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Abstract 

 

Alpha-thalassemia is an autosomal recessive disorder characterized by microcytic 

hypochromic anemia. The clinical phenotype ranges from asymptomatic carrier to a lethal 

hydrops fetalis syndrome. Alpha-thalassemia is a common disorder worldwide, and is 

especially frequent in the Mediterranean region, Middle East, South East Asia, Africa and 

Indian subcontinent. The molecular basis of α-thalassemia has been addressed by several 

studies from the Mediterranean region but not from Palestine. Therefore, this study aimed 

to investigate the frequency and genotype of α-globin gene mutations (-α3.7, –α4.2, α2-

IVSI-5nt, --MED and αααanti3.7) in a cohort of Palestinian patients with unexplained 

microcytosis. For this purpose, 73 patients’ samples with unexplained microcytosis not 

due to β-thalassemia or iron deficiency as well as 19 neonates’ samples with an MCV <95 

fL, were analyzed. Gap-PCR, DNA sequencing and ARMS PCR were used for detection 

of α-thalassemia mutations common to the Mediterranean region. Of the 73 patient 

samples analyzed, 50.7 % of samples were carrier for at least one of four mutations, -α3.7, 

α2-IVSI-5nt, --MED and αααanti3.7. The –α3.7 and α2-IVSI-5nt mutations were the most 

frequent mutations among the patients’ samples and were found in 48.9 % and 44.7 % of 

the mutant chromosomes. The --MED and αααanti3.7 mutations were found in 4.3 % and 2.1 

% of mutant chromosomes, respectively. In the neonates’ samples, the –α3.7 and α2-IVSI-

5nt mutations were also the most frequent and were found in a frequency close to that 

observed in patients’ samples. The –α4.2 mutation was not detected among the study 

samples, as this mutation is present in low frequency in the Mediterranean region. The 

high frequency of the α2-IVSI-5nt mutation is novel to the Palestinian α-thalassemia 

patients and has not been reported in other populations. Analysis of the correlation 

between red cell parameters and the different α-thalassemia mutations reveled that none of 

these parameters could predict the presence of α-thalassemia mutations. The red cell 

indices are general indicators that are altered in different hemoglobin disorders. In 

conclusion, 50.7 % of the study samples have one or two of the α-thalassemia mutations 

investigated in this study. Molecular diagnosis of α-thalassemia is strongly recommended 

in cases with unexplained microcytosis in Palestine. The –α3.7 and α2-IVSI-5nt mutations 

are the most frequent α-thalassemia mutations among the samples analyzed in this study.  
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Chapter One: Introduction  

 

 

1. Introduction  

 

Hemoglobinopathies are a heterogeneous group of inherited disorders of hemoglobin (Hb) 

characterized by reduced synthesis of one or more globin chains (Thalassemias) or synthesis of 

a structurally abnormal Hb variant (Clark and Thein, 2004). The WHO estimates that about 7 % 

of the world populations are carriers to Hb disorders. The expected number of new cases of 

thalassemia will be around 900,000 in the next 20 years. So it is considered one of the most 

common monogenic diseases and one of the world’s major health problems (Vichinsky, 2005; 

Kohne, 2011).  

  

In the past, thalassemias were mainly found in the Mediterranean area and large parts of Asia 

and Africa. Today due to international migration, thalassemia is found worldwide albeit in 

different frequencies (Kohne, 2011). 

  

1.1. Human Hemoglobins  

 

Hemoglobin is a globular protein that consists of two alpha chains, each with 141 amino acids, 

and two beta chains, each with 146 amino acids. Each α or β globin chain folds into eight α 

helical segments (A-H) which, in turn, fold to form globular structures. The globular structure 

is stabilized by salt bridges, hydrogen bonds, and hydrophobic interactions. The heme group is 

located within a hydrophobic pocket of each globin subunit. (Nelson and Cox, 2004).  

 

There are two types of interactions between α and β chains: α1β1 and α1β2. Each poly peptide 

chain binds to one heme group. The heme group is composed of an iron atom (in the ferrous 

state) positioned in the center of the protoporphyrin ring (Figure 1). Each iron atom binds 
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successfully and reversibly to one oxygen atom transporting it from the lungs to the peripheral 

tissues (Nelson and Cox, 2004; Ribeiro and Sonati, 2008). 

 

All normal hemoglobins are formed as tetramers consisting of two α–like chains and two β-like 

chains. Normal adult RBCs contain the following types of hemoglobin: 95-97% of HbA (α2β2), 

2-3% of HbA2 (α2δ2) and 1-2% of HbF (α2γ2) (Greer et al., 2004; Sarnaik, 2005). 

 

 

 

Figure 1: Hemoglobin structure. (Adapted from Mortada, 2009). 

 

1.2. Nomenclature 

Hemoglobin was named by using the letters of the alphabet, such as HbA for adult hemoglobin, 

HbF for fetal hemoglobin and HbS for sickle cell hemoglobin. By the time, this system was 

unable to provide enough names for new hemoglobins so the need for a new system was 

increased. In 1960, a new system of nomenclature was developed; the alphabets were used only 

for normal hemoglobins A and F and abnormal hemoglobin C, E, S and H (Greer et al., 2004). 
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Abnormal hemoglobins have both a common name which is usually given by the discoverer and 

a scientific name which shows the variant chain, both the sequential and helical number of the 

abnormal amino acid and the nature of substitution, thus HbS is designated as α2β2
6Glu-Val or 

more precisely as α2β2 
6(A3)Glu-Val (Greer et al.,2004). 

 

1.3. Organization and Structure of Globin Genes 

Globin genes occur in clusters, the α- and α-like genes on the short arm of chromosome 16, and 

the β- and β-like genes on the short arm of chromosome 11(Figure 2). The α-like cluster extends 

over 40-kilobase range, and the β-like cluster extends over 60-kilobase range. In the α-gene 

cluster, two α-globin structural genes α1 and α2 are placed at 3R end of the complex. The 

nucleotide sequences of both genes are the same with slight variation in the sequence of second 

intron, but the rate of expression of α2 gene is twice that of α1 gene. Consequently the α2-gene 

mutations are more severe than the α1-gene mutations (Chui, 2005).  

The β gene complex consists of six genes arranged in the following 5R to 3R order: a single 

embryonic gene (ε), two fetal genes (γG  and γA), a pseudo-β gene (ψβ), the δ gene, and the β 

gene. All functional globin genes consist of three exons and two introns (Ribeiro and Sonati, 

2008). 

Each cluster of genes are controlled by regulatory elements located upstream of the genes. The 

β cluster is controlled by a group of remote regulatory elements DNAse I–hypersensitive sites 

collectively known as the locus control region (LCR) (Higgs et al., 2005). Whereas in the α 

cluster, there is a single known element referred to as HS-40,   (so called because it is a DNAse 

I–hypersensitive site located approximately 40 kb upstream of the 5′ end of the ζ-globin gene) 

as shown in Figure 2 (Steensma et al., 2005). 
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Figure 2: α –Globin gene cluster. In the top, the α-like globin cluster which includes the ζ-, α2-, and 

α1-globin genes located on chromosome 16 near the telomeric region, and is controlled by HS-40. In the 

bottom, the β-like globin, located on the short arm of chromosome 11, and is controlled by the locus 

control region (LCR). (Adapted from Higgs et al., 2005). 

 

1.4. Hemoglobin Switching during Development  

Different hemoglobins are produced during development, early in embryogenesis two globin 

genes switches take place, the embryonic to fetal switch (ε to γ  and  ζ to α), which are 

completed at 10 weeks of gestation, and the fetal to adult switch (γ to β) which occurs during the 

prenatal period (Greer et al., 2004). 

During the second and third trimesters, the major hemoglobin is fetal hemoglobin (HbF, α2γ2), 

with approximately 10% HbA. HbF remains the primary hemoglobin throughout most of 

gestation. HbF has a higher oxygen affinity compared to adult Hb (HbA α2β2) (Giambona et al., 

2009) as a result of low interaction with 2,3-DPG, and these properties make the delivery of 

oxygen through placenta easier, giving the fetus better access to oxygen from the mother's 

bloodstream (Mosca et al., 2009). 
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During the third trimester, the production of γ chains decreases, while the synthesis of β chains 

increases. At birth, the γ/β ratio is approximately 2:1, the silencing of the γ gene continues after 

birth until six months of age. After six months, HbA becomes the major hemoglobin with 

around 1% of HbF, and 2-3 % of HbA2 (Giambona et al., 2009). In normal adults, HbF is 

heterogeneously distributed among erythrocytes though its synthesis is restricted to a small 

population of cells, termed F-cells. Approximately 3–7 % of red blood cells are F-cells, 

containing 20–25% of HbF (Mosca et al., 2009). HbA2 (α2δ2) differs from HbA by only 10 

amino acids, but it almost has the same functional properties of HbA. The low level of δ-globin 

gene expression in comparison to β gene may be due to both transcriptional and 

posttranscriptional regulation (Giambona et al., 2009). 

 

1.5 Thalassemia Classification 

 
There are several types of Thalassemia that are usually classified based on the type of globin 

chain affected as α, β, δβ, and γδβ Thalassemia. β-Thalassemia is divided into β+- and β0-

Thalassemia. In the heterozygous state of β-Thalassemia, abnormalities in red cell morphology 

are present, and there is an increase in the amount of HbA2, and variable increase in HbF. The 

homozygous state of β+ Thalassemia is accompanied by severe anemia, due to reduction in the 

synthesis of β-globin chain and therefore HbA(Bank, and Ramirez 1978; Weatherall, 1997; 

Greer et al., 2004). Table 1  shows different genotypes and the related changes in RBC indices, 

hemoglobin pattern, and the condition of anemia associated with β-Thalassemia.  

Other hemoglobin variants may be unstable and cause hemolytic anemia, e.g. Hb Bibba which 

has low oxygen affinity, Hb Titusville with high oxygen affinity and Hb Chesapeake or 

methemoglobin presenting as cyanosis. Rarely, homozygosity for unstable α-chain hemoglobin 

variants such as Hb Taybe can lead to hydrops fetalis (Chui, 2005). 
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Table 1: States of β-Thalassemia and related disorders (Kohne E, 2011) 

Normal Finding Arrangement of β 

-globin genes 

Hb and RBC  

indices 

Hemoglobin 

pattern 

Symptoms  

 

Heterozygous  
β-Thalassemia 
 (β-Thalassemia 
minor) 

β+ 
β0 

Hb ♂ 9 to 15 g/dL 
Hb ♀ 9 to 13 g/dL 
MCV 55 to 75 fL 
MCH 19 to 25 pg 

HbA2 >3.2% 
HbF 0.5 to 6% 

Mild anemia 

Homozygous  
β-Thalassemia 
(β-Thalassemia 
major) 
Compound 
heterozygous 
β-Thalassemia 
(β-Thalassemia 
major) 

β+/β+ 
β0/β0 
β+/β0 

Hb <7 g/dL 
MCV 50 to 60 fL 
MCH 14 to 20 pg 

HbA2 variable 
HbF 70 to 90% 

Severe illness 
with long-
term 
transfusion-
dependent 
anemia 

Mild homozygous 
or compound 
heterozygous  
β-Thalassemia 
(β-Thalassemia 
intermedia) 

β+/β+ 
β+/β0 
β0/β0  influential 
factors 

Hb 6 to 10 g/dL 
MCV 55 to 70 fL 
MCH 15 to 23 pg 

HbA2 variable 
HbF up to 100% 

Moderate 
disease 
variable 
transfusion 
dependence 

 

1.6. α-Thalassemia 

α-Thalassemia is the most common inherited disorder of hemoglobin (Hb) synthesis and 

probably the most common single-gene disorder in the world (Chong et al., 2000; Harteveld and 

Higgs, 2010). The α-thalassaemia is inherited as an autosomal recessive disorder characterized 

by a microcytic hypochromic anemia, and variable clinical picture ranging from asymptomatic 

to a fatal hemolytic anemia (Harteveled and Higgs, 2010). A normal individual usually has four 

α-globin genes. Due to deletions and duplications, the number of α-globin genes in each 

individual can vary from none to as many as eight α-globin genes (Fucharoen and Winichagoon, 

2011). Therefore, serious α-globin gene mutations can have an adverse effect upon fetal 

development, and even cause death in the uterus (Chui and Waye, 1998; Lorey et al., 2001). 

Multiple gene rearrangements with three to six ζ-like embryonic genes have also been reported 

(Felice et al., 1986). 
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1.7. Molecular Basis of α –Thalassemia 

 
Normal individuals have usually four α-globin genes and this genotype is written as αα/αα. The 

α-thalassaemia is caused commonly by deletion of one (-α) or both (--) α-genes on chromosome 

16 (Pirastu et al. 1982; Alcoforado et al. 2012). When a mutation completely removes α-gene 

from a chromosome this is called α0-thalassaemia and when the mutation only partially down 

regulate the expression from the chromosome this is called α+ thalassaemia (Harteveled and 

Higgs, 2010). There are at least 40 different deletion mutations affecting the α-globin genes. 

The size of the deletion is important and affects the clinical phenotype of the disease 

(Vichinsky, 2009). The most common deletion mutations are shown in Table 2. 

