
 I 

Deanship of Graduate Studies 

AL-Quds University 

 
 

 

 

Studying some of the Physical Properties of Matter 

using Eddy Current Technique 
  

 

 

 

 

 
 

Azzam Hammed A. Abu-Sabha 
 

 
 

 

 

 

M.Sc. Thesis 
 

 

Jerusalem-Palestine 

2005 

 

 

 



 II 

Studying some of the Physical Properties of 

Matter using Eddy Current Technique 

 

 

By 
 

 

 

 

 

 

Azzam Hammed A. Abu-Sabha 
 

(B.Sc. Physics, 1992, AL-Quds University, Palestine) 

 

Supervisor: Dr. M. I. Abu - Taha 

 

Co-Supervisor: Dr. M. M. Abu - Samreh 

 

“A thesis Submitted to the Deanship of Graduate Studies 

in Partial Fulfillment of the Requirement for the Degree 

of Master of Physics” 

 

 

 

 

 

 

AL-Quds University 

Abu-Deis, Jerusalem 

January, 2005 

 



 III 

Program of Graduate Student in Physics 

 Deanship of Graduate Studies 

 

 

Studying some of the Physical Properties of 

Matter using Eddy Current Technique 

 

By: 

 

Student Name: Azzam Hammed A. Abu Sabha 
 

Registration No.: 20110943 

 

Supervisor: Dr. M. I. Abu–Taha 

 

Co-Supervisor: Dr. M. M. Abu-Samreh 

 

 

Master thesis submitted for Examination on 6/3/2005 and accepted by the 

examining committee formed of the following:   

 

                Committee Members.                                              Signature 

 

M. I. Abu–Taha, Ph.D.                     (Head of committee)  ---------------- 

 

M. M. Abu-Samreh, Ph.D.                   (Member)                  ---------------- 

 

A. M. Saleh, Ph.D.                               (Internal Examiner)   ---------------- 

 

J. Sulaiman, Ph.D.                                (External Examiner)  ----------------                                            

 

 

AL-Quds University 

2005 

 



 IV 

DECLARATION 

 

     I certify that this thesis, which is submitted for the degree of master of 

physics, is the result of my own research, except where otherwise 

acknowledged, and that this thesis (or any part of the same) has not been 

submitted for a higher degree to any university or institution. 

 

Signed:………………. 

(Azzam Hammed A. Abu-Sabha) 

 
Date:-------------------- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 V 

DEDICATION 

 

 

To the memory of my mother 

 

To my wonderful wife 

 

To my beloved family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 VI 

 

ACKNOWLEDGEMENT 

  

It is my pleasure to express my gratitude and thanks to my 

supervisors Dr. M. I. Abu-Taha and Dr. M. Abu-Samreh for supervising 

this work. It is because of their interest, guidance, encouragement and 

valuable suggestions through the period of study, this work was finally 

accomplished. 

I would like to thank my friends, Y. Al-Sarahneh A. Amaere and 

A. Abu-Tabekh for the unlimited assistance and encouragement. It is 

great pleasure to acknowledge the contribution of people in the 

preparation of this thesis.  Special thanks will go to my daughters, Soha, 

Reema, Manal, Reem, and to my son Wael for their help during the 

preparation of this work. 

 

 

 

 

 

 

 

 



 VII 

 

 

 
 

Abstract 
 

            In this study, the electric and the magnetic properties of 

aluminum, copper, gold, mercury, and silver have been investigated using 

the eddy current technique.  It was found that when an alternating current 

passes through a solenoid, only aluminum and copper rings placed in the 

core of the solenoid jump a few centimeters.  But rings of gold, mercury 

and silver show no levitation at all.  The levitation height was found to 

depend not on the ring mass and the length, but on other properties such 

as conductivity and density. 

         The calculated values for conductivity of both aluminum and copper 

was (3.313 ± 0.0721)×10
7
, s/m,  (5.928 ± 0.1461)×10

7
, s/m respectively.   

The calculated values  of relative permeability of core material was found 

to be 144.0, while the  corresponding magnetic susceptibility is 143.0, 

also the specific heat of aluminum is  0.918 ± 0.0531, J/g
0
c.  The 

calculated values for the conductivity and the specific heat are in 

agreement with errors less than 8% for most measurements of the 

theoretical results.            
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الخلاصة 

 
    فٜ ٕزٓ اىذساسح، ٗتاسرخذاً طشٝقح اىرٞاساخ اىذٗاٍٞح ذٌ دساسح اىخ٘اص اىنٖشتائٞح 

ٗٗجذ أّٔ ػْذٍا َٝش ذٞاس .   ٗاىَغْاطٞسٞح ىلأىًَْٞ٘، ٗاىْحاط، ٗاىزٕة، ٗاىضئثق،  ٗاىفضح

ٍرشدد فٜ ٍيف حيضّٜٗ رٗ قية ٍؼذّٜ، ٗإدخاه حيقح ٍِ ٕزٓ اىَ٘اد ح٘ه اىقية اىَؼذّٜ، فإُ 

تَْٞا حيقاخ اىزٕة، .   حيقاخ اىْحاط ٗاىلاىًَْٞ٘ فقظ ٕٜ اىرٜ ذشذفغ تضؼح سْرَرشاخ ىلأػيٚ

ىقذ دىد اىذساسح أُ اسذفاع اىحيقح لا ٝؼرَذ ػيٚ مريح .  ٗاىضئثق، ٗاىفضح ىٌ ذرحشك ٍِ ٍناّٖا

اىحيقح ٗأتؼادٕا اىْٖذسٞح ٍثو اىط٘ه ٗاىسَل، تَْٞا ٝؼرَذ ػيٚ خ٘اص أخشٙ ٍثو ثاتد 

ٗىقذ ذٌ حساب ثاتد اىَ٘صيٞح ىلأىًَْٞ٘ ٗاىْحاط ٗٗجذ أّٖا ذساٗٛ .  اىَ٘صيٞح ٗاىنثافح

(3.313 ± 0.0721)×10
7
, s/m, ، s/m  (5.928 ± 0.1461)×10

7
 ػيٚ اىرراتغ، ٗ ذٌ   ، 

 تَْٞا قاتيٞح اىرَغْظ  144.0قٞاط اىْفارٝح اىَغْاطٞسٞح اىْسثٞح ىيقية اىَؼذّٜ ٗٗجذ أّٖا ذساٗٛ 

 ± 0.918، أٝضاً ذٌ حساب اىحشاسج اىْ٘ػٞح ىيْحاط ٗٗجذ أّٖا ذساٗٛ، 143.0ىٔ ذساٗٛ 

0.0531, J/g
0
c ٗتشنو ػاً ماّد اىْرائج اىرجشٝثٞح ٍرطاتقح ٍغ اىْرائج اىْظشٝح تْسثح خطأ لا  ، 

.    فٜ غاىثٞح اىقٞاساخ % 8ذرجاٗص 
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Chapter One 
 

Introduction and motivation 

 
1.1 Introduction 

 

The magnetic properties of matter are the result of microscopic atomic 

currents, which produce magnetic moments in matter (Kip, 1969; Page and 

Adams, 1987; Taylor, 1988).  The discussion here is limited to those 

materials, in which an external field induces magnetic moments (conductive 

materials).  In materials, the magnetic distribution inside matter is 

proportional to the applied external field.  If the specimen material is 

isotropic, an external field induces magnetic dipoles which on the average, 

are aligned with their moment along the direction of the applied field as 

displayed in Figure 1.1.  The effect of such alignment is known as 

magnetization of mater (Hammond, 1971; Aiello and Alfonzetti, 2000).  

 

 

 

 

 

Figure 1.1 Schematic representations of the circulation of electrons 

in a conductive ring in the presence of an external magnetic field B.  
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However, the presence of an external magnetic field causes the atomic 

electrons to move in a direction perpendicular to applied fields.  The 

magnetic properties of the substance depend on the manner of electron 

rotations especially its spinning.  Accordingly, every rotation can be 

considered as a circular current loop around which a magnetic field is 

produced.  When a conducting substance is subjected to alternating magnetic 

field, electrons rotation opposes the applied magnetic field (Lenz‟s law).  

Consequently, an alternating current known as an eddy current is produced 

(Hallidy et al., 2001; Thompson, 1990).            

       An eddy current is that current produced inside a substance, when 

placed in alternating magnetic field, or when magnetic field gradient are 

switched on (Deene et al., 1999; Aiello and Alfonzetti, 2000).  Its origin 

goes back to Michael Faraday's discovery of electromagnetic induction in 

1831.  In 1879, another scientist named Hughes had recorded some changes 

in the properties of a coil when placed in contact with metals of different 

conductivity and permeability.  However, it was not until the Second World 

War that these effects were put to practical use for testing materials.  Much 

work was done in the 1950's and 60's, particularly in the aircraft and nuclear 

industries.   
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An eddy current has so many effects on materials among which, 

heating of substances and causing objects to move.  Besides, some of the 

physical properties of materials can be studied using the so called eddy 

current technique.  This type of current depends mainly on the physical 

properties of the substance (Portis, 1978).  Therefore, the effects of 

alternating magnetic fields on the materials and the eddy current strengths 

that produce such fields were used to investigate the physical properties of 

substances.   

The eddy current testing is now widely used as a well-established 

inspection technique (Gros, 1995; Lebrun et al., 1997; Bishop, 2001).  This 

type of testing is used for inspection of conductive materials by inducing 

electrical currents in the test material and recording any variations of the 

induced currents.  A basic eddy current system usually consists of a coil, 

which is excited by an alternating current.  The electric current within the 

coil creates a primary magnetic field, B, surrounding the coil.  When such 

field is brought into the proximity of the test material, the primary 

electromagnetic field induces eddy current in the tested material.  According 

to Lenz‟s law, eddy currents themselves generate a secondary magnetic 

field, B, opposes to the primary magnetic field (Gros, 1995).  Thus far many 

applications of eddy current technique had been invented.  For instance, 
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Freeman used the eddy current technique to study the equivalent circuit of 

concentric cylindrical conductors in an axial alternating magnetic field 

(Freeman et al., 1975; Freeman and Bland, 1976).  The second application 

was the detection of damage caused by low-energy impacts on carbon fiber 

reinforced materials (Gros, 1995).  The third application is the description of 

eddy current stream lines within a conducting slab of a non-magnetic 

material when crossing, with a constant velocity, and a permanent magnetic 

field (Restivo, 1996).  Rao and Babu in 1996, had studied the simulation of 

eddy current signals from multiple defects (Rao and Babu, 1996).  

Moreover, this technique can be used to detect the deep defects in 

conductive materials (Lebrun et al., 1997).  The eddy current microscopy 

was studied by Hoffmann (Hoffmann et al., 1997).  Sikora and Komorowski 

used this technique to determine the conductivity and the permittivity of 

materials (Sikora et al., 2000).  The assessment of eddy current sensitivity 

and correction in single-shot diffusion-weighted imaging was studied by 

Koch (Koch and Norris, 2000).  

The Influence of eddy currents on magnetic hysteresis loops in soft 

magnetic materials had been investigated by Szczyglowski (Szczyglowski, 

2000).  The eddy current can be used to study the temperature dependent 

permeability (Cimatti, 2003).  The eddy current theory and its applications in 
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different areas were investigated in details by many research groups (Gros, 

1995; Lebrun et al., 1997; Hoffman et al., 1997).   

The jumping ring experiment is one of the most important 

experiments used to study the eddy current (Summner and Thakkrar, 1972; 

Hall, 1997).  It was invented in the last century by an American, Elihu 

Thomson, and sometimes it is referred to as „Thomson‟s ring‟ (Ford and 

Sullivan, 1991).  Hundred years ago, Fleming who later discovered the 

thermo ionic diode, described in some details various experiments with the 

jumping ring apparatus (Fleming, 1970).   

Summner and Thakkrar (1972) had studied the jumping ring 

experiment, and found that both the vertical Bz and radial Br components of 

the magnetic field of the solenoid, decrease approximately linearly with 

levitation height.  Besides, the force acting on the ring was found to be 

proportional to BrBz..   At equilibrium, the force become equal to the weight 

of the ring, and therefore BrBz = constant.  It was found that the levitation 

height to which the ring levitates is independent of the thickness of the ring 

in the range (2-4) mm (Ford et al., 1992). 

When a non-magnetic conducting ring inserted in the metal core of a 

solenoid, and an AC current is allowed to pass through the solenoid coil, the 

magnetic forces cause the ring to jump up several centimeters (Restivo, 
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1996; Avrin, 2000).  Hall in 1997 had been investigated the relation between 

the force on the ring and the amplitude and frequency of current supplied to 

the solenoid (Hall, 1997).  His investigation has shown that the force on the 

ring varies as the square of the current passing through the solenoid and on 

the frequency of the source current.   On one hand, investigating such 

phenomenon, the relation between the eddy current induced in the ring and 

its density, resistance, conductivity…. etc, will be possible.  On the other 

hand, the size of the eddy current and its dependence on ring shape, current 

in the solenoid, and type of material, were also of special interest.  

