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Abstract

Abstract

Multichannel Autoregressive (M-AR) parametric model has been recently used to model

multichannel processes arise in many applications such as in sonar, radar, speech process-

ing, biomedical engineering and wireless communications.

In the framework of wireless communications, each carrier in multicarrier systems (

e.g., Orthogonal Frequency Division Multiplexing (OFDM) ) is usually affected by time-

varying fading. The fading processes over all carriers are often correlated and corrupted

by Additive White Gaussian Noise (AWGN). In this application, the fading processes

are usually modeled by M-AR model which can be combined with optimal filters such

as Kalman or H∞ filter for processes estimation from noisy observations. This requires

the estimation of M-AR model parameters which is the key issue to be addressed in this

thesis.

Several M-AR parameter estimation methods have been proposed in the litrature

and can be classified as either off-line or on-line estimation techniques.

The off-line methods can be used when all observations are available for the estima-

tion process. Off-line techniques such as Noise-Compensated Yule-Walker (NCYW) equa-

tions, Yule-Walker equations combined with Newton-Raphson, Improved Least Square for

Vector (ILSV) processes and Errors-In-Variables (EIV) based method are all of interest.

However, their computational costs are very high or some of them may diverge. In addi-

tion, these techniques are not suitable for on-line applications.

Using on-line techniques such as Kalman filter applied directly to the noisy obser-

vations results in biased parameter estimates. To avoid this problem, joint estimation

of the process and its parameters based on Extended Kalman Filter (EKF) and Sigma

Point Kalman Filter (SPKF) can be addressed. However, the size of the state vector to

be estimated is quite high. To reduce the size and the resulting computational costs,

we propose to use two cross-coupled optimal filters. Thus, we propose to extend to the

multichannel case the so-called two cross-coupled Kalman or H∞ filters initially intro-

duced for the single channel case. We carry out a comparative simulation study between

our methods and several other methods. This study is based either on synthetic M-AR

process or M-AR process corresponds to fading channels. The results we obtained showed

that our approach corresponds to a compromise between the computational cost and the

performance in terms of parameter estimation accuracy.
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Chapter 3 - Introduction

1.1 Motivation

Stochastic signals are generated in real-world and can be classified as either discrete or

continues signals [Zei98]. In both cases, the signals may be pure, coming directly from the

source to the destination, or corrupted by the noise, which is the case in most applications.

Modeling the stochastic signals is an important issue. Indeed, it forms the theoretical

description of a signal processing systems, which can be used to process the signals so

as to provide a desired outputs [Hay96]. Moreover, the model make it possible to learn

much about the signal source. This means that we can simulate the real-world signal

without the necessity to have the actual signal source, mainly, when the cost of getting

signals from the actual source is high [Rab89]. The most important reason why using

signal models is that, they often work well in practice such as in prediction, recognition

and identification systems.

Different models have been used in the literature, depending on the type of signals

to be modeled. These models can be either deterministic such as the sum-of-sinusoids

and sum-of-exponential, or stochastic models such as the Autoregressive Moving Average

(ARMA), the Moving Average (MA) and the Autoregressive (AR) models [Hay96]. The

stochastic model represents the signal using a few number of parameter, and characterize

the signal by its statistical properties. These models can be used for modeling both single

channel and multichannel signals.

Multichannel Autoregressive (M-AR) model appears in wide range of applications

(see 1.1). In these applications, different types of stochastic quantities are firstly measured.

Then, they are transformed into electrical signals. For example, in the sonar systems, the

ultrasound waves reflected from the objects to the receiver are random and can be modeled

by M-AR model. By studying these signals we can determine the existence of obstacles

in the sea [Bek06]. Also, tracking the marine mammal in the deep seas is possible, by

modeling their sounds using M-AR model [Per04].

Many symptoms and diseases affect the human can be discovered and known through

measuring the heart, brain and breathing signals. Measuring these signals involves us-

ing sensors and electronic devices connected by wires. For example, when measuring the

heart signals known as ElectroCardioGram(ECG) and brain signals known as ElectroEn-

cephaloGram(EEG), several poles are placed on the human body and their outputs can

be modeled as M-AR model. By analyzing the spectrum of these signals, the doctor can

understand the person state and the disease [Arn98] [Gul01] [Ube08].

In radar systems, there is a wide variety of applications in both civil and military

2



Chapter 3 - Introduction

areas where the reflected signals can be modeled by M-AR model. Analyzing these signals,

allows to track the targets and determine the position, velocity and acceleration [Pet09a].

Radar is used in Terrain Aided Navigation (TAN) system, it is used to periodically correct

the error accumulation of Inertial Navigation System (INS). An imaging laser radar is used

to transmit signals to scan the land surfaces, then receives the reflected signals from the

terrains to compute the distance and correct the INS [Gon06].

In satellite navigation system such as in the Global Position System (GPS) the

transmitted signal from the satellite to the receiver on the earth hits many obstacle and

reflects in different directions to reach the receiver. These resulting multipath signal can

be modeled by M-AR model. Then, it can be used to estimate the position coordinates

on the earth. The autoregressive model can effectively characterize both seasonal and

instrumental variations in ice sheet elevation time series constructed from satellite radar

or laser altimeter data [Fer04].

In the framework of wireless mobile communication, the transmitted signal scatters

from many objects and arrive at the receiver from different paths. These signal paths

are added constructively or destructively results in what is called signal fading. In addi-

tion, the relative motion between the transmitter and the receiver results in time-varying

fading [Jak94]. The fading channels can be modeled by M-AR model for the purpose of

estimation or simulation [Che04] [Bad04].

In all of the above applications, we need to estimate the M-AR parameters using

the received observations, which are usually correlated and corrupted by the additive

noise. Several methods have been studied in order to estimate the parameter of the M-

AR process from the noisy observations. These methods can be classified as either off-line

or on-line techniques.

The off-line methods can be used when all noisy observations are available for the

estimation process such as the Yule-Walker (YW) equations, it has been used widely in

the M-AR parameter estimations. However, it provides biased estimates. To overcome

this problem, one can use the Noise-Compensated Yule-Walker (NCYW) equations, which

however require the preliminary estimation of the additive noise variances. Various off-line

estimation methods have been proposed to estimate the noise variances and the M-AR

parameters. Thus, Hassan [Has03] has proposed to combine YW equations for parameter

estimation with Newton-Raphson method for noise variances estimation. This method

might diverge in some cases. In addition, it might result in unstable system. To overcome

these drawbacks, the Improved Least Square for Vector (ILSV) processes has been intro-

duced in [Mah08]. It solves a system of linear equations to estimate the additive noise

3



Chapter 3 - Introduction

variances, then applying the YW equations to estimate the M-AR parameters. However,

it doesn’t work properly at low Signal to Noise Ratio (SNR). To avoid this problem, the

author in [Pet09b] proposed Errors-In-Variables (EIV) based approach initially proposed

in [Bob07] for speech enhancement. In this method, the noisy observations autocorrela-

tion matrix compensated by a specific diagonal block matrix and whose kernel is defined

by the M-AR parameter matrices. However, it has high computational cost.

The computational costs of the off-line methods are very high and some of them

may diverge. In addition, these techniques are not suitable for on-line applications. Us-

ing on-line techniques such as Kalman filter applied directly to the noisy observations

results in biased parameter estimates [Arn98]. To avoid this problem, joint estimation

of the process and parameters based on Extended Kalman Filter (EKF) or Sigma Point

Kalman Filter (SPKF) can be addressed. However, the size of the state vector to be esti-

mated is quite high. Thus, results in high computational cost. To reduce the size of the

state vector and the resulting computational costs, we propose to use two cross-coupled

optimal filters. Thus, we propose to extend to the multichannel case the so-called two

cross-coupled Kalman (CC-Kalman) filters initially introduced for the single channel case

[Lab06]. However, Kalman filter is based on restrictive Gaussian assumptions. To relax

them, we also propose to extend to the multichannel case the so-called two cross-coupled

H∞ filters initially proposed in [Lab07] and used for fading channel estimation in [Jam08].

We carry out a comparative simulation study between our methods and several other

methods [Jam09]. The results we obtained showed that our approach corresponds to a

compromise between the computational cost and the performance in terms of parameter

estimation accuracy.
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Figure 1.1: Several applications where the observed signals can be modeled as M-AR

process.
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1.2 Parametric Models for Stochastic Processes

A signal corresponds to a physical quantity that varies with time, space, etc.. A wide

range of quantities in physics are converted to electrical signals. These signals may be

broadly classified into deterministic or stochastic. Deterministic signal is one that may be

reproduced exactly with repeated measurements, it can be studied using transformation

such as Fourier transform [Zei98].

The stochastic signal is a signal that is not repeatable in a predictable manner. It

posses a measure of uncertainty in their values at any instant of time, and their behavior

are generally described by probabilistic and statistical averages such as mean, variance and

correlation, and ensemble averages such as autocorrelation and autocovariance [Hay96].

These signals can be studied using parametric models such as ARMA, MA and AR

with few numbers of parameters [Hay02]. They are simple and helps in estimating and

analyzing the stochastic signals.

The term model is used to describe any hypothesis that may be applied to explain

or describe the hidden laws that are supposed to govern or constrain the generation of

physical data of interest. Figure 1.2 shows a block diagram of a general model. In this

model u(k) and y(k) are the input and the output, respectively.

The representation of a stochastic process by a model dates back to an idea by

Yule in 1927. At the end of the 1930s, Wold’s decomposition theorem states that any

regular and stationary process can be expressed as the sum of two orthogonal processes,

one deterministic and the other random.

u(k) - Discrete-time system y(k)-

Figure 1.2: Stochastic model.

1.2.1 Autoregressive Moving Average (ARMA) Model

The ARMA model is one of the models that can be used to model a random process of

correlated data. Consider an analog signal y(t) represented by p+1 samples corresponding

6



Chapter 3 - Introduction

to time instants kTs, (k−1)Ts, . . ., (k−p)Ts as
{

y(k), y(k − 1), · · · , y(k − p)
}

where

Ts is the sampling period.

Suppose that this signal is generated using a white process u(t) and characterized

by q + 1 samples as:{
u(k), u(k − 1), · · · , u(k − q)

}

A discrete linear model of the signal can be defined as a linear combination between

the samples and the white process as follows:

a0y(k) + · · ·+ apy(k − p) = b0u(k) + · · ·+ bqu(k − q) (1.1)

This makes the ARMA model, which is said to be of order (p, q), where {al}l=0,...,p and

{bl}l=0,...,q are called the transversal parameters. We can note the importance of the

ARMA model in (1.1) as it only uses a finite number of parameters and allows for the

construction of the signal using these parameters.

Substituting a0 = 1 in (1.1), one obtain the following equation:

y(k) = −
p∑

l=1

aly(k − l) +

q∑

l=0

blu(k − l) (1.2)

The bilateral z-transform Y (z) of y(k) is defined by:

Y (z) =
+∞∑

k=−∞
y(k)z−k (1.3)

where z is a complex variable.

By using the z-transform, the ARMA model can be written as follows:

Y (z) + · · ·+ apY (z) = b0U(z) + · · ·+ bqU(z) (1.4)

Then, the transfer function H(z) of the ARMA model can be expressed as:

H(z) =
Y (z)

U(z)
=

b0 + b1z
−1 + · · ·+ bqz

−q

1 + a1z−1 + · · ·+ apz−p
=

B(z)

A(z)
(1.5)

This transfer function is shown in Figure 1.3. The ARMA model is characterized by its

poles and zeros, where the poles are the roots of A(z) and the zeros are the roots of B(z).

1.2.2 Moving Average (MA) Model

The MA is a special case of (1.2), when the {al}l=1,...,p are all zeros. Then the MA model

is written in time-domain as:

y(k) =

q∑

l=0

blu(k − l) (1.6)

7



Chapter 3 - Introduction

U(z) - H(z) = b0+b1z−1+···+bqz−q

1+a1z−1+···+apz−p Y (z)-

Figure 1.3: Transfer function of the ARMA model.

and the transfer function of the MA model is given by:

H(z) =
Y (z)

U(z)
= b0 + b1z

−1 + · · ·+ bqz
−q = B(z) (1.7)

From (1.7), one can note that H(z) = B(z) and A(z) = 1, which means the MA model is

characterized by its zeros only. Thus, this model is named all-zeros model and shown in

Figure 1.4

U(z) - H(z) =

b0 + b1z
−1 + · · ·+ bqz

−q Y (z)-

Figure 1.4: Transfer function of the MA model.

1.2.3 Autoregressive (AR) Model

The AR model is obtained when the transversal parameters {bl}l=1,...,q are zeros and

b0 = 1. It can be expressed in time-domain as follows:

y(k) = −
p∑

l=1

aly(k − l) + u(k) (1.8)

The transfer function of AR model can be written as fellows:

H(z) =
Y (z)

U(z)
=

1

1 + a1z−1 + · · ·+ apz−p
=

1

A(z)
(1.9)

This means that the AR model is characterized by the roots of A(z) which represents the

poles of the AR model.

The AR model is highly popular as it can be used to model many processes such as

speech signals [Lab07], EEG and ECG signals [Arn98], fading channels [Bad05], etc. .

8
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The AR model can be used to model correlated multichannel processes as in the

case of multichannel mobile fading processes [Bad04]. The transfer function of the AR

model is shown in Figure 1.5.

U(z) - H(z) = 1
1+a1z−1+···+apz−p Y (z)-

Figure 1.5: Transfer function of the AR model.

1.3 Multichannel Mobile Fading Processes

Any communication system consists of three main parts: the transmitter, the channel

and the receiver. The channel is the physical medium between the transmitter and the

receiver.

For most practical channels, where signal propagation takes place in the atmosphere

and near the ground, the free space model is inadequate to describe the channel and

predict system performance. In wireless mobile communication system the transmitted

signal fades along distance. The fading can be large scale over long distances, or small

scale over short distances.

In the following section, a description of the mobile fading channels is provided,

followed by an explanation of the correlated multichannel mobile fading processes. Then,

a procedure on how to simulate these channels is presented.

1.3.1 Fading Channel Description

The multiple reflected signals arrives at the receiver have different amplitude, phase and

angle of arrival. These multiple paths arise due to reflection, diffraction and scattering

of the electromagnetic wave from objects such as trees, hills, buildings, etc. [Skl97]. See

Figure 1.6. When all the multi-paths arrive at the receiver within the symbol duration,

the resulting fading is called frequency non-selective fading or flat fading. In the case of

frequency selective fading, different frequencies will experience different gains and phase

shifts, which spreads the transmitted signal in time leading to Inter Symbol Interference

(ISI).

9
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Figure 1.6: Multi-path fading in wireless mobile communication systems.

The maximum delay spread, denoted by Tm is a parameter describes the fading

channel and defined as the range of values over which the power delay profile is non-

zero. The channel coherence bandwidth Bc is the width of the band of frequencies which

are similarly affected by the channel. The channel coherence bandwidth is inversely

proportional to the channel maximum delay spread:

Bc ≈ 1

Tm

(1.10)

Bc can be used to decide if the channel is frequency selective or not. If the transmitted

signal bandwidth W is much grater than Bc, then the channel is frequency selective, and

the channel is non-selective when W < Bc.

The frequency selective channel can be transformed into frequency non-selective

channels, by dividing the wide frequency band which is greater than Bc into narrow fre-

quency bands each with bandwidth less than Bc. For example, in multi-carrier modula-

tion, a wide-band Direct Sequence-Code Division Multiple Access (DS-CDMA) signal can

be replaced by several narrow-band DS-CDMA signals, as shown in Figure 1.7 [Jam07a].

The relative motion between the base station and the mobile station is another factor

that affects the received signals as shown in Figure 1.8 [Jam07a]. The car is moving with a

constant speed υ making angle ϕ with the direction of propagation. This relative motion

10
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Figure 1.7: (a) PSD of multi-carrier DS-CDMA signal. (b) PSD of wide-band single-

carrier DS-CDMA signal [Jam07a].

results in channel time variation due to Doppler shift fD which is given by:

fD =
υfc

c
cos(ϕ) (1.11)

where fc is the carrier frequency and c is the speed of light.

HH©©
h h

hh

¡
¡

¡
¡

¡
¡

¡¡ª

signal source

-υ

6

?

ϕ

Figure 1.8: Illustration of the Doppler effect [Jam07a].

The maximum Doppler spread or frequency denoted as fd can be computed using

(1.11) when ϕ = 0 as follows:

fd =
υfc

c
(1.12)

Depending on the relative motion between the transmitter and the receiver, the channel

can be classified as fast or slow fading. In slow fading, the impulse response changes

slower than the signal, this occurs when the coherence time of the channel Tc is lager than

the symbol duration Ts (i.e. Ts < Tc). Otherwise, fast fading results when the channel

impulse response changes rapidly compared to the signal (i.e. Ts > Tc).