 

Table 2: Classification of the deletion α-Thalassemia (Vichinsky, 2009). 

Type of deletion Phenotype 

No. of 

examples 

recorded 

Examples 

Deletion involving one or both α genes  
Deletion of all or part of  one α gene 

α+ Thalassemia 7 -α3.7, -α4.2 

Deletion of all or part of both α genes, 
without deletion of HS-40 

α0 Thalassemia 20 --SEA/, --MED/ 

Deletion of both α genes and of HS-40 α0 Thalassemia 8 --DUTCH11 

Extensive loss of 16p13.3(1-2Mb) 
including both α genes and HS-40 

α0 Thalassemia 

17, with 
mental 

retardation and 
dysmorphism 

--BO 
 

Deletion of α1 gene and 18-20 kb 
downstream of α1 gene 

α0 Thalassemia 1 (α)- ZF* 

Deletion of upstream major regulatory 
element (HS-40) without deletion of 
genes 

α0 or very severe  α+ 
Thalassemia 

12 (αα)RA** 

*(α) indicate that the α-gene is present but non-functional. 

**(αα) indicate that both α-genes are present but non-functional. 
 

Non-deletion types of α-Thalassemia are much less common than deletion α-Thalassemia. The 

clinical picture varies from the Hb Bart’s hydrops fetalis to the silent carrier state.  The most 

common non-deletion mutations are shown in Table 3. The most common non-deletion variants 
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are mapped to the α2-gene (Clark and Thein, 2004). The non-deletional α+ Thalassemias are 

rare and most of the mutations involve the α2 gene, which has a higher expression rate than the 

α1-gene with a ratio around 3:1(Fucharoen and Winichagoon, 2011). 

 
Table 3:  Classification of non-deletional α-Thalassemia (Vichinsky, 2009).  

Examples 
No. of 

examples 

recognized  
Phenotype Type of deletion 

α2 IVS1(-5nt) 3 α+ Thalassemia 
RNA splice site mutation in α1 or α2 
gene 

α2 
AATAAA→AATAAG 

4 
α+ – α0 

Thalassemia 
RNA polyadenylation signal 
mutations 

α2 ATG→ACG 5 
α+ Thalassemia, 

α+ – α0 

Impaired RNA translation consequent 
on initiation codon or initiation 
consensus sequence mutation 

Codon 30/31 (–4nt) 
frame shift 

5 
α+ or α0 

Thalassemia 
Impaired RNA translation consequent 
on a frame shift or nonsense mutation 

Hemoglobin Constant 
SpringTAA→CAA  

(αCSα) 
5 α+ Thalassemia 

Impaired RNA translation consequent 
on a termination codon mutation 
leading to an elongated mRNA and α 
globin chain 

Hemoglobin Arginia αAgr 
α 

At least 18 α+ Thalassemia 
Production of highly unstable α chain 
as a result of point mutation or a 
small deletion 

ATR-X syndrome  α+ Thalassemia 
Lack of a transactivating factor 
encoded by the ATRX gene 

 

1.8. Clinical and Laboratory Features 

1.8.1. α-Thalassemia: Clinical Forms 

 
α-Thalassemia is the most common hemoglobin  disorder in the world, with high frequencies in 

Southeast Asia, the Middle East, including Iran, as well as the Mediterranean populations 

(Zandian et al., 2008). In α-Thalassemia four clinical pictures are recognized: silent carrier, α-

Thalassemia trait, HbH disease, and Hb Bart hydrops fetalis. Figure 3 shows the classification 

of gene defects and phenotypic expression of these disorders (Harteveld and Higgs, 2010). 

Table 4 shows the clinical picture for α-Thalassemia.   
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Figure 3: Classification of α-globin gene defects and phenotypic expression (Harteveld and 

Higgs, 2010). 

 

I.8.1.1 Silent Carrier 

This condition results from the presence of a single α-globin gene defect, such as 3.7 and 4.2-kb 

deletions (designated as -α3.7/αα and –α4.2/αα, respectively). The rightward 3.7 kb deletion is 

caused by reciprocal recombination between Z segments producing a chromosome with only 

one functional α-gene (-α3.7/ or rightward deletion) causing α-Thalassemia and α-triplication 

allele without a thalassemic effect (Figure 4). Likewise a reciprocal recombination between 

mispaired X-boxes results in 4.2 kb deletion, called leftward deletion (-α4.2/) (Harteveld and 

Higgs, 2010). 

This genotype is diagnosed in the newborn period by a very mild increased percentage (1 to 

2%) of Hb Bart, which consists of four γ-globin chains (γ4). Those patients have completely 

silent phenotype (normal RBC indices) or present with a moderate Thalassemia like 

hematological picture, reduced MCV and MCH and very mild anemia with normal HbA2 and 

HbF, and reduced α to β-globin chain synthesis ratio in the range of 0.8 to 0.9 (Greer et al., 

2004).  
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Figure 4: Deletions that cause α
+
-Thalassemia. A cross-over between the misaligned Z boxes during 

meiosis gives rise to the -α3.7 and αααanti 3.7 chromosomes. Cross-over between misaligned X-boxes give 

rise to -α4.2 and αααanti 4.2. Adapted from (Harteveld and Higgs, 2010). 

 

1.8.1.2 α-Thalassemia Trait 

The α-Thalassemia carrier state results from two α-globin genes deletion, either in cis on the 

same chromosome (--/αα, heterozygous α0-Thalassemia) or in trans on opposite chromosome (-

α/-α, homozygous α+ Thalassemia) (Singer, 2009). 

These disorders are easily diagnosed in newborns by the finding of high levels of Hb Barts (5- 6 

%). In adults the clinical picture vary from mild to moderate microcytic hypochromic anemia 

(detected on a routine blood count), normal HbA2 and HbF, and a reduced α to β-globin chain 

synthesis ratio in the range of 0.7 to 0.8 (Greer et al., 2004). 
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1.8.1.3. HbH disease 

 
This condition results from the deletion of three α-globin genes and the presence of only one 

active α-globin gene, usually as a result of the compound heterozygous state for α0 

Thalassemia/α+Thalassemia (--/-α or --/α Tα). Consequentially, the decrease in α-globin chains 

result in an insufficient production of normal HbA (α2β2) and HbA2 (α2δ2) in the adult patient 

and of fetal hemoglobin (HbF, α2γ2) in the fetus and the newborn (Baysal, 2011). Defective α-

globin production results in excess β- and γ-globin chains, each able to form insoluble 

tetramers: γ4 (Hb Bart’s) and β4 (HbH), Which precipitates inside red cells and causes cell 

membrane damage leading to hemolysis and ineffective erythropoiesis. Also these tetramers 

have very high oxygen affinity and are therefore useless for effective oxygen delivery 

(Fucharoen and Viprakasti, 2009; Singer, 2009). 

 

The non-deletional forms of HbH disease (which are considered more severe than deletional 

forms) result from deletion of two α-globin genes plus inactivation of the third α-globin gene by 

non-deletional mutation such as Hb Constant Spring, Pakse, or Quong Sze mutations (Chui, 

2005). Hb Constant Spring is the most common non-deletional α-globin gene mutation 

associated with HbH disease. Seventy five percent of HbH cases are caused by deletion 

mutations (Vichinsky, 2005). The clinical picture of those patients is characterized by 

moderately to severe hemolytic anemia with microcytosis, hypochromia, low HbA2 and HbF 

levels and varying quantities of HbH (2–30%) (Baysal, 2011). 

 

Hemoglobin Constant Spring (CS) the most common non deletional α+-Thalassemia in 

Southeast Asia, is a variant with elongated α-globin chains. HbCS is caused by a point mutation 

in the termination codon of α2-gene that converts it to Glutamine codon (TAA->CAA) and 

results in an elongated α-chain, with extra 31 amino acid residues. The elongated α-chain is 

unstable and is produced at a very limited rate (~1 % of normal level) (Fucharoen and 

Winichagoon, 2011). 

 

Patients with HbH disease usually suffer from hepato- splenomegaly, due to extra-medullary 

haematopoiesis which may be severe (Sarnaik, 2005). Jaundice may be present in variable 
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degrees and children may show growth retardation. Other complications include infections, leg 

ulcers, gall stones, folic acid deficiency and acute hemolytic episodes in response to drugs and 

infections (Harteveld and Higgs, 2010; Kohne, 2011). HbH disease also presents with a 

significant increase in RDW and α/β globin chain ratio in the range of 0.5-0.1 (Villegas et al., 

1998). 

1.8.1.4. Hb Bart's Hydrops Foetalis Syndrome 

Hb Bart's hydrops foetalis syndrome is the most severe clinical condition of α-Thalassemia, and 

results from the deletion of all four α-globin genes, homozygous α0-Thalassemiaor (--/--) 

(Kohne, 2011). A fetus homozygous for α0-Thalassemia produces mainly Hb Barts that has 

high affinity to oxygen that can’t deliver oxygen to tissues and this result in a progressive 

severe anemia. Many of these fetuses survive to the second or even third trimester of gestation 

because of the persistence of embryonic ζ-globin chain production (Chui, 2005; Harteveld and 

Higgs, 2010).  In normal fetus, embryonic hemoglobins are responsible for oxygen deliver in 

the first eight weeks of gestation, those hemoglobins are hemoglobin Gower 1, hemoglobin 

Gower 2, and hemoglobin Portland, after that a switch to fetal hemoglobin (hemoglobin F, 

α2/γ2)  occurs. In Hb Barts syndrome, this switch does not occur due to absence of α-globin 

chains. Since α-globin chains are absent, hemoglobin F cannot be synthesized and hemoglobin 

Bart’s becomes the dominant hemoglobin. This anemia underestimates the severity of hypoxia 

because hemoglobin Bart’s has no hem/hem interaction or Bohr effect and binds oxygen 

irreversibly (Vichinsky, 2009; Harteveld and Higgs, 2010). 

The clinical picture of this syndrome presents with very severe anemia (Hb level range, 3 to 8 

g/dL), with marked hepatosplenomegaly, generalized edema, signs of cardiac failure, and 

extensive extramedullary erythropoiesis (Weatherall and Clegg, 2001). In addition, there are 

maternal complications such as placentomegaly, hypertension and pre-eclampsia, hemorrhage, 

disseminated intravascular coagulation and others that may be life threatening for the mother 

(Chui, 2005). 

Homozygosis for the South East Asian deletion mutation (-α SEA/) is the most common cause of 

hydrops fetalis in that region. While it is the most common deletion mutation in South East 
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Asia, it is also found worldwide among many ethnic groups. The -- MED/ deletion mutation is a 

common α0-Thalassemia mutation in Mediterranean region, particularly Greece and Cyprus. In 

addition to China and Southeast Asia, Hb Bart’s hydrops fetalis is now being recognized in 

Greece, Turkey, Cyprus, India, Sardinia, and other parts of the world (Vichinsky, 2009). 

 

Table 4:  The clinical picture of α-Thalassemia (Kohne, 2011) 

Phenotype Genotype RBCs index Hb pattern Symptoms  

Normal findings αα/αα 
Hb normal, 

MCH normal 
Normal No symptoms 

Heterozygous α+-Thalassemia 
=  Silent α-Thalassemia 

– α/αα 
Hb normal, 

MCH <27 pg 
Normal 

No symptoms 
slight changes to 

blood count 

Homozygous α+-Thalassemia 
= α-Thalassemia trait/minor 

– α/– α 
Hb normal or 

low, 
MCH <26 pg 

Normal 

Mild anemia 
significant 

changes to blood 
count 

Heterozygous α0-Thalassemia 
= α-Thalassemia trait/minor 

– –/αα 
Hb normal or 

low, 
MCH <24 pg 

Normal 

Mild anemia  
significant 

changes to blood 
count 

Mixed heterozygosity, α+/α0-
Thalassemia 
= HbH disease 

– –/– α 
Hb 8 to 10 

g/dL, 
MCH <22 pg 

HbH ≈ 10-
20% 

Variable chronic 
hemolytic anemia 

Homozygous α0-Thalassemia 
= Hb Bart’s hydrops fetalis 

– –/– – 
Hb <6 g/dL, 
MCH <20 pg 

Hb Bart’s 80-
90%, 

Hb Portland ≈ 
10 -20%, 
HbH <1% 

Life-threatening 
fetal anemia  

 
 

1.8.2. Unusual Forms of α-Thalassemia 

There are two unusual forms of α-Thalassemia: acquired HbH disease associated with 

Myelodysplasia Syndromes and α-Thalassemia associated with mental retardation syndrome. 
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1.8.2.1. Acquired HbH Disease Associated with Myelodysplasia 

This condition presents in some patients with Myelodysplasia Syndromes and is characterized 

with severe hypochromic and microcytic anemia, HbH inclusion bodies in RBCs, 

anisopoikilocytosis, and decreased α/ β-globin chain synthesis ratio ( Greer et al., 2004; 

Steensmal et al., 2005). It was noticed that acquired α-Thalassemia is not exclusive to 

Myelodysplasia Syndromes, but it was also reported in other hematological malignancies. The 

exact cause of acquired α-Thalassemia is not known, but some reports linked this disorder to a 

mutation in ATRX gene.  (Steensmal et al., 2005).  The protein encoded by this gene ATRX is 

widely expressed throughout development, which uses the hydrolysis of ATP as a source of 

energy. This protein is frequently present in multi-component complexes that remodel 

chromatin and thereby influence the wide range of the nuclear processes such as DNA 

replication, DNA repair, recombination, transcription and DNA methylation (Higgs et al., 

2005). 

