
Deanship of Graduate Studies 

Al – Quds University 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Transporting nano particles across cell membranes  

 

 

 

Prepared by: 

 

Mohammed A. M. Abuawad 

 

 

Supervisor: Dr. Khawla Qamhieh 
 

 

 

 

 

 

M.Sc. Thesis 
 

 

 

 

 

Jerusalem – Palestine 

 

   1436 / 2015 



Deanship of Graduate Studies 

Al – Quds University 

 
 

 

 

 

 

 

Transporting nano particles across cell membranes  

 

 

 

Prepared by: 

 

Mohammed A. M. Abuawad 

 

 

Supervisor: Dr. Khawla Qamhieh 

 

 

A thesis submitted in partial fulfillment of requirement for 

the degree of Master of Science in Physics  

 

 

 

 

 

 

 

 

 

Jerusalem – Palestine 

 

1436/2015 



Deanship of Graduate Studies 

 Al – Quds University 

 
 

 

 

 

 

 

Thesis approval  

 

Transporting nano particles across cell membranes  

 

 

 

Prepared by: Mohammed A. M. Abuawad 

Registration No: 21020266 

 

 

 

Supervisor: Dr. Khawla Qamhieh 

 

 

 

Master thesis submitted and accepted, date     /    / 2015 

 

Names and signatures of the examining committee members are as follows: 

 

 
1. Head of the committee: Dr. Khawla Qamhieh           Signature: ……………. 

 

3. Internal Examiner: Dr. Mohammad Abu Samreh      Signature: ...................... 

 

2. External Examiner: Dr. Wael Karain                         Signature: ...................... 
 

 

 

 

 

Jerusalem – Palestine 

 

1436/2015 



 

Dedication 

 
This thesis is dedicated to my mother, brothers, sisters and my deceased 

father. Besides, to all who suffer from genetic problems and cancer 

disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

i 

 

Declaration 

  
I hereby declare that this thesis is based on the results found by myself. Materials of 

works found by other researchers are mentioned by references. This thesis, neither in 

whole nor in part, has been previously submitted for any degree. The work was done 

under the supervision of Dr. Khawla Qamhieh at Al–Quds University - Palestine.   

 

 
Mohammed  A. M. Abuawad 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ii 

 

Acknowledgements  

 
This thesis would not have been possible without the help, support and patience of my 

supervisor Dr. Khawla Qamhieh. I would like to thank her and many thanks to my 

teachers at Al-Quds University. 

I am grateful to my friends without exception for their assistance. Thanks to my family 

and friends who stood beside me and encouraged me constantly. 

 

 

 
Mohammed A. M. Abuawad 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

Abstract 

 

We studied the forces affecting the nano particles penetration through another 

penetrable sphere like cell membrane by developing a free energy model.  These nano 

particles could represent small ions, proteins and synthesized molecules like 

dendrimers.  The reason behind studying penetration for these nano particles into cell 

membrane because of their potential to be used for drugs and cancer treatment in genes 

therapy. 

   

We developed a free energy model based on the model that was produced by Dietrich 

(Dietrich et al., 1997) that handles the two interacting neutral particle spheres through 

penetration (no charges carried by spheres).  By adding electrostatic interaction 

resulted from the charge of two interacting particles that may be owned by ions, 

molecules and proteins developed by Ohshima (Ohshima, 2013) to previous one we 

got a new free energy model.  We concluded that the penetration of nanoparticles 

across other large particles increases dramatically when electrostatic interaction has 

been taken into account.  Each parameter involved in electrostatic energy term has its 

special effect.  We found through our research that penetration increases by increasing 

small nano particle charge while decreasing the salt concentration or the dielectric 

constant of medium contributes to increase the penetration.  
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CHAPTER ONE                                                                              INTRODUCTION                                          

1.1 Introduction 
 

Gene therapy has been demonstrated to be a promising method in healing cancer and 

genetic diseases.  Gene therapy derives its name from the idea that genetic materials 

can be used to supplement or alter gene expression within a specific cell population, 

thereby manipulating the cellular processes (Mahato and Kim, 2002).  Hence, genetic 

materials could be targeted to tumor cells (Lasic and Tcmpleton, 1997).  During their 

pass, it suffers from lots of barriers in the process of delivery like DNA degradation 

and decomplexation (Patri et al., 2005).  Passing particles inward and outward the cell 

membrane is an application involving cell membrane interaction used to drag nano 

particles like ions and drugs into cell and vise versa.  Some applications represented in 

viruses entering living cell through the process of endosomes.  This process causes 

fusion of viral membrane with endosome membrane, also thus process involves 

adhesion and tension for membrane (Deserno and Gelbart, 2002).  The large particle 

may be wrapped by lipid membrane while the small one tends to be penetrated.  For 

example, dendrimer interacts through wrapping with lipid membrane as it approaches 

cellular membrane.  This interaction is applied in gene therapy and chemotherapy to 

cancer cells.  There are many methods for transferring nano particles into cytosol of 

cells which include disruption of endosomes, namely, sponge effect, direct micro 

injection of nano materials into cells (Ayush and Francesco, 2009), electro portion and 

conjugation of natural cell penetrating to nano materials (Tkachenko et al., 2003). 

Alternative means of membrane translocation of nano scale sized material rely on 

intelligent surface structure design.  Typically, nano material interactions with cell 

membranes are dedicated by chemical functionalities on the surface in addition to their 
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shape and size.  For example, peptides cross cell membrane by adopting α–helical 

structure (Bernardi, 2004).  

 

1.2 Cell membrane 
 

The basic constituent building block in membrane cell is lipids.  Lipids are used as fuel 

as a form of fat which used to store potential energy to be used as Adenosine tri-

phosphate energy units (ATP).  It provides internal organs protection through coating 

as well.  Also fat is a bad heat conductor - the property that makes excellent insulator 

from medium.  There are some compounds derived from lipids which are important 

building blocks of biologically active material for living substances in all animals, i.e., 

lipoproteins are a constituent of cell walls and they provide essential fatty acid.  Figure 

1.1 shows the basic structure of membrane. 

 

Figure 1.1: Membrane structure (Gurr et al., 2002)  

 

The reason behind understanding the chemical structure of lipids and membrane is to 

enables us to analyze, to predict and to study the interaction between nano particles and 

cell membrane.  It serves us in many applications relevant to medicine and drugs in 

human body.  The solubility property depends mainly on hydrocarbon chain length and 

the number of bonds.  The mentioned factors affect directly the physical properties like 

melting point.  For example, double bond leads to disorder of chemical structure 

conferring it low melt point.  The longer chain is more hydrophobic and less soluble. 

The number of carbon bonds (saturation) play important role in solubility.  Hence, 
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double bond increases solubility as well as determines compound physical state (Gurr 

et al., 2002).  

      

1.3 Transporting nano particles across cell membranes 

Transporting nano particles inward and outward cell depends mainly on their size and 

nature.  For example, ions like sodium and calcium ions (Na
+
, Ca

+2
) are so small (their 

radii are 0.095 nm, 0.099 nm, respectively).  Membrane proteins of various kinds have 

been shown to act as transporters, their size ranges from 1 to 100 nm (Lodish et al., 

2000; Deserno and Gelbart, 2002).  Figure 1.2 shows the protein A approaching cell 

membrane as a transporting vesicle to cell membrane. 

 

Figure 1.2: Experimental photo for a protein vesicle approaching bacterial cell surface 

membrane (Lodish et al., 2000) 

 

Small and non-polar molecules like oxygen molecule (O2), carbon dioxide molecule 

(CO2) can diffuse across lipid bilayer through plasma permeable membrane (Gurr et 

al., 2002).  Since many applications require breaching cell membrane barriers to reach 

cytosolic or nucleus of cell.  There are many applications related to cell membrane like 

budding and subsequent vesiculation of lipid bilayer membranes essential for transport 

in biological cells.  Buds formation due to membrane spontaneous curvature and viral 

budding (Dasgupta et al., 2013), designing efficient drug delivery systems and other 
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nano engineered techniques for medical diagnosis are biological examples of 

interaction with membrane (Chithrani et al., 2006).  The uptake of small particles by 

cells
 
such as elongated viruses have been found to form patterns on cell membrane 

(Kubo et al., 2009).  For example, ellipsoidal nano particles are used for drugs delivery 

and as markers in cell biology (Xu et al., 2011; Chithrani et al., 2006).  Great efforts 

have been made to treat cancers, so lots of drugs which have been developed by 

pharmaceutical companies require from us to study their interaction with membrane. 

However, low solubility and poor biocompatibility have limited their clinical 

applications (Jones and Zhang, 2008). 

 

1.4 Dendrimers as nano particles 

Dendrimers are repetitively branched and symmetric molecules that often adopt 

spherical shape (Örberg  et al., 2007).  We will present their structure and interactions 

with biomolecules because of their potential in interaction. 

 

1.4.1 Dendrimers structure  

Dendrimers are a class of artificial macromolecules with a tree-like (hyper branched) 

structure, the interior layers from the core of the dendrimer to the surface groups have a 

homogeneous structure among the branching points.  The branching units are described 

by generation, i.e., Gn such that G denotes to dendrimer characterized by generation 

number n, which is defined to be the number of branching points (Ainalema and 

Nylander, 2011).  Dendrimer structure is shown as in Figure 1.3.  
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Figure 1.3: Dendrimer structure (Ainalema and Nylander, 2011) 

Table 1.1 exhibits the dendrimer properties such molecular weight (M), charge (Z) 

which is carried by amine functional groups and the radius of dendrimer (a). 

Table 1.1: Physical data for Polyamidoamine (PAMAM) dendrimers - ethylene mine core 

(Ainalema and Nylander, 2011) 

 
 

Surface charge density (ζ) and volume charge density (ρ) can be calculated from the 

radius (a) and the charge (Z).  For example, ζ and ρ for dendrimer G2 are equal to 0.60 

e/nm
2
, 1.25 e/nm

3
, respectively.  Various factors for dendrimer structure such as the 

generations, spacer lengths, environments various concentrations, valences of salt ions 
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and temperatures needed to be optimized for biomedical applications.  Additionally, to 

overcome barriers in transporting process (Mahato et al., 2002).  For example, the 

structure of G2 dendrimer is shown as in Figure 1.4. 