Accordingly, brass, aluminum, mercury, and silver are among several 

materials that can be tested.  In addition, testing the effect of cracks and 

bores in the ring were also included.  In this work, the main aim is to 

investigate experimentally the relations among the above factors and to 

develop a theoretical model good enough to explain the experimental 

observations.               
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1.2 The scope of the study 

  
  In this study, some properties of materials will be addressed using 

eddy current induced in a non-magnetic conducting ring placed in 

alternating magnetic field, (i.e. the jumping ring).  When such a ring is 

inserted in the metal core of a solenoid, in which an alternating current is 

passed through, magnetic forces resulted from the eddy current in the ring 

will cause the ring to jump up to several centimeters (Restivo, 1996; Avrin, 

2000).  Investigating such phenomenon is expected to explore some relations 

between the eddy current induced in the ring and its density, magnetic 

permeability, conductivity…. etc.  Moreover, the size of the eddy current 

and its dependence on ring shape, current supplied in the solenoid and type 

of material are also of special interest.   

Theoretically, the main aim of this study is to derive relations between 

eddy currents produced in the non-magnetic materials when immersed in an 

alternating magnetic field and some electrical parameters as well as to 

examine some characteristics of the material.  Besides, electric and magnetic 

properties and parameters of some conducting materials (conductivity, 

permeability, magnetization density, matter density, and the number of 

conducting electrons per unit volume) will be studied using eddy current 
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technique.  Investigating such properties will require designing devices that 

can be used to measure and test such properties easily.    

1.3 Methodology 

 
  If a non-magnetic conducting ring is inserted in the metal core of a 

solenoid, which carries an alternating current, then an eddy current will flow 

in the ring causing it to levitate up several centimeters (Avrin, 2000; 

Restivo, 1996).  The amount of levitation height depends mainly on the eddy 

current induced in the ring which in turn depends on several properties of the 

ring material.  The study of these properties theoretically and experimentally 

requires a full study of the eddy current induced in conducting non-magnetic 

materials.  This requires developing a model that meets all the variances of 

the current and the ring material.  

  It turns out that for iron and its alloys or other transition element 

alloys such as Co, Ni, Gd, and Dy, a special effect occurs.  Such effect 

permits a specimen to achieve a high degree of magnetic alignment in spite 

of the randomizing tendency of the thermal motions of the atoms. 
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Chapter Two 

 

Eddy current in a non-magnetic ring 

 
2.1 Introduction 
          

An eddy current is that current produced inside a substance when 

placed in an alternating magnetic field (Auld and Moulder, 1998).  It has 

many effects on materials such as, heating of substance and it may cause 

them to move.  In this chapter, we shall develop a model capable on 

producing the dependence of electric and magnetic properties on eddy 

currents.  The rest of this chapter deals with the theoretical derivations of 

certain physical parameters such as conductivity, susceptibility – etc., 

required to understand the technique and its possible uses in the best way 

(Barth, 2000; Thong and Fenglie, 2002).           

2.2 The model 
 

       In order to investigate the effect of the eddy current on a levitating 

ring theoretically, a model has to be developed.  When a non-magnetic metal 

ring is inserted in the metal core pivoted in a solenoid through which an 

alternating current is passing, an eddy current is produced in the ring as 

shown in Figure 1.1 (Restivo, 1996; Avrin, 2000; Huang, 2003).  This 

current induces a magnetic field in the vicinity of the ring.  The two 

magnetic fields (the field produced by the solenoid and that of the ring) are 
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acting in opposite directions (Freeman and Lother, 1989; Freeman, 1992; 

William, 2000).  As a result of the repulsive force between the magnetic 

field produced by one solenoid and the opposing one induced by the eddy 

current in the ring, the ring will levitate (Portis, 1978; Blitz and Alagoa, 

1985; Restivo, 1996; Avrin, 2000).  The equilibrium point is found to 

depend on the properties of the non-magnetic metal ring.   

The ring reaches the equilibrium point when the weight of the ring 

equals to the repulsive force.  Thus, an expression for the magnetic force 

acting on the ring to bring it to equilibrium point is of great importance.  In 

order to study such force, an expression for the magnetic field (B) produced 

inside the solenoid at any point near the core is required.  To derive such a 

field, the magnetic field due to a circular current loop will be derived, and 

then this field will be integrated over all the turns of the solenoid.   

 

2.2.1 Magnetic field due to a circular current loop 
  

The magnetic field at point P in the vicinity of a circular current loop 

of radius a can be written in a vector form as (Appendix B): 

  

 

)12(                      .                                                                       z
z

Br
r

BB



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Where Br and Bz are the radial and the vertical component of the magnetic 

field 


B  at P.  According to Appendix B, these components can be written as: 

and 

(2.3)                                                                                            
2/3)22(2

2
0

za
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z
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2.2.2 The magnetic field of a solenoid 

          Similarly, the magnetic field components (the radial and the vertical) 

at point P near a solenoid of N turns and length L can be represented by (see 

appendix B): 
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Where the parameters y and f are given by: 
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The rest of the symbols appeared in equation (2.4) and equation (2.5) can be 

introduced as: 

N is the number of turns of the solenoid coil,  
 

a is the radius of the cross section of the solenoid coil,  
 

Io is the current in the solenoid, 

 

L is the solenoid length,  

 

z is the levitation height of the point P over the edge of the coil, 

 

r is the radial distance from the core to P. 

 

The magnetic field inside the core, Bin, can be written as: 

 

 Where Bext is the external magnetic field produced by the solenoid, C3 is 

constant (= μo M), M is the magnetization density of the metal core and μo is 

the permeability of the air.  Therefore, by making use of equation (2.4) and 

equation (2.5), we get  

 

and  
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2.3 Induced emf across the floating ring  
 

         Let a non-magnetic metal ring is inserted in the metal core of a 

solenoid and allowing an alternating current to pass through.  An emf will be 

produced across the ring as a result of the electromagnetic induction of the z 

component of the alternating magnetic field Bz.  It can be shown that the 

maximum emf can be written as (see appendix B):  

(2.11)                                                       2
00max            x ω BAω Bemf zz 

 

     The emf is the induced voltage across the terminals of the open circuit 

ring, x is the radius of the core, Bzo is the maximum vertical magnetic field 

at the center of the ring, and ω  is the angular frequency of the power supply. 

Accordingly, the induced emf is independent on the area of the ring but it 

depend on the cross sectional area of the core.  This is because all field lines 

were inside the core.    

2.4 The eddy current produced in a metal ring 
 

If the ring is considered as a complete short circuit, the emf produced 

across the ring as a result of the induced eddy current, dI, circulating in the 

ring was found to be written as (see appendix B):  

 

(2.12)                                                                                      
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where σ  is the conductivity of the ring, and l is the circumference of the 

ring. 

2.5 The levitation magnetic force on the ring 

 
        The force acting on the ring can be obtained simply by performing the 

following cross product:  

(2.13)                                                                                             BlidFd



 

    Since the magnetic field has two components, namely Br and Bz, the ring  

is expected to be subjected to two different forces.  The first one is the 

vertical component Fz, which arises from the interaction of Br with the 

induced field from the eddy current in the ring.  The second one is the result 

of interaction of Bz with the induced field from the eddy current in the ring.  

Such force represents the radial component of the resultant force, Fr, and is 

directed along the r direction.  Because of symmetry, the resultant of Fr is 

zero (see Figure 2.1) (Summner and Thakkrar, 1972).  It can be shown that 

the vertical component of the magnetic force on the ring Fz, is defined 

accordingly (see Appendix B): 
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Figure 2.1 Schematic representations showing the  

resultant radial forces on the ring Fr. 

 

    

2.5.1 The relation between the levitation height of the ring and 

other variables at equilibrium 

 
  The ring levitates few centimeters before it reaches the 

equilibrium position where the magnetic force on the ring should be equal to 

its weight (Ford and Sullivan, 1991).  If this condition is met, then by 

integrating equation (2.14) and equating the obtained expression by the rings 

weight, an expression for the electrical conductivity of the ring can be 

written as (see appendix B): 

 

where is the density of the ring. 
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      By making use of equation (2.15), other properties  such as, the mobility 

(μ), the mean free time (τ), the number of conducting electrons per unit 

volume (n), carrier mean free path (λ), the drift velocity (υd), the current 

density (J), the susceptibility (χ), and  the permeability (μ) can be derived.  

Expressions for all mentioned parameters are summarized by the following 

equations: 
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(2.19)                                                                    2path  freemean 
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Where H is the magnetic field intensity and me is the electron mass. 

 

2.6 Applications of the model 

         Equation (2.15) is a very important one, because it contains so many 

interesting properties of the material, such as: conductivity, permeability, 

density, magnetization density and the demagnetization factor.  All these 

properties can be calculated from the parameters in equation (2.15).  This is 
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the scope of Chapter 3.  Furthermore, by making use of relations between 

these properties and other magnetic and electric properties such as the 

magnetic susceptibility , the mean free path , the current density J, etc., 

can be calculated.  Therefore, this enhances the eddy current technique for 

investigating the levitating of a ring of certain metal as an alternative 

approach for studying the non-magnetic characteristics of materials.  

2.6.1 Practical measurement of Br and Bz 

 
In this experiment, we need to measure Bz inside the core using a 

teslameter.  Since the probe of the teslameter can not be inserted inside the 

core, another technique has been employed.  The general trend of this 

technique is as follows: firstly, the induced voltage, emf, across the n turns 

of copper wire of crosses sectional area, A, winded around the core, and 

placed in the region of interest (where measurement of BZ is required) 

should be measured.   Secondly, by using Faraday's law of induction, BZ can 

be calculated.  Thirdly, the Br component can be measured by setting the 

turns (horizontally) in the region of interest to measure Br (see Figure 2.2), 

(Summner and Thakkrar, 1972).  If the area of the secondary coil and the 

frequency of the driving AC current are chosen to be constant and the 

number of turns n is chosen to be
A
1

, equation (2.11) becomes 
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(2.22)                                                                                             maxemfBzo 

 

 In this case, Bz is just equal to the direct reading of the voltmeter connected 

to the coil as displayed in Figure 2.2.  

 

 

Figure 2.2 Schematic representations showing a coil winded around 

the metal core through the solenoid to measure the field in the core.  

 

 

2.6.2 Calculation of copper conductivity using eddy current  

 
  In order to calculate the conductivity of the ring material using the 

jumping ring experiment, an annulus ring can be inserted around the core 

passing through a solenoid in which a current can be raised slowly until the 

ring levitates several centimeters.  Then the copper conductivity can be 
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calculated by making use of equation (2.15).  In general, the conductivity 

dependence on frequency is given by (Portis, 1978): 

 

 where 
 

σ
0

is the conductivity at zero frequency, or the case when direct 

current is applicable.  Since the mean time  between collisions of electrons 

in copper is in the order of 10
-14

 s and the frequency is 50 Hz, equation 

(2.23) can be approximately to 

(2.24)                                                                                                   
0
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2.6.3 Calculation of number of free electrons per unit volume 

         in copper 

     
        From the relation between the conductivity and the number of free 

electrons, the number of free electron in copper can be written as (Kip, 

1969):  
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where n is the number of free electron per unit volume, e is the electron 

charge and me is the electron mass. 

2.6.4 Calculations of the density of copper using eddy current 

 
Consider a small ring of 2 mm long inserted in the metal core of the 

solenoid.  The alternating current passes in the solenoid should be increased 

continuously until the ring begins to elevate.  The ring will come to 

equilibrium at the end of the solenoid.  Then by substituting all measured 

and calculated parameters in equation (2.15), the density of copper can be 

calculated directly.  One might argue the importance of this method as a new 

method of approach that relates the true characteristic of the material to its 

density.  

2.6.5 Calculations of the magnetization density of the core (M)  

 The magnetization density of the core is proportional to the external 

magnetic field Bext (Hammond, 1971).  Knowing that Bext depends on the 

number of dipole moments aligned in the direction of the external field, the 

maximum magnetization density is reached when all dipole moments are 

aligned parallel to B.  Therefore, the magnetization density is different from 

one point on the core to another (Portis, 1978).  This is because the magnetic 

field on the core is different and the magnetization density can be written in 

terms of z coordinate as M (z). 
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    The magnetic field Bz at any point P over the upper edge of the core 

can be measured with the core (Bin), and without the core (i.e., after the 

removing of the core) Bext.  Then by using equation (2.8) we get      

(2.27)                                                                                         
0μ

BB
M extin 

 

2.6.6 Calculations of the core permeability  

       Since the core consists of ferromagnetic material, both susceptibility χ, 

and permeability, , are not constants.  They were both depending on H.  

