. In both cases, the impact of malicious nodes 

was investigated with different communicated nodes ranging from 5 to 30 pair. In this test 

we run HWMP and TWMP in proactive and reactive routing protocol. 

In the first case, one can notice that as the communicated nodes increase the PDR 

decreases. For example, when the network includes 5 communicated pairs, the average 

PDR decreases by 28.7%. Also, when the network includes 10 communicated pairs, the 

average PDR decreases by 30.2%. However, the PDR remains decreasing until 30 

communicated pairs. At this point the PDR becomes 65.4%.  

In the second case, keeping the same conditions and simulation environments, it’s 

noticed that the average PDR is remarkably improved when applying the TAWMP 

protocol. By comparing with HWMP when the network includes 5 communicated pairs. 

The average PDR increases by 14.8%. Also when the network includes 10 communicated 

pairs, the average PDR increases by 18.5%. Moreover, when increasing the 

communicating pairs, the improvement caused by TAWMP increases since the flooding 

packets dropped and the decreases in PDR just caused from normal network congestion 

and buffers overflow. 

5.4.2 Throughput 

The impact of malicious nodes on the network throughput is shown in figure 5.4. 

As illustrated in the PDR cases, this figure compares the average TH with 10% malicious 
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nodes in the network in two cases: the first case shows the impact of malicious nodes over 

TH in the HWMP protocol. While, the second case shows the TH after applying TAWMP 

protocol. In both cases, the impact of malicious nodes was investigated at different number 

of communicated pairs ranging from 5 to 30 pair. 

 

Figure 5.4 The impact of malicious nodes ratio on Average throughput in different environments 
with 10% of malicious nodes in the wireless mesh network.  

 

When the network has 5 communicated pairs, the TH achieves its highest value 

which equals to 800 Kbps. (Note, the data rate in our simulation is set to 1Mbps for each 

connection)   While, the decreases from 1Mbps to 800 kbps caused by normal network 

congestion which leads to decreasing of connections data rate. When the communicated 

pairs increase in the network, the TH starts decreasing. For example when the network 

includes 10 communicated pairs, the TH decreases by 60.3%  Also, when the network 

includes 30 communicated pairs, the TH decreases to 80.1% Whereas, the average PDR 

decreases by 30.2% when the network includes 10 communicated pairs and 65.4% when 
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the network includes 30 communicated pairs. It’s clear that the malicious nodes can 

strongly affect the network TH and PDR, but their impact on TH is greater than that on 

PDR since the delay time of received packets will increase as the malicious nodes flood the 

network with PREQ packets leading to high traffic and to congested links.  

Now, when applying the TAWMP protocol and keeping the same conditions and 

simulation environment, it’s noticed that the TH is improved remarkably. For example, by 

comparing with HWMP case, the TH increases by 37.4% when the network includes 10 

communicated pairs. Also, the TH increases by 38.5% when the network includes 30 

communicated pairs. 

5.4.3 End-to-End delay 

According to table 5.1 and table 5.2 the time required to authenticate a MAP is 

42.73µs while the time required establishing a secure connection between 2 MAPs is 

38.68µs. On the other hand the time required to authenticate MC is 36.71µs while the time 

required establishing a secure connection between 2 MCs is 54.26µs. on the other hand, 

table 5.3 and table 5.4 shows authentication and encryption time in HWMP which is less 

than TAWMP since there is a delay caused by adding AS and the process of authentication 

in TAWMP which longer than HWMP. According to equation 5.3 the authentication is 

depended on the number of between MAPs in the routing path. 

  

Table 5.2. Authentication time in TAWMP 

 (MAP-AS) (MC-AS) (MAP-MAP) (MC-MC) 

Authentication time (µs) 42.73 36.71 38.68 54.26 
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Figure 5.5 Client Authentication time as a function of No. of MAPs 
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Table 5.3. Encryption time in TAWMP 

 MAP MC 

Encryption time (µs) 29.66 35.88 

 

Table 5.4. Authentication time in HWMP 

 MAP MC 

Authentication time (µs) 32.31 28.45 

Table 5.5. Encryption time in HWMP 

 MAP MC 

Encryption time (µs) 21.65 18.23 
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As shown in figure 5.5, client authentication time required for mesh client in 

network that run TAWMP will be longer than time required in the same network runs 