 

1.8.2.2. α-Thalassemia (ATRX) Syndromes 

There are two different syndromes in which α-Thalassemia is associated with mental 

retardation. The first is characterized by relatively mild mental retardation and a variety of 

facial and skeletal abnormalities. This disorder results from 1-2 mega base pairs deletion 

resulting from rearrangements of the short arm of chromosome 16. This condition is called α-

Thalassemia mental retardation -16 syndromes (Harteveld and Higgs, 2010; Greer et al., 2004).  

The second is X-Linked mental retardation (XLMR) syndrome, results from an abnormality in 

the ATRX gene. Clinical diagnosis is based on the presence of mental retardation in 

combination with α-Thalassemia and a characteristic and recognizable facial appearance, 

genital abnormalities, and other abnormalities, and defective α-globin synthesis. This disease is 

rare. About 170 cases have been reported worldwide (Thakur et al., 2011). 
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1.9. Interaction of α-Thalassemia with other Thalassemia and Hemoglobin variants 

The co-inheritance of α-Thalassemia and β-Thalassemia is common in areas where both 

disorders are frequent, and may improve the anemia, and leads to production of red blood cells 

with normal indices (Harteveld and Higgs, 2010). 

The interaction of α-Thalassemia with other hemglobinopathies such as HbS trait is also 

common. Individuals with a full complement of α-globin genes have more than 35 % HbS, 

compared with 28 to 35 % in those with the (-α/αα) genotype, 25 to 30 % in those with the (-α/-

α) genotype, and no more than 20 % in those with the rare (-/-α) genotype (Greer et al., 2004). 

The inheritance of α-Thalassemia and hereditary spherocytosis was also reported, in a patient 

suffering from severe hemolytic anemia, and he was transfusion dependent. In that patient, the 

hemolytic effect of hereditary spherocytosis was not decreased by the effect of hemoglobin H 

disease (in which there is an increase in osmotic resistance), so a severe hypochromic 

normocytic anemia was found (Zuysal et al., 1998). 

 

1.10. Prevalence and Geographic Distribution 

 
The overall distribution of α-Thalassemia is similar to that of β-Thalassemia (Alcoforado et 

al.2012). Approximately, 5 % of the world’s population has a globin gene variant, but only 

1.7%  has α- or β-Thalassemia trait (Muncie and Campbell, 2009). Thalassemia occurs at high 

frequencies throughout all tropical and subtropical regions of the world (Harteveld and Higgs, 

2010). They were originally found mainly in the Mediterranean area and large parts of Asia and 

Africa (Kohne, 2011) with gene frequencies reaching up to 10 % in some South East Asian 

countries (Sae-ung et al., 2007). 

 

The Mediterranean region, certain parts of North and West Africa, Middle East, Indian 

subcontinent, southern Far East, and South East Asia have the highest prevalence of β-

Thalassemia and comprise the so-called “Thalassemia belt”( Elgawhary et al., 2008).  
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The frequency of α-Thalassemia in the Arabian Peninsula is high, particularly in Oman 

(38.9%), followed by UAE nationals (16.5%) and Yemenis (6.5%) (Baysal, 2011). α-

Thalassemia shows an incidence of (4.80 to 5.48%) in Tunisia, (9.0%) in Algeria and (2.2%) in 

Morocco ( Khelil et al., 2010). α-Thalassemia is particularly common in China and Southeast 

Asia, with up to (40% )of the regional population being carriers (Vichinsky, 2009). 

 

The –α3.7/ mutation is the most frequent allele in North Africa. Although it is specific to the 

Mediterranean regions but it reaches its highest frequencies in Iran (79.1%) and Saudi Arabia 

(64%) indicating that it could have been introduced in North Africa by Arab conquests (Khelil 

et al., 2010). 

The gene frequencies of α-Thalassemia reach (30-40 %) in Northern Thailand and Laos, (4.5%) 

in Malaysia and (5 %) in the remote island of the Philippines whereas β-Thalassemia vary 

between (1 and 9 %) (Fucharoen and Winichagoon, 2011). 

HbH disease is predominantly seen in South East Asia, the Middle East and the Mediterranean, 

similarly the Hb Bart's hydrops foetalis syndrome is predominantly seen in South East Asia 

(Harteveld and Higgs, 2010). In addition to China and Southeast Asia, Hb Bart’s hydrops fetalis 

is now being recognized in Greece, Turkey, Cyprus, India, Sardinia, and other parts of the 

world (Vichinsky, 2009). 

 

One of the most frequent α-Thalassemia mutations is the – αSEA/ deletion, which deletes both α-

globin genes but spares the embryonic globin genes (Vichinsky, 2009). The carrier rate for the 

common α-globin gene deletion (-αSEA/) is reported to be (3–14 %) in various areas in Asia, 

including (4.6%) in Northern Thailand, (4.1%) in Hong Kong and (4.1%) in Guangdong 

Province in China (Singer, 2009). 

In Palestine, the frequency of α-Thalassemia as well as other hemoglobinopathies is not known. 

However, Younis et al. (1996) found that the prevalence of β-Thalassemia trait among 

secondary school students in the West Bank is 3.13 %. To our knowledge, until now there is 

only one report that examined the molecular genotypes of α-globin gene mutations in a small 

group of Palestinian Arabs (around 55 patients) living inside Palestine 1948 and all were 
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referred to the clinic for molecular evaluation of anemia including unexplained microcytosis or 

suspected of having α-Thalassemia (Oron-Karni et al., 2000). In the latter report the Palestinian 

Arabs included in this study were unique in having a large proportion of point mutations/small 

deletion (63/109 mutant chromosomes), three of which were found frequently: α2-IVS1-5nt 

(29\109 mutant chromosomes), α1 ∆T39 (22/109 mutant chromosomes) and α2 poly (A) nt 6 

(11/109 mutant chromosomes). The deletion mutations were less frequent than point 

mutations/small deletion in this sample (43/109 mutant chromosomes). The authors reported 

five deletions:  –α3.7/, αααanti3.7, α4.2/, -αMED/ and Multi α-genes; and these deletions were found 

in 30, 6, 1, 5 and 1 chromosomes out of 109  mutant chromosomes analyzed, respectively 

(Oron-Karni et al., 2000).   

Epidemiological surveys suggest that there are approximately 15,000 transfusion-dependent 

subjects in Europe and that more than 6000 of these subjects are in Italy (Giambona et al., 

2009). In Southeast Asia, α-Thalassemia causes HbH disease and Hb Barts hydrops fetalis. 

Fetuses with the devastating Hb Barts hydrops fetalis due to the complete lack of α globin 

genes die in uterus or shortly after birth, often during the second or third trimester (Chui, 2005). 

The prevalence of α-Thalassemia was analyzed in Eastern Sicily (Italy), the results showed six 

different genotypes, the most common (36.6 % of the cases) being the heterozygous state for -

α3.7 kb deletion (-α3.7/αα). The homozygous condition for this defect (-α3.7/-α3.7) had a relative 

frequency of (27.5 %). Ten percent of the individuals were carriers of the --MED/ deletion at the 

heterozygous state --MED/ (Bella et al., 2006). 

In Tunisia, six α-globin gene molecular defects were found to be responsible for α-Thalassemia, 

and the most common mutation was –α3.7 /, then --MED (Siala et al., 2008). In Iran, the deletion 

mutations –α3.7, -α4.2, and --MED were found to be the most common α-globin deletions, and the 

polyadenylation signal mutation α2-poly (A) (AATAAA>AATGAA) was the most common 

point mutation (Tamaddoni, 2009).  

It seems that each region has its unique spectrum of abnormal Hbs and Thalassemia (α- and β-

Thalassemia as well as other types of Thalassemia) mutations (Old, 2003). 
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The identification of α-gene mutations is essential for identification of patients and carriers as 

well as in compound heterozygote’s resulting from co-inheritance of α-Thalassemia trait and β-

Thalassemia trait or Hb variants. The molecular diagnosis is of great importance for 

understanding of the genotype/phenotype relationship and will enhance the patient’s 

management and counseling (Old, 2003; Clark and Thein, 2004). 

Since most of the α-Thalassemia are caused by deletion mutations which show regionally and 

ethnic distribution (Chong et al., 2000). Screening for α-Thalassemia has been successfully 

performed with one or two multiplex Gap-PCRs using a combination of primers specific for the 

most common deletions (Old, 2003). Other point mutations have been detected using RFLP-

PCR, ARMS-PCR or DNA sequencing (Oron-Karni et al., 2000; Clark and Thein, 2004). 

In Palestine, the frequency and the molecular genotypes of α-Thalassemia are not known. 

Currently patients diagnosed with microcytosis not due to β-Thalassemia or iron deficiency are 

not investigated further to establish the correct diagnosis. Thus the inappropriate diagnosis of 

such patients results inappropriate management of these patients including unnecessary iron 

therapy. 

 

 1.11. Laboratory diagnosis 

The most important diagnostic criteria to detect Thalassemia carriers are microcytosis 

(MCV<80 fL) or hyphochromic red cells (MCH<27 pg) (Borges et al., 2001). The α-

Thalassemia trait is suspected when red blood cell indices are reduced, with normal iron stores 

and HbA2 levels. The α0-Thalassemia is usually associated with a reduction in red cell indices 

(MCV, and MCH) and HbA2 levels (2.2–2.8%), while α+-Thalassemia shows a very slight 

reduction in MCV (74–82 fL) and MCH (24–26 pg) with normal HbA2 values (2.6–3.1 %) 

(Giambona et al., 2009; Chui, 2005). It is important to note that  altered in red blood cell indices  

aren't specific for  α-Thalassemia,  since it is reduced in different type of hemoglobin disorders. 

No simple biochemical test is able to diagnose the α-Thalassemia trait. Some studies reported 

high prevalence of α-Thalassemia among individuals with microcytosis and hypochromia not 
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due to iron deficiency or β-Thalassemia trait (Borges et al., 2001; Bergeron et al., 2005; 

Alcoforado et al., 2012). Measuring the ratio of α- and β-globin chain synthesis is the most 

direct approach (at the protein level) to diagnose α-Thalassemia (Harteveld and Higgs, 2010).  

The co-inheritance of β-Thalassemia with α-Thalassemia modifies the red blood cell indices, 

which may be almost normalized without a marked effect on HbA2 levels. The co-inheritance of 

β-Thalassemia allele with α+-Thalassemia is less evident: HbA2 is unmodified, and red cell 

indices are slightly higher than with the β-Thalassemia allele alone (Chui, 2005; Giambona et 

al., 2009).  

Individuals with a single α-globin gene deletion or non-deletion mutation can have normal 

blood counts (Chui, 2005). A deficiency of α-globin chains leads to production of excess γ-

globins that form γ4 tetramers (Hb Bart's) in the fetus, and the amount of Hb Bart's in the cord 

blood may be used to predict the genotype of α-Thalassemia in the neonates (Fucharoen and 

Winichagoon, 2011). 

 

HbH inclusion bodies are traditionally used for the detection of α+-Thalassemia trait, these can 

be identified by staining the peripheral blood with 1% brilliant cresyl blue (Harteveld and 

Higgs, 2010). This procedure is laborious, and has limited sensitivity. An enzyme-linked 

immunosorbent assay (ELISA) to detect embryonic ζ-globin chains in adult erythrocytes can be 

used as a screening test for carriers of the (-α SEA) α-thalassaemia deletion (Chui, 2005). 

In pregnant women with fetuses affected with Hb Barts syndrome, fetal erythrocytes containing 

only embryonic ζ-globin chains and not the adult α-globin chains can be detected very early in 

pregnancy (Chui, 2005). 

HbA2 Levels are often performed as part of the laboratory investigation to diagnose Thalassemia 

carriers. If the HbA2 level is elevated (>3.5%), the individual is considered to be a carrier for β-

Thalassemia. If the HbA2 level is normal or low, the person is suspected to be a carrier for α-

Thalassemia (Urbiant et al., 2006). A borderline level of HbA2 (3.5% ± 0.4) may also exist when 

β-Thalassemia mutations are co-inherited with other molecular defects (α- and δ-Thalassemia) 

(Giambona et al., 2009)  
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Hemoglobin electrophoresis was shown that hemoglobin Bart’s screening of fresh umbilical 

cord blood is an effective method to evaluate α-globin chain imbalance, this strategy could be 

used to screen populations of high incidence of α-Thalassemia (Rugless et al., 2006). In 

neonates affected with HbH disease, Hb Bart’s constitute about 25% at delivery with a 

decreased level of HbA, HbA2 and HbF. In adults affected with HbH disease, HbH eventually 

replaces Hb Bart’s and makes up from 2% to 40% of the total hemoglobin (Chui et al., 2003). 

