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Abstract 

 

This study deals with a nuclear method of Gamma- Ray Backscattering Spectroscopy 

as a method that could be applied in measuring material bulk density specially soil density.  

The detection system consists of a 3” × 3” inch NaI(Tl) detector connected to 

multichannel analyzer Inspector 2000 from Canberra instruments and lap top computer. 137Cs  

is used as a Gamma-Ray emitter with energy of  662 KeV. Different soil types with different 

bulk densities are used in calibration process. 

 

Before applying this technology in the field, calibration process took  place in order to 

find a relationship between material bulk density and the collected count rate for that material. 

Calibration measurements are performed using three different material with three different 

bulk densities filled in wooden boxes constructed specially for this purpose with dimensions 

of  59×42×34 cm. Gamma ray source is shielded to prevent direct gamma photons from reach 

the detector in direct way.  The detector and shielded gamma-ray source are placed on the top 

of the material’s surface, and gamma ray spectrum for 137Cs is collected for measurement 

times of 60 seconds to prevent background radiation measurement and the elevation on 

instrument’s temperature which could lead to mistaken the measurement. 

Collected spectra are analyzed using Genie 2000 software. Count rates are calculated 

for each spectrum, then a calibration curve is found making it easy to find the mathematical 

relationship between the count rate and the bulk density. Field measurements of bulk density 

(BD) are performed to check the validity of the system calibration. Results of Terra Rossa soil 

were in very good agreement with the measurement density. 
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Count Rate for the calibration process for Terra Rossa with 10 cm as a detector-source 

separation distance was (406 counts. s-1), in the Terra Rossa field with the same distance  (430 

counts.s-1 ). With using 20 cm, count rate in calibration process was (144 counts.s-1), in the 

field it was (141 counts.s-1), we can notice how much the measurements are closed., the count 

rate from energy range of (250-730 KeV). Measurement of bulk density are conducted in five 

different locations at Al-Quds University Main-Campus site. Results of there measurements 

are consistent relating to the type of soil and other materials present at the investigated 

locations.   

 

Field measurements also are performed to study the effect of rain on soil bulk density 

determination. 
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   الظاهرية للتربة باستخدام مطيافية أشعة جاماكثافةالقياس 

  
  ملخص

  

 .  بواسطة استخدام تقنية نووية الظاهريةتناقش  هذه الدراسة طريقة لقياس آثافة المواد

  . استخدمت تقنية مطيافية أشعة جاما الحقليةلتحقيق هذا و

 

بلورة يوديد الصوديوم المطعم بعنصر (  يتكون نظام القياس من مكشاف اشعاع و ميضي  

 من شرآة آانبيرا و  Inspector 2000انش متصل مع محلل طيف من نوع   " 3× " 3بحجم ) الثاليوم

 آمصدر لأشعة جاما ، آما ) KeV662 (  بطاقة Cs  137استخدم عنصر. ع جهاز آمبيوتر محمولذالك م

  . عملية المعايرةبكثافات ظاهرية مختلفة لاجراءاستخدمت أنواع مختلفة من التربة 

  

  عملية المعايرة لايجاد علاقة مناسبة بين آثافة المادةأجريتقبل تطبيق هذه التقنية في الحقل 

 تمت عملية المعايرة باستخدام ثلاثة مواد مختلفة ذات  ).قياسه( و طيف جاما الذي تم جمعه الظاهرية

 صنعت مخصصة لهذا   سم34×42×59ثلاثة آثافات مختلفة معبأة بداخل صناديق خشبية بأبعاد 

بدرع من الرصاص لمنع مرور أشعة جاما بشكل مباشر ) 137Cs(  يغطى مصدر اشعاع جاما. الغرض

ثم  يوضع آل من مصدر أشعاع جاما و المكشاف فوق سطح المادة المراد قياسها لتبدأ . كشاف نحو الم

 حتى يتم تفادي قياس شعاع جاما الطبيعي في بيئة القياس و تفادي .ثانية)60(عملية القياس لوقت قصير

  .القراءاتارتفاع درجة حرارة الاجهزة الذي يؤدي الى احداث فروقات في 

 

يحسب معدل اشعاع  .  Genie 2000جاما التي تم جمعها و قياسها باستخدام نظام تعالج أطياف  

ثم يوضع منحنى المعايرة الذي يوضح العلاقة بين . لكل عملية قياس على حده) (Count Rateجاما 

آثافة المادة و معدل اشعاع جاما الذي تمت معالجته مما يسهل ايجاد علاقة رياضية مناسبة بين آثافة 

  .دة و معدل اشعاع جاماالما

  

 v



النتائج الخاصة بتربة .تمت عملية القياس في الحقل حتى يتم التأآد من مدى دقة عملية المعايرة 

Terra Rossa آانت متوافقة جدا مع النتائج التي تم قياسها من قبل .  

 

ملية المعايرة، تم القيام بقياسات الحقل بعد انهاء عملية المعايرة مستخدمين العلاقة الناتجة عن ع 

 سم و هي المسافة الفاصلة 10 وباستخدام مسافة Terra Rossa في عملية المعايرة معدل العد حيث آان

، و آان القياس في الحقل و على نفس المسافة   ) counts.s-1 406(بين المكشاف و مصدر اشعاع جاما 

)430 counts.s-1 ( ملية المعايرة  سم آان القياس في ع20، اما باستخدام مسافة)counts.s-1 144(  اما

 (KeV الذي يمثل الجزء  ة، و نلاحظ تقارب النتائج، و هذا في مجال الطاق)conts.s-1) 141في الحق

 أجريت قياسات ميدانية في خمسة مواقع مختلفة في الحرم و قد . من طيف أشعة جاما)250 -730

افة الظاهرية في المناطق الخمسة المختلفة الى نتائج  و تشير نتائج تقدير الكث.الرئيسي في جامعة القدس

   .منطقية تتناسب و نوعية التربة و المواد المتواجدة في مواقع القياس

 

  .آما ان عملية القياس قد اجريت ايضا بهدف قياس تأثير مياه الامطار على قياس آثافةالتربة 
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Definition and Abbreviations: 
 
Backscattering:  The process of scattering or deflection into the sensitive volume of a 

measuring instrument radiation that originally had no motion in that direction. The process is 

dependent on the nature of the mounting material, the shield surrounding the sample and the 

detector, the nature of the sample, the type of energy of the radiation, and the geometry. 

 

Channel:  One of an MCA’s memory locations for storage of a specific level of energy or 

division of time. 

  

Compton Scattering: Elastic scattering of photons in materials, resulting in a loss of some of 

the photon’s energy. 

 

Count:  A single detected event or the total number of events registered by a detection 

system.  

 

Detector: A device sensitive to radiation which produces a current or voltage pulse which 

may or may not correspond to the energy deposited by an individual photon or particle. 

 

Full Energy Peak: The peak in an energy spectrum of X-ray or gamma-ray photons that 

occurs when the full energy of the incident photon is absorbed by the detector. 

 

KeV (Kilo Electron Volt): One thousand electron volts. 

 

Multi Channel Analyzer (MCA): An instrument which collects, stores and analyzes time-

correlated or energy-correlated events. 

 

Pair Production: Creation of an electron-positron pair by gamma ray interaction in the field 

of a  nucleus. For this process to be possible, the gamma ray’s energy must exceed 1.022 

MeV, twice the rest mass of an electron. 

 xvii



 

Peak: A statistical distribution of digitized energy data for a single energy. 

 

Photomultiplier Tube (PMH): A device for amplifying the flashes of light produced by a 

scintillator. 

 

Photopeak: See Peak. 

 

Radiation: The emission or propagation of energy through matter or space  by 

electromagnetic disturbances which display both wave-like and particle-like behavior . 

Though in this context the “particles” are know as photons, the term radiation has been 

extended to include streams of fast-moving particles. Nuclear radiation includes alpha 

particles, beta particles, gamma rays and free neutrons emitted from an atomic nucleus during 

decay. 

 

Scattering: A process that change a particles trajectory. Scattering is caused by particle 

collision with atoms, nuclei and other particles or by interaction with electric or magnetic 

fields. If there is no change in the total kinetic energy of the system, the process is called 

elastic scattering. If the total  

kinetic energy change due to a change in internal energy, the process is called inelastic 

scattering. See also backscattering. 

 

Scintillator : A type of detector which produces a flash of light as the result of an ionizing 

event. 

 

Spectrum : A distribution of radiation intensity as a function of energy or time. 

 

Spectrometer: A device used to count an emission of radiation of specific energy or range of 

energies to the exclusion of all other energies. See also multichannel analyzer. 

 

 xviii



X-Ray: A penetrating from of electromagnetic radiation emitted during electron transition in 

an atoms to a lower energy state; usually when outer orbital electrons give up some energy to 

replace missing inner orbital electrons.  