HWMP. We also recognize from figure 5.5 that the authentication time in TAWMP 

increases rapidly and proportional with number of MAPs since the authentication and 

encryption time for MAPs is higher than HWMP. On the other hand in figure 5.6 we see 

that encryption time in TAWMP is higher than HWMP since delivered message will be 

encrypted using EAP-TTLS in mesh client and using asymmetric encryption in every 

passing MAP, while in HWMP the delivered message will be encrypted and decrypted in 

every single hop using symmetric keys which is faster than process used in TAWMP. We 

have used MATLAB in order to make a curve fitting to the simulated results in figures 5.5 

and 5.6 and we got equation 5.3 to the End-to-End delay. 

                                                        TE = 2 (TMAP) n + 2(TMC)                                      (5.6) 

Where… 

 TE is End-to-End delay, 

TMC is encryption time required by MC 

 n The number of MAPs the message passing through it 

(TMAP) is encryption time required by MAP 

The figure below depicts the relationship between End-to-End delay and number of hops  
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Figure 5.6 Message encryption time as a function of number of MAPs 

 

5.4.4 Path Acquisition Delay 

As shown in figure 5.7 when we run the test in two cases (HWMP and TAWMP) 

without interfering of malicious nodes we notice that path acquisition time in HWMP and 

TAWMP increase proportional to the number of nodes in the network since the time 

required to build tables in MAPs and to send PREQ and PREP will increase. On the other 

hand it’s clear in figure 5.7 that path acquisition time in TAWMP is higher than HWMP 

because, in addition to normal routing operation of HWMP, the proposed TAWMP scheme 

requires computing end-to-end encryption and decryption algorithms to verify the 

authenticity of a received packet, which require extra processing delay. 
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Figure 5.7 Path acquisition delay as function of NO. of nodes. 

 

5.5 Conclusion 

Security in WMNs in considered one of the top hot research subjects; it is well 

known that there is a tradeoff between the quality and performance of a secure algorithm. 

In this thesis a secure authenticating protocol for WMN has been developed to provide an 

end-to-end protection. Consequently we summarize a number of conclusions from this 

thesis: 

1. WMN is a multi-hop network with hybrid routing protocol, WMN 

authenticating protocol (HWMP with nod-to-node authentication) is vulnerable 

to various kinds of security threats. 

2.  In this thesis we developed a secure authentication protocol (TAWMP) that 

provides end-to-end authentication in addition to node-to-node authentication. 
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3.  TAWMP authentication process is divided in two phases to applicable with 

hybrid routing nature in WMN. 

4. Ticket authentication process in TAWMP depends on Authentication Server 

which is a single point of failure. 

5. Adding authentication server to the network and additional authentication 

process (end-to-end) increases delay times in network such as end-to-end time 

delay and path acquisition delay. 

6. The additional security by TAWMP increases packet delivery ration and 

throughput. 

5.6 Future Work 

1. TAWMP depends on authentication server, which is single point of failure; 

more work is needed to overcome this issue. 

2. TAWMP has a slight delay over HWMP which is need to be enhanced. 

3. Handoff process has not been address in this work, more work need to be 

done to provide an integrated system. 
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ABSTRACT 
Wireless mesh network (WMN) consists of two parts: mesh 
access points which are relatively static and energy-rich devices, 
and mesh clients which are relatively dynamic and power 
constrained. In this paper, we present a new model for WMN end-
to-end security which divides authentication process into two 
phases: Mesh Access Point which is based on asymmetric 
cryptography and Mesh Client which is based on a server-side 
certificate such as EAP-TTLS.   

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
Security, Standardization, Theory. 

Keywords 
Hybrid mesh; network security; end-to-end authentication; server 
mobile; mobile router. 

1. INTRODUCTION 
Wireless mesh networks have appeared as a promising design 
model for next generation wireless networks which have grown 
rapidly due to recent developments such as easy installation and 
low setup cost when compared to wired networks [1]. WMN is a 
promising new technology which has been adopted as the wireless 
internetworking solution for the near future due to their self-
healing, self-configuring and self-optimizing capabilities [2]. The 
most commercial form of WMN is called hybrid mesh networks 
[3], shown in Figure 1. Hybrid mesh networks contain mesh 
access points (MAP) and mesh clients (MC). MAPs are relatively 
static and energy-rich devices that have multiple wireless network 
interfaces. On the other hand, Mesh Clients are relatively mobile 
and power constrained devices such as notebook, Smartphone, 
and smart pad [4]. 

