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GRAPHICAL ABSTRACT

HANs formation from five different
chlorinated water sources were higher
under UFC than FP tests.

Chlorination FP tests do not provide
meaningful information for HAN pre-
cursors in water samples.

UFC (or SDS) chlorination test should be
used for a better estimation of HAN pre-
cursors in water.

Higher HANs formed under FP test com-
pared to UFC test during chloramination.
Chloramination FP tests may be used for
determining HAN precursors in water re-
active to chloramine.
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To date, several studies have used formation potential (FP) tests to examine the presence of HAN precursors in
water and wastewater. However, given the decomposition of HANs with time at elevated free chlorine levels,
FP test results do not provide meaningful results. We conducted side-by-side FP and uniform formation condition
(UFC) experiments to demonstrate that, in order to obtain practical, meaningful, and representative information
about HANs formation and their precursors during chlorination, it is important to conduct experiments and re-
port results under UFC [or simulated distribution system (SDS)] conditions.
The results confirmed higher HAN formation under UFC than FP tests during chlorination of the tested two sur-
face water and three wastewater effluent samples, indicating HAN decomposition at high chlorine conditions of
FP tests. In addition, the well reported ratio (~10%) of HAN/THM from previous studies was more consistent with
the UFC results but was lower than 10% in the FP results. On the other hand, HAN formation during
chloramination of the same samples were lower under the UFC than FP conditions. Furthermore, FP tests
under both chlorination and chloramination resulted in lower bromine substitution factor.
We concluded that reporting results of HANs FP tests are not representative, and future studies should focus on
UFC or distribution system specific (SDS) experiments for chlorination. However, chloramination FP tests may
still provide some information about the HAN precursors in waters.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Disinfection is ubiquitous in water and wastewater treatment for
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organic and inorganic precursors present in the water matrix forming
unintended but potentially harmful by-products known as disinfection
by-products (DBPs) (Karanfil et al., 2008; Richardson et al., 2007).
Since their discovery in the 1970s (Bellar et al., 2015; Rook, 1974), se-
lected DBPs in drinking water have been regulated around the world
(Karanfil et al., 2008; U. S. EPA, 1998, 1979, 2010), and they have been
intensively studied for all aspects and conditions of their formation, pre-
cursors, treatment, toxicity, and other health effects.

Two types of laboratory tests are commonly considered to evaluate
the DBP formation in water samples (APHA et al., 2017; Summers
et al,, 1996). First, the formation potential test (FP) in which the disin-
fectant is added to water in excess amount for a prolonged (e.g., 7-
day) contact time at pH 7.0 4 0.2 in the presence of a buffer at 25 +
2°C(APHAetal,, 2017). The FP test is conducted to determine indirectly
the amount of DBP precursors in a sample (Stevens and Symons, 1977;
Stuart et al., 2001). Due to high disinfectant dose and long contact time,
FP tests result in significantly higher DBPs concentration as compared to
their occurrence under practical water treatment and distribution con-
ditions. The second test is the simulated distribution system (SDS) test
in which water samples are disinfected to simulate specific operations
of time, temperature, pH, and disinfectant dose similar to those in a spe-
cific distribution system (Koch et al., 1991; Summers et al., 1996). The
SDS test has limitations making comparisons difficult between different
systems with different disinfection conditions (e.g., residence time, pH)
and seasonal variations (e.g., temperature) (Summers et al., 1996). To
represent typical distribution systems conditions in the US, Summers
et al. (1996) developed the uniform formation conditions (UFC) test,
in which the free chlorine residual after the 24 h incubation is main-
tained 1.0 4 0.4 mg/L at 20.0 &+ 1.0 °C and pH 8.0 4 0.2 (Summers
et al., 1996). This test allows the comparison of different waters side
by side under the same formation conditions.

