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Abstract In Information Technology Service Management (ITSM), network

management teams typically use an Incident Ticket System (ITS) as a tool to track,

troubleshoot, and coordinate the resolution of network incidents that occur during

the daily operation of the network. A well organized ITS may positively impact on

the efficiency of the incident management process. Nevertheless, in many cases the

handling of tickets by the management team is not completely systematic and may

be incoherent and inefficient. This way, irrelevant or redundant tickets for the same

incident may be issued, thus creating a redundancy in the system that leads to

inefficiencies. In this paper, we suggest a model aimed to correlate redundant tickets

in order to reduce the information to a single ticket per incident. We validate the

proposed correlation model by evaluating it with two datasets taken from a real

ticketing system of a telecommunications network company. Using this model as a

basis, we also develop and evaluate a methodology that assesses the efficiency of

the management team during the process of tickets creation and management. Based

on it, we also get some insights on the performance of the different management

groups involved in the ticket creation process. These analyses can be leveraged for

improving both the management groups functioning and the policies for the tickets’

creation.
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1 Introduction

Over the past few years, decision makers in large management companies have

realized the urgent need to enhance Service Level Agreements (SLAs) [1] with their

customers, in order to increase their profits. Therefore, the use of efficient strategies

for Information Technology Service Management (ITSM) is becoming one of the

top demanding factors that influence the revenue of these companies. This need has

emerged in parallel with the evolution, in terms of scalability and complexity, of

telecommunication networks and the criticality of the services that they offer. For

this reason, network management teams are always trying to find efficient methods

to improve network uptime and to quickly solve network incidents to be within the

committed thresholds established by SLAs [2].

One of the most important components of ITSM is the incident management,

which provides mechanisms to recognize, isolate, correct, and log incidents that

occur during the daily operation of the network. These incidents are considered as

the most significant contributors to system downtime and may disturb the service

provisioning [3, 4], e.g., software bugs, hardware failures, or device misconfigu-

rations, among others.

In this context, the Information Technology Infrastructure Library (ITIL) is the

most widely adopted approach for ITSM in the world [5]. It is the best practices

standard in managing information technology services that provides infrastructure,

development, and operations for identifying, planning, delivering, and supporting

the IT services to the business. Incident management is one of the main processes

that ITIL provides. By referring to the ITIL terminology, the incident can be defined

as ‘‘an unplanned interruption to an IT service or reduction in the quality of an IT

service. Failure of a configuration item that has not yet impacted service is also an

incident’’ [6].

Incident Ticket Systems (ITSs), or Service Desks as mentioned in ITIL, have

been introduced as the main tool to assist in the incident management process. They

are defined as databases that share reports in a specific form-based structure, and

actions to create, update, and resolve any network incident reported by customers,

organization employees, or monitoring systems. They might also contain admin-

istrative information about customers, workarounds to be applied for common

incidents, and other similar data.

Normally, there are two main different procedures for creating incident tickets.

On the one hand, they can be created by the management team in response to a

network failure discovered by management software, e.g., alerts from OpenView [7]

or other network management platforms. On the other hand, they can also be created

by the customer care staff in response to a call from an end user facing problems in

accessing some services or applications. Incident resolution begins with the creation

of a ticket that contains the information describing the ongoing incident. Next, the
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ticket may be sequentially reassigned to several technical groups involved in the

incident solving procedure. Finally, it is closed when the incident is completely

solved and, optionally, a crosscheck of the solution can be made. Therefore, the

ticket may pass through several hands and undergo various degrees of escalation

with respect to incident severity or customer priority before being completely

acknowledged.

Although ITS plays an important role in the incident management, the process of

creating the tickets is not completely systematic and may be incoherent and

inefficient. For example, the management team may create so-called irrelevant

tickets, i.e., tickets that do not reflect the existence of an actual network problem; or

it may create multiple tickets that are related to the same incident. It is also possible

that different staff groups or departments in a company create different tickets for a

single incident.

In this context, we present three main contributions in this paper. First, a novel

model for an incident ticket is proposed. Unlike others, we try to make the model as

general as possible by focusing only on the generic fields that appear in tickets such

as staff information, temporal and topological information, etc. Second, we propose

an incident ticket correlation model targeted at improving the ticketing system to

achieve the ideal situation at which just a single ticket per incident exists. Third, we

propose some metrics used to measure the redundancy in the ITS, according to the

proposed correlation method. These metrics are then used to evaluate the procedures

for creating tickets.

To the best of our knowledge, this is a novel approach, as there are no systematic

methods currently available for this purpose. Previous work in ITSs has focused on

improving the whole system to achieve the corresponding SLA in time.

Notwithstanding with this, few efforts have been devoted to optimize the efficiency

of the ticket creation process itself, which, at the same time, would improve the

overall task of solving the incidents. In our opinion, this is partly due to the fact that

the ticketing information is confidential, and this fact hides both the real tickets and

the used procedures from the research community. Furthermore, vendors are not

interested in publishing the data nor the procedures due to competitive issues, while

management teams either do not keep track of this data or treat it as confidential

information due to similar motives. In this work, we focus on dealing with the ticket

creation process itself.

The remainder of this paper is organized as follows. Section 2 provides a brief

survey of related work. The incident ticket lifecycle is presented in Sect. 3, while a

model for the incident tickets is proposed and discussed in Sect. 4. Next, this model

is used as the basis for a correlation process described in Sect. 5. The correlation

method is experimentally evaluated in Sect. 6. Section 7 describes, through a case

study, the application of the method for the evaluation of the performance of the

actors involved in ticket creation. Finally, Sect. 8 presents some conclusions and

provides some insights about further work.
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2 Related Work

A thorough review of the literature of ITSs and correlation shows several research

tendencies, as emphasized by Lewis and Dreo [8]. In this survey, the authors

analyzed the challenges and research trends for extending ITSs for the automatic

generation of tickets, the diagnosis of faults and the correlation of multiple views of

network incidents and behavior. For this, Lewis and Dreo suggested various

techniques, as the use of filtering and grouping of tickets with respect to language,

function, time, and topology; the use of Rule-based Reasoning (RBR) or Case-based

Reasoning (CBR) for acquisition and representation of fault diagnostics knowledge;

or the use of Fuzzy Logic (FL) for correlating multiple views of network incidents.

A similar work was done by Johnson [9], who proposed the RFC 1297. This

report mainly discussed the most important extensions that can improve the network

operations efficiency, and emphasized the importance of ITSs for network

management teams. Nevertheless, it did not provide a methodology to analyze

the content of the ticket itself.

Dreo [10] went forward and proposed the use of ticket correlation for the

discovery of problems and access to problem-solving expertise. One of the main

conclusions of Dreo’s work is that a high-quality ticket correlation needs to use

good models for the functional and topological aspects of any network service. For

this reason, the authors use the topological and temporal information as the main

dimensions for the correlation process.

Miao et al. [11, 12] focused on enhancing the ticket management lifecycle by

proposing a unified ticket generative model that characterizes the lifecycle of a

ticket using both the content and the routing sequence of the ticket and a Markov

model-based approach to predict the resolver of the ticket based on the expert group

that previously processed the ticket. The aim is to enhance the routing and minimize

the number of transfer steps before it reaches a resolver.

Tang et al. [13] suggested an automatic approach to discover the false negatives

from those incident tickets that are created by humans in order to improve the

configurations of the monitoring system. They applied a text classification model for

analyzing the descriptions of incident tickets and identifying the corresponding

system issues.

