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Abstract 

In 2014, the researcher “Cuneyt Cevik” studied two types of continuity of functions in vector 

metric spaces, namely, vectorial and topological continuous functions. Cevik concluded several 

important relations and theorems in vector metric space, such as Extension Theorem and 

Uniform Limit theorem.  

In this thesis, I studied and developed the Cuneyt Cevik’s work [3], so I concluded and found 

out many relations. In fact, we proved the Extension Theorem holds for the case of vectorial 

uniformly continuous instead of a topological uniformly continuous as “Cuneyt Cevik “  

proved. Also, we proved the uniform limit theorem for the case of vectorially uniformly 

continuous and topological continuous.    
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Introduction 

 

In [4], a vector metric space is defined with a distance map having values in a Riesz space, and 

some results in metric space theory are generalized to vector metric space theory. In this thesis, 

we used the Riesz space as a tool for studying the continuity of vector valued functions, for 

more information about Riesz spaces see [2, 5, 7]. Actually, the study of metric spaces having 

value on a vector space has started by Zabrejko in [6]. The distance map in the sense of Zabrejko 

takes values from an ordered vector space. We use the structure of lattice with the vector metrics 

having values in Riesz spaces; then we have new results. 

The outline of the thesis is as follows 

In Chapter one a general introduction about Riesz space, vector metric space and two types of 

continuity on vector metric space is presented. This chapter distinguishes continuities 

vectorially and topologically. Moreover, vectorial continuity examples are given and the 

relationship between vectorial continuity of a function and its graph demonstrated. 

In Chapter two equivalent vector metrics, vectorial isometry, vectorial homeomorphism 

definitions, and examples are given. 

In Chapter three uniform continuity was discussed, some extension theorems for functions 

defined on vector metric spaces are given, uniform limit theorem on a vector metric space is 

given, and the structure of vectorial continuous function spaces is demonstrated. 
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Chapter one 

Vector Metric Spaces 

 In this chapter we will introduce the concepts of Riesz space, order convergent, vector metric 

spaces, E-convergent, topological continuous and vectorial continuous spaces and also some 

related concepts. 

1.1 Riesz Space 

In order to define the concept of vector metric space we need to define the Riesz space. To do 

this, we first define an ordered relation and an ordered vector space.   

Definition 1.1.1 

Let E be a vector space over the real number R, an ordered relation is a partially ordered relation 

≼ which satisfies the following condition if , , ∈ , ∈ , 0, then                                                

 ≼   and ≼ 	whenever	 ≼ . 

The vector space E over R with an ordered relation ≼ on  is called an ordered vector space. 

The following examples explain what we mean by an ordered vector space 

Example 1.1.2 

Let  be the set of real numbers and consider  as a vector space over itself (with usual addition 

and scalar multiplication), then 	with usual partially ordering	 , is an ordered vector space. 
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Example 1.1.3 

Consider : , , , ∈  as a vector space over  (with usual addition and scalar 

multiplications in matrices). Define ≼ on M by ≼  if and only if , then 

, ≼  is an ordered vector space, since                 

  and 	 . 

Next, we define a Riesz space. 

Definition 1.1.4 

Let  be a vector space over	 , then E is said to be Riesz Space if it is an ordered vector space 

and for each pair of elements in  it has a supremum or infimum in . 

The vector spaces defined in Example 1.1.2, 1.1.3 are Riesz spaces. 

Now we will introduce several definitions in order to define order convergent and order Cauchy. 

Not that a set  is bounded if it is bounded from both above and below. Also, we write 

 ↓  if 	is decreasing sequence in 	such that . 

Definition 1.1.5  

Let  be a Riesz space. 	is called Archimedean if  ↓ 0, ∀ ∈  where                              

  ∈ : 0 . Clearly, for all ∈  and ↓ 0,  is Archimedean. 

Moreover, we want to define Dedekind complete and Dedekind σ-complete. 
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Definition 1.1.6 

Let  be a Riesz space,  is called Dedekind complete if every nonempty bounded above subset 

of E has a supremum in . 

Recall that in , every nonempty bounded above subset has a supremum in  (complete axiom). 

Therefore, R	is Dedekind complete. 

Definition 1.1.7 

Let E be a riesz space,  is called Dedekind - complete if every nonempty countable bounded 

above subset of  has a supremum in . 

Let  be a Dedekind complete, if A is a nonempty countable bounded above subset of , then 

A is bounded above in , so by Definition1.1.6, A has a supremum, which implies that  is 

Dedekind -complete. In fact we proved the following theorem. 

Theorem 1.1.8                                                                                                                           

Every Dedekind complete is Dedekind σ-complete. 

The convers of the last theorem is not true since we can find an example which is Dedekind       

-complete but not Dedekind complete. 

Example 1.1.9 

Let  be the Riesz space of all real bounded functions on 0,1  such that 0  holds for 

at most countably many , with pointwise ordering defined as  

 , ,  if and only if  and  for ,  and ,  ∈ 0,1                                      
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If 0  holds for the sequence  in , then sup  exists in , so  is Dedekind -

complete.                                                                                                                                                              

 Let 	 	 ∈ 	 	 	 0,  and                                                             

 	 	 	 ∈ 	 	 	 , 1 . So every ∈ ⨁  satisfies 0 0, so 

⨁ , so  does not have the projection property. But we know from theorem12.3 in [1]                    

“ Every Dedekind complete has the projection property ”  

Not that if we let  be a Riesz Space, then the supremum element denoted by ⋁  defined by  

⋁ sup	 ,  ∀ , ∈ . 

Definition 1.1.10  

Let E be a riesz space.                                                                                                                     

 (a) A sequence ) in  is said to be o-convergent (or order convergent) to b if there is a 

sequence (a ) in E such that ↓ 0 and | |  for all . 

(denoted by ( → 	where | |: ⋁ 	for any a ∈ E. 

(b) A sequence ( 	in 	is said to be o-Cauchy if there exists a sequence ( ) in E	such that  

↓ 0	and b b a 		∀ , ∈ .                                                                                   

(c) The Riesz space E is said to be o-complete if every o-Cauchy sequence is o- convergent. 

Now we will introduce many concepts on operator function T	between two Riesz spaces in 

order to prove that every σ-order continuous operator T is bounded. 
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Definition 1.1.11 

 The operator : →  between two Riesz spaces is positive if 0 for all 0. 