Although numerous DBPs have been identified in drinking waters,
only 11 (four trihalomethanes, THM4, five haloacetic acids, HAA5, chlo-
rite and bromate) are currently regulated by the US Environmental Pro-
tection Agency (EPA). Haloacetonitriles (HANs), which were reported in
drinking water for the first time in 1975 (McKinney et al., 1976), are
formed during chlorination/chloramination of natural organic matter
(NOM) containing nitrogenous functional groups, such as amines,
amino acids derived from proteins, and/or anthropogenic compounds
(Yang et al., 2012). In addition, chloramination of NOM, which does
not contain nitrogen, can also form HANs, where chloramine serves as
the source of nitrogen (Chuang and Tung, 2015; Krasner et al., 2006;
Ye et al., 2018; Yu and Reckhow, 2015). Although HANs typically
occur at about ~1/10 of the level of the regulated THM4 (Krasner et al.,
2006; Oliver, 1983), they are orders of magnitude more toxic than the
regulated DBPs (Liu et al., 2018; Liviac et al., 2010; Muellner et al.,
2007; Plewa et al., 2017). Studies have reported HANs driving the toxic-
ity in water samples despite their orders of magnitude lower concentra-
tions compared to regulated organic DBPs. As a DBP class, the HANs
are more toxic than regulated carbon-based DBPs. Using CHO cell
assays of chronic cytotoxicity and acute genotoxcity (DNA damag-
ing and DNA strand breaks) of HANs showed that cytotoxic potency
of dibromoacetonitrile (DBAN) and trichloroacetonitrile (TCAN)
were 2.8 mM to 0.16 mM, respectively. Moreover, HANs induced
acute genomic damage. Indeed, brominated haloacetinitriles are re-
ported to exhibit more cytotoxic and genotoxic than their chlori-
nated analogs (Krasner et al., 2016; Muellner et al., 2007; Plewa
et al., 2017). Therefore, understanding and investigation of HAN
formation in water and wastewater effluents have received increase
attention in recent years.

Several studies have shown that HANs can hydrolyze at an accelerat-
ing rate in a system of an alkaline pH combined with high free chlorine
residual for prolonged contact time (Chen et al., 2017; Glezer et al.,
1999; Huang et al., 2016; Peters et al., 1990; Reckhow et al., 2001; Yu
and Reckhow, 2015). Furthermore, the high chlorine dose during the
FP test outcompetes the bromine and results in an underestimation of

the bromine incorporation to brominated HANs (Symons et al., 1993)
which are known to have higher toxicity (Liviac et al., 2010; Muellner
et al,, 2007; Plewa et al.,, 2017). On the other hand, there was no signif-
icant difference in HAN stability with or without the presence of chlora-
mines at doses up to 4 mg/L (as Cl,), indicating that chloramine does not
react with HANs (Yu and Reckhow, 2015). Furthermore, the formation
of dichloroacetonitrile (DCAN) showed a linear increase in concentra-
tion as the monochloramine dose increased from 2 to 20 mg/L as Cl,
after 3 days of chloramination of NOM solutions (Yang et al., 2007).
Therefore, HANs are much more stable in chloraminated waters than
chlorinated waters. This is important for some disinfection scenarios
where chlorine pre-disinfection or oxidation is performed prior to am-
monia addition to convert chlorine to chloramine. In this case, HANs
are formed during chlorination can persist after the addition of ammo-
nia (chloraminated waters) (Hayes-Larson and Mitch, 2010).

To date, several studies have been conducted to examine HAN for-
mation under the FP conditions (Ahmadi and Ramavandi, 2014; Bond
et al., 2014b; Bougeard et al., 2010; Chen et al., 2017, 2018; Chu et al.,
2017; Chuang and Tung, 2015; Ding et al., 2018; Huang et al., 2013,
2016, 2019; Kozari et al., 2020; Krasner et al., 2008; Kristiana et al.,
2017; Li et al., 2017; Liu et al., 2020; Luo et al., 2020; Reckhow and
Singer, 1984; Wang et al., 2018; Wei et al.,, 2017; Yang et al., 2012,
2017). Given the decomposition of HANs at elevated free chlorine levels,
in this study we conducted side-by-side experiments to compare the
HAN UFC and FP tests using five different water sources. In addition,
we performed HAN UFC and FP tests under chloramination conditions
and compared with the chlorination results, and the effect of bromide
in terms of HAN speciation for both oxidants.