The work done by Li et al. [14] is intended to give an estimate of the mean effort

for incident tickets, by means of a two-stage approach. First, a meta-model is

proposed, and some handling priority rules are used to compute what the authors

call ‘‘attention duration’’. Then, a Maximum Likelihood (ML) approach is used to

estimate the mean effort for a ticket class by using such attention information.

However, in spite of the above works about ticket management, we did not find a

lot of work focusing on the ticket correlation process itself in the literature, except

for some preliminary works that were done in order to achieve different purposes.

Next, we summarize these efforts.

Some authors tried to correlate information from ITSs with another source of

information, as in [15–18]. In these papers, the authors proposed models to relate

two types of data sources, the so-called source tickets, which are created by the

monitoring system, and the service tickets, which are generated by the management
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team. Their main goal was trying to improve the accuracy and effectiveness of the

management process in real time. The authors concluded that ticket overlapping is

one of the main challenges for their models, but they did not provide any solutions

to handle it.

A similar work was also proposed in [19–22], in which the authors used simple

ticket preprocessing operations to reduce the total number of tickets before

correlating them. Nevertheless, the focus of these papers was to study and

characterize the nature and causes of routing changes and the observed instability.

Therefore, they did not deeply analyze the ITSs, and the correlation of the tickets is

not targeted at reaching one ticket per incident.

Other approaches used different techniques to process the tickets and extract the

description of the incidents, like Potharaju et al. [23]. In this work, the authors

proposed NetSieve, a system that analyzes natural language text in network tickets

to infer the problem symptoms, troubleshooting activities, and resolution actions.

They used statistical Natural Language Processing (NLP), knowledge representa-

tion, and ontology modeling to achieve these goals. Others, like Medem et al. [24]

used machine learning techniques to process the tickets and extract a concise

description of the incidents. To do that, they modeled each ticket as a vector of

keywords whose frequencies are used as weights to create a hierarchical clustering.

The resulting clusters are used to correlate the tickets and extract the incident.

However, despite the usefulness of these techniques of relating tickets that share the

same keywords, it was limited to just work on some free-text fields and ignore some

important features such as timestamps and topological information.

In addition to the papers described above, some researchers used ITSs for other

purposes. For example, Tanaka [25] and Pándi [26] made some statistical

measurements and characterized tickets from several networks taken as case

studies. From these analyses, the authors proposed some recommendations to

enhance the performance of ITSs and their use in the context of SLAs. They also

presented a comprehensive and detailed taxonomy for the categorization of

equipment, services, and users affected by events. However, in their work they did

not focus in preprocessing operations or the correlation of tickets from the point of

view of reducing the number of tickets per incident.

Other authors used ITSs as an assessment tool to validate their research ideas.

This is the case of the work done by Huang et al. [27]. They proposed to use

network-wide analysis of routing information to diagnose network disruptions. In a

similar work, Labovitz et al. [28] made an experimental study of Internet stability

and the origins of failure in Internet backbones utilizing the information provided by

the ITS.

Finally, despite the availability of many commercial service desk products, such

as HP Service Center [7], ServiceNow [29], BMC Remedy [30], or Tivoli SCCD

[31], few efforts have been devoted to optimize the ticket creation process itself.

Most of these tools use their own procedures for resolving network incidents and

enhancing the whole system to recover the SLA in time. For the time being, and to

the best knowledge of the authors, the procedures used for incident tickets

correlation are not publically available, because vendors of these tools are not

interested in publishing the procedures and keep them hidden from the public due to
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competitive issues. So, the inherited complexity of these tools makes it difficult to

inspect which type of correlation operation they use, if any.

3 The Incident Ticket Lifecycle

As previously discussed, our principal motivation is to find mechanisms for building

a simple and manageable system to deal with incidents in a network. ITSs are a

main tool used to record and report incidents within an operational system. They

are, therefore, considered as a main tool for tracking resolution activities associated

with incidents. For this reason, our work here will focus on the management of

tickets, under the hypothesis that they are the best tool for representing an incident

lifecycle. Nevertheless, it is worth to mentioning here, that although there is a direct

relationship between tickets and incident lifecycles, there could be significant

differences between them that will be discussed in what follows.

For these reasons, our starting point is the understanding of such a ticket

lifecycle. In Fig. 1 we show the different stages and actions involved in a generic

incident ticket lifecycle: ticket creation, ticket assignment, ticket management, ticket

reassignment, ticket resolution, and ticket validation.

• Ticket creation: A ticket is created by a network management team or

administrative staff, here denoted as ticket creator, either (i) in response to the

reception of network alerts triggered by proactive network monitoring systems

due to service disruptions or failures of network elements, or (ii) in response to a

call or notifications typically coming from customer care units or directly from

end users who face technical problems in the access to services or applications.

In a normal situation, the time elapsed between the origin of an incident and its

corresponding ticket creation time should not be long, although in many situations it

Customer 
care

Network 
alerts

Ticket 
crea�on

Ticket 
assignment

Ticket 
Valida�on

Ticket 
re-assignment

Ticket 
resolu�on

Ticket history
database

Ticket 
Management

Ticket 
re-assignment

Ticket 
creator

Ticket 
resolver
{1,…,N}

Ticket validator

Fig. 1 Generic incident ticket lifecycle
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can be in the range of minutes or hours, especially when tickets are created

manually and not by an automated system. In these situations, the ticket creator may

register the timestamp corresponding to the incident as reported by the monitoring

systems, or the time when a customer reported a failure or a management team

member detected it.

• Ticket assignment: After being created, a ticket is then handed off to an

appropriate technical person or group in the company, denoted as ticket resolver,

who is expected to resolve the incident.

• Ticket management: This is the main stage in the ticket lifecycle. During it, the

ticket resolver analyzes the incident reported in the ticket, finds potential

solutions, tests them, and reports the results.

• Ticket reassignment: It could happen that the ticket resolver, after having

investigated the problem–and possibly having also applied several solutions—

detects that the incident solution is out of the scope of his/her responsibilities. In

this situation, the ticket resolver will again hand off the ticket to another group

for its management. This process is the ticket reassignment. In general, when

this happens, a ticket can be managed by N different ticket resolvers, and

therefore, can go through the ticket management stage several times.

Normally, before doing a reassignment, the ticket resolver registers (in the ticket

itself) the different activities carried out to solve the incident and his/her results.

• Ticket resolution: Once the incident reported on the ticket is solved or a

workaround discovered, the ticket resolver registers the final solution and the

corresponding tests and results applied to the ticket. Finally, he/she notifies that

the incident is resolved.

• Ticket validation: After the ticket resolution, the ticket arrives to another

member or group, denoted as ticket validator that is in charge of verifying

whether the solution is satisfactory or not. If it is validated, the ticket is saved in

a ticket history database that is commonly used to build knowledge for future

incidents. On the contrary, if the ticket solution is not validated, the ticket is

reassigned again to a ticket resolver. Therefore, the ticket lifetime can be defined

as the time elapsed between the creation of a ticket and its resolution or

validation in some cases.

4 A Novel Model for Incident Tickets

ITSs produce tickets in different and heterogeneous formats, containing a wide

variety of fields with several possible values for them. Some of these fields are

inherent to the operation of the ITS, and therefore, they could be considered as
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generic fields. Others are specific, i.e., they collect specific requirements established

by the different incident analysts.

Here, we make an effort to define a generic model for a ticket. Thus, we focus on

the generic fields that appear in tickets and assume that every ticket will contain

these common fields. The proposed model is based on two categories of common

fields. In what follows, we classify and describe them:

• Timestamps fields: This category contains the most important time indexes that

are mainly related to the lifecycle of the tickets.

