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Abstract 

        This thesis aimed to study the behavior of solutions and criterion of oscillation for 

solutions of first order advanced functional differential equations. So we tackle the 

conditions that limit oscillation for these linear and nonlinear equations, and the 

unknown function in the general form for this type of equations contains one advanced 

variable or more about the variable that represents the present state. 

        Such type of study is studied and classified according to the coefficients even if 

they are constants, constants and variables or all of them are variables. 

         This thesis contains in its contents basic concepts of functional differential 

equations and the definition of oscillation. It also contains several result due to 

oscillation theorems in addition to a set of examples that explain the main theorems. 

         The reason why the researcher studied the type of equations is because of anxious, 

the subject is interesting and important. 

         This study contains many modern results resulted in oscillation of advanced 

differential equations in both cases linear and nonlinear, also homogeneous and 

nonhomogeneous. Nonhomogeneous equations has been transformed by a specific 

transformation to homogeneous case. 

          Some theorems of advanced differential equations have been proved by 

contrasting them with delay differential equations and this is the out put of the study 

that the researcher accomplished. 
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الملخص 

اهتمت هذه الدراسة بدراسة سموك حمول ومعايير التذبذب لحمول فئة معينة من المعادلات التفاضمية 

الاقترانية المتقدمة من الدرجة الأولى، حيث تعرضنا لمشروط التي تحدد التذبذب لهذه المعادلات 

الخطية وغير الخطية، وكذلك تعرضنا للاقتران المجهول في الصورة العامة لهذه الفئة من 

. المعادلات والذي يحتوي عمى متغير متقدم واحد أو أكثر عن المتغير الذي يمثل الوضع الحالي

تمت دراسة هذه الفئة من المعادلات وتصنيفها بالاعتماد عمى المعاملات سواء كانت ثابتة أو ثابتة 

. ومتغيرة أو جميعها متغيرة

تحتوي ثنايا الرسالة عمى المفاهيم الأساسية لممعادلات التفاضمية الاقترانية وكذلك تعريف التذبذب 

وتحتوي أيضاً عمى العديد من النتائج التي تتعمق بنظريات التذبذب لهذه المعادلات بالإضافة إلى 

. مجموعة من الأمثمة التي توضح النظريات الرئيسية

. كانت الرغبة في دراسة هذا النوع من المعادلات لأن الموضوع ممتع وجدير بالاهتمام

تحتوي الرسالة عمى العديد من النتائج الحديثة الصادرة في نظرية التذبذب لممعادلات التفاضمية 

المتقدمة بحالتيها الخطية وغير الخطية وكذلك المعادلات المتجانسة وغير المتجانسة، حيث تم 

. تحويل المعادلة غير المتجانسة إلى معادلة متجانسة باستعمال تحويلًا معيناً 

بمقارنتها مع المعادلات  (advanced)تم برهنة بعض النظريات لممعادلات التفاضمية المتقدمة 

. ، وهذه تعتبر من النتائج التي استطعنا التوصل إليها في هذا البحث(delay)التفاضمية المتأخرة 
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Introduction 

Recently, there has been a lot of activities concerning the oscillatory and nonoscillatory 

behavior of delay differential equations; for example see [3], [4], [5] and [8] and 

references therein. But, for the oscillatory and nonoscillatory results of advanced 

differential equations, compared with those of delay differential equations, less is 

known up to know. 

With the past two decades, the oscillatory behavior of solutions of differential equations 

with deviating arguments has been studied by many authors. The problem of the 

oscillations caused by deviating arguments (delays or advanced arguments) has been the 

subject of intensive investigation. Among numerous works dealing with the study of 

this problem we choose to refer to L. E. El'sgol'ts [3], Ladde, Lakshmikanthan and 

Zhang [8], Gyori and Ladas [5], Erbe, Kong and Zhang [4], and Kordonis and Philos 

[7]. 

In the special case of an autonomous advanced differential equation a necessary and 

sufficient condition for the oscillation of all solutions is that its characteristic equation 

has no real roots, this appears in [5]. Also for advanced differential equations with 

oscillating coefficients, a necessary and sufficient conditions for the oscillation of all 

solutions is given by Li, Zhu and Wang [10]. 

An advanced functional differential equation is one in which the derivatives of the 

future state or derivatives of functionals of the future state are involved as well as the 

present state of the system. In fact when the derivatives of the future history are used, 

most of the literature is devoted to existence, uniqueness, and continuous dependence. 

In this research we consider theorems that provide sufficient conditions for the 

oscillation of solutions of the first order, linear, nonlinear and impulsive advanced 



 2 

differential equations, taking different forms depending on the coefficients and on the 

advanced argument (which may be constants, variables or constants and variables) and 

the forcing terms of these equations. Also we consider theorems which give sufficient 

conditions for the oscillation of mixed type and of an alternating advanced and delay 

differential equations. 

Our research deals with the oscillation of the first order advanced functional differential 

equations. It consists of four chapters: 

Chapter one: contains the main concepts, definitions, lemmas, theorems, and 

preliminary material that are essential in the following chapters. 

Chapter two: devotes the oscillation theory of the linear advanced functional 

differential equation 

      



n

i

ii tytptytpty
1

))(()(  , 

where  

  0tp ,   0tpi , and   tti   are continuous ni ,...,2,1 , with special cases: 

(i) ip  and i  are constants ni ,...,2,1 ,  

(ii) ip  are variables, i  are constants ni ,...,2,1 , 

(iii) ip  and i  are variables. 

Chapter three: deals with oscillatory and nonoscillatory solutions of the nonlinear 

advanced differential equation of the form 

     



n

i

ii tyftpty
1

0))(( , 
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where   0tpi ,   tti  , ni ,...,2,1  are continuous. And as a special case of this 

nonlinear advanced differential equation: n=1,   0tp  almost everywhere  and  tp is 

locally integrable and   tt  . 

Chapter four studies oscillation theorems of special kinds of differential equations: 

impulsive, mixed type and alternately advanced and retarded differential equations. 

Symboles 

 =   , the set of real numbers. 

 =  ,0  the set of nonnegative real numbers . 

],[ baC : the set of all real valued continuous functions on the closed interval ],[ ba . 

],[1 baC : the set of all real valued continuously differentiable functions on ],[ ba . 

i

n

i
A

1
 = nAAA  ...21 . 

The triple (a,b,c) refers to definitions, theorems, examples, lemmas, corollaries, 

remarks, equations or inequalities where: 

a: refers to the chapter's number, 

b: refers to the section's number, 

c: refers to the number of definitions, theorems, examples, lemmas, corollaries, remarks, 

equations or inequalities. 

The symbol [x] means the reference number.  

. : any vector norm. 
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Chapter one 

Preliminaries 

1.0  Introduction 

The aim of this chapter is to present some preliminary definitions, examples and 

results which will be used throughout the research. 

Section 1.1 introduces definitions of differential equations with deviating arguments 

and their classification with examples. 

Section 1.2 investigates the definition of oscillatory and nonoscillatory solutions of 

differential equations. 

Section 1.3 gives some basic lemmas and theorems of oscillation of differential 

equations by using the Laplace transform. 

Section 1.4 contains a detailed description of possible existence and uniqueness 

results that are needed in our treatment of the oscillation theory of advanced differential 

equations. 

Finally section 1.5 introduces some theorems which are important tools in 

oscillation theory, especially, the generalized characteristic equation and the existence 

of positive solutions of the first order advanced functional differential equation. 

1.1 Definitions and examples 

Definition 1.1.1: Differential equations with deviating arguments 

Differential equations with deviating arguments are differential equations, in which 

the unknown function appears with various values of the argument, and these, classified 

in the following three types: 
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1- differential equations with retarded arguments: 

A differential equation with retarded argument is a differential equation with 

deviating argument, in which the highest order derivative of the unknown function 

appears for just one value of the argument, and this argument is not less than all 

arguments of the unknown function, and its derivative appearing in the equation. 

2- Differential equations with advanced arguments: 

A differential equations with advanced argument is a differential equation with 

deviating argument, in which the highest order derivative of the unknown function 

appears of just one value of the argument, and this argument is not larger than the 

remaining arguments of the unknown function, and its derivative appearing in the 

equation. 

3- Differential equations with neutral arguments: 

A differential equation with neutral argument is a differential equation with 

deviating argument, which is not of retarded argument nor of advanced argument. 

That is, the highest order derivative of the unknown function in the differential  

equation with neutral argument, is evaluated both with the present state and at one 

or more past or future states. 

Example 1.1.1: Consider the following differential equations with deviating 

arguments: 

i. )))((),(,()( ttytytfty   

ii. ))(),(),(,()( 21   tytytytfty  

iii. )))(()),((),(),(,()( ttyttytytytfty    

iv. ))(),(),
2

(),
2

(,()( tyty
t

y
t

ytfty   
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v. )))(()),(()),((),(),(,()( ttyttyttytytytfty    

Then  

(i) and (iii) are with retarded arguments if  0)( t , and with advanced argument if 

0)( t . 

(ii) is with retarded argument if 1 >0 , 2 >0, and with advanced argument if 1 <0 , 

2 <0. 

(iv) is with retarded argument if t≥0 , and with advanced argument if t≤0. 

(v) is with neutral argument. 

It is possible that an equation belongs to one of the above mentioned arguments 

on one set of values of t, and to another type on another set. For example, the 

differential equation: 

))),((),(,()( ttytytfty   

is of retarded argument on intervals on which 0)( t , and of advanced argument on 

intervals on which 0)( t . 

1.2 Definition of oscillation 

The most frequently definitions of oscillation, used in the literature are the 

following two definitions: 

Definition 1.2.1: A nontrivial solution y(t) of a differential equation is said to be 

oscillatory solution if and only if it has arbitrarily large zeros for t≥t0, that is, there exists 

a sequence of zeros  nt  (y(tn)=0) of y(t) such that  


n
n

tlim . 

Otherwise, y(t) is called nonoscillatory. 

Definition 1.2.2: A nontrivial solution y(t) is said to be oscillatory, if it changes sign 

on [T,∞), T is any number. 
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Remark 1.2.1: Definition 1.2.1 is more general than definition 1.2.2, for example: 

y(t) = 1-sin t, 

is an oscillatory solution according to definition 1.2.1, and is nonoscillatory  solution 

according to definition 1.2.2. 

Example 1.2.1: The equation 

0)
2

3
()( 


tyty , 

has the oscillatory solutions: 

ttytty cos)(,sin)( 21  . 

Example 1.2.2: The equation 

0)1(
2

3
)(  tyty


, 

has the oscillatory solution: 

ttty
2

3
cos

2

3
sin)(


 , 

and also has the bounded nonoscillatory solution tAety )( where 

A is a constant and  is a root of the equation 0
2

3
 

 e  

( =-1.2931). 

Example 1.2.3: The equation 

)()( tyty  , 

has a nonoscillatory solution 

ccety t ,)(  is a constant 
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Lemma 1.2.1: Let p and   be two positive constants. Let )(ty  be an 

eventually positive solution of the advance differential inequality 

 0)()(  tpyty                                                               (1.2.1) 

Then for  sufficiently large, 

 )()( tByty  ,                                                                   (1.2.2) 

where   B = 2)
2

(
p

   

Proof: Assume that t0 is such that 0)( ty   for 

 0tt , and )(ty  satisfies  (1.2.1) for 0tt   . For given  0ts , integrate both 

sides of (1.2.1) from 
2


s  to s, and by using the fact that y(t) is increasing for 

0tt  , we find that 

,0)
2

(
2

)
2

()( 


sy
p

sysy                                              (1.2.3) 

since y(t)>0, then 0)
2

( 


sy , and hence 

y(s) - 0)
2

(
2




sy
p

,                                                              (1.2.4) 

or 

)()
2

(
2

sysy
p




.                                                                  (1.2.5) 

Applying (1.2.5) for s=t+
2


, and for s=t, we have 

)
2

()(
2





 tyty

p
,                                                             (1.2.6) 

and 
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)()
2

(
2

tyty
p




,                                                                  (1.2.7) 

respectively. Combining (1.2.6) and (1.2.7) yields 

)()
2

(
2

)()
2

( 2 tyty
p

ty
p







,                                            1.2.8) 

and hence 

)()
2

()( 2 ty
p

ty


  ,                                                               (1.2.9) 

or 

)()( tByty  ,                                                                     (1.2.10) 

where  B= 2)
2

(
p

 

Theorem 1.2.1: Consider the advanced differential equation and inequalities: 

0)()()(  tytpty                                                                    (1.2.11) 

0)()()(  tytpty                                                                    (1.2.12) 

0)()()(  tytpty                                                                    (1.2.13) 

Assume that   ],,[ 0

 tCp , 0 , and 






t

t

e
t

dssp 1)(lim                                 (1.2.14) 

then  

(i) every solution of (1.2.11) oscillates. 