Hb Bart’s has been used as a marker for the presence of α-Thalassemia in newborns although 

its detection underscores the incidence rate. Other methods for the detection of α-Thalassemia 

include immunological determinations of Hb Bart’s and ζ chains (Baysal, 2011). DNA 

diagnosis from chorionic villi or amniotic fluid fibroblasts can detect Hb Bart's hydrops fetalis 

as early as 10-16 weeks of gestation (Fucharoen Winichagoon, 2011) 

 

Hemoglobinopathies including Thalassemia were the first genetic diseases to be diagnosed at 

the molecular level which represents the definitive diagnosis for α-Thalassemia. Gap-PCR is 

used to amplify regions across the breakpoints of the deletion of the α-gene. This technique 

provides a quick diagnostic test for α+-Thalassemia and α0-Thalassemia deletional mutations 

(Tan, et al., 2001). This method is applied to detect the 2 most common α+ Thalassemia 

deletions -α3.7and -α4.2 and the five common α0-thalassaemia deletions -α20.5, -- SEA/,  -- MED/, -- 
Thai and - - Fil (Harteveld and Higgs, 2010). 

Point mutations can be detected by different types of PCR such as: Amplification Refractory 

Mutation System (ARMS PCR) and Restriction Fragment Length Polymorphism (RFLP PCR).  

However, DNA sequencing is used to confirm sequence variation or to detect new mutations 

(Clark and Thein, 2004). 
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1.12. Treatment of Thalassemia 

 
α-Thalassemia minor do not require treatment. Treatment for HbH disease depends on the 

severity of the clinical picture which can vary widely. Transfusions are rarely indicated. 

Anemia requires regular substitution with folic acid. For Hb Bart’s syndrome, transfusions are 

required in uterus and continuously after birth. (Chui, 2005;  Kohne, 2011). 

 

Nearly all fetuses with the Hb Barts hydrops fetalis syndrome are stillbirths or die shortly after 

birth (Chui, 2005). Intrauterine transfusion therapy appears promising in minimizing the 

morbidity and mortality of homozygous α-Thalassemia. Recent advances in stem cell 

transplantation have resulted in some patients being cured (Vichinsky, 2009). 

 

1.13. Objectives of the study 

The objectives of this study are: 

1. To determine the prevalence of a five α-globin gene mutations (-α3.7/, –α4.2/ , α2-IVSI-5nt, --
MED / and αααanti3.7) among a cohort of Palestinian patients with microcytosis not due to iron 

deficiency or β-Thalassemia trait. 

2. To determine the approximate incidence rate of α-Thalassemia among a cohort of Palestinian 

patients with microcytosis not due to iron deficiency or β-Thalassemia trait. 
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Chapter Two: Materials and Methods  

 

 

2.1. Materials  

2.1.1. Reagents and chemicals 

All reagents and chemicals used for this study are shown in Table 5. All materials used were of 

molecular biology grade. 

 

                  Table 5:  Materials used in the study. 

Material Source/Manufacturer 

Genomic DNA Extraction kit BIONEER/ K-3032 

HotStart PCR Pre Mix BIONEER/ K-5050 

Gel Purification Kit BIONEER/ K-3034 

Tris base Sigma 

Ethidium bromide (10 mg/ml) HyLabs/ BP451 

DNA molecular weight 

marker 100bp 

GeneDirex 

DNAase free nuclease water Hylab 

Dimethyl sulfoxide (DMSO) Sigma 

EDTA Sigma 

Agrose Hylab 

 

2.1.2. PCR primers 

All PCR primers were obtained from Metabion Company (Germany).  DNA sequences and 

nucleotide position of PCR primers are shown in Table 6. The primers P51 to P72 were used for 
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gap-PCR analysis of deletion mutations in α-globin genes (Oron-Karni et al., 2000). While the 

primers α-CF, α1-R1 and α2-R2 were used for DNA sequencing of α-globin genes (Clark and 

Thein, 2004). The primers IVSID52W, A2D5M and A2R904 were used for ARMS PCR 

analysis of the α2-IVSI -5nt mutation. These primers were described earlier by Lacerna et al. 

(2007) but A2D5M was slightly modified and the primer IVSID52W was redesigned to 

increase the specificity of the RCR. 

Table 6: Sequence and location of PCR primers. 

Primer Sequence (5’→3’) GenBank   

Accession  no. 

Coordinates Gene 

P51 CTGCACAGCTCCTAAGCCAC J00153 7254-7273 

11072-11091 

α2 

α1 

P52 CCTCCATTGTTGGCACATTCC J00153 7531-7551 α2 

P54 CTCAAAGCACTCTAGGGTCCA J00153 11497-1517 α1 

P55 GTCCACCCCTTCCTTCCTCA J00153 5687-5706 

9247-9266 

Y21 

Y11 

P59 CTCTAGGTCACCCTGTCATCA J00184 26-46 Ψζ1 

P60 CTCTGTCGTGTAGACGCCGA M33022 423-442 θ2 

P71 TACCCATGTGGTGCCTCCATG J00153 3068-3088 Ψα1 

P72 TGTCTGCCACCCTCTTCTGAC J00153 8894-8915 NH-II2 

α-CF GGAGGGTGGAGACGTCCTG Z84721 33538-33556 

37344-37360 

α2 

α1 

α1-R1 CGAGAGGTTCTAGCCATGTGTG Z84721 38453-38474 α1 

α2-R2 CCATTGTTGGCACATTCCGG Z84721 34602-34621 α2 

 

IVSID52

W 

GGAGGCCCTGGAGACGTG AG Z84721 33847-33877 α2 

 

A2D5M GTATGGTGCGGAGGCCCT 

GGAGACGC 

Z84721 33856-33875 α2 

 

A2R904 GTCTGAGACAGGTAAACA 

CCTCCAT 

Z84721 34642-34618 α2 

1 Y1 and Y2 refer to homologous regions Y1 and Y2 overlapping α2 and α1-globin genes. 
2 NH-II: non-homologous region 2. 

 

 



  24

 

Figure 5 shows the physical maps of the human α-globin gene cluster and the location of PCR 

primers (P51 to P72) used for analysis of deletion mutations.    

 

 

Figure 5:  Alpha-globin gene cluster and the location of PCR primers P51 to P72. (A) Physical map 

of α-globin gene cluster and the --Med deletion. Solid boxes represent functional genes and open boxes 

represent pseudogenes. The dashed line designates the --Med deletion. (B, C) The locations of the 
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homologous (X, Y, and Z boxes, denoted as stippled, black, and hatched, respectively) and non-

homologous regions (I, II, and III) in the α-globin cluster are shown, as well as the products of unequal 

crossing over between the Z boxes (--α3.7/ and αααnti3.7) and X boxes (--α4.2/). The locations of the PCR 

primers and the sizes of the expected amplicons are shown under each gene map (Oron-Karni et al., 

1998).  

 

2.2. Methods 

 

2.2.1. Patients 

 

The study population consisted of two groups: patients and neonates. Patients included in the 

study were presenting with microcytosis (MCV<80 fL) not due to iron deficiency anemia or β-

Thalassemia trait. The β-Thalassemia trait was excluded by the finding of normal HbA2 level 

following hemoglobin electrophoresis. For the exclusion of iron deficiency anemia we first 

assumed that for the investigation of microcytosis, iron studies should be performed as first line 

tests and if normal, then testing for β-Thalassemia trait should follows. This assumption is 

based on the clinical protocols adopted by the Primary Health Care clinics in the Ministry of 

Health. However, the clinical protocols for investigation of microcytosis were not implemented 

consistently. Therefore, we have applied the Menzer Index (for exclusion of iron deficiency; 

see section 2.2.3) on all samples with microcytosis and referred for investigation of β-

Thalassemia trait. The exclusion of iron deficiency would have been more accurate if the study 

samples were tested for serum ferritin or serum iron, but such testing was not done in this study 

and it is a limitation of the present study. Patients fulfilling the above mentioned criteria and 

referred to the Specialized Medical Laboratories in Ramallah for investigation of β-Thalassemia 

trait by Hemoglobin electrophoresis were asked to participate in this study. 

 

For the neonatal group, the samples were collected from neonates delivered at the Palestinian 

Red Crescent Society Hospital at Al-Bireh. During the study period, neonates referred to the 

hospital laboratory for CBC analysis and were found to have an MCV<95 fL, the neonates’ 

families were asked to donate their blood samples for this study.  
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2.2.2. Sample collection and processing 

 

EDTA-blood samples were collected from patients referred to the Specialized Medical 

Laboratories in Ramallah for investigation of β-Thalassemia trait by hemoglobin 

electrophoresis from September 2010 to January 2012. Samples with MCV<80 fL and normal 

HbA2 levels (<3.5 %) were included in this study, provided that iron deficiency anemia is 

excluded as described in the previous section (2.2.1). Blood samples from neonates were 

collected during same period from the Palestinian Red Crescent Society Hospital in Al-Bireh. 

Blood samples were stored at 4˚C after Complete blood count (CBC) analysis and DNA 

extraction was performed within 1-2 weeks of blood collection. 

 

The Specialized Medical Laboratories in Ramallah performs hemoglobin electrophoresis using 

HPLC based method (Tosoh Instrument) and is one of the main medical laboratories that 

performs this test in the West Bank. Specialized Medical laboratories receive samples from 

various medical laboratories in the West Bank.  

 

The following figure shows the process from sample collection, sample processing, the PCR 

reactions for deleted mutation, DNA sequencing for representative samples, to ARMS PCR for 

remaining samples. 
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Figure 6:  The flow of sample processing and analysis performed in this study. Gap-PCR was 

performed for detection of the deletion mutations –α3.7/, -α4.2/ and -- MED/, and αααanti3.7 

triplication. ARMS PCR was performed for detection of the α2-IVSI -5nt mutation. DNA 

sequencing covered the whole α1- and α2-genes including the promoter region and the 3’UTR. 
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2.2.3. Mentzer Index 

 

The Mentzer index is used to differentiate iron deficiency anemia from β-Thalassemia trait 

(Ntaios et al., 2007). The Mentzer index (MCV/red blood cell count) can help distinguish 

between iron deficiency and β-Thalassemia trait. In iron deficiency, the ratio is usually greater 

than 13, whereas β-Thalassemia trait yields values less than 13. A ratio of 13 would be 

considered uncertain (Kohne, 2011). A group of the patients’ samples have Mentzer index 

higher than 13 and have RBC count more five millions per µL. The RBC count is also useful as 

a diagnostic criterion because β-Thalassemia trait produces a microcytic anemia that is usually 

associated with an increase in the RBC count. While microcytic anemia, including iron 

deficiency and anemia of chronic disease, are usually associated with a decrease in the RBC 

count that is proportional to the degree of decrease in Hb concentration (Clarke and Higgins, 

2000). A RBC count less than 5.0x106µL would most likely indicate iron deficiency, but a RBC 

count above 5x106 µL would most likely indicate β-Thalassemia trait (AlFadhli et al., 2006). 

 

2.2.4. DNA Extraction 

 

Genomic DNA was extracted from peripheral whole blood by the AccuPrep Genomic DNA 

Extraction Kit (Bioneer) per the manufacturer’s instructions. This kit yields an average of 6µg 

of genomic DNA from 200 µL of whole blood. AccuPrep genomic DNA Extraction Kit 

employs glass fibers, fixed in a column, which specifically binds DNA in the presence of a 

chaotropic salt. Proteins and other contaminants are eliminated through a series of short wash 

and spin steps. Then the genomic DNA is eluted by a low salt solution (10 mM Tris, pH 8.0).  

 

Briefly, 20 µL of protinase K was added to 200 µL of whole blood, then 200 µL of binding 

buffer was added followed by immediate, short vortexing and incubated at 60°C for 10 minutes. 

After incubation, 100 µL of isopropanol was added, the lysate was transferred to the reservoir 

of the binding column tube and spined at 8000 rpm for 1 minute. The binding column was 

transferred to a new 2 ml tube, washed with 500 µL of washing buffer 1 followed by a second 

wash with 500 µL of washing buffer 2. The DNA was eluted from the binding column using 
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200 µL of elution buffer (10 mM Tris, pH 8.0).  The genomic DNA was stored at -20 °C until 

testing. 

 

2. 2.5. Assessment of DNA quality and quantity  

 

For assessment of DNA quality, 5 µL of DNA sample was mixed with 1 µL 6X DNA gel 

loading dye, loaded on 0.8% agarose gel and electrophoresed at 5-8 volt/cm.  A 1 kb DNA 

ladder was run in each electrophoresis run and samples with positive band only were used for 

the PCR testing. 

 

For quantification of DNA, the DNA concentration was measured spectrophotometrically at 

260 nm. The ratio 260/280 was also calculated and used to further assess the quality of DNA 

samples.  