Definition1.1.12  

(a)  Let , ≼  be a Riesz space and let , ∈ , then the order interval ,  is the set 

 ∈ ∶   

(b) The operator : →  between two Riesz spaces is order bounded if it maps bounded 

subsets of E to bounded subsets of . 

Definition 1.1.13 

 The operator T is called σ-order continuous if  → 0 in E implies → 0 in	F. 

Theorem 1.1.14 [3] 

 Every σ-order continuous operator is order bounded. 

Proof: 

 Let : →  be an σ-order continuous operator and let ∈ . If we consider the order 

bounded interval 0, ⊆  and let  be a sequence in 0,  such that	 → 0, then since  

is σ-order continuous operator,	 → 0. So, there is a sequence y  in F such that |Tx |

y and ↓ 0. Hence, 0,  is an order bounded subsets of F. Thus  is order bounded	∎ 

Definition 1.1.15 

 Let E and F are Riesz Space. The operator : →  is said to be lattice homomorphism if 

⋁ ⋁  for all , ∈ .  
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Example 1.1.16 

Consider the Riesz space  (with addition and scalar multiplication defined by  

	 and ). Define : →  by  and 	 ⋁ ,  then  

is a lattice homomorphism. To prove it we consider two cases as follows 

Case1:                                                                                                                                             

if   then ⋁  and 	 ⋁ , . 

Case2:                                                                                                                                                                

if  then ⋁  and ⋁ , . 

Hence, T is lattice homomorphism.    

1.2 Convergence in Vector Metric Spaces 

In this section we show the type of convergent in vector metric space and present the properties 

between them. 

Definition 1.2.1 

Let	  be a nonempty set and let  be a Riesz space. The function : → , which satisfies 

the following condition                                                                                                                                 

(VM1) , 0	if and only if  

(VM2)	 , , , , ∀ , , ∈  is said to be vector metric (or -metric). The 

triple ( , ,  is called vector metric space.  

Not that, the vector metric function defined in the previous definition have many properties, 

which is for all , 	 ∈ ,  , 0 and , , . 
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Next we present some examples of vector metric spaces                                      

Example 1.2.2 

 (a) ARiesz space E is a vector metric space with : →  defined by 

d x, y |x y| 

Since it satisfies the condition of definition 1.2.1 as follow 

 , | | 0 if and only if 0 if and only if  and 

 , | | | | | | | | , ,  

This vector metric is called the absolute valued metric on E.  

(b) The space  is a Riesz space with coordinatwise ordering defined by 

, ,  if and only if  and  for ,  and ,  ∈ . To show 

that, let , , ,  and , , then 

1  If , then  and . For , ∈ , we have 

  and …………………………… ⋆  

but ,  and , . 

So, from ⋆  we have . 

(2) If  and ∈ , 0, then  and  and so  and  and 

so . 

Now, let , ∈  where , 	and , , then , , , ∈  and we have foure 

cases: 
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Case (1): If  and , then  and sup , ∈ . 

Case (2): If  and , then sup , , ∈ . 

Case (3): If  and , then sup , , ∈ . 

Case (4): If  and , then  and sup , ∈ . 

So in all cases, the supremum belong to . 

Hence,  is Riesz Space. 

Also  is a Riesz space with coordinatewise defined by 

  , ,  if and only if  or  , .                         

Therefore  : →  defined by  

, , , | |, | |                                                            

is a vector metric, where  and   are positive real numbers. 

Proof: Want to show that , , ,  satisfies (VM1) and (VM2) 

, , , | |, | | 0,0  if and only if | | 0 and 

| | 0, but ,  are positive so | | 0 and | | 0 which implies 

 and  and 

   , , , | |, | |  

	 | |, | |  

| | | |, | | | |  

	 | |, | | | |, | |  
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	 , , , , , ,  

(c) Let : →  defined by 

, | |, | | , where , 0 and 0. Then  is a vector metric with 

coordinatewise. 

Proof : Want to show that ,  satisfies (VM1) and (VM2) 

, | |, | | 0,0  if and only if | | 0 and | | 0, but 

,  are positive not both zero, so | | 0 if and only if 0 if and only if . 

, | |, | | | |, | |  

																																								 | | | |, | | | |  

																																											 | |, | | | |, | |  

																																										 , , , , , ,  

In the rest of this section, we introduce -convergent, - Cauchy, -complet, -bounded and 

prove some relations between them.   

Definition 1.2.3 

Let , ,  be a vector metric space. 

  (a) A sequence ) in X is vectorially convergent (or is E-convergent)  to some ∈ , if there 

is a sequence ( 	in	  such that ↓ 0 and ,  ∀ , denoted by 
,

. 

  (b) A sequence ) in X is called E-Cauchy  whenever there exists a sequence (a 	in	E such 

that ↓ 0 and , , ∀ , . 
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  (c) The vector metric space X is called E-Complete if each E-Cauchy sequence in X is E-

convergent to a limit in X. 

  (d) The set  is said to be -bounded if there exists an element 0 in  such that       

,  for  and  in . 

  (e)  A subset  of vector metric space , ,  is called E-closed if for any sequence       

⊆  such that 
,

 then	 ∈ . 

  (f) A subset  of  is called -dense whenever for every ∈  there exists a sequence  

in  satisfying 
,

. 

Theorem 1.2.4 [4] 

For the vector metric space	 , ,  the following properties hold: 

(a) Every	 -convergent sequence is an -Cauchy sequence.  

 (b) Every -Cauchy sequence is -bounded. 

 (c) If an -Cauchy sequence  has a subsequence  such that 
,

 then	
,

.                         

(d) If  and  are -Cauchy sequence, then ,  is an -Cauchy.                                           

 Proof: 

 (a) Let  be a sequence in  such that 
,

. Want to show that  is -Cauchy in . 

Since there exists a sequence  in  such that ↓ 0 and , 		∀ , then 

, , ,  for all 	and , then 	is an -

Cauchy sequence in	 . 
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(b) Let  be an -Cauchy sequence in . Want to show that  is -bounded, that is there 

exist an element 0 in  such that , , ∀ , ∈ . Since  is -Cauchy then 

there exists a sequence  in  such that ↓ 0 and ,  for all  and . Now, 

let , then let , so  and , , 		∀ , ∈ . 