(ii) Inequality (1.2.12) has no eventually positive solution. 

(iii) Inequality (1.2.13) has no eventually negative solution. 

Proof: Assume that (1.2.11) has an eventually positive solution y(t). Then there 

exists  a 

0tt , such that for t≥t
*
, y(t) >0 and y(t+ )≥0. 

Also 0)(  ty  and 
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y(t) ≤y(t+ ),                                                                                   (1.2.15) 

since y(t) is increasing. And 

0)()()()()()(  tytptytytpty                                        (1.2.16) 

Thus 

0)()()(  tytpty ,                                                      (1.2.17) 

or 

)(
)(

)(
tp

ty

ty



.                                                                                    (1.2.18) 

By integrating both sides of (1.2.18) from t to t+ , we find 

ln 








t

t

dssp
ty

ty
)(

)(

)(
.                                                                   (1.2.19) 

Also from (1.2.14) it follows that there exists a constant c>0 and a t1 ≥t
*
, such that 






t

t

e
cdssp 1)( ,     t≥t1                                                                  (1.2.20) 

so 

ln c
ty

ty




)(

)( 
,                                                                               (1.2.21) 

or 

 tytyec ()( ).                                                           (1.2.22) 

But  e
c
≥ec, c , so (1.2.22) becomes 

ec y(t) ≤ y(t+ ),      1tt  .                                                        (1.2.23) 

Repeating the above procedure, it follows by induction that for any positive integer k 

)()()(  tytyec k ,  ktt  1 .                                                    (1.2.24) 
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Choose k such that 

kec
c

)(
4
2
 ,                                                                                     (1.2.25) 

which is possible, because ce>1. Now, fix a ktt  1 . Then because of (1.2.20), there 

exists a  ),( tt    such that 








t

c
dssp

2
)(          and  





t
c

dssp


2
)( .                                          (1.2.26) 

By integrating (1.2.11) over the intervals  [  ,t ], [ t , ]    , we find 











t

dssysptyy 0)()()()( ,                                         (1.2.27) 

and 





t

dssyspyty


 0)()()()( .                                                (1.2.28) 

By omitting the second terms in (1.2.27) and (1.2.28), and by using the increasing 

nature of y(t) and (1.2.26), we find 

)(
2

)(
2

)(
2

)()()( ty
c

ty
c

dssy
c

dssyspy
tt

 











.       (1.2.29) 

Thus 

y( ) ≥ )(
2

ty
c

 .                                                                                 (1.2.30) 

Also from (1.2.28), we conclude that 





t

y
c

dssyspty


 )(
2

)()()( , 

or 

)(
2

)(   y
c

ty .                                                                           (1.2.31) 



 12 

Combining (1.2.30) and (1.2.31), gives 

)()
2

()(
2

)( 2   y
c

ty
c

y  ,                                                      (1.2.32) 

or 

2)
2

(
)(

)(

cy

y







.                       (1.2.33) 

But from (1.2.24) 

2

2 4
)

2
(

)(

)(
)(

ccy

y
ec k 







.                                                        (1.2.34) 

This contradicts (1.2.25). So the assumption of y(t) is eventually positive solution is not 

true. Therefore every solution  of equation (1.2.11) is oscillatory. 

By using parallel arguments we can prove (ii) and (iii) of the theorem. 

1.3 Some basic definitions, lemmas and theorems 

Definition 1.3.1: A function F is analytic at z0 if and only if there exist r>0, such that 

 zF exists for all ),( 0 rzBz , where  rzB ,0 is the ball centered at z0 and has radius =r. 

Definition 1.3.2: The function F has an isolated singular point at z=a if there exist, 

0R , such that F is analytic in    aRaB \, . 

Definition 1.3.3: The Laplace transform 

Let ),0[:x be a real valued function. The Laplace transform of x(t), denoted by            

)]([ txL  or X(s), is given by 

L[x(t)] = X(s) = 




0

)( dttxe st
                                                             (1.3.1) 
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X(s) is defined for all values of the complex variable s, for which the integral in (1.3.1) 

converges in the sense that: 






u

st

u
dttxe

0

)(lim    exists and is finite. 

Definition 1.3.4: Compact set 

A set K is said to be compact if whenever it is contained in the union of                 

a collection }{ GT  of open sets in  , then it is contained in the union of some finite 

number of sets in T . 

Definition 1.3.5: Locally integrable function 

A function is said to be locally integrable on an open set S in a finite dimensional 

Euclidean space if it is defined almost everywhere in S and has a finite integral on 

compact subset of S. 

Definition 1.3.6: Locally summable function 

 1L : All complex measurable functions f  on a set   such that  




df . The members of  1L  are called Lebesgue integrable (or summable) 

functions with respect to  . 

Remark 1.3.1: There exists 0  (possibly ≠ ∞),such that the integral in (1.3.1) 

converges for all s with Re s> 0 , and diverges for all s with Re s< 0 , 0  is called the 

abscissa of convergence  of X(s), where Re s is the real part of s. 

Lemma 1.3.1: Let ]),,0[[ Cx , and suppose that there exist positive constants M 

and   such that  

                  
tMetx )(  ,  for 0t , 
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then the abscissa of convergence 0 of the Laplace transform X(s) of x(t) satisfies 

 0  . 

Furthermore, X(s) exists, and is an analytic function of s for Re s> 0 . 

Lemma 1.3.2: 

(i) Let ]),,0[[1 Cx , and let 0 , be the abscissa of convergence of the 

Laplace transform X(s) of x(t). Then the Laplace Transform of x'(t) has the 

same abscissa of convergence, and 




 

0

)0()()()]([ xssXdttxetxL st                                                      (1.3.2) 

for all s, with Re s> 0  

(ii) Let 

]),,0[[ Cx  

and let 0 , be the abscissa of convergence of the Laplace transform 

X(s) of x(t). Then the Laplace transform of the shift function x(t+ ) has the 

same abscissa of convergence, and 

 


 
0 0

)()()()]([


 dttxeesXedttxetxL stssst ,                       (1.3.3) 

for all s with Re s> 0  

Remark 1.3.2: It is well known that if  tx  satisfies   tMetx  , then the Laplace 

transform  sX  of  tx  which is given by (1.3.1) exists for sRe , M  and   are 

positive constants. 
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Theorem 1.3.1: Let  ]),,0[[ Cx , and assume that the abscissa of convergence 

0 of the Laplace transform X(s) of x(t) is finite, then X(s) has a singularity at the point 

0s , more precisely, there exist a sequence 

nnn iBS  , n=1,2,…. Such that 

0 n , for n≥1, 



n
nn

n
B 0lim,lim 0 , and  .)(lim 


sX

n
 

Proof: see[5]. 
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Chapter two 

Oscillation of linear advanced functional differential 

equations 

2.0 Introduction 

Our aim is to discuss oscillatory and nonoscillatory behavior of solutions of the 

first order functional differential equation 

      



n

i

ii ttytptytpty
1

))(()(  ,                                           (2-A) 

where 

  0tp ,   0tpi , and   0ti  are continuous and ni ,...,2,1 . 

In order to reach what will we hope, special cases for  tp ,  tpi  and  ti  are 

taken to obtain oscillation and nonoscillation criteria for all solutions of (2-A). 

In this chapter we present some of the oscillation results that recently have been 

obtained for this form of equations. 

In section 2.1 we introduce sufficient conditions for the oscillation of equation 

(2-A) with constant coefficients, single and several deviating arguments and   0tp . 

That is, we consider the following two equations: 

    tpyty , 

   



n

i

ii typty
1

 . 

In section 2.2 we study some oscillation results of equation (2-A) with variable 

coefficients, constant deviating arguments and   0tp . In section 2.3 we present 

oscillation criteria for the solutions of (2-A) with variable coefficients, variable 
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deviating arguments (with both several and single deviating arguments) and with 

  0tp . 

Finally section 2.4 concerns with the results of oscillation theorem of 

nonhomogeneous equations (with forcing terms). 

2.1. Equations with constant coefficients and constant advanced 

argument 

In this section we will consider equation (2-A) with the following assumptions: 

  0tp ,   0 ptpi ,   0 ti  and 1n                                 (2.1.1) 

so that equation (2-A) becomes 

    tpyty .                                                                                (2.1.2) 

Theorem 2.1.1: Assume that p and τ are positive numbers, and assume that 1ep , 

then equation (2.1.2) has a nonoscillatory solution. 

Proof: Let    ,tety   constant, be a solution of equation (2.1.2), then the 

characteristic equation of equation (2.1.2) will be 

   peF  .                                                                               (2.1.3) 

Observe that  

  00  pF , 

and 

0
111



















ep
peF . 

Hence, there exists a positive real number 












1
,0 , such that 

e
t
 is a nonoscillatory solutions of equation (2.1.2) 
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Corollary 2.1.1: If   0 ptp ,   0,   tt , then the condition 1ep is 

necessary and sufficient for all solutions of equation (2.1.2) to oscillate.  

Example 2.1.1: The equation:  

   1
3

1
 tyty , with ,

3

1
p  1  

has a nonoscillatory solution 

  tAety  , where A is any constant and λ is a constant satisfying the 

equation 

 e
3

1
 ,        )1,0( ,    6190615.0  

Remark 2.1.1: The oscillatory theory of differential equations with deviating 

argument present some new problems which are not present in the theory of 

corresponding ordinary differential equations. First order differential equations with 

deviating arguments can have oscillatory solutions while first order ordinary differential 

equations do not possess oscillatory solution. The following example explains this idea. 

Example 2.1.2: The ordinary differential equation 

 tyy  , 

has the non-oscillatory solution     

  tety  . 

The delay differential equation 

  









2

3
tyty , 

has both oscillatory solutions: 

  tty sin1  ,   tty cos2    and nonoscillatory solution 
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  t
ety 0 , 0  satisfies   

0
2

3

0






 e ,  277410633.00  . 

While all solutions of advanced differential equation 

  









2

3
tyty , 

are oscillatory by Corollary (2.1.1) (p=1, 
2

3
    and   1

2

3
 eep


 ). 

From remark (2.1.1), the nature of solution changes completely after the 

appearance of the deviating argument in the equation. 

It is important to discuss oscillatory and nonoscillatory behavior of solutions of 

equation (2-A) with  

  0tp ,   0 ii ptp ,   0 ii t  , ni ,...,2,1 . So we have the following form 

   



n

i

ii typty
1

 .                                                                         (2.1.4) 

The following results concerning oscillatory and nonoscillatory behavior of 

equation (2.1.4). 

Theorem 2.1.2: If   



n

i

i
iepF

1

00 00 ,                                                    (2.1.5) 

where 0  satisfies the equation 





n

i

ii
iep

1

10 .                                                                                  (2.1.6) 

Then all solutions of (2.1.4) oscillate. 

Proof: Let   tety   be a solution of equation (2.1.4), then the characteristic equation 

of (2.1.4) is  

  



n

i

i
iepF

1

0
 ,                                                                   (2.1.7) 
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and so 

  



n

i

ii
iepF

1

1
 ,                                                                      (2.1.8) 

and 

  



n

i

ii
iepF

1

2  .                                                                        (2.1.9) 

Thus  F  is concave down and has a maximum value. 

The relation (2.1.6), shows that  0F  is a maximum value. But since 

  00 F , then the characteristic equation has no real roots. 

Hence all solutions of equation (2.1.4) oscillate. 

Theorem 2.1.3: If there exist 

0iN   ,   



ni

iN
1

1     such that 

0ln1
1













n

i ii

i

i

i

p

NN


                                                                    (2.1.10) 

Then all solutions of (2.1.4) oscillate. 