 

2.2.6. Polymerase Chain Reaction (PCR) 

 

2.2.6.1. Gap-PCR 

 

First trial: Three multiplex Gap-PCRs were performed as described by Liu et al. (2000). This 

method consist of three multiplex PCR reactions: (1) the α0 reaction which detects --α20.5 and --

αMED, (2) the -α4.2 reaction which detects -α4.2/ deletion and (3) the -α3.7 reaction which detects 

the -α3.7/ deletion and αααanti3.7 rearrangement. Each one of these three Multiplex PCRs 

consisted of 2-3 pairs of primers (Table 2.7), and one of these primer pairs is designed to 

amplify a sequence alongside the mutation-specific sequence that served as an internal control 

for each reaction. For this PCR method, several optimization steps were performed and 

included: testing of each primer pair separately and in combination, adjustment of the annealing 

temperature, primer concentration and, addition of PCR enhancers such as DMSO (2-10%), 

Formamide (1-4%) and Betaine (1.5 M) either separately or in combination. Following these 

optimization steps, the α0 reaction gave the internal control amplicon in some samples and 

detected the --αMED/ mutation in some samples. The -α4.2 reaction was not successful and did not 

yield any of the expected amplicons. The -α3.7 reaction gave the expected internal control 
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amplicon in most samples tested and detected the –α3.7/ mutation in some samples. The 

difficulties experienced in the previous reactions can be explained partly by the high GC 

content of the α-globin gene cluster as well as to the poor primer design. Therefore these three 

gap-PCR reactions were replaced by a new set of primers, described in the following paragraph. 

  

Table 7:  Sequence of the PCR primers as described by Liu et al. (2000). 
Primer Sequence (5’ to 3’) Amplicon 

size  

 

α
0 

multiplex PCR: α-SEAF + α-R + 20.5(F+R) + MED (F+R). 
α-SEAF CTCTGTGTTCTCAGTATTGGAGGGAAGGAG 
α-R TGAAGAGCCTGCAGGACCAGGTCAGTGAC

CG 

1010 bp 
(Internal 
control) 

20.5(F) GGGCAAGCTGGTGGTGTTACACAGCAACT
C 

20.5(R) CCACGCCCATGCCTGGCACGTTTGCTGAGG 

875 bp 

MED(F) CGATGAGAACATAGTGAGCAGAATTGCAG
G 

MED(R) ACGCCGACGTTGCTGCCCAGCTTCTTCCAC 

1187 bp 

 
-α 

3.7
multiplex PCR: 3.7(F) + 3.7(R1) + 3.7(R2) 

- α
3.7

:   
3.7(F) AAGTCCACCCCTTCCTTCCTCACC 
3.7(R2) TCCATCCCCTCCTCCCGCCCCTGCCTTTTC 

 

1963 bp 

ααα
anti3.7

:   
3.7(F) AAGTCCACCCCTTCCTTCCTCACC 
3.7(R1) ATGAGAGAAATGTTCTGGCACCTGCACTTG 

2440 bp 

αα:   
3.7(F) + 3.7(R1) (see sequence above) 2217 bp 
3.7(F) + 3.7(R2) (see sequence above) 2213 bp 
 

-α
4.2

 multiplex PCR: 4.2(F) + 4.2(R1) + 4.2(R2) 

-α
4.2

:   
4.2(F) TCCTGATCTTTGAATGAAGTCCGAGTAGGC  

 
4.2(R2) ATCACTGATAAGTCATTTCCTGGGGGTCTG 

1725 bp 

αα:   
4.2(F) TCCTGATCTTTGAATGAAGTCCGAGTAGGC  

 
4.2(R1) TGGGGGTGGGTGTGAGGAGACAGGAAAGA

GAGA 

1510 bp 
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Second trial: In this trial four multiplex Gap-PCRs (A to D reactions were performed), Table 8 

in this table summarizes the expected genotypes, primers and amplicon size as in the original 

article) were performed as described by Oron-Karni et al. (1998) with some modifications. The 

results reported in this study and the discussion all refer to this trial. The sequences of PCR 

primers used in this trial are shown in Table 2.6 (primers P51 to P72). Reaction A is a multiplex 

reaction which detects the –MED/ mutation and contains the following primers: P51 (60 ng), P52 

(40 ng), P54 (60 ng), P59 (40 ng), and P60 (40 ng). Reaction B detects the - α3.7/ mutation and 

contains the following primers: P55 (60 ng) and P54 (60 ng). Reaction C detects the -α4.2/ 

mutations and contains the following primers: P71 (40 ng), P72 (60 ng), and P52 (20 ng). 

Reaction D detects the αααanti3.7 triplication and contains the following primers: P55 (59 ng), 

P52 (63.08 ng).  

 

Table 8:  The α-globin gene genotypes detected using the multiplex gap-PCRs and the size of 

the corresponding amplicons in bp. 

PCR reaction 

 —Med 

A 

-α3.7 

B 

-α4.2 

C 

αααanti3.7 

D 

Primers → 

Alleles ↓ 

P59-P60 P51-P52 P51-P54 P55-P54 P71-P52 P55-P52 P55-P52 

Αα - 298 446 2271  233 1865 

-MED 561 - - -  - - 

-α4.2 -  446 2271 1596 - - 

-α3.7 -  446 2013  233 - 

ααα anti3.7       1865,2123 

 

 

All PCR reactions (reactions A to D) were performed with a HotStart ready PCR mix (Bioneer) 

using ~100 ng of genomic DNA and 5 % DMSO.  Each 20-µL reaction contained the 

manufacturer’s buffer (1X), 1.5 mM MgCl2, 0.25 mM of each dNTP and Hot-Satrt Taq DNA 

Polymerase. Bioneer's Hot-Start Taq DNA polymerase is designed for hot-start PCR to provide 

higher PCR specificity by use of Pyrophosphatase and Pyrophosphate method. 
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Amplification was performed with an initial heat activation step of 5 minutes at 94°C followed 

by 35 cycles, each consisting of 94°C 1 minute, 58°C for 1 minute, and 72°C for 2.5 minutes, 

and a final extension step of 72°C for 10 minutes. Thermal cycling was performed using a 

Biometra DNA thermal cycler (Germany). 

 

2.2.6.2. ARMS PCR 

 

 (ARMS) PCR was used for detection of the α2-globin gene mutation that termed α2-IVSI-5nt 

deletion. This mutation involves deletion of the first 5’ nucleotides in intron 1 (IVSI) in the  α 

2-globin gene. The PCR reaction was performed with a Hot-start ready PCR mix (Bioneer) 

using ~100 ng of genomic DNA and 5 % DMSO.  Each 20-µL reaction contained the 

manufacturer’s buffer (1X), 1.5 mM MgCl2, 0.25 mM of each dNTP, 0.25 µM of each forward 

and reverse primers and Hot-start Taq DNA Polymerase. The mutant sequence was amplified 

using the forward primer A2D5M and the common reverse primer A2R904. The Wild type 

sequence was amplified using the forward primer IVSID52W and the common reverse primer 

A2R904. Bioneer's Hot-start Taq DNA polymerase is designed for hot-start PCR to provide 

higher PCR specificity by use of Pyrophosphatase and Pyrophosphate method. 

 

Amplification was performed with an initial heat activation step of 5 minutes at 94°C followed 

by 30 cycles, each consisting of denaturation at 94°C for 50 seconds, annealing at 60°C for wild 

type reaction or 62°C for the mutant reaction for 50 seconds, and extension at 72°C for 1 

minute and a final extension step of 72°C for 5 minutes. Thermal cycling was performed using 

a Biometra DNA thermal cycler (Germany). 

 

 

2.2.7. Agarose gel electrophoresis 

 

For preparation of agarose gels, appropriate amount of agarose was dissolved in 1X TAE buffer 

by heating, allowed to cool to 50˚C and then ethidium bromide was added to a final 

concentration of 0.5 µg/ml. A 2% gel was prepared for reactions A and D and 1.4 % gel for 
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reactions B and C. The gel solution was poured in an electrophoresis tray with appropriate 

comb and allowed to polymerize at room temperature.  

 

For analysis of PCR amplicons, 10 µL of each PCR reaction product was mixed with 2 µL of 6 

X DNA gels loading dye and electrophoresed at 80 voltage for 45 minutes. A 1 Kb DNA leader 

was run in each run. Then the gels were visualized on a UV transilluminator. 

 

2. 2.8. DNA Sequencing 

 

Nine DNA samples with microcytosis and hypchromia, with normal HbA2 and with no deletion 

mutations in the α–globin genes were subjected for complete DNA sequencing of α1- and α2-

globin genes. The α1- and α2-globin genes were amplified separately using PCR primers 

described by Clark and Thein 2004, (Table 2). The α2-globin gene was amplified using the 

primer pair: α-CF and α2-R2, which yields an amplicon of 1084 bp long. While the α1-globin 

gene was amplified using the primer pair: α-CF and α1-R1, which yields an amplicon of 1131 

bp long.  

 PCR amplification was performed using Hot-start ready PCR mix (Bioneer) using ~100 ng of 

genomic DNA and 7.5 % DMSO. Each 20-µl reaction contained the manufacturer’s buffer (1X), 

Hot-Start Taq DNA polymerase, 1.5 mM MgCl2, 0.25 mM of each dNTP and 0.25 µM of each 

primer. 

Amplifications were performed with an initial heat activation step of 5 minutes at 94°C 

followed by 35 cycles, each consisting of  94°C for 1 minute, 55°C for 1 minute and 72°C for 

1.5 minute, followed by a final  extension step of 72°C for 5 minute. Thermal cycling was 

performed in a Biometra DNA thermal cycler (Germany).  

 

The PCR amplicons were separated using 1 % agarose gel and the target gel band was excised. 

The PCR amplicons were purified from the agarose gel slices using the AccuPrep DNA 

Purification kit (Bioneer) per the manufacturer’s instructions. Briefly, the gel slice was 

dissolved in 3 volumes of Buffer 1 at 60˚C for 10 minutes. The gel mixture was transferred to 
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the binding column, washed twice with Buffer 2 and finally eluted with 30-50 µl of 10 mM Tris 

buffer, pH 8.0.  

 

The purified PCR amplicons were sent to the Heredity Research Laboratory at Bethlehem 

University for DNA Sequencing. The DNA sequencing was performed by the Dideoxy Chain 

Termination method and Big DyeV1.1 Terminator reagents (Applied Biosystems) and 

sequenced on the automated ABI 3130 Genetic Analyzer (Applied Biosystems). Each α-gene 

was sequenced using the forward and reverse primers. 

 

2.2.9. Analysis of DNA sequences 

 

DNA sequences were viewed using the Chromas Lite software 2.01 

(http://www.technelysium.com.au/chromas_lite.html) and the DNA sequences were analyzed 

using the BLAST program (http://blast.ncbi.nlm.nih.gov/) against the DNA sequence of α-

globin gene cluster available under the GenBank accession no. Z84721.1. 

 

2.2.10. Statistical analysis  

 

The mean and standard deviation for total Hb, RBC count, MCH, MCV and RDW were 

calculated using Excel program/ Microsoft office 2007. To compare the hematological 

parameters mentioned before, a one-way ANOVA was used (SigmaStat 2.03). Comparisons 

between groups were made with Tukey test. Statistical significance was assessed as a test with 

p <0.05. 
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Chapter Three: Results 

 

 

3.1 Study Samples 

 

This study was carried out to investigate the prevalence of α-globin gene mutations among 

Palestinian patients with microcytosis not due to iron deficiency or β-Thalassemia trait. For this 

purpose, a convenient sample of 200 nonrelated patients was collected in the period September 

2010 to January 2012 at the Specialized Medical laboratory in Ramallah. All patients included 

were presenting with microcystosis, referred for investigation of β-Thalassemia trait by Hb 

electrophoresis and were found to have HbA2 level below 3.5%. The exclusion of iron 

deficiency was based on application of the Menzer Index <13, or RBC count >5.0 x106/µL). 

Seventy -three samples were found to have a Menzer Index <13 or RBC count >5.0x106/µL and 

thus unlikely to have iron deficiency. These 73 samples (146 nonrelated chromosomes) were 

further subjected for investigation of α-globin gene mutations. There was a preponderance of 

male patients (M/F=45/28). 

A second group of 19 nonrelated neonates (38 chromosomes) for whom blood samples were 

referred to the laboratory for CBC analysis and were found to have an MCV<95 fL at the 

Palestinian Red Crescent Society Hospital at Al-Bireh during the study period. It has been 

confirmed that an MCV below 90fL and MCH below 30pg is a strong indicator of the presence 

of α-Thalassemia minor (Tritipsombut et al., 2008; Akram, et al., 2009). 

 

3.2 Hematological parameters for all study samples 

The red cell indices, Hb values and HbA2 level for all samples (73 patients and 19 neonates) 

that fulfilled the study criteria are shown in Appendix A. All patients’ samples showed 

microcytosis and hypochromia, normal hemoglobin A2 level and Menzer Index <13, or RBC 
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count >5x106 / µL (Appendix A). The neonatal samples also showed microcytosis with MCV 

<95 fL (Appendix A). 

3.3 α-Thalassemia mutations 

Identification of the α-Thalassemia mutations among the study samples was performed using 

gap-PCR, DNA sequencing of representative samples and ARMS PCR. Four different 

multiplex gap-PCR reactions (Reactions A to D) were performed for detection of four deletion 

mutations affecting the α-globin genes: -α3.7/, -α4.2/, --MED/ and αααanti3.7. These mutations 

represent the most prevalent deletion mutations affecting the α-globin genes in the 

Mediterranean region. Representative agarose gels for each mutation are shown in Figures 7 to 

10.  