The measured Bz at the end of the core was found to fulfill an expression of 

the form 

(2.28)                                                                              
2
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Solving equation (2.28) for,   an expression for calculating the magnetic 

permeability can be written as:  

 
(2.29)                                                                                           

2 max   
nNIAw

emfL
μ 

 

2.6.7 Measurements of the magnetic force on the ring 

There are several methods to measure the levitation force among, the 

so called electronic balance method.  This method is characterized by 

several features.  Firstly, it is complicated in setting it up.  Secondly, there 
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are some errors that can be introduced when using a balance made of 

magnetic materials or contains metallic parts. 

    The general procedure for this method is summarized as follows: by 

adding non-metallic rings on top of the levitated ring to counter the force on 

the ring until it returns back to its original place (at the upper end of the 

solenoid), the weight of all rings will be equal the magnetic force on the 

ring, this is shown in Figure 2.3. 

 

 

 

 

 

 

Figure 2.3 Schematic representations showing (a) the solenoid and the 

non-conducting rings, (b) non-conducting rings added on the top of 

levitated ring to measure the force on the ring. 
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Chapter Three 

Experimental setup 

3.1 Introduction 

   The eddy current technique is an old one that had been put into use 

about two centuries ago.  In this work, our concentration is on the levitating 

ring resulting from the induced eddy current in non-magnetic material.  Of 

course, the amount of current produced is dependent on the properties of the 

material.  The experiment and the type of measurements performed are 

conducted to verify two main objectives in mind.  The first one is to 

investigate the relation between the induced eddy current, as reflected in the 

form of ring levitation and the properties of ring material.  The second 

objective is looking for new findings concerning the effect itself.  As far as 

the first point is concerned, the study will involve the effect of dependence 

of the induced eddy current on type of material density, thickness of ring and 

deliberately introducing defects to the ring such as cracks.  The conductivity 

of the materials, the mean free time between collisions, the specific heat 

capacity, the number of free electrons per unit volume, the magnetization 

density, the permeability of some materials and the eddy current induced 

will be measured and investigated. 
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    The second point deals with measurement leading to more understanding 

of eddy current mechanism and opens the door for new applications.  For 

example the levitating coil, the high eddy current induced in the ring, the 

heating substances using electromagnetic waves…etc, can be tested and 

investigated widely.         

A non-magnetic conducting ring inserted in the metal core of a 

solenoid carrying an AC current is induced magnetic forces which causes the 

ring to jump up several centimeters had been produced (Restivo, 1996; 

Avrin, 2000).  On one hand, investigating such phenomenon experimentally, 

the relation between the eddy current induced in the ring and its density, 

resistance, conductivity…. etc, will be followed.  On the other hand, the size 

of the eddy current and its dependence on ring shape, current in the solenoid 

and type of material are also of special interest.  Accordingly, electrical 

parameters and properties of material such as brass, aluminum, mercury and 

silver can be tested and some other properties can be investigated.  Thus, 

several measurements are expected by using diverse experiments.  It is 

worth mentioning that some of experiments are discussed in Chapter 2. 

Since eddy currents are induced in conductive materials only, the 

study will be concerned mainly on investigating ferromagnetic, 

paramagnetic, and diamagnetic materials.  For instance, the study will 
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include the following materials: copper, aluminum, iron, mercury, silver and 

gold.  In this chapter, the jumping ring experiment is used to investigate the 

levitation height of aluminum, copper and iron ring samples having different 

radii and masses.  Thus, several rings of these substances are prepared and 

used throughout this study. 

3.2 Measurements and Calculations 

  Figure 3.1 exhibits the complete experimental apparatus used to 

collect data. It consists of the following components:  

 

Figure 3.1 Schematic representations showing the jumping ring complete 

 apparatus. 

 

1. Non magnetic rings from different materials (gold, mercury, aluminum, 

copper, silver), of different thickness and length. 

2. Secondary coil  

3. Voltmeter 
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4. Ammeter 

5. Teslameter 

6. Alternating variable power supply (0-10 A, 0-50 V) 

7. Holders 

8. Ruler 

      Before taking measurements, the experimental apparatus has to be tested 

and calibrated.  System testing was conducted out to confirm authentication 

of the experiments.  Apparatus have been assembled on a horizontal table so 

that the ring is kept vertically.  All readings have been measured carefully 

using sensitive apparatus such as digital multimeter that was used to measure 

the resistance of the solenoid as well the current and voltage.  By making use 

of Ohm‟s law, the strength of the magnetic field is calculated as soon as the 

emf induced across a secondary coil is measured (see Chapter 2 section 

2.6.1).  In addition, the magnetic field strength was calculated theoretically 

and compared with the experimental results. 

       As the experimental apparatus was assembled, measurements were 

started.  Each time a certain parameter has to be changed and the 

measurements are repeated several times.  The magnetic field was measured 

with high percentage (5%) for different current amplitudes up to 3 A.  After 

that, the error percentages were increased as the current exceeds 3 A.  All 
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readings were taken within a shortest possible time in order to make sure 

that the solenoid is heated to the minimum level.  Moreover, the 

experimental errors in the equipment were estimated as follows: 

1- The error in measuring the levitation height is 0.10 cm. 

2- The error in the ammeter measurements is 0.001 A. 

3- The error in the voltmeter measurements is 0.001 V. 

4- The error in the teslameter measurements is 0.10 mT.  

In this study, focus is made on measuring many interesting properties of the 

material, such as: conductivity, permeability, density, magnetization density 

and the demagnetization factor.  Setting standard calibration curves for 

materials of interest in an industrial world.  For example, it furnishes an 

inexpensive way of making sure of metallurgical process according to the 

preset properties required.    

3.2.1 Measurement of Br and Bz 

 

3.2.1.1 Measurement of Bz 

 
In this experiment, Bz inside the core needs to be measured and since 

the probe of the teslameter can not be inserted inside the core, another 

technique is used.  The general trend of this technique is as follows: 

      Measurements were started by measuring the induced voltage, emf, 

across n turns of a copper wire, winded around the core each having a cross 
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sectional area, A, and placed in the region of interest where measurement of 

Bz is required.   Then using Faraday's law of induction, Bz can be calculated; 

while Br can be measured by setting the turns (horizontally) in the region of 

interest to measure Br as displayed in Figure 3.2 (Summner and Thakkrar, 

1972).   However, the vertical component of the magnetic field, Bz, is equal 

the direct reading of the voltmeter connected to the coil. 

 

 

 

 

 

 
 

 

 

 

 

                 Figure 3.2 Schematic representations showing a coil winded around 

the metal core through the solenoid used to measure the field in the 

core.  

 

3.2.1.2 Measurement of Br 

 

            In this experiment, Br is measured by two ways.  In the first one, Br 

is measured from point near the core as Figure 3.2 shows.  In the second, Br 
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is measured from point near the edge of the core when the core brought to 

level with the solenoid as shown in Figure 3.3. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Schematic representations showing the apparatus needed to 

measure the radial component of magnetic field, Br, from point near the 

core (1). 

 

 

 
 

Figure 3.4 Schematic representations showing the apparatus needed to 

measure the radial component of magnetic field, Br, from point near 

the core (2). 
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3.2.2 Calculation of the conductivity density and number of 

         free electrons per unit volume in copper 

 
   In order to measure the conductivity of the ring material using the 

jumping ring experiment, an annulus ring was inserted in the core passing 

through a solenoid in which a current can be raised slowly until the ring 

levitates several centimeters.  Once the conductivity is known, the number of 

free electrons is calculated from the relation between the conductivity (Kip, 

1969).  

3.2.3 Measurements of the magnetization density permeability      

of the core and the lowest current needed to rise the 

temperature of the ring 

      
The magnetization density of the core is proportional to the external 

magnetic field Bext which depends on the number of dipole moments aligned 

in the direction of the external field (Hammond, 1971).  Thus, at certain 

fields all dipole moments will be aligned when the magnetization density 

reaches its maximum value.  Therefore, the magnetization density is 

different from one point on the core to another (Portis, 1978).           

       The permeability of the core is also a function of z and it can be 

calculated by measuring Bz at the end of the core.   
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        In measuring the current in the ring connected as shown in Figure 3.5, 

the current increases until the temperature of the ring began to rise then the 

current is recorded (Cimate, 2003).  

 

 

 

 

 

 

 

 

Figure 3.5 Schematic representations showing the apparatus needed to 

measure the eddy current in the ring. 
 

3.2.4 Measurement of the induced potential across two opposite 

points on the ring 
 

The induced potential across the ring can be measured by inserting a 

long ring in the core of the solenoid.  A stable alternating voltage across the 

solenoid coil is applied.  The voltage across the ring for different levitation 

heights can be measured either for the open circuit voltage or the closed 

circuit voltage by making use of the apparatus shown in Figure 3.6 and 

Figure 3.7, respectively. 
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Figure 3.6 Schematic representations showing the apparatus that used to 

measure the induced emf across two opposite points on the ring with 

longitudinal crack (closed circuit).  

 

 

 

 

 

Figure 3.7 Schematic representations showing the apparatus that used to 

measure the induced emf across two opposite points on the ring with 

longitudinal crack (open circuit).  
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Chapter Four 

 Results and discussion 

4.1 Introduction 

        In this chapter, the experimental data are collected using simple 

experimental facilities described in Chapter 3.  Several sets of measurements 

have been performed for most categories specified in Chapter 3.  Each set of 

data were tabulated and graphically plotted.  A brief description of the 

detection schemes is given.  The results reported here are discussed and 

interpreted theoretically as well.  New findings are discovered concerning 

eddy current technique and many applications were included.   

4.2 Results 

         Results to be discussed here are classified into three categories. 

1. The levitation height of ring. 

2. Relations between other variables such as the relation between Br and 

   r, the relation between Bz and z, the relation between either Br or B 

    and the current passes in the solenoid. 

3. Calculations of materials characteristics. 
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4.3 Results of ring levitation height  

4.3.1 Results of magnetic fields  

The z-component of the magnetic field, Bz, at the end of the solenoid 

in terms of the current in the solenoid was measured.  The dependence of Bz 

on the current passing through the solenoid were plotted in Figure 4.1 (see 

Table A.1 for more details).    

 
 

 

 

 

 

Figure 4.1 Dependence of the vertical magnetic field (Bz) at 

the end of the solenoid with core  on the current in the 

solenoid
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  The dependence of Bz on levitation height over the top end of the solenoid 

are tabulated in Table A.2 and exhibited in Figure 4.2.  The general 

behavior, as the figure displayed revealed that Bz decreases with increasing 

z. This is in agreement with the theoretical model.  

 

       

Similar measurements were obtained for the radial component of magnetic 

field, Br.  The results showing the relation between Br (at the end of the 

solenoid measured in air above the first turn) and the current in the solenoid 

are reported in Table A.3 and displayed in Figure 4.3. 

       

Figure 4.2 Variation of Bz  with the height.
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         According to equation (B.26) and equation (B.35), the magnetic field 

B is directly proportional to the current I in the solenoid and inversely 

proportional to z. Therefore, the results exhibited in Figure 4.1, Figure 4.2 

and Figure 4.3 are expected.   

The dependence of Br on the radial distance where the core end was 

brought to level with the top of the solenoid was also investigated.  Two 

interesting cases can be distinguished.  The first case is the dependence of Br 

on r when the core end brought to the top level of the solenoid. The results 

were inserted in Table A.4 and displayed in Figure 4.4. 

 

 

 

Figure 4.3 Dependence of  Br at the end of the solenoid on the 

current through it.
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As it can be seen from Figure 4.4, Br exhibits a maximum value at r = 6 mm. 

       The second case is concerned mainly with investigating Br 

dependence on the radial distance measured from the center outward in the 

direction of increasing r.  The results were reported in Table A.5 and plotted 

in Figure 4.5.  Clearly, the highest value of the magnetic field is appeared 

near the core of the solenoid.  This is because the magnetization density near 

the core is too high.  On moving away from the core center in the direction 

of increasing r, Br decreases rapidly. 

        Theoretically, the obtained results can be explained as follows: At the 

edge center of the solenoid, all field lines are along the z-direction so Br is 

Figure 4.4 Variation of Br  with the radial distance r 

rmeasured from center.  
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zero.  As r increased, Br increases until r = a then decreases again for r > a. 

Such variations can be explained as: 

 

 

1. When r < a, and in the direction of increasing r, the distance between the 

point and the turns of the solenoid decreases until the point become 

coincidence with rim of the solenoid (i.e. r = a) and hence B increases.  

After this point the distance increases and B will decrease. 