 
 

The routing protocols used for WMNs can be classified into two 
types: Reactive Routing Protocols in which routes are established 
only when required and generally via flooding of Route Request 
packets in the network, and Proactive Routing Protocols in which 
routes are established before actual usage through periodical 
exchanges of connectivity information [5] [6] [7]. Both protocols 
have their individual advantages. Reactive protocols focus on 
minimizing control packet overhead such as Ad hoc On Demand 
Distance Vector (AODV) [8], Dynamic Source Routing (DSR) 
[9],Temporally-Ordered Routing Algorithm (TORA) [10] etc. 
while the proactive protocols attempt to minimize the route 
establishment delays such as OLSR [9], DSDV [10]. 

However, since these routing protocols have been designed for 
relatively homogenous MANETs, they will not provide optimum 
security for hybrid WMNs. An important security goal of a 
wireless mesh network is to protect the end-to-end communication 
between the device and its home network in general, and to 
protect the application content from being eavesdropped or 
modified during its transmission in particular. 
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Figure 1. Hybrid Wireless Mesh Network. 
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2. RELATED WORK 
2.1 KAMAN 
Please Kerberos Assisted Authentication in Mobile Ad-hoc 
Networks [11] uses multiple Kerberos servers for distributed 
authentication and load distribution. In Kaman only the users 
know the secret key or passwords and the servers know a 
cryptographic hash of these passwords. All Kaman servers share a 
secret key with each other server. In Kaman all servers 
periodically, or on-demand, replicate their databases with each 
other. Kaman uses an election based server selection mechanism.  

2.2 TAODV 
Ticket Based Ad-hoc On Demand Distance Vector [12] is a ticket-
based security protocol foe WMNs that is based upon the AODV 
protocol, which is a cross layer protocol which works at network 
layer but also provides security for data exchange and avoids 
transfer of ARP messages for finding MAC addresses of source 
and destination. 

2.3 Secure Extension to the OLSR protocol 
Use The Secure Extension to the OLSR protocol [13] has only 
provided integrity and not confidentiality by signing each OLSR 
control packet with digital signature for authenticating the 
message. The digital signature is based on symmetric keys [14]. 
All OLSR control traffic is signed for every hop. This doesn’t 
provide end-to-end signatures. 

3. Our Proposed Model 
Our proposed model aims to achieve an end-to-end authentication 
in WMN. In order to achieve such a goal we have divided the 
authentication process into two phases: the MAP phase in which a 
new MAP conducts the network, and the MC phase in which a 
new MC conducts the network. 

At the MAP phase, we aim to use asymmetric cryptographic sine 
MAP is an energy rich device [14] on the other hand, MC devices 
in the second part of the authentication use server-side certificate 
such as EAP-TTLS and PEAP. 

3.1 MAP Phase 
When a MAP is connected to a WMN during setup stage, it has to 
do the following steps: (1) MAP sends its details including the 
type (1 for MAP / 0 for MC) and MAC address to an 
Authentication Server (AS). (2) AS will send key generation 
mechanism back to the MAP after checking MAC address in a 
stored list. (3) MAP will generate its public and secret keys, and 
then sends its public key (PKMAP) to the AS. Then AS generates a 
shared secret key (KMAP) for new MAP and AS on the basis of 
public key of MAP and its secret key by using Fixed Diffie-
Hellman key exchange protocol. (4) AS generates a ticket for new 
MAP with required info (MAP ID, IP, issue time, expiration time) 
and sign it with its private key. Then, after signing, AS will 
encrypt that ticket with the shared secret key and then forward this 
encrypted ticket to new MAP. After receiving encrypted ticket, 
new MAP will first generate a shared secret key on the basis of 
AS’s public key and its secret key (as AS generated) and then will 
decrypt the ticket. For future communication (route discovery 
request/reply) MAP will use this ticket. 

 

 

 

 

 
 

 

 

3.2 MC Phase 
When a new MC is connected to the WMN, it has to provide 
credentials to the AS. These credentials can be user-name/ID-
number and password (via PAP, CHAP, or MD5 challenges) [15]. 
In this phase server-side certificate such as EAP-TTLS can be 
used. After successful authentication, the mobile node will receive 
a secret key that shares with the authentication server (AS). 