 

 

 

 

 

 

Figure 7: Representative agarose gel for the –MED/ multiplex PCR reaction.  Lanes 1-3 & 5-7: 

negative for --MED/αα mutation, Lane 4: --MED/αα genotype, Lad: 100 bp DNA ladder.  

 

 

 

561    
446  

293  

     2       3          4        led        5           6       7           1  
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Figure 8:  Representative agarose gel for the –α3.7 PCR reaction.  Lanes 1, 4 & 6: negative for-

α3.7/-α3.7 mutation, Lane 2 & 3: -α3.7/-α3.7 genotype, Lanes 5: -α3.7/αα genotype, Lad: 1 kb DNA 

ladder.   

 

 

 

Figure 9: Representative agarose gel for the –α4.2 PCR reaction.  Lanes 1-7: negative for –α4.2   

mutation, Lad: 100 bp DNA ladder.   

 

Figure 10: Representative agarose gel for the αααanti3.7 PCR reaction.  Lane 1: αααanti3.7 

triplication, Lanes 2-4: negative for αααanti3.7 triplication, Lad: 1 kb DNA ladder.   

 



  38

 

From the samples that were negative for the deletion mutations tested by gap-PCR, eight 

samples from the patients’ group and one sample from the neonate group were selected 

randomly and subjected for DNA sequencing of α2- and α1-globin genes. DNA sequencing has 

revealed that four patients’ samples and 1 neonate sample were heterozygous for the α2-IVSI-

5nt mutation (Figure 11). No other significant genetic variations were observed in DNA 

sequencing.  

 

 

Figure 11:  Identification of α2-IVSI-5nt  mutation by DNA sequencing. (A) Mutant allele; (B) wild 

type allele. The double headed arrow indicates the 5 nucleotides deleted in this mutation. 

 

 

Since the DNA sequencing revealed that more than half of the samples sequenced have the α2-

IVSI-5nt mutation, we have screened all study samples for the α2-IVSI-5nt mutation using 

ARMS PCR (Figure 12). 
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Figure 12: Representative agarose gel for analysis of “α2-IVSI -5nt” mutation by ARMS PCR 

reaction. The amplicon size is 796 bp in the wild type reaction and 790 bp in the mutant 

reaction. L: 50 bp DNA ladder; lanes 1 & 1’: αα/αα genotype; lanes 2 & 2’: α-5ntα/αα genotype; 

lanes 3 & 3’: α-5ntα/α-5ntα genotype; lanes 4 & 4’: positive controls; lanes 5 & 5’: negative 

controls; lanes 6 & 6’: blanks. 

 

Table 9 summarizes the genotypes of α-globin genes detected in this study. From the 73 

patients' samples analyzed, 37 samples (50.7%) were found to have α-glonin gene mutations. 

Twenty-seven patients were heterozygous for one of the four mutation found (-α3.7/; αααanti3.7; --
MED/ and α2-IVSI -5nt ), eight patients were homozygous for either the -α3.7/ or α2-IVSI -5nt  

and two patients were compound heterozygous for the -α3.7/ and α2-IVSI -5nt  mutations.  The 

–α4.2/ deletion mutation was not detected in the study samples. The most prevalent mutation 

was the -α3.7/ deletion mutation and the second most prevalent one was the α2-IVSI -5nt 

mutation. As shown in Table 3.10, 48.9 % of the α-Thalassemia mutant chromosomes detected 

among the patients’ group carried the -α3.7/ deletion mutation and 44.7 % carried the α2-IVSI -

5nt mutation. 
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Table 9: Genotypes of α-globin genes detected among Palestinian patients and neonates. 

Patients Neonates Genotype  

N % n % 

(a) Presumably normal 

genotype 

36 49.3 9 47.4 

(b) Mutant genotype 

-α3.7/αα 

-α3.7/-α3.7 

α-5ntα/αα* 

α-5ntα/α-5ntα 

-α3.7/α-5ntα 

--MED/αα 

αααanti3.7 

37  

11 

5 

13 

3 

2 

2 

1 

50.7 

29.7 

13.5 

35.2 

8.1 

5.4 

5.4 

2.7 

10 

5 

0 

4 

0 

0 

1 

0 

52.6 

26.3 

0 

21.1 

0 

0 

5.2 

0 

Total  73  100 19 100 

*The α-5nt refers to the α2-IVSI-5nt mutation. 

 

Table 10: Frequency of α-Thalassemia mutant chromosomes detected among 

Palestinian patients and neonates. 

Patients Neonates 
Mutation 

n % n % 
 

-α3.7/αα 

α2-IVSI-5nt  

--MED/αα 

αααanti3.7 

 

23 

21 

2 

1 

 

48.9 

44.7 

4.3 

2.1 

 

5 

4 

1 

0 

 

50 

40 

10 

0 

Total 47 100 10 100 

 

For the neonates’ group, 10 samples (52.6%) were found to have α-glonin gene mutations and 

all these 10 samples were heterozygous for one of the three mutation found (-α3.7/, --MED/ and 

α2-IVSI -5nt ) (Table 9). The –α4.2/ deletion mutation was not detected in the neonates group. 

Among the neonates’ group, half (5 out of 10 chromosomes) of the α-Thalassemia mutant 
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chromosomes detected carried the -α3.7/ deletion mutation and 40% of the mutant chromosomes 

(4 chromosomes) carried the α2-IVSI -5nt mutation (Table 10).  

 

3.4 α-Globin genotypes and red cell parameters 

 

Tables 3.11, 3.12 and 3.13 present the various mean values and SD of the red cell parameters 

assessed for each genotype group. In the patients’ group, the proportions of men in the three 

groups were as follows: 61% in group 1, 58% in group 2, 67% in group 3. In Table 3.11, the 

hematological findings of patients’ samples are shown for the whole group as well as for males 

and females separately because the reference range for these parameters is gender dependent.  

 

Table 11: Red cell parameters in the different groups of α-globin genotype detected among the 

patients’ group. 

Patient 
Genotype Sex N % 

RBC 

X10
6
 / 

µL 

Hb g/dL MCV fL 
MCH 

pg/cell 
RDW % HbA2 % 

Group 1: 
Negative for 
the examined 
mutations 

 
All  
Male 
Female 

 
36 
22 
14 

 
49.3 
30.1 
19.2 

 
5.5 ±0.5 
5.6 ± 0.6 
5.2 ± 0.4 

 
11.5 ± 3.1 
12.4 ± 3.3 
10.0 ± 2.1 
 

 
64.5 ± 8.4 
66.0± 8.6 
62.2 ± 7.7 
 

 
20.4±3.6* 
21.3 ± 3.7 
19.0 ± 3.1 
 

 
17.9± 3.3* 
17.0 ± 3.3 
19.2± 2.7 
 

 
2.5 ± 0.4 
2.6 ± 0.4 
2.4 ± 0.5 
 

Group 2:  

Single gene 
defect 
(-α3.7/αα;  

α-5ntα/αα) 

 
All  
Males 
Female 

 
24 
14 
10 

 
32.9 
19.2 
13.7 

 
5.5±0.6 
5.7±0.6 
5.3±0.4 

 
12.2±2.3 
12.7±2.6 
11.7±1.8 

 
68.0±6.0 
68.9±6.2 
67.2±5.7 

 
22.4±2.1 
23.0±2.2 
21.9±1.8 

 
15.9±2.0 
15.6±2.4 
15.9±1.6 

 
2.7±0.5 
2.7±0.4 
2.8±0.5 

Group 3: 

 double gene 
defect  
(-α3.7/-α3.7; α-

5ntα/α-5ntα; 
 -α3.7/α-5ntα; 
- -MED/αα) 

 
All  
Males 
Female 

 
12 
8 
4 

 
16.4 
11.0 
5.4 

 
5.7±0.5 
5.8±0.6 
5.3±0.4 

 
11.7±2.1 
12.3±2.3 
11.7±1.8 

 
62.4±7.1 
64.1±8.0 
67.2±5.7 

 
20.3±2.5 
21.0±2.8 
21.9±1.8 

 
16.8±2.9 
16.8±2.7 
15.9±1.6 

 
2.7±0.4 
2.8±0.4 
2.4±0.3 

 Data are presented as mean ± SD. * The MCH and RDW values marked with an asterisk in 

group 1 are statistically different from respective values in group 2 
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Table 12: Red cell parameters in the different  α-globin genotype detected among the patients’ 
group.   

Patient Genotype Sex  

N % 

RBC 

X10
6
 / 

µL 

Hb g/dL MCV fL MCH 

pg/cell 

RDW % HbA2 

% 

-α3.7/αα 

 

All  
Males 

Females 
 

11 
6 
5 

15.1 
8.2 
6.8 

5.6±0.6 
5.9±0.4 
5.3±0.5 

12.4±2.6 
13.3±2.7 
11.3±2.3 

68.9±6.3 
72.4±4.1 
64.8±6.2 

22.5±2.3 
23.8±1.7 
21.1±2.1 

15.9±1.8 
15.4±1.8 
16.6±1.8 

2.7±0.4 
2.8±0.2 
2.7±0.5 

α-5ntα/αα All  
Males 

Females 
 

13 
8 
5 

17.8 
11.0 
6.8 

5.4±0.6 
5.4±0.7 
5.4±0.3 

12.3±2.2 
12.3±2.7 
12.2±1.3 

67.6±5.8 
66.2±6.4 
69.7±4.4 

22.5±2.0 
22.4±2.5 
22.7±1.1 

15.6±2.3 
15.8±2.9 
15.3±1.2 

2.7±0.5 
2.0±0.5 
2.9±0.5 

-α3.7/-α3.7 

 

All  
Males 

 

 
5 
 

 
6.8 

 
5.7±0.6 

 
12.7±2.8 

 
66.4±8.2 

 
22.1±3.0 

 
16±2.8 

 
2.9±0.5 

α-5ntα/α-5ntα All  
Males 

Females 

3 
2 
1 

4.1 
2.7 
1.4 

5.8±0.3 
6.0±0.3 

5.51 

10.7±0.5 
11.0±0.0 

10.2 

56.4±4.5 
56.7±6.4 

55.9 

18.5±0.7 
18.5±0.9 

18.6 

17.7±2.9 
19.0±2.6 

15.0 

2.5±0.2 
2.6±0.0 

2.3 
-α3.7/α-5ntα All  

Females 
 

 
2 

 
2.7 

 
5.5±0.56 

 
10.3±1.6 

 
61.9±1.7 

 
18.8±0.9 

 
19.0±4.5 

 
2.6±0.5 

--MED/αα All  
Males 

Females 

2 
1 
1 

2.7 
1.4 
1.4 

6.09±0.4 
6.38 

5.8 

12.0±1.6 
13.3 
11.0 

61.8±7.3 
66.9 
56.6 

19.9±1.3 
20.8 
18.9 

15.5±1.6 
16.6 
14.4 

2.5±0.4 
2.8 
2.2 

αααanti3.7 All  
Males 

1 1.4 5.68 11.1 61.6 19.5 18.8 2.8 

Data are presented as mean ± SD. The single sample with α-globin gene triplication (αααanti3.7) 

is included in this table 

 

Table 13: The Various Mean Values of the Erythrocytic Parameters (± SD) For Eeach 
Genotype of Neonate Samples. 

Patients Genotype 

Normal range 

No. % 

RBC 10
6
/ µL 

4.20-6.30 

Hb g/dL 

12.0-18.0 

MCV fL 

80.0-97.0 

MCH pg 

26.0-32.0 

RDW% 

11.5-14.5 

αα/-α3.7 5 26.3 5.17±1.08 15.8±3.5 90.5±2.3 30±4.3 18.2±6.3 

α/--MED 1 5.2 4.32 14.2 93.3 32.9 16.5 

α-5ntα/αα 4 21.0 5.0±0.5 15.6±1 88.5±3.1 31.0±1.9 15.5±1.0 

αα/ αα 9 47.4 4.7±0.7 15.3±2.7 93.4±1.1 31.9±1.8 17.7±4.2 

Total 19 100      
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Statistical analysis between groups for eythrocytic parameters revealed two significant 

differences. The MCH is statistically lower for patients in group1 or those patients who were 

negative for all mutation investigated in this study, than those with a single gene defect (group 

2). In all groups, the mean MCH is less than or equal 27 pg. Patients from group 1 have a 

significantly higher mean RDW compared to patients in group 2. Menzer index is significantly 

lower in group 3 (10.9±1.4) than group 2 (12.5±0.8). The MCH values in patients with double 

gene defect (group 3) were slightly lower than group 2, but statistically not significantly 

probably due to the small number of patients in group 3. The RDW is statistically higher for 

patients in (group1) than those with a single gene defect (group 2). Interestingly, Hb, MCV, 

MCH and RDW showed a similar trend among the three groups, where their values were 

highest in group 2 and values in group 1 and 3 were close together. Although the MCH and 

RDW values were statistically different when comparing groups 1 and 2, there was no distinct 

value that can clearly differentiate between these two groups. 