   

BD: Soil Bulk Density.

 xix



 

Chapter I 

Soil bulk density 

 

 

1.1 Introduction 

 

The isotope and radiation techniques have become a newly established high-tech 

industry in the developed countries. They penetrate from traditional application 

into the forefront and a new field of modern science and technology such as life 

science and material science. In nuclear techniques, by using nuclear 

characteristics of isotopes (radioactivity decay and mass difference) physical, 

chemical and biological effects of ionizing radiation, the existence and state of 

material can be detected, and their movement and behavior can be traced. So 

that information of material is acquired.  

 

  Nuclear technique as a sensitive means of detecting information can 

hardly be replaced by other sensing means (e.g., sound, heat, light, force, 

moisture, gas and chemical); therefore, it holds a very important position among 

techniques for information acquisition. 
 

  

 

 

 

 

 

 

 1



 Nuclear technique, as a means of material modification or processing, is 

realized through physical, chemical and biological effects, which are created by 

interaction between ionizing radiation and the material. 

 

 Non-destructive testing of engineering components is a prime requirement 

of a quality control programme before putting them into service. Several 

techniques are available for nondestructive inspection, such as radiography, 

ultrasonic testing, eddy current testing and magnetic flaw detection. In all the 

techniques, scanning energy, in different forms such as electromagnetic waves, 

ultrasound waves, electrical energy, polarized light, are applied to the 

component under test and their interaction with a flaw is recorded and later this 

signal is analyzed to extract information. It is known that each technique has its 

limitations. For example, magnetic particle inspection is limited to 

ferromagnetic material, eddy current testing is applicable to electrically 

conducting materials, radiography is less sensitive in detecting planar flaws. 

Therefore, newer methods are emerging in the field of nondestructive inspection 

technology for specific requirements. Infrared thermography, holography, 

neutron radiography, Compton scatter spectrometry are all such techniques. In 

the Compton scatter technique, material is scanned with a photon beam. This 

Compton scattered radiation provides useful information. In this paper, the use 

of Compton scatter radiation for the non-destructive evaluation of materials has 

been explored. 
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 Gamma-source gauges have been successfully used in the industry 

applications, such as measuring: 

 

a. the thickness of metal sheets, 

b. the level of fluids in containers, 

c. the density of fluids,  

d. the analysis of two-component systems,  

e. measuring and controlling the thickness of rolled products such as 

paper, plastic, and metal  

 

 In soil science, nuclear technique also take place. Gamma Ray 

Backscattering Spectroscopy is one of these technique.  

 

 Gamma Ray Backscattering Spectroscopy utilizes a gamma ray source 

usually 137 Cs, to be emitted and pass through the investigated material. Part of 

gamma ray photons will be scattered back by the material’s atoms, to be then 

detected by the scintillation detector. The information from the Compton 

backscattered photons will analyzed by using special software of Genie 2000 

from Canberra. 

 That system is available commercially as a box that contains the gamma 

ray source and the detector, as shown in Fig.(1.1). 

 

 

 

 

 3



 

 

 

Figure (1.1): Commercial device of gamma ray spectroscopy, parts that are 

common to all nuclear gauges are shown.  

 

 

 

 

 4



 In this study, the same principle will be used, but in different design. 

Calibration blocks are also commercially available to reduce consumed time and 

reduce the effort but, as far as the study utilize a special calibration system as 

other studies mention but, using simple and available materials.  

 

 This study employs Gamma Ray Backscattering spectroscopy to measure 

soil bulk density, which is a very important prosperity in soil science. 

Calibration is done for the system and the calibration curve plot for the system 

to find out the mathematical relationship between Compton backscatter count 

rate of gamma ray and soil density. Then field measurement performed in order 

to measure soil bulk density. Other measurements are performed before and 

after rain to watch the changes in the Compton backscatter peak in the gamma 

spectrum and so the changes in the count rate.      
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1.2  Importance of soil bulk density determination in soil science 

 

Soil bulk density is an expression of the mass to volume relationship or dry 

mass to volume of the sample. Bulk density is expressed as Mega gram per 

meter cubic (Mg / m3 )  or gram per centimeter cube (g / cc). 
 

                                                    

)1.1 Eq(
soilofvolum

soilof dry weightoven)cm / (gdensity bulk  soil 3 =

Soil bulk density takes into account the total soil volume (the space 

occupied by the solid particles plus the space occupied by the air of the pores or 

pore space) (Macros and Reni, 1999). 

 

 Soil Bulk Density (BD) plays an important role in determining if the soil 

has the physical characteristics that necessary for plant growth, building 

foundations or other uses. In soil science, measuring soil bulk density will 

enable the calculation of other physical and chemical properties. By calculating 

soil bulk density, we can calculate soil compaction. Compaction is a change in 

soil structure, not just an increase in soil density. Healthy soils have a diversity 

of pore sizes, while compacted soils have mostly small pores (university of 

Minnesota, 2002) an increase in BD indicates that movement of air and water 

within the soil has been reduced, and that the soil may be less favorable for plant 

growth or be more likely to erode (Miller. R. et al, 2001) so measuring soil 

compaction is important in agricultural activity and in construction application. 

 

 6



Soil porosity can be calculated too. Porosity is pore volume expressed as a 

fraction of total soil volume. Porosity can be calculated if bulk and particle 

densities are known.  
 
  Gravimetric water content can also be calculated  which is mass of water 

per mass of oven-dry soil, expressed as a percent, and volumetric water content 

which is volume of water per total volume of soil and is expressed as a fraction. 

Calculation of gravimetric water content and volumetric water content will lead 

to calculate the percentage saturation (amount of pores filled with water relative 

to total volume to pores) by using a proper equations. Therefore, bulk density is 

important in quantitative soil studies and construction engineering. 

 

1.3 Environmental factors that affect soil bulk density 
 
 

Soil bulk density highly depends on soil moisture, compaction, texture, 

depth and mineral and organic material content.  

 

 Soil structure and texture largely determine its bulk density. Soil structure 

refers to the arrangement of soil particles into secondary bodies called 

aggregates. Since fine-textured soils generally have more total pore space than 

coarse-textured soils, the finer soils also generally have lower bulk densities. 

Bulk density values of fine-textured soils commonly range from 1.0 to 1.3 g / 

cm
3
, while those of sandy soils range from about   1.3 to  1.7 g /cm

3 (Bouma. J, 

1982). Despite this general difference in bulk density between sandy and clayey 

soils, sandy soils are referred to as “light” and clayey soils as “heavy”. This 

terminology refers to relative ease of tillage, not typical bulk densities.  
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Soil compaction strongly alters soil bulk density. Soil compaction, due to 

traffic from machinery or livestock or due to natural processes, decreases soil 

pore space and, therefore, increases bulk density. Since clay particles are plate-

like, clay soils can be readily compressed and molded. Such compressibility, 

together with the low bulk density of clay soils, allows for substantial increases 

in bulk density when clay soils are compacted. In contrast, sand grains cannot be 

molded together. Thus, compaction of sandy soils with relatively small 

porosities does not lead to as great of increase in bulk density as occurs when 

clay soils are compacted. Although fine-textured soils generally have lower bulk 

densities than coarse-textured soils, the opposite can be true in compacted soils.  

 

Accumulation of organic matter in soil lowers bulk density in two ways. 

First, the particle density of organic matter is much less than those mineral 

particles. Secondly, and more importantly, organic matter promotes the 

formation and stabilization of soil aggregates. Due to interaaggregate pore space 

the porosity of well-aggregated soil is greater than that of a poorly aggregated 

soil. Accordingly, bulk density is lower.  
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In general, bulk density determined by soil texture and modified by soil 

structure. Within any textural class a certain range in bulk density is expected 

and whether, within this range, bulk density is relatively low or high depends on 

the degree of structural development. Whereas texture is not affected by soil 

management, soil structure is a fragile property that can deteriorate with 

intensive cultivation, exposure to raindrops and machinery traffic. 
 

Soil content alters the soil bulk density, for example, sandy soil has high 

density because of its texture with low pore spaces and the absence of organic 

material (which have low density). Sandy soil bulk density ranging from 1.2 to 

1.8 Mg /m3. In another soil type as clayey or silt soils have lower bulk density, it 

can be low as 1.1g/cm3. Because of high organic material content, pore spaces 

and high degree of aggregation in its texture. Soil bulk density ranging from 1.0 

to 2.0 Mg/m3 (Bouma. J, 1982).  

 

 Soil depth also affects the soil bulk density, as deep the soil as high the 

bulk density because of decreasing in the organic material content and 

decreasing the soil aggregation.  
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1.4 Soil Bulk Density Determination 

 

 To measure soil bulk density, several methods are introduced. They are 

divided into two main categories: sampling methods and radiation methods.   

 

1.4.1 Sampling Methods 

 

All sampling methods depend on taking the sample from the field to the 

lab, measuring its dry mass, then measuring its volume. The bulk density 

measurement should be performed at the soil surface and/or in a compacted zone 

if one is present. Measure bulk density near (between 1 and 2 feet) the site of the 

respiration and infiltration tests. To get more representative soil bulk density 

measurements of the area, additional samples may be taken. 