2. The radial component Br = B cos (θ) (Here θ is the angle between B and 

r) is zero at the center, where θ = 90 ْ  (minimum).  As r increases, θ 

decreases to zero at r = a, and Br becomes maximum.  When r > a, θ 

Figure 4.5 Variation of Br with radial distance (r) 

measured from point near the core
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begins to increase again, and B starts to decrease (from its value of part 

1).  Thus, Br decreases once again (see Figure 4.6).   

 

     Figure 4.6 Schematic representations showing the field lines  

     of a circular loop and the orientation of Br.  

      

       The experimental results were found to be in good agreement with the 

theoretical results within 10%.  

4.3.2 Results of levitation force  

The dependence of the force acting on the ring on the current passing 

in the solenoid is tabulated in Table A.6 and it plotted in Figure 4.7.  The 

general behavior of the force on the ring placed at the top end of the solenoid 

was found to be proportional to the square of the current at low current 

values, but for higher current values it is not.  The general behavior of F is 

shown in Figure 4.8. 
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Figure 4.7  The dependence of the force acting on the 

ring on the current passing in the solenoid for low current 

regions.
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Fig 4.8  The dependence of the force acting on the ring on the 

current passing in the solenoid for high current regions (3-10) A.
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As it could be seen from Figure 4.8 the magnetic force on the ring is not 

increasing rapidly as the current increase for high current values in the range 

between 3 and 10 A.  This is because most of the electrical energy is 

converted to heat and this is very well correlated with theory.  
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4.3.3 Results of ring levitation height  

4.3.3.1 Ring levitation height dependence on its length  

In this part of the experiment, the relation between levitation height of 

the ring and its length is investigated.  This was simply achieved by 

preparing rings of different lengths for both copper and aluminum.  In each 

case, every ring was inserted in the core of a finite solenoid and a constant 

alternating voltage is applied across it.  When the voltage is switched on, the 

ring rises to a certain levitation height.  This levitation height is measured as 

a function of the potential and the current of the solenoid.  The magnetic 

field in the region where the ring jumps is measured near the center of mass 

of the ring.  All measurements should be taken in less than 30 seconds to 

avoid any increase in temperature of the apparatus (ring, the coil, and the 

core).  Alternatively, a cooling technique has to be employed to control 

temperature.  Results are tabulated in Table A.7 and plotted in Figure 4.9 

and Figure 4.10. 

Relatively speaking two cases can be identified. On one hand, the 

levitation height increases as the length is increased (for small rings length). 

This is because the entire ring will be immersed in a high magnetic field 

region. On the other hand, the levitation height decreases as the length      

increases (for long rings length).  This is because increasing the ring length 

above a certain level will produce an increase in the ring mass without 
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increasing the eddy current induced in it. The extra length falls in the 

magnetic field at high altitude where field values decreases very rapidly 

(Portis, 1978). 

                 Figure 4.9 Levitation height versus the ring length for 

                    different input currents. 

 

Figure 4.10 Levitation height of the lower end of 

copper ring versus its length for fixed current.
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4.3.3.2 Ring levitation height dependence on its thickness 

Investigation of the relation between levitation height of the ring and 

its thickness is slightly a difficult task due to many considerations. The first 

one, concerning the manufacture of finding different rings of different 

thickness from available pipes which is hindered with the problem of 

internal and external diameters.  For example, if a ring is found with the 

required thickness it might have an internal diameter that is very much larger 

than the core diameter.  This introduces other practical problems as a result 

of the ring being tilted.  Hence different parts of the ring lie in different field 

regions as shown in Figure 4.11.  To overcome the problem, a set of rings 

were manufactured at different thickness but the entire same diameter (0.4 

cm).  The corresponding results of this section is shown in Table A.9 and 

plotted in Figure 4.12. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Schematic representations showing the effect  

of gravitational torque on large radius ring. 
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                       Figure 4.12 The relation between levitation height of different 

                       thickness for yellow brass rings, when having a diameter of 4 

                       mm and a fixed input current 
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2. For large rings where length varies from 20 to 70 mm, the length of the 

levitation height decreases by increasing the length as shown in Figure 

4.10. 

The results obtained for the jumping ring experiment can be 

explained simply by imagining the solenoid coil, the ring, and the core as 

a transformer consisting of two coils.  The primary coil (the solenoid 

coil) and the secondary coil (ring).  The only difference between the two 

cases is that the ring, in this case, is free to move and always make a 

short circuit. 

      On the microscopic basis, the results can be explained as follows: 

When a non-magnetic material is subjected to an alternating magnetic 

field, an eddy current is generated through it (Restivo, 1996).  To 

understand this result, the rotation of every electron in its orbit will be 

treated as a dipole moment.  In the absence of the external magnetic field, 

these dipole moments will be distributed randomly as shown in Figure 

4.13a.  These dipoles are expected to be aligned in a certain way in the 

presence of external magnetic field (Portis, 1978).  It is directed in the 

opposite direction of the applied external magnetic field according to 

Lenz‟s Law as shown in Figure 4.13b. 
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Figure 4.13 Schematic representations of (a) the random direction 

of the dipole moments in material, (b) the alignment of dipole 

moments in material when it's placed in an external magnetic field. 

 

Then, a repulsive force will appear between the induced magnetic dipole 

moments and the dipole moments of the eddy current induced in the ring.  

Thus, the ring will jump upward and stops at a certain point known an 

equilibrium point.  At this point, the levitation force is equal to the 

weight of the ring.  

On the macroscopic basis, the results can be explained as follows: 

When alternating current passes in the solenoid, an alternating magnetic 

field produced in the vacancy of the solenoid.  This field has two 

components, namely the vertical component Bz in the z-direction and the 

radial component Br in the radial r-direction (Simpson et al., 2001).  The 

induction of the vertical component Bz through the rings area induced an 
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emf distributed in the ring.  Thus, an eddy current is induced in the ring 

according to Faraday‟s law of induction (Halliday et al., 2001).  

Accordingly, when a section of wire of length l carries a current I and 

placed in an external magnetic field Bext, it is experienced a sideways 

deflection force (Portis, 1978).  This force can be calculated according to 

equation (2.14).   Performing the cross product, the radial component as 

well as the z-component of this force is obtained.  It can be easily shown 

that the action of the radial component of the force, Fr, on the ring is 

similar to a torque.  Therefore, if a ring has a magnetic dipole moment, 




and placed in an external magnetic field, Bext, that makes an angle θ 

with the dipole moment as shown in Figure 4.11, it experiences a 

magnetic torque that given by extB


 τ .  This torque will act to rotate 

the dipole moments and forces them to align in the same direction of the 

vertical component of the magnetic field Bz.  Hence, the net radial force 

on the ring is equal to zero as shown in Figure 2.9b.  Consequently, the 

other force component, the vertical force Fz, will cause the ring to jump 

upward (see Chapter 2 section 2.5).   By making use of equation (B.53), 

it can be easily shown that:  
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(4.1)                                                                                          BBF  zrz 

 

According to equation (4.1), the levitation force is proportional to both Bz 

and Br.  This force will cause the ring to levitate upward until an equilibrium 

point is reached (Hall, 1997).   If Br is zero, the force also will be zero.  The 

dependence of the magnetic force on the ring and the current in the solenoid 

has two cases: 

1. For low current, the magnetic force is proportional to the square of the 

applied current.  This can be seen by substituting the value of Bz and 

Br from equation (B.26) and equation (B.35) into equation (B.53). 

Thus,
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      Therefore, for low currents, the magnetic force is proportional to the 

square of the applied current and the experimental results have shown good  
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agreement with the theoretical (Hall, 1997) (see Figure 4.7).   

2.  For high currents, the relation between Fz and the current seems to be   

linear.  This means that the magnetic field reaches its saturation value 

as the relative permeability reaches its maximum value for high 

currents (Hammond, 1971) (see Figure 4.8).  

The force acting on the ring can be interpreted in terms of dipole-

dipole interactions.  Generally speaking, any two dipole moments μ1 and μ2 

will attract or repel each other by a force that depends on their orientations 

and separations.  The main cause for such force is the radial magnetic field 

produced from any one of the rings on another as displayed in Figure 4.14. 

    

 

Figure 4.14 Schematic representations showing  

                   the interaction between two dipole moments. 
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As it can be seen from Figure 4.14, the attractive or the repulsive 

force is attributed to the radial component of the magnetic field Br produced 

by one dipole moment on the other.  The theoretical relations showing the 

dependence of Bz and Br on the current passes in the solenoid coil, which 

can be obtained from equation (B.26) and equation (B.35). Thus, 

 
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 Here C1 and C2 are constants.  Therefore, both of the two components of the 

magnetic field are proportional to the current developed in the solenoid coil.  

Thus, when the current passes in the solenoid coil is increased, both Br and 

Bz are increased too.   

  The force was also found to be proportional to Br Bz. Thus when the 

applied voltage on the solenoid is increased, the force on the ring will be 

increased.  Consequently, the ring will levitate to higher points.  

Theoretically, for rings of small lengths, the ring will be placed in the high 

magnetic field region.  Thus, increasing its length means increasing its 
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weight linearly.  Consequently, if the length of the ring, z, or the thickness, t, 

is increased, its mass will increased linearly accordingly to W= (constant) tz.  

Also, if the length or the thickness of the ring is increased, its volume is 

increased.  Therefore, the number of free electron will be increased and the 

current I will be increased as well (I= constant t z).  Hence, an increase in 

both of the induced eddy current in the ring and the levitation force will be 

expected.  This is because the levitation force is proportional to the square of 

the current i.e. F = constant I
2
 = constant (t z)

2 
 according to equation (4.1).  

Therefore, the levitation force is proportional to z
2
, but the weight of the ring 

linearly proportional to both z and t.  Thus, the levitation force will be 

expected to increase by an amount greater than the weight.   For an upward 

Fz and WzF , the ring will levitate upward. 

     For long rings, one portion of the ring sinks in the high magnetic field 

region and the other portion sits in the region were the magnetic field is very 

low.  Hence, an increase in the ring length in this area does not mean an 

increase in the force on it.  As a result, the weight increases while the force 

still almost constant, so the ring falls down.  Furthermore, by using equation 

(2.14), one may write: 
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Rearrange the above equation to get: 
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Then equation (4.6) can be rewritten as: 
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Since the force on the ring is proportional to this integral, equation (4.8) 

must be integrated in order to find the relation between the length of the ring 

and its levitation height.  For the sake of simplicity, the integral in equation 

(4.8) is set equal to the area under F(z) and z.  Figure 4.15 shows the 

theoretical relation between F(z) and z.   
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      Figure 4.15 Relation between F(z) and z at constant applied current 2 A. 

 

The area under the curve is “nearly” between z = zero and z = 3 cm 

for constant voltage across the solenoid.  The upper limit z = 3 cm depends 

on the voltage applied to the solenoid, the radius and the number of turns per 

unit length of the solenoid.  The best fit of F(z) between 0 and 3 cm is 
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reach any levitation height between 0 and 3 cm.  Besides, the lower end of 

any ring must between 0 and 3 cm (see Figure 4.16).  

 

 

 

            Figure 4.16 Schematic representations showing the portion of 

            the ring affected by the force.  
 
            To find the point at which the lower end of the ring z1 will reach, 

equation (4.8) must be integrated from z1 to 0.03 m, after substituting the 

interpolated expression of F(z) in it (see Figure 4.16).   Thus, 
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Introducing the constant c (=226.6), integrating equation (4.9), and solving 

for z1 to get 
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Since the ring is uniform so that its center-of-mass is located at L/2= (z2-

z1)/2,  
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Equation (4.11) represents the relation between the levitation height and the 

length of the ring.  This type of dependence is plotted in Figure 4.17. 

 

 

Figure 4.17 Levitation height dependence on length
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4.3.4 Induced potential across two opposite points on the ring 

     The induced potential across the ring was measured by inserting a 

long ring (10 cm long) in the core of the solenoid.  An alternating voltage of 

30 V was applied across the solenoid coil.  The voltage across the ring for 

different levitation heights was measured by making use of the apparatus 

that can be seen in Figure 3.6.  No voltage was detected for all rings tried in 

this lab. 

         The experimental data has shown that the induced voltage across any 

two points on the ring is zero.  Let Rint and Rext to be the internal and the 

external resistances of the ring, respectively (see Figure B.7).  According to 

Joules law, an amount of energy equal to I
2
 (Rint+Rext) is dissipated as heat 

within a time interval dt.  During this time, a charge dq = idt will be moved 

through the emf seat, and the work done on this charge is given by 

 

  From the conservation of energy principle, the work done by the emf equal 

the thermal energy in the resistance    
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        Now let us consider a ring cracked longitudinally and having external 

resistance Rext (see Figure 4.7) connected across it.  As Rext goes to zero, the 

eddy current reaches a maximum value that can be written as: 

 

That is, the emf is a measure of the open circuit total voltage across any two 

points such as point c and d shown in Figure B.7.  This means that all the 

electric energy is converted to thermal energy in the internal resistance of 

the ring.  The potential difference between any two points on the ring can be 

calculated by making use of loop theorem. Thus, 
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Substitute the value of I from equation (4.15)   in equation (4.19)     to get 
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The above result can be interpreted on the basis of imagining the ring to be 

divided into many equal parts such that the emf  produced across each part is 

emfi and whose internal resistance Ri.  If emfi is in the opposite direction of I 

Ri, the summation of these voltages should be equal to zero. 