 

Figure 1.4: G2 Polyamidoamine (PAMAM) dendrimer with ethylenedamine core and 16 amine 

functional groups-NH2 (Ainalema and Nylander, 2011) 

 

Researchers adopted mathematical models to solve the efficient shape and size of 

nanoparticles in the process of wrapping and penetration through interaction with cell 

membrane (Ainalema and Nylander, 2011; Benoit and Saxena, 2007).  Acetylated G5 

dendrimer penetrates through cell membrane leaving a hole as shown in Figure 1.5. 

 

Figure 1.5: Nanoparticle acetylated G5- Polyamidoamine (PAMAM) as a dendrimer can 

penetrate through cell membrane bilayer (Lee and Larson, 2011) 
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1.4.2 Interaction of dendrimers with molecules    

Dendrimers interact with biomolecules as the following: 

1. Interaction with small molecules like drugs or imaging molecules. 

Dendrimers like Polyamidoamine (PAMAM) have a hydrophobic core and a 

hydrophilic surface layer.  This characteristic offers the opportunity to dissolve poorly 

soluble.  Non covalent or covalent attachments of drugs to dendrimers were reported to 

significantly affect the dissolution rate, the aqueous solubility, the stability and other 

physicochemical properties of the drugs in physiological conditions (Duncan and Izzo, 

2005). 

2. Interaction with linear polyelectrolytes (PEs) like Deoxyribonucleic Acid (DNA). 

Gene materials and dendrimers may form complexes on the basis of electrostatic 

interactions that are convenient for delivery.  For instance, the delivery of short 

interfering Ribonucleic Acid (RNA) into target cells using Polyamidoamine 

(PAMAM) dendrimers have been reported in experiments for studying gene functions 

as well for identifying and validating new drug targets (Liu et al., 2012).  Linear gene 

material has various stiffness, i.e. DNA.  DNA has a negative charge density of one 

charge per 0.17 nm.  The experimental values of persistence length (lp  ( for single 

stranded DNA (ssDNA) ranges from 0.75 to 3.0 nm while for double stranded DNA 

(dsDNA) is about 50 nm (Watson and Crick, 1953).  For RNA, there is a large range of 

persistence length (lp  ( (Chen et al., 2012). 

3. Interaction with membranes. 

Biomembranes play a central role in determining the structure and function of all 

biological cells.  They serve as an interface between different organelles within a cell. 

Dendrimers may penetrate through the lipid bilayer membrane to carry out delivery. 

Experimental studies have shown that dendrimers can cause membrane disruption 
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through the formation of membrane holes and the expansion of preexisting defects 

(Hong et al., 2004).  Moreover, the surface group of dendrimers may be modified with 

nano technology to attack the specific target of ill cells. 

4. Interaction with proteins or peptides. 

Dendrimers may interact with proteins, such as Human Serum Albumin (HAS), which 

is the most abundant protein in the blood.  It has been found that dendrimers can bind 

with it through hydrophilic interactions.  Further, proteins-peptides also play critical 

roles in the release of drugs in the interior of dendrimers (Mahato et al., 2002). 

Additionally, the dendrimers possibly come into a contact with specific protein targets 

such as membrane proteins and molecular motors.  It has been shown that dendrimers 

encapsulate or interpenetrate a Polyelectrolyte (PE) chain depending on the salt 

concentration, size and charge density of the dendrimer and the Polyelectrolyte (PE) 

(Welch and Muthukumar, 1998).  Bead spring simulations showed that the 

Polyelectrolyte (PE) is wrapped around the dendrimer surface, leading to decrease in 

the gyration radius of the dendrimer (Lyulin et al., 2005).  But with longer chain that 

had more charges and more chain adsorbed into the dendrimer than were necessary for 

dendrimer neutralization then the role of electrostatic interaction appears.  It has been 

shown that a strong electrostatic interaction of the divalent chain induced a decrease in 

the dendrimer size and an increase in the dehydration degree of the chain (Lyulin et al., 

2008) while the size of the polyelectrolyte (PE) chain increases and the shape changes 

from oblate to prolate using Molecular Dynamic Simulation (MDS) technique (Mahato 

and Kim, 2002). 
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1.5 Compaction of DNA with cationic particles  

Compacted DNA is achieved by wrapping the DNA 1.75 turns around positively 

charged histone proteins to form the so-called nucleosome core particles (Kornberg, 

1977).  DNA compaction is accompanied with a loss of conformational entropy which 

leads to increase the bending of the stiff double helix and increase intermolecular 

electrostatic repulsion (Bloomfield, 1996).  It is important in gene therapy also it is 

suitable for living cell size to be contained and against degradation.  Dynamic Light 

Scattering (DLS) was used to study the interaction between DNA and dendrimers as a 

function of the charge ratio - the ratio between the number of primary ammine groups 

on the dendrimer and the phosphate groups on DNA.  The study showed that wrapping 

process is affected by that ratio.  There are other factors that affect the interaction of 

nano particles with cell membrane represented in neutral surface charge on nano 

particle that minimize cellular interaction.  Hence, functional groups on the nano 

particle and surface core primary determine many important nano material properties 

such as solubility, macro molecules and cell surface interaction.  Using nano particles 

in wrapping and penetration process depends on the shape of colloidal, size, charge and 

salt concentration of the environment (Ainalema and Nylander, 2011).  Figure 1.6 

shows the main colloidal nano particle morphology.      

 

Figure 1.6: Colloidal morphology rods, toroids and globular (Ainalema and Nylander, 

2011) 
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Wrapping nano particles such as viruses plays a key role in intercellular transport and 

soft matter systems.  It was demonstrated that some particles are partially wrapped, 

some particles are fully wrapped and other particles remain unwrapped.  Shape plays 

vital role in the process through dealing with drug delivery, gene therapy and other 

biological applications (Dasgupta et al., 2013).  Dendrimer-DNA wrapping interaction 

is driven by electrostatic interaction which is affected by salt environment (Maiti and 

Bagchi, 2006).  Figure 1.7 illustrates the interaction between different dendrimers and 

DNA under different pH environment   

 

Figure 1.7: Different dendrimers interact with DNA at various pH environments (Tian, 

and Ma, 2013) 

 

By modifying the study of interaction between polyelectrolyte(PE) chain and the 

dendrimer as a hard sphere that was done (Schiessel, 2001) by replacing the hard 

sphere with soft one (Qamhieh and Khaleel, 2013).  They found that wrapping length 

is larger than the isoelectric length - the length of DNA needed to compensate the total 

charge of dendrimer.  In their study they regarded dendrimer to be soft sphere – the 

radius is not constant through interaction with DNA as shown in Figure 1.8. 



 

 12 

 

Figure 1.8: Wrapping DNA around dendrimer (Qamhieh and Khaleel, 2013) 

Several factors that control the DNA/dendrimer complex relation  such as the charge of 

the sphere, the linear charge density of the polymer, the ionic strength, the sphere 

radius, the flexibility of the polymer, number of dendrimer in the complex, pH number, 

type and the used generation of dendrimer.  

Morphology of dendrimer-DNA aggregates was studied as a function of the dendrimer 

generation such as size, total charge and charge density, to provide further information 

of the condensation process.  By using a mono disperse DNA sample of 4331 bp, 

dendrimers of generation G1, G2, G4, G6 and G8.  Three experimental techniques 

Cryogenic Transmission Electron Microscopy (CTEM), Dynamic Light Scattering 

(DLS) and Steady State Fluorescence Spectroscopy (SSFS) were used to show that the 

morphology of the aggregates transition from rods and toroids to globular aggregates 

with increasing dendrimer generation that affects surface charge density (Ainalema and 

Nylander, 2011).   

Maiti and Bagchi performed 20 nanosecond long atomistic Molecular Dynamic (MD) 

simulations of G2-G4 dendrimer-ssDNA complexes in explicit water (Maiti and 

Bagchi, 2006).  Their work showed that under some circumstances the degree of over 

compensation is very limited.  During their work on dendrimer of G4, they found that 

G4 has enough positive charge 64 to neutralize the 37 charges on the ssDNA.  They 

also noted that DNA first wrapped around dendrimer then after a period of time, it is 

penetrated inside the dendrimer which made dendrimer swollen (Mahato and Kim, 
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2002; Maiti and Bagchi, 2006; Jonsson and Linse, 2001).  Figure 1.9 shows the 

complexes process between DNA and dendrimmer over the time period 

 

Figure 1.9: The formation of dendrimer-DNA complex over a period of time (Maiti and 

Bagchi, 2006) 

 

Dietrich studied the penetration between two neutral penetrable spheres under the 

effect of adhesion and bending energies (Dietrich et al., 1997).  They showed that 

penetration as a function of spheres sizes ratios, adhered area density and relative 

excess area Ze (r, A, εab) decreases either with increasing ratio(r) – the ratio between 

radius of small sphere to the radius of the large one - or decreasing relative excess area 

(εab) or increasing adhered area density (A).  They got the plot of penetration Ze(r) in 

two cases under elastic surface expansion modulus factor (Ka = 0.2 N/m) as shown in 

Figure 1.10. 

 

 

 

 

 

 

Figure 1.10: Penetration as a function of ratio Ze (r) in two cases a) with constant adhered 

area density A = 0.001 J/m
2
 b) with constant relative excess area εab = 0 (Dietrich et al., 

1997) 
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1.6 Statement of the problem 

The aim of our study is to understand the penetration of small nanoparticles such as 

ions, proteins and synthesized molecules into large particles like cell membrane.  This 

study could play a vital role in gene therapy.  Our efforts aim to generate a new model 

that contains adhesion, bending and electrostatic energy.  Then investigating the 

impacts of the electrostatic energy on penetration when it is added to adhesion and 

bending energies.  The reason behind concentrating on electrostatic energy beside 

adhesion and bending energies resides that synthesized molecules like dendrimers as 

interacting nanoparticles with cell membrane carry charges as pictured in Ohshima  

three-stage model(Ohshima, 2010).  We used the three-stage model that supplies us 

with parameters that play important role in interpenetration process in addition to the 

parameters that was used in Dietrich model (Dietrich et al., 1997).  Throughout this 

analytical study we are able to control the penetration process for cell membranes 

using charged particle rather than neutral ones to get the most desired transfection 

efficiency in gene therapy that could be applied in nano medicine and drugs delivery 

system into human cell membranes.  This control could be achieved by controlling 

electrostatic parameters contained in electrostatic interaction.  
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CHAPTER TWO                                                 THEORETICAL BACKGROUND 

2.1 Introduction 

We will develop a new free energy model based on Dietrich model (Dietrich et al., 

1997) that was used for processing the penetration resulted from adhesion and bending 

energies.  This new free energy model could be achieved by inserting the electrostatic 

energy that was proposed by Ohshima three-stage model (Ohshima, 2013) to the 

adhesion and bending energies (Dietrich et al., 1997).  The two spheres were pictured 

as soft porous spheres involve interpenetration between each other.  Therefore, the new 

free energy model is a perfect biophysical model explaining nano particles transport 

through cell membrane.  The picture of electrostatic interaction between two spheres is 

illustrated in three stages as in Figure 2.1. 

