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Abstract

In 2014, the researcher “Cuneyt Cevik” studied two types of continuity of functions in vector
metric spaces, namely, vectorial and topological continuous functions. Cevik concluded several
important relations and theorems in vector metric space, such as Extension Theorem and

Uniform Limit theorem.

In this thesis, I studied and developed the Cuneyt Cevik’s work [3], so I concluded and found
out many relations. In fact, we proved the Extension Theorem holds for the case of vectorial
uniformly continuous instead of a topological uniformly continuous as “Cuneyt Cevik “
proved. Also, we proved the uniform limit theorem for the case of vectorially uniformly

continuous and topological continuous.



Introduction

In [4], a vector metric space is defined with a distance map having values in a Riesz space, and
some results in metric space theory are generalized to vector metric space theory. In this thesis,
we used the Riesz space as a tool for studying the continuity of vector valued functions, for
more information about Riesz spaces see [2, 5, 7]. Actually, the study of metric spaces having
value on a vector space has started by Zabrejko in [6]. The distance map in the sense of Zabrejko
takes values from an ordered vector space. We use the structure of lattice with the vector metrics

having values in Riesz spaces; then we have new results.

The outline of the thesis is as follows

In Chapter one a general introduction about Riesz space, vector metric space and two types of
continuity on vector metric space is presented. This chapter distinguishes continuities
vectorially and topologically. Moreover, vectorial continuity examples are given and the

relationship between vectorial continuity of a function and its graph demonstrated.

In Chapter two equivalent vector metrics, vectorial isometry, vectorial homeomorphism

definitions, and examples are given.

In Chapter three uniform continuity was discussed, some extension theorems for functions
defined on vector metric spaces are given, uniform limit theorem on a vector metric space is

given, and the structure of vectorial continuous function spaces is demonstrated.



Chapter one

Vector Metric Spaces

In this chapter we will introduce the concepts of Riesz space, order convergent, vector metric
spaces, E-convergent, topological continuous and vectorial continuous spaces and also some

related concepts.

1.1 Riesz Space

In order to define the concept of vector metric space we need to define the Riesz space. To do

this, we first define an ordered relation and an ordered vector space.

Definition 1.1.1

Let E be a vector space over the real number R, an ordered relation is a partially ordered relation

< which satisfies the following condition if x,y,z € E,A € R,A = 0, then

x+z<y+z and Ax < Ay whenever x < y.

The vector space E over R with an ordered relation < on E is called an ordered vector space.

The following examples explain what we mean by an ordered vector space

Example 1.1.2

Let R be the set of real numbers and consider R as a vector space over itself (with usual addition

and scalar multiplication), then R with usual partially ordering <, is an ordered vector space.



Example 1.1.3

a b

Consider M = {[C d :a,b,c,d € R} as a vector space over R (with usual addition and scalar

multiplications in matrices). Define < on M by A < B if and only if trac(4) < trac(B), then

(M, <) is an ordered vector space, since

trac(A + C) = trac(A) + trac(C) and trac(1A) = A trac(4).
Next, we define a Riesz space.

Definition 1.1.4

Let E be a vector space over R, then E is said to be Riesz Space if it is an ordered vector space

and for each pair of elements in E it has a supremum or infimum in E.
The vector spaces defined in Example 1.1.2, 1.1.3 are Riesz spaces.

Now we will introduce several definitions in order to define order convergent and order Cauchy.

Not that a set E is bounded if it is bounded from both above and below. Also, we write
a, | a if (a,) is decreasing sequence in E such that inf a, = a.

Definition 1.1.5

Let E be a Riesz space. E is called Archimedean if % 1 0,Va € E, where

E, ={x € E:x = 0}. Clearly, forall a € R, and% 1 0, R is Archimedean.

Moreover, we want to define Dedekind complete and Dedekind o-complete.



Definition 1.1.6

Let E be a Riesz space, E is called Dedekind complete if every nonempty bounded above subset

of E has a supremum in E.

Recall that in R, every nonempty bounded above subset has a supremum in R (complete axiom).

Therefore, R is Dedekind complete.

Definition 1.1.7

Let E be a riesz space, E is called Dedekind o- complete if every nonempty countable bounded

above subset of E has a supremum in E.

Let E be a Dedekind complete, if A is a nonempty countable bounded above subset of E, then
A is bounded above in E, so by Definitionl.1.6, A has a supremum, which implies that E is

Dedekind o-complete. In fact we proved the following theorem.

Theorem 1.1.8

Every Dedekind complete is Dedekind o-complete.

The convers of the last theorem is not true since we can find an example which is Dedekind

o-complete but not Dedekind complete.

Example 1.1.9

Let E be the Riesz space of all real bounded functions on [0,1] such that f(x) # f(0) holds for

at most countably many x, with pointwise ordering defined as

(f1,91) < (f2,92) ifand only if f; < f, and g; < g, for (f1, 91) and (f2, g2) € [0,1]



If 0 < U,, <V holds for the sequence (U,,) in E, then sup U,, exists in E, so E is Dedekind o-

complete.

Let A = {all function f € E vanishing on [0, %]} and

A% = {all function f € E vanishing on E 1]}. Soevery f € ADAY satisfies £(0) = 0, so

ADA® # E, so E does not have the projection property. But we know from theorem12.3 in [1]

“ Every Dedekind complete has the projection property

Not that if we let E be a Riesz Space, then the supremum element denoted by xVy defined by
xVy = sup{x,y} Vx,y € E.

Definition 1.1.10

Let E be a riesz space.

(a) A sequence (b,,) in E is said to be o-convergent (or order convergent) to b if there is a

sequence (ay) in E such that a,, { 0 and |b,, — b| < a,, for all n.
(denoted by ( b, 5 b)) where |a|: = aV(—a) for any a € E.

(b) A sequence (b,,) in E is said to be o-Cauchy if there exists a sequence (a,) in E such that

a, 4 0and |brl — bn+p| <a, Vn,p €N.
(c) The Riesz space E is said to be o-complete if every o-Cauchy sequence is o- convergent.

Now we will introduce many concepts on operator function T between two Riesz spaces in

order to prove that every o-order continuous operator T is bounded.



Definition 1.1.11

The operator T: E — F between two Riesz spaces is positive if T(x) = 0 for all x > 0.
Definition1.1.12

(a) Let (E, <) be a Riesz space and let x, y € E, then the order interval [x, y] is the set
{zeE:x<z<y}

(b) The operator T: E — F between two Riesz spaces is order bounded if it maps bounded

subsets of E to bounded subsets of F.

Definition 1.1.13

The operator T is called o-order continuous if x, 50inE implies T (x,,) % 0inF.
Theorem 1.1.14 [3]

Every o-order continuous operator is order bounded.

Proof:

Let T:E — F be an o-order continuous operator and let x € E,. If we consider the order
bounded interval [0, x] € E and let {x,,} be a sequence in [0, x] such that x,, 5 0, then since T
is o-order continuous operator, T (x;,) 5o0. So, there is a sequence (y,) in F such that |Tx,| <
ynand y, 4 0. Hence, T[0, x] is an order bounded subsets of F. Thus T is order bounded m

Definition 1.1.15

Let E and F are Riesz Space. The operator T: E — F is said to be lattice homomorphism if

T(xVy) = T(x)VT(y) forall x,y € E.



Example 1.1.16
Consider the Riesz space R* (with addition and scalar multiplication defined by

x+y=xxXy and kx = x¥). Define T: Rt > R by T(x) = x? and xVy = sup{x,y} then T

is a lattice homomorphism. To prove it we consider two cases as follows

Casel:

if x = ythenT(xVy) = T(x) = x? and T(x)VT(y) = sup{x?,y?} = x2.
Case2:

if x < ythen T(xVy) = T(y) = y? and T(x)VT (y) = sup{x?, y?} = y2.
Hence, T is lattice homomorphism.

1.2 Convergence in Vector Metric Spaces

In this section we show the type of convergent in vector metric space and present the properties

between them.
Definition 1.2.1

Let X be a nonempty set and let E be a Riesz space. The function d: X X X — E, which satisfies

the following condition
(VM1)d(x,y) =0ifand only if x =y

(VM2)d(x,y) <d(x,z) +d(y,z),Vx,y,z € X is said to be vector metric (or E-metric). The

triple (X, d, E) is called vector metric space.

