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Linear and nonlinear quantitative structure activity
relationship models for predicting the inhibitory
activities of sulfonamides toward different car-
bonic anhydrase isozymes were developed based
on multilinear regression, principal component-
artificial neural network and correlation ranking-
principal component analysis, to identify a set of
structurally based numerical descriptors. Multilin-
ear regression was used to build linear quantitative
structure activity relationship models using 53
compounds with their quantum chemical descrip-
tors. For each type of isozyme, separate quantita-
tive structure activity relationship models were
obtained. It was found that the hydration energy
plays a significant role in the binding of ligands to
the CAI isozyme, whereas the presence of five-
membered ring was detected as a major factor for
the binding to the CAII isozyme. It was also found
that the softness exhibited significant effect on
the binding to CAIV isozyme. Principal component-
artificial neural network and correlation ranking-
principal component analysis analyses provide
models with better prediction capability for the
three types of the carbonic anhydrase isozyme
inhibitory activity than those obtained by multilin-
ear regression analysis. The best models, with
improved prediction capability, were obtained for
the hCAII isozyme activity. Models predictivity
was evaluated by cross-validation, using an exter-
nal test set and chance correlation test.
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Thousands of different aromatic and heterocyclic sulfonamides car-
bonic anhydrase (CA, EC 4.2.1.1) inhibitors were synthesized in the
exploration of diverse pharmacological agents (1,2), but the number
of amino acid ⁄ oligopeptide derivatives among them is unexpectedly
small. Accordingly, a series of 53 compounds were synthesized by
Mincione et al. (3) and investigated for their inhibitory activity
against physiologically relevant CA isozymes, such as CAI, II, and IV.
The syntheses involved the reaction of 26 aromatic and heterocyclic
sulfonamides containing amino, imino, hydrazine, or hydroxyl groups
with N-tert-butoxycarbonyl- c-aminobutyric acid (Boc-GABA) in the
presence of carbodiimide derivatives. The resulting water-soluble
compounds were assayed as inhibitors of the cytosolic isozymes
hCAI and II, and the membrane-bound form bCAIV, which were
involved in important physiological processes, for example, respira-
tion and transport of CO2 ⁄ bicarbonate between metabolizing tissues
and lungs, pH and CO2 homeostasis, electrolyte secretion in a vari-
ety of tissues ⁄ organs, biosynthetic reactions (such as gluconeogene-
sis, lipogenesis, and ureagenesis), bone resorption, calcification,
tumorigenicity, and many other physiologic ⁄ pathologic processes
(1,4–8).

In quantitative structure activity relationship (QSAR) models, the cor-
relation between experimental values of the activity and descriptors
reflecting the molecular structure of the compounds is obtained. To
achieve a significant correlation, it is essential that proper descrip-
tors are used. A wide variety of molecular descriptors are used in
QSAR models (9). However, as the number of descriptors increases,
the model becomes complicated, and its interpretation is difficult
when many variables are used. Thus, the application of such tech-
niques generally involves variable selection for building well-fitted
models. Many different methods have been used to select the sig-
nificant descriptors for calibration purposes. On the other hand, arti-
ficial neural networks (ANNs) are popular in QSAR models as a
result of their success where complex nonlinear relationships exist
among data (10,11). An ANN is formed from artificial neuron
arranged in layers, connected with coefficients (or weights), which
makes the neural structure. Neural networks do not need explicit
formulation of the mathematical or physical relationships of the
handled problem, which gives ANNs an advantage over traditional
fitting methods for some chemical applications.
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In the literature, there have been a number of QSAR studies of
sulfonamides using quantum chemical (12–17) and topological
(18–23) descriptors and 3-D approach of CoMFA and CoMSIA
(24,25). Recently, a QSAR study for the inhibitory activity of the
transmembrane CA isozyme XIV with sulfonamides using PRECLAV
software has been carried out by Khadikar et al. (26). The obtained
QSAR equations pointed out the fact that the CA inhibitory
activity decreased for unsubstituted (at the organic scaffold)
aromatic ⁄ heteroaromatic sulfonamides, but was favored by the
presence of alkyl groups substituting the scaffold, which led to a
higher internal topological diversity, as well as by the presence
of condensed aromatic rings in the structure of these enzyme
inhibitors.