 

Figure 2.1: Electrostatic interaction between two charge porous sphere in three stages 

(Ohshima, 2010; Ohshima, 2013) 

 

2.2 Interpenetration by electrostatic energy only 

The electrostatic interaction between two porous charged spheres involves three stages 

according to Ohshima three-stage model as referred in Figure 2.1.  Stage I is called 

before contact represented with region I.  Stage II is called interpenetration stage 

represented with region II.  Stage III is called engulfing stage represented with region 

III, we just used the second stage of interaction that involves interpenetration of two 
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spheres.  The second stage is represented in region II (Ohshima, 2013; See Appendix 

B). 

Region I:  

Region I is used at a separation distance x such that x ranges over the interval,  

   -.  Stage I is used to bring the two nano particles for interaction.  The electrostatic 

energy (EStage1) in stage I (before contact) involved in Region I is described as follows 

(Ohshima, 2013) 
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The electrostatic force (FStage1) in Region I can be expressed as follows 
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Region II:  

Region II is used at a separation distance x where x ranges over the interval,      

 -.  Stage II involves the interpenetration process for two nano particles.  This stage 

will serve our modified free energy model.  The electrostatic energy in stage II (EStage2) 

through interpenetration process is expressed as follows (Ohshima, 2013) 
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The electrostatic force (FStage2) in Region II can be expressed as follows 
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Region III:  

Region III is used at a separation distance x where x ranges over the interval,     -. 

Stage III involves the end of interpenetration process for two nano particles reaching 

the engulfing sate.  The electrostatic energy (EStage3) in stage III is written as follows 

(Ohshima, 2013) 
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The electrostatic force (FStage3) in Region III can be expressed as follows 
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Where a, R are the radii of two charged porous spheres carrying the volume charge 

densities ρ1, ρ2, respectively.  εr is dielectric constant of the spheres, ε0 is permittivity 

of free space (vacuum permittivity),   is the separation distance between two 

interacting spheres centers and κ Deybe-Huckel parameter (Debye screening length) 

which is defined according to (Ohshima, 2010): 

  (
 

       
∑  
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KB is Boltzmann constant, T is the temperature, zi is a valence of ionic species in 

electrolyte and ni is the bulk concentration of ionic species (density number). 

For obtaining the penetration as function of ratio Ze(r) where the ratio r is (a/R), we get 

it by differentiating electrostatic energy of the second stage (EStage2) as follows   
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 Where the separation distance              . So substituting     ⁄     into 

Eq. (2.11) as follows 
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Multiplying Eq. (2.6) with a negative sign and then substituting it in Eq. (2.12) as 

follows 
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Eq. (2.13) can be solved numerically to get penetration values Ze(r).  
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2.3 Analytical model for the interpenetration under total energy  

The total energy (ET) is defined to be the sum of adhesion energy (Ea), the bending 

energy (Eb) and the electrostatic energy in the second stage (EStage2) as follows 

                                     

         {
                               

                                
                                   (    )  

So the picture of two penetrable spheres before interaction is illustrated as shown in 

Figure 2.2. 

 

Figure 2.2: The two spheres before interaction  

 

While the illustrated system through interpenetration when the sphere of small radius a 

starts to penetrate the large one whose radius R is shown as in Figure 2.3. 

 

Figure 2.3: The two spheres through interpenetration  

 

The parameters involved in the process of the interaction that determine the distance 

between spheres centers in stage II are the radii of two spheres a, R and the penetration 
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value(z).  For a < R, the separation distance between two spheres centers(x), x can be 

defined as 

                                                                                                 (    )   

The value z defined intern of contact angle (ө) as shown in Figure 2.4. 

 

Figure 2.4: Contact angle ө (Dietrich et al., 1997) 

     

The value (z) is given by the relation as in Dietrich model (Dietrich et al., 1997) 

                                                                                                (    ) 

Mathematically,      function resides on the interval [-1, 1].  Hence, penetration 

value z after substituting the start and the end of interval in Eq. (2.16) ranges over the 

interval ,    -.  Physically, the dimensionless quantity (z) represents how many radius 

of small sphere penetrates into large one. Now representing the free energy (Eab) as the 

sum of adhesion energy (Ea) and bending energy (Eb) as follows (Dietrich et al., 1997) 

                                                                                               (    ) 

Each one can be defined by the following relation (Dietrich et al., 1997)  

                                                                                                  (    )  

Such that A is substrate adhesion energy density and Sa is referred as the adhered area 

from small sphere to large one which is defined by the relation (Dietrich et al., 1997) 

                                                                                                  (    ) 

The negative sign in adhesion energy indicates that the adhesion energy generates 

attraction force.  The bending energy simplified with (Dietrich et al., 1997) 
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Where    is the elastic surface expansion modulus factor, S0 is surface area at rest 

(zero tension) such that          and           , εab refers to relative excess in 

surface area, Eq. (2.17) can be rewritten as 
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Substituting Eq. (2.19) and the values of S, S0 into Eq. (2.21), we got 
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Simplifying Eq. (2.22), we got 
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Eq. (2.23) represents the free energy of the system under the effect of adhesion energy 

(Ea) and bending energy (Eb). 

Differentiating the free energy Eab (z), to get the penetration at equilibrium Ze(r) 
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Eq. (2.23) was used to calculate the free energy Eab(x) as follows  
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And the free force Fab(x) can be obtained as the follows 
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By using Eq. (2.24) and Eq. (2.15), then Eq. (2.26) can be rewritten as 
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For obtaining the total free energy of the system (ET), we can sum the adhesion and 

bending energies (Eab) as in Eq. (2.25) into electrostatic energy of the second stage 

(EStage2) as in Eq. (2.4) as follows 
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Eq. (2.28) can be solved numerically by finding the extreme values for studying 

penetration function of ratio Ze(r) in equilibrium. 

The total free force of the system (FT) can be obtained as follows  
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Differentiating the total free energy (ET) for obtaining extreme values using Eq. (2.13), 

Eq. (2.15) and Eq. (2.24) as follows  
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We can solve Eq. (2.32) numerically to study the electrostatic energy parameters in 

coincide with the adhesion and the bending energies' parameters together.  For z values, we 

get its values under the effect of the adhesion, the bending and the electrostatic energies. 
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CHAPTER THREE                                                  RESULTS AND DISCUSSIONS 

 3.1 Introduction 

The present calculations have been done by essential tools for mathematical and 

modeling Maple software.  Also we used Origin software by supplying it with data 

obtained from numerical analysis to get the plots.  We obtained the penetration values 

of nanoparticles through larger particles under the effect of the total free energy 

represented with adhesion energy, bending energy and electrostatic energy in stage II 

through solving Eq. (2.32) numerically for studying penetration function Ze(r, A, εab, 

ρ1, κ, εr).  We obtained Eq. (2.32) through the differentiation of the Eq. (2.28) that 

represents the total free energy of the system.  Getting the effect of each parameter 

enable us to control the penetration process, this control could be applied in 

interpenetration process in the field of nano medicine and drugs delivery. 

3.2 Electrostatic interaction between two penetrable spheres  

In this section, we will show the three interaction regions between two penetrable 

porous spheres by applying three stage model developed by Ohshima (Ohshima, 2013). 

This model describes the three regions of electrostatic interaction between two nano 

particles spheres.  We can assume that the small sphere has a radius a, the large one 

has a radius R and also both two penetrable spheres carry two volume charge densities 

differ in kind ρ1, ρ2, respectively.  By choosing a = 8 nm to be the radius for a small 

porous nano particle soft sphere carrying volume charge density ρ1= -5 e/nm
3
 and the 

large one have a radius of R = 10 nm carrying volume charge density ρ2 = 0.5 e/nm
3
. 

Both two spheres immersed in a 1:1 solution that corresponds to a 1:1 solution giving a 

salt concentration 10 mM with dielectric constant εr = 78. After that, Ohshima model 

was applied to plot the electrostatic interaction in the three regions where Eq. (2.1), Eq. 
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(2.3) for region I, Eq. (2.4), Eq. (2.6) for region II and Eq. (2.7), Eq. (2.9) for region 

III.  The obtained results were plotted in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: a) Electrostatic energy Ee(KBT) b) Electrostatic force Fe(nN) between two 

spheres centers of radii a = 8 nm, R = 10 nm carrying ρ1 = -5 e/nm
3
, ρ2 = 0.5 e/nm

3
 

volume charge densities, respectively. Dielectric constant εr = 78 and Debye 

screening length κ = 0.3 nm
-1

 (10 mM 1:1 solution) in three regions in both two cases. 
 

As it can be seen in Figure 3.1, the electrostatic interaction is located in three regions: 

region I of electrostatic interaction scanned by the interval [R + a, ∞] = [18 nm, ∞ nm] 

(both two spheres are not in touch), this stage does not serve us since the two spheres 

are not in a contact.  Second region II of electrostatic interaction which describes the 

interpenetration stage process between two spheres located in the interval [R- a, R + a] 

= [2 nm, 18 nm], at that stage, we will concentrate our work. Third region III of 

electrostatic interaction ranges over the interval [0, R - a] = [0 nm, 2 nm] which 

describes the engulfing stage (small sphere engulfed by large one), the third stage 

represents the final stage of interaction that comes directly after the end of 

interpenetration.  By concentrating on the second stage II that involves interpenetration 

process, we have seen maximum electrostatic interaction taking place in region II, 

especially in the first two third of second stage (Ohshima, 2013).  The result we 

obtained is consistence with that obtained through studying the interaction between 

soft cylindrical porous nano particles (Ohshima, 2010).  Our study differs by assuming 
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the two interacting particles to be spheres for continuing the model we propose and 

replacing the neutral particles (Dietrich et al., 1997) with charged ones as proposed by 

Ohshima (Ohshima, 2013).  Mainly, electrostatic force appears from the charges of 

spheres (Tomalia, 2010; Ding et al., 2012; Maiti and Bagchi, 2006).   