But ↓ 0 so 		∀ 1.                       

Therefore, let , then we have , 				∀ , ∈  

  (c) Let  be an -Cauchy sequence and let  be a subsequence of  such that     

 
,

 in . Want to find ↓ 0 such that , . Since  is -Cauchy, then  

there exist ↓ 0 such that , , ∀ ,  and since 
,

, then there exist      

 ↓ 0 such that , . Now, , , ,  .                         

Take , clearly, ↓ 0 and , ,therefore, 
,

. 

(d) Let  and  are -Cauchy sequence. Want to show that ,  is an  -Cauchy. 

Since  and  are -Cauchy sequences, then there exist ↓ 0 and ↓ 0 in  such that 

,  and  , . Since                                    

d x , y d x , x d x , y d y , y , 

then                                                   

, , , ,  

and                                    

, , , , . 
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So from the last two inequalities we get                                                                         

 , , , ,  for all  and . 

Therefore, the sequence ,  is an -Cauchy sequence in  ∎ 

Example 1.2.5 

(1) If	 , then the concepts of vectorial convergence and convergence in metric are the 

same. Since , | |, for any , ∈ .  

For more details, if 
,

, then there exist  in  such that ,  and ↓ 0. Now, 

if 0, then there exist  such that ∈, ∀  and so , | | ∈	, ∀

, which implies  converge to . 

(2)  If , then the concepts of  E-Cauchy sequence and Cauchy sequence are the same. 

Since , | |, for any , ∈ .  

For more details, let  be -cauchy sequence, then there exist  in  such that 

,  and ↓ 0. Now, if 0, then there exist  such that ∈, ∀  and 

so , ∈	, ∀ , , which implies  Cauchy sequence. 

1.3 Topological and Vectorial Continuity 

In this section, we study two types of continuity in a vector metric space and give many relations 

between them. Also present -double vector metric and -valued product vector metric.  

Definition 1.3.1 

Let , ,  and ( , ,  be vector metric spaces, and let ∈ . 
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(a) A function : →  is said to be topologically continuous at x if for every 0 in F	there 

exists some a in E such that  ,  whenever , y ∈ X	and , .                         

(b) A function : →  is said to be vectorially continuous at x if  
,

 in  implies 

,
 in Y. 

Theorem 1.3.2 [3]  

 Let , ,  and ( , ,  be vector metric spaces where  is Archimedean. If a function    

: →  is topologically continuous, then  is vectorially continuous.                                       

Proof:  

Let  be a sequence in  such that 
,

, then there is a sequence  in  such that ↓

0 and , .  Let 0 in , since  is a topological continuous at , then                                         

for n=1, there exists 0 in  such that ,  implies ,                         

for n=2, there exists 0 in  such that ,  implies ,                         

if we continue in this manner we get                                                                                                

for , there exists 0,  in  such that ,  implies ,                       

Take ⋀  in E such that if , , then , . But since 

F is Archimedean, then ↓ 0, so if , then f x , f x  and ↓ 0.                         

That is 
,

, so  is vectorial continuous at  ∎ 

The following corollary summarize some of the nice characterization of vectorially continuous 

functions.   
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Corollary 1.3.3 

For a function : →  between two vector metric spaces ( , ,  and , ,  the 

following statements hold for a sequence  in  and ∈ .                        

(a) If F is Dedekind σ-complete, f is vectorially continuous and	 , ↓ 0, then 

, ↓ 0.                                                                                                                                    

 (b) If E is Dedekind σ-complete and , ↓ 0 implies , ↓ 0, then the 

function f is vectorially continuous.  

(c) Suppose that  and  are Dedekind σ-complete. Then the function f is vectorially continuous 

if and only if d x , x ↓ 0 implies	 , ↓ 0                                            

Proof: 

 (a) Let  be a sequence in  such that , ↓ 0, from definition of - convergent, then 

,
. Want to prove that , ↓ 0.                                                                                

Since f is a vectorially continuous, then 
,

, and so there exist ↓ 0 such that 

, 	∀ . Since , : ∈  is a non-empty countable bounded 

subset of  and  is Dedekind - complete then this set has a supermum in , but 

0 ,   ∀ , by sandwich theorem , ↓ 0.                                                     

(b) Let  be a sequence in X such that	
,

, then there is a sequence  in E such that 

↓ 0 and	 , . Want to show that	
,

. Since 	is Dedekind σ-

complete, then , ↓ 0 hold, and , ↓ 0 hold (by hypothesis), and so      

	
,

. 
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 (c) There is two sided to prove this part, one side get from the proof of part (a) and another side 

get from the proof of part (b) ∎  

Now, we will give an example  

Example 1.3.4 

Let , ,  be a vector metric space and suppose	 : →  be a vector metric function.  

If 
,

	 	
,

, then	 , → ,  and  is vectorially continuous. 

Proof: Since 
,

	 	
,

, then there exist ↓ 0 and ↓ 0 such that ,  

and ,  implies | , , | , , .  

Let  ,	then	 ↓ 0	and	| , , | .	So	 , → ,  

Therefore  is vectorially continuous. 

  In this example  is equipped with the -valued vector metric  defined by         

 , , ,  for all , , , ∈  and  is equipped 

with the absolute valued vector metric |. |.  

Theorem 1.3.5 [3] 

 Let , ,  and , ,  be vector metric spaces. If a function : →  is vectorially 

continuous, then for every -closed subset  of  the set  is E-closed in X.                                            
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Proof:  

Let  be a sequence in  such that  
,

. Want to show that ∈ . Since 

the function  is vectorially continuous, 
,

 but the set B is F-closed, so 	 ∈

, that is	 ∈ . Therefore, the set  is -closed ∎  

 Next, we present some results related to Riesz space. To this end note that if 	and	 	are two 

Riesz spaces, then  is also Riesz space with coordinatewise ordering defined 

by                          

 , , ↔ ,   for all , , , ∈ .  

Further, the Riesz space E F is a vector metric space equipped with the biabsolute valued 

vector metric |. | defined as | | | |, | |  for all , , , ∈

. To achieve our goal, first define -double vector metric and give some examples about 

vectorially continuous function.                                                                

Remark 1.3.6                                                                                                                                               

Let  and	  be two vector metrics on  which are -valued and -valued respectively. The 

map  defined by , , , ,  for all , ∈  is an -valued vector 

metric on X.  