In multi-path fading channel, the transmitted signal arrives at the receiver along

Lp resolvable paths. Each path is a superposition of a large number Ls of local uncor-

11
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related scatters that arrive at the receiver within the symbol duration. Each scatter is

characterized by its own random amplitude and phase.

According to Jack’s model, the frequency non-selective fading process is given by:

hm(t) =
Ls∑

l=1

gmle
j(2πfdt cos ϕml+ϑml) = |hm(t)|ejφm(t) (1.13)

where gml, ϕml and ϑml are the random scatterer amplitude, angle of arrival and initial

phase for mth carrier and lth scatterer.

Based on the Central Limit Theorem (CLT) and for large number of scatterer, h(t)

can be approximated as a complex Gaussian process. When there is a dominant Line-Of-

Sight (LOS) path between the transmitter and the receiver, then the envelope of the fading

process is Racian distributed. While in most cases of mobile communications, there is no

direct LOS between the transmitter and the receiver. In this case, the envelope is Rayleigh

distributed. In Rayleigh fading channels, the phase φ(t) has the uniform distribution over

[0, 2π) and the envelope ~ = |hm(t)| has the Rayleigh Probability Density Function (PDF)

defined as follows:

f~(~) =





~
σ2

hm

e−~
2/2σ2

hm , if ~ ≥ 0

0, otherwise
(1.14)

where σ2
hm

= E[|hm(t)|2] is the average power of the fading process.

Figure 1.9 shows a plot of the PDF of the envelope and phase while Figure 1.10

shows the envelope and phase of a fading process.

The value (1.13) can be used to compute the fading process Auto Correlation Func-

tion (ACF) as follows:

Rhh(τ) = E[hm(t + τ)h∗m(t)] (1.15)

Rhh(τ) =
Ls∑

l=1

Ls∑
i=1

E[gmle
j(2πfd(t+τ) cos(ϕml)+ϑml)gmie

−j(2πfd(t+τ) cos(ϕmi)+ϑmi)] (1.16)

and τ the time shift.

Assuming WSS fading process, the different scatterers are uncorrelated:

E[gmlgmi] =





E[g2
ml], if l = i

0, otherwise
(1.17)

Hence, the ACF can be written as follows:

Rhh(τ) =
Ls∑

l=1

E[g2
ml]E[ej2πfdτ cos ϕml ] (1.18)
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Figure 1.9: PDF for the Rayleigh envelope and phase.
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Figure 1.10: The envelope and phase of Rayleigh fading process.
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If the angle of arrival of each scatter has the same probability of the others, then the ACF

becomes:

Rhh(τ) =
σ2

h

2π

∫ 2π

0

ej2πfdτ cos ϕmldϕml = σ2
hJ0(2πfdτ) (1.19)

where J0(.) is the zero-order Bessel function, and σ2
h =

∑Ls

l=1 E[gml].

The right side of (1.19) is the sum of the ACF of the real and imaginary parts of

the complex fading channel. They are not correlated. In addition, they have the same

autocorrelation function as follows:

R
h
(R)
m h

(R)
m

= R
h
(I)
m h

(I)
m

=
σ2

h

2
J0(2πfdτ) (1.20)

R
h
(I)
m h

(R)
m

= R
h
(R)
m h

(I)
m

= 0 (1.21)

By taking the Fourier transform of (1.20), we obtain the Doppler power spectrum as

follows:

Ψ(f) =





σ2
h

πfd

√
1−(f/fd)2

, if |f | ≤ fd

0, otherwise
(1.22)

According to (1.22), increasing Doppler frequency results in wider band limited spectrum

between +fd and −fd .

The discrete-time Rayleigh process can be obtained when sampling the continuous

signal at sampling rate 1/Tb as follows:

hm(k) =
Ls∑

l=1

gmle
j(2πfdTbk cos ϕml+ϑml) (1.23)

and the ACF is given by:

Rhh(k) = σ2
hJ0(2πfdTbk) (1.24)

1.3.2 Correlated Mobile Fading Channels

The Rayleigh channel follows from the Gaussian WSS uncorrelated scattering fading as-

sumption. This fading channel is characterized by its ACF which depends on the prop-

agation geometry, the velocity of the mobile and the antenna characteristic [Bad05]. In

Orthogonal Frequency-Division Multiplexing (OFDM) systems, the fading among the

narrow-band sub-carriers is often assumed to be uncorrelated. However, when operating

in channels having a large coherence bandwidth, the faded envelope of a large number

of sub-carriers might have cross-correlation coefficient of 0.5 and above [Sor06]. If two
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carriers are transmitted from the base station at slightly different frequencies, then their

statistical properties, as observed at mobile antenna, are dependent if the frequency sep-

aration is not large enough. The frequency separation for which the signals are still

strongly correlated is called the coherence bandwidth. In addition, in many real radio

environment, signals that are received by any two antennas are found to be correlated

spatially. This is mainly due to the insufficient physical separation between the antennas

and/or lack of rich scattering environment [Xu09].

To deal with correlated channels we have to study the ACF and the Cross-Correlation

Function (CCF) between these channels.

Define the pth order multichannel fading vector of size M × 1 at time instant k as

follows:

h(k) =
[

h1(k) h2(k) · · · hM(k)
]T

(1.25)

The M-AR model of the fading vector is given by:

h(k) = −
p∑

l=1

A(l)h(k − l) + u(k) (1.26)

the fading vector at time k + l is given by:

h(k + l) =
[

h1(k + l) h2(k + l) · · · hM(k + l)
]T

(1.27)

where u(k) is the driving processes and (·)T denote the matrix transpose.

To formulate the ACF and CCF, compute the covariance matrix Rhh(l) at lag l as

follows:

Rhh(l) = E[h(k)hH(k + l)]

= E




h1(k)h1(k + l) h1(k)h2(k + l) · · · h1(k)hM(k + l)

h2(k)h1(k + l) h2(k)h2(k + l) · · · h2(k)hM(k + l)
...

...
. . .

...

hM(k)h1(k + l) hM(k)h2(k + l) · · · hM(k)hM(k + l)




(1.28)

where (·)H denotes the Hermitian operator.

One can rewrite the above formula in terms of autocorrelation and cross-correlation

between the channels as follows:

Rhh(l) =




Rh1h1(l) Rh1h2(l) · · · Rh1hM
(l)

Rh2h1(l) Rh2h2(l) · · · Rh2hM
(l)

...
...

. . .
...

RhMh1(l) RhMh2(l) · · · RhMhM
(l)




(1.29)
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where Rhrhs(l) is the correlation between the channels r,s for r = 1, . . . , M and s =

1, . . . , M .

Rhrhs(l) in (1.29) is general, it depends on the application. In [Jak94], the au-

thor considered the scenario where all complex Gaussian random processes with Rayleigh

envelopes have equal power σ2
h and derived the correlation properties between random

processes as function of both time and frequency separation. Assume that hr(k) and

hs(k + l) are the channels r and s at instants k and k + l, respectively. Since, these

channels are complex, they can be written in rectangular form as follows:

hr(k) = h(R)
r (k) + jh(I)

r (1.30)

hs(k) = h(R)
s (k) + jh(I)

s (1.31)

where (R), (I) refers to the real and imaginary components. By definition, the covariance

between the real and the imaginary parts of hr(k) and hs(k + l) are:

R
h
(R)
r h

(R)
s

(l) , E[h
(R)
r h

(R)
s ], R

h
(I)
r h

(I)
s

(l) , E[h
(I)
r h

(I)
s ]

R
h
(R)
r h

(I)
s

(l) , E[h
(R)
r h

(I)
s ], R

h
(I)
r h

(R)
s

(l) , E[h
(I)
r h

(R)
s ]

(1.32)

Those covariance matrices have been derived in [Jak94] as follows:

R
h
(R)
r h

(R)
s

(l) = R
h
(I)
r h

(I)
s

(l) =
σ2

hJ0(2πfml)

2[1+(∆wrsστ )2]

R
h
(R)
r h

(I)
s

(l) = −R
h
(I)
r h

(R)
s

(l) = −∆wrsστRh
(R)
r h

(R)
s

(l)
(1.33)

where fm = fdTb is the Doppler rate, σ2
h is the variance (σ2

h/2 is the variance per dimen-

sion), στ is the delay spread of the wireless channel, and ∆wrs is the angular frequency

separation between the processes at frequencies fr, fs given by:

∆wrs = 2π(fr − fs) (1.34)

The general formula for the correlation between the channel hr(k) and hs(k + l) is given

by:

Rhrhs(l) = [R
h
(R)
r h

(R)
s

(l) + R
h
(I)
r h

(I)
s

(l)]− j[R
h
(R)
r h

(I)
s

(l)−R
h
(I)
r h

(R)
s

(l)] (1.35)

Substituting (1.33) in (1.35), it follows that:

Rhrhs(l) =
σ2

hJ0(2πfml)

[1 + (∆wrsστ )2]
− j∆wrsστ

σ2
hJ0(2πfml)

[1 + (∆wrsστ )2]
=

σ2
hJ0(2πfml)

[1 + (∆wrsστ )2]
[1− j∆wrsστ ]

(1.36)

For r = s, implies fr = fs, which leads to (∆wrs = 0, by substitution this result in (1.36)

produce Rhrhs(m) = σ2
hJ0(2πfmm).
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Equation (1.36) is used in [Bul98] to model Rayleigh fading channels and implement

a diversity receiver for OFDM systems.

The fading correlation can be given as a function of spatial separation in antenna

arrays [Bad04] [Tra05], [Xu09]. See appendix A for an example of spatial correlation

[Bad04] for Multi Input Multi Output (MIMO) systems.

1.3.3 AR Modeling and Simulation of Fading Processes

Several models have been used to model fading channels depending on (1.23). These

models are very important to simulate the wireless mobile fading channels, because they

make system tests and evaluations less expensive and more reproducible than field trials.

Many different techniques have been proposed for the modeling and simulation of mobile

radio channels. Among them, are the sum-of-sinusoids models and the autoregressive

models [Hay02].

To simplify the model described by (1.23), several authors used different assumptions

of the amplitude gml, angle of arrival ϕml and the phase ϑml.

Clarke in [Cla68] used gml = 1√
Ls

and the angle of arrival and the phase shift are

random uniformly distributed over [−π, π) for all l, and they are mutually independent.

This model is commonly considered as a computationally inefficient model compared to

Jakes’ Rayleigh fading simulator.

Jake used gml = 1√
Ls

, ϕml = 2πl
Ls

, l = 1, . . . , Ls and ϑml = 0. These assumption make

the simulator deterministic and wide-sense non-stationary [Pop01].

Based on Clarke’s model, Pop et al. [Pop01] developed a class of WSS Rayleigh

fading simulator. In this model, the author assume ϕml = 2πl
Ls

and random phase shift.

The draw back of this model is that it may model some higher order statistical properties

inaccurately.

Recently, an improvement has been investigated in [Xia06] for Rayleigh fading chan-

nels simulators, based on the statistical analysis of Clarke’s model and Pop-Beaulieu simu-

lator. In this model, the author modified the angle of arrival to be the sum of Clarke’s and

Pop-Beaulieu assumptions, i.e., ϕml = 2πl+ωl

Ls
, where ωl is uniformly distributed variable,

independent from the phase shift.

Although, the sum-of-sinusoids simulators are suitable for simulating fading chan-

nels, they can’t be used in the design of channel estimation algorithms as they are non-

linear models. In addition, three parameters have to be defined for each scatter (gml, ϕml

and ϑml) which means a large number of parameters to be estimated for large value of
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Ls. Moreover, the estimation of these parameters is not an easy task [Jam07a].

Generation of multichannel mobile fading processes has been studied by different

authors and different algorithms have been proposed. Some of these methods are dedicated

to generate two correlated fading channels with equal power. Other methods generate any

number of channels but they are applicable for equal power fading channels. Two recent

algorithms have been investigated by Chung [Tra05] and Sorooshyari [Sor06] based on

filtering a white Gaussian noise variates. These are general algorithms for generating

any number of channels with any desired channel variances. They depend on producing

coloring matrix and then multiplying it by a white Gaussian noise to obtain the desired

fading processes. The coloring matrix obtained by factorizing the covariance matrix,

which has to be positive semi-definite. The shortcoming of these methods comes from

the last condition. It can be solved by forcing the non-positive semi-definite matrix to

positive semi-definite.

The main difference between these methods appears in the type of decomposition

they used. In [Tra05], the eigen decomposition is considered, while the Cholesky decompo-

sition is used in [Sor06]. The output sequences of the previous fading channel simulators

are restricted to have cross-correlation statistics that have the same functional form as

component autocorrelation function.

To overcome the previous disadvantage, more general algorithm, based on the au-

toregressive modeling of the mobile fading channels has been proposed in [Bad04]. It

is suitable for the simulation and estimation of correlated fading channels and provides

accurate fitting of the theoretical fading channels statistics such as (ACF, CCF, etc.).

Here, we adopt Baddour algorithm [Bad04] for the generation of multichannel fading

processes which is based on the multichannel autoregressive (M-AR) model.

Thus, the multichannel fading processes can be modeled as a pth order M-AR model:

h(k) = −
p∑

l=1

A(l)h(k − l) + u(k) (1.37)

where h(k) =
[

h1(k) h2(k) · · · hM(k)
]T

is the multichannel vector, and u(k) =
[

u1(k) u2(k) · · · uM(k)
]T

is a complex Gaussian white vector with zero-mean and

covariance matrix Qu = E[u(k)uH(k)]. {A(l)}l=1,...,p are M ×M matrices containing the

M-AR model coefficients as follows:

A(l) =




a
(l)
11 · · · a

(l)
1M

...
. . .

...

a
(l)
M1 · · · a

(l)
MM


 (1.38)
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where (.)H denotes the Hermitian operator (i.e. the conjugate transpose).

Define the vector h(k) as follows:

h(k) =
[

h(k − 1)T h(k − 2)T · · · h(k − p)T
]T

(1.39)

Then, the model covariance matrix Rhh of dimension Mp×Mp is defined as follows:

Rhh = E[H (k)H H(k)] (1.40)

The relationship between the desired Rhh and the M-AR model parameters is given by

the multichannel Yule-Walker equations:



Rhh(0) Rhh(−1) · · · Rhh(−p + 1)

Rhh(1) Rhh(0) · · · Rhh(−p + 2)
...

...
. . .

...

Rhh(p− 1) Rhh(p− 2) · · · Rhh(0)




︸ ︷︷ ︸
Rhh




A(1)H

A(2)H

...

A(p)H




︸ ︷︷ ︸
A

= −




Rhh(1)

Rhh(2)
...

Rhh(p)




︸ ︷︷ ︸
V

(1.41)

where the sub-matrices in Rhh are the M × M Toeplitz matrices Rhh(l) = E[h(k +

l)hH(k)], satisfying the following property:

Rhh(−l) = RH
hh(l) (1.42)

Once the A(l) coefficient matrices have been determined, the M × M covariance

matrix of the driving noise vector process can be computed as follows:

Qu = Rhh(0) +

p∑

l=1

Rhh(−l)A(l)H = Rhh(0) + V TA (1.43)

After obtaining Qu, the realization of the driving noise process u(k) can be accomplished

by factorizing Qu as follows:

Qu = GGH (1.44)

The Cholesky decomposition can be used here. The driving process is then generated as

follows:

u(k) = Gz (k) (1.45)

where z (k) is an M × 1 vector of independent zero-mean complex Gaussian variates with

unit variance.

For high order M-AR process, the determinant of the matrix Rhh is very small, which

means that Rhh is close to singular resulting in an ill-conditioned matrix. The numerical
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problems arise in this case can be resolved by approximating any band-limited processes

by adding a very small positive bias ε to the zeroth lag of their corresponding ACFs

[Bad05]. If the ill-conditioning is ignored, then the algorithm produces a meaningless

solution with either a covariance matrix Qu that are not realizable or a multichannel

Infinite-Impulse Response (IIR) filter that is unstable.

If the matrix Rhh is positive semi-definite, then the eigenvalues either positive or

zeros. The added bias ε can be selected to be the smallest value of the eigenvalues. But

if Rhh is not positive semi-definite, then a technique described in [Sor06] can be used to

approximate the desired Rhh with the nearest resizable positive semi-definite matrix in

Frobenius sense.

The correlation between any two channels hr(k) and hs(k + l) in this algorithm can

be computed as follows:

Rhrhs(l) =





J0(2πfm|l|), if r = s

ρrsJ0(2πfm|l|), if r 6= s
(1.46)

where ρrs is the cross-correlation coefficient between channels hr and hs. In general,

ρrs 6= ρsr.