3.3 Effect of electrostatic energy parameters  

In details, this section aims to discuss the impacts of the electrostatic interaction 

parameters, namely, volume charge density of interacting spheres ρ1, ρ2 and dielectric 

constant εr of interacting spheres as well the environment.  Spheres sizes were 

expressed by their radii a, R, salt concentration of solution represented intern of Debye 

screening length κ
-1

.  We will discuss each parameter and its effect on electrostatic 

interaction in order to control penetration process. 

Case 1:  

For examining the effect of small sphere volume charge density (ρ1) on the 

electrostatic interaction, we choose the volume charge density of large sphere ρ2 = 0.5 

e/nm
3
, the radius of small sphere a = 8 nm, the radius of large sphere R = 10 nm. 

Assuming that both two nano particles are immersed in an aqueous solution of 

dielectric constant εr = 78 under a 1:1 solution with salt concentration of 10 mM 

equivalent to Debye screening length κ = 0.3nm
-1

, by taking the volume charge density 

ρ1 to have the following values (-5 e/nm
3
,-10 e/nm

3
, -15 e/nm

3
). 

Case 2:  

For examining the effect of the dielectric constant εr of interacting spheres in the 

solution and the medium on the interaction between two nano particle spheres, we 

choose the volume charge densities of small sphere(ρ1) and the large one(ρ2) to be -5 

e/nm
3
, 0.5 e/nm

3
, respectively.  The radius of small sphere (a) and the large one(R) are 

to be 8 nm, 10 nm, respectively.  Assuming that both particles are immersed in an 
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aqueous solution with 1:1 solution giving a salt concentration of 10 mM equivalent to 

Debye screening length κ = 0.3nm
-1

.  By taking the dielectric constant εr to have the 

following values (70, 78, 84). 

Case 3:  

For examining the effect of salt concentration of a 1:1 solution having a dielectric 

constant εr = 78 on electrostatic interaction between two interacting spheres where the 

salt concentration is expressed by Debye screening length κ, we choose the volume 

charge density of the small sphere (ρ1) and the large one (ρ2) to be -5 e/nm
3
, 0.5 e/nm

3
, 

respectively.  The radius of small sphere (a) and the large one(R) are taking the values 

8 nm, 10 nm, respectively.  We can achieve this goal by taking Debye screening length 

of the values (κ = 0.2 nm
-1

, 0.3 nm
-1

, 0.5 nm
-1

), these values correspond to salt 

concentration of 3.7 mM, 10 mM and 23 mM. 

 

In the previous three cases, we used the three stage model developed by Ohshima 

(Ohshima, 2013).  The model equations describe three stages of electrostatic 

interaction in the three regions.  The effects of electrostatic parameters on interaction 

were plotted as in Figure 3.2.  
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Figure 3.2: a) Electrostatic interaction under the effect of volume charge density of 

small sphere (ρ1) b) Electrostatic interaction under the effect dielectric constant (εr) 

and c) Electrostatic interaction under the effect of salt concentration expressed in 

Debye screening length (κ)  
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Referring to Figure 3.2, it can be seen that electrostatic interaction located in three 

regions for the three stages, we are concerning with the second stage of interaction 

represented with region II located in the interval [2 nm, 18 nm], because it involves 

interpenetration process.  The begging of interaction starts at a distance x = 18 nm 

(about to contact) and ends at a distance x = 2 nm (engulfing state).  We found that 

electrostatic interaction tends to increase approximately in the first two third during the 

second stage till it reaches a maximum value.  At this interval we can predict a 

maximum interpenetration. Referring to Figure 3.2a, it can be seen that electrostatic 

interaction in the three regions increases by increasing volume charge density 

distribution of small nano particle sphere (ρ1).  In Figure 3.2b, we found the 

electrostatic interaction increase by decreasing dielectric constant (εr) of interacting 

spheres or the medium.  As a result, the curve that has a maximum electrostatic 

interaction is assigned to one that has a lowest material dielectric constant.  This fact 

serves us concluding that penetration for lipid membrane that has a lowest dielectric 

constant is larger to be penetrated than one possessing high dielectric constant.  For 

example, dendrimer as a nano particle has a dielectric constant around the value of 2. 

Each material has its specific dielectric constant electrical property. 1, 2-dimyristoyl-

sn-glycero-3-phosphorylcholine (DMPC) and 1-stearoyl-2-oleoyle-sn-glycero-3-

phosphocholine (SOPC) are examples of membranes materials, these two types of 

membrane were studied by Dietrich and Co-workers (Dietrich et al., 1997).  

Examining Figure 3.2c, it can be seen that electrostatic interaction increases by 

increasing Debye screening length (κ
-1

) (decreasing salt concentration).  This result 

serves us to predict that penetration is highest for the medium that has lowest salt 

concentration.  Similar experimental study was done using Cryogenic Transmission 

Electron Microscopy (CTEM) images technique showed that salt concentration is 
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driven by entropy increase due to releasing counter ions in solution.  When the 

morphology of G2/DNA aggregates have studied in aqueous solution of 10 mM NaBr, 

50 mM NaBr and 150 mM NaBr, it was found that increasing salt concentration leads 

to decreasing the potential interaction(Marrink, et al.,2007).  Controlling that 

parameter will enable us to control electrostatic interaction as well as interpenetration.   

3.4 Penetration due to electrostatic energy only  

In this section, our aim requires to concentrate on the penetration, so we want to focus 

on the region that involves interpenetration process - region II. Taking penetration as a 

function of ratio Z(r) where r is the ratio between the sizes of small sphere to large one 

(a/R) under the influence of electrostatic interaction only.  This can be achieved by 

solving Eq. (2.13) which represents the derivative of electrostatic energy in the second 

stage (EStage2) with respect to penetration (z), we solved it numerically for obtaining 

penetration at equilibrium Ze(r). By setting the ratio r to run from 0.01 up to 1 after 

fixing Debye screening length κ = 0.3 nm
-1

 which requires 10 mM of salt concentration 

and also setting volume charge densities of small sphere and large one to be ρ1 = -2.14 

e/nm
3
, ρ2 = 0.5 e/nm

3
, respectively.  Assuming both two interacting spheres immersed 

in monovalent aqueous solution (1:1 salt solution) with dielectric constant εr = 78.  See 

Figure 3.3. 

0.01 0.1 1
0

1

2

 r

 Z
e

 

Figure 3.3: Penetration as a function of ratio Ze(r) under the effect of electrostatic 

energy EStage2 only, with Debye screening length κ = 0.3 nm
-1

(10 mM 1:1 solution), 

small sphere volume charge density ρ1 = -2.14 e/nm
3
, large sphere volume charge 

density ρ2 = 0.5 e/nm
3
 of interacting spheres and dielectric constant εr = 78. 
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Referring to Figure 3.3, the penetration process that could be accompanied with 

wrapping process has been studied.  For very small particle it is totally penetrated 

while for large ones, particle penetration is slowing down the value 2, particle could be 

wrapped.  We have found that penetration at equilibrium Ze decreases at large ratios 

under electrostatic interaction in region II while at very small ratios the penetration is 

totally complete (Ze=2) which represents the engulfing state.  The effect of dielectric 

constant and volume charge densities of two spheres totally disappeared, while the 

effect of salt concentration given in terms of Debye screening length has incomplete 

effect because some terms located in the phase of the equation. Mathematically, 

studying penetration under electrostatic energy only makes some parameters to 

disappear during making mathematical operation like derivation.  This reason makes 

taking electrostatic energy to study penetration is not complete.  Physically this fact 

could be compared with studying penetration under the line curvature energy (Dietrich 

et al., 1997).  This is impossible without taking adhesion energy and bending energy as 

line curvature energy resulted from perturbation from adhesion and bending energies. 

That is why taking adhesion and bending energies to study electrostatic energy 

(interaction initiator) is unavoidable.  The spheres must keep in contact to see the 

effects of electrostatic interaction.  Table 3.1 gives the penetration values Ze for 

different ratios r under effects of electrostatic interaction only. 
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     Table 3.1: Penetration Ze values at different ratios r under electrostatic energy (EStage2) only   

 
 

3.5 Penetration under the total energy (Adhesion, Bending, Electrostatic) 

In section 3.4, we have studied the penetration as a function of ratio Ze(r) under the 

influence of electrostatic energy that concentrates on the second stage only.  In this 

section, we shall study the penetration under total energy described by Eq. (2.28). 

Taking the two interacting nano particle spheres such as the small sphere has a radius 

of 8 nm and the large one has a radius of 10 nm and both spheres having volume charge 

densities ρ1 = -5 e/nm
3
, ρ2 = 5 e/nm

3
, respectively.  The spheres are assumed to be 

immersed in aqueous monovalent solution of a salt concentration equals to 10 mM 

gives a Debye screening length κ = 0.3 nm
-1 

having a dielectric constant εr = 78 

(Ohshima, 2013).  The assumed relative excess area εab was taken to be -0.005 and the 

adhered substrate area density A is 0.001 J/m
2
.  By substituting these values in Eq. 

(2.28), then making differentiation as in Eq. (2.32) and solving the equation 

numerically.  We calculated the sum of adhesion and bending energies Eab as well as 

the correspondence force Fab as in Eq. (2.25) and its derivative.  Also for total energy 

using Eq. (2.28) and total force using Eq. (2.30).  The obtained results are shown in 

Figure 3.4. 
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Figure 3.4: a) Total energy ET(x)[KBT], electrostatic energy Ee(x)[KBT] and the sum of 

adhesion and bending energies Eab(x)[KBT] b) Total force FT(x)[nN], electrostatic force 

Fe(x)[nN] and the sum of adhesion and bending forces Fab(x) [nN] for two spheres of 

radii a = 8 nm, R = 10 nm carrying volume charge densities ρ1 = -5 e/nm
3
, ρ2 = 5 e/nm

3
, 

respectively. Dielectric constant εr = 78, adhered area density A = 0.001 J/m
2
, relative 

excess area εab = -0.005 and Debye screening length κ = 0.3nm
-1

(10 mM 1:1 solution) 

in both two cases in stage II. 