 

The RBC count in group 2 was slightly higher than in group 1 and in turn RBC count in group 3 

was slightly higher than in group 2. Single and double gene defects in the α-globin genes are 

associated with increased erythrocytosis. The HbA2 level in group 2 was slightly higher than in 

group 1. The mean HbA2 level in group 2 and 3 was very close to each other. 

 

Analysis of the mean values of hematological parameters shown in Table 11 between males and 

females showed that females have lower values in most of these parameters, but these 

differences were statistically not significant. 

 

Analysis of the hematological parameters among the different α-globin genotypes detected in 

this study Table 12 reveals slight differences in mean values but these differences were 

statistically not significant. Also, no significant differences between males and females were 

observed when comparing hematological parameters among the different genotypes detected in 

this study. Samples homozygous for the α2-IVSI-5nt mutation (3 samples) showed a lower 

mean values for Hb, MCV, MCH and HbA2 and higher RDW values compared to samples with 

double gene defect (-α3.7/-α3.7) or samples with single gene defect. The hematological 
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parameters observed in samples with compound heterozygous (-α3.7/α-5ntα, 2 samples) were 

slightly different from other genotypes, but the low sample number of this group does not allow 

a reliable statistical analysis of these differences.  

 

Table 13 compares the hematological parameters among the different genotypes detected in this 

study. Although slight differences exist among the different genotypes, these differences were 

not significant, except MCV and RDW in group 1 and Group 2, Menzer index in group 3 and 

group 2.  
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Chapter four: Discussion  

 
 
 
α -Thalassemia is a group of genetic disorders that result in an imbalance in the synthesis of α  

and β-globin proteins and is caused by different mutations or deletions (Bergeron et al., 2005). 

α-Thalassemia is characterized by a microcytic hypochromic anemia, with variable clinical 

picture ranging from asymptomatic to a fatal hemolytic anemia (Harteveled and Higgs , 2010). 

α-Thalassaemia is more frequently caused by deletion rather than single point mutations or 

nucleotide insertions and deletions involving the sequences controlling gene expression 

(Harteveld and Higgs, 2010). Deletion mutations may involve one or both α-genes on 

chromosome 16. HbH results from deletion of three α-genes. Hydrops Foetalis Syndrome or Hb 

Bart’s disease results from deletion of four α-genes and it is incompatible with life. So far, 

more than 35 deletion mutations affecting the α-genes have been reported. Additionally, the 

number of non-deletional α-globin gene mutations is increasing, and new mutations are still 

being discovered (Chui, 2005).  

 

The aim of this study was to determine the most prevalent α-globin gene mutations based on 

targeted mutation among Palestinian patients with microcytosis not due to IDA or β-

Thalassemia trait. Additionally, the study aimed to determine the most frequent incidence rate 

of α-Thalassemia trait among the analyzed patients with microcytosis not due to IDA or β-

Thalassemia trait. 

 

A total of 200 patients were studied and all patients had hypochromic microcytic (MCV < 80 

fL, MCH <27 pg) anemia. All samples included in the study have a normal Hb electrophoresis 

profile (HbA2 < 3.5%) and Menzer Index <13 and/or RBC count >5x106/µL. Menzer index and 

RBC count are good discrimination function and are used to differentiate IDA from β-

Thalassemia trait (Demir et al., 2002; AlFadhli, et al., 2006; Ehsani et al., 2009). Samples with 

Menzer index <13 or RBC count >5x106/µl are unlikely to have IDA. 
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Nineteen neonate samples were included in this study, all have MCV <95 fL. It has been 

reported that MCV below 90 fL, especially with an MCH below 30pg is a strong indicator of 

the presence of α-Thalassemia minor in neonates (Tritipsombut et al., 2008; Aktam, et al., 

2009). 

For detection of α-Thalassemia mutations among the study population, Gap-PCR, ARMS PCR 

and DNA sequencing were used. Identification of the α-Thalassemia deletion mutations among 

the study samples was performed using multiplex Gap-PCR. Multiplex Gap-PCR uses primer 

pairs that are designed to amplify the region flanking a known deletion generating a unique 

amplicon that will be smaller in the mutant sequence compared with the wild type (Clark and 

Thein, 2004). 

 

Four different multiplex Gap-PCR reactions were performed for detection of four deletion 

mutations affecting the α-globin genes: -α3.7/, -α4.2/. –MED/ and αααanti3.7. These mutations 

represent the most prevalent deletion mutations affecting the α-globin genes in the 

Mediterranean region (Clark and Thein, 2004). Twenty samples were found having deletion 

mutations, and one sample with α-globin gene triplication. But in the neonate samples six 

samples were found having deletion mutations. 

 

To search for point mutations and small insertion/deletion mutations causing α-Thalassemia 

that could orient the search for additional mutations, the α2- and α1-globin genes were 

completely sequenced in eight patients’ samples and one neonate sample. DNA sequencing has 

revealed that four patients’ samples and one neonate sample were heterozygous for the α2-

IVSI-5nt mutation. This mutation results from deletion of five nucleotides at the splice junction 

between exon 1 and intron 1 of the α2-globin gene (Baysal, 2011). No other significant DNA 

sequence variants were observed in DNA sequencing results. However, since DNA sequencing 

was not performed for all study samples, other mutations (other than the mutations investigated 

in this study) cannot be excluded. The α2-IVSI-5nt mutation was found to be the second most 

common mutation after the -α3.7/ deletion mutation among Arabs/Palestinians referred to an 
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Israeli Hospital in Jerusalem (Oron-Karni et al., 2000). In the previous report, the α2-IVSI-5nt 

mutation was reported in 29 chromosomes and the -α3.7/ deletion mutation in 30 chromosomes 

out of the 109 chromosomes studied (Oron-Karni et al., 2000).  

 

Based on the findings of DNA sequencing, which revealed that α2-IVSI-5nt mutation is 

common in our samples, we have analyzed the study samples for this mutation using ARMS 

PCR.   

 

From 73 samples that fulfilled the inclusion criteria for this study, 37 samples (50.7%) were 

found to have α-glonin gene mutations. Twenty-seven patients were heterozygous for one of the 

four mutations found (-α3.7/; αααanti3.7; --MED/ and α2-IVSI-5nt mutations), eight patients were 

homozygous for either the -α3.7/ or α2-IVSI-5nt mutation and two patients were compound 

heterozygous for the -α3.7/ and α2-IVSI-5nt mutations and one sample has a triplication 

mutation, αααanti3.7. The most frequent mutation among the patients’ samples in this study was 

the -α3.7/, where 48.9 % of the mutant chromosomes carried this mutation. The second most 

frequent mutation was the α2-IVSI-5nt and it was found in 44.7 % of mutant chromosomes. 

The other two mutations detected in this study, --MED/ and αααanti3.7, were found in 4.3% and 

2.1% of mutant chromosomes. 

 

From the neonate samples (n=19), ten samples have α-glonin gene mutation, five samples were 

heterozygous for the -α3.7 mutation, four samples were heterozygous for α2-IVSI-5nt mutation 

and one sample was heterozygous for the --MED/ mutation.  

 

The predominance of the α3.7/ deletion is consistent with the findings of several studies in 

different populations and regions.  The α3.7/ deletion is the most common α-globin gene deletion 

mutation among Jews and Palestinians/Arabs in Palestine 1948. This mutation was found in 

63.9% and 27.5 % of mutant chromosomes studied in Jewish and Palestinian/Arab patients 

(Oron-Karni et al. 2000). For the α2-IVSI-5nt mutation, Oron-Karni et al., (2000) reported that 

this mutation is found in only about 3% and 26.6% of mutant chromosomes studied in Jewish 

and Palestinian/Arab patients. Therefore, α3.7/ and α2-IVSI-5nt mutations constitute the most 

frequent mutations among Palestinian/Arab patients in Palestine 1948 (Oron-Karni et al., 2000). 
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The α3.7/ mutation was also reported as the most predominant mutation causing α-Thalassemia 

in several studies from other Arab countries: Kuwait (Diejomaoh et al., 2000), Tunisia, (Zarai et 

al., 2002), Iraq (Al-Allawi et al., 2009), Saudi Arabia (Hellani et al., 2009), Oman (Hassan et 

al., 2010), and United Arab Emirates, (Baysal et al., 2011). Mediterranean countries: Italy 

(Bella et al., 2006), Iran (Zandian et al., 2008; Hossein et al., 2012), and Turkey (Guvence et 

al., 2010). Worldwide: Australia (Prior et al., 2004), North America (Bergeron et al., 2005), 

India (Sankar et al., 2006), China (Xiong et al., 2010), Brazil (Alcoforado et al., 2012), and 

Afro-Amazonian community (Cardoso et al., 2012). Also, an earlier study from eastern Saudi 

Arabia revealed that 45% of α-Thalassemia patients are heterozygotes for this mutation (Al-

Awamy, 2000). In the United Arab Emirates, it was reported that 45% of neonates are carriers 

for this mutation (El-Kalla and Baysal, 1998). 

 

In the neonates’ samples (n=19), ten samples were heterozygous for one of three α-Thalassemia 

mutations, α3.7/,--MED/ and α2-IVSI-5nt. The α3.7/ and α2-IVSI-5nt mutations were the most 

frequent mutations and constituted 50% and 40% of the mutant chromosomes analyzed, 

respectively. The findings of the neonates’ samples are consistent with the finding of the 

patients’ samples. Baysal (2011) reported that the α3.7/ mutation is the most common mutation 

among neonates in United Arab Emirates. 

  

The –MED/ mutation and αααanti3.7 triplication were found in 4.3% and 2.1 % of mutant 

chromosomes in the patients’ samples, respectively. The –MED/ is the third frequent mutation 

among our study sample. Oron-Karni et al. (2000) reported that –MED/ mutation and αααanti3.7 

triplication were found in 4.6 % and 5.5 %, respectively among the Palestinian/Arab 

population, which confirms our findings. However, in other studies the –MED/  mutation was the 

second most frequent α-Thalassemia mutation after the α3.7/ mutation,  as in Jewish (Oron-

Karni et al., 2000) and Kurdish  patients (Al-Allawi et al., 2009). In United Arab Emirates 

(Baysal, 2011) and Iran (Zandian et al., 2008) the –MED/ mutation was found at low frequency, 

where the α2-PolyA (AATAAA>AATAAG or AATGAA) point mutation was the second 

frequent α-Thalassemia mutation after the α3.7/ mutation.   
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The α4.2/ mutation was not detected among our study samples and this is also consistent with 

the findings of Oron-Karni et al., (2000) where this mutation was observed in less than 1% of 

mutant chromosomes among Palestinian/Arab patients. This mutation is also common among 

α-Thalassemia patients in South East Asia and Pacific Islands (Clark and Thein, 2004) and in 

North America (Bergeron et al., 2005). Furthermore, this mutation was reported in about 5 % of 

α-Thalassemia patients in southern Iran (Zandian et al., 2008) and in about 4% in Kurdish 

patients in Dohuk region of Iraq (Al-Allawi, et al., 2009). 

 
In comparison to other reports, it is interesting to note that our finding that the α2-IVSI-5nt 

mutation exists in a high frequency among our study sample and in a frequency close to the α3.7 

mutation. This is novel to the Palestinian population, since till now; similar results have only 

been reported by Oron-Karni et al. (2000) in Palestinian/Arab patients and have not been 

reported in other populations. 

 

Statistical analysis of erythrocyte parameters revealed two significant differences concerning 

the MCH and RDW parameters. The MCH of presumably in (group 1) is statistically lower than 

that in patients with a single gene deletion (group 2) (Table 3.11). Additionally, the Hb values 

and MCV in presumably in (group 1) were slightly lower than those in patients with single gene 

deletion (group 2) (Table 3.11). The sex distribution could not explain for the lower Hb values 

in group 1 compared to group 2, since the proportion of male patients in both groups is very 

close, 61.1 % and 58.3 % respectively. However, these differences are probably explained by 

the fact that group 1 are not a normal control group. In fact group 1 is composed of patients 

with unexplained microcytosis and probably having anemia of mixed etiology or could have 

mutations that are not investigated in the present study. Similarly, the higher RDW in group 1 

compared to group 2 is explained in this manner. When the patient groups with single and 

double gene defects are compared, it was observed that the Hb values, MCV and MCH were 

slightly lower in the group with double gene defect (Table 3.11). While the RBC and RDW 

values were slightly higher in the group with double gene defect compared to single gene 

defect.  Furthermore, there is an overlap between the red cell parameters of the three groups 

analyzed, presumably normal, single and double gene defect (Table 3.11).  Further analysis of 

red cell parameters based on the type of mutation, revealed slight differences among different 
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groups in some cases, but none of these differences were statistically significant (Table 3.12). 

Our findings are consistent with previous reports that also showed that no red cell parameter 

could reliably predict the presence of α-Thalassemia genotype (Bergeron et al., 2005; Mehdi & 

Dahmash, 2011). Molecular diagnosis remains the only reliable method for diagnosis of α-

Thalassemia.  

 

Analysis of the red cell parameters in the neonate group further confirms the value of MCH and 

MCV in the prediction of α-Thalassemia. 

