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Abstract

This thesis aimed to study the behavior of solutions and criterion of oscillation for
solutions of first order advanced functional differential equations. So we tackle the
conditions that limit oscillation for these linear and nonlinear equations, and the
unknown function in the general form for this type of equations contains one advanced
variable or more about the variable that represents the present state.

Such type of study is studied and classified according to the coefficients even if
they are constants, constants and variables or all of them are variables.

This thesis contains in its contents basic concepts of functional differential
equations and the definition of oscillation. It also contains several result due to
oscillation theorems in addition to a set of examples that explain the main theorems.

The reason why the researcher studied the type of equations is because of anxious,
the subject is interesting and important.

This study contains many modern results resulted in oscillation of advanced
differential equations in both cases linear and nonlinear, also homogeneous and
nonhomogeneous. Nonhomogeneous equations has been transformed by a specific
transformation to homogeneous case.

Some theorems of advanced differential equations have been proved by
contrasting them with delay differential equations and this is the out put of the study

that the researcher accomplished.
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Introduction

Recently, there has been a lot of activities concerning the oscillatory and nonoscillatory
behavior of delay differential equations; for example see [3], [4], [5] and [8] and
references therein. But, for the oscillatory and nonoscillatory results of advanced
differential equations, compared with those of delay differential equations, less is
known up to know.

With the past two decades, the oscillatory behavior of solutions of differential equations
with deviating arguments has been studied by many authors. The problem of the
oscillations caused by deviating arguments (delays or advanced arguments) has been the
subject of intensive investigation. Among numerous works dealing with the study of
this problem we choose to refer to L. E. El'sgol'ts [3], Ladde, Lakshmikanthan and
Zhang [8], Gyori and Ladas [5], Erbe, Kong and Zhang [4], and Kordonis and Philos
[7].

In the special case of an autonomous advanced differential equation a necessary and
sufficient condition for the oscillation of all solutions is that its characteristic equation
has no real roots, this appears in [5]. Also for advanced differential equations with
oscillating coefficients, a necessary and sufficient conditions for the oscillation of all
solutions is given by Li, Zhu and Wang [10].

An advanced functional differential equation is one in which the derivatives of the
future state or derivatives of functionals of the future state are involved as well as the
present state of the system. In fact when the derivatives of the future history are used,
most of the literature is devoted to existence, uniqueness, and continuous dependence.

In this research we consider theorems that provide sufficient conditions for the

oscillation of solutions of the first order, linear, nonlinear and impulsive advanced



differential equations, taking different forms depending on the coefficients and on the
advanced argument (which may be constants, variables or constants and variables) and
the forcing terms of these equations. Also we consider theorems which give sufficient
conditions for the oscillation of mixed type and of an alternating advanced and delay
differential equations.

Our research deals with the oscillation of the first order advanced functional differential
equations. It consists of four chapters:

Chapter one: contains the main concepts, definitions, lemmas, theorems, and
preliminary material that are essential in the following chapters.

Chapter two: devotes the oscillation theory of the linear advanced functional

differential equation
(0= PO+ 2 POYEO).
where
p(t)>0, p,(t)>0, and 7,(t)>t are continuous i =1,2,...,n, with special cases:
(i) p, and z; are constants i =1,2,...,n,
(if) p, are variables, z; are constants i =1.2,...,n,

(iif) p, and z; are variables.

Chapter three: deals with oscillatory and nonoscillatory solutions of the nonlinear

advanced differential equation of the form

y'(t)—g 0 () (y(5 1)) =0,



where p,(t)>0, z,(t)>t, i=12,...,n are continuous. And as a special case of this
nonlinear advanced differential equation: n=1, p(t)>0 almost everywhere and p(t)is

locally integrable and z(t)>t.

Chapter four studies oscillation theorems of special kinds of differential equations:

impulsive, mixed type and alternately advanced and retarded differential equations.
Symboles

R = (—o0,00)the set of real numbers.

R = [0,00) the set of nonnegative real numbers .

Cl[a,b]: the set of all real valued continuous functions on the closed interval [a,b].

C'[a,b]: the set of all real valued continuously differentiable functions on [a,b].

iISIlAi:AXAzX"'XAw'

The triple (a,b,c) refers to definitions, theorems, examples, lemmas, corollaries,
remarks, equations or inequalities where:

a: refers to the chapter's number,

b: refers to the section's number,

c: refers to the number of definitions, theorems, examples, lemmas, corollaries, remarks,
equations or inequalities.

The symbol [x] means the reference number.

|| : any vector norm.



Chapter one

Preliminaries

1.0 Introduction

The aim of this chapter is to present some preliminary definitions, examples and
results which will be used throughout the research.