Definition 1.3.7 

The -Falued vector metric given in the remark is called  double vector metric.  
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Example 1.3.8                                                                                                                                                 

Let , ,  and , ,  are vector metric spaces and f ∶ X → E, ∶ →  are vectorially 

continuous functions, then the function	 : →  defined by ,  for all 

x ∈ X is vectorially continuous with the double vector metric	δ and the biabsolute valued vector 

metric |. |. To show this, let x  be a sequence in X such that x
,

x.  

Want to show that h x
,

h x .  

Now for some ,  in  with , ↓ 0 we have 

 , , , , ,  which implies 

 ,  and ,  with ↓ 0 and ↓ 0. 

Since f and g are vectorially continuous, then there exist ↓ 0 and ↓ 0 such that 

| |  and | | . Therefore 

 | |, | | , . Let , , then ↓ 0 and 

, , ,  

Hence, h x f x , g x
,

f x , g x h x      

Therefore, h is vectorially continuous function. 

Let X, d , E  and  , d , F  be vector metric spaces. Then X Y is a vector metric space 

equipped with the E F-valued product vector metric π defined by                                     

π z,w d x , x , d y , y  for all	z x , y ,	w x , y ∈ X Y 
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Corollary 1.3.9 [3] 

(a) If f ∶ X, d, E → Y, η, G  and g ∶ X, ζ, F → Z, ξ, H  are vectorially contiuous 

functions, then the function h: X → Y Z defined by h x f x , g y  for all x ∈ X is 

vectorially continuous with E F-valued double vector metric δ on  and the G H-

valued product vector metric π on  and the absolute valued vector metric |. |.   

(b) Let G be a Riesz space. If	f ∶ X, d , E → G	and g ∶ Y, d , F → G are vectorially 

continuous functions, then the function	h: X Y → G defined by h x, y |f x g y | 

for all   x ∈ X, y ∈ Y is vectorially continuous with E F-valued product vector metric 

π on  and the absolute valued vector metric |. | on .                                                                      

        (c) If f: X, d, E → Z, η, G  and g: Y, ζ, F → W, ξ, H  are vectorially continuous 

function, then the function	h: X Y → Z W defined by h x, y f x , g y  for all x ∈

X, y ∈ Y is vectorially continuous with the E F-valued and G H-valued product vector 

metrics on  and  respectively.                                                                 

Proof: 

 (a) Let x  be a sequence in X such that x
,

x.                                                                   

Want to show that	h x
,

h x  .                                                                                     

Since f and g are vectorially continuous, then f x
,
f x  and g x

,
g x  

implies f x , g x
,

f x , g x  because 

Since f x
,
f x  and g x

,
g x , then there exist ↓ 0 and ↓ 0 such that 
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 ,  and , . Take , , clearly ↓ 0 and 

, , , , , , , . . 

Therefore h x f x , g x
,

f x , g x h x .   

Therefore, h is vectorially continuous function     

 (b) Let x  and y  be a sequence in X	and Y respectively such that  x
,
x and y

,
y. 

Want to show that h x , y
,

h x, y .    

since f and g are vectorially continuous function (f x
|.|,

f x  and g y
|.|,

g y , then 

h x , y |f x g y |
,

|f x g y | h x, y   

Therefore, h is vectorially continuous function.  

(c) Let x  and y  be a sequence in X	and Y respectively such that x
,
x and y

,
y.  

Want to show that h x , y
,

h x, y                                                                       

 Since f and g are vectorially continuous, then 
,

 and 
,

.  

Hence h x , y f x , g x
,

f x , g x h x, y .   

Therefore, h is vectorially continuous function.  

Proposition 1.3.10  [3]  

Let , ,  and , ,  be vector metric spaces and z x , y  be a sequence in     

X Y, π, E F  and let z x, y ∈ X Y  
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then, z
,

z if and only if x
,
x and  y

,
y.                                                                                            

Proof:  

First, suppose 
,

 where , , ,  in , then there exist ↓ 0 such 

that , , ∀ . But ∈ , then , . Since ↓ 0, then clearly ↓ 0 

and ↓ 0 and                              

, , , , , , ∀ . Hence , , , 	∀ . 

Thus, 
,

 and 
,

.                                                   

Conversely, suppose 
,

 and 
,

. Want to show that 
,

. Since 
,

 and   

,
, then there exist ↓ 0 and ↓ 0 such that ,  and , .    

Take , , clearly ↓ 0 and , , , , ,  . 

Therefore, 
,

	∎ 

In the next corollary, we show the relation between vectorially continuous function and its 

graph 

Corollary 1.3.11 [3] 

Let , ,  and , ,  be vector metric spaces and let : →  be a function. Then for 

the graph  of  the following statements are hold.                                                                              

(a) The graph  is -closed in , ,  if and only if for every sequence ( ) 

with 
,

 and 
,

 we have . 

(b) If the function  is vectorially continuous then the graph  is -closed. 



22 
 

(c) If the function  is vectorially continuous at ∈  then the induced function : →  

defined by ,  is vectorially continuous at ∈ .                                                                        

Proof:  

(a) The proof of this part contains two sides.                                                                                

⇒ 	Suppose the graph  is -closed. If 
,

 and 
,

 then we have    

,
,

,  by proposition 1.3.10, but  is closed,  

so , ∈  and so 	 . 

⇐) Let  and .  be a sequence in  such that                                             

	
,

, ∈ . Want to show that	 ∈ . By proposition 1.3.10, 
,

 

and	
,

, so  (that’s mean	 , ∈ .      

(b) Let ,  be a sequence in  such that ,
,

, . Want to 

show that ∈ . By proposition 1.3.10,  
,

 and 
,

  but  is vectorially continuous, 

so →  and →  and thus , → ,            

so, , , , → , , ,  and so	 , ∈ . 

Therefore  is -closed.    

(c) Let  be a sequence in  such that	
,

	. Want to show that	
,

 .                         

,
,

, , since  is vectorially continuous. Therefore 

,
 and so  is vectorially continuous at	 .    
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Chapter Two 

Fundamental vector valued function classes 

In this chapter, we will present the concept of , -equivalent, vector isometry and vector 

homeomorphism. Also, we prove many theorems that give the relation between these concepts.  