Recent QSAR studies on this class of compounds revealed that the
CA inhibitory activities of such compounds could be modeled suc-
cessfully using connectivity and indicator indices (18) as well as
quantum chemical descriptors (17). Incited by such studies, and in
continuation with the previous studies (27–29), a combination of
these descriptors was used in this study for modeling inhibitory
activities against all the three isozymes, that is, hCAI, hCAII, and
bCAIV. Where, in this study, linear, multiple linear regression (MLR)
and correlation ranking-principal component regression (CR-PCR),
and nonlinear, principal component-artificial neural networks (PC-
ANN), methods were applied with the aim of obtaining the most
appropriate models for predicting isozyme selectivity of the com-
pounds.

Materials and Methods

Software
Geometry optimization was performed by HYPERCHEM

a (Version 7.0;
Hypercube, Inc) at the Austin model 1 (AM1), semiempirical method
level. An AM1 optimization was chosen as it was developed and
parameterized for common organic structures. Descriptors were cal-
culated using HyperChema and DRAGON

b software (Milano Chemo-
metrics and QSPR Group). SPSS

c Software was used for the simple
MLR analysis. Principal component analysis (PCA), PC-ANN, and CR-
PCR were performed in the MATLAB

d environment.

Chemical data and descriptors
Table S1 in the Supporting Information shows the structural details
of sulfonamides used in this study while Table S2 in the Supporting
Information includes their inhibitory activities, log Ki(hCAI), log Ki(h-
CAII), and log Ki(bCAIV) (18). Chemical structures of these com-
pounds were obtained from HyperChem software and optimized on
AM1 semiempirical level. The Optimization was preceded by the
Polak-Rebiere algorithm to reach 0.01 root mean square gradient. In
this study, 36 quantum chemical descriptors including indicator de-
scriptors were calculated using HYPERCHEM and DRAGON software,
and these descriptors are the following: HOMO, LUMO, EN, HD,
SOF, EPH, HE, HF, volume, mass, pol, ref, SA(appr.), logP, DMx, DMy,
DMz, DMt, qpos, qneq, Qpos, Qneq, Qtot, Qmean, Q2, RPCG, RNCG,
SPP, TE1, TE2, PCWTe, LDip, 1vv, lp1, lp2 and lp3. Table S3 in the
Supporting Information shows a brief description of these descrip-
tors used in this study.

Three sets of the calculated descriptors and the three types of CA
isozyme activities such as I, II, and IV were gathered in a separate
data matrix Di with a dimension of (m · n), where m and n being
the number of molecules and the number of descriptors, respec-
tively. In each group, the calculated descriptors were examined for
the presence of constant or near-constant values for all molecules
and those detected were removed. To decrease the redundancy that
existed in the descriptor data matrix, the correlation among descrip-
tors was examined and the detected collinear descriptors [i.e., coef-
ficient of determination (R2) ‡ 0.95] were removed from the data
matrix. Then, the different sets of activities and the molecular de-
scriptors were subjected to the MLR, PCA, PC-ANN, and CR-PCR
analyses as described later.

MLR analysis
Multiple linear regression analysis was employed to model the
inhibitory activities for each type of CA isozymes [log Ki(hCAI), log
Ki(hCAII) and log Ki(bCAIV)] relationships with the set of quantum
chemical descriptors. Multiple linear regression analysis was per-
formed using the method of maximum-R2 with stepwise selection
and elimination of variables (30) on a training set composed of
around 75% of the data set. After the model has been proposed
using the training set, its predictivity was tested by making predic-
tions against the test set (around 25% of the data). Data division
was performed according to the PCA as it is discussed later.

Principal component analysis
The different sets of activities and the molecular descriptors were
subjected to PCA. The PCs were calculated by singular value
decomposition method in MATLAB environment (MathWork Inc).
Before applying the multivariate analysis methods, and owing to
the quality of data, a previous treatment of the data is essential.