In conclusion, All samples included in the study (the patients' samples and neonate' samples) 

were having unexplained microcytosis. Almost half of the patient's samples and the neonate's 

samples were found to carry one or two of the five α-Thalassemia mutations investigated in this 

study. The α3.7 and α2-IVSI-5nt mutations are the most frequent α-Thalassemia mutations 

among the study samples. 

None of the red cell indices could reliably predict the presence of α-Thalassemia. DNA analysis 

of samples with unexplained microcytosis can reliably detect the presence of α-Thalassemia, 

especially when a wider range of mutations are analyzed, or when samples are analyzed by 

DNA sequencing. 

 

 

 

 



  51

Recommendations 

α-Thalassemia should be considered in Palestinian patients with unexplained microcytosis. This 

observation was confirmed by the finding that about half of the study samples have one or two 

of the five α-Thalassemia mutations investigated in the present study (-α3.7; -α4.2, αααanti3.7; --MED 

and α2-IVSI-5nt mutations). DNA analysis can reliably detect the presence of α-Thalassemia 

mutations. Testing for the α3.7 and α2IVSI 5nt mutations should be considered as the first step in 

DNA analysis of α-Thalassemia, as these two mutations were found in 48.9 % and 44.7 %, 

respectively, of mutant chromosomes identified in this study. 

Further studies are needed to study the prevalence and genotypes of α-Thalassemia in a larger 

cohort of Palestinian patients with unexplained microcytosis. Genotyping of α-Thalassemia 

mutations should be preferably performed using Gap-PCR for detection of large deletion 

mutations and DNA sequencing for detection of other types of mutations. 
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Appendix A 

 
Table A.1: Hematological parameters for the study samples. 

Sample 

# 

RBCs 

(x10
6
/µL) 

Hb 

(g/dL) 

MCV 

(fL)  

MCH  

(pg/cell) 

RDW% 

 

HbA2 

(%) 

MI 

Patients samples 

1 4.9 9.2 63.3 18.9 20.2 2.1 12.9 

2 5.0 9.5 59.2 19.1 23.2 2.1 11.8 

3 4.6 8.6 58.6 18.8 15.7 3.0 12.7 

4 4.5 7.9 58.3 17.7 17.4 2.0 13.0 

5 4.6 8.9 59.4 19.2 19.4 3.4 12.9 

6 4.9 9.0 57.9 18.4 16.8 2.5 11.8 

7 4.9 9.0 58.1 18.3 17.8 1.8 11.8 

8 4.9 10.0 60.2 20.3 16.1 3.0 12.2 

9 4.9 10.0 61.8 20.3 17.7 3.0 12.6 

10 4.6 8.8 56.5 19.0 19.0 1.5 12.3 

11 4.9 8.5 57.4 17.3 19.0 2.2 11.7 

12 5.0 10.7 62.5 21.6 21.4 2.0 12.5 

13 4.9 10.1 63.8 20.6 18.9 2.9 13.0 

14 5.0 10.6 68.1 21.3 15.5 2.4 13.6 

15 4.7 5.7 47.0 12.1 19.6 1.5 10.0 

16 5.2 17.3 76.1 24.8 13.6 2.4 14.6 

17 5.3 11.3 64.8 21.2 16.0 3.0 12.2 

18 5.1 8.6 58.4 17.0 20.0 2.4 11.5 

19 5.4 9.2 57.9 17.2 22.6 2.1 10.7 

20 5.6 12.8 72.6 22.7 14.4 3.2 13.0 

21 5.9 11.4 60.7 19.4 15.8 2.2 10.3 

22 5.1 7.5 56.6 14.7 21.7 2.5 11.1 

23 6.0 14.1 72.4 23.7 14.1 2.5 12.1 

24 6.0 9.0 72.4 23.7 18.4 2.5 12.1 

25 5.2 9.3 56.7 17.8 18.1 2.5 10.9 

26 5.8 14.5 73.8 25.2 14.1 2.6 12.7 

27 5.6 11.7 62.4 20.9 19.7 2.5 11.1 

28 5.3 12.7 68.8 24.2 14.5 2.8 13.0 

29 5.5 10.2 56.2 18.6 18.5 3.2 10.2 

30 5.1 9.2 63.1 18.2 22.2 2.9 12.4 

31 5.7 11.9 65.6 21.0 15.6 3.0 11.5 

32 5.8 11.0 56.6 18.9 14.4 2.2 9.8 
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Table A.1: cont. 
Sample 

# 
RBCs 

(x1012/L) 
Hb 

(g/dL) 
MCV 
(fL)  

MCH  
(pg/cell) 

RDW 
 

HbA2 
(%) 

MI 

33 5.2 8.9 59.9 17.2 23.0 2.7 11.5 

34 5.0 11.0 62.4 21.0 15.9 2.9 12.5 

35 5.1 8.7 57.5 17.1 21.0 2.0 11.3 

36 5.4 10.7 58.9 19.7 22.6 2.0 10.9 

37 5.6 9.4 59.0 16.8 21.5 2.3 10.5 

38 5.4 12.5 70.6 23.3 17.4 2.7 13.1 

39 5.3 11.9 68.5 22.4 16.5 2.5 12.9 

40 5.2 9.4 58.5 18.2 19.6 2.5 11.2 

41 5.6 13.0 68.9 23.0 14.3 3.0 12.3 

42 5.8 14.8 75.5 25.8 14.5 2.8 13.0 

43 5.2 11.6 66.7 22.5 16.9 3.5 12.8 

44 5.3 9.7 57.1 18.4 20.4 1.5 10.8 

45 5.8 11.0 61.2 19.1 17.2 2.6 10.6 

46 5.8 14.0 75.8 24.3 13.8 2.5 13.1 

47 5.9 11.1 61.6 19.5 18.8      2.6 10.4 

48 5.8 13.4 73.3 23.2 13.9 3.0 12.6 

49 5.5 11.0 58.9 20.0 17.9 3.5 10.7 

50 5.7 10.4 58.7 18.3 17.0      2.6 10.3 

51 5.6 12.8 75.5 22.8 14.9 2.8 13.5 

52 5.3 11.9 65.2 22.8 15.7 3.0 12.3 

53 5.5 10.2 55.9 18.6 15.0 2.3 10.2 

54 5.6 14.0 76.6 24.8 13.3 3.0 13.6 

55 5.5 16.9 79.9 25.8 13.9 2.6 14.5 

56 5.7 11.4 74.5 20.0 17.7 3.0 13.1 

57 5.7 15.6 77.2 27.1 13.0 2.6 13.5 

58 6.2 15.0 74.8 24.2 14.2 2.8 12.1 

59 6.3 13.3 64.1 21.1 16.0 2.5 10.2 

60 6.2 11.0 52.2 17.8 20.8 2.6 8.4 

61 6.6 16.6 74.0 25.0 22.6 3.0 11.2 

62 6.1 14.6 74.0 24.1 14.5 3.0 12.1 

63 6.3 15.6 73.1 24.8 12.9 2.6 11.6 

64 6.4 16.1 74.4 25.3 12.5 2.5 11.6 

65 6.2 12.9 64.7 20.7 15.5 2.8 10.4 

66 6.2 16.7 77.2 27.0 13.5 3.0 12.5 

67 6.4 14.5 67.6 22.6 14.5 2.9 10.6 

68 6.5 14.8 66.5 22.7 14.5 3.0 10.2 

69 6.0 16.0 77.4 26.6 12.5 2.8 12.9 

70 6.5 14.8 68.3 22.9 13.7 2.4 10.5 
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Table A.1: cont. 
Sample 

# 
RBCs 

(x1012/L) 
Hb 

(g/dL) 
MCV 
(fL)  

MCH  
(pg/cell) 

RDW 
 

HbA2 
(%) 

MI 

71 6.4 13.3 66.9 20.8 16.6 2.8 10.4 

72 6.2 15.7 75.7 25.2 14.6     2.6 12.2 

73 6.2 14.8 72.0 24.0 15.7 2.8 11.6 

Neonatal samples 

1 4.0 12.0 90.8 30.0 27.5 ND - 

2 4.9 13.9 86.0 28.5 15.0 ND - 

3 3.3 10.6 93.7 32.4 15.0 ND - 

4 4.2 14.6 93.2 32.7 18.8 ND - 

5 4.3 14.6 93.8 33.4 15.8     ND - 

6 4.6 14.2 87.6 30.9 15.7 ND - 

7 4.3 14.2 93.3 32.9 16.5      ND - 

8 4.8 16.3 93.5 34.0 15.4     ND - 

9 4.9 16.1 93.0 32.9 16.8 ND - 

10 4.85 15.8 94.3 32.6 18.9     ND  - 

11 5.9 18.4 88.8 31.0 15.3 ND - 

12 5.7 18.0 87.2 31.7 14.6 ND - 

13 5.7 18.2 87.7 32.0 29.4     ND  - 

14 5.3 13.5 91.1 22.4 16.2 ND - 

15 6.3 20.9 93.9 33.4 16.4 ND - 

16 5.7 18.1 91.1 32.0 15.0 ND - 

17 4.8 14.3 94.9 29.7 15.5 ND - 

18 5.26 17.0 93.2 32.3 18.3 ND - 

19 4.21 12.3 93.3 29.2 12.3 ND - 

ND: not determined. 
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صغر غير مبرر من ن الذين يعانون نييين جين بين المرضى الفلسط جلوب-نوع الطفرة في الفاتحديد 

  في حجم كريات الدم الحمراء

  

  ميسون عدنان سليمان حمايل: اعداد

  

  محمود سرور .د: المشرف الاول

  خالد يونس.أ: المشرف الثاني

 

 ونقص في  الحمراء الدماتبفقر دم مصاحب له صغر في حجم كريثلاسميا هو مرض وراثي متنحي الصفة يتميز -ألفا

وهو مرض شائع في العالم . تتراوح ما بين حامل للمرض بدون أعراض الى مرض قاتلف اما أعراضه .تصبغها

 .وخصوصا في منطقة حوض البحر الابيض المتوسط والشرق الاوسط وشرق اسيا وافريقيا وشبه القارة الهندية

. ق في حوض البحر الابيض المتوسط ولكن ليس في فلسطينالاسباب الوراثية لهذا المرض تمت دراستها في عدة مناط

)-MED--, nt5-IVSI-2α,  /.24α– ,/.73α/  تهدف هذه الدراسة الى تحديد نسبة ونوع الخلل الوراثي في الفا جلوبين جين

and αααanti3.7) لسبب غير واضح الحمراء الدمات الذين يعانون من صغر في حجم كري المرضىمجموعة من  في  .

  الدمات عينة من هؤلاء المرضى بعد ان تم استبعاد ان يكون السبب في صغر حجم كري73من اجل ذلك تم جمع 

 عينة لاطفال 19بالاضافة الى هؤلاء المرضى تم تجميع . نقص الحديدفقر دم ناتج عن  ثلاسميا او -  هو بيتالحمراء

تم استخدام عدة طرق . (fL 95)توليترم في95 من  لديهم اقل الحمراء الدماتحجم كريبحيث يكزن حديثي الولادة 

 Gap-PCR, DNA sequencing, ARMSثلاسميا في هؤلاء المرضى وهي - للكشف عن الطفرات المسببة  لالفا

PCR.  
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-- او α2-IVSI-5nt او3.7αحاملين لاحدى هذه الطفرات % 50.7كان هناك ,  تمت دراستهم مريض73  بين من

MEDاو anti 3.7 ααα. 3.7ثر هذه الطفرات شيوعا بين المرضى كان أكα و  α2-IVSI-5nt 48.9بالنسب الاتية و % 

في . بالترتيب%  2.1و%  4.3كانت موجودة بالنسب الاتيه فقد   anti 3.7ααα و MED--اما  .بالترتيب%  44.7و

الطفرة المسببة . كثر شيوعا الا هيايضا α3.7, α2-IVSI-5nt)( الطفرات التالية كانتعينات الاطفال حديثي الولادة 

منطقة لأن هذه الطفرة تتواجد بالنسبة ضئيلة في . لم يتم ايجادها في هذه الدراسة بين هؤلاء المرضى4.2αثلاسميا - لالفا

 بعد طفرة هي الطفرة الثانية الاكثر شيوعا بين هؤلاء المرضى α2-IVSI-5ntطفرة  .الابيض المتوسطالبحر حوض 

α3.7 .الدم الحمراء ونوع الطفرة لم كريات في تحليل العلاقة بين قياسات . في أي مجتمع آخرشره من قبلوهذا لم يتم ن 

 وعليه فان .ثلاسميا- الكشف عن وجود الفا هذه القياسات تستطيع بينهما وبالتالي لا  ذات دلالة احصائيةقةيتم ايجاد علا

  .لاسمياث-التشخيص الجزيئي هو الاكثر دقة واعتمادا للكشف عن الفا

  

  الحمراء الدمات من عينات المرضى الذين يعانون من صغر حجم كري%) 50.7 ( نسبة كبيرة نفاخلاصة الوفي 

 الجزيئي ضروري جدا  التشخيص كما ان.ثلاسميا- فاملين لاحدى الطفرات المسببة لأل كانوا حا لسبب غير واضح

  .ىلهؤلاء المرض

 