Not that, the vector metric function defined in the previous definition have many properties,

whichis forall x,y € X, d(x,y) = 0and d(x,y) = d(y, x).

7



Next we present some examples of vector metric spaces

Example 1.2.2

(a) ARiesz space E is a vector metric space with d: E X E = E defined by
dx,y) =[x -yl

Since it satisfies the condition of definition 1.2.1 as follow

d(x,y) = |x —y| = 0ifand only if x — y = 0 if and only if x = y and

dx,y)=lx—yl=Ix—z+z-y|<|x—z|+|z-y| =d(x 2) +d(zy)

This vector metric is called the absolute valued metric on E.

(b) The space R? is a Riesz space with coordinatwise ordering defined by

x1,V1) < (x3,¥,) if and only if x; < x, and y; < y, for (x1,¥;) and (x,,V,) € R?. To show
(1, y1) = (x2,¥2) y 1=y y y

that, let x = (x1,%,), ¥y = (y1,¥,) and z = (z4, z,), then

(1) If x <y, thenx; <y; and x, < y,. For z;,z, € R, we have

X1+2Zi Sy i+ ziand X, + 2, S Yyt Zge i (*)
butx+z=(x;+z,x,+z)andy+z = (y; + 21,y + 7).

So, from (¥) wehave x + z < y + z.

2)Ifx <yand A € R,A =0, then x; < x, and y; < y, and so Ax; < Ax, and 1y; < Ay, and

so Ax < Ay.

Now, let x,y € R? where = (x1,y,) and (x,,y,), then x;,x,,v;,¥, € R and we have foure

cascs:



Case (1): If x; < y; and x, < y,, then x < y and sup{x,y} = y € R?.
Case (2): If x; < y; and x, > y,, then sup{x, y} = (y,,x,) € R
Case (3): If x; = vy, and x, < y,, then sup{x,y} = (x;,y,) € R?.
Case (4): If x; = vy, and x, = y,, then x > y and sup{x, y} = x € R?.
So in all cases, the supremum belong to R?.

Hence, R? is Riesz Space.

Also R? is a Riesz space with coordinatewise defined by

(%1, 1) < (x2,¥2) if and only it x <x, or X=X, V1 < V.

Therefore d:R? X R? —» R? defined by
d((xp}’l)' (xz')’z)) = (alx; = y1l, Blxz — y21)
is a vector metric, where a and [ are positive real numbers.

Proof: Want to show that d((xl, y1), (x3, yz)) satisfies (VM1) and (VM2)

d((xl'h): (xth)) = (alx; = 1|, Blxz — y.1) = (0,0) if and only if a|x; —y,| =0 and
Blx, —y,| =0, but a, B are positive so |x; — y;| = 0 and |x, — y,| = 0 which implies x; =

x, and y; = y, and
d((x1,Y1)» (xZ»YZ)) = (alxy —y1l, Blxy — y21)
= (alx; —zy +z; — 1|, Blxs — 2, + 2, — 1)

< (alxy — z1| + alzy — y1l, Blxy — 25| + Blzz — ¥, 1)
< (alxy — z4|, Blxy — z,|) + (alzy — y1l, Blzz — ¥21)

9



= d((xlrzl)ﬂ (xz'Zz)) + d((zl')ﬁ); (ZZ'yZ))
(c) Let d: R X R — R? defined by

d(x,y) = (alx — y|,Blx — y|), where @, 8 = 0 and @ + 8 > 0. Then d is a vector metric with

coordinatewise.
Proof : Want to show that d(x, y) satisfies (VM1) and (VM2)

d(x,y) = (alx — y|,Blx — y|) = (0,0) ifand only if @|x — y| = 0 and B|x — y| = 0, but

@, B are positive not both zero, so |[x — y| = 0 ifand only if x —y = 0 ifand only if x = y.

dx,y) = (alx —yl,plx —yD) =(alx —z+z—y|,Blx —w+w —y])

< (alx —z[ + alz = yl, Blx —w| + Blw = yI)

< (alx — z|, Blx —w]) + (alz — y|, Blw =)
= d((x1:21); (xz;zz)) + d((Z1;J’1). (Zz»yz))

In the rest of this section, we introduce E-convergent, E- Cauchy, E-complet, E-bounded and

prove some relations between them.
Definition 1.2.3
Let (X, d, E) be a vector metric space.
(a) A sequence (x,) in X is vectorially convergent (or is E-convergent) to some x € X, if there

d.E
is a sequence (a,) in E such that a,, 1 0 and d(x,, x) < a, Vn, denoted by x,, — x.

(b) A sequence (x,,) in X is called E-Cauchy whenever there exists a sequence (a,) in E such

that a, 1 0 and d(xp, Xp4p) < ap, VN, p.

10



(c) The vector metric space X is called E-Complete if each E-Cauchy sequence in X is E-

convergent to a limit in X.

(d) The set X is said to be E-bounded if there exists an element a > 0 in E such that
d(x,y) < aforxandyin X.
(e) A subset U of vector metric space (X, d, E) is called E-closed if for any sequence

d.E
(x,,) € U such that x,, — x thenx € U.

(f) A subset Y of X is called E-dense whenever for every x € X there exists a sequence (x,,)
. . . d’E
in Y satistying x,, — x.
Theorem 1.2.4 [4]
For the vector metric space (X, d, E) the following properties hold:

(a) Every E-convergent sequence is an E-Cauchy sequence.

(b) Every E-Cauchy sequence is E-bounded.

d.E dE
(c) If an E-Cauchy sequence (x,) has a subsequence (xnk) such that x, — x then x, — x.

(d) If (x;,) and (y,,) are E-Cauchy sequence, then (d(x,, y,)) is an o-Cauchy.

Proof:

d.E
(a) Let (x;,) be a sequence in X such that x,, — x. Want to show that (x,,) is E-Cauchy in X.

Since there exists a sequence (a,) in E such that a, { 0 and d(x,,x) < az—” Vn, then

d(xn,xn+p) < d(x,,x)+ d(xn+p,x) < az—"+ az—” < a, for all nand p, then (x,)is an E-

Cauchy sequence in X.

11



(b) Let (x,,) be an E-Cauchy sequence in X. Want to show that (x,,) is E-bounded, that is there
exist an element a > 0 in E such that d(x,, x,,,) < a, Yn,m € N. Since (x,,) is E-Cauchy then

there exists a sequence (a,,) in E such that a,, | 0 and d(x,, X,,4) < a, for alln and p. Now,
letm > n,thenletp =m —n,som = n+ p and d(xp, xp) = d(xp, Xn1p) < @, ¥n,m € N.

Buta, ! 0soa; >a, y/n>1.
Therefore, let a = a,, then we have d(x,, x,,) <a Vn,m €N

(c) Let (x,) be an E-Cauchy sequence and let (xnk) be a subsequence of (x;,) such that
d.E
Xp, — x in X. Want to find ¢, | 0 such that d(x,,x) < ¢,. Since (x,) is E-Cauchy, then

dE .
there exist a,, 1 0 such that d(xn, xn+p) < ap, Vn,p and since x,, — x, then there exist

b, L 0 such that d(x,,x) <b,. Now, (xp,x)<d(xyx,,)+d(xn,x) <a,+by.
a4,

Take ¢, = a, + by, clearly, ¢, | 0 and d(x,,, x) < c,,therefore, x,, — x.

(d) Let (x,,) and (y,,) are E-Cauchy sequence. Want to show that (d(x,, y,,)) is an o-Cauchy.

Since (x,) and (y,,) are E-Cauchy sequences, then there exist a,, | 0 and b,, 0 in E such that

d(%n, Xn1p) < an and d(¥n, Ynip) < by. Since

d(Xn+ps Ynep) < d(XnapsXn) + d(Xn, ¥n) + AV Ynap),
then

d(tn, yn) = d(Xn1p Ynap) < d(Xn Xnsp) + AV Vo)
and

d(xn+pr yn+p) - d(xn; yn) < d(xn+p;xn) + d(yn+pr Yn)-

12



So from the last two inequalities we get

|d G yn) = Ay Ynap)| < Ay Xnip) + Ay Ynap) < @n + b, for all n and p.