 

 

When we take the radius of small sphere a = 8 nm and the large one R = 10 nm, the 

interpenetration process is strictly located in the interval [2 nm, 18 nm].  As it could be 

seen from Figure 3.4, the influence of the electrostatic energy (Ee) surpasses the sum of 

adhesion and bending energies combined with each other (Eab) as a result, the total free 

energy (ET) of the interacting system would also increase by adding electrostatic 

energy term.  It is clear that the force resulted from adhesion and bending energies 

(Fab) is less than the electrostatic force (Fe) in the first two third of second stage that 

starts at distance x =18 nm (nearly being touch) and continues to increase till it ends at 

distance x =2 nm (engulfing stage).  The resultant total force (FT) also increases and no 

effect of electrostatic force without the adhesive and bending forces (adhesive and 

bending forces work as initiator for interaction) can be observed.  This picture of 

comparison is similar to that one that was done by Dietrich model when they studied 

the penetration under adhesion, bending and curvature forces, they could not study the 

curvature force alone (even if it was negligible, its contribution 10
-3

 form the total 
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energy) (See Appendix A; Dietrich et al., 1997).  The increase of the energy value, the 

accompanied force also affects the penetration to increase dramatically.  This fact 

appears through curves comparison between penetration values with and without 

electrostatic interaction as shown in Figure 3.5. 

0.01 0.1 1
0

1

2

 Z
e

r

  Z
e
 vs r under E

ab

  Z
e
 vs r under E

T

 

Figure 3.5: Comparison study for penetration Ze versus ratio r with and without 

electrostatic energy effect where adhered area density A= 0.001 J/m
2
 and a relative 

excess area εab = 0, volume charge densities ρ1 = -2.14 e/nm
3
,   ρ 2 = 0.5e/nm

3
 for small 

sphere and large one, respectively. Debye screening length κ = 0.3 nm
-1

(10 mM 1:1 

solution) and dielectric constant εr = 78. 

 

 

The results illustrated in Figure 3.5 show that increasing the value of energy by adding 

the electrostatic energy term to adhesion and bending energies terms would resulted in 

increasing in penetration.  The maximum value of for penetration curve Ze(r) occurs at 

the intersection point with the horizontal line described by the equation Ze=2 which 

represents the upper limit for penetration.  At values (r) below that point, the particle is 

totally penetrated into the large particle sphere to reach the engulfing state (Ohshima, 

2013).  At ratios greater than the intersection point, the small particle sphere is partially 

penetrated into the large particle sphere.  Two accompanied interactions may occur for 

the small particle, namely, wrapping and penetration.  Penetration occurs at small 

ratios and tends to decrease as the ratio is increasing up to reach the ratio 1.  

Eventually, small particle starts to grow up gradually  (at high ratios) penetrations 
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tends to slow down (less than 2) and the ability for wrapping particle tends to increase 

rather than penetrating(Dasgupta et al., 2013).  It is clear from Figure 3.5 that 

electrostatic energy term increases the total force.  This increase resulted from 

increasing the attractive electrostatic force between two interacting nano particles. The 

increase in force would also lead to increase penetration dramatically.  By comparing 

the results of the penetration with electrostatic energies and without electrostatic 

energy term (adhesion and bending energies only), a noticeable difference is reported 

in penetration (∆ (Ze) ↑) which is very high at large ratios, increase is due to the 

amount of the charge the particles  may carry.  This result is made consisted with study 

that was done by Dietrich and Co-workers for two neutral interacting nano particles 

(Dietrich et al., 1997).  All results are illustrated in Table 3.2 and illustrated in Figure 

3.5. 

Table 3.2 Difference in penetration (∆ (Ze) ↑) before adding the electrostatic term (Dietrich et 

al., 1997) and after adding electrostatic term.     

 
 

If we look at Table 3.2, we can see for very low ratios (< 0.1), the small nano particle 

reachs the engulfing state in the existence of electrostatic term faster than without 

electrostatic term (neutral particles).  Solving Eq. (2.28) that represents total free 

energy of the system under the sum adhesion energy, bending energy and electrostatic 

energy numerically, we can check the impacts of different parameters affecting 
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penetration. process.  Studying each parameter alone allow us to control the process of 

interpenetration, we will discuss each parameter as in the following subsections. 

3.5.1 The effect of relative excess area (εab) 

In this subsection, we want to investigate the impacts of relative excess area parameter 

(εab) which represents the relative excess area at the large sphere.  This goal could be 

achieved by taking total energy derivative with respect to penetration and finding 

extreme values ( 
   

  
   ) as in Eq. (2.32).  Assuming both two spheres having volume 

charge densities ρ1 = -2.14 e/nm
3
 for small sphere, ρ2 = 0.5  e/nm

3
 for large one, 

immersed in aqueous solution of dielectric constant εr = 78 with a 1:1 salt of 

concentration equals to 10 mM gives a Debye screening length κ = 0.3 nm
-1

 with 

adhered substrate area  density A = 0.001 J/m
2
.  Then fixing all variables and taking  

εab to have the following values (-0.005,-0.0025,0,0.0025,0.005,0.01) and then solving 

for penetration (z) numerically by setting ratio (r) to run from 0.01 up to 1, the results 

of penetration function Ze(r, εab) can be calculated.  The results are plotted in Figure 

3.6. 

0.01 0.1 1
0

1

2

 Z
e

 r

 
ab

 =   0.01

 
ab

 =   0.005

 
ab

 =   0.0025

 
ab

 =   0

 
ab

 =  -0.0025

 
ab

 =  -0.005

 

Figure 3.6: The penetration value Ze versus ratio r for two interacting spheres having 

volume charge densities ρ1 = -2.14 e/nm
3
for small one, ρ2 = 0.5 e/nm

3
 for large one, 

dielectric constant εr = 78, Debye screening length κ = 0.3 nm
-1

(10 mM 1:1 solution) 

and adhesive energy density A = 0.001 J/m
2
 with a varies relative excess area εab. 
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Figure 3.6 shows that penetration (Ze) increases by increasing the value of relative excess 

area εab.  Such increase is resulted from enlarging the exposed area for electrostatic 

interaction by increasing relative excess area (εab).  Also, Ze reaches a maximum value at 

very small ratios (ratio r → 0) where the penetration is totally complete (horizontal line 

Ze=2) which represents the engulfing state for those curves that doesn't cut penetration Ze 

axis. A general observation, penetration decreases by increasing the ratio which was 

obtained by Dietrich-Coworkers study(Dietrich et al., 1997).  This is true after adding 

electrostatic term, some turning points exist during the balances between three forces 

adhesion, bending and electrostatic.  Since distribution may be affected during penetration 

process i.e.; changed from sphere to ellipsoidal or rod especially we are dealing with nano 

particles or a number of interacting particles.  At very high ratio the penetration is so much 

close which is explained by small charge neutralization, while at very small ratio the 

curves are apart where the dominant force is electrostatic (See section 3.5).  It is clear that 

penetration with the existence of electrostatic energy is larger than with adhesion and 

bending energies through comparing the Figures 3.6 and 1.10a.  Hence, the effect of 

relative excess area still very small, the jumps in penetration for each value occurred 

resulted from electrostatic energy term that has its own parameters affecting the process. 

Table 3.3 gives penetration under the total energy at fixed relative excess area εab = 0. 
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Table 3.3: Penetration values Ze for different ratios r for two interacting spheres having 

volume charge densities ρ1 = -2.14 e/nm
3
 for small sphere, ρ2 = 0.5e/nm

3
 for large one, 

dielectric constant εr = 78, Debye screening length κ = 0.3 nm
-1

(10 mM 1:1 solution), and 

adhesive energy density A= 0.001 J/m
2
. 

 
 

By comparing Table 3.3 with column two in Table 3.2, we can see, for example, at 

ratio r = 0.1, the data appears as in increase in penetration difference ((∆ (Ze) ↑) by 

0.00008617.  This difference is too small and natural for small ratio.  Similar results 

were obtained for high ratios the difference is still small, for example, at ratio r = 1, 

penetration difference ((∆ (Ze) ↑) of 0.04869536.  This result indicates that relative 

excess area effect is so small compared with electrostatic parameters effects (Dietrich 

et al., 1997).  

3.5.2 The effect of adhered area substrate density (A)  

In this subsection, we want to investigate the impacts of adhered area substrate density 

parameter A which represents the contact area density energy.  This goal could be 

achieved by taking finding the extreme values of total energy as in Eq.(2.28) by 

differentiating  with respect to penetration as in Eq.(2.32) ( 
   

  
  ) .  Assuming both 

two spheres having volume charge densities ρ1 = -2.14 e/nm
3
 for small sphere, ρ2 = 0.5  

e/nm
3
 for large one, respectively, Spheres are assumed to be immersed in aqueous 

solution of dielectric constant εr = 78 with a 1:1 salt of concentration equals to 10 mM 
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gives a Debye screening length κ = 0.3 nm
-1

 with relative excess area( εab = 0 ).  After 

that, values of A are chosen to be (0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005) J/m
2
 

and then solving for penetration function Ze(r, A) numerically by setting ratio (r) to run 

from 0.01 up to 1.  The results were plotted in Figure 3.7. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: The penetration value Ze versus ratio r for spheres having volume charge 

densities ρ1 = -2.14 e/nm
3
 for small sphere, ρ2 = 0.5 e/nm

3
 for large one, dielectric 

constant εr = 78. Debye screening length κ = 0.3 nm
-1

(10 mM 1:1 solution) and relative 

excess area εab = 0. 

 

Comparing between Figure 3.7 and Figure 1.10b that represent the penetration with 

and without the existence of electrostatic energy at constant A parameter.  It is similar  

results were obtained for as relative excess area parameter except some turning points 

for each curve result from the balance between three forces (Dietrich et al., 1997). At 

the ratio r < 0.1 it is same as figure 1.14b, but at ratio r > 0.1 approximately 

penetration tends to rise, this fact is due to electrostatic interaction for the area exposed 

between negative and positive charges that speeds up the penetration.  By looking at 

Figure 3.7, we can notice that penetration (Ze) increases by increasing the value of 

adhered area substrate density parameter A resulted from enlarging the electrostatic 

interaction that the area exposed, Ze is found to reach a maximum value at very small 

ratios (ratio r → 0), where the penetration is totally complete at the horizontal line 

(Ze=2) that represents the engulfing state for those curves that doesn't cut Ze axis. Also, 
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penetration decreases by increasing the ratio.  At very high ratio the penetration curves 

at different values of A are so very close.  This can be explained on the basis of small 

charge neutralization (electrostatic force surpasses adhesion and bending forces).  The 

behavior at very small ratio the curves are apart where the dominant force is 

electrostatic (See section 3.5).  It is clear that penetration with the existence of 

electrostatic energy is larger than with adhesion and bending energies still true under 

the effect of that parameter, this fact is consistence with the fact that was obtained 

through studying two cylindrical soft particles (Ohshima, 2010).  