2. Experimental work

Three wastewater effluent grab samples (Ef1, Ef2, and Ef3) were col-
lected from municipal wastewater treatment plants, while a treated
surface water grab sample (DW) was obtained from a water treatment
plant after conventional clarification processes (coagulation, floccula-
tion, sedimentation). No oxidant was applied in water or wastewater
treatment plants before the sample collection. A raw surface water
grab sample (RW) was also obtained from a lake serving as a drinking
water source.

Dissolved organic carbon (DOC) and dissolved nitrogen (DN) were
measured using a high-temperature combustion TOC analyzer [Mini-
mum reporting level (MRL) 0.1 mg/L]. Bromide (Br~) and nitrate
were measured using ion chromatography [MRL 10 pg/L] (Soyluoglu
et al.,, 2020). Varian Carry 50 was used to measure the UV absorbance
at wavelength 254 nm using a 1 cm cell according to SM 5910 method
(APHA et al., 2017).

We conducted UFC and FP tests under chlorination and
chloramination conditions for these 5 water samples (3 wastewater
effluents and 2 surface water samples). The UFC conditions for chlo-
rination consisted of reaction time of 24 + 1 h, temperature of
20.0 4+ 1.0 °C, pH 7.8 £ 0.2, and predetermined Cl, dose to maintain
1.0 + 0.4 mg/L after 24 h, while FP conditions for chlorination were
reaction time of 120 h, temperature of 20.0 + 1.0 °C, pH 7.8 + 0.2,
and 100 mg/L Cl, dose. To maintain the pH 7.8 + 0.2, the samples
were buffered using 10 mM phosphate buffer. A chlorine demand
test for each water sample was conducted prior to UFC tests to de-
termine the Cl, dose to maintain 1.0 + 0.4 mg/L after 24 h. For
chloramination, the conditions were the same as in chlorination,
but preformed monochloramine was spiked at 3 mg/L (as Cly),
and 100 mg/L (as Cl;) in the UFC and FP, respectively. For
preformed monochloramine preparation, a stock chlorine solution
(500 mg/L) adjusted to pH 9 was titrated slowly (drop by drop via
a burette) to (NH4),SO,4 solution (NHs3, 500 mg/L) adjusted to
pH 9, continuously stirred to achieve a Cl,:NHs ratio of 3.5:1 by
weight. The resulting solution monochloramine concentration was
about 250 mg/L (as Cl;) with no measurable free chlorine. To
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Table 1

Selected water samples characteristics used in the study.
Water Source DOC DN Br— SUVA;s54 Nitrate

(mg/L) (mg/L) (pg/L) (L/mg-m) (mg/L)
Ef1 (WW Effluent) 12.5 7.2 140 13 15
Ef2 (WW Effluent) 5.1 14.5 92 23 80
Ef3 (WW Effluent) 5.5 8.5 50 22 34
DW (Treated surface 3.7 1.2 38 1.25 <MRL
water)

RW (Raw surface water) 1.5 1.2 16 1.9 <MRL

MRL: Minimum Reporting Level.

examine the bromide effect, one set of the experiments was con-
ducted at ambient Br~, while a second set was conducted by
adjusting the Br~ to 300 pg/L in each sample. All UFC and FP tests
were conducted in triplicates using 125 mL head space free amber
glass bottles and were stored in the dark.