Therefore, the sequence (d(x,, y,,)) is an 0-Cauchy sequence in £ m
Example 1.2.5

(1) If E = R, then the concepts of vectorial convergence and convergence in metric are the

same. Since d(x,y) = |x — y|, forany x,y € R.

d.E . _
For more details, if x,, — x, then there exist a,, in E such that d(x,, x) < a,, and a,, 1 0. Now,
if € > 0, then there exist N such that a,, <€, Vn > N and so d(x,,x) = |x,, — x| <€,Vn >

N, which implies (x,) converge to x.

(2) If E = R, then the concepts of E-Cauchy sequence and Cauchy sequence are the same.

Since d(x,y) = |x — y|, for any x,y € R.

For more details, let (x,) be E-cauchy sequence, then there exist b, in E such that

d(Xp, Xp4+p) < by and b, 1 0. Now, if € > 0, then there exist N such that b, <€, Vn = N and

SO d(xn,xn+p) = |xn — xn+p| <€,Vvn,p = N, which implies (x,) Cauchy sequence.
1.3 Topological and Vectorial Continuity

In this section, we study two types of continuity in a vector metric space and give many relations

between them. Also present §-double vector metric and E X F-valued product vector metric.
Definition 1.3.1

Let (X,d4, E) and (Y, d,, F) be vector metric spaces, and let x € X.

13



(a) A function f: X — Y is said to be topologically continuous at x if for every b > 0 in F there

exists some a in E such that d,(f(x),f(y)) <b whenever x,y € Xand d;(x,y) < a.
dyE
(b) A function f: X — Y is said to be vectorially continuous at x if x, —Sx in X implies
da,F ‘
f) — f(x)inY.
Theorem 1.3.2 [3]

Let (X,dy, E) and (Y, d,, F) be vector metric spaces where F is Archimedean. If a function

f:X =Y is topologically continuous, then f is vectorially continuous.
Proof:
. diE . .
Let (x,) be a sequence in X such that x,, — x, then there is a sequence a,, in E such that a,, |
0 and d; (x,, x) < a,. Letb > 0in F, since f is a topological continuous at x, then

for n=1, there exists by > 0 in E such that d;(x,x;) < b; implies d,(f(x), f(x1)) <b
for n=2, there exists b, > 0 in E such that d;(x,x;) < b, implies d,(f(x), f(x3)) <g
if we continue in this manner we get

for n = k, there exists b, > 0, in E such that d,(x,x;) < by, implies d,(f (x), f (xx)) <%
Take ¢, = ag/Aby in E such that if d; (%, x) < ¢ < by, then d,(f (x), f(x)) < %. But since
F is Archimedean, then -10, so if dy =7, then dy(f(xi),f(x)) <dy and dj L 0.
That is f(xy) % f(x), so f is vectorial continuous at x =

The following corollary summarize some of the nice characterization of vectorially continuous

functions.

14



Corollary 1.3.3

For a function f:X — Y between two vector metric spaces (X,d;,E) and (Y,d,, F) the
following  statements hold for a sequence (x,) in E and x€E.

(a) If F is Dedekind o-complete, f is vectorially continuous and d;(x,,x) ! 0, then

da (f (%), f(x)) 1 0.

(b) If E is Dedekind o-complete and d,(x,,x) 1 0 implies d,(f(x,), f(x)) 1 0, then the

function f is vectorially continuous.

(c) Suppose that E and F are Dedekind o-complete. Then the function f is vectorially continuous

if and only if d; (xp,x) { 0 implies d, (f (x,), f(x)) 1 0
Proof:

(a) Let (x,) be a sequence in E such that d; (x,,, x) | 0, from definition of E- convergent, then

dy B
X, —> x. Want to prove that d, (f (x,,), f (x)) L 0.

dy F
Since f is a vectorially continuous, then f(x,,) = f(x), and so there exist b,, { 0 such that
dy(f (xn), f(x)) < by, Vn. Since {d;(f (x,,), f(x)):n € N} is a non-empty countable bounded
subset of F and F is Dedekind o- complete then this set has a supermum in F, but

0 < d,(f(xn), f(x)) < b, Vn, by sandwich theorem d,(f (x,,), f(x)) { 0.

d ’E . .
(b) Let x,, be a sequence in X such that x,, = x, then there is a sequence (a,) in E such that

dy F
a, {0 andd(x,, x) < a,. Want to show that f(x,) = f(x). Since Eis Dedekind o-

complete, then d(x,,x) ! 0 hold, and d,(f(x,), f(x)) ! 0 hold (by hypothesis), and so
dy,F
fxn) — f(x).

15



(¢) There is two sided to prove this part, one side get from the proof of part (a) and another side

get from the proof of part (b) m
Now, we will give an example
Example 1.3.4

Let (X, d, E) be a vector metric space and suppose d: X? — E be a vector metric function.
dE d,E 0 : . .
Ifx, = x and y, — y, then d(x,, y,) = d(x,y) and d is vectorially continuous.

d,E d.E
Proof: Since x,, — x and y,, — vy, then there exist a,, | 0 and b,, | 0 such that d(x,, x) < a,

and d(yn, y) < by, implies |d(xn, y) — d(x,¥)| < d(xn, %) + d(Yp, ¥) < an + by
Let ¢, = a, + by, thenc, | 0 and |d(x,, yn) — d(x,y)| < c,. So d(x,, Yn) 5 d(x,y)
Therefore d is vectorially continuous.

In this example X2 is equipped with the E-valued vector metric d defined by

d(z,w) = d(xy,x;) + d(yy,y,) for all z= (x;,v;), w = (x5,¥,) € X? and E is equipped

with the absolute valued vector metric |. |.
Theorem 1.3.5 [3]

Let (X,dy,E) and (Y,d,, F) be vector metric spaces. If a function f: X — Y is vectorially

continuous, then for every F-closed subset B of Y the set f ~1(B) is E-closed in X.
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Proof:

dy.E
Let (x,,) be a sequence in f~1(B) such that x,, —> x. Want to show that x € f~1(B). Since

dy F
the function f is vectorially continuous, f(x,,) = f (x) but the set B is F-closed, so f(x) €

B, thatis x € f~1(B). Therefore, the set f ~1(B) is E-closed m

Next, we present some results related to Riesz space. To this end note that if E and F are two

Riesz spaces, then E X F is also Riesz space with coordinatewise ordering defined

by
(e, fi) S (enfr) @ ey < ey fi < f, forall (e, f1), (€2 f2) EE XF.

Further, the Riesz space E X F is a vector metric space equipped with the biabsolute valued
vector metric |. | defined as |a — b| = (le; — ezl |fi — f2]) forall a = (eq, f1), b = (e, f>) €
E X F. To achieve our goal, first define §-double vector metric and give some examples about

vectorially continuous function.
Remark 1.3.6

Let d; and d, be two vector metrics on X which are E-valued and F-valued respectively. The
map & defined by §(x,y) = (d1(x,y),d,(x,y)) for all x,y € X is an E X F-valued vector

metric on X.
Definition 1.3.7

The E X F-Falued vector metric given in the remark is called § double vector metric.
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Example 1.3.8

Let (X,d4,E) and (X, d,, F) are vector metric spaces and f : X - E, g : X — F are vectorially
continuous functions, then the function h: X = E X F defined by h(x) = (f(x), g(x)) for all

X € X is vectorially continuous with the double vector metric 6 and the biabsolute valued vector

8,EXF
metric |. |. To show this, let (x,) be a sequence in X such that x,, — x.

Want to show that h(x,) zm: h(x).

Now for some (a,, b,,) in E X F with (a,, b,) 0 we have
6 (xy, x) = (dy(xp, x),dy(xp, x)) < (ay, by,) which implies
dy(x,,x) < a, and dy(x,, x) < b, witha, 1 0 and b,, | 0.

Since f and g are vectorially continuous, then there exist ¢, | 0 and d,, { 0 such that

|f (xp) — f(x)| < ¢, and |g(xy,) — g(x)| < d,. Therefore
(lf(xn) - f(x)l' |g(xn) - .g(x)l) =< (Cn' dn)- Let Wp = (Cnr dn), then Wn 1 0 and

((f Gen), 9 (i), (f (), (1)) < w

bi,EXF
Hence, h(x,) = (f(xn),g(xn)) — (f(x),g(x)) = h(x)
Therefore, h is vectorially continuous function.