4.3.5 The effect of cracks on the eddy current 

      In order to investigate the effect of cracks on the eddy current induced 

in the ring material, various cracks of different length and width were made 

on rings of the same thickness and length.  Some cracks were made 

vertically, some were horizontally and some were slanted as exhibited in 

Figure 4.18. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Schematic representations showing different  

cracks that can be introduced to the ring. 

 

The result of some crack characteristics are belonging to an aluminum 

ring of 26 mm long at various applied currents and the corresponding 

levitation heights are recorded in Table A.11.  The crack length is taken to 
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be a fraction of the length (L).   The dependence of the levitation height on 

the length and the direction of the crack are shown in Figure 4.19.   

 

 

       Relatively speaking, the experimental results had shown a good 

agreement with the theoretical results.  The experimental results can be 

explained as follows:  If the cracks are of longitudinal or makes angle with 

vertical, the eddy current can not be induced (circulate) in this portion of the 

ring.  Therefore, the resultant eddy current in the ring will decrease and 

hence the force decreases (i.e. the levitation height decreases).  Moreover, if 

the cracks are latitudinal, the circulation of the eddy current will not be 

affected.  That is, the levitation height will not be affected.  Besides, the 

Figure 4.19  Dependence of the length of longitudinal downward 

crack  in the ring, and the corresponding levitation height as 

current is swept over the range 0.5-4 Amps, one curve to a crack 
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current induced in the ring is proportional to the number of free electrons per 

unit volume (see Figure 4.20). 

    

 

 

 

 

Figure 4.20 Schematic representations showing the circulation of  

eddy current in the ring with two kinds of cracks  

(a) Longitudinal cracks, (b) Latitudinal cracks. 

 

Thus, when the ring is cut vertically the number of electrons allowed to 

circulate will be decreased by a ratio that depends on the ratio between the 

non cracked volume and the cracked volume of the ring.  So, the eddy 

current in the cracked ring can be written as: 

   

(4.21)                                                                                                   1NVIc 

 

and 

 

(4.22)                                                                                                    0 NVI 
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Thus,  

(4.23)                                                                   
0

1011

0

) 
L

LL
(

V

V

NV

NV

I

Ic 


  

Here the symbols are chosen to represent 

N is the number of free electrons per unit volume. 

Ic is the induced eddy current in the cracked ring. 

I0 is the induced eddy current in the ring without crack. 

V1 is the volume of the non cracked portion of the ring  

V0 is the total volume of the ring. 

L1 is the crack length.  

L0 is the ring length.  

4.3.6 Investigations of special non-magnetic rings 

  In this study, several non-magnetic materials such as gold, silver, 

aluminum, brass and mercury were investigated.  It was found that only the 

aluminum and bras rings are levitated, while other materials do not.  The 

results of silver, gold and mercury were listed in Table A.12.  The rest of the 

results in tables A.13 to the end belong to aluminum and copper.  This might 

be attributed to low eddy current induced in those materials or the magnetic 

field is not sufficient to produce such phenomena. Therefore, such problems 

were still open for further investigations.  
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4.4 Applications to eddy current measurements 

In this section we are interested mainly in investigating some 

electrical characteristics relevant to the aluminum and copper materials.  

Five ring samples were used for each material to investigate the dependence 

of electrical parameters on the material properties such as density, length, 

mass, thickness, --etc.  In the following subsections, calculations of these 

properties will be discussed. 

 

4.4.1 Calculation of the conductivity  

A great amount of heat is usually dissipated in the solenoid or core 

especially when high currents are used to levitate heavy rings.  To avoid 

this situation, a thin ring of 2 mm long is employed.  Some physical 

parameters, for typical copper and aluminum rings are listed in Table A.13.  

      The conductivity or density of copper and aluminum can be calculated 

by measuring the minimum current in the solenoid needed to raise a copper 

ring of small length a few mm up, using equation (B.64) and the set of 

parameters listed in Table A.13.  The calculated conductivity for copper and 

aluminum were found to be as follows: 

The conductivity of aluminum = s/m. ,710721)0.0 (3.313   

The conductivity of copper =  s/m  ,7101461).0 (5.928    
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The previously measured conductivities for Al and Cu respectively, are 

(Kip, 1969):  

The conductivity of aluminum = s/m 7103.571   

The conductivity of copper = s/m 7105.882  

The percentage error was estimated to be as 8% or less. 

4.4.2 Calculation of the specific heat 

  The induced eddy current in the ring B resulted in increasing the 

number of collisions of electron in the ring and hence increases the 

temperature. The experimental result of the specific heat capacity of 

aluminum was found to be CJ/g, 0.05310.918 0 . 

     Theoretically, the Specific heat can be calculated from the difference 

between the power delivered in the solenoid before and after the insertion of 

the ring.  This is because such power will be converted to heat in the ring 

and the solenoid coil (Halliday et al., 2001).  The flow of the induced eddy 

current in the ring causes the temperature to rise as a result of heat 

dissipation due to collision of revolving electrons in the ring material.  The 

specific heat capacity C of the metal can be calculated by multiplying the 

measured current in the solenoid before the insertion of the ring I1 and the 

current I2 after the insertion of the ring with the voltage across the solenoid 
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before and after.  If the difference in the current in the solenoid coils (I2-I1) is 

so small, the heat in the solenoid coil can be neglected.  

     Let ΔQ to be the heat induced in the ring during time τ, the voltage across 

the solenoid Vmax, then the amount of heat dissipated is given by (Kip, 

1969):

)244(              .                                                                       τ         ΔPΔQ 

 

where P the power difference  which is defined as: 

(4.25)                                                                                       )( 21 VIVIP 

       

If the root-mean-squared (rms) value is used for both current and voltage in 

equation (4.24) and substituted in equation (4.25), the energy can be 

rewritten as: 

(4.26)                                                                               
2

)( 21 τmmm IIV
Q




 

   By measuring the initial temperature Ti of the ring, the final temperature 

Tf, the mass of the ring m, and the elapsed time τ between collisions (see 

Table A.14), the amount of heat can be also defined as:  

(4.27)                                                                             )( mTTCQ if 

 

    Equating both of equation (4.26) and equation (4.27) and solving for C, 

we get 
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(4.28)                                                                                 
)T2m (T

) τI(IV
C

if

m2m1m






 

       Thus, by measuring the eddy current in the ring and reporting the initial 

temperature Ti, the final temperature Tf, and the time, the specific heat 

capacity can be calculated.  Introducing 1E  and 2E parameters as follows:  

(4.29)                                                                          )( 211 τ mmm IIVE

 

and  

(2.30)                                                                                  )(22 if TTmE 

 

Substituting equation (4.29) and equation (4.30) into equation (4.28), the 

heat capacity can be rewritten in the following form 

(4.31)                                                                                                      
2

1

E

E
C 

  

The dependence of E1 on E2 For aluminum is plotted in Figure 4.21.  
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Figure 4.21 Relation between  E1 and E2 parameteres 

needed to calculate the specific heat capacity.
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The specific heat of aluminum will be calculated from the slope of the 

curve.  The calculated value of C is found to be CJ/g  0.05310.918 0 .  

Comparing the obtained value with the corresponding tabulated specific heat 

capacity is 0.900 J/g 
0
C (Halliday et al., 2001), the results come to be in 

agreement within 2%. 

 4.4.3 Calculations of the number of free electrons per unit 

volume, and the mean time between electron collisions 
 

      The number of free electrons per unit volume can be calculated using 

equation (2.18) and making use of the estimated value of the mean time 

between collisions.  For example, the calculated mean time between 

collisions in copper τ is equal to 2.50 ×0 10
-14

 s, the electron rest mass  me = 

9.110×10
-31 

kg, the electron charge 1.60 ×0 10
-19

 C, and assuming the 

conductivity is σ = 5.89×10
7
  S/m (Halliday et al., 2001).   Substituting all 
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these variables in equation (2.18), the calculated number of free electron per 

unit volume, N, for copper is 8.360×10
28

 electron/m
3
. 

4.4.4 Calculation of magnetization density M and the magnetic 

field intensity H 

 

 
As the current passing through the solenoid is increased, both H and 

M at a certain point on the core is expected to increase.  The magnetic field 

intensity, H, is given by equation (4.33) or  


B
H  .  Furthermore, M values 

can be calculated according to equation (2.21).  The calculated values of M, 

magnetic field intensity, induced voltage and the current in the solenoid are 

recorded in Table A.16.  The dependence of magnetization on magnetic field 

intensity is displayed in Figure 4.22.  

                    Figure 4.22 Relation betweem the magnetization density  

                    M and the magnetic field intensity H for the core metal. 
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 Clearly the magnetization density, M, is not constant, but it depends 

on the external magnetic field.  So by increasing the current in the solenoid, 

the magnetic field, H, will be increased.  Therefore, when external magnetic 

field is increased, more dipole moments are forced to align in its direction.  

This means that M increases (since M = Nμ), (here N is the number of free 

electrons, μ is the dipole moment of the electron) until all the dipole 

moments were aligned.  After that, the magnetization density will saturate 

(Hammond, 1971).   

Relatively speaking, the magnetic susceptibility can not be estimated 

from Figure 4.22.  This is because M is not constant.  More discussion of 

magnetic susceptibility is found in section 4.4.6. 

4.4.5 Calculation of the relative permeability µr 

The relative permeability of the material is not constant since it 

depends on the number of dipole moments which are induced in the material 

(Hammond, 1971).  Moreover, the relative permeability depends on the 

current through the solenoid in a way such that it increases by increasing the 

current until it reaches a maximum value. The experimental results showed 

that the relative permeability of the core is about 144.0 (see Figure 4.23).  

The maximum value of permeability can be calculated from the curve of B 

versus H (see Figure 4.22) and using 
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(4.32)                                                                                                     HB 
 

 

Since the magnetization curve for the ferromagnetic material is not 

linear, the maximum susceptibility is not constant (Kip, 1969).  This can be 

explained as follows: when the current is minimum M increases slowly and 

as the current increases M increases rapidly to a certain maximum value.  In 

this case, M reaches a saturated value since χ)(μμ  10  ,where  is the 

slope of the magnetization density curve.  Thus, for low currents,   is small 

and so is μ .  As the current is increased,  is increased too and so is μ .  For 

high currents, both   and μ  become constants.  The maximum value for the 

relative permeability is obtained from the plot of the relative permeability 

and the current in the solenoid as shown in Figure 4.23.  The obtained results 

of relative permeability can be used to calculate the core permeability using 

(Portis, 1978): 

(4.33)                                                                                            0 r 
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                            Figure 4.23 Relation between the relative permeability 

                            of the core versus the current in the solenoid. 
 

4.4.6 Calculation of the magnetic susceptibility  

             The obtained values of the relative permeability )0.144(
r

μ  and the 

permeability of air o  were used to calculate the value of   according 

(4.34)                                                                            1

1

00

0

0

) 
μ

μ
(

μ

μμ
χ

χ)(μμ








 

 The calculated value of    143.0. 

 

4.4.7 Calculation of the eddy current induced in the ring 

In order to measure the induced eddy current in the ring using 

conventional methods, the ring must be cut vertically and it should be 

connected in series with an ammeter.   This method is not practical in this 
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study, due to large internal resistance of the ammeter with respect to the 

resistance of the ring.  Therefore, attention should be directed on finding 

new techniques to measure such currents.  Several techniques for calculating 

the induced current in the rings are suggested.  The First method is the 

energy method which is based mainly on the energy delivered in the ring and 

the power delivered by the current.  The second method is based on 

measuring the induced voltage across the ring and making use of Ohm's law.  

The third method is a comparison between different currents.  We shall 

discuss the above methods briefly. 

4.4.7.1 Calculation of the eddy current using the heat 

dissipation method 

 
     By measuring the difference in the power delivered in the solenoid 

before and after the insertion of the ring, the eddy current can be calculated.  

Thus, this method depends mainly on the heat dissipated in the ring in the 

form of heat as a result of flowing eddy currents through.  It is found that 

when the ring is inserted in the core, the current passing through the solenoid 

is increased.  This is because the generating current is not constant.  