 

  The ways to achieve that are different, so there are many different ways of 

sampling methods: 

 

a. Clod method. 

b. Core method. 

c. Excavation method. 
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a.  Core Method 

 

Core method depends on taking a sample from the field by using a special 

tools of cylinder with known diameters and garden trowel, flat-bladed knife, 

sealable bags and marker pen, to remove the sample from its field as shown in 

Fig.(1.1). In the field, the cylinder pushing into the soil and the depth of it 

should be exactly determined for an accurate soil volume measurement, and then 

carefully lift the cylinder out to avoid any soil loss. Excess soil should be 

removed by using the flat-bladed knife and then place the sample in bag and 

label it. In the lab, the sample should be weighed, then be dried into a 

microwave and then be weighed again to calculate its water content if it is 

requested.  

  Disadvantages of core method are that the soil will maintain in its natural 

conditions, if it is handled carefully. Core method have a lot of disadvantages, in 

this method the samples are easy to disturb, the transportation of the sample  is 

consuming of time and effort especially when a big number of samples  is 

requested which is better to have an accurate calculations. In the field, having an 

aggregate in the sample will be a problem. 

 

 

 

 

 

a.                                                               b. 

Figure ( 1.2 ): The cylinder of core method before inserting in the soil and after. 
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Using this method, soil bulk density is determined as follows: 

 

).21. Eq (
coreofvolume

core)ofmass(core)ofmasssoilof(massBD −+
=         

 

b.  Clod Method 

 

  Clod method uses large soil peds or clods. Clod volume is determined by 

pouring the soil into a graduated cylinder and measuring the volume that it 

occupies. The problem with this procedure is that structural aggregates may be 

crushed or compacted once they are removed from the soil and placed into the 

cylinder. A better procedure is one in which the aggregates could be removed 

from the soil and frozen exactly the way they were in the soil. Plastic fixatives 

enable us to do this.  

 A large aggregate has been removed from the soil and is being fixed by 

dipping it into a saran solution. This will make the clod impervious to water.  

Weight of the clump of soil can be obtained by hanging it on the balance or 

placing it on the metal weighing tray. 

 The volume of the clod also needs to be determined. This can be obtained 

by weighing the sample again. This time the sample only will be in water. The 

weight of the sample now will be less, since the sample will be buoyed up by the 

amount of water it is displacing. Thus, by subtracting the weight of the clod in 

water from its weight in air, we obtain the weight of the water displaced by the 

clod, which equals the volume of water displaced by the clod (because 1 cm³ of 
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water =1 gm. of water) and is equal to the volume of the soil clod. By clod 

method BD is determined as: 

                            

                               ).31. Eq(
displacedwaterofvolume

coldof massBD =     

c.  Excavation Method 

This method is to be used when rocks or gravels prevent sampling bulk 

density by the core method, so it is good for the heterogeneous soil. The soil in 

this method is removed from the field and filled in a plastic bag as illustrated in 

Fig.(1.2 ) below. 

 

 

 

 

  

 

 

 

 

Figure (1.3): A hole digging in purpose to measure soil bulk density in 

excavation method. 
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The lifted hole should lined with plastic wrap as shown in Fig.(1.3). Some 

excess plastic wrap are lifted around the edge of the hole. Sieved rocks are 

placed and graveled carefully in the center of the hole on top of the plastic wrap. 

The pile of rocks must not protrude above the level of the soil surface. 

 

 

 

 

 

 

 

 

 

 

Figure (1.4): A hole lined by the plastic and fixed by rocks to fill with water for 

volume measurement in excavation method. 

 

 Soil’s bag transported to the lab to be weighed then dried and weighed 

again to calculate the moisture content. 

 

 Water added to the hole using the 140 cc syringe to keep track of how 

much water is needed to fill the lined hole. The level of the water should be even 

with the soil surface. The amount of water represents the volume of the soil 

removed. 
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Excavation method is good for the heterogeneous soil rather than core and 

clod methods. On the other hand, this method has a disadvantage, that is, it is a 

time consuming method. The worst disadvantage for all the sampling method is 

that all are destructive methods and so repeating the sampling procedure for the 

same site is impossible. 
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Chapter II 

Radiation Methods for Soil Bulk Density Determination 

 

2.1 Types of Radiation Methods for measuring soil bulk density: 

 

Radiation methods utilize the emission and detection of gamma rays for 

the measurement of the density of a material.  

 

Gamma ray is a form of high-energy radiation, which readily penetrates 

most materials. In the transmission of Gamma ray between a source and 

detector, a proportion of these rays will be absorbed and scattered in accordance 

with the density of the material between the source and detector. As the density 

of this material increased, the number of absorbed and scattered gamma ray 

increase and the number reach the detector decrease. A relationship then exists 

between the detected gamma radiation (backscatter or transmission) and the 

density of the material.  

The radiation method used for measuring soil density has several 

advantages over other related laboratory techniques:  

 (1) It yields an in-situ evaluation of soil density.   

          (2) It causes minimum disturbance of the soil. 

 (3) It requires a relatively short measurement time. 

          (4) It is more applicable for deeper subsoil determinations because    it 

requires minimal excavation. 
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          (5) It is a nondestructive technique because continuous or repeated 

measurements can be performed at the same spot. 

Radiation methods also have some disadvantages compared with the other 

methods. Because it is a more sophisticated technique, it requires expensive 

equipment and highly trained operators who must be able to handle the frequent 

calibration procedures, the electronics, and the sampling equipment. The system 

operator has to train on the radiation aspects and radiological protection 

procedures of the entire operation.  

There are two basic methods of radiation methods utilizing radiation in soil 

bulk density measurements:  

 

1. Transmission method. 

2. Backscatter method. 

 

2.1.1 Transmission Method: 

  

Transmission method is one of the radiation methods used in measuring 

soil bulk density. It is referred to as a surface nuclear gauge SNG. "Over the past 

25 years, the use of SNGs has become increasingly common on construction 

sites. The SNG was developed for quality control of sub grade and base material 

compaction during road construction" (Thomas B., May 2001). "Because the 

instrument is currently in use on construction sites, SNGs has also been used as 

an alternative to traditional excavation methods for determining bulk densities" 

(Thomas B., May 2001). 
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"Alberty et al. (1984) used a nuclear densitometer to measure bulk density 

on construction sites. The nuclear densitometer was easy to use and allowed 

rapid determination of soil bulk density with immediate readout" (Thomas B., 

May 2001). "The limitations to its uses by the landscape industry were the 

expense of purchase, health risks associated with nuclear radiation and the need 

for a licensed operator" (Thomas B., May 2001). 

 Transmission method is used frequently on construction sites by road and 

building technicians. Transmission method’s electronic components are placed 

on the soil surface when measuring the wet density of the soil. The gamma 

source is lowered into the soil while the detector is located within the instrument.  

Gamma rays will reflect on almost everything in the soil, including water. When 

a gamma ray penetrates a material, the beam can be absorbed by the material, be 

deflected (could be deflected several times) but continue in a different direction 

with a lower speed, or the beam will penetrate the material without deflection or 

absorption. "Although it is impossible to measure the exact reaction of a beam 

through a material, it is possible to calculate the percentage of a source that is 

absorbed, deflected, or transmitted through the material" (Thomas B., May 2001). 

 

 The denser the soil, the fewer reflected waves are counted by the detector. 

By calibrating the detector, the number of counts can be translated into a 

measurement of the wet soil bulk density" (Thomas B., May 2001).  
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2.1.1.1 Theory of Radiation Transmission Method: 
 

What is known Beer’s law establishes the relationship between the 

attenuated radiation intensity by a target and other parameters of the system. It 

can be written as: 

 

                        I = I◦ exp (- µρχ)                           (Eq 2.1) 

                                                    
 
 

 
X

 

 

 I0 I 
 

 

                               I  =  I0    e(- µρχ)             
 

 

Figure (2.1): Principle of gamma ray attenuation method.  

 

 

where I0 is : incident gamma ray beam intensity (cont s-1) , and  

          I is :  emergent gamma ray beam intensities (cont s-1), 

          µ is:  the mass attenuation coefficient of the target (m² kg-1),  

          ρ is: the density of the target (kg m-³) and χ is the thickness of the               

target (m). 
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 Gamma ray transmission increases with increasing of gamma ray energy 

and decreases with increasing material thickness. 

 

 Transmission method gives good accuracy, least composition error and 

least surface roughness error. It can be used for testing over a range of depths 

from 10 cm to 30 cm, which need a borehole to dig.  

 Transmission method is easy, fast and accurate but it has a disadvantage 

that it is need a hole to dig so, it is partially destructive and the operator should 

know the mass attenuation coefficient, and the thickness of the absorber 

material. 
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2.1.2 Backscattering Method: 

Backscatter is the amount of radiation that is been deflected by the 

material and is measured by placing the detector and the source on the surface of 

the material.  