Ticket creation time for ticket i (ti
CT): It is the instant at which the ticket creator

generates the ticket in the ITS.

Ticket resolution time for ticket i (ti
RT): This time is recorded on the ticket when

the solution for the ticket is notified by the ticket resolver to the ticket validator.

Ticket validation time for ticket i (ti
VT): It represents the instant at which the ticket

validator acknowledges the solution given to the incident, sending the ticket to

the ticket history database.

For every ticket i, we define a list of timestamps Ti
TS as:

TTS
i ¼ tCT

i ; tRT
i ; tVT

i

� �

• Identifiers’ fields: This category of fields in a ticket is used to univocally

identify the ticket in the database, associate it to the different ticket resolvers

involved in the ticket management stage, and also relate it with the network

elements or services affected by the incident reported in the ticket.

For each ticket i, we define three types of field lists:

Ticket IDs (TIDs): Each ticket in the database has a unique identifier that is

typically an alphanumeric value representing the unique reference of the ticket

itself. We will refer to this identifier as the main ticket ID.

Although there is a unique main ticket ID field in a ticket, during the management

stage, ticket creators/resolvers normally may directly or indirectly mention the main

ticket IDs of other tickets. This reference is usually included in other fields,

especially those with free text format, such as incident description, worklogs or

incident resolution fields. For this reason, we also consider a list of ticket IDs

extracted from these fields and containing all these related identifiers. For every

ticket i, we have

TTID
i ¼ TID1

i ; TID2
i ; . . .; TIDn

i

� �

where TIDi
1 is the main ticket ID for ticket i.
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Group IDs (GIDs): Due to the fact that every ticket can be managed by different

ticket resolvers during its lifecycle, the tickets contain information about them.

Here, we define a list of ticket resolvers (TR) involved in the management of a

ticket. Every ticket resolver j that was involved in the management of ticket i is

identified by TRi
j, resulting in the list

TTR
i ¼ TR1

i ; TR2
i ; . . .; TRm

i

� �

where TRi
1 is the identifier for the first ticket resolver of the ticket, that is, the ticket

resolver chosen by the ticket creator in the assignment action for the ticket i.

Object IDs (OIDs): Each node, service, component, or element in a network is

usually referred to with a unique identifier, usually a string, that we call the object

ID. When an incident is detected in a network, the corresponding ticket is

associated with the identifier of an object of the network that we call the main

object ID. In addition, in the ticket creation process or along the ticket

management stage, the ticket creators/resolvers usually include other object IDs,

mainly in the incident description, worklog, or incident resolution fields, which

are related to the incident described by the ticket.

Thus, we define a list of OIDs for every ticket i, that contains all the previously

described objects’ identifiers.

TOID
i ¼ OID1

i ;OID2
i ; . . .;OIDl

i

� �

where OIDi
1 is the main object ID for ticket i.

In summary, our model represents a ticket by a tuple containing the following

elements (note that every element is really a list of values):

Tickets correla�on

Tickets 
preprocessing

Local 
correla�on

Global 
correla�on

Original 
�ckets

De-correlated
�ckets

Fig. 2 Proposed incident ticket correlation process
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Ti ¼ TTS
i ; TTID

i ; TTR
i ; TOID

i ð1Þ

It should be pointed out that tickets normally include many other fields not

considered in our model, e.g., priority of the ticket. We have only included those

fields that will be used for the correlation algorithms proposed here.

5 Incident Ticket Correlation Process

In this section we propose a ticket correlation process aimed to enhance the

information provided by the ITS, trying to rebuild the ITS database in order to

obtain, for every incident in the network, only one ticket containing accurate

information about that incident.

The global procedure that we propose can be decomposed in two main phases:

tickets preprocessing and tickets correlation (Fig. 2). Thus, starting from a set O of

O original tickets stored in the ITS, a first preprocessing step is required in order to

extract only meaningful tickets, as will be explained next. The preprocessing phase

is divided into two subphases: selection of incident-related tickets and tickets

parameterization. The resulting set, P, composed of P tickets, is then passed

through the ticket correlation procedure to produce a new set, G, composed by

G supposedly de-correlated tickets (that is, the final set of tickets) that is expected to

contain a single ticket per incident. As shown in Fig. 2, the proposed correlation

procedure can be further split into two subphases: local correlation and global

correlation, each of them targeted at removing the redundant tickets according to

different properties. In the following subsections, we provide a more detailed

discussion about each step.

5.1 Tickets Preprocessing

The first step for dealing with the original ITS database, O, is to apply a

preprocessing mechanism aimed to obtain, in a proper format, the tickets that are

relevant from the point of view of incident solving. To do this, we divide the

preprocessing phase into two sub-phases:

5.1.1 Selection of Incident-Related Tickets

The first task is selecting only those tickets that are related to incidents. Note that

there are many tickets in the ITS that have not really been created because of an

incident occurrence. First, we can find so called malformed or void tickets: those

created for doing nothing either due to a failure in the network management tool,

which automatically generates a large number of such kind of tickets, or due to

misbehaviors of the management staff, they sometimes create many tickets without

a real network incident. This process depends on the specific input dataset.

Typically, a ticket is not considered as incident-related if it does not contain a

number of required fields filled with data, mainly those describing the affected
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nodes, services, and the resolution time. Any ticket that does not contain such kind

of information is considered malformed and should be removed from the whole

procedure. Second, we can also find so called irrelevant tickets: those which are not

related to real network incidents. In many ITSs it is usual that they include tickets

for topics not directly related to network incidents but contain information about

some other issues as, for example, the availability of a new software release in

certain network nodes or maintenance activities. These irrelevant tickets are mainly

not related to network incidents, and therefore, should be removed, according to the

target of the whole procedure. To identify these tickets, any matching procedure

could be followed. In our case, we identify those tickets that contain any word from

a list of keywords built with the help of the management staff as irrelevant.

5.1.2 Tickets Parameterization

In this step, and after having selected incident-related tickets, we extract the list of

parameters of the proposed ticket model, as illustrated in Eq. (1). To do this, for

every ticket we extract these relevant fields as follows: main object ID (OIDi
1), main

ticket ID (TIDi
1), first ticket resolver ID (TRi

1), and the list of timestamps TTS
i

� �
are

normally mapped in a ticket field, so they are extracted directly from their

corresponding fields in the tickets. The other identifers in the model are extracted by

using pattern matching methods to search for the occurence of keywords and text

conformation to given formats in other tickets’ fields; normally in incident

description, worklogs, and solution fields.

After applying the above two steps, the output of the preprocessing step is a set P
of P tickets, Ti, in the standard form given in Eq. (1):

P ¼ T1;T2; . . .; TPf g

5.2 Tickets Correlation

The tickets’ correlation phase has two main goals. First, it is used to reduce the total

number of tickets by substituting every subset of tickets that share some common

properties into a single one that is termed as the representative ticket for that subset.

Second, the correlation process is expected to increase the semantic information of

the data of the ticket. This means that a representative ticket will give more accurate

information about the real incident than the bunch of tickets taken as input to this

phase. This is mainly because the information provided by them summarizes all the

information in the tickets related to the same incident.

We divide the ticket correlation phase into two subphases: local and global

correlations. In the following we provide a detailed description of each one of them.

5.2.1 Local Correlation

Local correlation is used to correlate tickets that collect information about different

problems reported for the same network node or service but really correspond to the

same incident. Our hypothesis here is that if several tickets have the same main
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object ID (same that node) and they overlap in time, those tickets are related to the

same incident, and thus, should be correlated. We call this process a local

correlation process because it works on a per-node level and ignores any tickets

potentially related to the same incident but reported for different main object IDs.