In the case of Jakes model [Jak94], the cross-correlation ρrs is given from (1.36) as

follows:

ρrs =
1− j∆wrsστ

1 + (∆wrsστ )2
(1.47)

The formula of ρrs depends on the practical cases, for example we can use (1.36) in

the case of OFDM systems.

A simulation using the vector AR method [Bad04] to generate multiple correlated

band-limited Rayleigh processes is provided. In this example, we consider M=3, AR(6),

fm = 0.1, and given the correlation coefficients ρ12 = ρ21 = 0.95, ρ13 = ρ31 = 0.8 and

ρ23 = ρ32 = 0.6. Figure 1.11 shows the envelope and the phase of the generated channels,

while the ACF is shown in Figure 1.12. We can note that the theoretical ACF is very

close to the practical ACF for lags up to the process order.

When the correlation coefficients ρrs = ρsr, the resulting parameter matrices {A}(l)
l=1,...,p

are diagonal:

A(l) =




a
(l)
11 0 · · · 0

0 a
(l)
22 0 0

...
...

. . .
...

0 · · · 0 a
(l)
MM




(1.48)
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(a) Envelope of the multichannel fading processes.
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(b) Phase of the multichannel fading processes.

Figure 1.11: The envelope and phase of multichannel Rayleigh fading channels.
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Figure 1.12: ACF and CCF of the of multichannel Rayleigh fading.

21



Chapter 3 - Introduction

Table 1.1: Simulation of correlated fading channels based on vector AR model [Bad04].
1- Compute Rhh(l) for l = −p + 1, . . . , 0, . . . , p based on 1.46.

2- Build the covariance matrix Rhh using the sub-matrices in step 1.

3- Build the cross-correlation matrix V using the sub-matrices in step 1.

4- Compute A using (1.41).

5- Compute the driving processes covariance matrix Qu using (1.43).

6- Perform the factorization Qu = GGT .

7- Generate the independent zero-mean complex Gaussian variates with unit

variance z (k).

8- Compute u(k) = Gz (k) using the results from step 6.

9- Generate the M-AR fading process by using 1.37.

In this case, the correlation between the channels result from the driving noise processes

u(k). The proof of this fact for first order M-AR process is provided in appendix B.

The single channel fading process can be generated as a special case of multichannel

fading processes when M=1 [Bad05].

Table 1.1 summarize the algorithm of vector AR method for the generation of M-AR

fading process [Bad04].

1.4 Aims of the Thesis

Multichannel processes appears in different applications such as in biomedical engineering,

Radar, satellite navigation and wireless mobile communications. In these applications,

the channels can be modeled as M-AR model, which is defined using a few number of

parameters. The M-AR process is usually contaminated by AWGN. Our purpose is to

estimate the parameters of the M-AR process from noisy observations.

Different approaches have been studied to estimate the parameters of M-AR process

from noisy observations. The YW equations results in biased estimates, as it does not

account for the additive noise. To avoid the biased estimation problem, the NCYW can be

used. It requires a priori knowledge of the additive noise variances. However, the additive

noise variances are usually unknown in practice. Thus, different algorithms have been

studied to solve this problem such as Hassan’s method [Has03], ILSV method [Mah08]

and EIV based approach [Pet09b].

The above estimation methods are off-line requiring all observations to be used in

the estimation. This is not applicable in the on-line applications, where only one sample

is available at a time. Several on-line estimation techniques have been studied in the
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literature such as the methods based on Kalman or H∞ filters.

When Kalman or H∞ filters are applied directly on the noisy observations, the

estimated AR parameters are biased [Arn98] [Cai04]. To avoid this problem, we propose

to extend to the multichannel case the two cross-coupled Kalman (CC-Kalman) filters

and two cross-coupled H∞ (CC-H∞) filters initially proposed for parameter estimation in

single channel AR process [Lab06] [Lab07].

1.5 Outlines of the Thesis

In chapter 1, a motivation of the work is firstly presented. In Section 2, the parametric

models (ARMA, MA and AR) are presented. In section 3, a description of correlated mul-

tichannel fading processes is provided followed by presenting a method for the simulation

of correlated M-AR fading processes based on VAR modeling.

In chapter 2, a survey about the estimation of single channel AR process and M-AR

process is firstly presented. The formulation of the problem of M-AR process estimation

is presented in section 2. In section 3, off-line parameters estimation of M-AR process are

explained. In section 4, on-line parameter estimation techniques based on optimal filters

are introduced. Finally, we present our extension of CC-Kalman filters and CC-H∞ filters

to the multichannel case.

In chapter 3, we provide a comparative simulation study between the various pa-

rameter estimation methods based either on synthetic M-AR process or correlated multi-

channel fading processes.

Conclusion and recommendations for future works are drawn in chapter 4.
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Chapter 2 – Parameter Estimation of Multichannel AR (M-AR) Processes

2.1 State-of-the-Art

The single channel AR model has been widely used in digital signal processing applica-

tions as it is simple and contains few parameters that can be easily estimated [Hay02].

Examples of these applications are speech coding enhancement [Gib74] and smoothing

[Lab07], medical imaging [Che99]. In radar applications, the interest is to determine the

position, velocity and acceleration of a plane or objects in the sky [Gon06]. In mechanical

systems [Pro00] and vehicle navigation, the purpose is to determine position, velocity and

acceleration [Pie04]. In the framework of mobile communications, the aim is to simulate

[Bad05] and estimate the AR process and parameters [Cai04] [Jam08]. In all AR ap-

plications, the aim is to estimate the AR process and its parameters from the received

noisy observations. The noise is a part of the nature that can’t be avoided and is usually

added to the desired signal. The noise sources may be internal from the system ( i.e., the

thermal noise due to the random motion of the electrons in the conductor ). The other

sources of noise are external to the system ( e.g., atmospheric noise, galactic noise and

man-made noise ) [Hay00].

The effect of the additive noise on the signal was studied by Steven Kay in [Kay79].

He showed that the additive noise results in smoothing the AR spectrum. This smoothing

results from the introduction of spectral zeros due to the noise.

The estimation methods of single channel AR process can be classified into either

of-line or on-line. Off-line methods such as ARFIT [Neu01] and YW equations [Kay80]

provide unbiased estimates when the observations are free of noise. However, they provide

biased estimates when the estimation is from the noisy observations, mainly for low SNR.

To contract the effect of disturbance noise, Kay in [Kay80] introduced the NCYW equa-

tions; by including the additive noise variance in the main diagonal of the autocorrelation

matrix. It provides accurate parameter estimates. However, it requires that the noise

variance to be a priori known which is not the case in most applications. To overcome

this problem, Davila in [Dav01] proposed a method for estimating the noise variance and

the parameter using YW equations.

The off-line estimation methods can’t be used in the applications where only one

observation is available at a time or when the sample size is limited. Thus, different tech-

niques have been investigated to estimate the AR parameters using the on-line observa-

tions. Such as the Least Mean Square (LMS) algorithm, Recursive Least Square (RLS) al-

gorithm and two serially-connected Kalman (SC-Kalman) filters [Arn98] [Jam07a]. How-

ever, applying these techniques directly to the noisy observations results in biased esti-
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mation of the AR parameters.

To avoid the bias of estimation problem, a wide variety of Kalman filters have now

been developed such as the EKF, SPKF and the Uncented Kalman Filter (UKF) [Hay02].

The UKF has slightly better performance than the EKF [Pie04]. The size of the state

vector to be estimated is quite high. To reduce this size and the resulting computational

cost, the CC-Kalman filters has been investigated. In this arrangement, one filter is

used to estimate the process, while the other filter estimates the parameters from the

estimated process [Lab06] [Jam07b]. This arrangement provides consistent estimation of

the AR parameters from noisy observations.

Kalman filter is optimal in the H2 sense providing that the initial state, the driving

process and measurement noise are independent, white and Gaussian with known vari-

ances. However, these assumptions may no longer be satisfied in real cases. To relax

them, H∞ filter has been investigated [Has93] [She97] [Hay02] [Cai04].

The CC-H∞ filters has been investigated in different applications, such as speech

enhancement [Lab07], and fading channel estimation [Jam08]. They provide consistent

and robust estimation of the AR parameter.

Some applications have more than one AR process, and each process is treated indi-

vidually from the other processes. In these cases, the estimation of the AR parameters are

addressed ignoring the correlation between channels. Treating each process individually in

the case of multichannel applications returns to two main reasons: the first is the simplic-

ity of the existing estimation algorithms for single channel, the other returns to difficulty

of generating correlated processes such as the correlated fading channels [Sor06]. To take

into account the correlation between channels, the M-AR model have to be considered

[Bad04].

The correlated channels arise in different multichannel applications such as the EEG

and EEG signals [Arn98]. In the framework of mobile communications the correlation

between the channels over each carrier in OFDM systems has to be considered in order

to estimate the M-AR process and its parameters accurately [Sor06].

Off-line approaches such as the ARFIT algorithm is used to estimate the M-AR

parameters based on eigenmodes decomposition [Neu01]. The YW equations can be used

to estimate the parameters of M-AR process. However, they provide biased estimates.

As the case of single channel AR process, the effect of the additive noise can be reduced

by using NCYW equations. In this method, the noise variances are subtracted from the

main diagonal of the model covariance matrix. The NCYW equations requires a priori

knowledge of the noise covariance matrix which is usually not known.
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To estimate the noise covariance matrix and the M-AR parameter, several techniques

have been addressed. Thus, in [Has03], the authors proposed an iterative algorithm

that combining the YW equations and Newton-Raphson algorithm to estimate the noise

covariance matrix and the AR parameters. Hassan’s method has high computational

complexity due to solving the non-linear equations. In addition, it diverges in some cases

and requires diagonal noise covariance matrix.

To avoid the drawbacks of Hassan’s method, the ILSV approach based on the least

square method has been recently investigated [Mah08]. This approach solves linear equa-

tions to estimate the noise covariance matrix with lower number of iterations. Therefor, it

requires less computation cost. In addition, it doesn’t assume independent additive noise.

However, it doesn’t work properly at low SNR ( e.g., SNR < 4 ). To avoid this draw-

back, EIV based method has been recently proposed [Pet09b]. In this method, the noisy

observations autocorrelation matrix compensated by a specific diagonal block matrix and

whose kernel is defined by the M-AR parameter matrices must be positive semi-definite.

However, it has high computational cost.

The off-line methods require all observations to be available. In addition, they have

high computational cost. Moreover, some of them go divergence in some cases or provide

estimated parameters that result in unstable systems. To overcome these drawbacks,

several on-line methods based on Kalman or H∞ filters have been investigated.

In the last years, different methods and algorithms have been investigated for mul-

tichannel autoregressive processes estimation. Some of these methods are an extension to

the estimation method of single channel. An extension of two serially-connected Kalman

filter, from single channel AR process to M-AR process was applied in the biomedical

engineering for analyzing the spectrum of EEG and ECG signals [Arn98]. The maximum

likelihood has been investigated by Nissila as application in the multi-path fading channels

estimation [Nis04]. However, these methods provide biased estimates; as the estimation

is directly from the noisy observations.

In order to estimate the M-AR parameters consistently, we propose to extend the

CC-Kalman filters [Lab06] from single channel to the multichannel case. However, Kalman

filter require the driving processes and the additive noise to be white, Gaussian and a priori

known. To avoid these assumptions, we propose to extend the CC-H∞ filters [Lab07] from

single channel to the multichannel case.
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2.2 Problem Formulation

In multichannel applications, the pth order M-AR process h(k) satisfies:

h(k) =




h1(k)
...

hM(k)


 = −

p∑

l=1

A(l)h(k − 1) + u(k) (2.1)

where {A(l)}l=1,...,p are the M ×M parameter matrices which can be written as follows:

A(l) =




a
(l)
11 · · · a

(l)
1M

...
. . .

...

a
(l)
M1 · · · a

(l)
MM


 (2.2)

and u(k) =
[

u1(k) u2(k) · · · uM(k)
]T

is a zero-mean white driving vector whose

autocorrelation matrix Σu satisfies:

Σu = E[u(k)uT (k)] = diag(
[

σ2
u1 · · · σ2

uM

]
) (2.3)

where diag(·) denotes a diagonal matrix.

In addition, the M-AR parameter matrices {A(l)}l=1,...,p are constrained so that the

roots {pi}i=1,...,Mp of:

det(Ap(z)) = 0 (2.4)

lie inside the unit circle in the z-plane, where:

Ap(z) = IM + A(1)z−1 + · · · + A(p)z−p (2.5)

In (2.5), z−1 denotes the backward shift operator and IM is the M ×M identity matrix.

Let the M-AR process h(k) be disturbed by an additive zero-mean white noise vector

v(k) =
[

v1(k) · · · vM(k)
]T

uncorrelated with u(k), and with the following correlation

matrix:

Σv = E[v(k)vT (k)] = diag(
[

σ2
v1 · · · σ2

vM

]
) (2.6)

Thus, the noisy observation vector y(k) is written as follows:

y(k) =




y1(k)

· · ·
yM(k)


 = h(k) + v(k) (2.7)
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The purpose of the M-AR parameter estimation methods is to estimate the parameter

matrices {A(l)}l=1,...,p from the noisy vector y(k).

Single channel system can be obtained as a special case of the multichannel system

when substituting M = 1 in (2.1) and (2.7) as follows:

h(k) = −
p∑

l=1

alh(k − l) + u(k) (2.8)

y(k) = h(k) + v(k) (2.9)

The YW equations, NCYW equations and Hassan’s method are explained in section 3

as off-line approaches. In section 4, the separate estimation of M-AR process and its

parameters using Kalman or H∞ filters is presented. Finally, we introduce the joint

estimation of the M-AR process and its parameters using CC-Kalman filters and CC-H∞

filters as an extension to [Lab06] [Lab07].

2.3 Off-line Parameter Estimation Methods

In this section, we describe some of the off-line parameters estimation methods for the

system represented by (2.1) and (2.7) showing their advantages and disadvantages.

2.3.1 Yule-Walker Equations

The M-AR parameter matrices A =
[

A(1) · · · A(p)
]

can be estimated by solving the

following YW equations:

ARyy = −V (2.10)

where the autocorrelation matrix Ryy is given by:

Ryy =




Ryy(0) · · · Ryy(p− 1)
...

. . .
...

Ryy(−p + 1) · · · Ryy(0)


 (2.11)

the cross correlation matrix V is given by:

V =
[

Ryy(1) · · · Ryy(p)
]

(2.12)

The sub-matrices {Ryy(m)}m=0,...,p represents the correlation matrix of the vector y(k)

in (2.7) and given by:

Ryy(m) = E[y(k)yH(k −m)] (2.13)
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Using (2.7), we can express Ryy(m) in terms of h(k) and v(k) as follows:

Ryy(m) = E[(h(k) + v(k))(h(k −m) + v(k −m))H ] (2.14)

Ryy(m) = E[h(k)hH(k−m)]+E[h(k)vH(k−m)]+E[v(k)hH(k−m)]+E[v(k)vH(k−m)]

(2.15)

Assuming that the M-AR process and the measurement noise are independent, then equa-

tion (2.15) reduces to:

Ryy(m) =





Rhh(m) + Σv, if m = 0

Rhh(m), if m 6= 0
(2.16)

In the case of mobile fading channels, the autocorrelation matrix Ryy is close to singular

for high order M-AR model and has no inverse. To solve this problem, Baddour et al.

[Bad05] suggests to add a small bias to the elements of the main diagonal in the case of

single channel AR process. The same principle is applicable in M-AR process [Bad04].

When the auto-correlation matrices are prepared, we can use (2.10) to compute the

matrix A as follows:

A = −VR̂
−1

yy (2.17)

where R̂
−1

yy is the inverse of the estimate of Ryy.

Using (2.16), Ryy can be expressed as follows:

Ryy = Rhh + Σv ⊗ I p (2.18)

where ⊗ denotes the matrices Kronecker product.

The YW equations provide biased estimates of A due to the right most term in

(2.18).

In some applications the correlation between the processes can be formulated. For

example, the correlation in the case of fading processes is a zero-order Bessel function of

the first kind. In the case of finite set of observations with unknown correlation function

we can use the following estimate:

R̂yy(m) =
1

N

N−m∑
i=1

y(i + m)yH(i) (2.19)

where N is the number of samples. In general, the autocorrelation matrix Ryy is Hermi-

tian, i.e., Ryy(m) = RH
yy(−m).

YW provide high performance for free of noise observations, while it provides biased

estimates in the case of noisy observations. To avoid this drawback, NCYW equations

can be used as explained in the next subsection.
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2.3.2 Noise-Compensated Yule-Walker Equations

Since the noisy observation are used in the estimation process, the autocorrelation ma-

trices have to be modified to compensate for the additive noise as explained later in this

subsection.