Experimental data shows that an eddy current of 183 A is obtained.  This 

means that the difference between the powers consumed by the solenoid 

before and after the insertion of the ring is equal to the power dissipated in 
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the ring.  If the initial power delivered to the solenoid without the ring is P1, 

the final power with the ring is P2, and the power in the ring is P, the power 

dissipated in the ring can be written as: 

     

)35.4(                                                                                                 12 PPP 
 

Using RIIVP 2 , equation (4.35) can be rewritten as: 

 

(4.36)                                                                                      )(
2

12 IIVRI 

 

  Here I1 and I2 are the currents passing through the solenoid before and after 

insertion of the ring, V is the voltage applied to the solenoid, R is the ring 

resistance, and Ieddy is the eddy current in the ring.  Using 
TL
l

R


 , the 

eddy current Ieddy can be calculated according 

    

(4.37)                                                                           
)( 12

l

IITLV
Ieddy






 

 Using the experimental values listed in Table A.14 for the variables in 

equation (4.37), the calculated eddy current value passing in (copper ring) is 

found to be 183 A.  To our knowledge no reference is made to the value of 

eddy current before. 
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4.4.7.2 Calculation of the eddy current by measuring the emf 

 
      In this method, the emf between two opposite points on the open circuit 

ring (see Figure 3.7) was measured for different materials using Ohm‟s law 

and the data which presented in Table A.17.  The equation used to calculate 

the eddy current is obtained by making use of RIemf
eddy

  and 
TL

l
R

2


 .  

Thus, the obtained eddy current relation can be written as: 

     

(4.38)                                                          
)2(

r

TL

l

TL

R
I

emfemfemf
eddy




 

Where rl 2 , and T, r, L, are defined before.   The resistance between two 

opposite points on the ring is R.  The calculated value of the eddy current in 

aluminum ring also is 181 A. 

It is worth mentioning here that for aluminum and iron, the induced 

voltage is the same as copper, but the measured current is different since the 

conductivity is different. 

4.4.7.3 Dependence of ring temperature on time 

         The electric energy drawn by the solenoid is converted to magnetic 

energy and heat in the coil core and in the ring.  Therefore, the temperature 

of the ring will be increased as the number of electron collisions in the ring 
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is increased.  It is found that the temperature of the ring is increased with 

time until it reaches an equilibrium point.  Consequently, the coil resistance 

is increased; while the induced current is decreased.  Besides, the magnetic 

force on the ring is decreased and the levitation height of the ring is 

decreased with time.  The relation between the temperature of the ring and 

time are presented in Table A.14 and displayed in Figure 4.24. 

 

 

4.5 The effect of ring dimension on the current drawn by the 

solenoid 
 

   The current drawn by the solenoid was measured for a solenoid with 

different rings of various thicknesses and length.  Results are tabulated in 

Table A.18 and Table A.19 and plotted in Figure 4.25 and Figure 4.26. 

 

 

Figure 4.24 Relation between the temperature of 

copper ring versus time.
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Figure 4.25 The relation between the current in the solenoid coil and 

the thickness of Aluminum ring for fixed rings length .
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Figure 4.26  The relation between the current in the solenoid coil 

and the length of copper ring for fixed rings thickness.
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In discussing these results, we would say that the solenoid and the 

core can be imagined as electric device which looks like a transformer.  In 

this case, as the load resistance of the secondary coil decreases its current 

increases.  In other words, the primary current is increased in the ring when 

either the length or the thickness of the ring is increased.  Therefore, its 

resistance will be decreased.  This means the number of free charges per unit 

volume is increased.  Thus, the eddy current in it increases and consequently 

the current drawn by the solenoid also increases since the energy is 

conservative (Halliday et al., 2001). 

4.6 The levitating solenoid 
 

Consider a solenoid that moves freely about the core.  If an alternating 

current passes through the solenoid, it levitates several centimeters 

depending on the current and the number of turns of the solenoid.  This 

finding was not mentioned or discussed up to our knowledge so far 

anywhere else.   

The force between the solenoid coil and the core is an attractive force 

and is directed toward a region of high magnetic field (toward the center of 

the coil).  The maximum magnetic field at the center of the coil extends 

several centimeters near the two ends of the solenoid.  This depends on the 

applied current in the solenoid.  Therefore, the solenoid will move upward 
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until all the extended region filled with the core.  Thus, when the current 

passing through the solenoid is increased, the solenoid jumps more higher 

(see Figure 4.27).   

 

Figure 4.27 Schematic representations showing the extended 

magnetization area inside the ellipsoids for two currents i1 and 

 i2 such that i2 > i1.  

 

It is noticed that this effect is not observed before; no references had 

been mentioned referred to it, since coils are mostly manufactured either 

fixed to the base or to the core. 
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Chapter Five    

 

Conclusion and further work 
          

              If a non-magnetic material is subjected to an alternating external 

magnetic field, an eddy current is induced in it.  In general, the eddy current 

technique has many applications in applied sciences and especially in 

physics.  The use of eddy current technique in this context is to study some 

characteristics of non-magnetic materials such as conductivity, mobility, 

permeability, magnetization of substances, and the numbers of free charges 

are of great importance.  These properties can be studied by knowing the 

strength of the eddy current produced in a jumping ring made from the 

material of interest.  The strength of the eddy current induced in the material 

depends on its physical properties, (density, conductivity, volume, 

temperature,) magnetic properties (paramagnetic, diamagnetic, or 

ferromagnetic) and also on the external applied magnetic field.       

The eddy current induced in materials was studied using the jumping 

ring experiment.  It was found that different substances are not equally 

affected when experimental conditions were set fixed.  The experimental 

results were found to be in agreement within 8% with the theoretical ones.  

For conducting materials, the magnetic force on the ring is proportional to 
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both the vertical and the horizontal components of the magnetic field.  

Besides, the conductivity was calculated from the equilibrium point reached 

by the ring above the upper end of the solenoid.  This point is independent of 

the thickness or the length of the ring.  Also the potential difference 

produced across the ring is zero.   At the center of the coil there are two 

radial fields equal in magnitude and opposite in directions.  One of the fields 

is produced by the upper half of the coil turns and the other from the lower 

half of the coil turns.  Therefore, the net horizontal component of the 

magnetic field Br at the center of the solenoid coil should be equal to zero.  

Moreover, since the levitation force is proportional to Br, the ring can not be 

stable at the center of the solenoid.  If two rings are inserted in the core, an 

attractive force appears between them since the eddy current induced in the 

two rings is in the same direction.  Accordingly, both opposing fields repel 

each others.  Furthermore, the force between any two successive turns of the 

solenoid is attractive to each other because the current in one is in the same 

direction.  The drawn current by the solenoid coil increases if either the 

thickness or the length of the ring is increased.  This is due to the increase of 

power in the ring.  Thus, the power in the solenoid has to increase according 

to the principle of conservation of energy (Halliday et al., 2001).  As the 

current in the solenoid is increased, the levitation height of the ring is 
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increased.  It was found experimentally that the levitation height depends on 

the type of the material.  Among all materials used, only copper and 

aluminum rings levitate.  It was found that the ring began to loose levitation 

height as time passes.  This is due to the increase in temperature and this in 

turn resulted in decreasing the material conductivity. Hence the eddy current 

is decreased as well.  

Since the levitation height of the ring depends on its electric and 

magnetic properties.  This allows a test that can be used to distinguish 

between samples purity of the same material.  

         In conclusion, the jumping ring technique is an important application 

of the eddy current and a good example of Lenz‟s law.  In this case, the 

magnetic field is changing due to the AC voltage applied to the coil and the 

ring placed in the core passing through the solenoid is caused to levitate.  

This is due to eddy currents created by the changing magnetic field from the 

coil.  The polarity of the eddy current fields will be in opposite (creating a 

north pole at the bottom of the ring when there is a north pole at the top of 

the coil, and vice versa) to the coil polarity.  Thus, a constant repulsion 

between the two fields will be observed and the ring levitation height is 

maintained.  
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          It is also worth to mention that a jumping coil was noticed for the first 

time.  The above effect constitutes a good technique for testing material 

properties in a simple, inexpensive and an easy experimental system to run. 

  The study tested samples of other materials such as gold, silver and 

mercury where no levitation height has been observed even though they are 

none-magnetic materials.  The reason behind this can not be explained on 

the basis of apparatus used.  Thus, such phenomenon is not well understood 

to us.  It is suggested that this is left as an open problem to be addressed for 

further investigations.  Maybe different system needs to be designed that can 

handle very much higher currents in the solenoid, hence creating higher 

eddy current in these materials.  If levitation height was not noticed, then 

other reasons must be investigated and our thinking is directed to the internal 

microscopic structure of these materials. 
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Appendix A 
 

Tables of experimental data 
 

     Table A.1 Data of the magnetic field Bz at the end of the  

     solenoid and the current in the solenoid 
 

Magnetic field Bz  

(mT)±0.100 

Current in the solenoid   

±0.001, A 

21.00 0.085 
30.00 0.110 
53.00 0.160 
109.0 0.290 
141.0 0.370 
162.0 0.420 
183.0 0.480 
223.0 0.590 
239.0 0.640 
278.0 0.770 
290.0 0.800 
308.0 0.870 
329.0 0.930 
359.0 1.040 

 

             Table A.2 Data of the magnetic field Bz of the solenoid with 

             core versus levitation height (z) over the top of the solenoid at 

             constant current of (3 A). 

 

Magnetic field Bz  

±0.100, (mT) 

Levitation height of 

measurement ±0.100, 

(cm) 

610.0 0.400 
549.0 1.000 
520.0 1.500 
473.0 2.000 
435.0 2.500 
421.0 3.000 
387.0 3.500 
363.0 4.000 
342.0 4.500 
315.0 5.000 
290.0 5.500 
268.0 6.000 
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            Table A.3 Data of the magnetic field (Br) at the end of the 

    solenoid directly above the first turn and the current passing 

    through the solenoid.  

             

Magnetic field 

±0.100,  (mT) 

Current in the 

solenoid±0.001,  (A) 

6.600 0.500 

13.00 1.000 

17.00 1.500 

23.00 2.000 

27.00 2.500 

32.90 3.000 

36.50 3.500 

40.00 4.000 

43.60 4.700 

45.00 5.000 

46.50 5.500 

48.00 6.000 

 

     Table A.4 Data of the magnetic field Br at the end of the solenoid 

  and the radial distance r at constant input solenoid current of 1 A 

. 

Magnetic field in±0.100,   

(mT) 

Radial distance, r,±0.010, 

(mm) 

0.000 0.000 

3.500 2.000 

8.000 4.000 

9.000 5.000 

10.30 6.000 

9.100 7.000 

8.000 8.000 

6.700 10.00 

5.800 12.00 

4.600 14.00 
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            Table A.5 Data of Br and the radial distance from the core 

            (r) measured at the top of the solenoid for constant solenoid  

            current of 2 A. 

 

Br ± 0.100, (mT) r ± 0.010, (mm) 

20.00 4.000 

15.00 5.000 

10.00 6.000 

6.000 7.000 

4.000 8.000 

3.000 9.000 

2.500 10.00 

2.000 11.00 

1.000 12.00 

 

           Table A.6 The induced emf, the current, the magnetic field, 

            belong to a copper ring rests at the end of the solenoid for 

            20 mm ring length. 

 
Br ±0.100,  

(mT) 

Bz ±0.100,  

(mT) 

Current in 

the 

solenoid 

±0.001   

,(A) 

Induced 

voltage in 

the 

secondary  

coil ±1.000,   

(mV) 

Lowest 

mass  

±0.010,  

(gm) 

2.400 348.0 2.000 24.00 4.700 

2.500 377.0 2.200 26.00 5.300 

3.000 421.0 2.500 29.00 6.800 

3.500 464.0 2.700 32.00 8.200 

4.700 525.0 3.000 36.20 10.70 

5.000 624.0 4.380 43.00 14.80 

5.500 743.0 7.300 51.20 26.00 

6.100 800.0 8.000 57.00 29.00 

7.200 830.0 10.00 62.30 35.00 
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     Table A.7a The dependence of the center of mass levitation height  

     on the length of copper ring at different applied currents. 

 

Ring length 

± 0.010, 

(mm) 

30 20 17 12 13 1.9 

Current ± 

0.001, (A) 

Levitation height of the center of mass of the 

ring  in ± 0.100, (cm) from solenoid top 

1.700 NL* NL NL NL NL 0.200 

2.200 3.200 3.100 3.100 2.600 2.000 1.700 

2.400 3.300 3.200 3.200 2.800 2.200 2.000 

2.600 3.600 3.400 3.400 3.100 2.400 2.200 

2.800 3.800 3.600 3.600 3.400 2.600 2.400 

3.000 4.000 3.900 3.800 3.600 2.800 2.500 

3.200 4.200 4.100 3.900 3.800 3.000 2.600 

3.400 4.400 4.200 4.100 4.500 3.100 2.800 

3.600 4.500 4.300 4.200 4.100 3.200 3.000 

3.800 4.600 4.500 4.300 4.200 3.300 3.100 

4.000 4.800 4.600 4.500 4.300 3.400 3.200 

 

     NL*: No levitation height of center of mass was recorded 

 

     Table A.7b The dependence of levitation height of a copper ring on 

     length   (for a long ring) at an applied current of 2.2 A. 