Let (X,dq,E) and (Y,d,, F) be vector metric spaces. Then X X Y is a vector metric space

equipped with the E X F-valued product vector metric T defined by

m(z,w) = (d;(x1,X2),d2(y1,¥2)) forallz = (x4,y,), w = (X5, ¥,) EX XY

18



Corollary 1.3.9 [3]

(@lf f: X,dE)—=(Y,n,G) and g: (X, (F)— (Z,EH) are vectorially contiuous
functions, then the function h: X = Y X Z defined by h(x) = (f(x), g(y)) forall x € X is
vectorially continuous with E X F-valued double vector metric 6 on X and the G X H-
valued product vector metric T on Y X Z and the absolute valued vector metric |. |.

(b) Let G be a Riesz space. Iff: (X,d{,E) = Gand g: (Y,d,, F) = G are vectorially
continuous functions, then the function h: X X Y — G defined by h(x,y) = |f(x) — g(y)|
for all x € X,y € Y is vectorially continuous with E X F-valued product vector metric

mon X X Y and the absolute valued vector metric |.| on G.

(c) If £(X,d,E) > (Z,n,G) and g:(Y,{,F) - (W,§, H) are vectorially continuous
function, then the functionh:X XY — Z X W defined by h(x,y) = (f(x),g(y)) for all x €
X,y €Y is vectorially continuous with the E X F-valued and G X H-valued product vector

metrics on X X Y and Z X W respectively.

Proof:

6,ExF
(a) Let (x;,) be a sequence in X such that x, — x.

,GXH
Want to show that h(x,,) — h(x) .

,G JH
Since f and g are vectorially continuous, then f(x,) n—>f(x) and g(xy,) $—> g(x)

implies(f(xn), g(xn)) ﬂ (f(x), g(x)) because

.G H
Since f(x,) = f(x) and g(x,) i g(x), then there exist a,, { 0 and b,, | 0 such that
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n(f(xn), f(x)) < an and §(g(¥n), 9(¥)) < by. Take cp=(an, by), clearly ¢, L 0 and

7 ((F G, FGO), (9 90 = (00 (i), £ (), €GO 9ON) < (s ) = .
,GXH
Therefore h(x,) = (f(xn), g(xn)) — (f(x), g(x)) = h(x).

Therefore, h is vectorially continuous function

dy,E da,F
(b) Let (x,) and (y,) be a sequence in X and Y respectively such that x, —5 x and Vn = y.

T EXF
Want to show that h(x,,y,) — h(x,y).

l.I.G .G
since f and g are vectorially continuous function (f(x,) — f(x) and g(y,) — g(y)), then

TEXF
h(xn, yn) = If(xn) — g¥n)l — Ifx) — 8| =h(xy)
Therefore, h is vectorially continuous function.

d,E F
(c) Let (x,) and (y,) be a sequence in X and Y respectively such that x, — x and y,, (—> y.

,GXH
Want to show that h(x,,,y,) — h(x,y)
. _ , .G JH
Since f and g are vectorially continuous, then f(x,,) — f(x) and g(y,) — g(x).
m,GxH
Hence h(xp, yn) = (f(xn), 8(xn)) — (f(x), 8(0)) = h(xy).
Therefore, h is vectorially continuous function.

Proposition 1.3.10 [3]

Let (X,d4,E) and (Y,d,, F) be vector metric spaces and (z,) = (X,, V) be a sequence in

XxYmEXF)andletz = (x,y) EXXY
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T[,EXF . . dl,E dz,F
then, z, — z if and only if x,, — x and y, — .

Proof:

T EXF . .
First, suppose z,, — z where z, = (X, V), Z = (x,y) in X X Y, then there exist a,, | 0 such

that m(z,,z) < a,, Vn. Buta, € E X F, then a,, = (b, ¢,). Since a, | 0, then clearly b,, | 0

and ¢, | 0 and

T[(an Z) = (dl(xnrx); d2 (.Vnr y)) < (bn' Cn)r Vn. Hence dl(xn» X) < bn: dZ(.Vnr y) < Cn vn.

dyE dy F
Thus, x, — x and y, — y.

dyE dy,F TEXF . dyE
Conversely, suppose x,, — x and y,, — y. Want to show that z,, — z. Since x,, — x and

dy,F
Vi = y, then there exist a, ! 0 and b, | 0 such that d,(x,,x) < a, and d;(y,,y) < b,,.

Take cp=(ay, by), clearly ¢, L 0 and 7(z,,2) = (dy(xp, %), d2 (¥, ¥)) < (an, bn) = ¢y -
m,EXF

Therefore, z, — z m

In the next corollary, we show the relation between vectorially continuous function and its

graph
Corollary 1.3.11 [3]

Let (X,d4,E) and (Y, d,, F) be vector metric spaces and let f: X — Y be a function. Then for

the graph G of f the following statements are hold.

(a) The graph Gf is E X F-closed in (X X Y, 7, E X F) if and only if for every sequence (xy)
. dyE dyF

with x,, — x and f(x,) — y we have y = f(x).

(b) If the function f is vectorially continuous then the graph Gy is E X F-closed.
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(c) If the function f is vectorially continuous at x, € X then the induced function h: X — G

defined by h(x) = (x, f(x)) is vectorially continuous at x, € X.
Proof:

(a) The proof of this part contains two sides.

diE dy,F

=) Suppose the graph G, is E X F-closed. If x, —x and f(x,) —y then we have
m,EXF . X

(xn, f (xn)) — (x,y) by proposition 1.3.10, but Gy is closed,

so (x,y) € G and so y = f(x).

&) Lety = f(x) and (z,,) = (xy. f(x,,)) be a sequence in Gf such that

EXF dyiE
Zn = (x,y) X XY. Want to show thatz € G;. By proposition 1.3.10, x, —x

and £ () 25y, 50y = f£(x) (that's mean z = (x, f(x)) € Gp).

JEXF
b) Let z,, = (x,,y,,) be a sequence in Gf such that z, = (x,,, y,) s z = (x,y). Want to
f

dq,E dy,F , , :
show that z € G¢. By proposition 1.3.10, x, —5 xand Vn = y but f is vectorially continuous,

80 f(xn) = f(x) and f(y,) = f(¥) and thus (f (x,), f (ya)) = (f (), £(¥))
50, ((tn, ¥, (f (), f ) = (6, 9), (f (), (1)) and s0 z = (x, ) € Gy.

Therefore Gy is E X F-closed.

dq.E JEXF
(c) Let (x,,) be a sequence in X such that x,, = Xo - Want to show that h(x,,) sl h(xy) .
,EXF
h(x) = (2, £ (x)) — (x0, £ (x0)) = h(x,), since f is vectorially continuous. Therefore

m,EXF . . .
h(x,) — h(x) and so h is vectorially continuous at x.
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Chapter Two
Fundamental vector valued function classes

In this chapter, we will present the concept of (E, F)-equivalent, vector isometry and vector

homeomorphism. Also, we prove many theorems that give the relation between these concepts.
2.1 Equivalent vector metrics
Definition 2.1.1

Let d, and d, be E-valued vector metric and F-valued vector metric respectively on X, then d

dy,E
and d, are called (E, F)-equivalent if for any x € X and any sequence (x,) in X, x, =5 x iff
dyF
Xy — X.

Lemma 2.1.2 [3]

For any two E-valued vector metric d; and F-valued vector metric d, on X, the following

statements are equivalent

(a) There exist some «, f > 0 in R such that ad(x,y) < d,(x,y) < pdi(x,y) forall x,y €

X.

(b) There exist two positive and g-order continuous operators T: E — E and S: E — E such that

d,(x,y) <T(d;(x,y)) and d;(x,y) < S(d,(x,y)) forall x,y € X.
Proof:

First we will prove that if (a) holds then (b) holds. From (a) there is @, § > 0. Define

T:E - E and S:E - E by T(a) = fa and S(a) = a™1a, for all a € E. Since a, f > 0, then
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T(a) =fa=0andS(a) =a ta>0,Va = 0,soT and S are positive operators. Let (x,) be

a sequence in E such that x,, 5 0. Since fx, 5 0 and a™1x 5 0, then T'(x,) 5 0 and

S(x,) 5 0 and so T and S are - order continuous. From (a),

dy(x,y) < Bdi(x,y) = T(d1(x,y)) and ad; (x,y) < d,(x,y) implies

d,(x,y) < a”ld,(x,y) = S(d,(x,y)) for all x,y €X and therefore we proved (b).
Conversely, suppose (b) holds. Let T: E = E and S: E — E be positive and g-order continuous
operators that satisfied part (b). By Theorem 1.1.14, T and S are order bounded operators and

so there exists a, # > 0 such that
T(d1(x,¥)) < Bdy(x,y) and S(dz(x,y)) < (1/a)dy(x, y).