3. Haloacetonitriles and trihalomethanes measurements

At the end of contact time, fifty mL samples were transferred into 60 mL
extraction vials to determine the four trihalomethanes (THM4) species [chlo-
roform (CHCl5), bromodichloromethane (CHCI,Br), dibromochloromethane
(CHCIBr,), and bromoform (CHBr3)] and six haloacetonitriles (HANG6) species
[chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), bromoacetonitrile
(BAN) Bromochloroacetonitrile (BCAN), trichloroacetonitrile (TCAN)]
dibromoacetonitrile (DBAN). After that, 3 mL of methyl tert-butyl ether
(MtBE) and 10 g of anhydrous sodium sulfate were added to the extraction
vials. To dissolve the salts, the extraction vials were put on a shaker table at

UFC Vs. FP (Cl,)

B HAN_UFC BEHAN_FP
30
—
o 20
E
(7]
2
< 10
T
0
Efl Ef2 Ef3 DW RW
Water
UFC Vs. FP (NH,CI)
B HAN_UFC BHAN_FP
8
<6
oo
3
w 4
2
<<
I 2
0

Efl Ef2 Ef3 DW RW
Water

300 rpm for 15 min. After 15 min, vials were placed on the bench for
15 min for phase separation. The MtBE phase was transferred to GC vials to
analyze by GC-ECD. The MRL of HAN6 and THM4 species were 0.5 and
1 pg/L, respectively (Liu et al, 2018).

4. Results and discussion
4.1. Water characteristics

Selected characteristics of the water samples used in the study are
provided in Table 1. The water samples covered a wide range of DOC
content (1.5 to 12.5 mg/L), while SUVA;s,4 of the samples had a narrow
range (1.25 to 2.3 (L/mg-m)). The low SUVA;s4 of the wastewater efflu-
ent is consistent with the typical effluent wastewater organic properties
that are rich in hydrophilic and non-aromatic organic matter (soluble
microbial products), whereas the treated water and raw source water
organic matter were low in aromatic character indicating a more hydro-
philic nature. DN of the waters ranged from 1.2 to 14.5 mg/L. The waste-
water effluents had higher DOC and DN than the drinking water
samples. The ambient Br~ level of the samples ranged from 16 to
140 pg/L.

4.2. HAN6 formation

The concentrations of HANs under FP and UFC tests for the five
water samples are presented in Fig. 1. The results showed higher
HAN concentrations under UFC than FP conditions for all samples
both at ambient and spiked Br~ levels, when chlorine (Cl,) is the ox-
idant. This reflects the effect of the HAN instability and degradation
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Fig. 1. Formation of HANs from chlor(am)ination of 5 different waters under uniform formation conditions (UFC) and formation potential (FP) at ambient and spiked Br~ (300 ng/L). Ef1,
Ef2, and Ef3 are wastewater effluent water samples, DW and RW are treated and raw surface water samples, respectively. The error bars are standard deviation of triplicates.
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via hydrolysis under different pH conditions and higher chlorine
levels for long contact time (Yu and Reckhow, 2015; Bond et al.,
2014a; Chen et al., 2017; Ding et al., 2018; Glezer et al., 1999;
Huang et al., 2016; Reckhow et al., 2001; Szczuka et al., 2017; Yang
etal.,, 2007). Different approaches (e.g., formula based on DOC, a con-
stant excess chlorine dose (e.g., 10-100 mg/L), Cl,:precursor ratio)
are used to determine the chlorine doses during FP tests. Regardless,
all approaches aim maintaining an excess level of chlorine residual
during the experiments. Different HAN species exhibit different deg-
radation depending on the chlorine levels and pH. Collectively, the
observation in the literature and the data presented in this paper
show the difficulty of obtaining meaningful insights and comparing
the work in different studies investigating chlorine reactive HAN
precursors through chlorination FP tests.