Equation (2.16) can be arranged as follows:

Rhh(m) =





Ryy(m)−Σv, if m = 0

Ryy(m), if m 6= 0
(2.20)

The autocorrelation matrix Rhh of the vector h(k) can be obtained by replacing subma-

trices in (2.11) by (2.20) as follows:

Rhh =




Ryy(0)−Σv · · · Ryy(p− 1)
...

. . .
...

Ryy(−p + 1) · · · Ryy(0)−Σv


 (2.21)

From the above equation we note that the modification on the autocorrelation matrix

obtained by subtracting the noise covariances from the elements of the main diagonal.

Thus, the parameter matrix A can be estimated as follows:

A = −VR̂
−1

hh (2.22)

where R̂
−1

hh is the inverse of the estimated Rhh

The NCYW methods is preferable when the measurement noise covariance matrix

is a priori known. However, it is usually unknown in most applications. Thus, several

techniques have been studied to estimate the M-AR parameters and the noise covariance

matrix. Examples of these methods are Hassan’s method [Has03], ILSV aprroach [Mah08]

and EIV based method [Pet09b].

2.3.3 Hassan’s Method

Hassan’s method [Has03] is based on solving iteratively and alternatively a set of lin-

ear and non-linear equations. Thus, the Newton-Raphson iteration is used to estimate

the unknown noise variances by solving a set of non-linear equations, while the M-AR

parameters matrices are estimated by solving the YW equations.

If the noisy observations in (2.7) are filtered by the inverse system Ap(z) of H (z),

then the output z (k) is given by:

z (k) = y(k) +

p∑

l=1

A(l)y(k − 1) (2.23)
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By substituting (2.1) and (2.7) into (2.23), it follows that:

z (k) = v(k) + u(k) +

p∑

l=1

A(l)v(k − 1) (2.24)

Compute the autocorrelation matrix Rzz(1) = E[z (k)z T (k − 1)] of z (k) at lag k = 1 we

obtain the following:

Rzz(1) =

p∑

l=1

A(l)ΣvA
(l−1)T (2.25)

Here, Σv has to be diagonal.

We can use (2.25) to write the ith element of the main diagonal of Rzz(1) for i =

1, . . . , M as below:

Rzz(1)ii = σ2
via

(1)
ii +

p∑

l=2

M∑
m=1

σ2
vma

(l)
ima

(l−1)
l (2.26)

The system of linear equations constructed from (2.26) can be written in matrix form as

follows:

Cd = D (2.27)

where d has the same elements as the main diagonal of the noise covariance matrix Σv,

D is a column vector contains the main diagonal of the matrix Rzz(1) and C is M ×M

matrix. They are given as follows:

d =




σ2
v1
...

σ2
vM


, D =




Rzz(1)11

...

Rzz(1)MM


, C =




C11 · · · C1M

...
. . .

...

CM1 · · · CMM




where Cij can be computed by the following formula:

Cij =





a
(1)
ij + a

(2)
ij a

(1)
ij + · · ·+ a

(p)
ij a

(p−1)
ij , if i = j;

a
(2)
ij a

(1)
ij + · · ·+ a

(p)
ij a

(p−1)
ij , if i 6= j;

(2.28)

From the above formula, we can express C in terms of the parameter matrices as follows:

C = A(1) · I + A(2) ·A(1) + · · ·+ A(p) ·A(p−1) (2.29)

where (·) is the matrices dot product, i.e., multiply each element in the first matrix by

the corresponding element in the second matrix.

As the noise variances are unknown we can substitute α = diag(α1, α2, · · · , αM) for

Σv in (2.17) to estimate the parameter matrix A =
[

A(1) A(2) · · · A(p)
]
. Then, the

estimated parameters are substituted in (2.27) to estimate d .
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Since σ2
vi depends on αi, we can write σ̄2

vi = fi(α1, α2, · · · , αM)i=1,...,M , and the aim

is to match αi with σ2
i simultaneously.

At matching conditions for each i we can write:

αi − σ̄2
vi = 0 (2.30)

i.e.,

αi − fi(α1, α2, · · · , αM) = Fi(α1, α2, · · · , αM) = 0 (2.31)

In order to solve the nonlinear M equations formed using (2.31) simultaneously, we can

expand the function Fi as a Taylor series expansion about the point (α
(0)
1 , α

(0)
2 , · · · , α

(0)
M ).

Using the first two terms and truncating the others, it follows that:

M∑
j=1

∂Fi

∂αi

(∆αj) = −Fi(α1, α2, · · · , αM) (2.32)

We can write the system of equation formed by (2.32) in matrix form as follows:



∂F1

∂α1
· · · ∂F1

∂αM
...

. . .
...

∂FM

∂α1
· · · ∂FM

∂αM







∆α1

...

∆αM


 = −




F1

...

FM


 (2.33)

Starting from (2.31), one can derive the formula for ∂Fi

∂αj
as follows:

Fi(α1, α2, · · · , αM) = αi − fi(α1, α2, · · · , αM) (2.34)

where the partial derivative of Fi with respect to αj is given by:

∂Fi

∂αj

=
∂Fi(α1, α2, · · · , αM)

∂αj

(2.35)

By substituting (2.34) in (2.35), it follows that:

=
∂(αi − fi(α1, α2, · · · , αM))

∂αj

=
∂αi

∂αj

− ∂fi(α1, α2, · · · , αM)

∂αj

(2.36)

The above formula can be written as follows:

∂Fi

∂αj

=





1− ∂fi(α1,α2,··· ,αM )
∂αj

, if i = j

−∂fi(α1,α2,··· ,αM )
∂αj

, if i 6= j
(2.37)

When the function fi in the above formula is not known, we can use the following equation:

∂Fi

∂αj

=





1− [fi(α1+δ,α2+δ,··· ,αM+δ)−fi(α1,α2,··· ,αM )]
δ

, if i = j

− [fi(α1+δ,α2+δ,··· ,αM+δ)−fi(α1,α2,··· ,αM )]
δ

, if i 6= j
(2.38)
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Table 2.1: Hassan’s method for M-AR parameter estimation from noisy observations

[Has03].

1- Initialize (α
(0)
1 , α

(0)
2 , · · · , α

(0)
M ).

2- Compute [A(1) · · ·A(p)] at (α
(k)
1 , α

(k)
2 , · · · , α

(k)
M ) using (2.17).

3- Compute σ̄2
vi for i = 1, . . . , M at (α

(k)
1 , α

(k)
2 , · · · , α

(k)
M ) using (2.27).

4- Compute Fi = α
(i)
1 − σ̄2

vi at (α
(k)
1 , α

(k)
2 , · · · , α

(k)
M ).

5- Compute [A(1) · · ·A(p)] at (α
(k)
1 + δ, α

(k)
2 + δ, · · · , α

(k)
M + δ) using (2.17).

6- Compute σ̄2
vi for i = 1, . . . , M at (α

(k)
1 + δ, α

(k)
2 + δ, · · · , α

(k)
M + δ) using (2.27).

7- Compute the partial derivatives ∂Fi

∂αj
for i = 1, . . . , M and h = 1, . . . , M , using

(2.38) and the values obtained in steps 3 and 6.

8- Compute (∆α1, ∆α2, · · · , ∆αM) using (2.33) and the values in step 4 and 7.

9- Compute α
(k+1)
i = α

(k)
i + ∆αi, for i = 1, . . . , M .

10- Repeat steps 2 to 9 until F1, F2, ..., FM converge simultaneously to zero.

Hassan’s algorithm requires large number of iterations to converge. In addition, this

algorithm might diverge in some cases: mainly for complex valued data, few samples and

low SNR [Mah08].

Table 2.1 summarizes Hassan’s algorithm for the estimation of noise variances and

M-AR parameters matrices.

2.3.4 Other Off-line Estimation Techniques

To avoid the drawbacks of Hassan’s method, some approaches has been recently investi-

gated. Such as ILSV approach [Mah08], which is an extension of Zheng’s method [Zhe05]

to the multichannel case. The ILSV solves a set of linear equation to estimate the obser-

vation noise covariance matrix, and estimate the parameter using YW equations. This

method converges within a few iterations. In addition, it is more general method, which

doesn’t assume diagonal noise covariance matrix. Moreover, it is applicable for any driv-

ing and additive noise distribution. Nevertheless, this method is no longer reliable when

the SNR becomes lower than 10dB. In addition, it may lead to a set of AR parameter

matrix estimates corresponding to unstable system [Pet09b].

The method proposed in [Pet09b] estimates the M-AR parameter matrices and the

covariance matrices of the additive noise and the driving process from noisy observations

based on an EIV approach. In this method, the noisy observations autocorrelation matrix

compensated by a specific diagonal block matrix whose kernel is defined by the M-AR

parameter matrices must be positive semi-definite. Hence, the parameter estimation con-
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sists in searching every diagonal block matrix that satisfies this property. This method

is applicable even for low SNR (e.g., SNR < 4dB). However, it has high computational

cost. To reduce the computational cost, we investigate the on-line estimation techniques

in the next section.

2.4 On-line M-AR Process Estimation Based on Op-

timal Filters

The off-line estimation methods of M-AR process parameters are applicable when all

observations are available. In addition, they require large sample size. Moreover, they

are no longer valid for on-line applications, since only single observation is available at a

time. Thus, on-line methods based on Kalman or H∞ filters have been investigated for

the estimation of M-AR process and its parameters.

2.4.1 Kalman Vs H∞ for M-AR Process Estimation

A requirement for the use of Kalman or H∞ filters is that the system given by (2.1)

and (2.7) has a representation in state-space form. Such a model consists of two linear

equations: the state equation and the observation equation.

Let us first define the state vector h(k) as follows:

h(k) =
[

h(k) h(k − 1) · · · h(k − p + 1)
]T

(2.39)

Given the system represented by (2.1), (2.7) and the state vector h(k), the state-space

representation for the estimation of the state vector can be written as follows:

The state equation:

h(k) = Φ(k)h(k − 1) + Γu(k) (2.40)

The observation equation:

y(k) = Hh(k) + v(k) (2.41)

where the transition matrix Φ(k) with dimension Mp×Mp is given by:

Φ(k) =




−A(1) −A(2) · · · −A(p)

IM 0M · · · 0M

...
. . . . . .

...

0M 0M IM 0M




(2.42)
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and the matrices H and Γ satisfy:

H = ΓT =
[

IM 0M · · · 0M

]
(2.43)

2.4.1.1 Kalman Estimation Algorithm

Given the state-space model (2.40) and (2.41), the Kalman estimator provides an estima-

tion of the state vector by minimizing the mean square error:

J = E[‖e(k)‖2] = E[‖h(k)− ĥ(k)‖2] (2.44)

where ‖e(k)‖2 = eT (k)e(k) and ĥ(k) is the estimate of h(k).

The a priori estimation h(k/k − 1) of the state vector at instant k given k − 1

observations is given by:

ĥ(k/k − 1) = Φ(k)ĥ(k − 1/k − 1) (2.45)

The vector b(k) is the white Gaussian innovation process with covariance matrix C b(k)

given respectively as follows:

b(k) = y(k)−Hĥ(k/k − 1) (2.46)

C b(k) = HP(k/k − 1)H T + Σv (2.47)

Then, the aposteriori estimation of the state vector h(k/k) can be recursively estimated

as follows:

ĥ(k/k) = ĥ(k/k − 1) + K (k)b(k) (2.48)

where K (k) is the Kalman gain, given by:

K (k) = P(k/k − 1)H TC−1
b (k) (2.49)

In (2.49), P(k/k − 1) is the a priori error covariance matrix computed as follows:

P(k/k − 1) = Φ(k)P(k − 1/k − 1)Φ(k)T + ΓΣuΓ
T (2.50)

The aposteriori error covariance matrix P(k/k) of the state vector is updated using the

following Riccati equation:

P(k/k) = P(k/k − 1)−K (k)HP(k/k − 1) (2.51)

We need to initialize the state vector h(0) and the covariance matrix P(0). We can use

h(0) = 0Mp×1 and P(0) = λIMp, where λ is a scaler value.

The Kalman algorithm for M-AR process estimation is summarized in Table (2.2).
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Table 2.2: Kalman algorithm for M-AR process estimation.
Initialization

h(0/0) = h0

P(0/0) = P0

Filtering

h(k/k − 1) = Φ(k)h(k − 1/k − 1)

P(k/k − 1) = Φ(k)P(k − 1/k − 1)ΦT (k) + ΓΣuΓ
T

C b(k) = HP(k/k − 1)H T + Σv

K (k) = P(k/k − 1)H TC−1
b (k)

b(k) = y(k)−Hĥ(k/k − 1)

ĥ(k/k) = ĥ(k/k − 1) + K (k)b(k)

P(k/k) = [IMp −K (k)H ]P(k/k − 1)

2.4.1.2 H∞ Estimation Algorithm

The Kalman estimator assumes that the signal generating processes have known dynamics

and that the noise sources have Gaussian known statistical properties. However, these

assumptions may limit the application of the estimator since in many situations, only

approximate signal model are available and the statistics of the noise sources are not

fully known or unavailable. In addition, Kalman estimator may not be robust against

parameter uncertainty of the signal models. To avoid these drawbacks, the H∞ filter has

been studied.

The optimal H∞ estimator is designed to guarantee that the transfer operator re-

lating the noise signals to the resulting estimation errors should provide an H∞ norm less

than a prescribed positive value. In the H∞ estimator, the noise sources can be arbitrary

signals with the only requirement of bounded noise. The H∞ estimator aims to minimize

the maximum transferred power from the disturbances to the output.

The concept of H∞ filter is related to the game theory [She97]. Since H∞ estimator

involves the minimization of the worst possible amplification of the error signal, it can

be viewed as a dynamic two-persons zero-sum game. In the game, the H∞ filter (the

designer) is a player prepared for the worst strategy that the other player (the nature)

can provide. Thus, the goal of the filter is to provide a uniformly small estimation error for

any process and measurement noises and any initial states. In this approach, a difference

game is defined in which the state estimator and the disturbance signals (driving process,

initial conditions and measurements noise) have the conflicting objectives of respectively,

minimizing and maximizing the estimation error. The minimizer picks the optimal filter

estimate, and the maximizer picks the worst case disturbance and initial conditions.
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Unlike Kalman filter, H∞ deals with the estimation of the linear combination of the

state vector components z (k) as follows:

z (k) = Lh(k) (2.52)

where L is a matrix whose value depends on the problem. Here, as the aim is to estimate

the M-AR process, the matrix L with dimension M ×Mp is defined as follows:

L =
[

IM 0M · · · 0M

]
(2.53)

Define the estimation error as:

e(k) = z (k)− ẑ (k) = L[h(k)− ĥ(k)] (2.54)

Then, based on (2.40), (2.41) and (2.52), the H∞ filter aims at minimizing the H∞ norm

of the transfer operator T that maps the noise disturbances u(k), v(k) and the initial

state error E 0 = h(0)− ĥ(0) to the estimation error e(k) as follows:

J∞ = sup
u(k),v(k),h(0)

J (2.55)

where

J =

∑N−1
k=0 ‖e(k)‖2

‖E 0‖2
P−1

0

+
∑N−1

k=0 [‖u(k)‖2
Q−1

u
+ ‖v(k)‖2

R−1
v

]
(2.56)

with N the number of available data samples. P−1
0 > 0, Qu > 0 and Rv > 0 are weighting

matrices tuned by the designer to achieve the desired performance. They can be estimated

during the estimation process. In addition, ‖S‖2
Q = SHQS .

T - e(k)

-

P
−1/2
0 E 0

-

Q−1/2
u u(k) -

R−1/2
v v(k)

Figure 2.1: Transfer operator T .

However, as a closed-form solution to the above optimal H∞ estimation problem

does not always exist, the following suboptimal design strategy is usually considered:

J∞ < γ2 (2.57)

where γ is a prescribed level of noise attenuation.
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Let γ > 0, then there exists an H∞ filter if and only if there exists a stabilizing

symmetric solution P(k) > 0 to the following discrete-time Reccati-type equation:

P(k + 1) = Φ(k)P(k)C−1(k)ΦT (k) + ΓQuΓ
T (2.58)

where C (k) is given by:

C (k) = IMp − γ−2LTLP(k) + H TR−1
v HP(k) (2.59)

This leads to the following constraint:

P(k)C−1(k) > 0 (2.60)

If the condition (2.60) is fulfilled, the H∞ filter exist and is given by:

ĥ(k) = Φ(k)ĥ(k − 1) + K (k)b(k) (2.61)

where the innovation vector b(k) and the H∞ gain K (k) are respectively given as follows:

b(k) = y(k)−HΦ(k)ĥ(k − 1) (2.62)

K (k) = Φ(k)P(k)C−1(k)H TR−1
v (2.63)

It should be noted that the the matrix P(k) can be seen as the upper bound of the error

covariance matrix in Kalman filter theory, i.e:

P(k) ≥ P(k) = E[(h(k)− ĥ(k))(h(k)− ĥ(k))T ] (2.64)

If the weighting parameters Qu, Rv and P0 are respectively chosen to be Σu, Σv and

the initial error covariance matrix of h(k), then the H∞ filter reduces to the Kalman one

when γ →∞.