Section 1.1 introduces definitions of differential equations with deviating arguments
and their classification with examples.

Section 1.2 investigates the definition of oscillatory and nonoscillatory solutions of
differential equations.

Section 1.3 gives some basic lemmas and theorems of oscillation of differential
equations by using the Laplace transform.

Section 1.4 contains a detailed description of possible existence and uniqueness
results that are needed in our treatment of the oscillation theory of advanced differential
equations.

Finally section 1.5 introduces some theorems which are important tools in
oscillation theory, especially, the generalized characteristic equation and the existence

of positive solutions of the first order advanced functional differential equation.

1.1 Definitions and examples

Definition 1.1.1: Differential equations with deviating arguments
Differential equations with deviating arguments are differential equations, in which
the unknown function appears with various values of the argument, and these, classified

in the following three types:



1- differential equations with retarded arguments:

A differential equation with retarded argument is a differential equation with
deviating argument, in which the highest order derivative of the unknown function
appears for just one value of the argument, and this argument is not less than all
arguments of the unknown function, and its derivative appearing in the equation.

2- Differential equations with advanced arguments:

A differential equations with advanced argument is a differential equation with
deviating argument, in which the highest order derivative of the unknown function
appears of just one value of the argument, and this argument is not larger than the
remaining arguments of the unknown function, and its derivative appearing in the
equation.

3- Differential equations with neutral arguments:

A differential equation with neutral argument is a differential equation with
deviating argument, which is not of retarded argument nor of advanced argument.
That is, the highest order derivative of the unknown function in the differential
equation with neutral argument, is evaluated both with the present state and at one

or more past or future states.
Example 1.1.1: Consider the following differential equations with deviating
arguments:
Loy') = f( y®), yt—z(1)))
i y'(t) =t y@) yt—z) ylt-7,))

iy (M) = (6 y®),y'®), yt-z(0), y't—z(1)

v, y'()=f, y(%), y'(g), Y, y'®)



voo () = F( y(), (), y(t—z(1), y'(t — (1), y"(t — (1))
Then
(i) and (iii) are with retarded arguments if z(t) >0, and with advanced argument if
7(t) <0.
(i1) is with retarded argument if 7,>0 , 7,>0, and with advanced argument if 7,<0 ,
7,<0.
(iv) is with retarded argument if >0, and with advanced argument if ¢<0.
(v) is with neutral argument.
It is possible that an equation belongs to one of the above mentioned arguments

on one set of values of t, and to another type on another set. For example, the

differential equation:
y'(t) = £t y(t), y(t+z())),
is of retarded argument on intervals on which z(t) <0, and of advanced argument on
intervals on which z(t) > 0.
1.2 Definition of oscillation

The most frequently definitions of oscillation, used in the literature are the

following two definitions:
Definition 1.2.1: A nontrivial solution y(t) of a differential equation is said to be
oscillatory solution if and only if it has arbitrarily large zeros for >ty that is, there exists

a sequence of zeros {t, | (y(t.)=0) of y(t) such that limt, = +co.

Otherwise, y(t) is called nonoscillatory.
Definition 1.2.2: A nontrivial solution y(t) is said to be oscillatory, if it changes sign

on [T,), T is any number.



Remark 1.2.1: Definition 1.2.1 is more general than definition 1.2.2, for example:
y(t) = 1-sin t,
is an oscillatory solution according to definition 1.2.1, and is nonoscillatory solution

according to definition 1.2.2.

Example 1.2.1: The equation

' 3z
y®)+yt+=-)=0,
has the oscillatory solutions:
y, (t) =sint,y,(t) = cost .

Example 1.2.2: The equation
V©+2 ya+D =0,

has the oscillatory solution:

. 3 3T
t) =sin—t + cos—t,
y(t) 5 5

and also has the bounded nonoscillatory solution y(t) = Ae™ where
Ais a constant and A is a root of the equation 4 +37”el =0

(1=-1.2931).
Example 1.2.3: The equation
y'(t) =y,
has a nonoscillatory solution

y(t) =ce',cis a constant



Lemma 1.2.1: Let p and r be two positive constants. Let y(t) be an

eventually positive solution of the advance differential inequality
y'(t)—py(t+7)=0 (1.2.2)
Then for t sufficiently large,

y(t+7) < By(t), (1.2.2)
2
where B =(—)
pr
Proof: Assume that ty is such that y(t) >0 for
t<t,+7, and y(t) satisfies (1.2.1) fort>t, . For given s <t, +, integrate both
sides of (1.2.1) from s—% to s, and by using the fact that y(t) is increasing for