Proof: Let 

  tety  , then 

  tety  , so 





n

i

i
iep

1

0
  .                                                                           (2.1.11) 

write 

  



n

i

i
iepF

1

 ,                                                                       (2.1.12) 

or 
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   



n

i

ii
iepNF

1

  .                                                                (2.1.13) 

let 

  iepNf iii

   ,                                                                      (2.1.14) 

thus 

     



n

i

ifF
1

 ,                                                                              (2.1.15) 

  iepNf iiii

 


.                                                                      (2.1.16) 

The extreme value of  if  is at  

ii

i

i p

N


 ln

1
    ,                                                                               (2.1.17) 

so  

max     
i

ii

i

i p

N

i

ii

i

i

i
i ep

p

NN
f



















ln

1

ln                                           (2.1.18) 









 1ln

ii

i

i

i

p

NN


 .                                                                          (2.1.19) 

And thus 

Max      











01lnmax
1 ii

i

i

i
n

i

i
p

NN
fF


 ,                                   (2.1.20) 

 so the maximum value of   F  is negative, which means that the characteristic 

equation of (2.1.4) has no real roots. Therefore, all solutions of (2.1.4) oscillate. 

Theorem (2.1.4): Each of the following conditions is sufficient for all solutions of 

equation (2.1.4) to be oscillatory. 

(i) 



n

i

ii
e

p
1

1
                                                                                   (2.1.21) 
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(ii) 
e

n

i
i

n

i

i

n

p
1

1 1

1





















                          (2.1.22) 

(iii) There exists some j, such that  





























 



ji

epp

p

jjii

ji

ji

ji

i

eepp   .            

Proof: The proof of this theorem follows by an application of Theorem (2.1.3), for the 

following choices of iN  

(i) 





n

i

ii

ii
i

p

p
N

1




 ,           ni ,......,2,1  

(ii) 





n

i

i

i
iN

1




 

(iii) 






jk

jjKK

ii
i

epp

p
N




 ,      ji    and 







jk

jjKK

jj

j
epp

ep
N




 

Example 2.1.3: The equation 

   


















e
ty

e
tyty

2

11

2

1
 ,                        (2.1.23) 

with 

2

1
1 p     ,   12 p    ,  

e

1
1       and  

e2

1
2  , 

satisfies 





2

1

1

2

1

2

1

i

ii
eee

p . 

So (2.1.23) doesn't satisfy condition (i) of Theorem (2.1.4), but 
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 
ee

ppp
i

i
i

i

1

22

3
2121

2

1

2

1
2

1

















 



 . 

Which satisfies condition (ii) of Theorem (2.1.4). So all solutions of (2.1.23) oscillate. 

Theorem 2.1.5: If   1max

1

max 




















i

ep
n

i

i ,                        (2.1.24) 

where   i maxmax  ,    ni ,...,2,1 ,  then (2.1.4) has a nonoscillatory solution. 

Proof: The characteristic equation of (2.1.4) is 

  



n

i

i
iepF

1

 . 

Obviously 

  



n

i

ipF
1

00 , 

and 











 n

i

i

i

epF
1maxmax

max
11 




. 

By using (2.1.24), we have 

0
1

max











F . 

Hence   0F , has a real root   









max

0

1
,0


 . 

This means (2.1.4) has a nonoscillatory solution 

  t
ety 0 . 

Example 2.1.4: The equation 

   
 



2
2

22 







 



tyaetyety a

a

,                       (2.1.25) 
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has the oscillatory solution 

  tety at sin , 95.00  a . Equation (2.1.25) satisfies condition (i) of Theorem (2.1.4). 

Example 2.1.5: The equation 

      91
10

1
 tyty

e
ty  .                        (2.1.26) 

This equation does not satisfy conditions (i) and (ii) of Theorem 2.1.4, but does satisfy 

condition (iii) of the same Theorem. In fact, set 
e

pp
10

1
21  , 11  , 92  , so 

  









10

9

10

1
lnln 2211

e
epp  , 

and 

eepp

p








1

1

21

1 . 

But 

ee 











1

1

10

9

10

1
ln . 

Therefore (2.1.26) satisfies condition (iii) of Theorem (2.1.4), hence all solutions 

of (2.1.26) oscillate. 

We also can connect the phenomena of oscillation of equation (2.1.4) with the 

roots of its characteristic equation by using the Laplace transform for the functions  ty  

and  ty respectively. 

The proof of the following result, will explain this idea. 

Theorem 2.1.6: Assume that ip , i , ni ,...,2,1 , then every solution of the 

linear advanced functional differential equation (2.1.4) oscillates if and only if the 

characteristic equation 
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



n

i

i
iep

1

0
 ,                          (2.1.27) 

has no real roots  

Proof: Assume that equation (2.1.27) has a real root 0 , then   00 
t

ety
  

is a nonoscillatory solution of equation (2.1.4) (contradiction). 

Assume equation (2.1.27) holds, and equation (2.1.4) has an eventually positive 

solution  ty . By the fact that if  ty  is a solution of  

      



n

i

ii ttytpty
1

0 , 

then  ty  is exponentially bounded, that is there exist positive constants M and  such 

that   tety  ,  so by Remark (1.3.2) the Laplace transform  

   



0

dttyesY st , 

exist for Re  s . Let 0 be the abscissa of convergence of  sY , that is 

  Y,inf{0   }exists  

Then for any ni ,...,2,1 , the Laplace transform of the shift function  ty , 

exists and has abscissa of convergence 0 . 

Also by Lemma 1.3.2 

       


 

0

0yssYdttye st
 , 0Re s , 

and 

      


 
0 0

i

ii dttyeesYedttye stss

i

st



 , 

with Re  0s  
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Therefore by taking the Laplace transform of both sides of (2.1.4), we obtain  

        


 













n

i

stss

i

i

ii dttyeesYepyssY
1 0

00




,                      (2.1.28) 

and so 

      
















n

i

sts

i

n

i

s

i

i

ii dttyeepyepssY
1 01

0




.                      (2.1.29) 

Set  

  



n

i

s

i
iepssF

1


 

and  

      



n

i

sts

i

i

i dttyeepys
1 0

0



 . 

Equation (2.1.29) becomes  

 
 
 sF

s
sY


 ,  Re s 0                          (2.1.30) 

Clearly,  sF  and  s  are entire functions.   0sF , for all real s . Since 

  0ty (by hypothesis), then  sY is positive.  sF  is negative since   F  

and the characteristic equation has no real roots. Claim that 

0 , 

otherwise, 

0 . 

And by Theorem (1.3.1), the point 0s  must be a singularity of the quotient 
 
 sF

s
. 

But this quotient has no singularity on the real axis, since  sF  is an entire 

function, and has no real roots. Thus  0 , and so 
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 
 
 sF

s
sY


  , for all Rs . 

As s , through real values, then  

 
 
 sF

s
sY


 , leads to a contradiction because  sY  is positive and  sF  is negative, 

while 

   0lim ys
t



 , 

which is eventually positive. The proof is complete. 

Theorem 2.1.7: Assume that 0ip  and 0i , ni ,...,2,1 . 

The following statements are equivalent: 

a)    



n

i

ii typty
0

0 ,                           (2.1.31) 

has a positive solution 

b) The characteristic equation  





n

i

i
iep

1

0
 ,                          (2.1.32) 

has a real root 

c) The advanced differential inequality  

   



n

i

ii typty
1

0 ,                         (2.1.33) 

has a positive solution 

Proof: See [5]. 
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2.2 Equations with variable coefficients and constant advanced 

argument. 

In this section, some sufficient conditions are established for the oscillation of 

all solutions of the advanced differential equation 

      0 tytpty , 0tt                             (2.2.1) 

Where the coefficient       ,,0tCtp , and  is a positive constant. 

The previous works for the studies of the oscillation of (2.2.1) are done by Ladas [5] 

and Stavroulakis [11]. They proved that all solutions of (2.2.1) oscillate if 

  0tp ,  





t

t
t e

dssp
1

inflim .                                                         (2.2.2) 

Recently, Li and Zhu [9] improved the above result to the following form. 

Theorem 2.2.1 [9]: Suppose that there exist a  01 tt , and a positive integer K, 

such that  

 
KK

e
tp

1
 ,  

KK
e

tq
1

 , Ktt  1 ,                          (2.2.3) 

   




 


















ktt

K

K dt
e

tpetp

1

1
1

exp 1 .                         (2.2.4) 

Then every solution of (2.2.1) oscillates. Here        ,0,,0tctp  and the sequences 

)}({ tpn , )}({ tqn of functions are defined as follows: 

   




t

t

dssptp1  

     




t

t

nn dsspsptp 1    2n ,  0tt                           (2.2.5) 
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   




t

t

dssptq


1   ,      0tt  

   




t

t

nn dssqsptq


)(1 ,         2n ,   ntt  0                         (2.2.6) 

Proof: see [9]. 

Remark 2.2.1: If     ,0ptp ,   then (2.2.3) reduces to 
e

p
1

  , which together 

with (2.2.4) indicates  
e

p
1

 , which is necessary and sufficient condition for (2.2.1) to 

have only oscillatory solutions. 

Corollary 2.2.1: If there exists a positive integer K such that  

 
KK

t e
tp

1
inflim 


,   

KK
t e

tq
1

inflim 


, 

where  tpK  ,  tqK  are defined by (2.2.5) and (2.2.6) respectively, then every solution 

of equation (2.2.1) oscillates. 

Corollary 2.2.2: Suppose that there exist a  01 tt  and a positive integer K such 

that (2.2.3) holds and  

   




 









Kt

k

K dt
e

tpetp

1

11 ,                                             (2.2.7) 

where  tpK  is defined by (2.2.5). Then every solution of equation (2.2.1) oscillates. 

Proof: Since xex 1 for all 0x , so (2.2.7) implies (2.2.4). Accordingly, Theorem 

(2.2.1) indicates the truth of the corollary. 

Example 2.2.1 [9]: Consider the following advanced differential equation 

        0sin1
2

1
 tyt

e
ty , 0t                                                (2.2.8) 



 30 

Compared with (2.2.1), one has    t
e

tp sin1
2

1
 ,   . Clearly, 

   








t

t
t ee

dss
e

1
2

2

1
sin1

2

1
inflim , 

which implies that condition (2.2.2) does not hold. But  

     







t

t

t
e

dss
e

tp cos2
2

1
sin1

2

1
1  

        
 







 



t

t

t

t
e

tt
dss

e

s
dsspsptp

2

2

212
4

sin4cos2
cos2

4

sin1

 

         
 






 


t

t

t

t

dssss
e

s
dsspsptp sin4cos2sin1

8

sin1 2

323  

    tt
e

sin4cos822
8

1 23

3
   

         
 






 


t

t

t

t

dsss
e

s
dsspsptp sin4cos822

16

sin1 23

434  

    tt
e

sin44cos624
16

1 2324

4
   

     
4

222324

44
16

22
44624

16

1
inflim

ee
tp

t











 , 

and 

     




t

t

t
e

dss
e

tq


 cos2
2

1
sin1

2

1
1  

          
 






t

t

t

t

tt
e

dss
e

s
dssqsptq

 

 sin4cos2
4

1
cos2

4

sin1 2

2212

 

        
 






t

t

t

t

dsss
e

s
dssqsptq

 

 sin4cos2
8

sin1 2

323  



 31 

  tt
e

sin4cos822
8

1 23

3
   

         
 






t

t

t

t

dsss
e

s
dssqsptq

 

 sin4cos822
16

sin1 23

434  

    tt
e

sin44cos624
16

1 2324

4
   

     
4

222324

44
16

22
44624

16

1
inflim

ee
tq

t











 . 

Hence by corollary (2.2.1) every solution of (2.2.8) oscillates. 

Now let us generalize the result above to the differential equation with several 

advanced arguments. 

     



n

i

ii tytpty
1

0 ,     0tt                                             (2.2.9) 

where  tp ,        ,0,,0tCtpi  , i  are positive constants, ni ,...,2,1 . 

First, define the sequence )}({ tpm

i  and )}({ tqm

i of functions for some ni ,...,2,1  as 

follows 

    



it

t

ii dssptp



1 ,     0tt   

       



it

t

iii dsspsptp



12 , 0tt   

. 

. 

. 

       



it

t

m

ii

m

i dsspsptp



1 ,  2m ,  0tt                               (2.2.10) 

and 
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    




t

t

ii

i

dssptq


1 ,     itt  0  

       




t

t

iii

i

dssqsptq


12 ,     itt 20   

. 

. 

. 

       




t

t

m

ii

m

i

i

dssqsptq


1 ,     2m ,   imtt  0                       (2.2.11) 

X. Li and Deming Zhu [9] used the above sequences to introduce oscillation criteria for 

equation (2.2.9), which appears in the following result. 