The backscatter technique relies on the detection and analysis of Compton 

scattered photons at the surface of the bulk material that is being irradiated (one 

measurement position)  by a source placed some distance away (D), in another 

words a counter in the device established the number of Gamma ray that 

backscattered. The returning rays are proportional to the density. 

Backscatter technique is useful for semi-infinite bulk materials such as 

soil or concrete surfaces or boreholes where the linear geometry of source 

sample and detector is not achievable. The technique is also useful for slabs or 

the walls of long tubes where only one side of the material is accessible. The 

backscatter method is also attractive in that it requires no moving parts other 

than deployment to the surface of the material ( Ball. A, 1997).  

Several characteristics of the backscatter technique are critical. First, it is 

more sensitive to the material nearest the surface than to material farther down. 

Typically, 80% to 95% of the detector count comes from the top 5cm; little 

comes from below 10 cm. Although nuclear gauges operating in the backscatter 

mode get most of their count from the top 5 cm, they still get 5% to 20% from 

the 5 to 10 cm range.  
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 The second important characteristic is the system's sensitivity to surface 

roughness. 

 As with any other test method, the user must be concerned with precision 

how reputable are a gauge’s readings at a given location. For nuclear detector's, 

precision is better when the returning Gamma ray are counted for a longer 

period of time. Typically, a one-minute count would have a precision of +/- 8.0 

Kg/ m3. A four-minute count would be accurate to +/- 0.4 Kg/ m3. 

The limitations for nuclear testing equipment are the precautions that must 

be observed when handling radioactive material, and the fact that false readings 

are sometimes obtained from organic soils or materials high in salt content. 

Calculation shows that 50% of the total response of the instrument 

originates from 14% of the volume of the soil from a hemisphere of radius D, D 

being the source-detector separation. Since the response pattern of this type of 

backscatter gauge is far from uniform, it is necessary to consider the response 

patterns in planning the conditions of experiments involving these systems to 

obtain the highest sensitivity. This is of particular importance in studying soils 

of a heterogeneous nature ( G.devlin, D.taylor, 1970 ). 
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In comparison between backscatter and transmission technique, 

transmission technique can reach a depth more than backscatter, for example if 

one of the detector or the source put into depth of 30 cm the readings will 

accepted. In this technique, we can make a hole for a source or in some studies; 

we can place the detector and the source on the surface. Backscatter method is 

truly non destructive method.  

In backscatter technique, it is good to shield the source and detector from 

each other so that direct radiation cannot pass from the source to the detector. 

On the other hand, gamma ray from the source can pass downwards into the 

ground and a proportion of these gamma ray photons will scatter onto the 

detector, the response is a function of the density of the section of the ground 

under test.  

Such devices are widely used in well logging, soil science and in the 

manufacturing and construction industries. 
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Chapter III 

Backscattering Gamma Ray Spectroscopy 

 

3.1 Gamma ray 

Gamma rays (denoted as γ) are a form of electromagnetic radiation or 

light emission of frequencies produced by sub-atomic particle interactions, such 

as electron-positron annihilation or radioactive decay. Gamma rays are generally 

characterized as electromagnetic radiation having the highest frequency and 

energy, and also the shortest wavelength (below about 10 picometer), within the 

electromagnetic spectrum. Gamma rays consist of high-energy photons with 

energies above about 100 keV.  

 

 Unlike light, gamma rays can penetrate various materials. Several 

centimeters of soil could be penetrating without disruption, although gamma 

rays will reflect on almost everything in the soil, including water.  
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3.2 Interactions of gamma ray with matter 

 

 Knowledge of gamma-ray interactions is important to the nondestructive 

essayists in order to understand gamma-ray detection and attenuation.  

 

Gamma ray interact with the detector in many ways caused the gamma 

ray spectrum appear in a special shape with gamma energy appear as pulse 

height distribution. 

   

To understand the pulse height distribution associated with the gamma 

rays from a radioactive source, it is important to realize that only a fraction of 

the gamma rays interact with the detector; many do not interact at all and simply 

pass right through. Furthermore, when a gamma does interact, the size of the 

pulse from the detector depends on whether all or only part of the gamma energy 

is deposited in it. 

 

  Gamma rays of interest in this work fall in the range from 100 KeV to 

about 1 MeV. Gamma ray interacts with material in many ways, which is the 

reason in the shape of the gamma ray spectrum that appears in the monitors. 

Gamma ray interacts with materials in three main ways: 

 

1. Photoelectric absorption. 

2. Compton scattering. 

3. And pair production. 
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3.2.1  photoelectric absorption: 

 

 In this type of interaction gamma ray loses all of it's energy in one 

interaction with electron around the atom usually K shell electron cause it's 

ejecting from the atom with a kinetic energy equal to the incidence gamma ray 

minus it's binding energy. 

 

                                                                                 E-EE be γ= ). 3.1 Eq (
 

  Photoelectric effect much common with gamma energy below 50KeV, but 

it less important at higher energy because photo effect depend on gamma ray 

energy, Atomic number (Z) of the absorber and the binding energy. 

 

 

 

 

 

 

 

 

 

                             

                   

 

Figure (3.1): A schematic representation of the photoelectric absorption               

process. 
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3.2.2 Compton Scattering: 

 

Compton scattering is the process whereby a gamma ray interacts with a 

free or weakly bound electron and transfers part of its energy to the electron. 

This interaction involves the outer, least tightly bound electrons in the scattering 

atom. The electron becomes a free electron with kinetic energy equal to the 

difference of the energy lost by the gamma ray and the electron binding energy, 

Gamma ray change it's direction after that, scattered gamma and free electron 

direction depend on the incident gamma ray (the angle between them depend on 

original energy). 

  

  Because the electron binding energy is very small compared to the 

gamma-ray energy, the kinetic energy of the electron is very nearly equal to the 

energy lost by the gamma ray: 

 

                                                 EEe = ) 3.2 (EqE'-γ
 

 

where Ee = energy of scattered electron 

           Eγ= energy of incident gamma ray 

           E' = energy of scattered gamma ray. 
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Figure ( 3.2 ): A schematic representation of Compton scattering. 

 

Because Compton scattering involves the least tightly bound electrons, the 

nucleus has only a minor influence and the probability for interaction is nearly 

independent of atomic number. The interaction probability depends on the 

electron density, which is proportional to Z/A (where: Z is the atomic number 

and A is the mass number) and nearly constant for all materials. The Compton-

scattering probability is a slowly varying function of gamma-ray energy. 

Compton scattering is common in the energy range of 100 KeV to 10 MeV. 
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3.2.3 Pair  Production: 

 

 Gamma ray with energy of at least 1.022 MeV can create an electron-

positron pair when it is under the influence of the strong electromagnetic field in 

the vicinity of a nucleus. In this interaction the nucleus receives a very small 

amount of recoil energy to conserve momentum, but the nucleus is otherwise 

unchanged and the gamma ray disappears. This interaction has a threshold of 

1.022 MeV because that is the minimum energy required to create the electron 

and positron. If the gamma ray energy exceeds 1.022 MeV, the excess energy is 

shared between the electron and positron as kinetic energy. This interaction 

process is relatively unimportant for gamma ray backscattering spectroscopy 

because most important gamma-ray signatures are below 1.022 MeV. 
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3.3 Gamma Ray Spectrum 

 

When a monoenergetic source of gamma-rays (e.g., 137Cs) is placed near a 

scintillation detector, you expect ideally a spectrum, which is a single photopeak 

caused by the photoelectric effect in the NaI crystal as in Figure (3.4). 

 

 

 

 

 

 

 

  

 

 

               Figure (3.4 ): Ideal photopeak in ideal gamma ray  spectrum 

 

However, other processes take place by which gamma-ray energy is been 

absorbed, thus altering the spectrum shape. Because of the different ways of 

gamma ray interaction with matter, another shape is been produced. 
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 Figure (3.5): Ideal gamma ray spectrum show the photopeak and the compton 

plateau, called the Compton edge. Eγ is the energy of the gamma-

ray and m0c2 is the rest energy of  the electron. This maximum 

energy transfer corresponds to an angle of scattering of the gamma-

ray through 180◦. 

  

It is good to remember that the spectrum you will be looking at in Fig. 

(3.5) is not really a gamma-ray spectrum but is the energy spectrum of the 

electrons that have received energy from the gamma rays. In addition, the 

features of the spectrum are not as sharp as previously indicated because of the 

fact that the number of electrons emitted from the photomultiplier photocathode 

as a result of the flash of light produced by the incoming gamma-ray is of the 

order of a few hundreds. This means that there is a significant statistical spread 

on the number of electrons emitted as a result of an individual interaction and 

this results in the smearing of the photopeak and Compton edge. The final 

spectrum for one gamma ray should be similar to that shown in Fig. ( 3.6 ) . 
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Figure (3.6): A Typical Gamma-Ray Spectrum collected using Gamma-Ray 

Spectrometer with NaI (Tl)detector.   