3.5.3 The effect of volume charge density (ρ1) 

In this subsection, we want to investigate the impacts of volume charge density of the 

small interacting particle sphere (ρ1) while keeping the volume charge density of  the 

large one being constant (ρ2 = 0.5  e/nm
3
).  This goal could be achieved by taking total 

free energy Eq. (2.28) and differentiate it with respect to penetration z for finding 

extreme values ( 
   

  
   ) as in Eq. (2.32).  Assuming ρ1 have the following values (- 

0.5,-1.5,-2.5,-10,-50) e/nm
3
.  Both spheres are assumed to be immersed in aqueous 

solution of dielectric constant εr = 78 with a 1:1 salt of concentration equals to 10 mM 

gives a Debye screening length κ = 0.3 nm
-1

 with relative excess area (εab = 0) and 

adhered area substrate density parameter (A = 0.001 J/m
2
) and then solving Eq. (2.32) 

for penetration (z) numerically by setting ratio r to run from 0.01 up to 1.  Result are 

illustrated in Figure 3.8 and illustrated in Table 3.4.  
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Figure 3.8: The penetration value Ze versus ratio r for two interacting spheres carrying 

volume charge densities ρ1 for small sphere, ρ 2 = 0.5e/nm
3
 for large one, dielectric 

constant εr = 78. Debye screening length κ = 0.3 nm
-1

(10 mM 1:1 solution), relative 

excess area εab = 0 and adhered substrate area density A= 0.001 J/m
2
. 

 

Table 3.4: Penetration Ze values for different ratios r for two interacting spheres of radius a 

carrying volume charge densities ρ1 and a large sphere carries a volume charge density ρ2 = 

0.5e/nm
3
, dielectric constant εr = 78, Debye length κ = 0.3 nm

-1
(10 mM 1:1 solution), relative 

excess area εab = 0 and adhered substrate area density A= 0.001 J/m
2
. 

 
 

In our study, we replacing the two neutral interacting spheres studied by Dietrich and 

Co-workers (Dietrich et al., 1997) with charged ones. Significant change in penetration 

occurs.  This change is a result of increasing total energy of interacting system by 

adding electrostatic energy.  This increase will enhance interpenetration, that increase 

was a result of increasing the volume charge density of the interacting particle. 

Through increasing the volume charge density, the attractive force makes the 

interpenetration between spheres easy.  As in the previous, the horizontal line Ze=2 
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forms the high upper limit for penetration (totally complete penetration).  It represents 

the engulfing state, for the small ratios, the nano particles are totally penetrated when 

the particle tends to grow gradually the penetration starts to decrease less than the 

value 2, for those ratios possessing penetration less than 2, it is exposure to be wrapped 

around large one(Dasgupta et al., 2013).  Moreover, penetration decreases by 

increasing the ratio as it was done in Dietrich model (Dietrich et al., 1997).  Some 

turning points exist resulted from changes for spheres shape and size through 

interaction due to the electrostatic interaction.  At a very small ratio the curves are very 

close and penetration is very high where the dominant force is electrostatic because of 

the negligible size of small sphere.  But at very high ratios the curves are 

distinguishable (apart from each other).  It is clear that penetration with the existence 

of electrostatic energy is larger than with adhesion and bending energies through 

comparison.  

This study could be approximately compared with dendrimer-DNA complexation 

which is driven by electrostatic interaction.  For example, wrapping process increases 

by increasing dendrimer generation through increasing amine groups that carry charge 

on their outer surface (Welch and Muthukumar, 2000).  Our study for penetration 

process under the effect of volume charge density was verified experimentally using 

Inductively Coupled Plasma Mass Spectroscopy (ICM-MS) technique through 

investigating the adsorb process for neutral and negatively particles by cell membrane 

surface.  They found that neutral and negatively charged nano particles adsorbed much 

less on negatively cell membrane surface also they showed lower level of 

internalization compared with positively charged particles (Ayush and Francesco, 

2009).  We found that charge has a great influence on penetration process, that factor 

enables us to control penetration. 
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3.5.4 The effect of dielectric constant (εr) 

In this subsection, we want to investigate the impacts of the dielectric constant εr of the 

two interacting spheres and the medium too.  This goal could be achieved by taking 

total free energy Eq. (2.28) and differentiate it with respect to penetration as in Eq. 

(2.30).  Then finding the extreme values ( 
   

  
   ).  Assuming both two spheres 

having volume charge densities ρ1 = -2.14 e/nm
3
 for small sphere and ρ2 = 0.5  e/nm

3
 

for  the large one immersed in aqueous monovalent solution of salt concentration 

equals to 10 mM gives a Debye screening length κ = 0.3 nm
-1

 with relative excess area 

εab = 0 and adhered area substrate density (A = 0.001 J/m
2
) .  Taking εr to be (84, 78, 

70 and 2) and substituting the rest of parameters then solving Eq. (2.30) numerically 

for penetration (z) by setting ratio (r) to run from 0.01 up to 1.  The data are plotted as 

in Figure 3.9.  

 

 

 

 

 

 

 Figure 3.9: The penetration value Ze versus ratio r with spheres charge densities ρ1 = 

-2.14 e/nm
3
, ρ2 = 0.5 e/nm

3
, respectively. Adhered substrate area density A= 0.001 

J/m
2
. Debye length κ = 0.3 nm

-1
 (10 mM 1:1 solution) and relative excess area εab = 0 

with a varies dielectric constant εr.        
 

Looking at Figure 3.9, it was found that increasing the total energy of system, by 

selecting the material with lowest dielectric constant, penetration at equilibrium (Ze) 

increases by decreasing the value of dielectric constant (εr) of the two interacting 

spheres (it depends on the material of interacting spheres).  It reaches its maximum 
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value at a very small ratios (ratio r → 0) where the penetration is totally complete 

(Ze=2).  So decreasing the dielectric constant will increase the electrostatic energy and 

hence affects by decreasing the total energy that affects the penetration to increase 

dramatically.  This electrical property differs by different material, which enables us to 

control the process of interpenetration.  Dietrich model (Dietrich et al., 1997) was 

based on two types, 1-stearoyl-2-oleoyle-sn-glycero-3-phosphocholine (SOPC) and 1, 

2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) membranes, their dielectric 

constants ≈ 2.1, 4.2, respectively.  Each type of membrane differs in that property.  We 

found that the material with the lowest dielectric constant may lead to be high 

penetrating.  Table 3.5 shows the penetration variation with dielectric constant εr. 

 

Table 3.5: Penetration values Ze for different ratios r for two interacting spheres, the small 

sphere has volume charge density ρ1 = -2.14 e/nm
3
, and a large one has a volume charge 

density ρ2 = 0.5e/nm
3
, Debye screening length κ = 0.3 nm

-1
(10 mM 1:1 solution), relative 

excess area εab = 0 and adhered substrate area density A = 0.001 J/m
2
with a varies dielectric 

constant εr. 

 
 

     

3.5.5 The effect of salt concentration in terms of Debye length (κ)  

We want to investigate the impacts of the salt concentration in the expressed intern of 

Debye screening length (κ).  This goal could be achieved by taking total free energy 

Eq.(2.28) and differentiate it with respect to penetration as in Eq.(2.30) .  Then finding 
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extreme values ( 
   

  
   ).  Assuming both two spheres having volume charge 

densities ρ1 = -2.14 e/nm
3
 for small sphere and ρ2 = 0.5 e/nm

3
 for large one immersed 

in aqueous monovalent solution with relative excess area (εab = 0) and adhered area 

substrate density (A = 0.001 J/m
2
).  After that fixing all variables and making κ to be 

assigned the values (0.3, 1.05 and 1.28) nm
-1

 that corresponds to salt concentration 

values (10,100,150) mM, respectively.  Solving Eq. (2.30) for penetration (z) 

numerically by setting ratio (r) to run from 0.01 up to 1. The data are plotted as in 

Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: The penetration value Ze versus ratio r for two interacting spheres having 

volume charge densities ρ1 = -2.14 e/nm
3
 for small sphere, ρ2 = 0.5 e/nm

3
 for large one, 

relative excess area εab = 0, adhered area density A= 0.001 J/m
2
 with a varies mono salt 

concentration having dielectric constant εr =78. 

 

Referring to Figure 3.10, high penetration occurred at low Debye length (κ 
-1

) that 

corresponds to low salt concentration where Debye length represents the double layer 

thickness.  It has great importance in colloid stability and for that matter in 

flocculation.  It controls the range of double layer interaction.  For those curves that 

doesn't cut penetration Ze axis it is bounded with maximum penetration value (Ze=2).  

It is completely penetrated, for ratios r approaching near zero.  The thickness of double 

layer is controlled by concentration and valences of ions in solution.  High 

concentration of ions (high ion strength) in the medium generally results to increase the 
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double layer thickness that affects particle motion through penetration process i.e. the 

concentrations(10 mM ,100 mM and 150 mM) corresponds to Debye screening length 

(κ
-1

)  values (3.3 ,0.95 and 0.78) nm respectively .  So increasing double layer thickness 

would decrease penetration.  Penetration interaction when compared to wrapping 

process, the study showed that increasing the pH degree (from acid to base 

environment), will resulted in decreasing the wrap process (Luo et al., 2002).  Through 

solving Eq. (2.30) numerically, the calculation results are summarized in Table 3.6.  

 

Table 3.6: Penetration values Ze for different ratios r for two interacting spheres having 

volume charge densities ρ1 = -2.14 e/nm
3
 for small sphere, ρ2 = 0.5 e/nm

3
 for large one, relative 

excess area εab = 0, adhered area density A= 0.001 J/m
2
 with varies 1:1 of a salt concentration 

solution having dielectric constant εr =78. 