t>t,, we find that
T pr T
S)—y(s—=)——Yy(s+—=) =0, 1.2.3
y(s)=y(s=2) = y(s+2) (1.2.3)
since y(t)>0, then y(s —%) >0, and hence

y(s) % y(S+§) >0, (1.2.4)
or

% y(s+%) <y(s). (1.2.5)
Applying (1.2.5) for s:t+% , and for s=t, we have

%y(t—kr) <y(t+2), (1.2.6)

and



PEyt+ D)<y, (12.7)

respectively. Combining (1.2.6) and (1.2.7) yields

ED?yern <Ly D) <y, 1.2.8)
and hence

y(t+7)< (é)z v, (1.2.9)
or

y(t+7) <By(t), (1.2.10)

where B= (i)2
pr

Theorem 1.2.1: Consider the advanced differential equation and inequalities:

y'(®)-pt)yt+7)=0 (1.2.11)
y'(t) - pt)y(t+7)=0 (1.2.12)
y'(t) - pt)y(t+7)<0 (1.2.13)
Assume that p e C[(t,,), %], 7 >0, and Ii_mTp(s)ds >1 (1.2.14)

t—o

then
0] every solution of (1.2.11) oscillates.
(i) Inequality (1.2.12) has no eventually positive solution.
(i) Inequality (1.2.13) has no eventually negative solution.
Proof: Assume that (1.2.11) has an eventually positive solution y(t). Then there

exists a t* >t, +z, such that for t>t , y(t) >0 and y(t+ 7 )>0.

Also y'(t)>0 and



y(O) sy(t+7), (1.2.15)

since y(t) is increasing. And

y'(t) - p@)yt) = y'®t)-p®)yt+7)=0 (1.2.16)
Thus

y'(t)-pt)yt) =0, (1.2.17)
or

YO o). 1.2.18

vy > p(t) ( )

By integrating both sides of (1.2.18) from t to t+z , we find

y(t+T) t+7
In o > ! p(s)ds. (1.2.19)

Also from (1.2.14) it follows that there exists a constant ¢>0 and a t; >t , such that

t+r

[ps)ds=c>1, e (1.2.20)
SO
In YD 5o (1.2.21)
y(t)
or
e'y(t) <y(t+7). (1.2.22)

But e%>ec, Vc e R, so (1.2.22) becomes
ecy(t) <y(ttr), t>t+7. (1.2.23)
Repeating the above procedure, it follows by induction that for any positive integer k

(o) yt)<y(t+7), t>t +kr. (1.2.24)



2 < ( ) 1 ( = )

which is possible, because ce>1. Now, fix a t' >t,+kz. Then because of (1.2.20), there

exists a & e (t'—z,t") such that

j p(s)ds > % and l 0(s)ds > % (1.2.26)
By integrating (1.2.11) over the intervals [t'—z,&], [&,t'] , we find

y(&)-y(t'-7) —j p(s)y(s+7)ds =0, (1.2.27)
and

y(t) - y(S) —l p(s)y(s+7)ds=0. (1.2.28)

By omitting the second terms in (1.2.27) and (1.2.28), and by using the increasing

nature of y(t) and (1.2.26), we find

5 (5)y(s + )ds>£§ (5+2)ds> Syt —z+7) = Sy(t)).  (1.2.29)
.[IO yiS+7 —ij T _2y rr—zy : 2.

’

y(&) =
t'-r t'-7
Thus
C e
y($) 25 y(t'). (1.2.30)
Also from (1.2.28), we conclude that
t' c
Y{X) > [ p(s)y(s+0)ds >~ y(& +7),
3

or

wwzgy@+ﬂ. (1.2.31)



Combining (1.2.30) and (1.2.31), gives

y(f>z§y(t')><§)2y(«:+r), (1.2.32)

or
M 22. 1.2.33
o < (1.2.33)

But from (1.2.24)

(ec)k < y(§+7’-) <(E)2 _ 4

o Qe (1.2.34)

This contradicts (1.2.25). So the assumption of y(t) is eventually positive solution is not
true. Therefore every solution of equation (1.2.11) is oscillatory.

By using parallel arguments we can prove (ii) and (iii) of the theorem.

1.3 Some basic definitions, lemmas and theorems

Definition 1.3.1: A function F is analytic at z, if and only if there exist r>0, such that
F'(z)exists for all z € B(z,,r), where B(z,,r)is the ball centered at zo and has radius =r.
Definition 1.3.2: The function F has an isolated singular point at z=a if there exist,
R >0, such that F is analytic in B(a,R)\{a}.

