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Summary

Because of the important role that the JFourier series and Iourier
transforms play in physics and engineering, we have therefore focussed our
attention in this thesis on the theory of IFourier series and its applications.
Convolution theory and its relation to the transform methods has been
investigated. Orthogonal and trigonometric system in two variables
together with double Fourier series for a function with different periods
have also been widely discussed.

Solutions to some boundary value problems in the field of heat flow and
wave propagation have been obtained using the separation of variables
method and the Eigenfunction_ expansion technique.

The lourier expansion with respect to the Bessel’s functions and Bessel’s
inequality have been used in the solutions of the boundary value problems.
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Chapter one
Fourier series on T

In this chapter we discuss the IFourier coefficients in section (1), the
summability in norm and homogenous Banach space on 7'in section (2),
the order of magnitude of I‘ourier series of square summable functions and
absolutely convergent [Fourier series in section (3), lourier series of square
summable functions and orthogonal and trigonometric system in two
variables in section (4), double Fourier series for a function with different
periods in x and y in section (5), absolutely convergent /“ourier series in
section (6) and Fourier coefficients of linear series in section (7).

1.1 Fourier coefficients

Let 7' be defined as the quotient R/2nZ group, where 2nZ is the group of
the integral multiples of 2m and we denote by L'(1) the space of all
complex-valued Lebegue integrable functions on /A

) | ;
For fel'(T") we define the norm of f by .= —Il.f(t)ldt
L) 2my

Note: If feL'(T") then j‘f(t) dt is defined on 7.

Definition (1.1.1):[20] A trigonometric polynomial on 7'is an expression
of the form

N ;
P(!) = a2 . (1.1.1)
N

n=—

The numbers (n) appearing in (1.1.1) are called the frequencies of P.
The largest integer (n) such that ( a,)*+(a-,) #0 is called the degree of p.

The values assumed by the numbers (1) are integers so that each of the
summands in(1.1.1) isa function on 7.

We can compute the coefficients (a,) by the formula

1 —1nt
s { i 1 1.1.2
a, =5 [f plt) e (1.1.2)

which follows immediately from the fact that for each integer J we have




_ | it J=0
—l—je"”dt= | (1.1.3)
2z , if J #0
Definition(1.1.2):([8], [9], [10] A trigonometric series on 7' is an
expression of the form

[ Za"einl (]!4)

H=—0

where n assumes integral values; however, the number of terms in (1.1.4)
may be finite and there is no assumption whatsoever about the size of the

coefficients or about convergence .

The conjugate S of (1.1.4) is the series

S= Y -isgn(n)a,e™ (1.1.5)
Hn=—ow
0 , if =)
where sgn (n) =
L ,if n=0
|n]

Let feL'(Y) be motivated by (1.1.3) we define the nth Fourier

coefficient of /by | _
fy=== [f(@) e™dl . (1.1.6)

2T 7

Definition (1.1.3): [9], [20] The I-ourier series S [f] ofa function_f‘eL'(T)
is the trigonometric series

S‘:wn' einlz-‘
[/] e =10 i

where f(n) is the Fourier coefficients of /.

The series conjugate to S [ /] will be denoted by S—[/] and is given in the
form

SLf1= - isgn(n)f(n) ™ (1.1.8)

H=-—0




This is also referred to as the conjugate /‘ourier series ol /.
Theorem (1.1.4): [12] Let f, geL'(7) then
(@) (f +g)n)=7m)+8Mn) |
(b) For any complex number &, (kf Yn) = kf (n) |
l

(c) If 7 is the complex conjegate of / then (75 =.f (-n)

—ina

(d) Denote jz"(t)=_/'(t-a), ael then an (n) =.f (n) e
. 1 :
@ |fe|ssflrolde=111, G,

Proof: B I I
(a) By definition (/ + g)(n)= -Z_JI—I(f + g)(l!)e_"ll dt

_ 1 cint g 1 T —int
= 2ﬁf(.f(f)+ g(n)e " dt 2jrjf(f)€ dt + 2ﬂf g(ne " dt

= f(n)+ &(n)
hence (f + gj(n) = _f'(n) + g(n).