2.1 Equivalent vector metrics 

Definition 2.1.1 

Let  and  be -valued vector metric and -valued vector metric respectively on , then  

and  are called , -equivalent if for any ∈  and any sequence  in , 
,

 iff  

,
. 

Lemma 2.1.2 [3] 

For any two -valued vector metric  and -valued vector metric  on , the following 

statements are equivalent                                                                                                                                     

(a) There exist some , 0 in  such that , , ,  for all , ∈

.                                                                                                                                                         

(b) There exist two positive and -order continuous operators : →  and  : →  such that 

, ,  and , ,  for all , ∈ . 

Proof: 

 First we will prove that if (a) holds then (b) holds. From (a) there is , 0. Define   

: →  and : →  by  and , for all ∈ . Since , 0, then 
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0 and	 0, ∀ 0, so  and  are positive operators. Let  be 

a sequence in  such that → 0. Since →0 and → 0, then → 0 and         

→ 0 and so  and  are - order continuous. From (a),                                          

, , ,  and , ,  implies  

, , ,  for all , ∈  and therefore we proved (b).                         

Conversely, suppose (b) holds. Let : →  and : →  be positive and -order continuous 

operators that satisfied part (b). By Theorem 1.1.14,  and  are order bounded operators and 

so there exists , 0 such that  

, ,  and , 1/ , . 

But  

, , , 	 and , , 1/ , , 

then  

, ,  and , , . 

That is , , ,  ∎ 

Theorem 2.1.3 [3] 

Let  and  be -valued vector metric and -valued vector metric respectively on , then  

and  are , -equivalent if there exist two positive and -order continuous operators      

: →  and : →  such that , ,  and , ,  for all 

, ∈ . 
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Proof: 

 Let  be a sequence such that 
,

, then there exist a sequence  in  such that  

↓ 0 and , . Want to show that 
,

. Since there exist two positive and 

-order continuous operators : →  and : →  such that , ,  and         

, ,  for all , ∈ , then part (a) of lemma 2.1.2 hold. So, there is 0 

such that , ,  for all n. Let  then ↓ 0 and      

	d x , x b . So 
,

. Conversely, let  be a sequence such that 
,

, then there 

exist a sequence  such that ↓ 0 and ,  . Want to show that 
,

. Since 

there is 0 such that , , , let , then ↓ 0 and 

, , so 
,

. Therefore, -valued vector metric  and -valued vector metric 

 on  are , -equivalent ∎  

Now, we will give an example. 

Example 2.1.4 

Suppose that the ordered of  is coordinatewise                                                                               

(a) Let  and  be -valued and -valued vector metrics on , respectively defined by 

, | |, , | |, | |  where , , 0. Consider the two 

operators : →  and : →  where’s defined by ,  and            

,  for all , ∈ . Then the metrics and  are , -equivalent on  since 

the operators  and  are positive operators (since for all , 0, , , 0 , also let 

 and  be sequences such that →  and → , then 
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, → ,  and  , → , , 

so  and  are -order continuous.                                  

In addition  

, , , , ,  and  

, | |, | | | | , .                                                     

So by Theorem 2.1.3,  and  are , -equivalent. 

(b) Let  and  be -valued and -valued vector metrics on	 , respectively, defined by 

, | | | |,  , | |, | |  

where ,  , ,  and , , , 0. Let : →  and : →  be two 

operators defined as ,  and , . Then the vector 

metrics and  are , -equivalent on  since the operators  and  are positive operators 

(since , , 0 for all , 0), also let  and  be a sequences such that                         

→  and → , then , → ,  and                      

, → , , so  and  are -order 

continuous. In addition, 

 , , , ,  

																								 | |, | | ,   

and          , , , , ,  

																																							 | | | | | | 
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																																																				 | | | | | | , ).                                   

So by theorem 2.1.3  and  are , -equivalent. 

(c) Let ,  and  be -valued, -valued and -valued vector metrics on	  respectively 

defined by , | | | |, , | |, | |  and 

, | |, | |  where , , ,  and , , , 0.   

Let : →  and : →  be two operators defined as ,  and                         

, , , then the vector metrics  and  are , -equivalent on  

since  and  are positive ( , , 0 for all , 0), also let  and  be sequences 

such that →  and → , then                                                                      

, → ,  

and                                       

, , → , , , 

so  and  are -order continuous. In addition there exist two cases                         

Case (1):  

If we take | |, | | | |, then                            

	 , , , ,                                                                                        

																									 | |, | | , | |, | |                          

																										 | |, | | | |, | | , .                                      
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Case (2):  

If we take | |, | | | |, then                      

	 , , , ,                                                                                               

																									 | |, | | , | |, | |                          

																										 | |, | | | |, | | ,  and  

, | |, | |     

                       | |, | | ,                                                             

So by theorem 2.1.3  and  are , -equivalent.                          

Lemma 2.1.5  

Let : → , : →  and : →  be vector metrics, where  and  are 

, -equivalent on , then ∶ , , → , ,  vectorially continuous if and only if 

: , , → , ,  is vectorially continuous. 

Proof: 

 There exist two folds to prove the lemma.                                                                                            

⟹  Let  be a sequence such that 
,

 then 
,

 since  and  are , -equivalent 

on . But	 : , , → , ,  is vectorially continuous so   
,

 and so  is 

vectorial continuous from , ,  to , , .                                                                            
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⇐ 	Let  be a sequence such that 
,

 then 
,

, since  and  are , -equivalent 

on . But	 : , , → , ,  is vectorially continuous so 
,

 and so  is 

vectorial continuous from , ,  to , , 	∎ 

2.2 Vector Isometry and vector homeomorphism 

In this section, we will define an isometry between two vector metric spaces  

Definition 2.2.1 

Let , ,  and , ,  be vector metric spaces. A function : →  is said to be a vector 

isometry if there exists a linear operator : →  satisfying the following conditions:                

(I) , ,  for all , ∈                                                                            

(II) 0 implies 0 for all ∈                                                                                                

If the function  is onto, and the operator  is a lattice homomorphism then the vector metric 

spaces , ,  and , ,  are called vector isometric.  

Lemma 2.2.2 [3] 

Let , ,  and , ,  be vector metric spaces. A vector isometry  is one-to-one 

mapping. 