 

Photopeak and Compton scattering interactions are the responsible 

interactions for the shape of the gamma ray spectrum. In photopeak, the gamma 

ray gives up all of its energy, and the resulting pulse falls in the full-energy 

peak. In most detectors, the photoelectron is stopping quickly in the active 

volume of the detector, which emits a small output pulse whose amplitude is 

proportional to the energy deposited by the photoelectron. Also Compton 

scattering that followed by photo-electric absorption contribute in the 

photopeak. 

 

 

In the Compton interaction section there are three important areas, the 

Compton backscattering peak, Compton plateau and Compton edge. 
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 When a gamma ray enters the crystal, instead of ejecting an electron from 

an atom, it may collide with a (more or less) free electron giving up only a part 

of its energy to the electron. If the scattered gamma ray escapes from the crystal 

then only part of the energy of the original gamma ray is left with the electron in 

the crystal. This results in a smaller amount of light and it is as if a gamma ray 

of smaller energy were completely absorbed in the crystal simple kinematics 

(conservation of energy and momentum) forbids the electron from receiving 

more kinetic energy than:  

 

 
)3.3 Eq (
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Where , Eγ    :  Is the energy of the gamma-ray. 

              m0 c2     :  Is the rest energy of the electron. 

              E max : This maximum energy transfer corresponds to an angle of 

scattering of    the gamma-ray through 180◦. 

 

That energy appears in the gamma ray spectrum as a Compton edge. 
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Compton scattering is a fairly slowly varying function of angle and so 

there will be a distribution of Compton events of energy less than the Compton 

edge, that’s which called Compton plateau . 

 

Backscattering peak generated from the gamma rays that scattered back 

from the environment around the system and from the instrument’s themselves 

that’s photons sure have less energy than the full energy of the original gamma-

ray.  
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3.4 Gamma Ray Backscattering Spectroscopy Theory 

 

Theory of gamma ray backscattering spectroscopy come from the hole 

system component, it is come from, Compton effect while gamma ray 

interaction with matter, interactions in the scintillation detector and the principle 

of the multichannel analyzer. 

 

 The main idea of gamma ray backscattering spectroscopy depends on the 

processes of gamma ray interaction with material. The detected gamma ray will 

form gamma ray spectrum, which is a basket of information about the 

investigated material. Gamma rays interact with material by three main ways. 

The resulted gamma ray spectrum is actually been formed by that different ways 

of interaction, because those interactions occurred into the material so the 

spectrum from the beginning to end hold with it a lot of information about the 

material. 

 

  There are important sections in the spectrum, which they are, have the 

maximum energy and have a shape that make them easy to recognize, that 

sections are photo peak, backscattering peak, and Compton edge. 
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3. 5  Basic Principles of Gamma - Ray Backscattering Spectroscopy 

 

Gamma backscatter density spectroscopy used the Compton scattering of 

gamma ray photons in bulk material to measure density. Such devised are 

widely used in well logging, soil and the manufacturing and construction 

industries. Backscatter density gauges can be applied to semi – infinite bulk 

materials (such as rock or soil), boreholes or structures where the other side is 

inaccessible (the walls of long tubes, for example). Since the cross- section for 

Compton scattering is proportional to the number density of electrons, and the 

ratio of atomic mass to atomic number is 2.0, or nearly so, for all elements 

(except hydrogen) the backscattered count rate is a function of the bulk density.  

   

 Backscatter method involves placing the source and detector on the same 

side of the material to be measured (i.e. on the surface) the basic geometry is 

shown in Fig.(3.7). Gamma radiation emitted from the source must then be 

scattered back towards the detector if it is to be detected. 
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Figure (3.7):Diagram showing the basic geometry of gamma ray backscattering 

density gauge. 

 

Gamma photons emitted from the source are either: 

 

1. Detected having scattered once in the material. 

2. Detected after multiple scattering. 

3. Lost by scattering and absorption in the material. 

4. Stopped by the source shielding. 
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3.5.1 Parameters Affecting Detected Count Rate for a Backscatter                    

Densitometer: 

1. The characteristics of the source: energy, activity and emission direction 

(collimation). 

2. The characteristics of the detector, such as aperture size, field of view, 

efficiency, energy window and susceptibility to background radiation. 

3. The source-detector separation (sonde length). 

4. The scattering and absorption characteristics of the bulk material 

underneath the instrument. 

 

If the parameters 1, 2, and 3 are fixed, so the count rate variation will be a 

result of density changing. "Count rate reaching a maximum at some critical 

value. Above the density the count rate of the scattered photons is been 

reduced by a lack of photons – fewer penetrate far enough into the material to 

scatter into the detector. Below the critical density the count rate is reduced 

by a lack of electrons- lower density." (Jonathan A., 1997). 
 

  Most practical densitometers use 137Cs which emits gamma ray at 662 

KeV, within the energy range where the Compton process dominates. It is 

desirable to use radioisotopes that emit mostly at a single energy; otherwise, 

source photons would encounter differing interaction cross- sections. The 

detector cannot distinguish between photons which, when originally emitted, 

had different energies. (Jonathan A., 1997). 
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Chapter IV 

Methodology and Instrumentation 

 

4.1 Instrumentation 

 

4.1.1 Electronics: 

 

 The electronic system used in this study consists of NaL(Tl) scintillation 

Detector consist (Model 802), preamplifier (Model 2007/2007P), amplifier 

(Canberra Model 2020), multi channel analyzer (InSpector 2000 DSP) and a 

laptop computer. 

 

 

 

 

 

 

 

 

 

 

 

Figure(4.1) : Schematic diagram illustrating the  electronic setup of detection 

system used to acquire the data. 
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4.1.2 Detector: 

• Scintillation Detector – Model  802 

Scintillation detector is the special detector for measuring gamma ray. 

The function of the detector is to convert radiation energy into an electrical 

signal. Scintillation detectors are very sensitive radiation instruments and are 

used in both portable and stationary. 

The scintillation detector used in this work is Sodium Iodide NaI (Tl) 

(Model 208), its include a high resolution NaI (Tl) crystal (The high Z of iodine 

in NaI(Tl) crystals result in high efficiency for gamma-ray detection), a 

photomultiplier tube, an internal magnetic/light shield, an aluminum housing 

,and a 14-pin connector. 

NaI(Tl) detector has high efficiency and a long-term reliability and 

stability. The detector dimensions are 76.2 mm×76.2 mm ( 3”×3”) NaI activated 

with Thallium. The resolution of its crystal is 7.5% at 662 KeV energy of 137Cs , 

from Canberra.   
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4.1.3 Multi Channel Analyzer (MCA): 

 

 The operation of the multi channel analyzer is based on the principle of 

converting an analog signal, which is the pulse amplitude into an equivalent 

digital number usually referred to as channel. After this is done the digital 

information will be stored in the memory to be displayed on the monitor. This 

activity is in principle carried out by the Analog To Digital Converter (ADC) ( 

Knoll,2000). The pulses are collected ,stored according to pulse height in the 

ADC and a γ-ray spectrum  is generated. Therefore the performance of the MCA 

is primarily dependent on the ADC. The results discussed in this work were 

measured using an  MCA (InSpector 2000 DSP) with a PC using the Genie 2000 

software program.      

 

4.2 Genie 2000  Basic Spectroscopy Software 

  Genie 2000 Basic Spectroscopy Software (Canberra Inc., 2000); is a 

comprehensive environment for data acquisition, display and analysis in 

personal computers. It provides independent support for multiple detectors. 

The counting procedure software provides a total environment for the 

application. In addition to taking standard measurements, the procedures provide 

a guided user interface for calibration operations, and quality control. Plus, 

under management level security, setup functions are provided.      

Genie 2000 could do a  Full gamma spectrum analysis, Interactive 

Spectral Analysis, Efficiency correction, Nuclide identification and 

quantification, Library Correlation NID Peak Locate, Interference correction and 
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weighted mean activity calculations, Parent/daughter decay correction 

,Background subtraction and reference peak correction, Minimum Detectable 

Activity (MDA) calculations, Patented true coincidence (Cascade) summing 

correction, Geometry composer for interactive definition of sample/detector 

parameters. 

 

4.3 Calibration Materials of The Detection System 

  Different calibration materials are a prerequisite for nuclear gauge 

measurement of materials density. It allows the conversion of nuclear gauge data 

for material density measurement.  

There are many materials could use in the calibration process, some 

studies used magnesium and aluminum metal cylinders and asphalt cylinder, 

another studies used granite, lime stone, and construction materials. Usually 

calibration done in the manufactures before using the system (Peterson. R, 

1986). 
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In calibration process, to know the density of the calibration material is 

the most important thing, and it is better to be sealed to protect it from material 

leakage and undue changing in weight resulting from environmental factors or 

variation in moisture.  Some manufactures did calibration using a fixed location 

marked on concrete floors or asphalt parking. 