But

dy(x,y) < T(d1(x,¥)) < Bdy(x,y) and d;(x,y) < S(dy(x,¥)) < (1/a)d,(x, ),
then

d,(x,y) < Bd,(x,y) and ad, (x,y) < d,(x,y).

That is ad; (x,y) < d,(x,y) < Bd1(x,y) ®
Theorem 2.1.3 [3]

Let d; and d, be E-valued vector metric and F-valued vector metric respectively on X, then d;
and d, are (E, F)-equivalent if there exist two positive and o-order continuous operators
T:E - F and S: F - E such that d,(x,y) < T(d;(x,y)) and d;(x,y) < S(d,(x,y)) for all

x,y € X.
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Proof:

d 'E . .
Let (x,) be a sequence such that x,, — x, then there exist a sequence(a,) in E such that

da,F
(ap) 1 0 and d; (x,, x) < a,. Want to show that x,, =5 x. Since there exist two positive and
o-order continuous operators T: E — F and S: F — E such that d,(x,y) < T(d;(x,y)) and
d,(x,y) < S(d,(x,y)) for all x,y € X, then part (a) of lemma 2.1.2 hold. So, there is § > 0

such that d,(x,, x) < pBd;(x,,x) < pa, for all n. Let b, =pfa, then b, 0 and
dZ!F dz,F
d, (X, x) < by,. So x,, — x. Conversely, let (x,,) be a sequence such that x,, — x, then there

dyE
exist a sequence b,, such that (b,) ! 0 and d,(x,, x) < b,, . Want to show that x,, —5 x. Since

there is a > 0 such that ad,(x,,x) < d,(x,,x) < b,, let a, = a~'b,, then (a,) ! 0 and

dy,E . )
d,(x,, x) < a,, so x, — x. Therefore, E-valued vector metric d; and F-valued vector metric

d, on X are (E, F)-equivalent m

Now, we will give an example.

Example 2.1.4

Suppose that the ordered of R? is coordinatewise

(a) Let d; and d, be R-valued and R?-valued vector metrics on R, respectively defined by
d,(x,y) = alx —yl, dy(x,y) = (blx —y|,clx —y|) where a,b,c > 0. Consider the two
operators T:R - R? and S:R? > R where’s defined by T(x)=a 1(bx,cx) and
S(x,y) = ab™'x for all x,y € R. Then the metrics d;and d, are (R, R?)-equivalent on R since

the operators T and S are positive operators (since for all x,y = 0, T(x),S(x,y) = 0), also let

o o
x, and y, be sequences such that x,, = x and y,, = y, then
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T(x,) = a t(bx,, cx,) 3 a~(bx,cx) = T(x) and S(x,,y,) = ab™1x, S ablx = S(x,y),

so T and S are o-order continuous.

In addition

da(x,y) = a*(bd;(x,y),cd;(x,¥)) = T(d;(x,¥)) and

S(d,(x,y)) = S(blx — yl,clx —y|) = ab™blx — y| = d;(x,y).

So by Theorem 2.1.3, d; and d, are (R, R?)-equivalent.

(b) Let d; and d, be R-valued and R?-valued vector metrics on R?, respectively, defined by
di(x,y) = alxy = y1| + blx; = y,l, d2(x,y) = (clxy = y1l elxz = y21)

where = (x1,%,) , ¥ = (y1,¥,) and a,b,c,e > 0. Let T:R —» R? and S:R?> -» R be two
operators defined as T(x) = (ca™x,eb™1x) and S(x,y) = ac'x + be~1y. Then the vector
metrics d,and d, are (R, R?)-equivalent on R? since the operators T and S are positive operators

(since T(x),S(x,y) =0 for all x,y >0), also let x,, and y,, be a sequences such that
] o ]
x,—~>x and y,—7vy, then T(x,)= (ca lx,,eb 'x,) > (ca lx,eb 1x) =T(x) and

S(xp, Vp) = ac™lx, + be 1y, Sactx + be 'y =S(x,y), so T and S are o-order

continuous. In addition,
T(dy(x,y)) = (ca™d,(x,y),eb™d; (x,¥))

= (ca™alx; —y,1,eb™'blx; — y,|) = dy(x,y)
and  S(dy(x,¥),dy(x,)) = ac™d; (x,y) + betd,(x,y)

= ac”talx; — y;| + ac7tblx, — y,| + be T clx; — y4|
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+be~telx, — y,| = alxy — y1l + blx, — y,| = dy(x,¥)).

So by theorem 2.1.3 d; and d, are (R, R?)-equivalent.

(c) Let dq, d, and d5 be R-valued, R?-valued and R-valued vector metrics on R? respectively
defined by di(x,y) = alx; —y1l +blxz —yal, da(x,y) = (clxy = y1l, elx; —y,|) and
d3(x,y) = max{alx; — y1|, blx; — y,|} where x = (x1,%,), y = (¥1,¥2) and a,b,c,e > 0.
Let T:R - R? and S:R? > R be two operators defined as T(x) = (ca™lx,eb™1x) and
S(x,y) = max{ac™'x, be 1y}, then the vector metrics d5 and d, are (R, R?)-equivalent on R?

since T and S are positive (T (x),S(x,y) = 0 for all x,y > 0), also let x,, and y,, be sequences
o o]
such that x,, = x and y,, = y, then
o
T(x,) = (ca™x,,eb 1x,) = (ca™tx,eb™ x) = T(x)
and
S(xy, yn) = max{ac 1x,, be 1y} imax{ac‘lx, be 1y} = S(x,y),

so T and S are o-order continuous. In addition there exist two cases

Case (1):
If we take max{a|x; — y,|, blx, — y,|} = alx; — y4|, then

T(d3(xr 3’)) = (Ca_ldg(x, 3’)» eb—1d3(x! 3’))
= (ca™*(max{alx; — y1l,blx; — y21}), eb™  (max{alx; — y11, blx; — ¥,1}))

= (clx; — yll,eb_1a|x1 —y1l) = (clxy —y1l, elxy — y2|) = dy(x, y).
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Case (2):
If we take max{a|x; — y,|, blx; — y,|} = blx; — y,|, then
T(d3(x,y)) = (ca‘1d3(x, }’)' eb_1d3(x! }’))

= (ca“l(max{a|x1 —y1l,blx; = y21})), eb_l(max{a|x1 —y1l, blx, — y213))

= ((ca™blx; — yal,elxs = y21) = (clxy — w1l elxz — y2|) = dy(x,y) and
S(dZ(x' y)) = max{ac™'c|x; — y;1|,be " e|x, — y,[}

= max{alx; — y11,blx; — y|} = d3(x,¥)
So by theorem 2.1.3 d; and d, are (R, R?)-equivalent.
Lemma 2.1.5

Letdi: XXX —>E,d,:X XX > Fandds:Y XY = M be vector metrics, where d; and d, are
(E, F)-equivalent on X, then f : (X,dy,E) = (Y,d3, M) vectorially continuous if and only if

f:(X,d,, F) = (Y,ds3, M) is vectorially continuous.
Proof:

There exist two folds to prove the lemma.

d,E

dy,F E ,
=) Let x,, be a sequence such that x,, =5 x then Xn —5 x since d, and d, are (E, F)-equivalent

ds,M
on X. But f: (X,d,E) — (Y,d3, M) is vectorially continuous so f(x;,) =5 f(x) and so f is

vectorial continuous from (X, d,, F) to (Y, d3, M).
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dyE d, F | :
<) Let x,, be a sequence such that x,, —5 x then Xn = x, since d4 and d, are (E, F')-equivalent

ds,M
on X. But f: (X,d,, F) = (Y,d3, M) is vectorially continuous so f(x;,) =5 f(x) and so f is

vectorial continuous from (X, d4, E) to (Y,d3;, M) m

2.2 Vector Isometry and vector homeomorphism

In this section, we will define an isometry between two vector metric spaces
Definition 2.2.1