These representative tickets will be treated as input to the next subphase, global

correlation.

For the local correlation process, we propose an algorithm that takes several

overlapped tickets having the same main object ID and reduce them to a single

ticket, T0
R, termed as the local representative ticket. The algorithm is explained in

what follows.

Suppose that, from the complete tickets database, we identify the subsets Sk � P,
each composed by a number Nk of tickets Sk ¼ T1; T2; . . .;TNk

f g, so that [8kSk ¼ P
and Si \ Sj ¼ ;; 8i 6¼ j. Each subset Sk is composed of several tickets in P that

share the following properties:

(i) They have the same main object ID, i.e.,

OID1
i ¼ OID1

j ; 8i; j 2 ½1;Nk�

(ii) They overlap in time; that is, for every ticket Ti 2 Sk, we can find at least

another ticket Tj 2 Sk so that their intervals tCT
i ; tRT

i

� �
and tCT

j ; tRT
j

h i

overlap, i.e.,

tCT
i � tCT

j � tRT
i

n o
OR tCT

j � tCT
i � tRT

j

n on o
¼ true

(iii) There are no time gaps between them, i.e.,

8t 2 min
i2½1;Nk �

tCT
i

� �
; max

i2½1;Nk �
tRT
i

� �� 	
; there is at least one active ticket

For every subset Sk, the correlation algorithm creates a local representative

ticket, T0
K, which will replace all the tickets in Sk, following these rules:

t0CT
k ¼ min

i2½1;Nk �
tCT
i

� �
ð2Þ

t0RT
k ¼ max

i2½1;Nk �
tRT
i

� �
ð3Þ

t0VT
k ¼ max

i2½1;Nk �
tVT
i

� �
ð4Þ

T 0x
k ¼ [

Nk

i¼1
Tx

i ; where x ¼ TID; TR;OIDf g ð5Þ
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OID01
k ¼ OID1

i ; for any i ð6Þ

Note that the value for the fields T0
k
TID, T0

k
TR, and T0

k
OID is extracted as the union

(concatenation without repetition) of the corresponding lists in the tickets from the

subset Sk. This means that, in the representative ticket, the meaning of TID0
i
1 and

TR0
i
1 as the main ticket and ticket resolver IDs is lost. However, the value OID0

i
1 still

represents the main object ID, as this value is the same for every ticket in Sk.

It must also be noted that it could happen that a subset Sk is composed of a single

ticket, in case that this ticket is not overlapped with any other in P for the same

OID1. In such a case, this ticket is itself the representative ticket for that subset.

The output of this local correlation process is a set L of L representative tickets,

each one representing a different subset Sk � P.

L ¼ T 0
1; T 0

2; . . .; T 0
L

� �

The function of the algorithm can be explained through a simplified example as

shown in Fig. 3. In this example we consider one subset, Sk, composed of three

tickets (Nk = 3). As depicted in Fig. 3a, the creation time of the ticket T2 tCT
2

� �

occurs during the interval [t1
CT, t1

RT]; besides, T3 is created (t3
CT) within the interval

[t2
CT, t2

RT]; finally, these three tickets have the same main object ID (e.g., node x),

i.e., OID1
1 = OID2

1 = OID3
1 = x. Thus, T1, T2, and T3, according to the proposed

method, should be locally correlated into the representative ticket (T0
r), as shown in

Fig. 3b, where t0CT
r ¼ mini2½1;3� tCT

i

� �
¼ tCT

1 and t0RT
r ¼ maxi2½1;3� tRT

i

� �
¼ tRT

3 .

Besides, it must be noted that T0
r
TID, T0

r
TR, and T0

r
OID are extracted as the union of

the corresponding lists in T1, T2, and T3.

5.2.2 Global Correlation

After having correlated the overlapping tickets related to the same main object ID

(local correlation), here we extend our correlation process to consider other tickets

(a)

(b)

t

t

Fig. 3 Local tickets correlation example: a original tickets, b representative ticket
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with different main object IDs, leading to a global correlation. The aim now is to

identify tickets’ reporting problems in different nodes but corresponding to the same

incident.

In the ticket creation process or along the resolution of the incident, ticket

creators/resolvers usually include information in a ticket about other tickets (TIDs)

or other objects in the network (OIDs) that are related to the incident described by

the ticket. This information appears, for a ticket i, in the lists Ti
TID and Ti

OID.

In a first approach, we could say that two tickets i and j are related to the same

incident if one of the following conditions is fulfilled

Condition 1 : 9TID=½TID 2 TTID
i and TID 2 TTID

j �
Condition 2 : 9OID=½OID 2 TOID

i and OID 2 TOID
j �

Note that although we impose this restriction, the simple existence of a common

TID/OID value in two tickets does not necessarily imply a relationship between

them. Indeed, it is common that a ticket includes a reference to another TID/OID

where a workaround for solving the incident can be found. For this reason, we

impose an additional constraint for relating two tickets to the same incident: tem-

poral overlapping.

Finally, we make a final assumption. We assume that the transitive property is

valid in the relationships among tickets, i.e., if tickets i and j are related, and tickets

j and k are also related, then tickets i, j, and k are all related.

The global correlation has the same target as the local correlation, that is, to

obtain only one ticket per incident; however, as a difference in this case, it will be

referred to different nodes. Therefore, it is considered as an almost identical process

as the local correlation, in which every subset of related tickets in L is substituted by

a single global representative ticket, denoted as �T . The complete algorithm is

described in what follows, discussing only the main differences with the local

correlation process.

Suppose that, from the set L, we identify different subsets Ck � L, such that

[8kCk ¼ L and Ci \ Cj ¼ ;; 8i 6¼ j. Each subset Ck is composed of a number N 0
k

(a)

(b)

t

t

Fig. 4 Global tickets correlation example: a original tickets, b representative ticket
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of tickets Ck ¼ T 0
1; T 0

2; . . .; T 0
Nk

n o
, namely all the tickets contained in Ck share the

last two properties as in the local correlation, i.e., properties (ii) and (iii). Here, the

first property is defined as follows: Every ticket T 0
i � Ck is related to at least one

ticket T 0
j � Ck if T 0TID

i \ T 0TID
j

n o
OR T 0OID

i \ TT 0OID
j

n on o
6¼ ;; 8i; j 2 1;Nk½ �.

The global correlation process creates a representative ticket, �Tk, for the subset of

tickets Ck, which will replace all the tickets in Ck, according to the same rules

presented in the local correlation section, apart from that T0 is replaced by �T and t0 is
replaced by �t.

It is important to mention here that, the values for the fields �TTID
k , �TTR

k , and �TOID
k

are extracted as the union of the corresponding fields in the tickets from the subset

Ck. After this process, the meaning of OID0
i
1, TID0

i
1, and TR0

i
1 as the main object,

ticket and ticket resolver IDs are lost.

Figure 4 shows an example of the application of the algorithm using three local

representative tickets (N0
k = 3). As depicted in Fig. 4a, T 0OID

1 ¼ x;m;w; zf g,
T 0OID
2 ¼ y;w; zf g, and finally T 0OID

3 ¼ y; kf g. T0
1 and T0

2 are related, since they

have two OIDs in common, namely w and z, and they temporally overlap.