 

Rings length ± 0.010, (mm)  Levitation height ± 0.100, 

(cm)  

1.900 1.700 

3.000 1.800 

12.00 2.300 

17.00 3.000 

20.00 3.200 

30.00 2.800 

40.00 2.500 

60.00 2.200 
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       Table A.8 Thickness, length, and outer diameter of various rings 

       of yellow copper. 

 

 

          

 

 

 

 

 

       Table A.9 The levitation height, the thickness of yellow copper rings for 

       two different currents in the solenoid at fixed interior radius (r1). 

 

The current in the solenoid = 

7.240 ± 0.100A 

 

The current in the solenoid 

= 4.000 A 

Levitation height 

± 0.100, (cm) 

Thickness 

± 0.010, (mm) 

Levitation 

height 

± 0.100, (cm) 

Thickness 

± 0.010, (cm) 

1.900 1.700 1.000 1.700 

1.800 2.850 0.900 2.850 

1.600 3.750 0.800 3.750 

1.400 4.000 0.700 4.000 

 

        Table A.10 The induced emf across copper and aluminum rings 

        having 0.77 mm thickness and 11 cm long for different heights 

        along the ring, when the potential across the solenoid coil 30 V. 

 

The induced emf 

across Cu  ring 

±1,000, (mV) 

The induced 

potential across 

Al  ring ±1.000, 

(mV) 

Levitation height 

over the top of the 

solenoid ±0.100, 

(cm) 

0.000 0.000 0.000 

0.000 0.000 2.000 

0.000 0.000 4.000 

0.000 0.000 6.000 

0.000 0.000 8.000 

0.000 0.000 10.000 

         

Ring thickness ± 0.010, 

(mm) 

t1 t2 t2 t4 

1.700 2.850 3.750 4.000 

outer ring diameter ± 

0.010,  (mm) 

11.00 13.30 15.50 17.00 

The length of the ring ± 

0.010, (mm) 

5.000 5.000 5.000 5.000 
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        Table A.11 Crack properties, the current in the solenoid and  

        the corresponding levitation heights for aluminum ring of 26 

        mm long.  

 

Levitation 

height of the 

ring ± 

0.100,(cm) 

current in 

the 

solenoid ± 

0.001 ,(A) 

Crack 

length 

 

Crack direction 

2.500 2.380 0.000 Longitudinal 

3.000 3.000 0.000 Longitudinal 

4.000 3.380 0.000 Longitudinal 

5.000 4.260 0.000 Longitudinal 

2.200 2.380 0.250 L Longitudinal 

2.800 3.000 0.250L Longitudinal 

3.800 3.380 0.250L Longitudinal 

4.800 4.260 0.250 L Longitudinal 

2.100 2.380 0.500 L Longitudinal 

2.700 3.000 0.500 L Longitudinal 

3.600 3.380 0.500 L Longitudinal 

4.500 4.260 0.500 L Longitudinal 

2.000 2.380 0.750 L Longitudinal 

2.500 3.000 0.750L Longitudinal 

3.400 3.380 0.750L Longitudinal 

3.800 4.260 0.750L Longitudinal 

2.200 2.380 0.500 L 30 Degree with 

vertical 

2.700 3.000 0.500 L 30 Degree with 

vertical 

3.700 3.380 0.500 L 30 Degree with 

vertical 

4.500 4.260 0.500 L 30 Degree with 

vertical 
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          Table A.12 Parameters of gold, silver and mercury were used in 

          levitation ring experiment. 

 
Levitation 

height of the 

ring±0.010,  

(mm) 

The 

thickness of 

the 

ring±0.010,  

(mm) 

The length 

of the ring 

±0.010,(mm) 

 

The 

potential 

across the 

solenoid coil 

±0.001,(volt) 

Type of 

substance 

 

0.000 0.800 4.000 10.00 Silver 

0.000 0.800 4.000 20.00  

0.000 0.800 4.000 30.00  

0.000 0.800 4.000 40.00  

0.000 0.800 5.000 10.00 Gold 

0.000 0.800 5.000 20.00  

0.000 0.800 5.000 30.00  

0.000 0.800 5.000 40.00  

0.000 2.500 6.000 10.00 Mercury 

0.000 2.500 6.000 20.00  

0.000 2.500 6.000 30.00  

0.000 2.500 6.000 40.00  

 

          Table A.13 The variable parameters for both aluminum and 

  copper rings (needed to calculate the conductivity). 

 

Copper Aluminum Physical parameter 

377.1 377.1 Angular frequency of the 

power supply, ω, (rad/s) 

4.000 4.000 Radius of the core, X, (mm) 

105.0 105.0 Length of the solenoid, 

L±0.010, (mm) 

1.700 0.780 Current in the solenoid, I± 

0.001, (A) 

450.0 450.0 Number of turns of the 

solenoid, (N) 

About to levitate About to levitate Levitation height of the 

ring, Z±0.010, (mm) 

8.900 2.700 Density, ρ , (× 10
3
 

, kg/m³) 

1.095 1.347 The permeability constant, 

µ, (× 10
-3

 , Tm/A) 
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          Table A.14 Measured data used to calculate the specific heat  

          capacity of aluminum, when the voltage across the solenoid 

          coil 12.3 V and the initial temperature of the ring (Ti) 25 
0
C. 

 

Elapsed 

time  

±1.000, 

(sec) 

Current in the 

solenoid after 

insertion of the 

ring ±0.001, (A) 

Current in the 

solenoid before 

insertion of the 

ring±0.001, (A) 

Final 

temperature (Tf) 

±1.000, (
0
C) 

0.000 0.670 0.550 25.00 

27.00 0.670 0.550 29.00 

45.00 0.670 0.550 31.00 

68.00 0.670 0.550 35.00 

73.00 0.670 0.550 37.00 

80.00 0.670 0.550 39.00 

109.00 0.670 0.550 42.00 

120.00 0.670 0.550 42.00 

150.0 0.670 0.550 42.00 

 

          Table A.15 The relation between the magnetic field Bz at the  

          end of the solenoid with core and the current in the solenoid. 

 

Magnetic field Bz  ±0.100 , 

(mT) 

Current in the solenoid 

±0.010, (A) 

21.00 0.085 

30.00 0.110 

53.00 0.160 

109.0 0.290 

141.0 0.370 

162.0 0.420 

183.0 0.480 

223.0 0.590 

239.0 0.640 

278.0 0.770 

290.0 0.800 

308.0 0.870 

329.0 0.930 
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   Table A.16 The magnetization density of the core, M, over the 

   end of the solenoid and the current in the solenoid at point on the 

   core 0.4 cm above the upper end of the solenoid. 

 

Current 

in the 

solenoid  

±0.010, 

(A) 

Magnetization 

density M,  

(×10
4
, A/m) 

Induced 

voltage  (m V) 

±1.000, (A) 

Magnetic 

field intensity 

H,  

(×10
6
, A/m). 

2.030 2.387 33.00 4.350 

2.570 4.643 38.20 5.507 

3.200 16.92 39.00 6.857 

3.540 18.65 46.00 7.585 

3.720 20.40 47.00 7.971 

4.460 22.13 51.00 9.557 

5.240 23.35 53.80 11.23 

6.000 24.56 56.60 12.86 

6.900 25.60 59.00 14.79 

 

 

 Table A.17 The induced emf and other properties of aluminum, 

 copper and iron rings. 

 

Iron Copper Aluminum Type of material 

4.000 4.000 4.000 Induced voltage across the 

ring ±1.000  (mV) 

40.00 40.00 40.00 Length of the ring ±0.010 

(mm) 

0.800 1.200 1.000 Thickness of the ring ± 

0.010 (mm) 

14.00 11.000 10.00 Radius of the ring ±0.01 

(mm) 

1.000 5.882 3.571 

 

Conductivity of the ring  

(×10
7
 S/m) 
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    Table A.18 The current drawn by the solenoid coil and the 

    thickness of aluminum ring, for fixed rings length of 9.5  

    mm, and voltage across the solenoid coil 20 V. 

 

Ring thickness ±0.010 ,(mm) Solenoid current ±0.001,  (A) 

0 .000 0.350 

1.000 0.410 

2.900 0.440 

4.000 0.450 

7.000 0.470 

 

    Table A.19 The drawn current by the solenoid coil, and the length  

   of copper ring, for fixed rings thickness 0.77 mm and potential 

   difference of 20 V. 

        

Ring length ± 0.010,  (mm) Solenoid current ± 0.010, (A) 

0.000 2.100 

10.00 2.300 

20.00 2.420 

30.00 2.500 

80.00 2.700 

 

     Table A.20 The Br and the corresponding radial distance from the 

     core (r) measured at the top of the solenoid for constant solenoid 

     current of 2 A. 

 

Br ± 0.100,  (mT) r ± 0.010,  (mm) 

20.00 4.000 

15.00 5.000 

10.00 6.000 

6.000 7.000 

4.000 8.000 

3.000 9.000 

2.500 10.00 

2.000 11.00 

1.000 12.00 
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         Table A.21 The fluctuations and the systematic errors of apparatus.  

 

systematic 

error 

fluctuation Device 

1.000, (mT)  5% Teslameter 

1.000,(mA) 4% Ammeter 

1.000, (mV) 4% Voltmeter 

Instruments 

0.1000 ,(mm) Caliper 

1.000, (mm) Ruler 

0.500, (
0
C) Thermometer 

1.000, (s) Hand watch 

0.010, (g) Electronic mass balance 
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Appendix B 

 

Derivation of the magnetic field and the magnetic force 

on the ring 

 
B.1 The magnetic field due to a circular current loop 
  

Consider a current loop of radius a placed in the x y-plane and carries a 

current I as shown in Figure B.1. 

 

        Figure B.1 The magnetic field produced by circular current  

        loop carrying a current I at space point P. 

 

     The differential current element Ids located at r΄ can be written as:  

(B.1)                                                                 )ˆ)cos(ˆ)sin(( 11  djiaIsId


 

 



 94 

  The position vector of point P in spherical coordinates (R,θ,Φ1) can be 

written as: 

 

and 

  

Accordingly, the relative position vector r in equation (B.3) can be rewritten 

as: 

   

where 

(B.5)                                                                       ˆ)sin(ˆ)cos(
11

jaiar 


 

Let us now introduce the A, B and D parameters as follows: 

 

Thus, the relative position vector can be expressed in terms of A, B, and C 

as:  

(B.2)                            ˆ)cos(ˆ)sin()sin(ˆ)cos()sin(
11
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   
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The magnitude of r can be simplified into the following expression: 

    

(B.8)                                         
2/1

)cos()sin(222
1 



  RaaRr

 

 The magnetic field at P produced by the current element according to Biot-

Savart law is: 

 

By making use of equation (B.4) and performing the cross product in  

equation (B.9), we get 

 

Integrating equation (B.10) for a full range of Φ, we get 

 

 Relatively speaking, the distribution of the magnetic field at P can be 

represented by two components as follows:  The radial component Br in the 

direction of the radius of the loop and the vertical component Bz in the z 
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direction.  According to equation (B.11), the horizontal component of the 

magnetic field Br is: 

(B.12)                      
2

0
2/3

)cos()sin(222

)cos(

4

)cos(0





















aRRa

dIaR
Br

The vertical component of the magnetic field B at any point along the z axis 

is obtained by substituting equation (B.6) and θ = 0 in equation (B.11) and 

integrating it to get: 

 

The expression of the magnetic field in equation (B.12) can be approximated 

by expanding the dominator in equation (B.8) as follows: 

     

       Keeping only the first two terms in equation (B.14), the truncated result 

can be written as:  
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  Substituting equation (B.15) into equation (B.12), we get: 

 

        The total magnetic field produced at P is obtained by summing all 

contributions from all differential current elements.  The component of the 

magnetic field in the r direction can be written as: 

 

    The first term is zero, since the integral of cosine angle over a complete 

cycle is zero.  Substituting equation (B.6) into equation (B.17) and 

integrating the result, the Br component becomes: 
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Using the near axis approximation )( zR  , we get 

 

In order to simplify the problem, the coordinate has to be rotated in 

away such that the position of the point P will be located in the x-z plane.  

Then, the location of P in cartesian coordinates is P(x,0,z) as shown in 

Figure B.2. 