Theorem 2.2.2 [9]: Suppose that for some },...,2,1{ ni there exist a itt  01  and  

a positive integer m such that  

  
m

m

i
e

tp
1

 ,     
m

m

i
e

tq
1

 ,  imtt  1                       (2.2.12) 

and 

    




 


















imt

m

i

m

i dt
e

tpetp
1

1
1

exp 1                        (2.2.13) 

Where   tp m

i  and   tq m

i  are defined by (2.2.10) and (2.2.11) respectively. Then every 

solution of equation (2.2.9) oscillates. 

Proof: see [9]. 

Corollary 2.2.3: If for some },...,2,1{ ni there exist a positive integer m such that 

  
m

m

i
t e

tp
1

inflim 


,    
m

m

i
t e

tq
1

inflim 


                       (2.2.14) 

Where   tp m

i  and   tq m

i  are defined by (2.2.10) and (2.2.11), respectively, then every 

solution of (2.2.9) is oscillatory. 
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Proof: Condition (2.2.14) holding implies that so do conditions (2.2.12) and (2.2.13). 

Thus, by Theorem (2.2.2), the conclusion is true and the proof is finished. 

Corollary 2.2.4: If for some },...,2,1{ ni there exist a itt  01  and a positive 

integer K  such that (2.2.12) holds and 

    




 









iKt

k

i

k

i dt
e

tpetp
1

11  ,                    (2.2.15) 

where  K

ip  is defined by (2.2.10), then every solution of equation (2.2.9) oscillates. 

Proof: According to xex 1  for all 0x , and by the condition (2.2.15) implies that 

(2.2.13) will be satisfied. Therefore, Theorem (2.2.2) shows that the claim is true. 

Example 2.2.2 [9]: Consider the advanced differential equation 

        0
2

sin1
2

1
cos1

2

1












 tyt
e

tyt
e

ty                   (2.2.16) 

Rewriting this equation in form of equation (2.2.9), then  

     t
e

tp cos1
2

1
1  ,    t

e
tp sin1

2

1
2   

 1 ,  
2

2


   

For this equation the conclusion in Laddas and Stavroulakis are not suitable since the 

condition (2.2.2) does not satisfied: 

      
 




1
1

2
2

1
cos1

2

1
infliminflim 1

 



t

t

t

t
tt ee

dss
e

dssp , 

and  

    










2 2

2

1

2

2
2sin1

2

1
infliminflim


 

t

t

t

t
tt ee

dss
e

dssp . 
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While  

        t
e

dss
e

dssptp

t

t

t

t

sin2
2

1
cos1

2

1
1

1

1

1  





 

         
22

1

11

2

1
4

cos4sin2
sin2

4

cos1
2

1

e

tt
dss

e

s
dsspsptp

t

t

t

t





 







 

         










t

t

t

t

dsss
e

s
dsspsptp cos4sin2

8

cos1 2

3

2

11

3

1

1

 

  tt
e

cos4sin822
8

1 23

3
   

          










t

t

t

t

dsss
e

s
dsspsptp cos4sin822

16

cos1 23

4

3

11

4

1

1

 

    tt
e

cos44sin624
16

1 2324

4
   

      
4

222324

4

4

1
16

22
44624

16

1
inflim

ee
tp

t











 , 

and 

        t
e

dss
e

dssptq

t

t

t

t

sin2
2

1
cos1

2

1

1

1

1

1  





 

        
2

2

2

1

11

2

1
4

cos4sin2
sin2

4

cos1

1
e

tt
dss

e

s
dssqsptq

t

t

t

t





 








 

         







t

t

t

t

dsss
e

s
dssqsptq



 cos4sin2
8

cos1 2

3

2

11

3

1

1

 

 

  tt
e

cos4sin822
8

1 23

3
   
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          







t

t

t

t

dsss
e

s
dssqsptq



 cos4sin822
16

cos1 23

4

3

11

4

1

1

 

    tt
e

cos44sin624
16

1 2324

4
   

    
4

222324

4

4

1
16

22
)4(4)6(24

16

1
inflim

ee
tq

t



 . 

It follows from corollary (2.2.3) that every solution of equation (2.2.16) is 

oscillatory. 

Since equation (2.2.1) is a linear differential equation, if it has eventually 

positive solution, then it also has eventually negative solution, that is, it has 

nonoscillatory solutions. Thus, in order to study the nonoscillation of (2.2.1), it suffices 

to consider the existence of eventually positive solution of (2.2.1). 

 All previous work of Ladas, Stavroulakis [11] and Li and  Zhu [9], are under the 

assumption that the coefficient  tp  has constant sign, that is,   ]),,[ 0

 tCtp . 

These investigations, in general make use of the observation that if  ty is an eventually 

positive solution of (2.2.1), then  

      0 tytpty , 

for all large t , so that  ty  is eventually nondecreasing. However, when the coefficient 

 tp is oscillatory, that is,  tp  takes positive and negative values, the monotonicity 

does not hold any longer. All known results cannot be applied to the case where  tp  is 

oscillatory. The following result gives necessary conditions for oscillation of equation 

(2.2.1) when  tp  is an oscillatory function. 
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Theorem 2.2.3 [10]: Let 

1}{ nna and 

1}{ nnb be two sequence in   ,0t , satisfying 

 22 1  nnn aba                                            (2.2.17) 

Assume that 

  0tp , for ],[1 nnn bat 

                         (2.2.18) 

Define function  tP as follows 

 
 



 






otherwise

battp
tP nnn

,0

],[, 1 
                         (2.2.19) 

If 

      

























  



 

dtdssPsigndssPetP
t

t

t

t

t0

1ln
 

                      (2.2.20) 

then every solution of (2.2.1) is oscillatory. 

Proof: see [10]. 

Remark 2.2.1: The function sign (.) is the signum function, that is: 

 






















0,1

0,0

0,1

r

r

r

rsign  

Example 2.2.1 [10]: As an application of Theorem (2.2.3), we consider the 

oscillation of the following equation 

      01  tytpty ,     0t ,                                   (2.2.21) 

where 1  and the function  tp is 6-periodic one with 
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 























64,6

41,2

10,

tt

tt

tt

tp                                                      (2.2.22) 

Obviously 

 








t

t
t

dssp 0
2

1
inflim  

Therefore, the result of Ladas and Stavroulakis (equation (2.2.2)) cannot be applied to 

(2.2.21). But if we denote. 

 162  nan     , nbn 6   , 1n    

Then clearly   ,0, nn ba  

 22 1  nnn aba  ,   ,...2,1n                                  (2.2.23) 

and   0tp  for ],[1 nnn bat 

 . Furthermore, if we set 

 
 



 






otherwise

battp
tP nnn

,0

],[, 1 
                          (2.2.24) 

Then we have. 

      dtdssPsigndssPetP
n

n

b

a

t

t

t

t

  


  




























 

1ln  

      dtdssPsigndssPetP

t

t

t

t

  



























 

5

2

1ln
 

 

     

      dtdssPsigndssPetP

dtdssPsigndssPetP

t

t

t

t

t

t

t

t

  

  























































 

 

5

4

4

2

1ln
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     

     
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4
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4
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6262ln.62

22ln.2
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



























  

ttt

t t t

dssdssedss

dssdssedss

       

          dtdssPsigndssPdssPdssPet

dtdssPsigndssPedssPet

t

tt

t

t

t t

t

   

   


















































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


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






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
























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62ln62ln2 dtdssetdtdsset
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7
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2

7
ln

2

7
2ln2 








  

which means that, 

      

























  



 

dtdssPsigndssPetP
a

t

t

t

t1

1ln
 

 

So by Theorem (2.2.2), every solution of (2.2.21) is oscillatory. 

2.3 Equations with variable coefficients and variable advanced 

argument 

In this section we will study the behavior of oscillatory solutions of the 

advanced differential equation (2-A) 

          



n

i

ii ttytptytpty
1

 ,                          (2.3.1) 

where 

  0tp ,   0tpi  ,  and    0ti  , are continuous,  ni ,...,2,1 . 

 Before studying the general form (2.3.1), let us take special cases: 

Let   0tp  , 1n , then (2.3.1) becomes. 
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       0 ttytpty     ,        0t                                  (2.3.2) 

First, we will introduce the following result for the advanced inequality 

         0sgn  tytptyty  ,                                        (2.3.3) 

where 

    ],[,  Cttp  , and   tt                                  (2.3.4) 

Theorem 2.3.1: If (2.3.4) holds and 

 

 


t

t
t e

dssp


1

)(lim ,                                     (2.3.5) 

then all solutions of (2.3.3) are oscillatory. 

Proof: Assume that there exists an eventually positive solution  ty  of (2.3.3). From 

(2.3.5), there exists a 12 tt  such that 

 
 




t

t

ecdssp



1 ,    2tt   

and   0ty ,    0 ty  for 2tt  . Hence, 

         tytptytpty  )( ,         2tt  . 

Dividing by  ty  and integrating from t    to   t   we obtain: 

 
 

 
 



t

t

dssp
ty

ty


 )(
ln ,          2tt   

which is equivalent to 

 
 

 
 

ecedssp
ty

ty c

t

t















 




exp
)(

, 

for 2tt  . Repeating the above procedure, there exists a sequence  kt  such that. 

 
 

 kec
ty

ty


)(
 ,          ktt   
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this implies that 

 
 


 ty

ty

t

)(
lim


. 

On the other hand, using the argument in the proof of Theorem (1.2.1), we can get 

 
 

2
2)(










cty

ty 
, 

for large t , this leads to a contradiction. Thus all solutions of (2.3.3) are oscillatory. 

The following examples illustrate the sharpness of conditions of Theorem 2.3.1. 

Example 2.3.1: Consider the equation. 

 
 

  02
2ln

2
 ty

te
ty  ,   00  tt .                         (2.3.6) 

Here 

 
 

0
2ln

2


te
tp    ,    tt 2 , and therefore  

 
 

  


t

t
t

t

t
t ees

ds

e
dssp

2
12

2ln

2
limlim



. 

So all solutions of (2.3.6) are oscillatory. 

Example 2.3.2: Consider the equation 

 
 

  02
2ln

1
 ty

te
ty ,                           (2.3.7) 

where 

 
 

0
2ln

1


te
tp ,      tt 2 . 

Then  
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 
 

  


t

t
t

t

t
t es

ds

e
dssp

2
1

2ln

1
limlim



 

Consequently, (2.3.7) does not satisfy the conditions of Theorem (2.3.1), and therefore 

(2.3.7) has the non-oscillatory solution 

  tty    ,    
2ln

1
  . 

In the following result, we establish the asymptotic behavior of solutions of (2.3.2). 

Theorem 2.3.2: Assume that   0tp , and 

 





t

t
t

dssp 1lim .                            (2.3.8) 

Then the amplitude of every oscillatory solution of (2.3.2) tends to    as   t . 

Proof: Let  ty  be an oscillatory solution of (2.3.2).  

Then there exists a sequence  nt ,  ,...2,1n  of zeros of   ty with the property that 

 nn tt 1   and     0ty      on   1, nn tt    for   ,...2,1n    

Setting    )(max
1

tyS
nn tttn  , ,...2,1n , we see that 

)( nn yS  , for some     1,  nnn tt    and    0
ny   

Hence 

  0 ny . 

Let 

    nnn t ,min 1 ,           ,...2,1n   . 

Integrating (2.3.2) from n  to n  we get, 

      sdsyspy
n

n

n  





 . 
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Hence 

   
 

  












n

n

n

n

nn

dssptydssyspy
tt

n









 )(max)(
1,

.      

Which yields, 

   








n

n

dsspssS nnn 1,max .                           (2.3.9) 

From (2.3.8), we have 

 









n

n

dssp 1 , 

for sufficiently large n , say Nn  . From (2.3.9), 1 nn ss  is impossible. Therefore 

1 nn ss . 

This implies that. 

N

Nn

nnn SSSS

1

1

2

1

1
.....

11


 



















 ,    Nn  . 

Letting n , we get 




n
s

Slim ,  and the proof is complete. 

Remark 2.3.1: Condition (2.3.8) guarantees that the amplitude of every oscillatory 

solution tends to infinity. But it is possible that the equation has a bounded non-

oscillatory solution even though condition (2.3.8) holds. 

The following example explains Remark 2.3.1. 