(b) Let k be any complex number then

3 1 . —in 1 . —in 2
(kf)(n)=gfkf(1)e ‘dt=k§;I.f(t)e Yt = kf ()

hence (kf j(n) =k _f'(n) .

= ﬁ [ £ () ™

F(en)= 2—‘7; [/ ™di= 2% [F(e™dt =(f )

hence (/ )(m)=7(-n)
(d) fﬂ(!?) = 51;1-/:1(06_““ = _:zl;J‘ir(ir ) a)e—im dl

let u=1-a then du=dt and (=u' a thus




fa (H) _ _]_Jf(u)e..m(rwa)du = 5__ mnj /(u)c :mdu —ina / (!?)
/4
hence f (n)y=e™ f(n)
1 . —int 1 . ,—in
=E;“j(t)e dtls—zzﬂf(f)c Y| di

@ 17| =]§ [ Fe ™

l . —int ] .
=—[lfOlle™ |dt==[l/Oldt=111 |
27{[1 O | 27[] (0] | |IL, -
since  |e"™|=1 ,hence |f <IN oy -
Lemma(l.1.5):[12] Assume fyel'(1), J=0,1.2,... and [I1;-/oll, 1y, —0

then f ,(n) converges uniformly to fn;)(n)
Proof :

AL e dr, T (n)=——[ £, 0)e " di
f,(n)= -2;].[,()6 ' fo(ﬂ)—gffo(t)e

and

R I FAOREAOIE R

)

FAQRIAQIEE L3 | OEN QIR

1 —in
=2*Ij L1, 0- 1, ‘dr|< f— II 1,0~ 1, dt di < [0dt =0
then || jJ (n) - j;) (n)||— 0.

hence _f&(n)—)fi)(n) uniformly .

Theorem (1.1.6): [12] Let feL'(1), assume _f'(O) =0 and define

F@)= j f(u) du
0

~, |
then /' is continuous, 27 periodic function and F(n)= ;”“/ (), n#0.




Proof :
To prove the continuity, let ¢, ¢, €1, then

_(f)f(u)du - jf(u) du|= \T_f(u) du + (Jlf(u) du
0 0 0 i

|F(10) - F(t, )1 =

I
0
< _[] f(u)|du—0 ,as {;, >,
1
1
Hence [7(¢) is continuous and the periodicity follows from the fact that

‘0
j_/ (u)du

I

1+2m

F{+2m)=1°(1)= I_f'(r.z)du = 27[}?'(0) =0 ,

therefore [7(1 + 2) = 1°(1) .
and - 1 o= - —int
Fn)y=—=— [F@) e™dt
27 o

if we let u=1I(f), dv =e¢"" and using integration by parts formula, we
obtain

—_— 2” . ] ~
= e ma=—fn
27 ) —in in

Definition (1.1.7):[7] The l‘ourier transform of a function fel\(R) is
defined by

p | —inx
4 ()= _Z;_LJ (x) e"dx

for xeR.
Some of the basic properties of f(n) forevery j'el,' (R) are summarized
in the following theorem :

Theorem(1.1.8):[7] Let feL'(R), then the I‘ourier transform 7' (n)
satisfies:

(ay Fer”(R), with | Fla< 1171, , where /1= sup 1/(l

-00<Xx<00

(2) f(n) is uniformly continuous on R

(3) lf(n)—)() as n—>xow .




Proof:
(1) To prove the first property, we have by definition

Fony == [ 100 &7

by taking the norm
I70l= sup |—J f(x) e ™dxl< sup [l /(%) "]

—0D< N0 —00< <0 -t

= sup 5; _J;!_f'(x)I dx = E _‘Ll)f(x)l de=| f ””(R)

—00< <0

A- < .
= 1 1 1y g

(2) To prove the second property, let & be chosen arbitrary and consider
sup| Jn+8)-Fm)l= sup| I e (e 0% —1)f(x) dx]|

< fle s ~111 /)] dx.