It is desirable to have a simple calibration process so that the system can 

be calibrated without the costly and cumbersome processes of shipping the 

gauge off-site for calibration, and to make it easy to calibrate the system any 

time we need. Calibration material should include a range of densities 

encountered with our field soil. In this study sand, red soil and limestone powder 

are used to calibrate the detection system. 
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4.3.2 Calibration Boxes: 

 Three wooden boxes were especially manufactured to perform calibration 

procedure used in this work, each boxes are 59 cm in length 42 cm in width, and 

34 cm in height. Dimensions of the manufactured boxes were selected from the 

literature (Regimand, A., ( 1997).  

 

The most important thing when choosing the box dimension is to make 

the box represent an infinite volume to the instrument. The main idea of 

choosing this dimension is to make the calibration blocks big enough to situate 

the gamma source and the scintillation detector with a distance, which protect 

the maximum of gamma ray from escaping from the box.  

 

 

 

 

 

 

 

 

 

 

 

Figure (4.2): A box from wood assembled for the purpose of calibration. 
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4.3.3 Gamma-Ray Source: 
 

137Cs point source with 0.662 MeV primary gamma ray energy is used. 137 

Cs is one of the most common radioisotopes used in industry. The most 

dominant interaction between 137Cs gamma-ray range and materials atom is the 

Compton interaction, which make it the most appropriate for our study. 

 

4.4 Gamma ray backscattering spectroscopy calibration:  

 

As with other nuclear gauges, the gauge has to be calibrated to convert 

gamma ray counts to material bulk densities. Calibration process introduces a 

relationship between the MCA channel numbers and the radiation energy that is 

determined, which is necessary for analysis of radiation spectrum. 

  

System calibration is a special calibration for the instruments in order to 

be fit for the field. So a relationship between the material density and the gamma 

ray detected will be easily introduced. 
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4.4.1 Calibration materials for density determination: 

 

Three materials with different known densities are used for calibration 

process in this work. These materials with their densities are listed in the table  

 (4.1) below.  

 

Table (4.1): Materials with known densities that used for calibration of the 

nuclear detection system. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calibration material 

 

 

Density (g / cm3 ) 

Sand 1.6 

Terrarosa (Pedo cal) 1.3 

Limestone powder 1.55 
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4.4.2 Methodology of Calibration: 

 

 Calibration materials are filled into three wooden boxes of the same 

volume. Boxes filled to the top for all materials as shown in the Fig.(4.4) below. 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure (4.3): Wood box filled with sand as a calibration material.  

 

 Boxes are placed in a suitable place, far from the sun ray and wined to 

avoid temperature fluctuation. The boxes shall be in a fixed location, which is at 

least one meter from any vertical projection, and sufficiently clear of other 

nuclear gauges or radiation sources to have no effect on nuclear gauge density 

measurement. 
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 Measurement time is quite short it is 60s. This is in order to minimize 

the effect of background radiation and the temperature fluctuation. Material 

surface in calibration boxes is cleaned from any voids and covered by very thin 

layer of plastic to avoid sand leakage or causing any damage to the instruments. 

  

 Detector placed with face down, matched well to material surface and 

the 137Cs source was shielded and placed at various distances from the detector 

 (from 10 to 30 cm) ,that clear in Fig.(4.5). 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure (4.4): Gamma ray backscattering spectroscopy system with detector  

placed with face down  and the shielded source placed 10 cm 

away from the detector. 
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 Detector – Source Separation Distance (D) varies to study the effect of 

the distance in the count rate and to find out the optimal separation distance to 

apply in the field. Measurement held with distance of  10 , 15 , 20 , 25  

and 30 cm. 

 

 Measurements were performed for the three calibration materials with 5 

different detector – source separation distances. A calibration curve was  

established for this calibration process to find the most suitable relationship 

between material’s densities and the count rate, to apply on the field 

measurements. 
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4.5 Field Measurement Methodology 

  

 Test and actual field measurements are performed in Beit Fajjar and at 

various locations at Al_Quds University main camp in Abu-Dies. The geometry 

of measurement is shown in Fig.(4. 6 ). 

  

 In Beit Fajjar, the field measurement is performed on a Terra Rossa soil. 

At Al-Quds University the field measurements performed on two different types 

of soil. One near Engineering Faculty and the other near the theater area.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure( 4.5 ): The field measurement geometry in Beit Fajjar.  
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Figure(4.6): Gamma ray backscattering spectroscopy applied on Terra Rossa 

soil field in Beit Fajjar . 

  

 

 Then measurements were done in Al-Quds University in two locations, 

one with Terra Rossa soil, Fig.(4. 8 ), and the  other with chalk soil. The sites of 

Terra Rossa soil fields in Beit Fijjar and in Al-Quds University are different 

from their texture and geological formation. 
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Figure (4.7): Measurements held in Al-Quds University in area with Terra Rossa 

soil near the engineering faculty.  

 

 All the previous field measurements were done in summer, and were 

conducted again in winter after rain for once to watch the rain effect on the 

gamma ray backscattering spectroscopy count rate, that is to see effect of water 

on the soil density. 
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               Chapter V 

Results and discussion 

 

 Calibration is performed to establish a relationship between NaI(Tl) 

detector spectra (count rate) to backscattering photons and the material density. 

 

 Three different materials, which have three different bulk densities, are 

used in this calibration process. They are sand (1.6 g / cm3), lime stone powder  

(1.55 g / cm3) and Terra Rossa soil with density of (1.3 g /cm3). The three 

materials are filled in three wooden boxes which are constructed special for this 

purpose. 

  

 Two parts of the collected gamma ray spectra from 137Cs are used for 

data analysis. One within energy range of Compton backscattering peak (180 – 

480 KeV) and the another one within the energy range of (250 – 730 KeV) 

which include the Compton backscattering peak and the photo peak.  
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5.1 Optimization of Detector – Source Separation  Distance 

 

 Gamma ray backscattering spectroscopy geometry include  

a separation distance between the detector and gamma ray source (detector- 

source separation distance) while using the system.  

 

 In this work, different distances are applied while calibration process to 

find out the best distance to use in the field. Distances of 10, 15, 20, 25  

and 30 cm are used.  

 

5.1.1 Gamma Ray Spectra That Collected for Terra Rossa : 

 

 Calibration process initiated with Terra Rossa (pedocal) soil calibration 

box’s, with applied the five different detector- source separation distances. 

Spectra resulted from using the different distances are shown below. 
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Figure (5.1): Gamma ray spectrum of 137Cs source. Detector NaI(Tl) and 

radiation source are located on the top of the Terra Rossa 

calibration material in a wood box. Detector- source Distance is 10 

cm. 
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Figure ( 5.2): Gamma ray spectrum of 137Cs source.  Detector NaI(Tl) and 

radiation source are located on the top of the Terra Rossa 

calibration material in a wood box. Detector- source Distance is 15 

cm. 
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Figure (5.3): Gamma ray spectrum of 137Cs source. Detector NaI(Tl) and 

radiation source are located on the top of the Terra Rossa 

calibration material in a wood box. Detector- source Distance is 

20 cm. 

 

calibration material in a wood box. Detector- source Distance is 

20 cm. 
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Figure ( 5.4 ): Gamma ray spectrum of 137Cs source. Detector NaI(Tl) and 

radiation source are located on the top of the Terra Rossa 

calibration material in a wood box. Detector- source Distance is 25 

cm. 

Figure ( 5.4 ): Gamma ray spectrum of 137Cs source. Detector NaI(Tl) and 

radiation source are located on the top of the Terra Rossa 

calibration material in a wood box. Detector- source Distance is 25 

cm. 

. . 
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Figure (5.5): Gamma ray spectrum of 137Cs source. Detector NaI(Tl) and 

radiation source are located on the top of the Terra Rossa 

calibration material in a wood box. Detector- source Distance is 30 

cm. 

  

 As noticed from the five spectra of five different detector- source 

separation distances for Terra Rossa soil, the spectra changes with different 

distances, the spectra changes in all its segment but the changes more clear in 

the Compton backscattering peak and the photo peak. As the detector –source 

separation distance increase the material section under the test increased, so 

more atoms and more gamma ray interaction with atoms; photons that will 

absorbed or scatter will increase and number of photons that would reach the 

detector will decrease. Differences between the all spectra will be more clear in 
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the next graph in which all Terra Rossa gamma ray spectra are presented in Fig.( 

5.6). 
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Figure ( 5.6 ): Gamma ray spectra of 137Cs source. Detector NaI(Tl) and 

radiation source are located on the top of the Terra Rossa 

calibration material in a wood box. Various detector- source 

distances are used. 

  

 As shown in Fig.( 5.6), peak of Compton backscattering  (180 -480 KeV) 

and photo peak are the most affected margin of changing detector- source 

separation distance. In that’s margin its easy to distinguish between the spectra’s 

lines. 
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5.1.2  Gamma Ray Spectra Collected for Lime Stone (powder) : 

 

 Spectra for different detector-source separation distances are collected 

also for lime stone (powder) calibration box in Fig.(5.7) and for sand calibration 

box in Fig.(5.8). 
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Figure ( 5.7 ): Gamma ray spectra of 137Cs source. Detector NaI(Tl) and 

radiation source are located on the top of the lime stone 

(powder) calibration material in a wood box. Various detector- 

source distances from 10 to 30 are used. 
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5.1.3 Gamma Ray Spectra Collected for Sand: 
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Figure (5.8): Gamma ray spectra of 137Cs source.  Detector NaI(Tl) and 

radiation source are located on the top of the sand calibration 

material in a wood box. Various detector- source distances from 

10 to 30 are used. 