Proof: 

 Let	 , to show  is one-to-one we must show . Since  is a vector isometry, 

then there exist  such that , , 0 so by Definition 2.2.1 

, 0 and so  ∎ 
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Now, we will give an example 

Example 2.2.3 

Let  be -valued vector metric and let  be -valued vector metric on  defined by 

, | |, , | |, | |  where , 0 and , 0. 

Consider the identity mapping : →  defined by  , ∀ ∈  and the linear operator 

: →  defined by ,  for all ∈ . Then the identity mapping  is a 

vector isometry since                                                                                                             

 , , , , 																																																																					 

                     | |, | |  

																							 | |, | |  

																								 , ,   

and , 0,0  implies , 0,0  for all ∈ , which implies that 

0 and 0. Since  and  are not both zeros, then 0. 

Since  is onto and  is lattice homomorphism, then the vector metric spaces , ,  and 

, , , : ; , ∈  are vector isometric. 

Definition 2.2.4 

Let , ,  and , ,  be vector metric spaces. A function : →  is said to be a vector 

homeomorphism if  is one-to-one, vectorially continuous and has a vectorially continuous 

inverse on . If the function  is onto, then the vector metric spaces  and  are called 

vector homeomorphic.  
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Lemma 2.2.5 [3] 

Let , ,  and , ,  be vector metric spaces. A vector homeomorphism : →  is 

one-to-one function that preserves vectorial convergence of sequences.  

Proof: 

 Let : →  be a vector homeomorphism, then by definition 2.2.4  is one-to-one. let  be 

a sequence in  such that 
,

. Want to show that	
,

. It is clear that is 

satisfied, since  is vectorial continuous (from definition of homeomorphism) ∎   

The following theorem describe that an onto vector homeomorphism keeping the closed 

property 

Theorem 2.2.6 [3] 

An onto vector homeomorphism is one-to-one function that preserve vector closed sets. 

Proof: 

 Let : →  be an vector homeomorphism. Since  is a one-to-one function and its inverse 

 is vectorially continuous then by Theorem1.3.5 for every -closed set  in , 

 is -closed in . 

Now we will give an example, which shows the relationship between vectorial equivalence and 

vector homeomorphism ∎ 

Example 2.2.7 

Let and  be two , -equivalent vector metrics on . Then the vector metric spaces 

, ,  and , ,  are vector homeomorphic under the identity mapping since let      
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: ⟶  be the identity function defined by , then its clearly that  is one-to-one 

vectorially continuous (since if  is a sequence in  such that 
,

 then  

  
,

 and has a vectorially continuous inverse in                           

(because  and is the same as ). 

Lemma 2.2.8 [3] 

 Let , ,  and , ,  be any two vector metric spaces where are vector homeomorphic 

under a function	 : ⟶ , and let , ,  for all , ∈ , then the vector 

metrics	 	and  are , -equivalent vector metrics on . 

Proof: 

 There exist two sides to prove this                                                                                              

⟹  Let  be a sequence in  such that 
,

, want to show that 
,

, since f is vector 

homeomorphism, then f is vectorial continuous so there exist a sequence  in  such that   

↓ 0 and , , so , , . Therefore	
,

.                         

⟸  Let   be a sequence in  such that 
,

, then there exist a sequence  in  such 

that ↓ 0 and , . Want to show that 
,

. But , , , 

so ,  and so 
,

.                                                                           

But  is vectorial continuous, so 
,

 implies 
,

.                        

Therefore,	 	and  are , -equivalent vector metrics on 	∎ 
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Chapter Three 

Extension theorems on continuity 

 This chapter focuses on two types of uniformly continuous functions on vector metric space, 

which are topological uniformly continuous function and vectorial uniformly continuous 

function and give the relation between them. In addition, it will focus on extension theorem. 

3.1 Uniformly continuous functions on vector metric spaces 

Theorem 3.1.1 [3] 

Let , ,  and , ,  be vector metric spaces, and let : →  and : →  be 

vectorially continuous functions. Then the set ∈ :  is an -closed subset of 

. 

Proof:  

Let ∈ :  and let  be a sequence in  such that 
,

. Want to 

show that ∈ . Since  and  are vectorially continuous, there exist sequences  and  

such that ↓ 0 and ↓ 0 and , , ,  for all . Since 

∈ , ∀ , so  and therefore , 0.  

Thus,       , , , ,  

                          																				  .                                                                                                             

But ↓ 0 and ↓ 0, so ↓ 0 and so , 0, which means that          

 and this implies ∈ . Hence,  is an -closed subset of 	∎ 
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Corollary 3.1.2 [3] 

Let , ,  and , ,  be vector metric spaces, and let : →  and  : →  be 

vectorially continuous functions. If the set ∈ :  is -dense in , then . 

Proof: 

 Let	 ∈ : , then by Theorem 3.1.1  is -closed and since  is dense in 

, then . So for all ∈ , , that is  	∎ 

Definition 3.1.3  

Let , ,  and ( , ,  be vector metric spaces.                                                                      

(a) A function : →  is said to be topological uniformly continuous on  if for every 0 

in 	there exist some  in  such that for all x, y ∈ ,	 

,  whenever , . 

 (b) A function : →  is said to be vectorial uniformly continuous on  if for every -Cauchy 

sequence ( ) the sequence 	  is -Cauchy. 

Theorem 3.1.4 [3] 

Let , ,  and ( , ,  be vector metric spaces where  is Archimedean. If a function 

: →  is topological uniformly continuous, then  is vectorial uniformly continuous. 

Proof:  

Suppose that  is an -Cauchy sequence. Then there exists a sequence  in  such that 

↓ 0 and ,  for all  and . Since  is topological uniformly continuous on 

, then for any 0 in , there exist 0 in  such that ,  implies 
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, . Take min	 , , so ,  implies , . 

But , ∀ , so ,  implies , 1⁄ . 

However, since  is Archimedean, 1⁄ ↓ 0, So  is -Cauchy∎  

Now, we will give an example a bout vectorial uniformly continuous function  

Example 3.1.5 

(a) Let , ,  and , ,  be two vector metric spaces and the function : →  be a 

vector isometry, then the function  is vectorial uniformly continuous if  is positive and -

order continuous.                                                                                                                          

 Proof: 

 Suppose  is positive and -order continuous. Let  be -Cauchy sequence, then there 

exist a sequence ↓ 0 in  such that ,  for all  and . We want to prove 

that  is -Cauchy. Since  is a vector isometry, then ,  implies                         

, , , say .                                  