The level attenuation factor γ must be carefully selected to satisfy the condition in

(2.60):

γ2 > max(eig(LTL[P−1(k) + LTR−1
v L]−1)) (2.65)

where max(eig[F ]) is the maximum eigenvalue of F . There are two strategies for selecting

γ2, either using a constant value for γ2 or updating it according to (2.65) as follows:

γ2(k) = ζmax(eig(LTL[P−1(k) + LTR−1
v L]−1)) (2.66)

where ζ > 2

The H∞ algorithm for M-AR process estimation is summarized in Table (2.3).
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Table 2.3: H∞ algorithm for M-AR process estimation.
Initialization

h(0) = h0

P(0) = P0

Filtering

C (k) = IMp − γ−2LTLP(k) + H TR−1
v HP(k)

K (k) = Φ(k)P(k)C−1(k)H TR−1
v

b(k) = y(k)−HΦ(k)ĥ(k − 1)

ĥ(k) = Φ(k)ĥ(k) + K (k)b(k)

P(k + 1) = Φ(k)P(k)C−1(k)ΦT (k) + ΓQuΓ
T

2.4.2 Parameter Estimation Directly from the Noisy Observa-

tions

In the previous section we present the Kalman and H∞ filters for the estimation of M-AR

process. In this section, we address the estimation of M-AR process parameters directly

from the noisy observations using Kalman or H∞ filters.

Two serially-connected Kalman (SC-Kalman) or H∞ (SC-H∞) filters [Arn98] [Cai04]

can be used in the estimation of M-AR process and its parameters as shown in Figure

2.2.

y(k) -
Kalman or H∞ filter #1

for
M-AR parameter estimation

{Â(l)}l=1,...,p-
Kalman or H∞ filter #2

for
state vector estimation

-ĥ(k)

?

y(k)

Figure 2.2: SC-Kalman or SC-H∞ filters.

Define the vector Y θ(k) which contains the last p observations as the following:

Y θ(k) =
[
−yT (k) −yT (k − 1) · · · −yT (k − p + 1)

]T

(2.67)

By stacking the columns of the matrix ψ =
[

A(1) · · · A(p)
]T

on top of each others,

the resulting M2p× 1 state vector can be expressed as:

θ(k) =
[

[ a
(1)
11 · · · a

(1)
1M

] · · · [ a
(p)
11 · · · a

(p)
1M

]

· · · [ a
(1)
M1 · · · a

(1)
MM

] · · · [ a
(p)
M1 · · · a

(p)
MM

]
]T

(2.68)
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By combining the M-AR model (2.1) with the observation equation (2.7), one can obtain:

y(k) = H θ(k)θ(k) + v θ(k) (2.69)

where

v θ(k) = u(k) + v(k) +

p∑

l=1

A(l)v(k − l) (2.70)

and

H θ(k) = IM ⊗Y T
θ (k) (2.71)

with ⊗ denotes the matrix Kronecker product.

When the M-AR process is assumed stationary, the AR parameters are time-invariant

and, hence, satisfy the following relationship:

θ(k) = θ(k − 1) (2.72)

Thus, equations (2.69) and (2.72) define the state-space representation for the estimation

of the AR parameters using Kalman or H∞ algorithms.

2.4.2.1 Parameter Estimation Using Kalman Filter

Based on the state-space model (2.69) and (2.72), the parameter vector θ(k) can be

estimated as follows:

θ̂(k) = θ̂(k − 1) + K θ(k)[y(k)−H θ(k)θ̂(k − 1)] (2.73)

where the Kalman gain K θ(k) and the error covariance matrix Pθ(k/k) are respectively

given by:

K θ(k) = Pθ(k/k − 1)H T
θ (k)[H θ(k)Pθ(k/k − 1)H T

θ (k) + Rθ(k)]−1 (2.74)

and

P θ(k/k) = [IM2p −K θ(k)H θ(k)]Pθ(k/k − 1) (2.75)

where Rθ(k) is the covariance matrix of v θ(k).

Table 2.4 summarizes the estimation of M-AR parameters using Kalman algorithm.

2.4.2.2 Parameter Estimation using H∞ Filter

Based on the state-space model (2.69) and (2.72), the H∞ filter provides an estimation of

the parameter vector θ(k) as follows:

θ̂(k) = θ̂(k − 1) + K θ(k)[y(k)−H θ(k)θ̂(k − 1)] (2.76)
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Table 2.4: Kalman algorithm for parameters estimation of M-AR process.
Initialization

θ(0) = θ0

Pθ(0/0) = P θ0

Filtering

Pθ(k/k − 1) = Pθ(k − 1/k − 1)

Y θ(k) =
[ −yT (k) −yT (k − 1) · · · −yT (k − p + 1)

]T

H θ(k) = IM ⊗Y T
θ (k)

K θ(k) = Pθ(k/k − 1)H T
θ (k)[H θ(k)P θ(k/k − 1)H T

θ (k) + Rθ(k)]−1

θ̂(k) = θ̂(k − 1) + K θ(k)[y(k)−H θ(k)θ̂(k − 1)]

Pθ(k/k) = [IM2p −K θ(k)H θ(k)]P θ(k/k − 1)

Table 2.5: H∞ algorithm for parameters estimation of M-AR process.
Initialization

θ(0) = θ0

Pθ(0) = Pθ0

Filtering

Y θ(k) =
[ −yT (k) −yT (k − 1) · · · −yT (k − p + 1)

]T

H θ(k) = IM ⊗Y T
θ (k)

C θ(k) = IM2p − γ−2
θ P θ(k) + H T

θ (k)R−1
vθ

H θ(k)P θ(k)

K θ(k) = P θ(k)C−1
θ (k)H T

θ (k)R−1
vθ

θ̂(k) = θ̂(k − 1) + K θ(k)[y(k)−H θ(k)θ̂(k − 1)]

Pθ(k + 1) = Pθ(k)C−1
θ (k)

where the H∞ gain

K θ(k) = P θ(k)C−1
θ (k)H T

θ (k)R−1
v (2.77)

and

Pθ(k + 1) = Pθ(k)C−1
θ (k) (2.78)

C θ(k) = IM2p − γ−2
θ Pθ(k) + H T

θ (k)R−1
vθ

H θ(k)Pθ(k) (2.79)

where Rvθ
is a weighing matrix.

The H∞ algorithm for M-AR parameter estimation is summarized in Table 2.5.

According to (2.70) Kalman or H∞ filters applied directly to the noisy observations

provide biased estimates, since the noise v θ is colored. To avoid this drawback, we propose

to extend the CC-Kalman filters [Lab06] and CC-H∞ filters [Lab07] to the multichannel

case.
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2.4.3 Joint Process and Parameter Estimations

The structure of SC-Kalman or SC-H∞ filters provides biased estimates as mentioned

previously. To avoid this problem, we suggest using mutually-interactive Kalman or H∞

filters as shown in Figure 2.3.

As a new observation is available the first filter is used to estimate the M-AR pro-

cess; where as the second filter uses the estimated M-AR process to update the M-AR

parameters. This structure jointly estimate the M-AR process and its parameters. It

provides consistent estimation of the parameter matrices as they are estimated from the

estimated M-AR process [Lab06].

This structure, firstly developed for the estimation of single channel AR process

[Lab06] [Lab07], is here extended to account for multichannel AR processes.

Kalman or H∞ filter #2
for M-AR parameter

estimation {Â(l)}l=1,...,p

Kalman or H∞ filter #1
for state vector
estimation ĥ(k)

y(k) -

-

-

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

-ĥ(k)