3.3 MAP –to- MAP Authentication  
As it has been mentioned, MAP depends on proactive protocols 
such as OLSR in order to build routing table through periodical 
exchanges of connectivity information, when a MAP discovers a 
new neighboring MAP, a secure route must be established. In order 
to do so, the first MAP sends both its identifier and the identifier of 
destination MAP to the AS, which in turn looks up both identifiers 
in its database in order to verify the validity of both clients. 
MAP1        AS:  {IDMAP1, IDMAP2} KMAP1|| Nonce 
AS sends ticketMAP2 along with the Authenticator {KMAP1, KMAP12, 
IDMAP1, T} in which KMAP12 is the secret shared key between two 
MAPs and T is the lifetime of that key, this Authenticator provides 
MAP1 with the shared key and proof that this is the right shared 
key to use with MAP2 at this time. 

AS         MAP1:   ticketMAP2 || IDMAP1 || {KMAP12, times, Nonce, 
IDMAP2} KMAP1 

 

MAP1 decrypts Authenticator in order to validate its information 
and then creates a new message with a fresh timestamp; this 
message contains both identifiers in addition to ticketMAP2 and 
encrypted values that express MAP2 identifier with the fresh 
timestamp. And then send this message to MAP2. 

MAP1        MAP2:   ticketMAP2 || IDMAP1, IDMAP2 ||timestamp 

After receiving this message, MAP2 decrypts ticketMAP2 with 
KMAP2 to obtain KMAP12 which in turn is used to get the encrypted 
values, and then MAP2 validates timestamp by comparing it to 
local time. In case the verification succeeds, MAP2 sends a new 
encrypted message with KMAP12, this message contains the 
timestamp sent before by MAP1 and a new key instead of KMAP12 
called subkey used as a shared key between two clients in their 
communications. When the message received MAP1 decrypts it 
and verifies timestamp. If the verification succeeded, MAP1 
knows that MAP2 has received the previous message 

 
(1) MAP AS:      Type|| MAC|| Nonce 
(2) AS    MAP:  key generation mechanism|| Nonce 
(3) MAP  AS:     PKMAP || Nonce 
(4) AS    MAP: {ticketMAP-AS}KMAP || Nonce 

 

 
 
 
 

Figure 2. MAP Phase 
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3.4 Client–to-Client Authentication 
For Client–to-Client Authentication, our proposed model uses 
EAP authentication with a modified version of a scheme known as 
a four-pass Kerberos protocol [16][17]. 

When a new MC is connected to the WMN, it approves itself to the 
Authentication Server (AS) in order to get a secret key shared with 
the AS in addition to a unique identifier ID. 

Whenever an MC wants to establish a secure connection with 
another MC, it approaches the AS and does the protocol as 
following steps: 

The first Client MC1, sends both its identifier and the identifier of 
destination client MC2 to the AS which in turn searches for both 

MCs identifiers in its database in order to verify the validity of 
both clients.  

MC1       AS:   IDMC1 || IDMC2 || Nonce 

AS sends ticketMC2 which contains KMC12 and the lifetime of that 
key, this ticket is sent to MC1 with the Authenticator which 
provides MC1 with the shared key and proof that this is the right 
shared key to use with MC2 at this time. 

AS        MC1:   ticketMC2 || IDMC1 || {KMC12, lifetime, Nonce, 
IDMC2}KMC1 

MC1 decrypts Authenticator in order to validate its information. It 
then creates a new message with a fresh timestamp. This message 
contains both identifiers in addition to ticketMC2 and encrypted 
values that express MC2 identifier with the fresh timestamp. And 
then send this message to MC2. 

MC1 MC2:   ticketMC2 || Authenticator 

After receiving this message, MC2 decrypts ticketMC2 with KMC2 to 
obtain KMC12 which in turn is used to get the encrypted values. 
Then MC2 validates timestamp and local time comparing the life 
time sent from MC1.In case the verification succeeds, MC2 sends 
a new encrypted message with KMC12. This message contains both 
the timestamp sent before by MC1 and a new key called subkey 
instead of KMC12 which is used as a shared key between the two 
clients in their communications. When the message is received, 
MC1 decrypts it and verifies timestamp. If the verification 
succeeds, then MC1 knows that MC2 has received the previous 
message in proper form and decrypt the shared key correctly. 