 

 
 

 

 

From Table 3.6, it is noticeable by increasing the salt concentration in the interaction 

environment will lead to release ion, as the ion become more strength in solution, the 

interpenetration process is impeded.  So controlling the salt concentration in the 

environment enables us to control the process of particle penetration. 
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CHAPTER FOUR                                   CONCLUSIONS AND FUTURE WORK 

 

4.1 Conclusions 
 

After completing our study that was based on comprising the model for electrostatic 

interaction between two soft porous interpenetrating spheres by Ohshima (Ohshima, 

2013) and the analytical study that was produced by Dietrich and Co-workers for 

neutral particles (Dietrich et al., 1997).  We modified such model by constructing a 

new equation for total free energy of interacting system through comprising process, 

and then we solved the total free energy equation numerically for investigating the 

electrostatic parameters.  After studying the new total free energy of the system, it was 

found that adding electrostatic energy into adhesion and bending energies causes to 

increase total free energy, total free force and interpenetration.  We also found that 

charged particle penetrated larger than neutral ones.  The dramatic increase in 

interpenetration is due to the to effects of electrostatic parameters, taking into account 

the system is isolated from other effects like viscosity, thermal energy, etc. as well line 

curvature energy which is assumed to be discarded, since its contribution is negligible 

in Dietrich model study.  We obtained that electrostatic interaction surpasses adhesion 

and bending interaction in the first two third of interaction (mainly second stage of 

Ohshima model).  The new significant parameters that were investigated came from 

the electrostatic energy term, namely, the charge of small interacting sphere expressed 

as a volume charge density (ρ1), the dielectric constant of the medium (εr) as well 

spheres in addition to salt concentration.  Mentioned parameters have a varied effect. 

We found that the volume charge density of small interacting sphere would increase 

the electrostatic energy that reflects an increase in total free energy which causes the 

interpenetration process to increase.  Relevant to dielectric constant of medium, we 

found that decreasing the dielectric constant will cause an increase to total free energy 
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which reflects an increase in interpenetration process.  Salt concentrations were found 

to decrease penetration due to barriers resulted form the path which is crowded with 

high ion concentration, through loading specific values for electrostatic parameters 

enables us to control the interpenetration in different applications.  The penetration of 

nanoparticles have important role that could be applied in genetics and molecular 

mechanism in medicine and drug responses.  Also charged nanoparticles provide great 

opportunities to explore the potential of using nanomaterial as vehicles for the delivery 

of DNA, proteins and nucleus.  Charged nanoparticles may be faster than neutral 

nanoparticle during cancers cell attack.  Therefore, in this way, we can speed up the 

process of interpenetration and the result of treatment success reach faster.   

 

4.2 Future work 

Extending Ohshima's model with other parameters 

The proposed model by Ohshima could be modified by adding some parameters related 

to the nature of interaction medium and the soft particles, like the blood viscosity, the 

turbidity, the permittivity, and the shape of two interacting nano particles and their 

nature, etc., to obtain reliable results which lead to new design for drugs applied for 

human cells. 

Extending Ohshima's model to be on number N of interacting particles 

In principle, the proposed three-stage model summary is describing, studying the 

penetration and calculating the interactions between two soft charged porous particles. 

But it be could enlarged to accommodate N soft charged porous interpenetrating 

particles data. N particle data considerably increases the difficulty of the estimations 

and calculations for N particles effects.  Ohshima's three-stage model has not yet been 

implemented for the interaction of N interpenetrating particles. 
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Appendix A 

 

 Contact line energy (Dietrich et al., 1997) 

 

The vesicle radius is very large (R >> a) in picture.  In the region of the contact 

line, the membrane is supposed to follow a toroidal shape, between points A and C 

in the cross-section is the true membrane-sphere contact point. We denote ρ the 

radius of the tore cross section.  The angle α defined in figure simply related to the 

contact angle by θ = π - α. 

 

 
Figure A: Bending membrane near to the membrane-solid sphere contact line 

 

Taking the limit R >> a, z = 1-cos α was only variable in the energy of the system.  

Now we have to handle two variables, namely α and ρ, the goal of this appendix is 

estimate the value of ρ at equilibrium and the importance of the toroidal portion of 

the membrane in the total energy.  We calculate bending energy Eb, adhesion 

energy Ea and line energy El. We have: 

 

       (     α)                                                                              (   ) 
 

                                                                         (   ) 
 

ST is the surface area of the above defined tore portion and  

 

  (  ρ)    α                                                                                       (   )   
 

is the distance between A and the symmetry axis. ST is given by 

 

                     ,(   )        (      )   -                                       (   ) 
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Equations (Eq. (A.1) - Eq. (A.4)) allow us to calculate Ea + Eb, the line energy El is 

due to the curvature of the membrane in the contact region.  The general expression 

of the curvature energy involves the constant Kc, Ka (mean curvature elasticity and 

Gaussian curvature elasticity) and is rather complex in the geometry of interest. 

Fortunately it simplifies considerably if we assume ρ << δ. Actually, we expect this 

condition to be satisfied if the sphere size is not too small and if the adhesion 

energy is large enough to produce a significant penetration.  Indeed, this is so in our 

experiments, and we will verify that our results are consistent with this view.  The 

simplification leads to 

        
  
  

                                                                                                               (   ) 

 

From the explicit expressions of the surface area, we find 
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           Minimization of Ea + Eb + El as a function of ρ leads to: 
 

  

  
 
  
  

 
  

   
 
              

      
                                                                             (   ) 

 

            Thus we estimate  

  
  

 
√
  
  

                                                                                                                    (    )           

with                                ⁄                ⁄ , we find ρ 

≈ 5 nm, a value on the order of the membrane thickness, i.e. near the physical lower 

limit of ρ.  This result is obviously consistent with our assumption that ρ << a.  ρ 

can be expressed as a function of the membrane tension: 

              √
  

 
                                                                                                                            (    )     
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in agreement with Evans estimate (Dietrich et al., 1997).  To estimate the 

importance of line energy in the total energy of the system, we regard    as a 

perturbation of Ea + Eb. The minimum value of the unperturbed Ea + Eb is 

equal 
   

 
   

  

  
  (for εab= 0).  Then, using Eq. (A.10) and Eq. (A.11), we find: 

             
  

      
 

 

 

 

  
√

  

  
                                                                                                        (    ) 

 

With the same numerical values as before, the above ratio is found ≈10
-3

 thus, the 

line energy is negligible in our conditions.  This would not be true with much 

smaller spheres.  With the same values of the vesicle radius, we find a cross over 

size of about 0.1 µm. 
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Appendix B 

 

 Ohshima three stage model (Ohshima, 2013) 

 

A three-stage model of the electrostatic interaction between two charged 

interpenetrating charged spherical soft particles without the particle core (space-

charged porous spheres) in an electrolyte solution in three states (i) interaction 

before contact of the two spheres, (ii) partial interpenetration, and (iii) full 

interpenetration, i.e., engulfing of one sphere by the other.  This is an extension of 

the work of Dahnert and Rodenbeck (Dähnert and Rödenbeck, 1994), who 

considered the interaction between interpenetrating vesicle-like surface-charged 

particles, to the case of the interaction of space-charge porous spheres. Analytic 

expressions for interaction energy and force between two interpenetrating weakly 

charged porous as a function of particle separation are derived for the respective 

stages on basis of the linearized Poisson-Boltzmann equations  for electric potential 

distribution .Soft particles, which are hard particles covered with an ion-penetrable 

surface layer of polyelectrolytes, can be a model for biological cells.  Electrostatic 

interaction between soft particles is quite different from those for hard particles 

without surface structures in that the electrostatic interactions between soft particles 

are governed by their space-charges distributed within the particles or Donnan 

potentials. 

 

Poisson-Boltzmann equations for two interacting charged porous spheres 

 

Consider two charged porous spheres of radii R and carrying fixed charges of 

constant volume densities ρ2 and ρ1, respectively.  At separation x between their 

centers O1 and O2 in an electrolyte solution containing N ionic species with valence  

   and bulk concentration (number density) ni (i = 1, 2 ...N) (in units of) m
-3

 in three 

stages as shown in Figure B, that is,     
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(i) Interaction before contact (See Figure B.1). 

(ii) Interpenetration (See Figure B.2). 

(iii) Engulfing (See Figure B.3). 

 

 

 

 

 

 

 

  

 

 

 

 

                 Figure B.1: Interaction before contact                Figure B.2: Interpenetration             

  

 

 

  

 

 

 

 

 

 

 

 

 

                                              Figure B.3: Engulfing 

Figure B: Three stage model for two porous spheres interacting  

If dissociated groups of valence Zj are distributed at a uniform density Nj are 

distributed in sphere j (j = 1, 2), then the fixed-charge density ρj in sphere j is 

related to the density Nj by ρj = ZjeNj (j =1, 2).  Without loss of generality, we may 

treat the case in which the radius    of sphere 1 is larger than or equals to the radius 

   of sphere 2,  

           R ≥ a                                                                                     (B.1) 

Ohshima assumed that the relative permittivity in spheres 1 and 2 take the same 

value.  Permittivity (εr) as that of the electrolyte solution and that the electrical 



 

 57 

potential 𝛹 is low enough to allow the linearization of the Poisson-Boltzmann 

equations for 𝛹.  The linearized Poisson-Boltzmann equation in the respective 

regions can generally be given by: 

                 𝛹    𝛹  
 

    
                                                                       (B.2) 

           with 

                .
 

      
∑   

     
 
   /

  ⁄

                                                     (B.3) 

Where   is the Debye-Hückel parameter (Dähnert and Rödenbeck, 1994), (1/ ) is 

the Debye length the measure of a charge carrier's net electrostatic effect in 

solution, and how far those electrostatic effects persist, it depends on the bulk 

concentration and the valence of ions 

For instance z =1 for monovalent solution, z =2 for divalent, and z =3 for trivalent.  

Stage 1: Interaction before contact(See Figure B.1)  

  

                {

                   
                   
                    

                                                          (B.4)                  

Stage 2: Interpenetration (See Figure B.2) 

    {

                           
                            
                    
                           

                                                   (B.5)      

  Stage 3: Engulfing of sphere 2 by sphere 1(See Figure B.3) 

      {

                          
                   
                          

                                                   (B.6) 

The boundary conditions are: 

   𝛹 → 0 at points far from spheres 1 and 2 

  𝛹     ( 𝛹   )⁄  are continuous at the surfaces of spheres 1 and 2 
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The derivative of Ψ is being taken along the outward normal to the surface of each 

sphere.  The solution to Eq. (B.2) can be expressed as the sum 

𝛹  𝛹  𝛹                                                                                                   (B.7) 

where Ψ1 and Ψ2 are the unperturbed potentials for spheres 1 and 2, respectively in 

the absence of the interaction between the two spheres. 