In contrast to HANS, the formation of THMs during the same tests
was higher under FP than UFC conditions during chlorination,
confirming that FP tests inform about the chlorine reactive precur-
sors of THM in water samples. The median of the mass ratio of
HAN/THM produced under UFC conditions was ~10% (data not
shown) which was consistent with ratios reported in previous
HANs occurrence studies (Bond et al., 2011; Mitch et al., 2009;
Oliver, 1983). On the other hand, under the FP conditions the median
of the mass ratio of HAN/THM was ~1%. These results clearly show
that FP tests are not suitable to determine HAN precursors in water
samples during chlorination. Nevertheless, several studies and pub-
lications have reported HANs FP during chlorination without consid-
ering their stability.

In the case of chloramination, higher HAN FP concentrations were
measured compared to UFC concentrations (Fig. 1) which can be ex-
plained by HAN stability in the presence of chloramine (Yang et al.,
2007) and the contribution of nitrogen from chloramines in the for-
mation of HANs, as has been shown in previous studies that both
chloramines and dissolved organic nitrogen can serve as nitrogen
source to form HANs (Chuang and Tung, 2015; Krasner et al., 2006;
Ye et al., 2018; Yu and Reckhow, 2015). Therefore, FP tests during
chloramination may still be representative in determining the HAN
precursor levels in water samples reactive to chloramines. The
three wastewater effluent samples, either under chlorination or
chloramination, produced more HAN than the two surface waters.
Similar trends were observed in previous studies (Gan et al., 2013;
Jutaporn et al., 2020), which can be attributed to the higher DOC
and DN content of the 3 wastewater effluents (Table 1); mainly the
hydrophilic neutral and base fraction and small size fractions of
wastewater effluent organic matter were attributed to HAN forma-
tion (Kozari et al., 2020; Ye et al., 2018). The median of the mass
ratio of HAN/THM produced from the five waters tested was ~17.
While under FP conditions, the median of the mass ratio of HAN/
THM was ~25. This increase in the mass ratio of HAN/THM is due to
the formation of fewer THMs during chloramination.

4.3. Bromine incorporation to HANs should be examined under UFC
conditions

The Br-HANs measured during the FP tests in the presence of Cl, and
NH,CI produced lower Br-HANs than those measured under UFC test.
Bromine substitution factor (BSF) is used as a measure of bromine sub-
stitution among different DBP classes. BSF is the ratio of the molar con-
centration bromine in a given DBP class to the total molar concentration
of chlorine and bromine in that DBP class (vary from 0 to 1) (Hua et al.,
2006; Hua and Reckhow, 2012).

Br—DBP

BSF = D8P + Br—DBP.
Calculated BSF of HANSs, as shown in Fig. 2 are generally higher for
the UFC than the FP test under both chlorination and chloramination.
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Fig. 2. Bromide substitution factor (BSF) of HANs under chlorination (A) and under
chloramination (B) in the uniform formation conditions (UFC) and formation potential
(FP) tests. Ef1, Ef2, and Ef3 are wastewater effluent water samples, DW and RW are
treated and raw surface water samples, respectively. The error bars are standard
deviation of triplicates.

This relates to the higher Cl,/Br™ ratio, which leads to the oxidation
of bromide and hindrance of Br~ incorporation (Symons et al., 1993).
Thus, FP tests under chlorination and chloramination do not provide
practically representative information about bromine speciation in
water samples.

5. Conclusions and recommendations

HANs formation from five different chlorinated water sources
were higher under UFC than FP tests due to HAN instability and
degradation at higher chlorine levels for long contact times. There-
fore, the UFC (or SDS) rather FP tests chlorination tests should be
used for a better estimation of formation and presence of HAN pre-
cursors in water sources. On the other hand, chlorination FP tests
still provide information about the chlorine reactive precursors of
THM and HAA. In the case of chloramination, higher HANs formed
under FP test compared to UFC test, and the FP test results can still
be used for determining HAN precursors in water samples reactive
to chloramine. FP tests both for chlorination and chloramination do
not provide practically useful information about HAN speciation
due to high oxidant levels. Considering increasing interest in HAN
formation, this work highlights and call attention to these distinc-
tions to produce useful information in the literature.
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