Example 2.3.3: The equation 

   1





ty
ee

N
ty

NNt
,                         (2.3.10) 

satisfies condition (2.3.8), but it has the bounded non-oscillatory solution 



 43 

   NteAty  1 , 

where N  is a positive integer and A  is any constant. 

Now we introduce the following result for the advanced equation 

     )(tytpty  ,                               (2.3.11) 

where 

  0tp   ,    tt      are continuous. 

Theorem 2.3.3: If   
 

 


t

t
t

dssp



1lim ,                                                        (2.3.12) 

and  t  is nondecreasing with   


t
t

lim ,then every solution of (2.3.11) is 

oscillatory. 

Proof: Without loss of generality, let   0ty  be a nonoscillatory solution of (2.3.11) 

such that 

  0)( ty   ,   1tt  . Integrating (2.3.11) from  t  to   t , we have  

       
 

0)()(  
t

t

dssysptyty



 , 

or equivalently 

     
 












 

t

t

dssptyty



 1)(  .                                                      (2.3.13) 

From (2.3.13) and  
 

1
t

t

dssp



, when t  is sufficiently large, therefore (2.3.13) is a 

contradiction. The proof is complete. 

 We can obtain the following results by utilizing the ideas of section 1.2. We 

shall merely state the following results and omit the proof. 
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Theorem 2.3.4: If    
 

e
dssp

t

t
t

1
lim  





, 

then (2.3.11) has a non-oscillatory solution. 

 We shall now try to extend the above results to the case of a more complicated 

advanced argument. Consider 

     ))(,( tytytpty   ,                                            (2.3.14) 

where 

],[  Cp , ],[  C ,   is nondecreasing in t  for fixed v  and   tvt  ,  

and     21 ,, vtvt    for  12 vv  ,  021 vv . 

Corollary 2.3.1: In addition to the above conditions if 

 
 










,

1lim

t

t
t

edssp   , for any                                                     (2.3.15) 

then all solutions of (2.3.14) oscillate. 

Proof: Without loss of generality, assume that there exists a positive solution   0ty  

for  01 ttt  , then    0 ty    and hence 

     1tyty ,     ,)(, ttyt  . 

 Thus 

     ),( tytpty  , 

which contradicts Theorem 2.3.1 

Example 2.3.4: Consider the equation 

   )(2 tytytty   ,                         (2.3.16) 

where        2, vtvt       ,     ttp  , (2.3.16) satisfies the conditions of corollary 

(2.3.1). Therefore all solutions of (2.3.16) oscillate. 
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 Let us present another form of advanced differential equation. 

Consider the advanced differential equation 

      0)(  ttytpty  ,                         (2.3.17) 

where      0tp   and     0t   are continuous. 

Theorem 2.3.5: Assume that 

 
 






tt

t
t

dssp



lim ,                                      (2.3.18) 

exists, then (2.3.17) has a bounded nonoscillatory solution. 

Proof: see [8] 

Example 2.3.5 [8]: The equation  

    01
2

3
 tyty


 ,                                          (2.3.19) 

satisfies the conditions of Theorem (2.3.5), so (2.3.19) has a bounded solution, which is 

  stAety  , 

where A is any constant, and s is a root of the equation    0
2

3
 ses


   2931.1s . 

Also (2.3.19) has the oscillatory solution 

  ttty
2

3
sin

2

3
cos


 . 

Back to equation (2.3.1) with   0tp , then we have the advanced equation with 

several deviating arguments 

      



n

i

ii ttytpty
1

 ,                                                               (2.3.20) 

where   0tpi and   0ti  are continues, ni ,...,2,1 . 

 



 46 

Theorem 2.3.6: If for some ni ,...,2,1 , either 

 
 








tt

t

i
t

i

e
dssp


1

lim , 

or  

 
 

 






tt

t

n

i

i
t e

dssp
min

1

1
lim



, 

then all solutions of (2.3.20) oscillate, where  

       },.....,,min{ 21min tttt n   

Proof: Without loss of generality, assume that there exists a positive nonoscillatory 

solution   0ty , for 0tt  . This implies that there exists a 1t such that    0 tty i  

for 1tt  ,  nIi . From (2.3.20) we have 

       0
1

 


n

i

ii ttytpty  ,                                               (2.3.21) 

and 

       0
1

min  


n

i

i tpttyty   .                                     (2.3.22) 

Comparing (2.3.21) and (2.3.22), we obtain a contradiction to Theorem (1.2.1) 

and the proof is complete. 

Also Kordonis and Philos [7] gave a nice result for the advanced differential equation 

       0 
Jj

jj ttytpty  ,                         (2.3.23) 

where J is an (nonempty) initial segment of natural numbers and for Jj , jp  and 

j are nonnegative continuous real-valued functions on the interval  ,0 . The set 

J may finite or infinite. 
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The result of Kordonis and Philos is the following Theorem. 

Now we are able to discuss oscillatory and non-oscillatory behavior of solutions 

of equation (2-A) which is: 

         



n

i

ii ttytptytpty
1

)( ,                        (2.3.24) 

where 

  0tp ,    0tpi , and   0ti    are continuous,  ni ,...,2,1  

 The discussion will be done by transforming (2.3.24) to the form of that of 

equation (2.3.20) with satisfaction of the conditions of Theorem (2.3.6), on the resulting 

equation after transformation. To do that, let 

     tzduupty

t

t

.exp

1













    ,  1tt  .                        (2.3.25) 

So 

           




























 

t

t

t

t

duuptztptzduupty

11

exp..exp , 

 or 

         tzduuptytpty

t

t















  .exp

1

, 

thus  

       















 n

i

ii

t

t

ttytptzduup
1

)(.exp

1

 , 

or  

       


















n

i

ii

t

t

ttytpduuptz
1

)(exp

1

  
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      


















n

i

ii

t

t

ttytpduup
1

)(.exp

1

  

   
  

     


 

















n

i

ii

tt

t

tt

t

ttytpduupduup
i i

1

)(.exp

1



 

 

 
 

   
 

  

































n

i

i

tt

t

i

tt

t

ttyduuptpduup
ii

1

)(exp.exp

1





 .               (2.3.26) 

But from (2.3.25) 

     tyduuptz

t

t 












 

1

exp . 

Therefore (2.3.26) will be of the form 

     



n

i

ii ttztqtz
1

)( ,                         (2.3.27) 

where 

   
 

 tpduuptq i

tt

t

i

i

.exp











 



                         (2.3.28) 

 Equation (2.3.27) is of the form of (2.3.20). We see that the transformation 

(2.3.25) preserves oscillation. Therefore we can apply the above results with respect to 

(2.3.20) to equation (2.3.24). For example we have the following Theorem. 

Theorem 2.3.7: If any one of the following conditions holds 

1.  
 








tt

t

i
t

i

e
dssq


1

lim  ,   for some ni ,...,2,1 . 

2.  
 

e
dssq

tt

t

n

i

i
t

1
lim

min

1

 






. 
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3.  
e

dssq

nn

i

n

j

t

t

i
t

j

1
lim

1

1 1
















 
 







 ,  

and  tqi   satisfies the condition 

   
 








tt

t

i
t

dssq
min

1

0lim



. 

4.  
 

1lim
max

1

 





tt

t

n

i

i
t

dssq



, where      },...,max{ 1max ttt n  . 

Then all solutions of (2.3.24) oscillate, where  tqi  is defined by (2.3.28) 

Example 2.3.6: Consider the advanced differential equation 

        


















2

3

2
2





tytytytyty  .                            (2.3.29)  

Here   1tp ,   21 tp ,     132  tptp , and  
2

1


 t ,    t2 ,  

2

3
3


 t . 

And   2
1 2



etq  ,   etq 2 ,   2

3

3



etq  . 

Equation (2.3.29) satisfies any one of the conditions of Theorem (2.3.7) for example, for 

condition (1): 
e

edte

t

t
t

1
2lim

2

22 









 . Similarly we can make sure for the rest of the 

conditions. So by Theorem (2.3.7) all solutions of equation (2.3.29) oscillate. In fact 

  tty sin  is a solution of equation (2.3.29). 
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2.4. Equations with forcing terms 

 In this section we want to discuss oscillation of solution of the non-

homogeneous advanced differential equation 

       



n

i

ii tqttytpty
1

)( ,               (2.4.1) 

where      0, tptq i   and    0ti   are continuous,   ni ,...,2,1 .                        (2.4.2) 

The following Theorem gives the main result of  oscillation of equation (2.4.1). 

Theorem 2.4.1:  Assume that 

(i) (2.4.2) holds. 

(ii) There exists a function  tQ  and two constants 1q , 2q  and sequences  mt ,  mt   such 

that   

   tqtQ  ,   1qtQ m     ,   2qtQ m  ,  


m
m

tlim  , 


m
m

tlim  and    21 qtQq   for 

0t . 

(iii)   tpi , ni ,...,2,1  satisfy any one of the conditions 

  1lim 





   edsspP

jt

t

i
t

ij



, for some ni ,...,2,1  and  nj ,...,2,1 ,    (2.4.3) 

1

1

1 1



 

 







 eP

nn

i

n

j

ij ,                                                                             (2.4.4) 

and 

 
 

e
dssp

tt

t

n

i

i
t

1
lim

min

1

 






,                                                                  (2.4.5) 

where 

        tttt n ,.....,,min 21min   
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Then every solution of equation (2.4.1) oscillates. 

Proof: Let  ty  be a non-oscillatory solution of (2.4.1) such that 

   0ty ,   0)(  tty i  , for 1tt   and let 

     tQtytx  , 

 

then  

     tQtytx  , 

    0)(
1




n

i

ii ttytp  ,     for  1tt  . 

Suppose 

  01  qtx ,   for 12 ttt  , 

since 

      0 tytQtx , 

especially 

     mmm tytQtx     ,  2ttm   

this is a contradiction. So 

  01  qtx   ,    for all  2tt  . 

Let 

    1qtxtz  , 

then 

       tQtytxtz   

   



n

i

ii ttytp
1

)(  
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           



n

i

ii

n

i

iii qttxtpttQttxtp
1

1

1

)()()(   

   



n

i

ii ttztp
1

)( . 

That is  

     



n

i

ii ttztptz
1

0)( , 

has an eventually positive solution. But it is impossible according to condition (iii). The 

proof is complete. 

Example 2.4.1: Consider the diffrerential equation 

  ttyty cos
2

1

22

1












,                                                              (2.4.6) 

 
2

1
tp ,  

2


 t ,   ttq cos

2

1
 ,   ttQ sin

2

1
 . 

Since  
2

1
tQ , then 

2

1
1 q , 

2

1
2 q , and     1

2

1
34

2
qtQmt mm 


and 

    2
2

1
14

2
qtQmt mm 


.  







 
2

1

42

1
lim




t

t
t

ij
e

dsp . 

So by Theorem (2.4.1) all solutions of equation (2.4.6) oscillate. In fact  

  tty sin   is a solution of (2.4.6). 
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Example 2.4.2: Consider the equation  

  ttytyty cos
2

3

2





















.                                                (2.4.7) 

By applying Theorem (2.4.1) on equation (2.4.7) all conditions of the theorem are 

satisfied, so all solutions of equation (2.4.7) are oscillatory. In fact  

  tty sin   is a solution of (2.4.7). 
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Chapter Three 

Oscillatory and nonoscillatory solutions of first order nonlinear 

advanced differential equations 

3.0 Introduction: 

 In this chapter we will discuss oscillatory and nonoscillatory behavior of 

solutions of the first order nonlinear advanced differential equation 

       



n

i

iii tyftpty
1

0))(( ,                                      (3-A) 

where 

  ],[  Ctpi , with    0tpi ; nIi ,    ],[  ti ,   tti   

],[ Cf . 

 This chapter contains two sections. In section 3.1 we introduce sufficient 

conditions for the oscillation of equation (3-A) when 1n . 

 In section 3.2 we study some oscillatory results for equation (3-A) with several 

deviating arguments. 

3.1 Oscillation of first order nonlinear homogeneous advanced 

differential equations 

Consider the equation 

      ))(( tyftpty  .                                                                      (3.1.1) 

We have the following result. 

Theorem 3.1.1: If 

(i)   ],[  Ct ,   tt   for  t ,  t  is strictly increasing on  . 