-

{Â(l)}l=1,...,p

`````````````````̀

Figure 2.3: CC-Kalman or CC-H∞ filter for the estimation of M-AR process and its

parameters.

2.4.3.1 Two Cross-Coupled Kalman Filters

To avoid the bias estimation issue, we propose to extend to the multichannel case, the

two cross-coupled Kalman filters, initially developed for the estimation of single channel

AR process and its parameters [Lab06].

A. Estimation of M-AR Process:

Based on the state-space model in (2.40) and (2.41), the M-AR process can be

estimated as summarized in Table 2.2. The estimated vector ĥ(k) is used in the second

filter to estimate the M-AR parameters.
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If the covariance matrices Σu and Σv are not known, they can be estimated during

the estimation process as explained later.

B. Estimation of the M-AR Parameters:

The estimated process vector ĥ(k) can be expressed in terms of the parameters

vector. By combining (2.45) and (2.48) and multiplying the result by L, one can obtain:

ĥ(k/k) = H θ(k)θ(k) + v θ(k) (2.80)

where H θ(k) depends on the estimated state vector and is expressed as follows:

H θ(k) = −IM ⊗ ĥ
T
(k − 1/k − 1) (2.81)

and v θ(k) is given by:

v θ(k) = LK (k)b(k) (2.82)

By combining (2.47) and (2.80), the covariance matrix Rθ(k) of v θ(k) can be expressed

as follows:

Rθ(k) = HK (k)C b(k)K T (k)H T (k) (2.83)

The state vector θ(k) can be written as follows:

θ(k) =
[

[ a
(1)
11 · · · a

(1)
1M

] · · · [ a
(p)
11 · · · a

(p)
1M

]

· · · [ a
(1)
M1 · · · a

(1)
MM

] · · · [ a
(p)
M1 · · · a

(p)
MM

]
]T

(2.84)

If the M-AR process is assumed to be stationary, then the parameter vector θ(k) satisfies

(2.72).

A second Kalman filter can then be used to estimate the parameters.

C. Estimation of Noise-Covariance Matrices:

In some applications we don’t know the driving process and measurement noise

covariance matrices. They can be estimated during the estimation process as follows:

Substituting (2.50) into (2.51), it follows that:

P(k/k) = Φ(k)P(k − 1/k − 1)ΦT (k) + ΓΣuΓ
T −K (k)HP(k/k − 1) (2.85)

By multiplying both sides of (2.49) by C b(k) and transposing the result, one can obtain

the following :

HP(k/k − 1) = C (k)K T (k) (2.86)
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since P(k/k − 1) is real and symmetric, we can write the following:

P(k/k − 1) = PT (k/k − 1) (2.87)

By combining (2.85) and (2.86), Σu can be expressed as follows:

Σu = D [P(k/k)−Φ(k)P(k − 1/k − 1)ΦT (k) + K (k)C (k)K T (k)]DT (2.88)

where D = (ΓTΓ)−1ΓT .

The covariance matrix Σu can be estimated recursively as follows [Lab06]:

Σ̂u(k) =
k − 1

k
Σ̂u(k − 1) +

1

k
DG(k)DT (2.89)

where G(k) is given by:

G(k) = P(k/k)−Φ(k)P(k − 1/k − 1)ΦT (k) + K (k)(diag(b(k)))2K T (k) (2.90)

The measurements noise covariance matrix Σv(k) can be estimated recursively based on

(2.47) as follows [Lab06]:

Σ̂v(k) =
k − 1

k
Σ̂v(k − 1) +

1

k
M (k) (2.91)

where M (k) is given by:

M (k) = (diag[b(k)−H (k)P(k/k − 1)H T (k)])2 (2.92)

D. Computational Complexity:

The first filter in the CC-Kalman filters is used to estimate the Mp×1 state vector,

it results in computational complexity of the order of O((Mp)3). And the second filter is

used to estimate the M2p× 1 parameter vector, it results in computational complexity of

the order of O((M2p)2). Thus, the overall computational complexity of the CC-Kalman

filters is of the order of O((M2p)2) + O((Mp)3). While in the case of the EKF and

SPKF the computational complexity is higher. The dimension of the state vector to be

estimated is (M2p + Mp) × 1 which results in computational complexity of the order of

O((M2p + Mp)3).

E. CC-Kalman Algorithm:

Table 2.6 summarizes the CC-Kalman filtering algorithm.
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Table 2.6: CC-Kalman filtering algorithm.
Initializing the first filter

ĥ(0/0) = h0

P(0/0) = P0

Initializing the second filter

θ̂(0) = θ0

Pθ(0/0) = P θ0

The first filter: M-AR process estimation

ĥ(k/k − 1) = Φ(k)ĥ(k − 1/k − 1)

P(k/k − 1) = Φ(k)P(k − 1/k − 1)ΦT (k) + ΓΣuΓ
T

b(k) = y(k)−Hĥ(k/k − 1)

C b(k) = HP(k/k − 1)H T + Σv

K (k) = P(k/k − 1)H TC−1(k)

ĥ(k/k) = ĥ(k/k − 1) + K (k)b(k)

P(k/k) = [IMp −K (k)H ]P(k/k − 1)

The second filter: Parameters estimation

H θ(k) = −IM ⊗ ĥ
T
(k − 1/k − 1)

v θ = HK (k)b(k)

Rθ(k) = HK (k)C b(k)K T (k)H T

Pθ(k/k − 1) = Pθ(k − 1/k − 1)

K θ(k) = Pθ(k/k − 1)H T
θ (k)[H θ(k)P θ(k/k − 1)H T

θ (k) + Rθ(k)]−1

θ̂(k) = θ̂(k − 1) + K θ(k)v θ(k)

Pθ(k/k) = [IM2p −K θ(k)H θ(k)]P θ(k/k − 1)

Estimation of noise autocorrelation matrices

Σ̂u(k) = k−1
k

Σ̂u(k − 1) + 1
k
DL(k)DT

Σ̂v(k) = k−1
k

Σ̂v(k − 1) + 1
k
M (k)

47



Chapter 2 – Parameter Estimation of Multichannel AR (M-AR) Processes

2.4.3.2 Two Cross-Coupled H∞ Filters

The Kalman filter requires that the driving process and the measurement noise to be

Gaussian with known variances. These assumptions are rarely satisfied in reality. To relax

these assumptions, we propose to extend the CC-H∞ filters [Lab07] to the multichannel

case for joint M-AR process and parameters estimation.

A. Estimation of M-AR process:

Based on the state-space model in (2.40) and (2.41), the M-AR process can be

estimated as summarized in Table 2.3. Here, the estimated vector ĥ(k) is used in the

second filter to estimate the M-AR parameters.

B. Estimation of the M-AR Parameters:

By combining (2.52) and (2.61), the estimated M-AR process ĥ(k) can be written

as follows:

ĥ(k) = H θ(k)θ(k) + v θ(k) (2.93)

where H θ(k) and v θ(k) are respectively given as follows:

H θ(k) = −IM ⊗ ĥ
T
(k − 1) (2.94)

v θ(k) = LK (k)b(k) (2.95)

The state vector θ(k) is written as follows:

θ(k) =
[

[ a
(1)
11 · · · a

(1)
1M

] · · · [ a
(p)
11 · · · a

(p)
1M

]

· · · [ a
(1)
M1 · · · a

(1)
MM

] · · · [ a
(p)
M1 · · · a

(p)
MM

]
]T

(2.96)

Assume stationary processes, then the parameters are time invariant satisfying the fol-

lowing relationship:

θ(k) = θ(k − 1) (2.97)

The equations (2.93) and (2.97) define a state-space representation for the estimation

of the AR parameters. A second H∞ filter can be used to recursively estimate θ(k), where

the AR parameter estimation error is defined as:

eθ(k) = H θ(k)[θ(k)− θ̂(k)] (2.98)
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C. Tuning the Parameters:

The matrix Pθ(k) and the initial state θ(k) can be respectively initialized as:

Pθ(0) = P0 = IM2p (2.99)

θθ(0) = θ0 = 0M2p×1 (2.100)

Equation (2.93) can be used to derive a formula to estimate Rvθ
as follows:

Rvθ
= LK (k)b(k)bH(k)KH(k)LT (2.101)

and Qu can be tuned recursively as follows:

Q̂u(k) = λQ̂u(k − 1) + (1− λ)LM (k)LT (2.102)

where λ is the forgetting factor, and M (k) is given by:

M (k) = P(k)−Φ(k)P(k − 1)ΦT (k) + K (k)b(k)bH(k)K (k) (2.103)

D. Computational Complexity:

The computational complexity of the CC-H∞ is of the order of O((M2p)2)+O((Mp)3)

as in the case of CC-Kalman filters, with CC-H∞ filters has slightly more computational

complexity due to (2.59). In addition, the CC-H∞ filters need need to select or update

the level attenuation factor according to (2.65) or (2.66).

E. CC-H∞ Algorithm:

Table 2.7 summarizes the two cross-coupled H∞ algorithm.
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Table 2.7: CC-H∞ filtering algorithm.
Initializing the first filter

ĥ(0) = h0

P(0) = P0

Initializing the second filter

θ̂(0) = θ0

Pθ(0) = Pθ0

The first filter: processes estimation

C (k) = IMp − γ−2LTLP(k) + H HR−1
v HP(k)

K (k) = P(k)C−1(k)H HR−1
v

b(k) = y(k)−Hĥ(k − 1)

ĥ(k) = Φ(k)ĥ(k − 1) + K (k)b(k)

P(k + 1) = Φ(k)P(k)C−1(k)ΦT (k) + ΓR−1
u ΓT

The second filter: parameters estimation

ĥ(k) = Lĥ(k)

H θ(k) = −IM ⊗ ĥ
T
(k − 1)

C θ(k) = IM2p − γ−2
θ H H

θ (k)H θ(k)Pθ(k) + H H
θ (k)R−1

vθ
H θ(k)P θ(k)

K θ(k) = Pθ(k)C−1
θ (k)H H

θ (k)R−1
vθ

bθ(k) = ĥ(k)−H θ(k)θ̂(k − 1)

θ̂(k) = θ̂(k − 1) + K θ(k)bθ(k)

Pθ(k + 1) = P θ(k)C−1
θ (k)

Tuning parameters

Rvθ
(k) = LK (k)b(k)bH(k)KH(k)LT

M (k) = P(k)−Φ(k)P(k − 1)ΦT (k) + K (k)b(k)bH(k)KH(k)

R̂u(k) = λR̂u(k − 1) + (1− λ)LM (k)LT
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In this chapter, we carry out a comparative simulation study between several M-AR

parameter estimation methods:

1- The YW equations.

2- The ARFIT [Neu01].

3- The SC-Kalman filters [Arn98].

4- The NCYW equations.

5- Hassan’s algorithm [Has03].

6- The proposed CC-Kalman filters.

7- The proposed CC-H∞ filters.

These methods are compared in terms of the following:

1- The performance in the case of limited number of samples and small SNR.

2- The accuracy of the estimated M-AR process parameters.

3- The computational complexity.

4- The stability of the algorithm, i.e., the estimated parameters result in a stable

system or not.

5- The uncertainty of the models and the lack of statistical information.

In the following section, we describe the simulation protocols. In section 2, we

provide the simulation results in the case of a synthetic M-AR process. In section 3,

we present the simulation results of the M-AR processes that corresponds to correlated

fading channels.

3.1 Simulation Protocols

The simulations in the next two sections are performed for a correlated second order M-AR

process with two channels. In this case, the M-AR process can be written as follows:

h(k) = −A(1)h(k − 1)−A(2)h(k − 2) + u(k) (3.1)

where u(k) =
[

u1(k) u2(k)
]T

is the driving vector, and h(k) =
[

h1(k) h2(k)
]T

is

the M-AR process vector.

The processes h(k) are contaminated by an additive noise vector v(k) =
[

v1(k) v2(k)
]T

of zero-mean. Thus, the received observation vector y(k) is given by:

y(k) = h(k) + v(k) (3.2)
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The simulation is carried out to estimate the M-AR parameters using the noisy observa-

tions y(k).

We consider two simulation protocols:

Simulation protocol#1: Synthetic M-AR process

A synthetic M-AR process is generated according to the simulation protocol in

[Has03] with the following:

A(1) =

(
−0.71 0.32

−0.88 −0.24

)
, A(2) =

(
0.57 −0.15

−0.49 −0.30

)

These matrices leads to four roots of det(A2(z)):

Pole1 = 0.941× ej1.125, Pole2 = 0.941× e−j1.125, Pole3 = 0.599, Pole4 = −0.461

In this protocol, the driving process vector is assumed to be white Gaussian with

zero-mean and diagonal covariance matrix Σu = I 2.

Simulation protocol#2: Correlated Mobile Fading Channels

In this protocol, we use the VAR method [Bad04] to generate correlated mobile

fading channels. Two correlated fading channels of second order (p = 2) are generated,

with unit power of each channel σ2
h = 1 and cross-correlation coefficient ρ12 = ρ21 = 0.6

with maximum Doppler frequency fd = 0.1. The generated M-AR parameter matrices

A(1) and A(2), and the driving process covariance matrix Qu are given below, respectively:

A(1) =

(
−1.7625 0

0 −1.7625

)
, A(2) =

(
0.9503 0

0 0.9503

)

Qu = GGH =

(
0.0178 0.0124

0.0124 0.0178

)

where G is computed using the Cholesky decomposition as follows:

G =

(
0.1334 0

0.0933 0.0952

)

The corresponding 4 poles due to these parameter matrices are as follows:

Pole1 = Pole3 = 0.9748ej0.4417, Pole2 = Pole4 = 0.9748e−j0.4417

The driving processes covariance matrix is not diagonal, while the parameter ma-

trices are diagonal. This means that the correlation between the processes is due to the

driving processes and not to the coefficient matrices.

After obtaining the estimated parameters we do the following:
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1- Compute the estimated poles using the estimated parameters.

2- Compute the Mean Square Error (MSE) of the poles modulus and arguments.

3- Tabulate the results.

4- Plotting the estimated and the true poles and spectra.

The simulations are carried out on both synthetic M-AR process and M-AR process

corresponds to mobile fading channels.

3.2 Parameter Estimation of Synthetic M-AR Pro-

cess

In this section, simulation results are provided for correlated synthetic M-AR process,

according to the simulation protocol#1. In following two subsections, the simulations are

carried out for 300 and 2000 samples at SNR=10dB.

3.2.1 Small Sample Size

In this example, the simulation is carried out for 300 samples at SNR=10dB. The aim of

this simulation is to compare the estimation performance at small samples size. This is

usually the case in practice.

Table 3.1 shows the true and the estimated parameters values with their variances.

According to this table, we can conclude that for small sample size, the SC-Kalman

filters, YW equations and ARFIT provide biased estimates. While Hassan’s algorithm

provides better results than these methods, it is outperfomed by the NCYW equations,

CC-Kalman filters and CC-H∞ filters.

CC-Kalman filters and CC-H∞ filters have closed parameter estimates and slightly

better than NCYW equations. This shows the relevance of our approach when small

number of samples are available.

Table 3.2 contains the true and the estimated poles, using the various methods,

while Table 3.3 includes the MSE of the modulus and arguments of the estimated poles.

From Table 3.2 and Figure 3.1, the accuracy of the estimated poles and spectrum when

using CC-Kalman and CC-H∞ estimators is better than that of Hassan’s method. The

estimated parameters using SC-Kalman filters, ARFIT and YW equations are biased.

The above remarks can be also deduced from Table 3.3. The MSE of the arguments

and the modulus of the estimated poles are very small for NCYW, CC-Kalman and CC-

H∞. While they are larger when using the other methods. For all methods, the third pole
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Table 3.1: The true and estimated parameters at SNR=10dB based on 300 samples.

True ARFIT SC-Kalman YW Hassan NCYW CC-Kalman CC-H∞
[Neu01] [Arn98] [Has03]

a
(1)
11 -0.71 -0.4753 -0.4808 -0.4776 -0.6112 -0.7143 -0.6730 -0.6367

±0.0035 ±0.0035 ±0.0031 ±0.0091 ±0.0063 ±0.0046 ±0.0099

a
(1)
12 0.32 0.3330 0.3317 0.3322 0.3644 0.3050 0.3084 0.3095

±0.0069 ±0.0070 ±0.0074 ±0.0310 ±0.0340 ±0.0355 ±0.0436

a
(1)
21 -0.88 -0.6697 -0.6725 -0.6687 -0.8195 -0.9182 -0.9087 -0.8792

±0.0045 ±0.0043 ±0.0040 ±0.0147 ±0.0078 ±0.0126 ±0.0275

a
(1)
22 -0.24 -0.2737 -0.2757 -0.2776 -0.2738 -0.2519 -0.2975 -0.2833

±0.0025 ±0.0025 ±0.0026 ±0.0038 ±0.0100 ±0.0151 ±0.0152

a
(2)
11 0.57 0.4639 0.4648 0.4598 0.4889 0.5888 0.5781 0.5701

±0.0063 ±0.0065 ±0.0062 ±0.0263 ±0.0336 ±0.0330 ±0.0413

a
(2)
12 -0.15 -0.0051 -0.0098 -0.0101 -0.1194 -0.1449 -0.1138 -0.0810

±0.0023 ±0.0024 ±0.0024 ±0.0235 ±0.0179 ±0.0162 ±0.0187

a
(2)
21 -0.49 -0.4444 -0.4425 -0.4376 -0.4406 -0.4540 -0.4123 -0.4433

±0.0034 ±0.0034 ±0.0033 ±0.0060 ±0.0124 ±0.0152 ±0.0264

a
(2)
22 -0.30 -0.1066 -0.1085 -0.1040 -0.2247 -0.3117 -0.2720 -0.2552

±0.0026 ±0.0025 ±0.0023 ±0.0103 ±0.0075 ±0.0140 ±0.0182

has the largest MSE, while the MSE of the first and second pole is the smallest. Also,

we note from Table 3.3 that the MSE of the modulus of the third and fourth poles are

identically zeros. This is because these poles are real, and the estimated values are also

real, and have the same sign as the true poles, which means equal modulus (i.e., zero

angle for the positive poles and π for the negative poles).

Figure 3.1 is the plot of the average spectra and poles using the mentioned estima-

tion methods. The estimated spectrum and poles are close to the true ones for NCYW

equations, CC-Kalman filters and H∞ filters, while they are biased in the case of SC-

Kalman filters, ARFIT and YW equations. Figures 3.2 shows the plots of the true and

estimated spectra and poles for 20 realizations. This figure shows that the estimated

spectrum and poles has less variances and more close to the true values in the case of

NCYW equations, CC-Kalman and CC-H∞ filters.

3.2.2 Large Sample Size

In this example, the simulations are carried out using the various methods to estimate the

parameters of the synthetic M-AR process, whose coefficient matrices defined according
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Table 3.2: The true and estimated poles at SNR=10dB based on 300 samples.

Pole#1 Pole#2 Pole#3 Pole#4

True 0.4056 + 0.8491i 0.4056 - 0.8491i 0.5995 -0.4606

ARFIT [Neu01] 0.3857 + 0.8026i 0.3857 - 0.8026i 0.2413 -0.2637

SC-Kalman [Arn98] 0.3851 + 0.8022i 0.3851 - 0.8022i 0.2536 -0.2673

YW 0.3836 + 0.7996i 0.3836 - 0.7996i 0.2495 -0.2616

Hassan [Has03] 0.3940 + 0.8307i 0.3940 - 0.8307i 0.4749 -0.3778

NCYW 0.4015 + 0.8509i 0.4015 - 0.8509i 0.6130 -0.4499

CC-Kalman 0.4003 + 0.8496i 0.4003 - 0.8496i 0.5713 -0.4014

CC-H∞ 0.4020 + 0.8466i 0.4020 - 0.8466i 0.5728 -0.4294

Table 3.3: MSE of modulus and argument of the estimated poles at SNR=10dB based on

300 samples.

MSE of Pole#1 MSE of Pole#2 MSE of Pole#3 MSE of Pole#4

mod. arg. mod. arg. mod. arg. mod. arg.

(E-3) (E-6) (E-3) (E-6) (E-3) (E-6) (E-3) (E-6)

ARFIT 2.7422 299.285 2.7422 299.285 136.037 0 42.8073 0

SC-Kalman 2.8106 305.114 2.8106 305.114 127.145 0 41.3601 0

YW 3.1585 304.199 3.1585 304.199 129.818 0 43.4425 0

Hassan 1.0374 252.676 1.0374 252.676 252.676 0 16.3635 0