Furthermore, T0
2 and T0

3 are also related since they have one OID in common,

namely y, and they temporally overlap. Therefore, the three local representative

tickets are correlated into a global representative ticket �Tr as illustrated in Fig. 4b

having �tCT
r ¼ min

i2½1;3�
t0CT
i

� �
¼ t0CT

1 , �tRT
r ¼ max

i2½1;3�
t0RT
i

� �
¼ t0RT

1 and finally

�TOID=TID
r ¼ x; y;m;w; z; kf g.
The output of this global correlation is a set G of G tickets, which is composed of

the list of representative tickets, each one for every different subset Ck � L. Ideally,
if all the incidents have been reported in the ITS, every one of these representative

tickets is expected to represent a single incident in the network, i.e., G = I, where I

is the total number of incidents.

G ¼ �T1; �T2; . . .; �TGf g

6 Experimental Results

In order to evaluate the proposed ticket correlation algorithms, datasets of actual

ITSs are analyzed. It should be pointed out that it is difficult to access to this kind of

information, as there are no ITSs data from companies publicly available. On one

hand, vendors do not motivate the publication of these data due to competitive

issues. On the other hand, network management teams have also the same lack of

motivation for not publishing them, because this information is considered

confidential and its publications might lead to security issues. We have only found

some research and educational oriented networks that make their ITSs publicly

accessible on the Internet [32].

In our case, the experimental data is composed of two different datasets, namely

DS1 and DS2, that belong to the ITS of the same company, but are generated by two

different staff members belonging to two different outsourcing companies. The
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company that outsources the management of the ITS system is in charge of the

management of a regional network formed by a large number of governmental

sectors such as academic institutions, health centers, and service centers among

others. For privacy reasons, and considering that we are working with sensitive

issues regarding management efficiency, we keep some administrative information

regarding the management companies hidden, such as the companies names and the

regional network in charge of these companies.

6.1 Datasets Description

Dataset 1 (DS1) is composed of tickets for the whole year of 2011, with a total set O
of O = 19,162 tickets. It is necessary to mention here that we have obtained DS1

from the first outsourcing company split into twelve batches, which are separated in

time, each one for every month. On the other hand, Dataset 2 (DS2) is obtained from

the second outsourcing company as one large batch file of 6 months, from October

2013 to the end of March 2014, with a total set O of O = 9,612 tickets.

Table 1 gives an overview of some useful statistics for both datasets. As shown

in the table, there are three management groups that have the responsibility to

manually create tickets, MS is the main technical group that creates tickets in

response to receiving network alerts, while SD1 and SD2 are two different Service

Desks (SD), where the staff creates tickets in response to receiving customer calls.

SD1 is mainly referred to as call center level 1, whereas SD2 is referred to as call

center level 2.

Our strategy for evaluating the correlation algorithms is as follows: for both

datasets, we apply the correlation algorithms to extract the results and give some

useful findings. We keep the data of DS1 split into twelve batches and repeat all of

the experiments on the twelve batches separately, in order to study the behavior of

the management team during the whole year. For the simplicity of the analysis, we

ignore any border issues that may occur between any two batches that belong to two

Table 1 Some useful statistics of both datasets

DS1 DS2

Total # of tickets 19,162 9,612

Mean # of tickets/month 1,596.5 1,602

Mean # of OIDs/ticket 1.4 1.42

Mean # of TIDs/ticket 1.2 1.39

Percentage of created tickets per management group MS 45 % 54 %

SD1 44 % 39 %

SD2 11 % 7 %

Mean ticket lifetime [h:m:s] 22:48:02 33:41:37

Minimal ticket lifetime [h:m:s] 0:00:24 00:00:23

Maximal ticket lifetime [h:m:s] 1244:09:42 1397:13:27

Ticket intensity [tickets/hr] 2.22 2.19
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consecutive months. Figure 5 shows the number of tickets created in each month for

DS1.

An alignment of the fields of the tickets in both datasets is done with our

proposed ticket model fields. It is presented in Table 2. In these datasets, the

alignment has been done easily since each selected field clearly matches with a field

in the proposed ticket model. This fact emphasizes the generality and simplicity of

the proposed model, that consists of the most common fields that are found in any

ITS.

6.2 Performance Indicators

In this section, we first suggest some performance metrics that help us to evaluate

the efficiency of the proposed correlation algorithms.

The process of normalizing the metrics is not straightforward, as we are dealing

with two types of tickets, i.e., those extracted from the original database, and the

representative tickets that are produced by the correlation process using the

proposed correlation algorithms. For this reason, the estimation of the metrics will

depend on each phase, where we have a different input database, i.e., irrelevant

tickets should be extracted from the original database during the preprocessing

phase; locally correlated tickets should be extracted from the filtered database and

replaced by their representatives; and finally, globally correlated tickets should also

be extracted and replaced from the locally correlated database. In the following, we

propose some metrics.
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Fig. 5 Total number of tickets
created in each month of DS1

Table 2 Alignment of

considered ITS fields with

incident ticket model fields

Company ITS fields Proposed incident ticket model fields

CREATION_TIME ti
CT

RESOLUTION_TIME ti
RT

CLOSING_TIME ti
VT

LOCATION_ID OIDi
1

CASE_ID TIDi
1

ASSIGNED_TO_GROUP TRi
1
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The global process is depicted in Fig. 6. Let O be the number of records in the

original database O. Let P be the number of records in the filtered database, P, i.e.,

after removing irrelevant tickets. Let L be the number of records in the locally

correlated database, L, i.e., after substituting each subset of locally correlated tickets

for a local representative ticket. And finally, let G be the number of records in the

globally correlated database, G, i.e., after substituting each subset of globally

correlated tickets for a global representative ticket.

In every step, part of the tickets is removed from the input, as they are supposed

to be useless for incident solving (preprocessing) or redundant (local and global

correlation). In the latter case, although the original tickets are removed, a new

representative ticket summarizing each subset of correlated tickets is introduced.

Therefore, in order to assess each of the involved steps, we define a measure

concerning the percentage of tickets that are removed in each phase.

The tickets reduction percentage, ux, for every correlation phase x, is defined as

ux ¼
inputx � outputx

inputx


 �
� 100;

where x 2 fPreprocessingðPÞ;LocalðLÞ;GlobalðGÞg
ð7Þ

where inputx and outputx are respectively the number of incoming/outgoing tickets

for phase x. After applying all of the above correlation and preprocessing phases,

our hypothesis is that the remaining number of tickets in the processed database, G,

equals to approximately the number of incidents, I.

Starting from Eq. (7), we define the overall tickets’ reduction percentage, uoverall,

by substituting inputx with O and outputx with G, i.e.,

uoverall ¼
O � G

O


 �
� 100 ð8Þ

Discarded
�ckets

Tickets 
preprocessing

Local 
correla�on

Global 
correla�on

Original 
�ckets

Processed
TTS

O �ckets

P �ckets

G �ckets

L �ckets

P

L

Fig. 6 Evolution of the number
of tickets along the proposed
system
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It should be noted that

1� uoverallð Þ ¼ ð1� uPÞð1� uLÞð1� uGÞ ð9Þ

Also, we define the ticket creator’s efficiency (E) for every phase x as:

Ex ¼ 100� ux; where x 2 fP; L;G; overallg ð10Þ

As said, the ideal ITS would be that in which the number of tickets generated

equals the number of incidents, i.e., I = O. In this case, according to Eq. (10),

uoverall = 0 %, that is, there are no redundant nor irrelevant tickets and, therefore,

Eoverall = 100 %.

6.3 Evaluating the Tickets Preprocessing Phase

We now use the above parameters as performance indicators to measure the

reduction percentages and the overall efficiency of the tickets’ creation process in

both datasets. As indicated above, to avoid undesired border effects due to the

structure of the provided datasets (lack of information at the beginning/end of the

months in the provided information), we keep DS1 split into months and show the

results for each one of them separately, besides the results obtained from DS2.