This is because of: 

(i) Eq. (B.2) is linear with respect to Ψ 

sphere surface are given by Eq. (B.6); the unperturbed potential of one sphere 

automatically satisfies the boundary conditions at the surface of the other sphere. 

The potential distribution Ψ f two interacting ion-penetrable 

spheres are thus simply given by linear superposition of the unperturbed potentials 

Ψ1 and Ψ2 produced by the respective spheres.  Thus one needs to solve only the 

potential distribution for a single isolated sphere.  Consider the unperturbed 

potential Ψ1 produced by sphere 1, for which Eq. (B.2) reduces to 

       

   
     

 

  

      

   
      𝛹                             (Outside sphere 1)           (B.8) 

      

   
  

 

  

     

   
   𝛹      

  

    
                    (Inside sphere 1)           (B.9) 

𝛹    (  )                                                                                                    (B.10) 

𝛹   ( 
 )    𝛹    ( 

 )                                                                                         (B.11)                                                                                                                    

     

   
|
    

 
 

      

   
|
    

 
                                                                                      (B.12) 

where r1 is the distance measured from the center O1 of sphere 1.  The solutions to 

Eq. (B.8) and (B.9) subject to Eq. (B.10) - Eq. (B.12) are: 

𝛹 (  )  {
𝛹    (  )               (               )

𝛹   (  )             (               )
                                  (B.13) 

where 

𝛹    (  )  
  

     
 2    (  )   

    (  )

  
3 

     

  
                                            (B.14) 
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𝛹   (  )  
  

     
 2  0  

 

  
1      

    (   )

   
3                                              (B.15) 

Similarly, Ohshima derived the potential Ψ2 produced by sphere 2 in the absence of 

sphere 1, which Ψ2 is obtained by replacing r1 with r2 and R with a in Eq. (B.14) - 

(B.16).  The result is 

𝛹 (  )  {
𝛹    (  )               (               )

𝛹   (  )             (               )
                                  (B.16) 

where 

𝛹    (  )  
  

     
 2    (  )   

    (  )

   
3  

     

  
                                            (B.17) 

𝛹   (  )  
  

     
 2  0  

 

  
1      

    (   )

   
3                                             (B.18) 

where r2 is the radial coordinate measured from the center O2 of sphere 2, which is 

related to r1 

   (     
          )

  ⁄                                                                             (B.19) 

The prefactors of Eq. (B.14), (B.15), (B.17), and (B.18) are equal to the Donnan 

Potentials ΨDON1 and ΨDON2 in spheres 1 and 2, respectively. (Dähnert and 

Rödenbeck, 1994; Ohshima, 2010) 

𝛹     
  

     
 
(     )                                                                                        (B.20) 

Calculations 

Stage 1: Interaction between two charged porous spheres before contact 

Consider two spheres 1 and 2 of radii   and   at separation x before there contact 

with each other, i.e. x ≥ R + a.  In this stage there are three regions I (inside sphere 

1 and outside sphere 2), II (outside sphere 1 and inside sphere 2), and III (outside 

both spheres 1and 2) (See Figure B.1).  Note that the fixed charge densities in the 

respective regions are ρ1 for region I, ρ2 for region II, and zero for region III, Eq. 

(B.4).  The potentials in the respective regions are given by 

  {

𝛹   (  )  𝛹    (  )             

𝛹    (  )  𝛹   (  )              

𝛹    (  )  𝛹    (  )               

                                                (B.21) 
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The interaction energy Ee (x) between two charged porous spheres 1 and 2 at 

separation x can be obtained from the free energy F(x) of the system of two spheres 

1 and 2 minus that at infinite separation (x = ∞), viz., Ee (x) = F(x) - F (∞).  Here 

F(x) in stage 1 is given by 

 ( )  
 

 
  ∫ 𝛹    

 

 
  ∫ 𝛹         

                                                                (B.22)  

where integration is carried out over the volumes VI and VII of the respective 

regions I and II, and F (∞) is given by 

 ( )  
 

 
  ∫ 𝛹       

 

 
  ∫ 𝛹            

                                                     (B.23) 

This is the sum of the electrostatic self-free energies of spheres 1 and 2.  We thus 

obtain 

  ( )   ( )   ( )  
 

 
  ∫ 𝛹        

 

 
  ∫ 𝛹                               (    )     

                      

By substituting Eq. (B.14) and (B.17) into Eq. (B.24), Ohshima obtained after some 

algebra 

For          

  ( )  
        

     
 2    (  )  

    (  )

  
3 2    (  )  

    (  )

  
3
    

 
                 (B.25) 

The interaction force   ( )      ( )     is then given by 

   ( )  
        

     
 2    (  )  

    (  )

  
3 2    (  )  

    (  )

  
3
(    )    

  
       (B.26) 

Stage 2: Interaction between two charged partially interpenetrating porous spheres 

 

Consider two partially interpenetrating spheres 1 and 2 of radii   and    at 

Separation x, where R - a < x < R + a.  In this stage there are three regions I (inside 

sphere 1 and outside sphere 2), II (outside sphere 1 and inside sphere 2), III (inside 

both spheres 1and 2), and IV (outside both spheres 1 and 2) (See Figure B.2).  Note 
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that the fixed charge densities in the respective regions are ρ1 for region I, ρ2 for 

region II, and ρ1 + ρ2 for region III, and zero for region IV. 

The potentials in the respective regions are given by: 

  

{
 

 
𝛹   (  )  𝛹    (  )             

𝛹    (  )  𝛹   (  )              

𝛹   (  )  𝛹   (  )               

𝛹    (  )  𝛹    (  )              

                                               (B.27)                                                            

The free energy F(x) of the system of two spheres 1 and 2 in stage 2 is given by 

 ( )  
 

 
  ∫ 𝛹    

 

 
  ∫ 𝛹         

 
 

 
(     ) ∫ 𝛹         

                   (B.28) 

Thus the interaction energy Ee(x) between two charged porous spheres 1 and 2 at 

separation x in stage 2 is 

  ( )   ( )   ( )                                                                                         (B.29)                                                                                                                
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  ∫ 𝛹            

   
    

        

                                                                                                   (B.30) 

By substituting Eq. (B.14), (B.15), (B.17) and (B.18) into Eq. (B.30), Ohshima 

obtained after some algebra 
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The interaction force   ( )      ( )   ⁄  is then given by 
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Stage 3: Interaction for the case where sphere 2 is engulfed by sphere 1 

 

Consider two spheres 1 and 2 of radii R and a at separation x, where 0 ≤ x ≤ R- a. 

So that sphere 2 is engulfed by sphere 1. In this stage there are three regions I 

(inside sphere 1 and outside sphere 2), II (inside spheres 1 and 2), and III (outside 

spheres 1 and 2). (See Figure B.3).  The fixed charge densities in the respective 

regions are ρ1 for region I, ρ1 + ρ2 for region II, and zero for region III.  The 

potentials in the respective regions are given by 

  {

𝛹   (  )  𝛹    (  )             

𝛹   (  )  𝛹   (  )              

𝛹    (  )  𝛹    (  )               

                                                (B.33)                                                                                                                                   

The free energy F(x) of the system of two spheres 1 and 2 in stage 3 is given by 

 ( )  
 

 
  ∫ 𝛹    

 

 
(     ) ∫ 𝛹         

                                         (B.34) 

Thus the interaction energy Ee(x) between two charged porous spheres 1 and 2 at 

Separation x in stage 3 is 

  ( )   ( )   ( )                                                                                 (B.35)                                                                                                                                                                               
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  ∫ 𝛹                

          (B.36) 

By substituting Eq. (B.15), (B.17) and (B.18) into Eq. (B.33), Ohshima obtained 

after some algebra 

For         

  ( )  
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(  )  
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                                                                                                                 (B.37) 

The interaction force   ( )      ( )     is then given by 
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انمُي انمؤثشي عهّ اخخشاق انجسٕمبث انكشَٔت نجسٕمبث كشَٔت اخشِ لببهت  دساسـت جنمذ حم 

نلاخخشاق)مسبمٕت( مثم الاغشٕت انمخبطٕت حٕث ٔمكه نٍزي انجسٕمبث بأن حكُن أُوبث صغٕشة انحجم 

مه ٌزي انذساست بأن ٔكُن نٍب مجبل حطبٕمٓ فٓ علاج حٕث وخُلع .  أَ بشَحٕىبث أَ جضٔئبث مصىعت

 انجٕىبث عه طشٔك الادَٔت َمعبنجت انسشطبوبث.

فٓ  نمذ حم حطُٔش ومُرج ببلاعخمبد عهّ انىمُرج انزْ اوخجً انببحثُن دأخشش َاوجٕلاوُفب َبُنٕفٓ

 .ححمم شحىً لا -لاخخشاق جسٕمبث كشَٔت نبعضٍب انبعض ببعخببس ٌزي انجسٕمبث مخعبدنت دساسخٍم

ٍب كانىبجم مه انشحىت انخٓ حمخه انزْ طُسي انببحث اكشٕمب بضبفت انخفبعم انكٍشَسخبحٕكٓحٕث لمىب ب

انخفبعم انكٍشَسخبحٕكٓ ٔؤثش بشكم كبٕش عهّ الأُوبث َ انبشَحٕىبث َكزنك انجضٔئبث َنمذ حبٕه ان 

مب فٓ حبنت خفض ا .ه الاخخشاقحٕث َجذ ان صٔبدة كثبفت انشحىً انحجمٕت ٔضٔذ م . صٔبدة الاخخشاق

ببنىسبت لاخخٕبس ثببج انعضل فمذ َجذ اوً كهمب  حشاكٕض انمحهُل انمهحٓ فأوً ٔؤدْ انّ صٔبدة الاخخشاق.

  اكثش اخخشالب. انمبدة كهمب كبوج مىخفضكبن ثببج انعضل 
 

 

 
 

 

 

 

 

 

 

 

 