(ii)  tp  is locally integrable and    0tp , almost everywhere. 
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(iii)   0uuf  for 0u ,  ],[ f ,  uf  is nondecreasing in u , 

  
 


 uf

u

u
lim ,                                                                            (3.1.2) 

and if 

   
 



t

t
t

dssp



lim .                                                                             (3.1.3) 

Then every solution of (3.1.1) oscillates. 

Proof: Let  ty  be a nonoscillatory solution of (3.1.1), without loss generality, assume 

that    0ty  for )(0

 ttt  . Then 

        0)((  tyftpty  ,  for  0tt  . Thus  ty is nondecreasing. 

From (3.1.1), it follows that 

         
 



t

t

dssyfsptyty



 ))(()( ,  

or  

         
 

0))(()(   sdsyfsptyty

t

t



 . 

This implies 

     
 

 
 

0
))((

))((
1)( 












 

t

t

dssp
ty

tyf
tyty






 , 

 

and hence 

   
 

 

 

t

t
tyf

ty
dssp







))((

))((
, 

for sufficiently large t . Therefore  
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   
 



t

t
t

dssp



lim . 

 This is a contradiction to condition (3.1.3). Therefore  ty  is oscillatory . 

Now we present a result concerning the asymptotic behavior of the equation  

       ttyftpty  ,                                                                 (3.1.4) 

Theorem 3.1.2: Assume that equation (3.1.4) satisfies the following conditions: 

p , ],[  C ,   0tp , ],[ Cf  

  qt 0 , and   0yyf  for 0y . 

If  

 


dttp . 

Then all nonoscillatory solutions of (3.1.4) tend to  as t . 

Proof: Let   0ty be a nonoscillatory solution of (3.1.4) for sufficiently large t . Then 

  0 ty , and so  ty  is nondecreasing. 

Claim that   


cty
t
lim ,                                                                                (3.1.5) 

otherwise c , and then there exists a 0ttt   such that  

    0 kttyf   for tt  and   0 kcf . 

Thus  

          0 ktpttyftpty  .                                               

That is, 

      0 tkpty .                                                                              (3.1.6) 

Integrating (3.1.6) from t  to t yields 
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     





t

t

dsspktyty 0 , 

or  

     



 

t

t

dsspktyty . 

Hence  ty will become negative for sufficiently large t . This is a contradiction 

to the fact that   0ty . Therefore c , which completes the proof. 

Theorem 3.1.3: Assume that the hypothesis of Theorem (3.1.1) hold except that the 

relation (3.1.3) is replaced by 

    
 

e
dssp

t

t
t








lim .                                                                             (3.1.7) 

Then every solution of (3.1.1) oscillates. 

Proof: Assume that there is a nonoscillatory solution   0ty ,    0ty  for 

00  tt . So   0 ty and hence   ty as t (by Theorem (3.1.2)). There exists 

a   ttt ,  such that 

   





t

t
e

M
dssp

2
 and  

 






t

t
e

M
dssp



2
.                                                 (3.1.8) 

Now integrating (3.1.1) from t  to t yields 

                     
e

M
tyfdssptyfdssyfsptyty

t

t

t

t
2

  



 , 

and from t to  t , gives 

                
 

e

M
tyfdssyfsptyty

t

t
2



 



 ,                        (3.1.9) 
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which implies  

     
e

M
tyfty

2
  

   
  

   
2

2








 

e

M
tyf

ty

tyf





, 

and hence  

  
 

  
   

  
   

2
2



















M

e

tyf

ty

tyf

ty

ty

ty








.                                         (3.1.10) 

Setting  

 
  
 

1
ty

ty
tw


,   1lim 


ltw

t
 

l  is finite because of (3.1.10). From (3.1.1) we have  

   
   
  

 

 dssw
sy

syf
sptw

t

t








ln ,  

 
   
  

 
 



t

t

dssp
y

yf
w






 ,                                                            (3.1.11) 

where  tt   . Taking the limit inferior in equation (3.1.11), we obtain 

 
 






t

t
t

dssp
M

l
l



limln . 

But   
el

l

l

1ln
max

1



, and therefore  

    
 






t

t
t

dssp
e

M


lim . 

This is a contradiction because (3.1.8) hold, which completes the proof. 
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Example 3.1.1: Consider the nonlinear advanced differential equation 

 
 

 ty
te

ty 
ln

2
 , 1  .                                                          (3.1.12) 

Note that  

  
  

t

t
e

ds
se





2

ln

2
,  

and 

  
 

1lim 
 yf

y
M

y
. 

Therefore (3.1.12) satisfies the conditions of Theorem (3.1.3), so all solutions of 

(3.1.12) oscillate. 

While the equation 

 
 

 ty
te

ty 
ln

1
  , 1 ,                                                          (3.1.13) 

does not satisfy the conditions of Theorem (3.1.3). In fact (3.1.13) has the 

nonoscillatory solution 

  mtty  , 
ln

1
m . 
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3.2 Nonlinear advanced differential equations with several deviating 

arguments 

Consider the advanced nonlinear differential equation 

       



n

i

iii tyftpty
1

 ,                                                                 (3.2.1) 

where  

  0tpi ,   tti  , ni ,...,2,1 , are continuous. For oscillatory solutions of (3.2.1) we 

have the following result. 

Theorem 3.2.1: If   0uufi for 0u ,  ufi in nondecreasing in u , 

 
0lim 


i

i
u

M
uf

u
,  ni ,...,2,1 ,                                                     (3.2.2)   

And if 

 
 

 















t

t

n

i

i
t

Mdssp



1

lim ,                                                                (3.2.3) 

where },....,,max{ 21 nMMMM  ,  and       },.....,min{ 1 ttt n  . 

Then every solution of (3.2.1) oscillates. 

Proof: Let  ty be a nonoscillatory solution of (3.2.1). Without loss of generally 

assume that   0ty . So   0 ty  and thus  ty  is nondecreasing and   ty as 

t  (as in the proof of Theorem (3.1.2)). From (3.2.1), we have 

          
 

 




 

t

t

n

i

iii dssyfsptyty




1

 

     
 

 





n

i

t

t

iii dssptyf
1



  
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     
 

 







n

i

t

t

ii dssptyf
1



  

and so  

  
   
  

 
 

  01
1













 

 






tydssp
ty

tyf
ty

n

i

t

t

i
i






 . 

Therefore 

   
  

 
 

 
 






n

i

t

t

i
i dssp

ty

tyf

1

1






 

 
 

 















t

t

n

i

i
t

dssp
M



1

lim
1

1 . 

This is a contradiction to condition (3.2.3). Therefore   0ty  is an oscillatory solution 

of (3.2.1). 

Now let us introduce the oscillation criteria of the first order nonlinear advanced 

differential inequalities  

               0,...,1  ttyttyftptytaty m ,                      (3.2.4) 

               0,...,1  ttyttyftptytaty m ,                      (3.2.5) 

and equation 

               0,...,1  ttyttyftptytaty m .                      (3.2.6) 

For these we have the following result. 

Theorem 3.2.2: Assume that p , ],[  Ci ,   0tp ,   0ti , mi ,...,2,1 , 

],[  Ca , and f satisfies: 

],[  mCf ,   myyyfy ,...,, 211  0 . Furthermore , assume that: 

    
 





i

tt

t
t

kdssa
i

inflim , mi ,...,2,1 ,                                    (3.2.7) 
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where ik , and there exist nonnegative numbers  k  and  j , mj ,...,2,1  such that 





m

i

i

1

1 ,  0k  

    m

mn sssksssf


...,...,,
21

2121  ,                                                   (3.2.8) 

for all ms  , and 

   
 







tt

t
t ekc

dssp


1

inflim ,                                                                 (3.2.9) 

where 

ik

mi
ec




1
min and     )(),...,(min 1 ttt m  . 

 Then (3.2.4) has no eventually positive solution, (3.2.5) has no eventually 

negative solution, and every solution of (3.2.6) is oscillatory. 

Proof: See [8]. 

Example 3.2.1: The equation  

       02
2

3 3

23

1

















 


tytyty ,                                              (3.2.10) 

note that   0ta ,   3tp , 
2

1


  ,  22  , 

3

1
1  , 

3

2
2  , and  

  





it

t
t

i dssak



0inflim , 2,1i  

 
2


  t , so 






2

2

3
3inflim




t

t
t

ds , and 1min  ik
ec .  

So equation (3.2.10) satisfies the conditions of Theorem (3.2.2), so every 

solution of (3.2.10) is oscillatory. In fact, the functions    tty 3

1 cos ,    tty 3

2 sin  

are oscillatory solutions of (3.2.10). 
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Theorem 3.2.3 [8]: If    0ta  in Theorem (3.2.2), then (3.2.7), (3.2.8) and (3.2.9) 

can be replaced by the condition 

   
 

  
 

















 

 







tt

t
t

tt

t
t

dssa
e

dssp



limexplim ,                                  (3.2.11) 

where 

  
),...,(

...
lim

1

21

1

21

m

m

mi
y yyf

yyy
m

i






 ,                                                           (3.2.12) 

and the conclusion of theorem (3.2.2) remains valid. 

Example 3.2.2: Consider the advanced type differential inequality 

         0
2

1
1

3

2

3

1
2 
















  tytyetyety tt ,                                (3.2.13) 

It does not satisfy conditions of Theorem (3.2.3), since  









t

t

s

t
dse 0inflim ,  

2

1
 t  










2

1

2 0inflim

t

t

s

t
dse , 1M . 

In fact (3.2.13) has the positive solution   tety 2 .  

 Another kind of advanced nonlinear differential equations, consider the 

equation: 

     ))(()),...,((, 1 tytytfty m ,                                                     (3.2.14) 

where ],[   mCf ,   tti  on t and   ],[  Cti , mIi . 
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Theorem 3.2.4: Assume that there exists a function ],[  Ca such that 

      ,sgn,...,, 001 ytayyytf m                                                           (3.2.15) 

for 0t , 0yyi  , 00 yyi , mi ...,2,1 , and  

 
 







t

t
t e

dssa


1

lim ,                                                                           (3.2.16) 

where      },...,min{ 1 ttt m  . Then every solution of (3.2.14) is oscillatory. 

Proof: Assume that  ty  is a nonoscillatory solution of (3.2.14). Without loss of 

generality, assume that   0ty , then from (3.2.14) and (3.2.15), we obtain a first order 

advanced differential inequality 

       0
 tytaty  ,                                                                     (3.2.17) 

this implies that (3.2.17) has a positive solution  ty . On the other hand, from Theorem 

(2.3.1), equation (3.2.17) has no eventually positive solution under condition (3.2.16). 

this contradiction completes the Proof. 

Example 3.2.3: Consider the advanced nonlinear differential equation 

 
 

     tytyty
te

ty 432
2ln

2 3131 ,                                              (3.2.18) 

which satisfies condition (3.2.15), and 

    

t

t
ee

dssa

2
12

. 

Then all solution of (3.2.18) oscillate. 
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Theorem 3.2.5: Assume that there exists a function  ta  such that ],[  Ca  and  

    001 sgn,...,,0 ytayyytf m  ,                                                   (3.2.19) 

on t , 0yyi  , 00 yyi , mi ,...,2,1  and  

 
 








t

t
t e

dssa


1

suplim ,                                                                     (3.2.20) 

where      },...,max{ 1 ttt m  . Then equation (3.2.14) has a nonoscillatory solution.  

Proof: see [8]. 

Now we shall present sufficient conditions for the existence of  nonoscillatory 

solutions of the nonlinear advanced differential equation:  

          
n

i

mii tytyftqty  ,...,1 ,                                              (3.2.21) 

where 

(i)  ],,[[,  aCq ji  ,   0tqi and   


tj
t

lim , ni ,...,2,1  and mj ,...,2,1  and 

there is at least one iq which is different from zero. 

(ii) ],[  m

i Cf , if is nondecreasing with respect to every element, and  

  0,...,11 mi uufu  as 01 juu , mj ,...,2,1 . 

Theorem 3.2.6 : Let conditions (i) and (ii) hold. If 

   





n

i

i dttq
1

.                                                                              (3.2.22) 

Then equation (3.2.21) has a nonoscillatory solution. 

Proof: see [8]. 
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Example 3.2.4: Consider the equation 

      







 

2

1
1

2

1 2 tytye
e

ty t ,                                                        (3.2.23) 

so by Theorem (3.2.6), equation (3.2.23) should have a nonoscillatory solution.We see 

that   te
e

tq 
2

1
,   11  tt ,  

2

1
2  tt  and  




  0
2

1
dte

e

t . 