MC2  MC1: {timestamp, subkey}KMC12 

 

 

 

 

 

 
 

 

We notice that all routes between MAP’s are all secured through 
MAP-to-MAP authentication steps, so that when MC1 sends a 
message to MC2, this message is encrypted by the shared secret 
key subkey between every single MAP pair, and this provides both 
node–to–node and end-to-end security. 

 

 

 

 

 

 

 

Figure 3. MC Phase 
 
 

 
 

a) MAP1 AS:  {IDMAP1 , IDMAP2 } KMAP1||ticketMAP1||Nonce 
b) AS MAP1:   ticketMAP2 || IDMAP1 || {KMAP12, lifetime, 

Nonce, IDMAP2}KMAP1 
c) MAP1 MAP2:   ticketMAP2 || IDMAP1, IDMAP2 ||timestamp 
d) MAP2 MAP1: {timestamp, subkey}KMAP12 

 
 

 
 

Figure 4. MAP-to-MAP Authentication 
 
 

 
 

a) MC1 AS:   IDMC1 || IDMC2 || Nonce 
b) AS MC1:   ticketMC2 || IDMC1 || {KMC12, lifetime, Nonce, 

IDMC2}KMC1 
c) MC1 MC2:   ticketMC2 || Authenticator 
d) MC2 MC1: {timestamp, subkey}KMC12 

 

 
 

 
 

Figure 5. Client-to-Client authentication 
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4. Simulation 
We have used ns-2 simulator to simulate our proposed model 
(THWMP) protocol and to compare it with existing protocols 
HWMP and SHWMP[19]. We have simulated 50 static mesh 
nodes in a 1500 x1500 m2 area. We use 5 to 10 distinct source-
destination pairs that are selected randomly. Traffic source are 
CBR (constant bit-rate). Each source sends data packets of 512 
bytes at the rate of four packets per second during the simulation 
period of 900 seconds. 

In order to compare HWMP with SHWMP, both protocols were 
run under identical traffic scenario. Both on-demand and 
proactive mode were simulated. We consider Packet delivery ratio 
and End-to-end delay as performance metrics. 

As shown in Figure 7, the packet delivery ratio is better in 
SHWMP for both on demand and proactive mode than that of 
HWMP. We assume that 10% misbehaving nodes are present in 
the network. Since the misbehaving nodes participate in the route 
discovery process, in HWMP sometimes packets are intentionally 
dropped by the misbehaving nodes. But, in the proposed protocol, 
misbehaving nodes cannot participate in the route discovery 
process and thus always achieve a higher packet delivery ratio. 

  
 

Figure 8 depicts that the average end-to-end delay of data packets 
for both protocols are almost equal. We run the simulation using 5 
and 10 source-destination pairs, and as the traffic load increases, 
end-to-end delay also increases. It is also evident that the effect of 
route acquisition delay on average end-to-end delay is not 
significant.  
 
 

 

5. Conclusion 
In this paper, we presented a new model for securing end-to-end 
wireless mesh network with ticked based-authentication. This 
model divides the authentication process into two phases: MAP 
phase and MC phase. In the first, our proposed model 
authenticates MAP using asymmetric cryptography [19] 
depending on MAP’s MAC address. This phase ensures the 
securing of all network paths by establishing ticket based between 
every single MAP pair. Whereas in the second phase, the 
authentication process is done by proving the new MC to the AS 
using preconfigured credentials. This is required because the MC 
doesn’t have any certificate yet. After that, the AS uses a server-
side certificate to authenticate the MC. This is a secure method 
that saves MC battery. Our proposed model uses a modified 
version of a scheme known as four-pass Kerberos protocol in 
MAP-to-MAP authentication and MC-to-MC authentication. By 
doing this, we ensure the providing of  a secure node-to-node 
routes for all routes in the network in addition to the end-to-end 
security message that cannot be decrypted without the secret key 
at the receiver MC with reasonable consuming to the battery at 
MC side. . 
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Figure 8. Control overhead 
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 ملخص

 

 الشبكات اللاسلكيةحيث تشكل موثوقة وقابلة للتوسع. غير ة يبيئظروف لتعمل ضمن اللاسلكية شبكات الاتصالات صممت 
تتكون من موجهات  و في العالم، اساسيا من شبكات الاتصالات ءاً ) جزMesh Wireless Networks (MWN)( التشعبية
) مثل الكمبيوتر المحمول او Mesh Clientsاجهزة اتصال طرفية لاسكية تشعبية ( و  (Mesh Access Points) لاسلكية 

 الخلوي الذكي.