 

            Figure B.2 Schematic representations of the magnetic field due  

            to circular  current loop carrying a current I at P(x,0,z). 

 

Clearly, from Figure B.2, the following expressions can be written 
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Substituting the value of R cos(θ) and R sin(θ) into equation (B.19) to get: 
 

 

The total magnetic field can be written as: 

 

 

 

Where Br and Bz are given in equation (B.13) and equation (B.21).  These 

components are displayed in Figure B.3. 

 

  

Figure B.3 Schematic representations of the two components Bz and 

Br of the magnetic field B due to a circular current loop. 
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B.2 The magnetic field of a solenoid 

      Next there is a need to derive an expression for the magnetic field B 

produced in the solenoid at any point near the core.  For this purpose 

consider a solenoid of length L and N turns carrying an alternating current I 

as: 

 

   Here I0  is the maximum current in the solenoid or the root-mean-squared 

(rms) value, Irms of the current, ω is  the angular frequency of the current 

source and t is the time.   

The current I will produce a magnetic field B inside the solenoid.  The 

magnetic field at any point near the core of the solenoid can be expressed as 

in equation (B.22) (Summner and Thakkrar, 1972).  In this case, Bz and Br 

are the vertical and the radial components of the magnetic field  at any point 

P above the upper end of the solenoid as shown in Figure B.4.  In the 

following subsections, complete derivations of both components were 

separately made. 

 

 

 

 

 

 

(B.23)                                                                                  ) sin(0 tII 
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B.2. 1 Derivation of Bz for the solenoid  

 
       Need to find an expression for Bz at any point P above the upper end of 

the solenoid at a distance z as shown in Figure B.4.  Applying equation 

(B.29) to a very thin section of a solenoid having a number of turns N, with 

dz radius a, a total current INdz, core permeability μ, and using equation 

(B.13) to get: 

 

 

 

 

  

 

 

 

      

 

Figure B.4 Schematic representations showing a  

solenoid of N turns and the point P along solenoid 

               axis where the magnetic field should be calculated. 
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Integrating equation (B.24) from z to (z+L) to obtain the following results  

 

for Bz  

 

The final result can be written as: 
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Introducing the y and f parameters as:  

 
  

  (B.28)                                                                               22

and

(B.27)                                                                                        22



















Lzaf

zay

 

Substituting equations (B.27) and equation (B.28) into equation (B.26) to  

 

get: 
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Inserting equation (B.23) into equation (B.29) it becomes:  
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Now, the maximum vertical magnetic field, 0zB ,  at point along the axis of 

the solenoid is:  

 

 
(B.31)                                                                        
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Thus, equation (B.31) can be rewritten as: 

 

  (B.32)                                                                                         sin0 tBB zz 
 
   

Hence, the magnetic field at any point z is sinusoidal. 

 

B.2.2 The radial component of the field (Br) 

 
     This component is directed parallel to the radius of the solenoid along 

the r- direction as shown in Figure B.4.  The derivation of Br at any point 

P(r, z) on the axis of a circular current loop may be written as in equation 

(B.21) (Simpson et al., 2001).  Following the same procedures previously 

used in section 2.2.4.1 and applying equation (B.21) to a thin section of a 

solenoid of width dz̀ having a total current of I Ndz̀ and radius a, one may 

write for Br: 

 

Integrating equation (B.33) to get: 
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(B.34)                                                             
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It easy to show that integration of equation (B.34) will produce the following 

expression: 
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Where f and y are defined by equation (B.27) and equation (B.28). 

 

By making use of equation (B.23), equation (B.35) can be rewritten as: 
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or
  is amplitude of Br, which is defined as 

the maximum horizontal magnetic field at any point along the radial axis of 

the solenoid core.  Equations (B.32) and (B.36) represent the vertical and the 

horizontal components of the magnetic field (Bext at any point along the axis 

of the solenoid in air (Portis, 1978).  The magnetic field inside the core, B in, 

can be written as: 
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 Where C3 is constant equal to μo M, M is the magnetization density of the 

metal core, and μo is the permeability of the air.  The magnetic field inside 

the core is Bin while the external field resulting from the solenoid is Bext. 

Moreover, the vertical component of the field inside the core is Bz in  and the 

radial component of the field inside the core is Br in.  Since the field lines that 

induce Bz are practically inside the metal and the Br is acting on the ring is 

far from the core (in air) equation (B.35) can be rewritten as: 

  
and  

 

 

 

Finally, 
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B.3 Induced emf across the floating ring  
 

  In this section we need to establish a relation between an eddies 

current produced in the non-magnetic materials placed in the vicinity of an 

alternating magnetic field and its magnetic and electric properties as well as 

to examine some characteristics of the material.  Let a non-magnetic metal 

ring is inserted in the metal core of a solenoid and allowing an alternating 

current to pass through.  An emf is then produced across the ring as a result 

of the electromagnetic induction of the z component of the alternating 

magnetic field Bz and an eddy current (dI) flowing through (i.e. circulate) 

the ring and forcing it to levitate, as a result of the repulsive force dF 

between the magnetic field of the solenoid and the opposing field resulting 

from the eddy current passing through the ring.  In deriving an expression 

for the emf, we shall first derive an expression for open circuit ring (one 

turn).  Before doing that, it is of great importance to make a list of variables 

to be appeared in the equations and formulae.  Thus, the most well known 

variables introduced for the ring (see Figure B.5) are listed below:  
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Figure B.5 Schematic representations of the ring dimensions and the  

flow of the eddy current through it. 

 

A is the cross sectional area of the ring.  

R is the electrical resistance between two points on the ring (see Figure B.5 

and Figure B.6). 

r1 is the inner radius of the ring,  

r2 is the outer radius of the ring,   

 

r is the average (mean) radius, 
2

21 rr 
   

 

σ is the conductivity of the metal ring,  
 

l is the circumference of the ring,   
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t is the thickness of the ring, 

L is the ring length,  

 

I is the eddy current induced in the ring, 

 

m is the ring mass, 

 

ρ is the ring material density,  

 

emf is the induced voltage across the terminates of the open circuit ring, 
 

x is the radius of the core.  

 

                                  

 
 

 

Figure B.6 Schematic representations showing measurement 

arrangement of the induced emf across the ring between two points. 

 

        Let us consider the case when the ring is inserted coaxially with the 

core passing through a solenoid.   In such case, the magnetic flux through 

the ring Φ and the emf is the potential difference produced across it as shown 

in Figure B.5 and Figure B.6.  
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   The magnetic flux linkage through the ring is given by (Portis, 1978): 

(B.41)                                                                                                    .AB




  

Where B and A are shown in Figure B.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure B.7 The magnetic field B through copper ring of cross sectional 

area A. 

  

  Using equation (B.22) and zAA ˆ


, equation (B.41) will be rewritten  

 

as: 
 

       

  (B.42)                                                    ) sin( .ˆˆ tBAzBAzzBrrB zo 

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where ) sin( tBB zoz   has been used in equation (B.42).  By making use 

of Faraday ُ s law of induction and equation (B.42), the potential is defined 

as (Halliday et al., 1986): 

 

(B.43)                              t)cos(e  t)Acos(B n
dt

dΦ
n maxz0  mfemf 

 

where 

 

(B.44)                                                                        A         B ωn e z0max mf

 
 

Substituting 2xA  in equation (B.44) to get: 

(B.45)                                                            
2

 xB  AB n e  z0z0max  mf

 

In this study, the area, A, in which flux is enters is constant.  This is because 

the effective area assigned for the flux lines to pass through is that of the 

cross sectional area of the core itself.  One may argue this from the fact that 

most of the field lines which cause the induction to the ring is lies through 

the core, thus the cross sectional area A is taken to be the area of a ring of 

radius x.   
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B.4 The eddy current produced in a metal ring 

 
When the ring is treated as a short circuit, the potential difference 

produced across the ring, as a result of the induced eddy current, dI, in the 

internal resistance R which flows (i.e. circulate in the ring) in a direction 

perpendicular to the cross section area (t dz).  If l is the circumference of the 

ring as shown in Figure B.6, then by Ohms law the emf is given as (Halliday 

et al., 1981): 

(B.46)                                                                                          R e max dImf 
 

where R is the resistance of the ring.  Using the basic definitions, it is easily 

to write the following expressions:        

(B.47)                                                                                                  
tdz

l
R


  

By making use of equation (B.46) and equation (B.47), the current element 

is    

(B.48)                                                                                  
 tdzσe max

l

mf
dI 

 

Substituting equation (B.45) into equation (B.48) to get 
 

9) (B.4                                                                                 
dzσBA  t  zo

l
dI




 

  Integrating equation (B.49) from z1 to z2 to get the total current.  Thus, 
 

(B.50)                                                                                    
LσBA  t  z0

l
I



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where L is the length of the ring )(
21

zzL  . 

 

B.5 Derivation of the levitating magnetic force on the ring 
 

     The force on a current element Idl as inferred from experiments on closed 

current loops (see Figure B.8), ( Kip , 1969) is:  

(B.51)                                                                                         BlidFd




  

 

 

 

 

 

 

 

Figure B.8 The vertical force on the ring Fz.                

Because there are two component of magnetic field Br and Bz, the ring is 

subjected to two different forces; the first one arises from the interaction of 

Br with the induced field from the eddy current in the ring.  Clearly this 

force is Fz, component of F along z-direction.  The other force is the result of 

interaction of Bz with the induced field from the eddy current in the ring.   

 



 113 

This force is acting along r direction and representing the radial component 

Fr.   

Using equation (B.22) and ̂dlld 


 into equation (B.51), the result 

can be written as: 

        

   
(B.52)                                                                                     ẑˆ      

ˆˆˆˆˆˆ

zr

rzzr

dFrdF

zdIlBrdIlBzBidlrBidlFd



 


 

The force components rFd


 and zFd


 represent the radial and the vertical 

components, respectively.  The resultant of Fr is zero.  This is because of 

symmetry (see Figure B.9) (Summner and Thakkrar, 1979). 

 

 

 

 

                                                            

 

 

 

                       Figure B.9 Schematic representations showing the  

                       resultant radial forces on the ring Fr. 
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Therefore, the z-component of the force zFd


, is needed to be discussed in 

more details.  When i in these expressions is replaced by dI, the force 

component zFd


 can be rewritten as: 

 

(B.53)                                                                                             ẑdIlBFd rz 


 

Substituting the expression of dI from equation (B.49) into equation (B.53)  

we get: 

 
    

  (B.54)                                                                                   dzBwtABdF zrz 

       
     Equation (B.54) represents the magnetic force acting on a small portion 

of the ring having a length dz, or a circular loop of one turn.  In order to find 

the force on a ring of length L, we integrate equation (B.54).  Thus, 

 

where f and y are given by equation (B.27) and equation (B.28) 

 

B.6 The relation between the levitation height of the ring and 

other  variables at equilibrium 

 
       The ring levitates a few centimeters (Ford and Sullivan, 1991) before it 

settles in position under the effect of zero resultant force.  Let us consider a 

ring of length L = z2 –z1, such that z1 and z2 represent the distances of the 
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lower and the upper ends of the ring measured from the upper top of the 

solenoid as shown in Figure B.10. 

 

                      Figure B.10 Elevation of copper ring above 

                      a solenoid coil carrying an AC current. 

 

Consider a thin cross sectional part of a ring of mass dm and length dz, in 

which an eddy current dI is passing through.  Then at the equilibrium, the 

weight, w, of the ring is equal to the force pushing the ring upward, Fz. 

Therefore,  

 

By equating equation (B.56) with equation (B.54), the following equation is 

obtained:  

  (B.57)                                                                   n     dzBnBAtgdztl zr 

(B.56)                                                                                    zdFltgdzdw  
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Integrating both sides to get, 

 
 

(B.58)                                                                                        
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   As a special case, if the ring is assumed to be so small, then BrBz can be 

taken to be constants over an infinitesimal segment of its length. Thus, 

integrating the right-hand side (R.H.S) of equation (B.58) to give: 

 

Substituting equation (B.59) into equation (B.57), the following equation is    

obtained: 
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By making use of rl  2  and 2 xA  , equation (B.60) then takes the 

following form: 
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where A is the cross sectional area of the core. 

  (B.59)                                                      12
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      Accordingly, the momentarily increase of the voltage is followed by an 

increase of the current in the solenoid.  Thus, the force on the ring will be 

increased and the ring levitates upward in order to decrease the force and to 

reach the point at which the force is the same as it was initially (Sumner and 

Thakkrar, 1979).  Substituting equation (B.38) and equation (B.40) into 

equation (B.61) to get: 

 

Moreover, solving for σ, to get 
 

 

 

The parameters in equation (B.63) and equation (B.64) are the corner stone 

of the theoretical calculations. 
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