Clearly, ↓ 0 since ↓ 0 and   is positive and -order continuous. So, 

,  for all  and , which implies that  is -Cauchy. 

(b) Let , ,  be vector metric space. Fix ∈ , then the function : →  defined by 

,  for all ∈  is vectorial uniformly continuous since let  be -Cauchy 

sequence in . Want to show that  is -Cauchy. Let , then  is -Cauchy. 

So by Theorem 1.2.4 ,  is -Cauchy, but , . So  is vectorial 

uniformly continuous. 
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Now we will arise to the main theorem of my thesis 

Theorem 3.1.6 (Extension Theorem), [3] 

Let  be -dense subset of a vector metric space , ,  and , ,  be an -complete 

vector metric space where  is Archimedean. If : →  is topological uniformly continuous 

function then  has a unique vectorially continuous extension to  which is also topological 

uniformly continuous. 

Proof: 

 Let ∈ . Then there exist a sequence  in  such that 
,

, since  is -dense subset 

of . By theorem 1.2.4,  is -Cauchy in , but  is vectorially uniformly continuous 

function. So  is -Cauchy sequence in .  is -complete vector metric space, so 

 is - convergent, that is 
,

. Define an extension function : →  by 

 if ∈ \ , and  if ∈ . 

Claim:  is well define.                                                                                                                   

Proof of claim: 

 Let  be another sequence in  such that 
,

. As we said,  is -Cauchy in , 

then 
,

. Since  and  are -convergent sequences then  and 

 are - Cauchy. By Theorem 1.2.4, we have ,  F-Cauchy, so there exist 

↓ 0 such that , . Also, since 
,

 and 
,

, then there 

exist ↓ 0 and ↓ 0 such that ,  and , 	∀ . Therefore                             
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  , , , ,                                            

																			 . but ↓ 0,                                                                

Thus, , 0. Therefore . 

Now, want to show that  is topological uniformly continuous function.                                     

Let 0 in , since  is topological uniformly continuous on , there exist 0 in  such 

that ,  implies , , ∀ , ∈ . Now, let , ∈  with          

, . We want to show , . 

Case I: If , ∈ , then we done.                                                                                                         

Case II: Suppose , ∈ \ , since  is dense, there exist two sequences  and  in  

such that 
,

 and 
,

. So , → ,  in . Fix  such that  implies 

, , so , , ∀ . Since  is a vectorial uniformly 

continuous in , then  and  are -Cauchy. But  is -complete. So there exist 

 and ∈  such that 
,

 and 
,

. By definition of ,  and 

. Then, , → , , . 

Now, want to prove that extension function is unique.                                                                     

Let  and h are two extension functions of f. Want , ∀ ∈ .                                     

Case I: Let ∈ , then .   
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Case II: Let ∈ \ , then there exist a sequence  in  such that 
,

. Since  and  

are vectorial continuous function, then 
,

 and 
,

, but                         

. So 	∎  

Theorem 3.1.7 

Let  be -dense subset of a vector metric space , ,  and , ,  be an -complete 

vector metric space where  is Archimedean. If : →  is vectorially uniformly continuous 

function then  has a unique vectorially continuous extension to .  

Proof:  

The definition of the extension function, the well-defined and the uniqueness of this function 

as in Theorem 3.1.6 . To show that  is vectorially continuous function, let  be a sequence 

in  such that 
,

, since  is -dense subset of , there exist sequences  and  

in  such that 
,

 and   
,

. Hence, there exist ↓ 0, ↓ 0 and ↓ 0 such 

that , , ,  and , . Now, let , then  

and  so  

 , , , ,  

																																					 , let , then ↓ 0 

and 
,

. 

Therefore 
,

, 
,

 and   
,

, so there exist ↓

0, ↓ 0 and ↓ 0 such that  , , ,  and 

, .  
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Now, let , then  and , so                                                                 

 , , , ,  

																																 ,	let , then ↓ 0.                                     

Therefore, ,  and so  is vectorial continuous extension ∎       

3.2 Uniformly Convergent in Vector metric spaces 

This section focuses on uniformly -convergent, vectorial bounded function, the uniform limit 

theorem and many concepts and relations in vector metric space 

Definition 3.2.1 

Let  be any nonempty set and let , ,  be a vector metric space. Then a sequence  of 

functions from  to  is said to be uniformly -convergent to a function	 : → , if there 

exists a sequence  in  such that ↓ 0 and ,  holds for all ∈  

and	 ∈ . 

Now, we will give an example 

Example 3.2.2 

(a) Let 0,1 , and , | |, | | . Define                             

, , 

then  is uniformly -convergent to , 0   

since  
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,
1

, 0  

                           																																														 ,                                                                                       

take , , then ↓ 0 and 

, , , . 

(b) Let , and , | |, | | . Define , , 

then  is uniformly -convergent to ,  since,                         

, ,  

                           ,                                                                                                                      

take , , then ↓ 0 and  , , . 

 In addition, 	 in example 3.2.2 is -convergent to  since every uniformly -convergent is        

-convergent.                                                                                                                                                       

Now, we will give the main result of this chapter 

Theorem 3.2.3 (Uniform Limit Theorem), [3] 

Let  be a sequence of vectorially continuous functions between two vector metric spaces 

, ,  and , , . If  is uniformly -convergent to , then the function  is 

vectorially continuous function. 
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Proof: 

 Let  be a sequence in  such that 
,

. Want to show that 
,

. Since  

is uniformly -convergent to , there is a sequence  in  such that ↓ 0 and 

,  for all ∈  and ∀ ∈ . For each ∈  there is a sequence  in  

such that     ↓ 0 and ,  for all ∈  by the vectorial continuity of	 . 

For  we get,  

, , , ,  

																																														 2 ,  

let 2  , then ↓ 0 and , . So	
,

.  

Therefore  is vectorially continuous function ∎       

Let  be a nonempty subset of a vector metric space	 , , . -diameter of  denoted 

by	 , is defined by , : , ∈  if  , : , ∈  exist in .  