الموجهات  تقومف او من خلال الموجهات اللاسلكية. الاجهزة الطرفية بعضها ببعضان الاتصال في هذه الشبكة  يتم بين  
اللاسلكية بتقوية الاشارة و تكون ثابتة في الغالب ومتصلة بالكهرباء على عكس اجهزة الاتصال الطرفية التي تكون متحركة، 

مما جعلها عرضة للهجمات والاختراقات من  ،خلال مصدر محدود ( مثل البطارية)والتي تعتمد في حصولها على الطاقة من 
 قبل الهاكر.

كما ان بنية  ،) Shared Medium( ان طبيعة الاتصال اللاسلكية بين هذه الاجهزة المختلفة واعتمادها على وسط ناقل مفتوح
منها عرضة في الاتصال بين الاجهزة الطرفية واعتمادها على مصادر محدودة الطاقة جعل ) Peer to Peer(للند  -الند

 والفايروسات المختلفة.هجمات والاختراقات من قبل الهاكر لل

حماية يعمل على ) Hybrid Wireless Mesh Protocol(HWMP)ان بروتوكول التحقق في هذه الشبكات المعروف بـ(
ة بين الجهازين ) بين كل جهازين اتصال متجاورين ، دون ان يحمي المعلومات المنقولNode-to-Nodeخطوط نقل البيانات (
) مما يعرض البيانات Data Forwarding)، كما لم يحمي عملية إعادة ارسال البيانات (End-to-Endالمستقبل والمرسل (

) الذي يغرق الوسط Flooding) ، الافاضة  (Misdirection)، التوجيه الخاطئ (Spoofingلهجمات منها : الانتحال (
 ) . Congestionى الازدحام (الناقل بالبيانات و يؤدي بدوره ال

 End-to-End( لبيانات المرسلة خلال نقلها من المرسل الى المستقبلافي هذه الأطروحة، قمنا بالتركيز على حل مشكلة حماية 
protection) وحماية خطوط النقل بين اجهزة الاتصال المختلفة ،(Node-to-Node :حيث اقترحنا بروتوكول .(

(TAWMP) Ticket Authentication Wireless Mesh Networks .Protocol 

) : المرحلة الاولى يقوم بتوفير الحماية لاجهزة التوجية اللاسلكية Two Phasesان هذا البروتوكول يتكون من مرحلتين (
التشفير ، اما المرحلة الثانية تعتمدعلى طريقة )Asymmetric Encryptionبالاعتماد على طريقة تشفير غير تماثلية (

وذلك يحتوي على مفتاح لتشفير البيانات المرسلة  (ticket) من خلال توليد خلالمن   (Symmetric Encryption)التماثلية
خادم التحقق  لة . البروتوكول المقترح يستخدموالتي تتلائم مع اجهزة الاتصال المحمو EAP-TTLSباستخدام 

)Authentication Serverإلا أنه آمن وفعال.على اداء الشبكة بشكل ضئيل جدا اال مما يضيف عبئالاتص على ) للمصادقة ، 

مفتاح لتشفير البيانات بين المرسل و  توليد اعتمدنا في تصميم هذا البروتوكول نهجا ينطوي على التكامل من خلال قد
لتشفير البيانات المرسسلة ستعمل تحتوي على مفتاح ي (Ticket)و ارسال ). Node-to-Node( جهازالتوجيه اللاسلكي

)End-to-End ( 

  

 (Active Attack)) والفعالة Passive Attackالبروتوكول المقترح يستطيع الرد على هجمات التوجيه الخاطئ السلبية (
الشبكات في  ) للبيانات المنقولةEnd-to-Endتوفير حماية (هو خطوة مهمة نحو  (TAWMP)على حد سواء، ان بروتوكول 

 لكية التشعبية.اللاس
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