 

 From the spectra graphs, it is noticed that with the highest density used 

material that is the sand (1.6 g/cm3) the differences in counts numbers between 

spectra are bigger than the differences between the Terra Rossa gamma ray 

spectra which have the lightest density of (1.3 g/cm3). This is because of, in 

materials with high density, gamma ray photons will interact with more 

material’s atoms, so less photons will reach the detector. In the material with 

light density, gamma ray photons will interact with fewer atoms, so less loose of 

photons energy and so more gamma ray photons reached the detector.   
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5.2 Effect of Various Soils Density on Gamma_ Ray Spectra 

 

 While gamma rays passing throw material, gamma ray will interact with 

materials atoms even by absorption or scattering that is depending on the gamma 

ray energy and material density. 

 

 As the material bulk density increase the materials atoms increase, 

Gamma ray photons will interact with more atoms and more energy loss will 

occur so less Gamma ray photons will reach the detector. 

 

 Gamma ray count rate for our calibration materials affected by the 

material density, that will be cleared by studying the count rates for all materials 

in each distance in the two Gamma ray spectral ranges of interest in this work 

are (180 -  480 KeV)  and (250 – 730 KeV). 

 

5.2.1 Gamma Ray Count Rate in The Range of 250 -730 KeV: 

 

 This energy range is used in a lot of studies because the lower energy 

limit of 250 KeV is counted to avoid the gamma ray energy photons that depend 

on its interaction with matter on the material chemical composition. The upper 

limit of 730 KeV gives us a guarantee that the gamma rays of maximum energy 

are counted. 
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 The relationship between the gamma ray count rate and material density 

is  presented in the Table (5.1) below. 

 

Table ( 5.1 ): Gamma Ray count Rate of 137Cs detected for various 

calibration materials and various distances between the 

detector and the source. (Energy range of the γ – ray 

spectrum: 250 – 730 KeV ). 

 
Detector-source 

separation distance 

(cm) 

γ- ray count rate  

(material density of 

1.3 g/cm3) 

γ- ray count rate  

(material density of 

1.55 g/cm3) 

γ- ray count rate  

(material  density of 

1.6 g/cm3) 

10 406 391 374 

15 214 208 187 

20 144 132 129 

25 86 82 99 

30 78 60 49 

 

 From the data in Table (5.1), we can notice that the gamma ray count rate 

decrease when the material bulk density increase for all different detector-source 

separation distances that used in this study.  

 

 In Fig.(5.10) below, a curve for each distance is found for all calibration 

materials bulk densities. The curves of detector-source separation distances of 

10, 15 and 20 cm separated enough from each other. After detector- source 

separation distance of 20 cm, readings become more closed to each other. 
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Figure (5.9): Gamma ray detected count rate as a function of different materials 

densities in the energy range of 250 – 730 KeV.                                 
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5.2.2 Gamma Ray Count rate from the Compton Backscattering Peak 

within Energy Range of 180 – 480  KeV: 

 
The same previous relationship is investigated within energy range of the 

gamma ray Compton backscattering peak (180 – 480 KeV).  

 Gamma ray count rate gained by gamma ray backscattering spectroscopy 

spectra for this energy range for all materials densities in each distance are listed 

in Table (5.2) below. 

 

 

Table (5.2): Gamma Ray count Rate of 137Cs detected for various calibration 

materials and various distances between the detector and the 

source.( Energy range of the γ – ray spectrum: 180 – 480 

KeV ). 

 

  
Detector-source 

separation distance 

(cm) 

γ- ray count rate  

(material density of 

1.3 g/cm3) 

γ- ray count rate  

(material density of 

1.55 g/cm3) 

γ- ray count rate  

(material density of 

1.6 g/cm3) 

10 345 339 354 

15 203 194 177 

20 134 120 129 

25 87 75 95 

30 67 87 75 
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 The relationship between gamma ray count rate and the calibration 

material bulk density, for various source – detector distances is shown  in Fig.( 

5.10) below. 
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Figure( 5.10): Gamma ray detected count rate as a function of different material 

densities in the energy range of 180 – 480 KeV.    

 

It is noticed from Fig.(5.10 ) that readings of count rates from using 

different detector-source separation distances are closed to each other except 

with distance of 10 cm which make better to use the γ-ray energy range of (250-

730 KeV).  
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5.3 Establishing the Relationship between Soil Bulk Density and Detector 

Response 

 

As mentioned before, calibration process is performed to find the 

relationship between the gamma backscattering spectroscopy count rate and the 

materials bulk density.  

In order to find this relationship for this study, there are four sets of data 

to work with to find out the best equations with the optimal detector-source 

separation distance. Those four sets are about two ranges of spectral gamma ray 

energy sections of (180- 480 KeV) and (250- 730 KeV), with using two 

detector-source separation distance of 10 and 20 cm. 

 

Energy range of (180 -480) KeV is the range in which the Compton 

backscattering peak is found. Energy range of (250- 730) KeV is the range that 

includes the Compton backscattering peak, Compton edge and the photopeak 

which is the range that all studies of gamma ray backscattering spectroscopy 

used. 

 

 

 

 

 

 

 

 

 

 

 67



5.3.1 Relationship of the Material Density Vs Gamma Ray Count Rate with 

10 cm Detector-Source Separation Distance: 

 

Data of gamma ray count rate with using a detector-source separation 

distance of 10 cm, and the measured material’s bulk density in two gamma ray 

spectrum range  of (180- 480 keV) and (250-731 KeV) are shown below in 

Fig.(5.11) and Fig.(5.12) respectively.  
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Figure (5.11): Material density Vs count rate in gamma range of (180-480 KeV), 

with using 10 cm as detector-source separation distance. 

 

 

 

   Data in fig.(5.11) show that, there is no relation ship that could be 

introduced in order to find an equation to apply in field measurements later. 
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Figure (5.12): Measured bulk density Vs count rate in gamma ray range of (250-

730 KeV), with using 10 cm as a detector-source separation 

distance. 
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5.3.2 Relationship of the measured density Vs gamma ray count rate 

with 20 cm detector-source separation distance:  

 

Data about gamma ray count rate with using a detector-source separation 

distance of 20 cm and the  material’s bulk density  in two gamma ray spectrum 

ranges  of (180- 480 keV) and (250-730 KeV) are shown above  in Fig. (5.13) 

and (5.14) respectively.  
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Figure (5.13): Measured bulk density Vs count rate in gamma range of (180-                 

480 KeV), with using 20 cm as detector-source separation distance. 
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Figure (5.14): Measured bulk density Vs count rate in gamma range of (250- 

730 KeV), with using 20 cm as detector-source separation 

distance, the best fit line and its equation are included. 
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5.4 Field measurements 

 Density measurement using our detecting system is performed in open 

field in Beit Fajjar over a Terra Rossa land. Measurements were performed at 

two different detector-source separation distances of 10 cm and 20 cm. 

Comparisons are done between this actual field measurements and calibration 

measurements on terra Rossa soil material. The results obtained at 20 cm 

separation distances are in better agreement than at 10 cm. This probably due to 

the fact, which much material being tested is involved in the 20 cm distance 

measurements. Therefore, the optimal distance between the detector and the 

radiation source could be considered in this study as 20 cm, using the energy 

range of (250-730 KeV). 

  

 In Fig(5.15) below the spectra of Terra Rossa soil measurements in Beit 

Fajjar using 10 and 20 cm as a detector-source separation distance. 
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  Figure (5.15): Terra Rossa soil measurements in Beit Fajjar using 10 and 20 

cm as a detector-source separation distances. 
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  The data in table (5.3) below are about the gamma ray counts rates of the 

Terra Rossa soil in the field of the energy range of (250- 730 KeV). 

 

Table (5.3): Gamma Ray count Rate of 137Cs detected for field measurement 

in Beit Fajjar over Terra Rossa soil and for two distances 

between the detector and the source. 

 

 

 

 

    

Distance 

cm 

Beit Fajjar field count rate 

Counts.s-1

10  430 

20  141 

Fig.(5.16) shows a comparison between calibration counts rates and in-situ 

measured counts rates. 

 

0

100

200

300

400

500

0 5 10 15 20 25

Distance (cm)

C
ou

nt
 ra

te

in box

in field

 

 

 

 

 

 

 

 

Figure ( 5.16 ): A comparison between the Count Rate of backscattered gamma 

ray emitted from 137Cs  and measured by a scintillation detector of 

the Terra Rossa in the calibration box and in the field, with two 

detector-source separation distance of 10 and 20 cm. Energy 

range of (250-730 KeV). 
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5.4.1 Using the Equations to Calculate the Terra Rossa Soil Field Bulk 

Density: 

 

Equation (5.1) is the suitable equation while using a distance of 10 cm as 

a detector-source separation distance. 