Orthogonal transformation of the descriptors by PCA was performed
to account for some collinearity between the descriptors. It is
essential to carry out a previous treatment of the data such as
scaling and centering before applying the regression analysis com-
bined with feature extraction (i.e., PCR and PC-ANN). The outcome
of projection methods depends on the normalization of the data.
Descriptors with small absolute values slightly contribute to overall
variances; such biases toward other descriptors with higher abso-
lute values originate biased PCs. Therefore, equal weights are allo-
cated to each descriptor, with appropriate scaling, so that the
significant variables in the model are in focus. The descriptors are
standardized to unit variance and zero mean (autoscaling), to give
all variables the same significance. Application of the PCA on the
calculated descriptors and activity data matrix resulted in 37 factors
or principal components (PC1–PC37).

Consequently, each of the three data matrices that contain all the
descriptors with each of the CA isozyme I, II, and IV inhibitory activ-
ities was subjected to PCA separately, and the first two principal
components (PCs) outcome from each separate PCA were plotted
against each other. Figure 1 represents the factor spaces of the de-
scriptors and the CAI inhibitory activity where each point represents
one compound. Figure 1 shows that compounds 39 and 40 are out-
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liers implying that these two compounds behave differently from
the rest of compounds investigated in this study. Hence, these com-
pounds were excluded in the regression analyses applied in this
study.

To examine the final model's performance, a homogenous set of 14
molecules (around 25% of the data set) were selected as prediction
samples from the points in the resulted plot. These samples were
selected based on descriptors spaces obtained from plotting the
first and second PCs as it was described earlier, (see Figure 1).
Among the points in the resulting plot, homogenous sets were
selected with the 75% portion for the training (or calibration) set.

Artificial neural network
In contrast to MLR, the ANN is capable of recognizing highly non-
linear relationships. The flexibility of ANN enables it to discover
more complex relationships in experimental data, when it is com-
pared with the traditional statistical models. The PC-ANN analysis
was proposed by Gemperline et al. (31), to improve the training
speed and decrease the overall calibration error. In this method
(31), as a preliminary treatment, the input data (i.e., molecular de-
scriptors) were normalized so as to have zero mean and unity vari-
ance as it was mentioned earlier. It should be noticed that for each
MLR model, a separate ANN model was developed so that the
input's descriptors were the subsets selected by the stepwise MLR
methods. In the case of each MLR model, a feedforward neural net-
work with back-propagation of error algorithm was constructed to
model the property structure relationships between the descriptors,
on the one hand, and the activity data of sulfonamides, on the
other hand. More details about the model development in ANN and
the network architecture are explained in references (32–34). Over-
fitting problem or poor generalization capability happens when a
neural network overlearns during the training period. A too well-
trained model may not perform well on unseen data set because of
its lack of generalization capability. The data set was divided into
two subsets: training (75%) and test sets (25%). The test set is
used to test the trend of the prediction accuracy of the model
trained at some point of the training process. Then, the training set
was used to optimize the network performance. The regression

between the network output and the property was calculated for
the two sets individually. The training function 'trainscg' in MATLAB

was used to train the network. To find the models with lower
errors, the ANN algorithm was run many times, each time run with
different geometry and ⁄ or initial weights.

Correlation ranking-principal component
regression
In this approach, the best set of factors was selected by the corre-
lation ranking (CR) procedures. In the CR-PCR, the correlation
between each one of the extracted PCs with the inhibitory activities
for each type of CA isozymes [log Ki(hCAI), log Ki(hCAII) and log
Ki(bCAIV)], separately, was determined first. For each of the isozyme
inhibitory activities, the resulting regression model was used to pre-
dict the activity of the test set compounds. The square of the corre-
lation coefficient between the predicted and actual activities
(R2

P , that is, the amount of the variances in the activity, which can
be explained by each PC) was calculated, and this quantity was
used as a measure of the correlation ability of each PC. Then, the
PCs were ranked in the order of decreasing correlation and entered
to the regression model one after another. This procedure is well
illustrated in the study by (35–37). That is, the stepwise entrance
of the PCs to the PCR models was based on their decreasing corre-
lation with the desired activity. Some statistical parameters such as
the squared of the correlation coefficient (R2), squared of the leave-
one-out cross-validation correlation coefficient (R2

CV), and the root
mean square error (RMSE) were calculated to estimate the quality
of the resulted models. Different models were obtained for each
inhibitory activity type of CA isozymes [log Ki(hCAI), log Ki(hCAII),
and log Ki(bCAIV)].