Theorem 3.2.4  

Let  be a sequence of vectorially uniformly continuous functions between two vector metric 

spaces , ,  and , , . If  is uniformly -convergent to , then the function  is 

vectorially uniformly continuous function 

Proof: 

 Let  be an -Cauchy sequence in . Want to show that  is -Cauchy. For all   ∈

,  is vectorial uniformly continuous function, then  is -Cauchy. So there exist 

↓ 0 such that , 	∀ , . Since  is uniformly -convergent to 
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, there exist ↓ 0 such that , . Then ,

, , ,

2  and 2 ↓ 0.                                 

So,  is -Cauchy sequence and so  is vectorially uniformly continuous function ∎  

Theorem 3.2.5  

Let  be a sequence of topological continuous functions between two vector metric spaces 

, ,  and , , . If  is uniformly -convergent to , then the function  is 

topological continuous function. 

Proof:  

Let 0, since  is topological continuous, there exist 0 such that ,  

implies , . Take inf : ∈ , then ,  implies 

, , , ,  

																														 2 .                                                                                  

As → ∞, , . Therefore  is topological continuous function ∎ 

Theorem 3.2.6 [3] 

Let  be a nonempty subset of a vector metric space	 , , . If  is Dedekind complete, then 

every -bounded subset of  has an -diameter.  

Proof: 

 Let  be -bounded subset of , then there exist an element 0 such that 
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, , ∀ , ∈ .  If we take a supremum for both sides we get                       

, : , ∈ . Therefore, it has a supremum and  ∎ 

Definition 3.2.7 

A function : →  between two vector metric spaces , ,  and , ,  is called 

vectorial bounded if  maps -bounded subsets of  to -bounded subsets of	 . 

Theorem 3.2.8 [3] 

A function : →  between two vector metric spaces , ,  and , ,  is vectorial 

bounded if there exists a positive operator : →  such that , ,  

for all , ∈ . 

Proof: 

 Suppose there exists a positive operator : →  such that , ,  for 

all , ∈  hold. Let  be -bounded subset of , then there exist an element  such that 

, , ∀ , ∈ , want to show that  is -bounded. Let , ∈ ,                   

take , then ∃	 , ∈  such that   and  and                 

, , , 	∎                                                 

Therefore  is - bounded.  

Let ,  and ,  be the collection of all vectorially continuous and topologically 

continuous functions between a vector metric space , ,  and a Riesz space , respectively. 

By theorem 1.3.2  , ⊆ ,  whenever  is Archimedean.  
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Lemma 3.2.9 

Let , ,  and , ,  be two vector metric spaces, then ,  and ,  are closed 

under addition and scalar multiplication. 

Proof: 

 Let  and  be a function in ,  and  be a scalar. Want to show that  and  are 

vectorial continuous functions. Let  be a sequence in  such that 
,

.  

Since , ∈ , , then 
,

 and 
,

.  

So                                                                                                               

,
 

and                                  

,
. 

So  and  are vectorial continuous functions (that means , ∈ , ).    

Therefore ,  is closed under addition and scalar multiplication 

Let  and  be a function in ,  and  be a scalar. Want to show that  and  are 

topological continuous functions. Let , , ∈  such that , 0 and , , then since 

, ∈ , , then ,  and ,  for all , ∈ . So                         

, ,  

                                               , ,  

                                               .                                                                                                
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Let , then ,  and 

, , 	 , . 

So  and  are topological continuous functions (that means	 , ∈ , ). 

Therefore ,  is closed under addition and scalar multiplication	∎ 

Theorem 3.2.10  [3] 

 The spaces ,  and ,  are Riesz spaces with the natural partial ordering defined by 

 whenever  for all ∈ .  

Proof : 

 Let , , ∈ ,  and , then 

(1)   

∴  

(2) Let 0,  

∴ 	 .                                                                                                                                                   

From (1) and (2), ,  is an ordered vector space and the supremum exist inside this space. 

So, ,  is Riesz space. Similarly, ,  is Riesz space ∎ 
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Conclusion 

In this thesis, I studied the relationships between topological continuity and vectorial 

continuity.” Cüneyt Çevik” has concluded that: every topological continuous function is a 

victorial continuous function. In addition, he proved that every topological uniformly 

continuous function is  vectorial uniformly continuous function. He also studied extension 

theorem and the uniform limit theorem. 

After deep study for the above, I managed to prove the following: 

Let  be -dense subset of a vector metric space , ,  and , ,  be an -complete 

vector metric space where  is Archimedean. If : →  is vectorially uniformly continuous 

function then  has a unique vectorially continuous extension to . 

Let  be a sequence of vectorially uniformly continuous functions between two vector metric 

spaces , ,  and , , . If  is uniformly -convergent to , then the function  is 

vectorially uniformly continuous function 

 Let  be a sequence of topological continuous functions between two vector metric spaces 

, ,  and , , . If  is uniformly -convergent to , then the function  is 

topological continuous function. 

Finally, I conjecture the vice versa of these results are not true but that will need further study 

from other researchers. 
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 أ

  قترانات متجھات الفضاءات المتریةلاتصال ما بین اا

  يطالبة : تھاني صبحي جبریل القادراسم ال

  شراف : د. إبراھیم الغروزا

  ملخص

 نوعان من الاتصال ( الفیكتوریال والتیبولوجیكال) وتوصل بناءً على ذلك إلى العدید سیفیك، درس الباحث كیونیت 2014عام 

  "نظریة التمدد" و " نظریة النھایة المنتظمة". المھمة في الفضاءات المتریة ومن ھذه العلاقاتمن العلاقات والنظریات 

 من العدید لىإ توصلت حتى سیفیك كیونیت الباحث إلیھ توصل ما على وبتطویر بدراسة قمت الرسالة، لھذه كتابتي خلال

في الحقیقة انني اثبتت ان نظریة التوسع صحیحة في حالة كون الاقتران اقترانا فضائیا متصلا ومنتظم بدلا من  .العلاقات

لنھایة أیضا استطعت ان اثبت نظریة ا ،بحثھفي  ومنتظم كما اثبت العالم كیونت سیفیكومتصلا  طوبولوجيكونة اقترانا 

 .لالمتص الطوبولوجيالنظریة في حالة الاقتران  اثبتنا ھذهوكذلك ، في حالة الاقتران الفضائي المتصلالمنتظمة 
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