After applying the preprocessing criteria presented in Sect. 5.1 to extract

incident-related tickets, Fig. 7 illustrates the reduction percentage of irrelevant

tickets (uP) for each month of DS1 and DS2. On average, 11.4 % (DS1) and 15.6 %

(DS2), respectively, of the original tickets are considered irrelevant from the point

of view of incident solving. The final number of incident-related tickets after

completing the preprocessing phase is P = 17,008 (DS1) and 8,105 (DS2),

respectively.

Although many of the irrelevant tickets are really created by management staff, it

is clear from the DS1 results that the own ITS had several malfunctions, especially

during May, July and August, due to the high creation rate of such kind of tickets.
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So, we conclude that the behavior of the management team regarding the creation of

irrelevant tickets is non stable during the whole year. This methodology would point

to a revision of the configuration of the platform in order to improve this

performance.

We conclude that, in the case study, both the own ITS and the management staff

always generate a large number of tickets that are not related to real network

incidents. These types of tickets may have negative effects on the performance of

the ITS as a whole, because creating such kind of tickets consume time and labor

work, which are two important factors that affect the revenue and Quality of Service

(QoS) of any management company.

6.4 Evaluating the Tickets Correlation Phase

Here, we evaluate both local and global correlation processes separately in order to

see the effect of each of them on the whole system.

6.4.1 Evaluating the Local Correlation Algorithm

In order to extract the locally correlated tickets, we apply the local correlation

algorithm to the filtered databases, which was discussed in Sect. 5.2.1. Our main

assumption here is that two tickets are locally correlated if they share the same main

object ID and they temporally overlap. We divide the evaluation phase into two

subsections. First, we analyze the datasets and extract results. Second, we present

two methods to validate the correlation results.

6.4.1.1 Results for the Local Correlation The reduction percentage of locally

correlated tickets (uL), which is extracted for each month in DS1 and for the whole

period in DS2 is shown in Fig. 8. Furthermore, Table 3 gives an overview of some

useful statistics for three randomly selected months of DS1 and also for DS2: the

number of processed tickets, P; the number of locally representative tickets, L; the
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reduction percentage, uL; and some information related to the locally correlated

subsets, i.e., the number of tickets that have been correlated, the number of subsets

of correlated tickets (# representative subsets) and the size of the subsets (mean and

SD). From these results, we have the following findings: first, the proposed local

correlation algorithm is able to discover, on average, more than 14.4 % (DS1) and

10.7 % (DS2) of the created tickets as redundant tickets. Second, we observe from

the DS1 results that the behavior of the management team in creating locally

correlated tickets during the whole year is somehow stable with few variations in the

second half of the year, where about 21 % of the tickets are considered redundant.

6.4.1.2 Validation Process Since we are dealing with an unsupervised database,

i.e., it does not have tags indicating the incident associated to every ticket, there is

an inherent difficulty in the validation process itself. Notwithstanding this, here we

try to validate the usefulness of the proposed local correlation algorithm using two

different validation methods. First, our hypothesis is in any ITS, if several tickets

have the same main object ID (node, service, location, etc.), they overlap in time,

Table 3 Local correlation results for both datasets

Dataset Period # Input

tickets

(P)

# Output

tickets (L)

uL Locally correlated subsets

# Correlated

tickets

# Representative

subsets

#Tickets/subset

Mean SD

DS1 Jan 1,756 1,598 9 270 112 2.41 0.83

Jun 1,808 1,662 8.1 248 102 2.43 0.64

Dec 1,331 1,164 12.5 308 141 2.18 0.82

DS2 6M 8,105 7,240 10.7 1,569 704 2.2 0.64
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Fig. 9 Distribution of the intergroup delays of locally correlated tickets for subsets from both datasets
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and they are resolved at almost the same time; therefore, we can assume that they

really belong to the same incident. Hence, a study of the distribution of the delay of

resolution times for each subset of locally correlated tickets could help to validate

our correlation process.

We apply this analysis to our datasets. For the same three randomly selected

months of DS1 (Jan, June, Dec) and for DS2, Fig. 9 illustrates the distribution of the

delay between the representative ticket resolution time and the mean value of the

resolution times for all the tickets in the subset, that is

t0RT
k � 1

Nk

XNk

i¼1

tRT
i ; 8Ti � Sk

This is an indicator of the maximum dispersion of the resolution times for the

correlated tickets. From this figure, we observe that the delay distribution of both

datasets, the three selected months in DS1 and the whole period in DS2, is very

similar. The graph is decreasing exponentially with an average of more than 54.5 %

(DS1) of the subsets having all the related tickets resolved within 1 h between them;

more than 14.3 % are within the next 8 h and so on. For DS2, 58 % of the tickets in

a group are resolved with a difference lower than 1 h, while 14 % are resolved

within an 8 h difference. We found that more than 80 % of the groups of correlated

tickets (81.3, 86.3, and 89.4 %, respectively for DS1 and 88.9 % for DS2) contain

tickets with differences in the resolution times lower than 1 day. This analysis

applied on two different datasets (generated by staff following different manage-

ment procedures) is a good indicator of the correct behavior of the proposed

correlation algorithm.

An additional validation, besides the delay analysis described before, was made

after randomly selecting 100 samples from the groups of tickets; 20 from each of the

three selected months of DS1, and 40 from DS2. Figure 10 represents a histogram

of the number of correlated tickets per subset for the selected samples. For each

sample subset, we manually inspected all the tickets and checked whether it can be

considered as a true correlation (TC) or not. We checked that most of the fields in

the tickets that contain text-free information, especially those that characterize any

incident such as incident description, worklog history, and solution description,
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the selected samples from both
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share the same incident symptoms. Therefore, we argue that the efficiency of the

local correlation algorithm is high, not finding any false positive in our sampling

process. Thus, we conclude that our local correlation algorithm can correlate any

subset of locally correlated tickets into a representative one that correctly describes

the incident with a high confidence (efficiency is 100 % for the sampled subset).

This finding emphasizes our claim that in any ITS, if several tickets have the same

main Object ID and they temporally overlap, there is a high probability that they

really belong to the same incident and should be correlated.

6.4.2 Evaluating the Global Correlation Algorithm

We apply the global correlation algorithm discussed in Sect. 5.2.2 to the locally

correlated datasets, L, i.e., after every locally correlated subset is replaced by a

representative ticket, in order to obtain the globally correlated tickets. We recall that

we keep DS1 split into months and ignore the border issues that could happen

between two consecutive batches. As in the local correlation phase, we divide the

evaluation process into two subsections. First, we provide general results and extract

several findings. Second, we use the same methods as in the previous subsection to

validate the results.

6.4.2.1 Results for the Global Correlation Figure 11 shows the reduction

percentage of globally correlated tickets (uG) that are extracted from the locally

correlated dataset, L. Furthermore, Table 4 gives an overview of some useful

statistics of the same three selected months of DS1 and DS2 such as: the number of

inputs to the global correlation process, L; the number of globally representative

tickets, G; the reduction percentage, uG; and some information related to the

globally correlated subsets, i.e., the number of tickets that have been correlated, the

number of subsets of correlated tickets (# representative subsets) and the size of the

subsets (mean and SD). From these results we can extract some conclusions. First,

we observe that there is another level of redundancy in which the proposed global
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correlation algorithm is able to discover, on average, about 4.1 % (DS1) and 4.4 %

(DS2) of the created tickets as redundant tickets. Second, for DS1, unlike in the

local case, there is a significant variance over the year, so it is less stable than the

local correlation. Third, through a manual inspection of some samples of globally

correlated tickets for both datasets we observe that management staff uses either

TID or OID fields to relate tickets to each other and sometimes they use both in the

same ticket.