Results and Discussion

The sulfonamides (18) used in this study were investigated for their
inhibitory activities of log Ki(hCAI), log Ki(hCAII), and log Ki(hCAIV),
(see Table S1 and S2 in the Supporting Information), using MLR,
PC-ANN, and CR-PCR analyses. The results of these analyses are
discussed later.

MLR analysis
Quantitative structure activity relationship studies on the inhibitory
activity of a set of sulfonamide derivatives toward three different
isozymes of CA helped us to find the structural requirement of the
sulfonamide ligands for binding to the isozymes. Table 1 shows the
regression models suggested from MLR analysis. Generally, it was
found that the type of ligand – receptor interactions – differs from
one isozyme to another, which implies that by considering these
interactions, it is possible to design selective ligands toward a
specified CA isozyme (38–41).

The QSAR model obtained for CAI isozyme indicated that the hydra-
tion energy plays a significant role in the binding of ligands to the
CAI isozyme. Molecules with higher hydration energies were found
to bind to the receptor strongly. This proposes the presence of
polar residues in the binding pocket of the isozyme. In addition, it
was found that the first-order valence connectivity index (1vt), a

Figure 1: First and second principal components for the factor
spaces of the descriptors and CAI inhibitory activity data.
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molecular connectivity descriptor that is based exclusively on bond-
ing and branching patterns, plays a role in the binding to the recep-
tor. It was found that higher molecular connectivity tends to block
the drug binding to the receptor.

On the other hand, for the binding of sulfonamides to CAII isozyme,
it was found that the presence of five-membered ring plays the
most significant role. The presence of such rings in the sulfonamide
derivatives blocks their binding to the receptor. Similar to what was
found for the binding of sulfonamides to CAI isozyme, the first-order
valence connectivity index (1vt) plays a role in the binding to the
receptor where higher molecular connectivity tends to block the
drug binding to the receptor.

For the CAIV isozyme, the obtained QSAR model showed the extre-
mely significant role of softness, so that the more polarizable is the
ligand, the stronger it binds to the receptor. This QSAR model sug-
gested the importance of acid–base interactions in the binding of
sulfonamides to the isozyme. Again, the molecular connectivity was
obtained as another controlling factor in ligand–receptor binding for
this QSAR model. The effect of this descriptor was found to be in
the same order of that found for CAII isozyme. Another significant
descriptor in this model is the lp2 (indicator of the halogen pres-
ence in the sulfonamide moieties) where it was found that the
presence of halogen in the sulfonamide moieties blocks the binding
to the CAIV isozyme.

Finally, Table 1 shows that the first-order valence connectivity index
(1vt) and the topographic electronic descriptor (TE1) play a role in
the binding to the receptor for all the CA isozyme types, I, II and
IV, although the contribution of the former descriptor to the binding
of the receptor for the CA isozymes is more important than that of
the latter.

Table 2 shows that the lowest root mean square error (RMSE) of
prediction and calibration (RMSEC = 0.327 and RMSEP = 0.379) are
obtained for the regression model of the log Ki(hCAII). The calibra-
tion and cross-validation coefficients of determination (R2

C and R2
CV,

respectively) obtained for this data set are both 0.718 while the
prediction coefficient of determination (R2

P ) is 0.701. The linear
relationships found by MLR analysis provide models with good
cross-validation parameters. The coefficient of determination of
prediction is close to the coefficient of determination of calibration,
which is good evidence that the models are not overfitted. For the
model to be overfitted, it is to be expected that the fitted relation-

ship will appear to perform less well on a new unseen data set
(prediction set) than on the data set used for fitting (calibration
set). In particular, the value of the prediction coefficient of determi-
nation will shrink relative to the original calibration data, which is
not the case here.

Table S4 in the Supporting Information shows the results for ran-
domization test performed to investigate the probability of chance
correlation for the models obtained using the MLR analysis. The
low value of the coefficients of determination obtained from the
randomization test suggests that the QSAR models discussed earlier
have not been obtained by chance.

An effective approach to improve the predictive power of simple
linear equations was suggested in (42). This can be achieved by
adjusting the data to higher-order fitting polynomials to generalize
first-order multivariate formulas. Therefore, the obtained models
were further investigated using the PC-ANN analysis as discussed
later.