 

 ( ) .5.1 Eq
92

CR-526BD 1
1 =

 

 

Were CR is the  detected gamma ray count rate. 

For a CR of 430 

BD1 = 1.04 g cm-3 

 

 Equation (5.2) is the suitable equation while using a distance of 20 cm as 

a detector-source separation distance. 

 

    

( ) .5.2 Eq
49

CR-208BD 2
2 = 

 

 

For CR2 = 141  

   

   BD2 = 1.36 g cm-3. 

 

The difference between the true density of the Terra Rossa (used in 

calibration) and evaluated field value does not exceed 6 % using a separation 

distance of 20 cm. 
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 Comparing the two results, its evident that 20 cm of detector-source 

separation distance, using the energy range of 250-730 KeV, provide very good 

results.  

 

5.4.2 Measurements of soil density at Al-Quds University site 

 

 Measurements of soil density were performed at five different locations at  

main campus-Al Quds University- Abu Dies. 

 Locations were selected randomly and gamma ray spectra were collected 

for 3 minutes for each location with a detector – source optimal configuration  

(the distance between the detector and the 137Cs is 20 cm). The spectra energy 

range of 250-730 KeV is considered. Results are been summarized in Table 

(5.4).  
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Table ( 5.4  ): Results of bulk density measurements at Al-Quds University site. 

Detector-source distance is 20 cm. Time of measurement is 3 

minutes. 

  

Location Count rate (counts 

/seconds) 

Evaluated bulk density 

g/cm3

 1 116 1.9 

 2 143 1.3 

3 152 1.14 

4 125 1.7 

5 165 0.9 

 

 

• Location 1 is with a dry soil, far from the irrigation of that area with 

smooth surface, no rocks near that area.  

 

• Location 2 is a dry soil with smooth surface but it is much nearer to the 

agricultural area of that site. 

 

• Location 3 is near The Arab Institution, far about 1 meter from a big tree.  

 

• Location 4 is far from trees, but the surface of that area is unsmoothed 

enough, much of big rock found there. 

• Location 5 is near the Higher Education College, the area surface is 

smooth and free from grass, but it is surrounded by a highly agricultural 

area. 
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5.6 Rain effect on soil bulk density 

 

 There are many factors affect soil density such as presence of organic 

material, soil depth, soil compaction and soil moisture. 

 

 Soil moisture has a strong affect on its density. Since the soil 

composition, volume and conditions is remaining the same, so the only thing 

which could alter the density, is the changing in its moisture. 

 

 Measurements are conducted on the two types of soil in Al-Quds 

University main campus in Abu-Dies to measure the differences between the 

count rate in the dry soil and in the wet soil.  

  

 Al-Quds University field measurements are performed in two 

locations, one of Terra Rossa soil and another with chalk to detect the gamma 

ray backscattering spectroscopy count rate differences with increasing soil 

moisture.  

  

 The effect of the rain (moisture) will be more clear when comparing the 

gamma ray count rate detected for the same location before the rain and after the 

rain. 
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Figure(5.17): A comparison between the gamma ray backscattered count rate 

spectra of  same type of soil  in Al-Quds University in dry and 

wet case. 

 

 From the Fig.(5.17) the dry spectrum is highest than the wet spectrum. 

Because with increasing the density of the soil by increasing its moisture the 

gamma ray photons that will be absorbed in the soil is more than in the dry state. 

 

 

 78



 In the university, the counts were high in the dry case in comparison 

with the wet case as following: 
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Figure (5.18): The Count Rate in dry and wet case with using 10 and 20 cm as 

detector-source separation distance. 
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For another type of soil:  
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Figure ( 5.19 ): The Count Rate of another type of soil  in dry and wet case with 

using 10 and 20 cm as detector-source separation distance. 
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5.7 Conclusion and Recommendation 

 

   The importance of this study stems from the following: first, it is 

the first study of its type in Palestine; and it has established a new method 

for determining soil bulk density by using one of the nuclear techniques. 

 

  The system used for measurements provided very good results. It is 

well calibrated, easily handled. It is capable of producing soil bulk density 

evaluations in few minutes. 

   

  The introduced system in this work can also be applied in other 

applications mainly in road constructions. 
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Recommendations can be summarized as follows: 

 

1. Continuing studies about this system to make it more accurate, and to 

improve its performance.  

 

2. Increase the number of measurement sites. Build up a map for soil 

bulk density in all area over Palestine. 

 

3. To make special calibration blocks with standard characteristics, 

making from metal to avoid leakage and changing in its density, 

which makes it easy to repeat the calibration process to more field 

measurements. 

 

4. Establish a laboratory for gamma ray spectroscopy to be able to 

analyze soil samples in different locations. 

 

5. To form a complete team consists of Gamma Ray Backscattering 

Spectroscopy specialists and soil scientists in order to perform a 

complete valuable work. 
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   الظاهرية للتربة باستخدام مطيافية أشعة جاماكثافةالقياس 

  
  ملخص

  

 .  بواسطة استخدام تقنية نووية الظاهريةتناقش  هذه الدراسة طريقة لقياس آثافة المواد

  . استخدمت تقنية مطيافية أشعة جاما الحقليةلتحقيق هذا و

 

الصوديوم المطعم بعنصر بلورة يوديد (  يتكون نظام القياس من مكشاف اشعاع و ميضي  

 من شرآة آانبيرا و  Inspector 2000انش متصل مع محلل طيف من نوع   " 3× " 3بحجم ) الثاليوم

 آمصدر لأشعة جاما ، آما ) KeV662 (  بطاقة Cs  137استخدم عنصر. ذالك مع جهاز آمبيوتر محمول

  . عملية المعايرةلاجراءبكثافات ظاهرية مختلفة استخدمت أنواع مختلفة من التربة 

  

  عملية المعايرة لايجاد علاقة مناسبة بين آثافة المادةأجريتقبل تطبيق هذه التقنية في الحقل 

 تمت عملية المعايرة باستخدام ثلاثة مواد مختلفة ذات  ).قياسه( و طيف جاما الذي تم جمعه الظاهرية

 صنعت مخصصة لهذا   سم34×42×59ثلاثة آثافات مختلفة معبأة بداخل صناديق خشبية بأبعاد 

بدرع من الرصاص لمنع مرور أشعة جاما بشكل مباشر ) 137Cs ( يغطى مصدر اشعاع جاما. الغرض

ثم  يوضع آل من مصدر أشعاع جاما و المكشاف فوق سطح المادة المراد قياسها لتبدأ . نحو المكشاف 

اما الطبيعي في بيئة القياس و تفادي  حتى يتم تفادي قياس شعاع ج.ثانية)60(عملية القياس لوقت قصير

  .القراءاتارتفاع درجة حرارة الاجهزة الذي يؤدي الى احداث فروقات في 

 

يحسب معدل اشعاع  .  Genie 2000تعالج أطياف جاما التي تم جمعها و قياسها باستخدام نظام  

ي يوضح العلاقة بين ثم يوضع منحنى المعايرة الذ. لكل عملية قياس على حده) (Count Rateجاما 

آثافة المادة و معدل اشعاع جاما الذي تمت معالجته مما يسهل ايجاد علاقة رياضية مناسبة بين آثافة 

  .المادة و معدل اشعاع جاما
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النتائج الخاصة بتربة .تمت عملية القياس في الحقل حتى يتم التأآد من مدى دقة عملية المعايرة 

Terra Rossa آانت متوافقة جدا مع النتائج التي تم قياسها من قبل .  

 

تم القيام بقياسات الحقل بعد انهاء عملية المعايرة مستخدمين العلاقة الناتجة عن عملية المعايرة،  

 سم و هي المسافة الفاصلة 10 وباستخدام مسافة Terra Rossa في عملية المعايرة معدل العد حيث آان

، و آان القياس في الحقل و على نفس المسافة   ) counts.s-1 406( اشعاع جاما بين المكشاف و مصدر

)430 counts.s-1 ( سم آان القياس في عملية المعايرة 20، اما باستخدام مسافة )counts.s-1 144(  اما

 (KeV الذي يمثل الجزء  ة، و نلاحظ تقارب النتائج، و هذا في مجال الطاق)conts.s-1) 141في الحق

 أجريت قياسات ميدانية في خمسة مواقع مختلفة في الحرم و قد . من طيف أشعة جاما)250 -730

 و تشير نتائج تقدير الكثافة الظاهرية في المناطق الخمسة المختلفة الى نتائج .الرئيسي في جامعة القدس

   .منطقية تتناسب و نوعية التربة و المواد المتواجدة في مواقع القياس

 

  . عملية القياس قد اجريت ايضا بهدف قياس تأثير مياه الامطار على قياس آثافةالتربةآما ان 
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