The final number of tickets in the globally correlated database, G, is 14,181

(DS1) and 6,922 (DS2), which is also supposed to be the number of incidents, I.

6.4.2.2 Validation Process Here, we use the same validation methods as in the

local correlation to validate the global correlation algorithm. Figure 12 illustrates

the delay results. From this figure we observe that for DS1, on average, more than

86.5 % of the subsets have tickets with differences in resolution times lower than

1 day and for DS2, more than 88.1 %. Again, this finding is useful, since we have

two datasets with different properties and that have coherent results of the global

correlation. This confirms the validity of the proposed global correlation algorithm

for us.

Table 4 Global correlation results for both datasets

Dataset Period # Input

tickets (L)

# Output

tickets (G)

uG Global correlated subsets

# Correlated

tickets

#

Representative

subsets

# Tickets/

subset

Mean SD

DS1 Jan 1,598 1,516 5.13 135 46 2.93 1.62

Jun 1,662 1,565 5.84 165 60 2.75 1.82

Dec 1,164 1,140 2.06 39 15 2.6 1.12

DS2 6M 7,240 6,922 4.4 516 198 2.6 2.42
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Fig. 12 Distribution of the intragroup delays for globally correlated tickets for subsets from both datasets
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Second, for the sampling validation process, here we divide the analysis into two

investigation periods, delay\= 1 day and delay[ 1 day. Half of the samples are

taken from the first investigation period, while the other half of the samples are

taken from the second period. We show the validation results of 55 samples from

DS1, which are also selected randomly except for December, since we have only 15

subsets in this month (we selected all of them), and 40 samples are taken from DS2

with a total of 95 samples. The histogram in Fig. 13 shows, for both datasets, the

number of samples with the number of member tickets that they contain. The

correlation results show that all of the samples taken from both datasets and

belonging to the first investigation period (delay\= 1 day) are validated as TC,

whereas five samples from the second investigation period, three from DS1 and two

from DS2, (delay[ 1 day) are validated as False Correlations (FC). Regarding the

five samples validated as FC, we found out that the management staff sometimes

refers to previous solved tickets if the ongoing incident has mainly the same

preliminary symptoms. Sometimes, ticket creators relate a ticket with others just by

writing TID or OID in some fields and do not describe the incident very well.

As a conclusion, the global correlation algorithm efficiency is really high (100 %

of the sampled subset) in the first investigation period and 90 % (DS1)/95 % (DS2)

in the second investigation period. On average, the global correlation algorithm

efficiency for both datasets is 95 %.

6.4.3 Evaluating the Convergence of the Algorithms

We are also interested in evaluating the convergence of the algorithms when the

provided datasets are split and the process is applied separately on the different

subsets. Note that this is relevant, since the correlation process could be parallelized.

Figure 14 illustrates the strategy that we follow to evaluate the stability. Here, we

split DS2 into two parts: those tickets created by the main technical group (MS) and

those created by the Service Desks SD1 and SD2. We apply the local correlation

algorithm on each part separately (left part in Fig. 14), and obtain the results. Next,

we again apply the local correlation algorithm to the already correlated tickets of
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both parts and compare the results with those extracted from the whole dataset (right

part in Fig. 14). We do the same for the global correlation algorithm as well.

Table 5 shows the local/global correlation results of each part of the experiment.

The number of local representative tickets of both datasets (L1 ? L2) is 7,398,

while the number of representative tickets for the output of the local correlation

algorithm applied on L1 ? L2 is 7,240, which is exactly the same result obtained in

the previous experiments for the whole dataset.

Regarding the global correlation, the number of input tickets of both datasets

(G1 ? G2) is 7,135, and the output of the global correlation algorithm applied on

this dataset (G3) obtains 6,922 representative tickets. We can check that this is also

the same result presented in Sect. 6.4.2. Therefore, we conclude that, as expected,

the results from local and global correlation algorithms are stable and independent

on whether it is applied over a partitioned dataset.

7 Applications

Normally, and as we noted above, the process of handling the tickets by

management staff is not completely systematic and may be incoherent. For example,

the staff may create irrelevant and erroneous tickets for nonexistent network

problems, or they may create redundant tickets, which may have different

expressions or aspects of the same incident. On the other hand, there are a large

number of commercial tools for ITSs, but most of them are focused on enhancing

the whole system to recover the SLA in time. Regretfully, only few efforts have

been devoted to improve the ticket generation process itself, which at the same time

would improve the overall task of solving the incidents.

In this context, the proposed correlation method can be used not only to

approximate the number of tickets to the number of incidents, but also as an

assessment tool for measuring the quality of the ticket creation processes and teams.

In this section, we present a case study in which we apply the proposed correlation

method and metrics to the data described above in order to obtain some insights on

the efficiency of the management staff and the processes they use, especially in the

first stage of the management lifecycle, i.e., the ticket creation stage. The results can
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be useful from the point of view of improving both the management teams and the

policies for ticket creation.

According to the proposed method, we measure the efficiency by obtaining the

three levels of redundancy. For each level we calculate the reduction separately, as

the actions to improve the handling of the tickets would be different at each level.

As shown in Fig. 6 and explained across the previous sections, the whole process

consists of three main steps. First, irrelevant tickets are filtered. Second, the number

of tickets is reduced by substituting each subset of locally correlated tickets into a

local representative ticket, using (for that purpose) the local correlation algorithm

discussed in Sect. 5.2.1. Third, the total amount of tickets is decreased again using

the global correlation algorithm proposed in Sect. 5.2.2 to obtain a global

representative ticket for each subset of globally correlated tickets. The procedure

takes the original ticket database (O) as an input and provides the processed

database (G) as an output, that presents the different performance indicators for each

step.

In the following subsections we take DS1 as a case study, and make all the

necessary analyses and discussions based on it under the assumption that the final

number of tickets (G) approximates the number of incidents (I).

7.1 Case Study: A Company ITS Assessment

The efficiency of the management staff for creating tickets can be obtained using

Eq. (10) for each of the steps. The results obtained are shown in Fig. 15, where it is

noticeable the high number of irrelevant tickets are up 16 %. From the point of view

of the ITS irrelevant tickets should have not been created as they are not related to

incidents and/or do not contain the minimum required information to be useful for

incident solving. An inspection of those irrelevant tickets shows that many of them

are not related to incident solving but other administrative issues, which can be

considered a misuse of the ITS depending on the active policies. Once those
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irrelevant tickets are removed, the average efficiency for all the months is 72.6 %.

As depicted in Fig. 15, a major redundancy in tickets can be found at the local level,

which is not reasonable from the management’s point of view as the related tickets

are created for the same elements of the network.

If we analyze the results from a different point of view, a significant indicator

would be the relationship between the number of incident related tickets (P) and the

number of incidents (I). Assuming that G is approximately equal to I, Fig. 16 shows

the number of tickets created for every incident. On average, there are 1.23 tickets/

incident after filtering irrelevant tickets. This means that there is room for

improvement in the creation and handling of the tickets.

In real situations, the three levels of redundancy usually have different effects on

the overall efficiency of the company, e.g., the cost of creating irrelevant tickets

may not have the same weight as local or global redundant tickets. Therefore,

instead of considering the overall efficiency—Eq. (10), the different partial

efficiency measures can be used in a weighted form to evaluate the impact of

each level of redundancy. This way, it would be possible to account for several

reasons that play important roles, such as the degree of coordination between

management groups, especially in a multi-team or multi-shift environment; updates

on the calls and incidents coming in no matter who worked last on this particular

incident; incidents extended over shifts; incidents that may be addressed by several

different teams in the same shift; the mean time between correlated tickets, that may

be used as a good indicator of the behavior of the staff for creating such kinds of

redundant tickets and others like incident severity and SLA.