Principal component-artificial neural networks
The inputs of the ANN were the subset of the descriptors used in
different MLR models (Table 1). A three-layered feedforward ANN
model with back-propagation learning algorithm (43) was employed.
First, the nonlinear relationship between the subset of descriptors
selected by stepwise selection-based MLR (Table 1) and the inhibi-
tory activities of log Ki(hCAI), log Ki(hCAII), and log Ki(hCAIV) values
was preceded by ANN models with similar structure. The number
of hidden layer's nodes was set 6 for all models, and the number
of nodes in the input layer was the number of PCs extracted for
each subset of descriptors.

Table 1: Regression models suggested by multiple linear regres-
sion analysis

Activity Regression model

hCAI log Ki(hCAI) = 7.240 (€0.508) ) 0.845 (€0.092) · 1vt + 0.114
(€0.018) · TE1 + 2.181 (€0.737) · HE ) 0.066 (€0.037) · DMz

hCAII log Ki (hCAII) = 3.097 (€0.194) ) 0.280 (€0.056) · 1vt ) 0.634
(€0.139) · lp3 ) 0.047 (€0.023) · DMy + 0.024 (€0.010) · TE1
+ 0.033 (€0.017) · DMx ) 0.224 (€0.141) · lp2

bCAIV log Ki (hCAIV) = 7.141 (€0.768) ) 0.509 (€0.046) · 1vt

+ 0.139 (€0.029) · TE1 ) 11.193 (€3.637) · SOF ) 0.441
(€0.111) · lp2 ) 0.229 (€0.100) · Qtot + 0.068 (€0.033) · HF

Table 2: Regression and cross-validation parameters of the mod-
els suggested by the MLR, PC-ANN, and CR-PCR analyses

hCAI hCAII bCAIV

MLR analysis
RMSEC 0.576 0.327 0.379
RMSEP 0.733 0.379 0.388
R2

C 0.778 0.718 0.704
R2

P 0.745 0.701 0.820
R2

CV 0.778 0.718 0.704

PC-ANN analysis
RMSEC 0.732 0.255 0.343
RMSEP 1.014 0.270 0.488
R2

C 0.647 0.831 0.774
R2

P 0.661 0.838 0.755
R2

CV 0.323 0.779 0.572

CR-PCR analysis
RMSEC 0.541 0.282 0.305
RMSEP 0.624 0.310 0.329
R2

C 0.785 0.781 0.748
R2

P 0.878 0.838 0.869
R2

CV 0.726 0.719 0.664

PC-ANN, principal component-artificial neural networks; CR-PCR, correlation
ranking-principal component regression; MLR, multiple linear regression.
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Then, to optimize the performance of the suggested ANN models,
we trained the ANN using different number of hidden nodes start-
ing from 2 to 15 hidden nodes. The selection of the optimal number
of hidden nodes was made according to the following two criteria:

• The assessment of the predictive ability of a multivariate calibra-
tion model is based on the determination of the minimum predic-
tion error (44).

• Large numbers of hidden nodes often draw attention to the pos-
sibility of having overfitted model (45).

Therefore, the RMSE of prediction is the parameter considered to
decide on the optimal model. When deciding on the optimal number
of hidden nodes for each model, the models obtained using small
numbers of hidden nodes were favored over those obtained using
large number of hidden nodes,

Figure S1 in the Supporting Information shows plots of RMSEP

against number of hidden nodes for the models obtained for the
three isozyme activities. This figure shows the optimal number of
hidden nodes obtained for the three isozyme inhibitor activities I, II,
and IV are 9, 8, and 6 hidden nodes, respectively. Changing the num-
ber of hidden nodes affects the prediction accuracy of the model
much more than it does for the calibration (or generalization) accu-
racy of the models (see Table S5 in the Supporting Information). It
can be noticed from Figure S1 in the Supporting Information that the
RMSEP for the ANN model obtained for the CAI isozyme inhibitor
activity model is larger than that obtained for the CAII and CAIV
inhibitor activities. The results of the optimal models obtained by the
PC-ANN analysis are given in Table 2. This table shows that the low-
est RMSEP and RMSEC (0.270 and 0.255, respectively) are obtained
for modeling the log Ki (hCAII) data set. The R2

C and R2
CV obtained

for this data set are 0.831 and 0.779, respectively while the R2
P for

this model is 0.838. Following the same argument used in discussing
the MLR models, it is to be concluded that the PC-ANN model is not
overfitted as the coefficient of determination of prediction is larger
than the coefficient of determination of calibration.