NCYW 0.22997 282.538 0.22997 282.538 3.66680 0 10.0017 0

CC-Kalman 0.20542 294.060 0.20542 294.060 4.05130 0 21.9942 0

CC-H∞ 0.22583 273.526 0.22583 273.526 2.88410 0 11.8611 0
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Figure 3.1: The average estimated spectrum and poles averaged over 200 realizations of

synthetic M-AR process, at SNR=10dB based on 300 observations using various estima-

tion methods.
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Figure 3.2: 20 realizations for the estimated spectrum and poles of synthetic M-AR

process, at SNR=10dB based on 300 observations.
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Figure 3.3: The average estimated spectrum and poles for synthetic M-AR process, at

SNR=10dB based on 2000 observations using various estimation methods.

to the simulation protocol#1. In this case, 2000 samples are used to show the effect of

using large sample size on the estimation process.

Table 3.4, 3.5 and 3.6 contains the estimated and the true parameters, poles and

the MSE of the modulus and arguments, respectively.

We note from the tables that the estimated parameters in this case are more accurate

than those in the previous example. This means that using large sample size improves

the quality of the estimated parameters. In addition, the estimated parameters are close

to each other and less deviate than using small sample size.

In addition, the same pattern as in example 1 repeated here. The worst estimated

results obtained using SC-Kalman filters, ARFIT and YW equations. Better results are

obtained using Hassan’s algorithm. But the difference here from the previous case, that

the NCYW provides slightly better estimated results than CC-Kalman filters and CC-H∞

filters.

Figure 3.3 shows the average estimated spectrum and poles using the various meth-

ods. While, Figure 3.4 shows the plots of the average spectrum and poles for 20 realizations

using SC-Kalman filters, Hassan’s algorithm, NCYW equations, CC-Kalman filters and

CC-H∞ filters, respectively. The estimated spectrum and poles in these figures are much

accurate with less variance than in the previous example.
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Table 3.4: The true and estimated parameters at SNR=10dB based on 2000 samples.

True ARFIT SC-Kalman YW Hassan NCYW CC-Kalman CC-H∞
[Neu01] [Arn98] [Has03]

a
(1)
11 -0.71 -0.4767 -0.4770 -0.4764 -0.6861 -0.7072 -0.6929 -0.6904

±0.00029 ±0.00028 ±0.00028 ±0.0019 ±0.0006 ±0.0007 ±0.0009

a
(1)
12 0.32 0.3449 0.3449 0.3451 0.3295 0.3262 0.3352 0.3221

±0.00046 ±0.00045 ±0.00045 ±0.0064 ±0.0025 ±0.0070 ±0.0067

a
(1)
21 -0.88 -0.6438 -0.6439 -0.6438 -0.8524 -0.8782 -0.8746 -0.8625

±0.00064 ±0.00064 ±0.00063 ±0.0033 ±0.0010 ±0.0016 ±0.0016

a
(1)
22 -0.24 -0.2709 -0.2712 -0.2715 -0.2396 -0.2373 -0.2697 -0.2636

±0.00031 ±0.00031 ±0.00032 ±0.0028 ±0.0014 ±0.0044 ±0.0051

a
(2)
11 0.57 0.4478 0.4478 0.4470 0.5536 0.5647 0.5506 0.5625

±0.00046 ±0.00046 ±0.00046 ±0.0060 ±0.0027 ±0.0070 ±0.0066

a
(2)
12 -0.15 -0.015 -0.0149 -0.0148 -0.1393 -0.1509 -0.1462 -0.1358

±0.00049 ±0.00048 ±0.00049 ±0.0038 ±0.0019 ±0.0036 ±0.0036

a
(2)
21 -0.49 -0.4617 -0.4614 -0.4605 -0.4898 -0.4902 -0.4647 -0.4733

±0.00038 ±0.00039 ±0.00039 ±0.0030 ±0.0018 ±0.0049 ±0.0054

a
(2)
22 -0.30 -0.0956 -0.0956 -0.0954 -0.2765 -0.2990 -0.2696 -0.2645

±0.00059 ±0.00059 ±0.00059 ±0.0044 ±0.0013 ±0.0041 ±0.0050

Table 3.5: The true and estimated poles at SNR=10dB based on 2000 samples.

Pole#1 Pole#2 Pole#3 Pole#4

True 0.4056 + 0.8491i 0.4056 - 0.8491i 0.5995 -0.4606

ARFIT [Neu01] 0.3896 + 0.7995i 0.3896 - 0.7995i 0.2313 -0.2630

SC-Kalman [Arn98] 0.3896 + 0.7995i 0.3896 - 0.7995i 0.2320 -0.2630

YW 0.3895 + 0.7991i 0.3895 - 0.7991i 0.2316 -0.2626

Hassan [Has03] 0.4041 + 0.8455i 0.4041 - 0.8455i 0.5600 -0.4425

NCYW 0.4059 + 0.8494i 0.4059 - 0.8494i 0.5933 -0.4605

CC-Kalman 0.4062 + 0.8480i 0.4062 + 0.8480i 0.5733 -0.4231

CC-H∞ 0.4059 + 0.8478i 0.4059 - 0.8478i 0.5652 -0.4229
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Figure 3.4: 20 realizations over 200 realizations of the estimated spectrum and poles of

synthetic M-AR process, at SNR=10dB based on 2000 observations.
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Table 3.6: MSE of modulus and argument of the estimated poles at SNR=10dB based on

2000 samples.

MSE of Pole#1 MSE of Pole#2 MSE of Pole#3 MSE of Pole#4

mod. arg. mod. arg. mod. arg. mod. arg.

(E-3) (E-6) (E-3) (E-6) (E-3) (E-6) (E-3) (E-6)

ARFIT 2.7156 95.9868 2.7156 95.9868 138.804 0 40.8797 0

SC-Kalman 2.7218 95.6537 2.7218 95.6537 138.266 0 40.8478 0

YW 2.7651 97.1870 2.7651 97.1870 138.546 0 41.0099 0

Hassan 0.09061 33.4073 0.09061 33.4073 5.53450 0 4.61400 0

NCYW 0.04781 29.3603 0.04781 29.3603 29.3603 0 1.73870 0

CC-Kalman 0.04675 45.7556 0.04675 45.7556 1.6276 0 7.1652 0

CC-H∞ 0.05129 42.0649 0.05129 42.0649 2.3626 0 8.5214 0

3.2.3 Comparative Study Between the CC-Kalman and CC-H∞
Estimators

Here, we provide some simulation results to compare the performance of our approaches

when using either the true values or the estimated values of the noise covariance matrices.

3.2.3.1 Using True Values of the Noise Covariance Matrices

Figure 3.5 shows the average MSE of the arguments and modulus of the first estimated

pole using YW equations, NCYW equations, CC-Kalman filter and CC-H∞ filters at

various number of samples ranging from (50-400) and SNR=10dB. While Figure 3.6 shows

the MSE of the same poles. The simulations are performed at different values of SNR

ranging from (2-16dB) based on 1000 samples.

According to Figure 3.5, the NCYW equations, CC-Kalman and CC-H∞ filters

provide approximately the same MSE. In addition, the YW equations provide high MSE.

Moreover, the MSE decreases when the estimation process based on large number of

samples. According to Figure 3.6, the same conclusions can be drawn. In addition, the

MSE decrease when the SNR increases.

3.2.3.2 Using Estimated Noise Covariance Matrices

To show the relevance of our approach, we provide simulation results for the estimation

of the M-AR parameters using CC-Kalman filters, CC-H∞ filters and NCYW equations.

When using deviated values of the driving processes and additive noise covariance matrices

Qu and Rv, as follows:
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Figure 3.5: MSE of arguments and modulus for pole#1 based on different number of

samples at SNR=10dB. True values of noise covariance matrices are used.
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Figure 3.6: MSE of arguments and modulus for pole#1 at different SNR based on 1000

samples. True values of noise covariance matrices are used.
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Table 3.7: The MSE of the arguments and the modulus of pole#1 for different β(i) based

on 1024 samples and SNR=[10,5]dB.

MSE of mod. of pole#1 MSE of arg. of pole#1

β(i) CC-Kalman CC-H∞ NCYW CC-Kalman CC-H∞ NCYW

0.01 0.0043 0.0003 0.0051 0.0002 0.0001 0.0002

0.1 0.0027 0.0005 0.0033 0.0001 0.0003 0.0001

0.8 0.0003 0.0002 0.0003 0.0001 0.0001 0.0001

0.9 0.0003 0.0006 0.0002 0.0001 0.0001 0.0001

0.95 0.0002 0.0003 0.0001 0.0001 0.0002 0.0001

1 0.0003 0.0002 0.0001 0.0001 0.0001 0.0001

1.05 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001

1.1 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001

1.2 0.0002 0.0004 0.0004 0.0001 0.0003 0.0001

10 0.0014 0.0009 0.2679 0.0001 0.0011 0.0057

20 0.0016 0.0016 0.0105 0.0002 0.0044 0.8507

Let us introduce β whose ith element is defined as follows:

β(i) =
σ̂2

ui

σ2
ui

=
σ̂2

vi

σ2
vi

(3.3)

Different values of β(i) are used to study the influence of under estimate (β(i) < 1) and

over estimate (β(i) > 1).

We use 1024 samples at SNR=10dB on the first channel and SNR=5dB on the

second channel. The data are synthetically generated using the synthetic M-AR process

described in simulation protocol#1.

The MSE of the arguments and the modulus of the first pole are provided in Table

3.7. The results of the other poles are omitted for convenience, as they produce approx-

imately the same kind of results. According to this table, the MSE of arguments and

modulus of the estimated poles are small for (0.8 < β(i) < 1.2), while they are large for (

β(i) > 1.2 and β(i) < 0.8 ).

For high deviation (β(i) > 1.2 and β(i) < 0.8), the MSE is small when using CC-H∞

filters compared to CC-Kalman and NCYW. But, CC-Kalman filters outperforms the

NCYW equations.

We can deduce the importance of using CC-H∞ filters, when there is a large deviation

in the variances of the driving processes and the additive noise from the true values.
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Figure 3.7: Convergence of the estimated parameters of the first matrix: (a) using CC-

Kalman filters, (b) CC-H∞ filters.
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Figure 3.8: Convergence of the estimated parameters of the secondmatrix: (a) using

CC-Kalman filters, (b) CC-H∞ filters.
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3.2.3.3 Convergence Speed

In this section, we provide figures of the estimated parameters at each iteration when

using CC-Kalman and CC-H∞ filters. We use the parameters that correspond to the

synthetic M-AR process which described in the first protocol. The aim of these figures is

to show the convergence speed for CC-Kalman and CC-H∞.

Figure 3.7 shows the estimated parameters of the first matrix, while Figure 3.8

shows the estimated parameters of the second matrix. From these figures, we note that

the cross-coupled filters adapt themselves rapidly to reach the convergence. Also, the

CC-Kalman and CC-H∞ filters have the same speed of convergence. At 50 samples, they

start to converge toward the true values and they provide better estimated parameters

every new iteration. Moreover, accurate estimated parameters may be obtained at 150

samples.

3.3 Parameter Estimation of Mobile Fading Chan-

nels

In the previous section, the simulation is performed to estimate the parameter of a cor-

related synthetic M-AR process. The generated data are real and the correlation is due

to the parameter matrices.

In this section, the simulation is carried out for the estimation of correlated mobile

fading processes. The data are generated using the VAR method proposed by Baddour

et al. [Bad04], which is described in chapter 1. The generated data are complex valued.

In the following subsections, the simulations are carried out based on 300 and 2000

samples at SNR=10dB.

3.3.1 Small Sample Size

In this examples, we generate 300 samples representing correlated fading processes based

on simulation protocol#2.

Table 3.8 contains the true and the estimated parameters using the various M-

AR parameter estimation methods. The estimated parameters are accurate when using

CC-Kalman filters and CC-H∞ filters followed by the NCYW equations. These meth-

ods outperform Hassan’s algorithm. The ARFIT, SC-Kalman filters and YW equations

provide biased estimates.
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Figure 3.9: The average estimated spectrum and poles of fading channels, at SNR=10dB

based on 300 observations using various estimation methods.

The M-AR poles that correspond to the estimated parameters are given in Table

3.9. According to this table, the estimated poles are accurate when using the CC-Kalman

filters, CC-H∞ filters and NCYW equations. While the estimated poles when using SC-

Kalman filters, ARFIT and YW equations are inaccurate. Note that Hassan’s algorithm

outperform the last three methods. These observations can be also deduced from Table

3.10, where it shows the MSE of the poles modulus and arguments.

Figure 3.9 shows the average estimated spectrum and poles using the various meth-

ods. According to this figure, we can note that the spectrum and poles are close to the

true spectrum and poles when using CC-Kalman filters and CC-H∞ filters followed by

the NCYW equations. While they are inaccurate and far from the true plots when using

the other methods. We can note that the estimated spectrum and poles that are ob-

tained when using CC-Kalman filters and CC-H∞ filters are slightly accurate than those

obtained using NCYW equations. In addition, these methods outperform Hassan’s algo-

rithm. The same conclusions can be also drawn from Figure 3.10, it shows the plots of

20 realization of the spectrum and poles for correlated fading processes generated based

on the simulation protocol#2.

3.3.2 Large Sample Size

In this example, 2000 samples are used in the estimation process to show the effect of

number of samples on the estimated results.

According to Tables 3.11, 3.12 and 3.13, the same conclusions can be drawn as

example 1 in the previous subsection. The difference when using large samples that
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Table 3.8: The true and estimated parameters at SNR=10dB based on 300 samples.

True ARFIT SC-Kalman YW Hassan NCYW CC-Kalman CC-H∞
[Neu01] [Arn98] [Has03]

-0.9575 -0.9577 -0.9537 -1.5228 -1.7857 -1.7369 -1.7035

a
(1)
11 -1.7625 +0.0032i +0.0032i +0.0043i +0.1533i +0.0201i +0.0023i +0.0458i

±0.0023 ±0.0023 ±0.0023 ±0.3401 ±0.0285 ±0.1560 ±0.0458

-0.2280 -0.2280 -0.2243 -0.0719 0.0561 -0.0570 -0.0199

a
(1)
12 0 -0.0080i -0.0080i -0.0094i -0.1100i -0.0327i -0.0092i -0.0529i

±0.0529 ±0.0031 ±0.0030 ±0.0545 ±0.0356 ±0.0050 ±0.0241

-0.2450 -0.2449 -0.2417 -0.1124 0.0282 -0.0651 -0.0967

a
(1)
21 0 +0.0120i +0.0119i +0.0146i +0.1299i +0.0188i +0.0188i -0.0008i

±0.0056 ±0.0056 ±0.0058 ±0.0962 ±0.0524 ±0.0030 ±0.0277

-0.9392 -0.9392 -0.9328 -1.4573 -1.7517 -1.7382 -1.5991

a
(1)
22 -1.7625 -0.0049i -0.0049i -0.0068i -0.1698i -0.1698i -0.0032i -0.0164i

±0.0026 ±0.0026 ±0.0026 ±0.4035 ±0.0490 ±0.1540 ±0.1976

0.2069 0.2069 0.2046 0.7165 0.9764 0.9764 0.8878

a
(2)
11 0.9503 -0.0054i -0.0054i -0.0060i -0.1488i -0.0226i -0.0085i -0.0085i

±0.0036 ±0.0036 ±0.0035 ±0.1568 ±0.0276 ±0.0276 ±0.1090

0.1981 0.1981 0.1948 0.0703 -0.0552 0.0572 0.0063

a
(2)
12 0 +0.0168i +0.0168i +0.0174i +0.1088i +0.0342i +0.0162i +0.0911i

±0.0050 ±0.0049 ±0.0047 ±0.0497 ±0.0362 ±0.0050 ±0.0279

0.2056 0.2057 0.2024 0.1140 -0.0256 0.0627 0.0671

a
(2)
21 0 +0.0016i +0.0016i -0.0001i -0.1146i -0.0177i +0.0105i +0.0186i

±0.0044 ±0.0044 ±0.0045 ±0.0851 ±0.0527 ±0.0527 ±0.0291

0.1917 0.1916 0.1872 0.1872 0.9377 0.9300 0.8010

a
(2)
22 0.9503 -0.0008i -0.0008i +0.0006i +0.1611i +0.0186i -0.0042i +0.0042i

±0.0037 ±0.0037 ±0.0037 ±0.2319 ±0.0492 ±0.0492 ±0.1050

Table 3.9: The true and estimated poles at SNR=10dB based on 300 samples.

Pole#1 Pole#2 Pole#3 Pole#4

True 0.8812 + 0.4167i 0.8812 - 0.4167i 0.8813 + 0.4167i 0.8813 - 0.4167i

ARFIT [Neu01] 0.7068 + 0.0224i 0.6851 - 0.0018i 0.5155 + 0.0005i -0.0107 - 0.0195i

SC-Kalman [Arn98] 0.7073 + 0.0225i 0.6851 - 0.0018i 0.5156 + 0.0004i -0.0109 - 0.0194i

YW 0.7052 + 0.0012i 0.6832 - 0.0189i 0.5085 + 0.0007i -0.0103 - 0.0183i

Hassan [Has03] 0.8265 + 0.3129i 0.8316 - 0.2868i 0.6588 + 0.5113i 0.6632 - 0.5209i

NCYW 0.9644 + 0.4174i 0.9744 - 0.4159i 0.8023 + 0.3828i 0.7964 - 0.3908i

CC-Kalman 0.9007 + 0.4222i 0.8964 - 0.4220i 0.8537 + 0.4102i 0.8242 - 0.4095i

CC-H∞ 0.8819 + 0.4107i 0.8925 - 0.3964i 0.7849 + 0.3764i 0.7433 - 0.4201i
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Figure 3.10: 20 realizations for the estimated spectrum and poles of multichannel fading

processes, at SNR=10dB based on 300 observations.
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Table 3.10: MSE of modulus and argument of the estimated poles at SNR=10dB based

on 300 samples.

MSE of Pole#1 MSE of Pole#2 MSE of Pole#3 MSE of Pole#4

mod. arg. mod. arg. mod. arg. mod. arg.

(E-3) (E-6) (E-3) (E-6) (E-3) (E-6) (E-3) (E-6)

ARFIT 62.5223 9.5711 67.5133 101.166 181.259 15.3069 789.881 2589.1

SC-Kalman 62.6081 9.6539 67.2771 101.214 181.248 15.3561 790.128 2592.1

YW 63.9646 9.9515 68.3888 101.504 188.015 15.8527 792.977 2541.6

Hassan 8.71240 24.210 8.23420 31.9666 15.6147 119.053 18.1981 83.833

NCYW 15.6521 5.0865 18.2306 4.25790 10.2816 1.55730 9.75360 1.3261

CC-Kalman 0.50481 0.2534 0.29635 0.14640 3.09220 0.76731 5.14000 4.4642

CC-H∞ 0.46073 0.30731 0.57264 1.4765 26.2710 1.0921 19.5832 18.6622
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Figure 3.11: The average estimated spectrum and poles of fading channels, at SNR=10dB

based on 2000 observations using various estimation methods.

the estimated parameters are more accurate than those when using small samples. In

addition, the NCYW equations provide estimated parameters slightly more accurate than

CC-Kalman filters and CC-H∞ filters. Moreover, the divergence is reduced when using

Hassan’s algorithm.

Figure 3.11 shows the plots of the average spectra and poles while Figure 3.12

shows the plots of 20 realizations for the estimated spectrum and poles using the various

estimation methods. According to these figures, we can note that the estimated poles and

spectra are very close to the true values when using CC-Kalman filters, CC-H∞ filters and