 In fact   2

t

ety   is such a solution of (3.2.23). 
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Chapter Four 

Oscillation of solutions of Special Kinds of differential 

equations 

4.0 Introduction 

In this chapter we will study oscillation criteria for three Kinds of differential 

equations, impulsive differential equations with advanced argument, mixed type 

differential equations and an equation of alternately advanced and retarded argument.  

Section 4.1 introduces sufficient conditions for the oscillation of the first order 

impulsive differential equation with advanced argument: 

  

     

     
















 Nktybtyty

tttytpty

kkkk

k

,

,

                                                             4-A 

where  

......0 10  kttt  are fixed points with 


k
k

tlim  

  }1{kb , ,...}2,1{Nk  

  ,[ ,0tp  is locally summable function and 0 is constant. 

Section 4.2 deals with oscillation of the mixed type equation 

            021  tytatytaty  , 0tt                                             4-B 

with nonnegative coefficients   2,1, itai , one delayed argument   tt   and one 

advanced argument   tt  . 

Section 4.3 concerns with oscillations in one equation of alternately advanced and 

retarded argument. 
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4.1 Impulsive differential equations with advanced argument 

Some times it is necessary to deal with phenomena of an impulsive nature, for 

example, voltage or forces of large magnitude that act over very short time intervals. 

 The purpose of this section is to study oscillation and nonoscillation of the 

solutions of impulsive differential equations with advanced argument. Let 

}...,3,2,1{N . Consider the impulsive differential equation with an advanced argument 

     

     
















 Nktybtyty

tttytpty

kkkk

k

,

,

                                                         (4.1.1) 

under the following hypothesis: 

(A1) ......0 10  kttt  are fixed points with 


k
k

tlim ; 

(A2)   ,,[ 0tp  is locally summable function, 0 is constant; 

(A3)     ,11, kb  are constants for Nk . 

Definition 4.1.1: A function   ,,[ 0ty  is said to be a solution of equation 

(4.1.1) on  ,0t if the following conditions are satisfied: 

(i)  ty  is absolutely continuous on each interval  1, kk tt , Nk , and  10 ,tt ; 

(ii) for any   ,0ttk ,  kty  and  kty  exists and    kk tyty  , Nk ; 

(iii) for ktt  , Nk ,  ty  satisfies       tytpty  almost everywhere and for each 

ktt  ,      kkkk tybtyty  , Nk . 

Definition 4.1.2: A solution of (4.1.1) is said to be nonoscillatory if it is either 

eventually positive or eventually negative. Otherwise, it is called oscillatory. 
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Bainov and Dimitrova [1] established the following results for oscillation of solutions of 

(4.1.1), under the assumption that    ,0[,,[ 0tCp , 0 , and }{ kt satisfies (A1). 

They introduced the following conditions: 

(H1) 10 t  

(H2) There exists a positive constant T  such that Ttt kk 1 , Nk . 

(H3) There exists a constant 0M  such that for any Nk the inequality kbM 0 is 

valid 

Theorem 4.1.1 [1]: Suppose that 

(a) Conditions (H1) and (H2) hold. 

(b)     1]1sup[lim  




k

k

t

t

k
k

dsspb


. 

Then all solutions of (4.1.1) are oscillatory. 

Proof: let  ty  be a nonoscillatory solution of (4.1.1). Without loss of generality 

assume that   0ty  for 00  tt . Then   0ty  for 0tt  . From (4.1.1), it follows 

that  ty  is nondecreasing in    ],[, 10 




 ii

ki
k tttt , where 10  kk ttt . 

Integrate (4.1.1) from it  to  1 kiti  we obtain 

         



i

i

t

t

ii dssysptyty


  

         



i

i

t

t

iii dssysptytyty


 0                                    (4.1.2) 

Since  

         ,1010 iiiii tybtybty                                         (4.1.3) 

then (4.1.2) and (4.1.3) yield the inequality  

          .011 













 



i

i

t

t

iii dsspbtyty


                                       (4.1.4) 
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Inequality (4.1.4) is valid only if  

     





i

i

t

t

i
i

dsspb


11suplim , which contradicts condition (b) of the 

theorem. So the proof is complete. 

Together with (4.1.1), consider the differential equation with an advanced argument 

   
     

      
















0,1 tttpbtP

txtPtx

k
ttt k 


                                                    (4.1.5) 

Assume that a product equals to unit if the numbers of factors is equal to zero. 

Theorem 4.1.2 [12]: Assume that (A1)-(A3) hold. Then all solutions of (4.1.1) are 

oscillatory if and only if all solutions of (4.1.5) are oscillatory. 

Proof: see [12]. 

Jurang Yan [12] also established the following results for equation (4.1.1). He also used 

the following condition: 

(A4)      ,0,,0tp  is locally summable function and 0 is constant. 

Theorem 4.1.3 [12]: Assume that (A1)-(A3) hold and there exists a sequence of 

intervals  },,{ nn  such that 


n
n

lim  and   nn for all 1 Nn . If   0tp  for 

all  nn
Nn

t  ,




   and 

    11suplim 








t

t

k
stst

dsspb
k

, for   



nn

Nn

t , ,                 (4.1.6) 

then all solutions of (4.1.1) are oscillatory. 

Proof: let  ty  be a nonoscillatory solution of (4.1.1) and suppose that   0ty  for 

0tTt  . 

From Theorem (4.1.2), equation (4.1.5) has also a positive solution  tx  on  ,T . 

Thus, for    



nn

Nn
t , , 

where 
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                         ,01 


tpbtP k
ttt k 

  and hence, 

                      0 tx  almost everywhere for   



nn

Nn
t , , which implies  tx  is 

nondecreasing in   



nn

Nn
, . Integrating (4.1.5) from t  to t , we obtain that for 

  



nn

Nn
t , ,  

        0 



t

t

dssxsPtxtx . 

By using the nondecreasing character of  tx , we derive that 

 

      01 







 




t

t

dssPtxtx  for   



nn

Nn
t , ,  

which contradicts (4.1.6). 

Theorem 4.1.4 [12]: Assume that (A1), (A3), (A4) hold and  

    11suplim 








t

t

k
stst

dsspb
k

, 

then all solutions of (4.1.1) are oscillatory. 

Proof: The proof of this theorem can be obtained by applying Theorem (4.1.3) 

immediately.   

Theorem 4.1.5 [12]: Assume (A1), (A3), (A4) hold and  

   
e

dsspb

t

t

k
stst

k

1
1inflim 








, 

then all solutions of (4.1.1) are oscillatory. 

For existence of a nonoscillatory solution of (4.1.1), we have the following result. 
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Theorem 4.1.6 [12]: Assume (A1), (A3), (A4) with 1kb  hold and there exists      

a   0tT   such that for all Tt   

   
e

dsspb

t

t

k
sts k

1
]1 








 

Then equation (4.1.1) has a nonoscillatory solution. 

Proof: see [12]. 

Example 4.1.1: Let  kmtk  , m is a positive integer,   0tp  is a locally 

summable function and 0 ,   ,1kb , Nk , are constants. 

Consider the impulsive differential equation (4.1.1). Since mtt kk 1  , there is at 

most one point of impulsive effect on each ],[ tt , t . So, 

          










t

t

k

t

t

k
sts

dsspbdsspb
k

11 , if   tttk ,[  

or 

        










t

t

t

t

k
sts

dsspdsspb
k

1 , if some   tttk ,[ , Nk  

Then we have the following cases 

(i) Let 

     


 



tttdsspbd k

t

t

k
t

,1sup{lim1  

and  

   





t

t
t

dsspd suplim2  
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If 1},max{ 21  ddd , then by Theorem (4.1.4) all solutions of equation (4.1.1) are 

oscillatory. 

(ii) Let      }1inf{lim1 





t

t

k
t

dsspbc  

and  

   





t

t
t

dsspc inflim2  

If 
e

ccc
1

},min{ 21  , then by Theorem (4.1.5) all solution of (4.1.1) are oscillatory. 

(iii) If there is 0tT  such that  

 
e

t
1

 , for all Tt  , 

where 

         







t

t

t

t

kk dssptttdsspbt },,1max{ , Tt  , 

then by Theorem (4.1.6), equation (4.1.1) has a nonoscillatory solution on  ,T . 

Bainov and Dimitrava [1] established a sharp result for oscillation of the 

nonhomogeneous  impulsive differential equation with deviating argument: 

       

      













kkkk

k

tybtyty

tttqtytpty ,
,                                                    (4.1.7) 

under the following assumptions: 

(H4)    ,,0Cq  

(H5) there exists a function    ,1Cv  such that     0,  ttqtv  
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(H6) there exist constants 1q , and 2q  and two sequences }{ it and }{ it with 




i
t

i
t

tt limlim  and   1qtv i  ,   2qtv i  ,   21 qtvq  . 

Theorem 4.1.7 [1]: Suppose that 

(i) conditions (H1), (H2), (H4)- (H6) hold. 

(ii)  





k

k

t

t
k

dssp 1suplim . 

(iii) Nkbk  ,0 . 

Then all solutions of equation (4.1.7) oscillate. 

Proof: : Let  ty  be a solution of (4.1.7) for 00  tt . 

Set 

      .1qtvtytz   

Then from (4.1.7) we obtain 

  
     

      









kkkkk Atzbtztz

tztptz 
                                                              (4.1.8) 

where  

  .01  qbtvbA kkkk  

Let the inequality (4.1.8) has a positive solution  tz  for 01 ttt  . Integrating (4.1.8) 

from kt  to kt , 1ttk  , we get  

          ,0 







k

k

t

t

kkk dssptztztz  

      .01 













 




k

k

t

t

k dssptz  

The last inequality contradicts condition (ii) of the theorem. 

If   0tz  , for 1tt   be a solution of the inequality (4.1.8), then 

          ,01  iiii txqtvtxtz  for 

  1tti  . Also a contradiction. 
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Jankowski [6] studied the existence of solutions for first order impulsive ordinary 

differential equations, with advanced argument with boundary conditions. 

For ],0[ TJ   , 0T , let Ttttt mm  110 ...0 . 

Put },...,,{\ 21 mtttJJ  . Consider the advanced impulsive differential equation 

       

    

    

 



























mk

JttFy

Tyyg

tyIty

tytytfty

kkk ,...,2,1

,

,00

,, 

                                           (4.1.9) 

where        kkk tytyty , and the hypothesis  

(H7)   ,JCf ,  JJC , ,   Ttt  , Jt ,   ,CIk  for 

mk ,...,2,1 ,   ,Cg  and if there exists a point Jt 
~

 such that 

  },...,,{
~

21 mtttt  , then },...,,{
~

21 mtttt   . 

Put ],0[ 10 tJ  ,  1,  kkk ttJ , mk ,...,2,1 . Introduce the spaces: 

   
 

  









 


 mk

mkJCJyJy
JPCJPC

kk

,...,2,1

,...1,0

for tyexist   thereand

,,|,:
,

k

 

and 

     
   

  


















 mk

mkJCJyJPCy
JPCJPC

kk

,...,2,1

,...1,0

for tyexist   thereand

,,|,
,

k

1

11  

Note that  JPC  and  JPC1  are Banach spaces with respective norms: 

   tyy
Jt

PC


 sup , 
PCPCPC

yyy 1 . 

By a solution of (4.1.9) we mean a function  JPCy 1  which satisfies: 

(i) The differential equation in (4.1.9) for every Jt  . 

(ii) The boundary condition in (4.1.9). 

(iii) At every mktk ,...,2,1,   , the function y satisfies the second condition in (4.1.9). 
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Definition 4.1.3: Lower and upper solution of problem (4.1.9)  

We say that  JPCu 1  is a lower solution of (4.1.9) if 

  

   

    

    













0,0

,...,2,1,

,

Tuug

mktuItu

JttFutu

kkk ,                             

and u  is an upper solution of (4.1.9) if the above inequalities are reversed. 

Theorem 4.1.8 [6]: Let assumption (H7) hold. Moreover, assume that 

(H8)  JPCzy 1

00 ,   are lower and upper solutions of problem (4.1.9), respectively, and 

   tytz 00   on J , 

(H9) there exist functions   ,, JCMK , M is nonnegative and such that  

         vvtMuutKvutfvutf  ,,,,  

for    tyuutz 00  ,      tyvvtz  00  , Jt , 

(H10) there exist constants   mkLk ,...,2,1,1,0  , such that  

         ][ kkkkkkk twtwLtwItwI  , mk ,...,2,1 , 

for any ww, with        ,00 kkkk tytwtwtz  , mk ,...,2,1 , 

(H11) conditions: 

    





















T

i

m

i

LdttM
0

1

11 with    
 

 




1

t

dssK

etMtM  . 