Generally, the nonlinear relationships according to ANN analysis
provide models with better regression coefficients and cross-valida-
tion parameters compared with MLR analysis. Table S6 in the Sup-
porting Information shows the results for randomization test
performed to investigate the probability of chance correlation for
the optimal models obtained by the PC-ANN analysis. The low val-
ues of the coefficients of determination and high values of RMSE
obtained from the chance correlation test prove that the ANN mod-
els have not been obtained by chance.

Correlation ranking-principal component
regression
The R2

P of each PC with the inhibitory activity was used for ranking
the extracted PCs. The same approach was applied to each of the
log Ki(hCAI), log Ki(hCAII), and log Ki(hCAIV) inhibitory activities, sep-
arately. Figure 2 and Table S7 in the Supporting Information show
the ranking of the PCs obtained by PCR for each inhibitory activity
according to their R2

P values. Then, these PCs were entered to the

PCR models successively, according to their R2
P values. The number

of PCs in the regression models suggested from PCR analysis for
the PCs extracted is varied between 1 and 37. The evolution of R2

P
and RMSEP as the function of number of PC entered to the regres-
sion model is plotted in Figure S2A,B in the Supporting Information,
respectively. This figure shows that the R2

CV values are increasing
while the RMSEP values are decreasing with increasing model num-
ber (where more PCs are added to the regression model) until it
reaches some plateau. This figure also shows that by successive
addition of PCs to the inputs of the PCR, the model performance
increased for up to 9, 6, and 7 PCs for the inhibitory activities of
log Ki(hCAI), log Ki(hCAII), and log Ki(hCAIV), respectively. The
corresponding PCs used in each regression model for each of the
CA I, II, and IV isozyme inhibitory activities are (PC18 + PC9 +
PC24 + PC1 + PC7 + PC14 + PC2 + PC10 + PC13), (PC17 + PC13 +
PC10 + PC9 + PC24 + PC1), and (PC10 + PC1 + PC17 + PC18 + PC9

Figure 2: Principal components extracted from the CA inhibitory
activities: log Ki(hCAI), log Ki(hCAII), and log Ki(bCAIV) datum using
the principal component analysis approach ranked according to their
R2

P values.
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+ PC13 + PC7 + PC23), respectively. The predictive abilities of the
models were not enhanced significantly by adding more PCs to the
regression models. Table 2 shows the regression and cross-valida-
tion parameters obtained when employing the CR-PCR analysis for
each of the inhibitory activities of log Ki(hCAI), log Ki(hCAII), and
log Ki(hCAIV). This table shows that the regression model obtained
for the CAII isozyme inhibitory activity has the lowest RMSE values
(RMSEC = 0.282 and RMSEP = 0.310). The R2

C , R2
CV, and R2

P
obtained for this model are 0.781, 0.719, and 0.838, respectively.
Again, the larger coefficient of determination of prediction com-
pared with that of calibration indicates that the model is not over-
fitted.

Generally, the linear relationships according to CR-PCR analysis pro-
vide models with good cross-validation parameters. Table S8 in the
Supporting Information shows the results for randomization test per-
formed to investigate the probability of chance correlation for the
optimal model using the CR-PCR analysis. The low values of the
coefficients of determination and high RMSE values obtained from
the chance correlation test prove that the QSAR models obtained
by the CR-PCR analysis are better than those obtained by chance.