Now, since

e 1] [f(0)] £ 21 /()] e L(R)

and |e7 ™ —1]>0 as § >0,
then when -0, the last integral —0. Therefore f is uniformly
continuous on K.

(3) Let n—>+oo, then for any £>0 we can find g such that g, g’el' (R)

and
1/ =8l <
therefore from (1) we have

| F)I< | F ()= g1+ 8 <11 f = &ll 3y +180D)]

<e+|g(n)| <€ + ] |g'(n)|>0 as n-—>to.
in

= Lim _f‘(n) =0 andhence felL'(R)

H—>

9




Remark: It is important to note that in the last part of thcorem (1.7)
A . A L

f (n) >0 as n—oo is not necessary that f (n)eL'(R). ['his can be
proved by the following example

1 , x>a
u,(x)= ;

where ae k.
Let

[(x¥)=e¢"u,(x) e /(R) then _f'(n) = ——l—f gl (R) .
| +in

Definition (1.1.9):[7] Let f{\(l?) eL'(R) be the Fourier transform of

A
some function fel'(R) . Then the inverse [‘ourier transform of f 1s
defined by

)= [ Fn) dn

1.2 Summmability in Norm and Ilomogenous Banach spaces on T

In this section we want to establish some of the main facts of the /“ouricr
A : ,
transforms. We shall see that / determines funiquely and we show how

A
we can find /° if we know [ -

Two very important properties of the Banach Space L'\(1) are the
following:

(a) If feL'(7)and aeT thenf(¢) =/ (t-a) elL'(7) and ||j2'|||L1(,].)= “f”LI(T)'
(b) The L'(7) valued function a—>_); is continuous on 7, that is for feLl('l)

and aje T, we have

||f;,_J;O|[ (1.2.1)

Lim /! ) il

a—+a0

We shall refer to (a) as the translation invariance of L'(’I);it’s an
immediate consequence of the translation invariance of the measure d/ ,

(where the translation invariance is Vi, €T and f defined on 7.
_[f(z —1,)dt = _[f(l)df . the integrals are taken over 7)) such that

10




/.= EIE“ fu—a)ld

let u=1-a, di =du then

BACE = 1) =11

In order to establish (b), we note that (1.2.1) is valid if fis contmuous
(the inverse is not true), and the continuous function is dense in L'(7).
(Where dense here means for an arbitrary € >0 and for every continuous

function / there exist geL L) with || f-gll <€ )
Let / be arbitrary function such that fel (1) and € >0 be given,
furthermore let g be continuous function on 7° such that || g-f]| < €/2 then

” f() ” ” fﬂ 5"0 ”L](T) ” L’ﬁu (gu ” [| :;-tu “

=1/ = 8)all ) +11 8a = 8oy 1 +11(8 =)y |

"o ™ L "u 1y

<&+8a=8ayll sy

Hence Timll fa = fu() I<& and & being an arbitrary positive number. This
proves (b).
Definition(1.2.1): [12] A summability kernel is a sequence {k;} of

27 -periodic continuous functions satisfying ©

(l)—l—jk,,(t)dt =1, n=1,23,...

(2) —I| k, (1)]dt < constant
2mr—-0

(3) Forall 0<&<nm,Lim j'lk,,(t)ldt

Hn—0

A positive summability kernel is a kernel in which k,(f)=0 forall £ and

n. For positive kernels the assumption (2) is redundant .

Lemma (1.2.2): [12] Let B be a Banach space, O is a continuous B-
valued function on 7 and {k,} a summability Kernel then

1 ’ .
Ll‘ﬂ??jk;r (T)YATHAT = Q(0)

H—>0

Proof: (see [12] page(10)).
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