And  

    


 

T n

i

iLdssM
0 1

1  

(H12) there exists 0  such that for any    ]0,0[, 00 yzuu   with uu   and 

   ],[, 00 TyTzvv   with vv  we have 
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   vugvug ,,  , 

     vvvugvug  ,, . 

Then there exist solutions ],[, 00 yzwv   of problem (4.1.9). 

Proof: see [6] 

Example 4.1.2 [6]: For ],0[ TJ  , we consider the problem 

  

             

   

   













,020

,

},{\,sin

2

11

1121

kTyy

tLyty

tJtttytetty ty 

                   (4.1.10) 

where 

        10,0,0,,,,,,0,,, 121   kLTtJtTttJJCJC  . 

Take     Jttzty  ,1,0 00 . Indeed,    tytz 00   on J , and  

       ,0 0110 tytttFy    

       ,01sin]1[ 02

1

10 tztettFz     

    10110 0. tyILty  , 

      10110 10 tzILtz  , 

       00,0,0 00  kgTyyg , 

       011,1,0 00  kgTzzg . 

It proves that 00 , zy  are lower and upper solutions of problem (4.1.10), respectively. 

Moreover    ttK 1 ,    ttM 2 , LL 1 , so assumption (H9), (H10), (H12) are 

satisfied. If we extra assume that: 

    
 

 

 
T dss

Ldtet

t

t

0

2 1
1





 ,                                                                  (4.1.11) 
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then problem (4.1.10) has solutions in the segment ]0,1[ , by Theorem (4.1.8).  

For example, if we take 
2

1
L , T ,   01   t ,     tet Tt sin2

   for Jt , 

   t  then condition (4.1.11) holds if 
4

1
0   . 

4.2 Mixed type differential equations 

In this section we will introduce the oscillation of the mixed differential equation: 

              021  tytatytaty  , 0tt  ,                                      (4.2.1) 

with nonnegative coefficients  tai , one delayed argument   tt   and one advanced 

argument   tt  . 

L. Berezansky and Y. Domshlak [2] studied equation (4.2.1) with both constant and 

variable coefficients which appears in Corollary (4.2.1) and in Theorem (4.2.1) 

respectively. 

A special case of equation (4.2.1) is the following differential equation 

        021   tyatyaty ,                                                      (4.2.2) 

where   2,1,0,0,0  kak . 

Corollary 4.2.1 [2]: Suppose for the characteristic polynomial of (4.2.2)  

     eaeaF 21   , 

the following condition holds 

  0F , for all   , . 

Then all solution of (4.2.2) are oscillatory. 

Proof: see [2] 
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Theorem 4.2.1 [2]: Let   t and assume that there exist functions 

  ,2,1, jtbj such that 

      0,2,1,0 ttjtbta jj  ;                                                            (4.2.3) 

the following limits exist and finite: 

 
 




t

t

j
t

j dssbB


lim:1 ,  
 




t

t

j
t

j dssbB



lim:2 , 2,1j  ,                          (4.2.4) 

with  

02211  BB ;                                                                                     (4.2.5) 

and the following system has a positive solution },{ 21 yy : 

  

 















.0ln

0ln

01

2221212

2121111

2221112121122211

yByBy

yByBy

yByByyBBBB

                                  (4.2.6) 

Then all solution of (4.2.1) are oscillatory. 

Proof: see [2] 

Example 4.2.1: Consider the equation  

      ,0,0 0
21 








 ttty

t

at
y

t

a
ty 


                                    (4.2.7) 

where 1 , 0 , 0, 21 aa . Put    
t

a
tatb 1

11 :   and    
t

a
tatb 2

22 :   in 

Theorem (4.2.1). Then ln111 aB  ,  ln212 aB  , 02221  BB . 

System (4.2.6) turns into the system 

  01ln11  ya  

  0lnlnln 22111   yayay  

  0ln 2 y  
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which is equivalent to the system 

  
ln

1

1

1
a

y   

   ln1]lnln[ 221 aya   

  0ln 2 y  

and this in turn is equivalent to the system 

  
ln

1

1

1
a

y   

  1
ln

1]lnln[
2

2

1 


y
a

a




 

The last system has a solution if and only if 

  







ln

1
1

ln

1]lnln[
2

1

2

1

e
a

a

a a



.                                               (4.2.8) 

Thus, (4.2.8) is sufficient for oscillation of all solution of (4.2.7). Note that (4.2.8) does 

not depend on  . 

4.3 Oscillation in equation of alternately retarded and advanced type 

In this section we want to study the oscillation of all solutions of the following 

differential equation  

  0
2

1
2 















 


t
pyty , 0t ,                                                         (4.3.1) 

where p is a real number and [.]  denotes the greatest integer function. 

We can look on equation (4.3.1) as equation of the form 

     0 ttpyty  , 0t ,                                                            (4.3.2) 

where the argument of deviation is given by 
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    






 


2

1
2

t
tt .                                                                             (4.3.3) 

The argument  t  is a periodic function of period two. Furthermore, for every integer 

n ,  t  is negative for ntn 212   and is positive for 122  ntn . Therefore, in 

each interval )12,12[  nn , equation (4.3.1) is of alternately advanced and retarded 

type. More precisely, for every integer n , 

  ntt 2  for 1212  ntn  

And 

  11  t  for 1212  ntn . 

We can write  t  in the form 

   





























75,6

53,4

31,2

10,

tt

tt

tt

tt

t  

Also the curve of  t  can bee seen in the following figure: 

 

 

 

 

 

Figure (1): the graph of   






 


2

1
2

t
tt   

. 

. 

. 
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Therefore equation (4.3.1) is of advanced type in ]2,12[ nn  , and of retarded type in 

 12,2 nn . 

Definition 4.3.1: Solution of equation (4.3.1) 

By a solution of equation (4.3.1) we mean a function  ty  which satisfies the following 

properties: 

(i)  ty  is continuous on  ,0 . 

(ii)  ty  exists at each point   ,0t , with the possible exception of the points 

12  nt , n  where one-sided derivatives exist. 

(iii) Equation (4.3.1) is satisfied on each interval of the form 

 )12,12[ nn for n . 

With equation (4.3.1) we associate an initial condition of the form  

    00 ay  ,                                                                                         (4.3.4) 

where 0a  is a given real number. 

The following lemma deals with existence and uniqueness of solution of equation 

(4.3.1). 

Lemma 4.3.1 [5]: Assume that 0,ap  and 1p . 

Then the initial value problem (4.3.1) and (4.3.4) has a unique solution  ty . 

Furthermore,  ty  is given by 

     nantpty 2]21[  , for  )12,12[ nnt , n ,                                  (4.3.5) 

 where the sequence }{ na  satisfies the equations 

    
 

 
.

 ,...2,1for    1

,..2,1,0for    1
 

212

212













napa

napa

nn

nn
                                                 (4.3.6) 
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Proof: Let  ty  be a solution of (4.3.1) and (4.3.4). then in the interval 

   12,12 nn , and for any Nn , (4.3.1) becomes 

    02 
npaty ,                                                                                (4.3.7) 

where we have used the notation  nyan   for Nn . Then the solution of (4.3.7) with 

initial condition   nany 2  is given by (4.3.5). By the continuity of the solution as 

12  nt  and for 12  nt , (4.3.5) yields (4.3.6) and (4.3.7). So we have proved that 

if  ty  is a solution of (4.3.1) and (4.3.4) then  ty  is given by (4.3.5) where the 

sequence  na  satisfies (4.3.6). 

Conversely, given 0a and because 1p , the equation (4.3.6) has a unique 

solution  na . Now by direct substitution into (4.3.1) we can see that  ty as defined by 

(4.3.5) is a solution. The proof is complete. 

The following Theorem provides necessary and sufficient conditions for the oscillation 

of solutions of equation (4.3.1). 

Theorem 4.3.1 [5]: Assume that p  and 1p . Then every solution of 

equation (3.4.1) oscillates if and only if  

      ,11, p .                                                                         (4.3.8) 

Proof: Assume that (4.3.8) holds. Then either 1p  or 1p  and in either case it 

follows from (4.3.6) that the sequence  na  oscillates. As   nany  for Nn ,  ty  also 

oscillates.  Conversely, assume that every solution  ty  of (4.3.1) oscillates, and for the 

sake of contradiction, assume that 

  1p .                                                                                                (4.3.9)  

Let  ty  be the solution of (4.3.1) with   10 0  ay . Then from (4.3.6) and because of 

(4.3.9), 

0na                 for ,...2,1,0n  . 

Hence for  12,12  nnt  and Nn , 12  tn , so (4.3.5) yields 
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      .01]21[]21[ 222  nnn apantpantpty  

This contradicts the assumption that  ty  oscillates and the proof is complete. 

Another example of alternately retarded and advanced equations is the differential 

equation 

  0
2

1

















 tpyty , 0t                                                          (4.3.10) 

where p is a real number and [.]  denotes the greatest integer function. 

Equation (4.3.10) can be written in the form  

     0 ttpyty  , 0t                                                           (4.3.11) 

where the argument deviation is given by 

    









2

1
ttt ,  

is linear periodic function with period1. More precisely, for every integer n , 

    ntt  ,  for 
2

1

2

1
 ntn . 

Also    
2

1

2

1
 t , for 

2

1

2

1
 ntn . 

We see that in each interval 









2

1
,

2

1
nn , equation (4.3.10) is of alternately advanced 

and retarded type. It is of advanced type in 







 nn ,

2

1
 and of retarded type in 











2

1
,nn , see figure (2). 

The argument  t  will be of the form 
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    































2

7

2

5
,3

2

5

2

3
,2

2

3

2

1
,1

2

1
0,

tt

tt

tt

tt

t  , 

whose sketch appears in figure (2). 

 

 

 

 

 

Figure (2): The graph of    









2

1
ttt  

The existence and uniqueness of solution and the necessary and sufficient condition for 

the oscillation of all solutions of equation (4.3.10) appear in the following lemma and 

theorem respectively. 

Lemma 4.3.2 [5]: Assume that 0,ap  and 2p . 

Then the initial value problem (4.3.10) and (4.3.4) has a unique solution  ty . 

Furthermore,  ty  is given by 

                 nantpty ]1[  , for 







 

2

1
,

2

1
nnt , n ,                       (4.3.12) 

where the sequence }{ na  satisfies the equation 

. 

. 

. 
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 nn a
p

p
a






2

2
1 , for ,...2,1,0n                                       (4.3.13) 

Proof: Let  ty  be a solution of (4.3.10) and (4.3.4). Then in the interval 











2

1
,

2

1
nn  for any Nn , (4.3.10) becomes 

    ,0
npaty                                                                                 (4.3.14) 

where we have used the notation  nyan   for Nn . The solution of (4.3.14) with 

initial condition   nany   is given by (4.3.12). By the continuity of the solutions as 

2

1
 nt  and for 

2

1
 nt , (4.3.12) yields  

  napny 


















2

1
1

2

1
 and ,

2

1
1

2

1
napny 

















  

from which (4.3.13) follows. The remaining part of the proof is similar to that of 

Lemma (4.3.1) and is omitted. The proof is complete. 

Theorem 4.3.2 [5]: Assume that p  and 2p . Then every solution of equation 

(4.3.10) oscillates if and only if 

      ,22, p .                                                   (4.3.15) 

Proof: Assume that (4.3.15) holds. Then either 2p  or 2p  and in either case it 

follows from (4.3.13) that the sequence  na  oscillates. As   nany   for Nn ,  ty  

also oscillates. Conversely, assume that every solution  ty  of (4.3.10) oscillates and, 

for the sake of contradiction, assume that 

  2p .                                                                                             (4.3.16) 

Let  ty  be the solution of (4.3.10) with   10 0  ay . Then from (4.3.13), 0na  for 

Nn . Hence for 









2

1
,

2

1
nnt  and Nn , 

2

1
 nt , so (4.3.12) yields 

      .01]1[]1[  nnn apantpantpty  

This contradicts the assumption that  ty  oscillates and the proof is complete. 
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