Definition 1.3.3: The Laplace transform

Let x:[0,0) — R be a real valued function. The Laplace transform of x(t), denoted by

L[x(t)] or X(s), is given by

L[x(t)] = X(s) = Te“x(t)dt (1.3.1)



X(s) is defined for all values of the complex variable s, for which the integral in (1.3.1)

converges in the sense that:

u
lim [e*'x(t)dt exists and is finite.

u—o0

Definition 1.3.4: Compact set

A set KcRis said to be compact if whenever it is contained in the union of
a collection T ={G_}of open sets in R, then it is contained in the union of some finite
number of setsin T .

Definition 1.3.5: Locally integrable function

A function is said to be locally integrable on an open set S in a finite dimensional
Euclidean space if it is defined almost everywhere in S and has a finite integral on

compact subset of S.

Definition 1.3.6: Locally summable function
L*(z): All complex measurable functions f on aset Q such that

I|f|d,u<oo. The members of L'(u) are called Lebesgue integrable (or summable)
Q

functions with respect to .
Remark 1.3.1: There exists o, € R (possibly # o),such that the integral in (1.3.1)
converges for all s with Re s>o, and diverges for all s with Re s<o,, o, is called the

abscissa of convergence of X(s), where Re s is the real part of s.

Lemma 1.3.1: Let x e C[[0,),R], and suppose that there exist positive constants M

and « such that

x(t)| < Me* , for t>0,



then the abscissa of convergence o, of the Laplace transform X(s) of x(t) satisfies
o, <a.

Furthermore, X(s) exists, and is an analytic function of s for Re s> o, .

Lemma 1.3.2:

Q) Let x e C'[[0,%0),%R], and let o, <o, be the abscissa of convergence of the

Laplace transform X(s) of x(t). Then the Laplace Transform of x'(t) has the

same abscissa of convergence, and
L[x'(1)] = _[e"“x'(t)dt =sX(s)—x(0) (1.3.2)
0

for all s, with Re s> ¢,
(i)  Let
X € C[[0, ), R]
and let o, <o, be the abscissa of convergence of the Laplace transform

X(s) of x(t). Then the Laplace transform of the shift function x(t+ 7 ) has the

same abscissa of convergence, and
L[X(t + )] = j e X (t + 7)dt = ¥ X (s) —e* j e x(t)dt, (1.3.3)
0 0

for all s with Re s>¢o,

Remark 1.3.2: It is well known that if x(t) satisfies [x(t)|<Me™, then the Laplace

transform X(s) of x(t) which is given by (1.3.1) exists for Res>a, M and « are

positive constants.



Theorem 1.3.1: Let x eCJ[[0,0),R"], and assume that the abscissa of convergence
o, of the Laplace transform X(s) of x(t) is finite, then X(s) has a singularity at the point
s = o,, more precisely, there exist a sequence

S, =«a, +IiB,,n=1,2,.... Such that

a, 2 o,, forn>1, lima, =o,,limB, =0, and lim|X(s)|=co.
N—o0 N—>o0 nN—o0

Proof: see[5].



Chapter two
Oscillation of linear advanced functional differential
equations

2.0 Introduction

Our aim is to discuss oscillatory and nonoscillatory behavior of solutions of the

first order functional differential equation
y'(t)=pt)y(t)+ 2 POy t+71), (2-A)
i=1

where
p(t)>0, p,(t)>0,and z,(t)>0 are continuous and i=12,...,n.

In order to reach what will we hope, special cases for p(t), p,(t) and 7,(t) are
taken to obtain oscillation and nonoscillation criteria for all solutions of (2-A).

In this chapter we present some of the oscillation results that recently have been
obtained for this form of equations.

In section 2.1 we introduce sufficient conditions for the oscillation of equation
(2-A) with constant coefficients, single and several deviating arguments and p(t):O.

That is, we consider the following two equations:
y'(t)= py(t+7),
y(t)=> pylt+7).
i=1

In section 2.2 we study some oscillation results of equation (2-A) with variable
coefficients, constant deviating arguments and p(t)=0. In section 2.3 we present

oscillation criteria for the solutions of (2-A) with variable coefficients, variable



deviating arguments (with both several and single deviating arguments) and with
p(t)=0.
Finally section 2.4 concerns with the results of oscillation theorem of

nonhomogeneous equations (with forcing terms).
2.1. Equations with constant coefficients and constant advanced
argument
In this section we will consider equation (2-A) with the following assumptions:

p(t)=0, p(t)=p>0, 7,(t)=z>0and n=1 (2.1.1)
so that equation (2-A) becomes

y'(t)= py(t+7). (2.1.2)
Theorem 2.1.1: Assume that p and 1 are positive numbers, and assume that pze <1,
then equation (2.1.2) has a nonoscillatory solution.
Proof: Let y(t)= e, 1 constant, be a solution of equation (2.1.2), then the
characteristic equation of equation (2.1.2) will be

F(1)=4—pe™. (2.1.3)
Observe that

F(0)=-p<0,

and

Hence, there exists a positive real number A e (0,1} , such that
T

" is a nonoscillatory solutions of equation (2.1.2)



Corollary 2.1.1: Ifp(t)=p>0,z(t)=t+7z,>0, then the condition pze>1is

necessary and sufficient for all solutions of equation (2.1.2) to oscillate.