Let (X,d, E) and (Y, d,, F) be vector metric spaces. A function f: X — Y is said to be a vector

isometry if there exists a linear operator Ty: E — F satisfying the following conditions:

(D) Tr(d1(x,y)) = do(f (%), f(y)) forall x,y € X
(I) T¢(a) = 0 implies a = 0 forall a € E

If the function f is onto, and the operator T is a lattice homomorphism then the vector metric

spaces (X,d,, E) and (Y, d,, Tf(E)) are called vector isometric.
Lemma 2.2.2 [3]

Let (X,d{,E) and (Y,d,, F) be vector metric spaces. A vector isometry f is one-to-one
mapping.
Proof:

Let f(x) = f(y), to show f is one-to-one we must show x = y. Since f is a vector isometry,
then there exist Ty such that Tf(dl(x, y)) = dz(f(x),f(y)) =0 so by Definition 2.2.1

di(x,y)=0andsox =y m
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Now, we will give an example
Example 2.2.3

Let d; be R-valued vector metric and let d, be R%-valued vector metric on R defined by
d,(x,y) =alx—y|, d,(x,y)=(b|x—yl,clx—y|) where b,c=>0 and a,b+c > 0.
Consider the identity mapping I: R — R defined by (x) = x , Vx € R and the linear operator
T;:R - R? defined by T;(x) = a~1(bx,cx) for all x € R. Then the identity mapping I is a

vector isometry since

T,(d, (x, y)) = a‘l(bd1 (x, ), cdy(x,))
= a~'(balx — yl, calx — y|)
= (blx =yl clx = yD
=d,(x,y) = d,(I1(x),1(y))

and T;(x) = a~1(bx, cx) = (0,0) implies (bx,cx) = (0,0) for all x € R, which implies that

bx = 0 and cx = 0. Since b and c are not both zeros, then x = 0.

Since I is onto and T; is lattice homomorphism, then the vector metric spaces (R, d;, R) and

(R,dy,{(x,y):cx = by; x,y € R} are vector isometric.
Definition 2.2.4

Let (X,dy, E) and (Y, d,, F) be vector metric spaces. A function f: X — Y is said to be a vector
homeomorphism if f is one-to-one, vectorially continuous and has a vectorially continuous
inverse on f(x). If the function f is onto, then the vector metric spaces X and Y are called

vector homeomorphic.
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Lemma 2.2.5 [3]

Let (X,dy,E) and (Y, d,, F) be vector metric spaces. A vector homeomorphism f: X = Y is

one-to-one function that preserves vectorial convergence of sequences.
Proof:

Let f: X = Y be a vector homeomorphism, then by definition 2.2.4 f is one-to-one. let (x;,) be

dyE dyF . .
a sequence in X such that x, — x. Want to show that fx) = f(x). It is clear that is

satisfied, since f is vectorial continuous (from definition of homeomorphism) m

The following theorem describe that an onto vector homeomorphism keeping the closed
property

Theorem 2.2.6 [3]

An onto vector homeomorphism is one-to-one function that preserve vector closed sets.

Proof:

Let f: X = Y be an vector homeomorphism. Since f is a one-to-one function and its inverse
f~1 is vectorially continuous then by Theorem1.3.5 for every E-closed set A in X, f(A) =

(f7H)71(A) is F-closed in Y.

Now we will give an example, which shows the relationship between vectorial equivalence and

vector homeomorphism m
Example 2.2.7

Let dyand d, be two (E, F)-equivalent vector metrics on X. Then the vector metric spaces

(X,d{,E) and (X,d,, F) are vector homeomorphic under the identity mapping since let
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f:X — X be the identity function defined by f(x) = x, then its clearly that f is one-to-one

dyE
vectorially continuous (since if (x,,) is a sequence in X such that x,, — x then

d ’F . . . .
f(x,) = x, — x = f(x)) and has a vectorially continuous inverse in f(x)

(because f~1(x) = x and is the same as f).
Lemma 2.2.8 [3]

Let (X,d, E) and (Y, d,, F) be any two vector metric spaces where are vector homeomorphic
under a function f: X — Y, and let d;(x,y) = d,(f(x), f(y)) for all x,y € X, then the vector

metrics d; and d; are (E, F)-equivalent vector metrics on X.
Proof:

There exist two sides to prove this

=) Let (x,,) be a sequence in X such that x,, dl—'E> x, want to show that x,, CE; x, since f'is vector
homeomorphism, then f is vectorial continuous so there exist a sequence (b,) in F such that
b, 1 0 and d,(f (x,), f(x)) < by, so dz(xp, x) = d,(f (%), f (%)) < by,. Therefore x,, il X.
<) Let (x,,) be a sequence in X such that x,, E x, then there exist a sequence (b,,) in F such
that b,, { 0 and d5(x,,, x) < b,,. Want to show that x,, il x.Butd;(x,, x) = d,(f(x,), f(x)),

50 dy (F (), £ (1)) < by and so £ () =5 F( ).

. . . dl!E . . dl,F
But f~! is vectorial continuous, so fT1(f(x,)) — f~1(f(x)) implies x, — x.

Therefore, d; and d5 are (E, F)-equivalent vector metrics on X m
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Chapter Three
Extension theorems on continuity

This chapter focuses on two types of uniformly continuous functions on vector metric space,
which are topological uniformly continuous function and vectorial uniformly continuous

function and give the relation between them. In addition, it will focus on extension theorem.
3.1 Uniformly continuous functions on vector metric spaces
Theorem 3.1.1 [3]

Let (X,d{,E) and (Y,d,, F) be vector metric spaces, and let f:X - Y and g:X - Y be
vectorially continuous functions. Then the set {x € X: f(x) = g(x)} is an E-closed subset of

X.

Proof:

dyiE
Let B={x € X:f(x) = g(x)} and let (x,) be a sequence in B such that x,, — x. Want to
show that x € B. Since f and g are vectorially continuous, there exist sequences(a,) and (b;,)
such thata, | 0 and b,, I 0 and d, (f(xn),f(x)) <a, d, (g(xn),g(x)) < b, for all n. Since
xn € B,Vn, so f(x,) = g(x,) and therefore d, (f (x,,), g(x,)) = 0.

Thus,  d(f(x),9(x)) < da(f (), f () + da(f (xn), 9(xn)) + d2(g(xn), (%))

<a,+b,.

But a, 1 0 and b, 1 0, so (a, +b,) ! 0 and so d,(f(x),g(x)) = 0, which means that

f(x) = g(x) and this implies x € B. Hence, B is an E-closed subset of X m
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Corollary 3.1.2 [3]

Let (X,dy,E) and (Y,d,, F) be vector metric spaces, and let f:X - Y and g:X =Y be

vectorially continuous functions. If the set {x € X: f(x) = g(x)} is E-dense in X, then f = g.
Proof:

Let B = {x € X: f(x) = g(x)}, then by Theorem 3.1.1 B is E-closed and since B is dense in

X,thenB =B =X.Soforallx € X, f(x) = g(x), thatis f =g m
Definition 3.1.3
Let (X,d4, E) and (Y, d,, F) be vector metric spaces.

(a) A function f: X — Y is said to be topological uniformly continuous on X if for every b > 0

in F there exist some a in E such that for all X,y € X,

d,(f(x), f(¥)) < b whenever d; (x,y) < a.