NCYW equations. The three methods outperform Hassan’s algorithm. The SC-Kalman

filters provide the worst estimates.

69



Chapter 3 – Simulation Results

Table 3.11: The true and estimated parameters at SNR=10dB based on 2000 samples.

True ARFIT SC-Kalman YW Hassan NCYW CC-Kalman CC-H∞
[Neu01] [Arn98] [Has03]

-0.9669 -0.9669 -0.9659 -1.5813 -1.7545 -1.7561 -1.7296

a
(1)
11 -1.7625 -0.0021i -0.0021i -0.0024i -0.0131i -0.0010i -0.0020i -0.0238i

±0.0005 ±0.0005 ±0.0005 ±0.0406 ±0.0049 ±0.0010 ±0.0123

-0.2413 -0.2413 -0.2406 -0.0882 0.0005 -0.0411 -0.0535

a
(1)
12 0 -0.0067i -0.0067i -0.0070i +0.0001i -0.0074i +0.0012i +0.0012i

±0.0018 ±0.0018 ±0.0018 ±0.0216 ±0.0073 ±0.0013 ±0.0133

-0.2356 -0.2356 -0.2349 -0.0816 -0.0062 -0.0327 -0.0530

a
(1)
21 0 +0.0025i +0.0025i +0.0026i -0.0115i -0.0018i -0.0000i -0.0104i

±0.0024 ±0.0024 ±0.0024 ±0.0220 ±0.0100 ±0.0004 ±0.0080

-0.9711 -0.9711 -0.9696 -1.5939 -1.7530 -1.7653 -1.7513

a
(1)
22 -1.7625 +0.0002i +0.0002i +0.0001i +0.0207i +0.0034i -0.0023i +0.0050i

±0.0007 ±0.0007 ±0.0007 ±0.0376 ±0.0066 ±0.0003 ±0.0003

0.2207 0.2207 0.2200 0.7783 0.9454 0.9450 0.9227

a
(2)
11 0.9503 -0.9227 -0.0008i -0.0006i +0.0118i -0.0000i +0.0035i +0.0257i

±0.0008 ±0.0008 ±0.0008 ±0.0384 ±0.0052 ±0.0016 ±0.0125

0.1972 0.1972 0.1964 0.0802 -0.0020 0.0418 0.0483

a
(2)
12 0 +0.0053i +0.0053i +0.0055i +0.0011i +0.0089i -0.0034i -0.0306i

±0.0306 ±0.0020 ±0.0020 ±0.0020 ±0.0073 ±0.0018 ±0.0113

0.2093 0.2093 0.2086 0.0816 0.0071 0.0354 0.0406

a
(2)
21 0 -0.0018i -0.0018i -0.0018i +0.0144i +0.0046i +0.0005i +0.0168i

±0.0020 ±0.0020 ±0.0020 ±0.0218 ±0.0102 ±0.0005 ±0.0045

0.0045 0.2171 0.2160 0.7855 0.9399 0.9534 0.9468

a
(2)
22 0.9503 -0.0030i -0.0030i -0.0029i -0.0217i -0.0054i +0.0025i -0.0128i

±0.0009 ±0.0009 ±0.0009 ±0.0009 ±0.0009 ±0.0004 ±0.0173

Table 3.12: The true and estimated poles at SNR=10dB based on 2000 samples.

Pole#1 Pole#2 Pole#3 Pole#4

True 0.8812 + 0.4167i 0.8812 - 0.4167i 0.8813 + 0.4167i 0.8813 - 0.4167i

ARFIT [Neu01] 0.6980 + 0.0124i 0.5731 - 0.0112i 0.6449 + 0.0044i 0.0219 - 0.0037i

SC-Kalman [Arn98] 0.6980 + 0.0124i 0.5732 - 0.0112i 0.6449 + 0.0044i 0.0219 - 0.0037i

YW 0.6975 + 0.0123i 0.5718 - 0.0110i 0.6445 + 0.0046i 0.0218 - 0.0037i

Hassan [Has03] 0.8375 + 0.3727i 0.8355 - 0.3722i 0.7553 + 0.4088i 0.7469 - 0.4168i

NCYW 0.9148 + 0.4211i 0.9122 - 0.4249i 0.8430 + 0.4060i 0.8375 - 0.4046i

CC-Kalman 0.8979 + 0.4257i 0.8983 - 0.4231i 0.8599 + 0.4111i 0.8653 - 0.4093i

CC-H∞ 0.8985 + 0.4202i 0.8940 - 0.4186i 0.8416 + 0.4199i 0.8467 - 0.4027i
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Figure 3.12: 20 realizations for the estimated spectrum and poles of multichannel fading

processes, at SNR=10dB based on 2000 observations.
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Table 3.13: MSE of modulus and argument of the estimated poles at SNR=10dB based

on 2000 samples.

MSE of Pole#1 MSE of Pole#2 MSE of Pole#3 MSE of Pole#4

mod. arg. mod. arg. mod. arg. mod. arg.

(E-3) (E-6) (E-3) (E-6) (E-3) (E-6) (E-3) (E-6)

ARFIT 81.8749 6.9206 75.1415 145.678 129.687 12.3388 839.599 1469.9

SC-Kalman 81.8911 6.9447 75.1038 145.691 129.702 12.3613 839.623 1471.3

YW 82.3296 7.1188 75.4344 145.869 130.909 12.0521 839.830 1473.2

Hassan 3.90410 2.6878 4.27760 3.52010 14.6799 13.2054 18.6557 9.1341

NCYW 1.8651 0.2812 1.70690 0.16059 2.43490 0.35338 3.58660 0.43124

CC-Kalman 0.38254 0.04121 0.33574 0.01916 1.1581 0.62337 0.73408 0.38262

CC-H∞ 0.30647 0.04791 0.24477 0.06871 3.6085 9.9008 5.4135 4.3593
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4.1 Conclusions

Multiple correlated data channels arise in many applications such as in wireless commu-

nications, biomedical engineering, radar systems, etc. In these applications, the multiple

correlated channels are usually modeled by a M-AR process. This model is simple and

contains few number of parameters. In the framework of mobile communications, the

fading channels are usually modeled by a M-AR process for two main purposes. Firstly,

this model is used to simulate correlated fading channels. Secondly, this model when

combined with optimal filter such as Kalman or H∞ filter can be used to estimate the

fading channels [Bul98] [Cai04]. A key issue that is addressed in this thesis is to estimate

the M-AR process parameters from the available noisy observations.

The M-AR parameter estimation methods can be classified as either off-line or on-

line methods. Some of the off-line methods such as ARFIT and YW equations provide

biased estimates. Other off-line methods such as NCYW equations, Hassan’s algorithm,

ILSV method and EIV based approach, they provide consistent estimation, as they com-

pensate for the additive noise. However, they have high computational cost. In addition,

some of them may diverge and result in unstable system.

When one observation is available at a time on-line methods can be used. On-line

methods can be based on optimal filters such as Kalman or H∞ filter. The so-called two

serially-connected Kalman filters [Arn98] or the two serially-connected H∞ filters [Cai04]

provide biased parameter estimation, since they estimate the M-AR parameters directly

from the noisy observations. The EKF and SPKF can jointly estimate the M-AR process

and its parameters and provide consistent parameters estimates. However, the state

vector to be estimated has large size. To avoid this drawback, we propose to extend the

CC-Kalman filters [Lab06] initially proposed for speech enhancement to the multichannel

case. This method provide consistent estimation of the parameters. However, Kalman

filter requires that the driving processes and the additive noise to be white Gaussian

with known variances. To relax these assumptions, we propose to extend the CC-H∞

filters [Lab07] to the multichannel case. This method provide robust estimation of the

parameters in the case of under or over estimating the noise variances.

The accuracy of the estimated M-AR parameters are affected by several factors:

1. The SNR: the higher the SNR is the better the estimation accuracy.

2. The sample size: the larger sample size is the better the estimation accuracy.

3. The farness of the M-AR poles from the unit circle: the far the poles from the unit
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circle the better the estimation accuracy.

4. The closeness of the initializations to the true values: the close initializations to the

true values the better the estimation accuracy.

The effect of the above factors on the estimation accuracy depends on the estimation

algorithm itself. According to the comparative simulation study we carried out, we can

draw the following conclusions about the estimation algorithms studied in this thesis:

The estimated parameters produced by the ARFIT and YW equations are far from

the true values, mainly, when complex processes are used. The SC-Kalman filters provide

biased estimated parameters similar to the case of ARFIT and YW equations.

Hassan’s algorithm provides more accurate estimates than ARFIT, YW equations

and SC-Kalman filters, since it compensate for the additive noise variances. However, it

may provide estimates which correspond to unstable systems, mainly at low SNR or small

samples. In addition, it has high computational cost.

The NCYW equations, CC-Kalman filters and CC-H∞ filters provide accurate es-

timates when the true driving process and additive noise covariance matrices are used.

However, when the driving process and the measurements covariance matrices are es-

timated (overestimated or underestimated), the accuracy of the estimated parameters

degrades.

When the difference between the estimate and the true noise covariance matrices is

large, then the accuracy of the estimated parameters will not be affected much when using

the CC-H∞ filters. Thus, the CC-H∞ filters is robust to the deviation in the estimation

of the noise covariance matrices. This is not the case when using CC-Kalman filers or the

NCYW equations.

When comparing the CC-Kalman filters and CC-H∞ filters with the other exiting

M-AR parameter estimation methods, they provide a compromise between the estimation

accuracy and computational cost. If the driving processes and additive noise are Gaussian

with known covariance matrices, we recommend to use the CC-Kalman filters. If these

assumptions are violated, we recommend to use the CC-H∞ filters.

4.2 Future Work

In the thesis, we propose to extend the CC-Kalman filters and the CC-H∞ filters initially

proposed for single channel applications to the multichannel case. We carried out a

simulation using both synthetic M-AR process and realistic M-AR process corresponds

75



Chapter 4 - Conclusions and Future Work

to mobile fading channels. The simulation results show that the CC-Kalman filters and

CC-H∞ filters provide accurate estimates of the M-AR parameters.

Our recommendations for future work are as follows:

• The relevance of CC-Kalman filters and CC-H∞ filters for the estimation of time-

varying fading channels, with application to OFDM systems have been investigated

by Ahmad in [Abd08]. However, the author assumes that the fading channels are

uncorrelated. In the case of correlated fading channels in OFDM systems, the

fading processes should be modeled by M-AR process and could be estimated by

the approach we developed in this thesis.

• The proposed methods can also be used for the estimation of correlated channels

estimation when designing the diversity receivers for CDMA systems.
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Acronyms and Abbreviations

Acronyms and Abbreviations

EEG ElectroEncephaloGram

EEG ElectroCardioGram

GPS Global Position System

TAN Terrain Aided Navigation

INS Inertial Navigation System

LOS Line-Of-Sight

WSS Wide Sense Stationary

SSS Strict Sense Stationary

ISI Inter Symbol Interference

PDF Probability Density Function

VAR Vector AutoRegressive

MIMO Multiple Input Multiple Output

ARMA AutoRegressive Moving Average

MA Moving Average

AR AutoRegressive

M-AR Multichannel AutoregRessive

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Multiple Access

DS-CDMA Direct-Sequence Code Division Multiple Access

3G 3rd Generation

WiMAX Worldwide Interpretability for Microwave Access

ACF AutoCorrelation Function

LQE Linear Quadratic Estimation

CCF Cross-Correlation Function

AWGN Additive White Gaussian Noise

CLT Central Limit Theorem

EIV Errors-In-Variables

EKF Extended Kalman Filter

SPKF Segma Point Kalman Filter

UKF Uncented Kalman Filter
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Acronyms and Abbreviations

LMS Least Mean Square

LS Least Square

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MSE Mean Square Error

NRYW Newton-Raphson Yule-Walker

NCYW Noise-Compensated Yule-Walker

NLMS Normalized Least Mean Square

PSD Power Spectral Density

RLS Recursive Least Square

SNR Signal-to-Noise Ratio

YW Yule-Walker

CC-Kalman Two Cross-Coupled Kalman

CC-H∞ Two Cross-Coupled H∞

ILSV Improved Least Square for Vector Processes
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Notations

· matrices dot product

E[·] expectation operator

diag[·] diagonal matrix

det[·] determinant

Re(·) real part

Im(·) imaginary part

δ(·) dirac delta function

exp(·) exponential function

⊗ the matrices Kronecker product

J0(·) zero-order Bessel function of the first kind

‖ · ‖ Euclidean norm

| · | absolute value

min(·) minimum

max(·) maximum

sup supremum

(·)∗ complex conjugate

(·)T transpose

(·)H hermitian (complex conjugate transpose)

(·)−1 inverse

∇ gradient

j
√−1

x̂ estimate of x

σ2
x variance of x

x or X vector or matrix

0p zero vector of size p× 1

Ip identity matrix of size p× p

T the periodic signal duration

mx(k) mean of x(k)

σ2
x(k) variance of x(k)

Cx(k, l) autocovariance of x(k)
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Rx(k, l) autocorrelation of x(k)

Y (z) the z-transform of y(k)

H(z) the transfer function

q MA model order

{bl}l=1,...,q MA model parameter

u(k) driving processes vector

v(k) the additive noise vector

Σu the divining processes covariance matrix

Σv the additive noise covariance matrix

Qu, Rv weighting parameters in the H∞ filter

V cross-correlation matrix

A concatenation of M-AR model parameters

G the lower matrix of Cholesky factorization

z (k) white Gaussian noise

ρrs the cross-correlation coefficient

fm Doppler rate

∆wrs the angular frequency separation

σT delay spread of the wireless channel

Λ the cross-correlation coefficient matrix

∆ the bandwidth of the base station

A(z) numerator of H (z)

B(z) denominator of H (z)

Tm channel maximum delay spread

Bc channel coherence bandwidth

Tb bit duration

1/Tb sample rate

Tc chip duration of wide-band single-carrier DS-CDMA system

W signal bandwidth

WM bandwidth of each carrier signal in MC-DS-CDMA system

W0 bandwidth of wide-band single-carrier DS-CDMA system

Lp number of resolvable paths in multi-path fading channel
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Ls number of scatterers in frequency-flat fading channel

ν mobile station speed

ϕ angle of arrival

fc carrier frequency

c light speed

fD Doppler frequency

fd maximum Doppler frequency

fi the ith carrier frequency

fdTb Doppler rate

W0 the total bandwidth of the transmitted signals

f frequency

Tc channel coherence time

Ts symbol duration

Ls maximum number of resolvable paths

hm(k) complex fading process at the mth carrier in the kth bit interval

h
(R)
m (k) real part of the fading process

h
(I)
m (k) imaginary part of the fading process

σ2
h fading process variance

gml random amplitude associated with the lth scatterer and the mth carrier

ϕml random angle of arrival associated with the lth scatterer and the mth carrier

ϑml random initial phase associated with the lth scatterer and the mth carrier

~ the envelope of fading process

Rhh(i) the autocorrelation of the fading process at lag i

p M-AR model Order

M number of channels of M-AR process

N number of available data samples

h(k) M-AR fading processes vector

Rhh M-AR model covariance matrix

Rhh(k) ACF of the channel

Ψ(f) PSD of the channel

τk time delay of the kth signal
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ε very small positive constant

γ disturbance attenuation level in the H∞ algorithm

{al}l=1,··· ,p AR model parameters

{A(l)}l=1,··· ,p M-AR model parameter matrices

θ M-AR parameter vector

Φ Companion matrix containing the M-AR parameters

b(k) innovation processes

h(k) the state vector

ĥ(k/k − 1) a priori estimate of h(k) given k − 1 observations

ĥ(k/k) a posteriori estimate of h(k) given k observations

K(k) Kalman filter gain at time k

K(k) H∞ filter gain at time k

P(k/k − 1) a priori covariance matrix of the state vector error

P(k/k) a posteriori covariance matrix of the state vector error

P(k) the covariance matrix of the state vector error in the H∞ filter

{σ2
vi}i=1,...,M measurement noise variances on the ith channel

{σ2
ui}i=1,...,M driving processes variances

{σ2
hi}i=1,...,M fading processes variances
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Appendix A

Spatial correlation of MIMO system

Consider 2 × 2 MIMO fading channel scenario involving transmission by a dual-

antenna, under the assumption of 2-D isotropic scattering at the receiver antenna, the

ACF for each channel is identically given by (1.36), and the CCFs are given as follows:

Rh11h21(m) = Rh12h22(m) = J0({a2 + b2 − 2ab cos(β − %)} 1
2 ) (4.1)

Rh11h12(m) = Rh21h22(m) = J0({a2 + c2∆2 − 2ac∆ sin(α) sin(%)} 1
2 ) (4.2)

Rh11h22(m) = Rh12h21(m) = J0({a2+b2+c2∆2−2ab cos(β−%)−2c∆ sin(α)[a sin(%)−b sin(β)]} 1
2 )

(4.3)

where a = 2πfd|k|, b = 2πd/λ, c = 2πδ/λ, d denotes the distance between the receiver

antennas, δ denotes the separation between base antennas, ∆ specifies the bandwidth at

the base, and α, β and % are angles which specify the orientation of the base station,

mobile arrays and the direction of user motion, respectively.
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Appendix B

Property:

The M-AR parameter matrices are diagonal when the cross correlation matrix is

symmetric (i.e., ρrs = ρsr).

Proof:

Assume first order M-AR fading processes and ρrs = ρsr, the following two equations

hold:

Rhrhs(0) = Rhshr(0) =





1, if r = s

ρrs, if r 6= s
(4.4)

Rhrhs(1) = Rhshr(1) =





J0(2πfd), if r = s

ρrsJ0(2πfd), if r 6= s
(4.5)

Writing Yule-Walker equation for this system using (1.41) as follows:




1 ρ12 · · · ρ1M

ρ12 1 · · · ρ2M

...
...

. . .
...

ρ1M ρ2M · · · 1




︸ ︷︷ ︸
Λ




a
(1)
11 a

(1)
12 · · · a

(1)
1M

a
(1)
21 a

(1)
22 · · · a

(1)
2M

...
...

. . .
...

a
(1)
M1 a

(1)
M2 · · · a

(1)
MM




︸ ︷︷ ︸
A

= −J0(2πfd)




1 ρ12 · · · ρ1M

ρ12 1 · · · ρ2M

...
...

. . .
...

ρ1M ρ2M · · · 1




︸ ︷︷ ︸
Λ

(4.6)

Compute A using the above equation as follows:

A = −J0(2πfd)Λ
−1Λ = −J0(2πfd)IM (4.7)

where IM is M ×M identity matrix.

We can note that the parameter matrix A is diagonal.
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