In summary, both the first-order valence connectivity index (1vt) and
the topographic electronic descriptor (TE1) play a role in the binding
to the receptor for all the CA isozyme types: I, II and IV. However,
the contribution of the (1vt) is more important than that of the TE1.
Furthermore, the models equations in Table 1 suggest that the inhi-
bition activities of the CA isozyme types I, II, and IV increase with
decreasing the first-order valence connectivity index (1vt) values
and with increasing the topographic electronic descriptor (TE1) val-
ues. The nonlinear relationship between the subset of descriptors
selected by stepwise selection-based MLR (Table 1), and the inhibi-
tory activities of log Ki(hCAI), log Ki(hCAII) and log Ki(hCAIV) values
were preceded by ANN models with similar structure. However, for
the PC-ANN as well as for the CR-PCR methods, we used the num-
ber of PCs extracted for each subset of the descriptors used in dif-
ferent MLR models. Therefore, the comparison between the
descriptors used in these methods will not be direct.

Comparing the linear, MLR and CR-PCR, and nonlinear, PC-ANN,
methods applied in this study, one can see that the PC-ANN analy-
sis provides models with better prediction ability than those
obtained by MLR and CR-PCR analysis, considering the CAII isozyme
inhibitory activity model. Nevertheless, the CR-PCR analysis provides
models with the lowest prediction and calibration RMSE values for
the three types of isozyme inhibitory activities in general.

The linear MLR analysis provides models with higher regression
coefficients and cross-validation parameters, compared with CR-PCR
and PC-ANN analyses, for the CAIV isozyme inhibitory activity while
the CR-PCR analysis provides models with higher regression coeffi-
cients and cross-validation parameters, compared with MLR and
PC-ANN analyses, for the CAI isozyme inhibitory activity. Further-
more, the nonlinear PC-ANN analysis provides models with higher
regression coefficients and cross-validation parameters compared
with MLR and CR-PCR analyses, for the CAII isozyme inhibitory
activity. In summary, CR-PCR analysis provides models with better
prediction capability for the three types of the CA isozyme inhibitory

activity. The hCAII isozyme models obtained using the different sta-
tistical analysis applied in this study are superior over the models
obtained for hCAI and bCAIV isozyme inhibitory activities.

Table S2 in the Supporting Information shows the observed, pre-
dicted inhibitory activities for the three types of CA isozymes as
well as their residues as obtained from the MLR, PC-ANN, and CR-
PCR analyses. Figure 3 shows the predicted and observed inhibitory
activities obtained by the CR-PCR analysis for the CAII isozyme
inhibitory activity. The results obtained in this study agree with the
results reported in (17), in signifying the importance of acid–base
interactions in the binding of sulfonamides to the isozyme.

Conclusions

A QSAR analysis has been performed on three types of CA isozyme
inhibitory activities for 53 sulfonamides using MLR, PC-ANN, and
CR-PCR analyses. It was observed that the interaction between the
ligand and receptor varies from one type of CA isozyme to another.
The latter finding proposes the possibility of designing selective
ligands toward a specified CA isozyme by taking such interactions
into consideration (38–41). The results obtained offers very good
regression models that hold good prediction ability. Correlation
ranking-principal component regression analysis provides models
with better prediction capability for the three types of the CA iso-
zyme inhibitory activity while PC-ANN analysis provides models with
better prediction capability for the hCAII isozyme activity. Generally,
the models obtained for modeling the hCAII isozyme inhibitory activ-
ity are superior over those obtained for modeling the hCAI and
bCAIV isozyme inhibitory activities.

Figure 3: Plot of the predicted log Ki(hCAI), log Ki(hCAII), and
log Ki(bCAIV) against observed ones and their residuals obtained
from the correlation ranking-principal component regression analy-
sis. Black diamonds and red squares indicate data from the calibra-
tion and prediction sets, respectively.
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The QSAR model obtained for CAI indicated that the molecules
with higher hydration energies were found to bind to the receptor
strongly. In addition, it was found that higher molecular connectiv-
ity tends to block the drug binding to the receptor. On the other
hand, for the binding of sulfonamides to CAII isozyme, it was
found that the presence of such rings in the sulfonamides blocks
their binding to the receptor. For the CAIV isozyme, the obtained
QSAR model illustrates the extremely significant role of softness,
so that the more polarizable is the ligand, the stronger it binds
to the receptor.

It was found that higher molecular connectivity tends to block the
drug binding to the receptor for the three types of CA isozyme
inhibitory activities. The results obtained show that linear and non-
linear regression analyses are useful tools to distinguish between
the inhibitory activities of sulfonamides toward different CA isozyme
types I, II, and IV.
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