(b) A function f: X — Y is said to be vectorial uniformly continuous on X if for every E-Cauchy

sequence (x,) the sequence( f(x,)) is F-Cauchy.
Theorem 3.1.4 [3]

Let (X,dy, E) and (Y, d,, F) be vector metric spaces where F is Archimedean. If a function

f:X — Y is topological uniformly continuous, then f is vectorial uniformly continuous.
Proof:

Suppose that (x,,) is an E-Cauchy sequence. Then there exists a sequence (a,,) in E such that
a, 4 0 and dy (xp, Xn4p) < a, for all n and p. Since f is topological uniformly continuous on

X, then for any b >0 in F, there exist b, >0 in E such that d;(x,y) < b, implies
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b : T b
d2(f (%), f(¥)) <. Take ¢, = minf{ay, bn}, so d;(x,y) < ¢, implies dy(f (x), f(¥)) <.
But ¢, <a,Vn, so d;y(XpXnip) < Cp < a, implies dy(f(x,), f(xn4p)) < (1/n)b.
However, since F is Archimedean, (1/n)b | 0, So (f(x,,)) is F-Cauchym

Now, we will give an example a bout vectorial uniformly continuous function

Example 3.1.5

(a) Let (X,dq,E) and (Y, d,, F) be two vector metric spaces and the function f: X - Y be a
vector isometry, then the function f is vectorial uniformly continuous if T is positive and o-

order continuous.
Proof:

Suppose T is positive and o-order continuous. Let (x,) be E-Cauchy sequence, then there
exist a sequence (a,) { 0 in E such that d; (xy, Xn4p) < a, for all n and p. We want to prove

that (f(x,)) is F-Cauchy. Since f is a vector isometry, then d;(xp, Xp4p) < a, implies
d, (f(xn)' f(xn+p)) = Tf(dl(xn' xn+p)) < Tf(an)a say b, = Tf(an)‘

Clearly, b, {0 since (a,) 10 and Tf is positive and o-order continuous. So,

d; (fen), f (Xnep) ) < by for all n and p, which implies that (f (x;,)) is F-Cauchy.

(b) Let (X,d, E) be vector metric space. Fix y € X, then the function f,: X — E defined by
fy(x) = d(x,y) for all x € X is vectorial uniformly continuous since let (x,,) be E-Cauchy
sequence in X. Want to show that (f,(x;)) is E-Cauchy. Let y, =y, then (3,) is E-Cauchy.
So by Theorem 1.2.4 (d(xy, y,)) is E-Cauchy, but (d(x,,¥,)) = (f,(x5)). So f, is vectorial
uniformly continuous.
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Now we will arise to the main theorem of my thesis
Theorem 3.1.6 (Extension Theorem), [3]

Let A be E-dense subset of a vector metric space (X, dq,E) and (Y, d,, F) be an F-complete
vector metric space where F is Archimedean. If f: A — Y is topological uniformly continuous
function then f has a unique vectorially continuous extension to X which is also topological

uniformly continuous.
Proof:
. . diE . .
Let x € X. Then there exist a sequence (x,,) in A such that x,, — x, since A is E-dense subset

of X. By theorem 1.2.4, (x,) is E-Cauchy in X, but f is vectorially uniformly continuous

function. So (f(x,)) is F-Cauchy sequence in Y. Y is F-complete vector metric space, so

(f (x,)) is F- convergent, that is f(x;,) CEZ y. Define an extension function g: X = Y by
gx) =yifx € X\4,and g(x) = f(x) if x € A.

Claim: g is well define.

Proof of claim:

dy,E
Let (y,,) be another sequence in A such that y, — x. As we said, (f(y,,)) is F-Cauchy in Y,

dy,
then f(v,) LI; y:1. Since (f(x,,)) and (f(y,)) are F-convergent sequences then (f (x,)) and

(f () are F- Cauchy. By Theorem 1.2.4, we have (d,(f (x,,), f (¥,)) F-Cauchy, so there exist

dy F dy,F
¢, L 0 such that d, (f (), f (7)) < c,,. Also, since f(x,,) — y and f(y,,) —> v, then there

exist a, 1 0 and b,, | 0 such that d,(f (x,,),y) < a,, and d,(f (1,), ¥1) < b,, Vn. Therefore
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dy(v,71) < dy (v, f(xn)) + do(f (), F () + do (fF ), ¥1)

<a,+c,+b,.but(a,+c,+b,) !0,
Thus, d,(y,y,;) = 0. Therefore y = ;.
Now, want to show that g is topological uniformly continuous function.

Let b > 0 in F, since f is topological uniformly continuous on A4, there exist a > 0 in E such
that d;(x,y) <a implies dy(f(x),f(y)) <b,Vx,y €A. Now, let x,y €X with

d,(x,y) < a. We want to show d,(g(x),g(y)) < b.
Case I: If x, y € A, then we done.

Case II: Suppose x,y € X\A, since 4 is dense, there exist two sequences (x,) and (y,,) in A

dyE dyE
such that x,, — x and Vn = y.Sodq(xpn, Yn) 5 d;(x,y) in E. Fix n, such that n > n, implies
di(xn, ¥n) < a, so dy(f(x,), fO)) <b, ¥Yn>n,. Since f is a vectorial uniformly

continuous in 4, then (f(x,)) and (f(y,,)) are F-Cauchy. But Y is F-complete. So there exist
dy F dy F .

u and v € Y such that f(x,) — wu and f(y,,) — v. By definition of g, g(x) = uand g(y) =
o

v. Then, d,(g(x,), g(¥n)) = d2(g(x), 9(»)) = d,(u,v) < b.

Now, want to prove that extension function is unique.

Let g and h are two extension functions of f. Want g(x) = h(x), Vx € X.

Case I: Let x € A, then g(x) = f(x) = h(x).
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dyE
Case II: Let x € X\A, then there exist a sequence (x,,) in 4 such that x,, —5 x. Since gand h

dy F dyF
are vectorial continuous function, then g(x;) = g(x) and h(x,) = h(x), but

9(x) = f(x) = h(xy). So g(x) = h(x) m
Theorem 3.1.7

Let A be E-dense subset of a vector metric space (X, d;,E) and (Y, d,, F) be an F-complete
vector metric space where F is Archimedean. If f: A — Y is vectorially uniformly continuous

function then f has a unique vectorially continuous extension to X.
Proof:

The definition of the extension function, the well-defined and the uniqueness of this function
as in Theorem 3.1.6 . To show that f is vectorially continuous function, let (x,,) be a sequence

d 'E . . .
in X such that x,, — x, since 4 is E-dense subset of X, there exist sequences (X)) and (xg.,)

diE ,
— x. Hence, there exist tm 4 0,w, | 0and z, | 0 such

dyE
in A such that x,,,,, = Xn and  Xxom,
that dy (Xpm, Xn) < tim, dy (X, x) < w,, and d,(x, Xg,,) < Z,,. Now, let m > n, then t,, < t,

and z,, < z, so
dl (xnmJ xOm) = dl (xnm'xn) + dl (xn: x) + dl (x' xOm)
S<tp+twp+z,<t,+w,+2z, let d, =t, +w, +2z,, then d,, L 0

dl,E
and X, — Xom-

d,,F d,,F d,,F
Therefore f(Xpm) — f Xom)s f nm) — g(xn) and  f(xgm) —> g(x), so there exist h,, |
0, j, 40 and k,, 1 0 such that dz(f(xnm),f(x()m)) < Jns dz(f(xOm),g(x)) < k,, and

dy(g(xn), f (um)) < hy.
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Now, let m > n, then k,,, < k,, and h,,, < h,,, so

dx(9(xn), () < da(9Cxn), f () + da(f Cenm), f (Kom)) + da(f Com), g ()
S<hp+jn+ky<h,+j,+kyletl,=h,+j,+k,, thenl, 1 0.

Therefore, d, (g (xn), g(x)) < [, and so g is vectorial continuous extension

3.2 Uniformly Convergent in Vector metric spaces

This section focuses on uniformly F-convergent, vectorial bounded function, the uniform limit

theorem and many concepts and relations in vector metric space
Definition 3.2.1

Let X be any nonempty set and let (Y, d,, F) be a vector metric space. Then a sequence (f;,) of
functions from X to Y is said to be uniformly F-convergent to a function f: X — Y, if there
exists a sequence (a,) in F such that a, | 0 and d,(f,(x), f(x)) < a,, holds for all x € X

andn € N.