7.2 Insights from Evaluating Ticket Management Groups Procedures

As a complement to the assessment of the overall performance, it can be interesting

to evaluate the amount of redundancy in the ticket creation process contributed by

each of the management groups. Doing so might considerably help in identifying

procedural problems and failures in coordination. Thus, in this subsection we study

the behavior of each of the management groups in relation to the overall

performance according to the proposed correlation model. As noted earlier, there are
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three groups which have the right to manually create tickets; they are MS, SD1, and

SD2. The first one is the main technical group that creates tickets according to

network alerts, while the last two are the Service Desks (SD), that create tickets in

response to received customer calls.

7.2.1 Insights from the Preprocessing Analysis

The study of the distribution of irrelevant tickets generated by the three management

groups reveals that only 1 % of them are created by MS, while up to 73 % are

generated by SD1 and 26 % by SD2. Thus, we can conclude that SD1 presents very

low efficiency in the ticket generation process due to the creation of a high amount of

unnecessary tickets: more than three-quarters of these types of tickets were created by

staff belonging to this group. These figures point to a potential fault in the procedures

used by this group.Nevertheless, the nature of SD1 can partially explain this extremely

high value compared to the others. As noted previously, SD1 is classified by the

company as a call center level 1; that is, it is the first department that receives

customers’ calls. Consequently, the staff may create a large number of irrelevant

tickets because they may receive many calls made by customers complaining about

non-existent or non-networking related problems and/or providing insufficient

information to properly identify the fault as a result of the customers not having

enough knowledge about the normal operation of the system they are working with.

Anyway, a review of the procedures used by this group is advisable. On the opposite

side, the MS group created few irrelevant tickets, which is coherent with the

procedures, as the staff belonging to this management group creates tickets based only

on receiving alerts and thus, the chance of creating irrelevant tickets is very low.

7.2.2 Insights from the Local Correlation Analysis

Once those irrelevant tickets are filtered, the local correlation is used to identify

those tickets that can be merged at this stage. Figure 17 illustrates the distribution of
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those tickets according to the creator group. We observe that, on average, more than

65 % of the tickets are created by MS, 26.6 % by SD1, and finally 8.4 % by SD2.

Unlike in the case of unnecessary tickets, a high percentage of these redundant

tickets were created by the staff belonging to MS, i.e., most of the redundancy is

somehow related to MS.

In order to check whether the problem arises from tickets being created by more

than one group or by duplicated tickets from the same group, an additional analysis

is made. Thus, we take each group of locally correlated tickets, that is, those tickets

that will be merged together by the local correlation, and examine whether they

were created by the same or different management groups. As before, we apply this

analysis over three randomly chosen months.

The results, shown in Fig. 18, proved that, on average, more than 73.5 % of the

locally correlated subsets included tickets generated by a single group. This is a

surprising result, as redundancy was expected to be mainly generated due to the

existence of different management groups, each of them generating tickets for the

same incident. A deeper insight into these results reveals that, from these subsets,

72.8 % of them are due to MS, 22.1 % to SD1, and 5.1 % to SD2. Obviously, the

procedures used for ticket creation by MS should be revised. The existence of

different working shifts can be at the origin of this redundancy: the staff belonging

to MS is divided into three work shifts in a day, each lasting for 8 h. In our opinion,

the lack of coordination procedures inside the same management group (intra-

management) can explain the figures. For example, the staff belonging to the night

shift may have created a ticket after receiving some alerts and on the next day, a

person in the morning shift may have also created a duplicated ticket for the same

incident, as some alerts are still appearing at the operator console. In this scenario,

the local correlation procedure could be easily used in real time as a filter to detect

these situations and avoid additional tickets.

Keeping on with the original analysis, 26.2 % of the locally correlated subsets

include tickets created from two groups, while only 0.3 % of them where generated

from the three groups. A manual inspection of many samples revealed that, as

expected, the bulk of tickets coming from two different groups involved MS and

SD1. Obviously, this is due to a lack of coordination between management groups

(inter-management). For example, if a given element of the network is down, i.e., a

router, the staff at SD1 may receive calls from end users complaining about some
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problems in accessing services or applications affected by this element. Conse-

quently, a ticket containing some preliminary information about the ongoing

incident is created. At the same time, the staff at MS may receive alerts triggered by

the same element announcing the existence of the same incident. Consequently, the

staff creates another ticket related to the same incident. Therefore, this lack of

coordination between different groups can lead to the creation of many redundant

tickets.

7.2.3 Insights from the Global Correlation Analysis

Similarly to the local analysis, Fig. 19 illustrates the distribution of the globally

correlated tickets for the threemanagement groups. As in the local case, it isMSwho is

responsible for the majority of the tickets (64 %), followed by SD1 (30 %) and SD2

(6 %). The analysis of the sources for groups of related tickets is summarized in

Fig. 20, with behavior similar to the case of local correlation. Thus,more than 70 %of

the groups of related tickets contain tickets that were created by the samemanagement

group, again with MS being the dominant (up to 69.3 % of them).

A manual inspection of many samples of global correlated subsets reveals that

staff at MS relate several tickets to each other if they are located nearly in the same

network region. For example, the staff may receive many alerts triggered from two

different network elements located nearly in the same geographical region.

Consequently, they create two different tickets related to the same incident.

The remaining subsets contain tickets created by two different GIDs, namely MS

and SD1. As before, this can be due to the lack of coordination between the

management groups involved in incident resolving tasks.

8 Conclusions and Future Work

In this paper, we propose a novel, simple, and effective approach to correlate and

merge incident tickets in an ITS. The approach is based on a generic model for the
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tickets that preserves and categorizes the relevant information and enables the

comparison of their properties with relatively simple functions. No additional

sources of information, apart from the tickets themselves and the information they

contain, is required during the merging procedure. Despite its simplicity, the model

has revealed to be useful to reduce the number of tickets generated and handled by

ITS users, which is a desirable target in order to improve the workflow in a

management company.

The experiments on two different datasets from a real company have shown that

contrary to what is expected, there are significant amount of redundant tickets being

generated by the different actors in the ITS. The proposed model and method can be

easily incorporated in the in-production system, not allowing the generation of

additional tickets when a related one is active, or automatically removing those

detected as redundant. The first is quite straightforward for the local level of the

algorithm, which can be applied in real-time at the time of the creation of the ticket.

The global phase uses information that could not be available at the time of the

creation of the ticket but added later and, therefore, would imply an a posteriori

filtering of the tickets.

As an additional use of the model and the proposed procedure, we have also

described through a case study how it can be used as an assessment tool to provide

some measures about the management staff’s efficiency at the ticket creation

process. This way, it is possible to identify some deficiencies in the procedures,

policies, or behaviors of the different actors involved in the ITS management

process, enabling corrective actions to be taken and evaluated.

Part of the potential of the solution can be attributed to the different nature of the

information provided by some of the actors, i.e., information gathered from

automatically generated alerts vs. information from customers, which can be

complementary. Somehow, this is including some semantic information in the

process of correlating tickets. An extension of this idea is currently being developed

and tested by the authors to the alert correlation problem by including information

from the tickets through the proposed model into the process. This way, an alert-

and-tickets correlation procedure is under study. We are confident that these models

will help to reduce the number of alerts (to be handled) to a minimum.
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