Now, we will give an example

Example 3.2.2

(a) Let X = [0,1], Y = R%and d,(x,y) = (Ix; — y1|, |x; — y,|). Define
@) = (x+2.5),

then f;, is uniformly F-convergent to f(x) = (x, 0)

since
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(1,00, £0) = ([ + =~ 2| .| 25 - 0]

1

n2

=)

n3

=(

)

take a, = ( ) then a,, I 0 and

n2’n3

dy(fu(0), f(0)) = D=

n2’n3

(b) Let X = R, Y = R%*and d,(x,y) = (|x; — ¥4/, |x2 — y,1). Define f,,(x) = (x + %,x - n_12

then fn is uniformly F-convergent to f(x) = (x,x) since,

do(fu (), F0O) = (|x + 7 = 2] | = = 2]

take a, = ( ) 2) then a, ! 0 and d,(f, (%), f(x)) =

nn2

In addition, f;, in example 3.2.2 is F-convergent to f since every uniformly F-convergent is

F-convergent.
Now, we will give the main result of this chapter
Theorem 3.2.3 (Uniform Limit Theorem), [3]

Let (f,) be a sequence of vectorially continuous functions between two vector metric spaces
(X,dy,E) and (Y,d,, F). If (f;,) is uniformly F-convergent to f, then the function f is

vectorially continuous function.
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Proof:

Let (x,,) be a sequence in X such that x,, o x. Want to show that f (x;,) il f(x). Since (f,)
is uniformly F-convergent to f, there is a sequence (a,) in F such that a, { 0 and
dy(f(x), f(x)) < a, foralln € N and Vx € X. For each k € N there is a sequence (by,) in F
such that b, ! 0 and d(f;(x,), fi(x)) < by, for all n € N by the vectorial continuity of f.

For k = n we get,

dy(f Cen), £ () < da(f (), fo () + do(f (), £ () + da(fuCen), £ (6))

< 2a, + by,

dy F
let ¢, = 2y + by, , then ¢, L 0 and dy(f (), £ (%)) < cp. So f (%) — f ().
Therefore f is vectorially continuous function m

Let A be a nonempty subset of a vector metric space (X,d, E). E-diameter of A denoted

by d(A), is defined by sup{d(x,y):x,y € A} if sup{d(x,y):x,y € A} existinE.
Theorem 3.2.4

Let (f;,,) be a sequence of vectorially uniformly continuous functions between two vector metric
spaces (X,dq,E) and (Y, d,, F). If (f,,) is uniformly F-convergent to f, then the function f is

vectorially uniformly continuous function
Proof:

Let (x,,) be an E-Cauchy sequence in X. Want to show that (f (x,,)) is F-Cauchy. For all k €
N, f is vectorial uniformly continuous function, then (f;(x,)) is F-Cauchy. So there exist

An 4 0 such that dy (fy (X)), fie (Xn+p)) < axy V1, p. Since (fy) is uniformly F-convergent to

41



f, there exist byl 0 such that d(fi(x),f(x)) < by. Then d,(f(xpn),f(Xp4p)) <

da (f (Xn), fie (X)) + da (fic (), fie (nap)) + do(fe Knap)s f (X)) < bie + @gen + by =

Akn + Zbk and (akn + Zbk) 10.
So, (f (x;,)) is F-Cauchy sequence and so f is vectorially uniformly continuous function m
Theorem 3.2.5

Let (f,) be a sequence of topological continuous functions between two vector metric spaces
(X,dy,E) and (Y,d,, F). If (f;,) is uniformly F-convergent to f, then the function f is

topological continuous function.
Proof:

Let b > 0, since f; is topological continuous, there exist a; > 0 such that d,(x,y) < a

implies  dy(fi (x), (7)) < b. Take a=inf{a;:k € N}, then d;(x,y) <a implies

dy(f(0), () < do(f (), i () + da(fie G, fi ) + da(fie 0, F ()
<a,+b+a,=2a,+h.

Asn - oo, dy(f(x), f(¥)) < b. Therefore f is topological continuous function m

Theorem 3.2.6 [3]

Let A be a nonempty subset of a vector metric space (X, d, E). If E is Dedekind complete, then

every E-bounded subset of X has an E-diameter.
Proof:

Let A be E-bounded subset of X, then there exist an element a > 0 such that
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d(x,y) < a,Vx,y € A. If we take a supremum for both sides we get
sup{d(x,y):x,y € X} < sup{a} = a. Therefore, it has a supremum and d(4) < a =
Definition 3.2.7

A function f:X — Y between two vector metric spaces (X,dq,E) and (Y,d,, F) is called

vectorial bounded if f maps E-bounded subsets of X to F-bounded subsets of Y.
Theorem 3.2.8 [3]

A function f: X — Y between two vector metric spaces (X, dq,E) and (Y,d,, F) is vectorial
bounded if there exists a positive operator T: E = F such that d,(f (x), f(y)) < T(d,(x,y))

forall x,y € X.
Proof:

Suppose there exists a positive operator T: E — F such that d,(f (x), f(v)) < T(d,(x,y)) for
all x,y € X hold. Let A be E-bounded subset of X, then there exist an element a such that

di(x,y) < a, Vx,y € X, want to show that f(4) is F-bounded. Let y;,y, € f(4),

take b =T(a), then 3FIx;,x, €A such that vi=f(x;) and y, = f(x,) and

d,(y1,¥2) = dz(f(x1)ff(x2)) < T(d1(x1'x2)) <T@ =bm
Therefore f(A) is F- bounded.

Let C,(X,F) and C;(X,F) be the collection of all vectorially continuous and topologically
continuous functions between a vector metric space (X, d, E') and a Riesz space F, respectively.

By theorem 1.3.2 C;(X,F) < C,(X, F) whenever F is Archimedean.
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Lemma 3.2.9

Let (X,dq, E) and (Y, d,, F) be two vector metric spaces, then C, (X, F) and C; (X, F) are closed

under addition and scalar multiplication.
Proof:

Let f and g be a function in C, (X, F) and A be a scalar. Want to show that f + g and Af are

. . . . diE
vectorial continuous functions. Let (x,,) be a sequence in X such that x,, — x.

dy,F dyF
Since f, g € C,(X, F), then f(x,,) = f(x) and g(x,,) = g(x).

So

(F + 9) () = F() + 9 () 25 () + g(x) = (f + 9)(®)

and

dy F
(AN () = Af () = 2f () = (AN (0).
So f+ g and Af are vectorial continuous functions (that means f + g,Af € C,(X,F)).

Therefore C, (X, F) is closed under addition and scalar multiplication

Let f and g be a function in C;(X, F) and A be a scalar. Want to show that f + g and Af are

topological continuous functions. Let a, b, ¢ € E such that b,c > 0 and d,(x,y) < a, then since
f.g € C.(X,F), then dy(f(x),f(»)) <b and dy(g(x),g(y)) <c for all x,y € X. So

do((f + ) ), (f + D) = do(f(X) + g(x), FO) + g(»))

< do(F(), fFB)) + da(9(x), )

<b+ec.
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Letb + ¢ = d, then dy((f + 9)(x), (f + 9)()) < d and

d((AN) (), A ) = do(Af (1), Af (1)) < do(f(x), f() < b.

So f+ g and Af are topological continuous functions (that means f + g,Af € C.(X, F)).

Therefore C; (X, F) is closed under addition and scalar multiplication =
Theorem 3.2.10 [3]

The spaces C, (X, F) and C; (X, F) are Riesz spaces with the natural partial ordering defined by

f < g whenever f(x) < g(x) forall x € X.
Proof :

Let f,g,h € C,(X,F) and f < g, then

(D) F+hE) =fx) +hx) < g(x) +hx) =(g+h)(x)
“f+h<g+h

(2)Let 1= 0, Af (x) = A(f(x)) < A(g(x)) = 2g(x)

« Af < 2g.

From (1) and (2), C,,(X, F) is an ordered vector space and the supremum exist inside this space.

So, C, (X, F) is Riesz space. Similarly, C;(X, F) is Riesz space m

45



Conclusion

In this thesis, I studied the relationships between topological continuity and vectorial
continuity.” Ciineyt Cevik” has concluded that: every topological continuous function is a
victorial continuous function. In addition, he proved that every topological uniformly
continuous function is vectorial uniformly continuous function. He also studied extension

theorem and the uniform limit theorem.

After deep study for the above, I managed to prove the following:

Let A be E-dense subset of a vector metric space (X, d;,E) and (Y, d,, F) be an F-complete
vector metric space where F is Archimedean. If f: A = Y is vectorially uniformly continuous

function then f has a unique vectorially continuous extension to X.

Let (f,,) be a sequence of vectorially uniformly continuous functions between two vector metric
spaces (X,dq, E) and (Y, d,, F). If (f;,) is uniformly F-convergent to f, then the function f is

vectorially uniformly continuous function

Let (f,,) be a sequence of topological continuous functions between two vector metric spaces
(X,dy,E) and (Y,d,, F). If (f;,) is uniformly F-convergent to f, then the function f is

topological continuous function.

Finally, I conjecture the vice versa of these results are not true but that will need further study

from other researchers.
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