Example 2.1.1: The equation:
y,(t)=%y(t+1),with p:%, =1

has a nonoscillatory solution
y(t) = Ae™, where A is any constant and X is a constant satisfying the

equation

A= %el ., 1e(0)), (1~0.6190615)

Remark 2.1.1: The oscillatory theory of differential equations with deviating
argument present some new problems which are not present in the theory of
corresponding ordinary differential equations. First order differential equations with
deviating arguments can have oscillatory solutions while first order ordinary differential

equations do not possess oscillatory solution. The following example explains this idea.

Example 2.1.2: The ordinary differential equation

The delay differential equation

y'(t)= y(t —3—”j,

2
has both oscillatory solutions:

y,(t)=sint, y,(t)=cost and nonoscillatory solution



-3

y(t)=e™, 1, satisfies 4, =e2 ", (4, =0.277410633).

While all solutions of advanced differential equation

y'(t)= y(t +3—”j1

2
. 3z 3z
are oscillatory by Corollary (2.1.1) (p=1, 7 = > and pe= 7e >1).

From remark (2.1.1), the nature of solution changes completely after the
appearance of the deviating argument in the equation.

It is important to discuss oscillatory and nonoscillatory behavior of solutions of
equation (2-A) with
p(t)=0, p,(t)=p,>0, 7,(t)=7, >0, i =1,2,...,n. So we have the following form

y’(t)=i py(t+7,). (2.1.4)

The following results concerning oscillatory and nonoscillatory behavior of

equation (2.1.4).

Theorem 2.1.2: If F(4,)=4,->_ pe™" <0, (2.1.5)
i=1
where A, satisfies the equation

D pre” =1, (2.1.6)
i=1

Then all solutions of (2.1.4) oscillate.

Proof: Let y(t)= e™ be a solution of equation (2.1.4), then the characteristic equation

of (2.1.4) is

F(4)=2-> pe*' =0, (2.1.7)



and so

F'(/"L):l—zn:ri pe’, (2.1.8)
i=1
and
F/(2)=-Y 77 pe" . (2.0.9)
i=1

Thus F(A) is concave down and has a maximum value.

The relation (2.1.6), shows that F(4,) is a maximum value. But since
F(4,)<0, then the characteristic equation has no real roots.
Hence all solutions of equation (2.1.4) oscillate.

Theorem 2.1.3: If there exist

N,>0 , D N;=1 suchthat

i
1<i<n

i&[l_.ni}o (2110

i1 7 PiTi

Then all solutions of (2.1.4) oscillate.

Proof: Let
y(t)=e", then
y'(t)=1e™, so
/1—2”: pe =0 . (2.1.11)
=
write
F(A)=2-3 pe, (2.1.12)
=

or



F(1)=Y (N2 - pe™). (2.1.13)

let
fi (’1): Niﬂ“_ pieﬂwi ) (2.1.14)
thus
F(1)=1,(2), (2.1.15)
f;(ﬂ,): N; — piTieki : (2.1.16)

The extreme value of f,(4) is at

A=t N (2.1.17)
T BT
o
N. N. (T—l_ln pN; ]ri
max f(1)=—tIn———pe" P (2.1.18)
T BT
=&(|nl—1J | (2.1.19)
4 Pi7
And thus
: N. N.
Max F(1)=max > f,(1)< Z—'(Inp—'—1j<0, (2.1.20)
i=1 7 i%i

so the maximum value of F(1) is negative, which means that the characteristic
equation of (2.1.4) has no real roots. Therefore, all solutions of (2.1.4) oscillate.
Theorem (2.1.4): Each of the following conditions is sufficient for all solutions of

equation (2.1.4) to be oscillatory.

() Y P> (2.1.21)



n % n

(i) (H pi) (Zrij>1 (2.1.22)
i=1 =1 €

(iii) There exists some j, such that

Zpi

i*

zpi*’pjeJ

i

D pr+pTe>e

i#]

Proof: The proof of this theorem follows by an application of Theorem (2.1.3), for the

following choices of N,

() N, =P i=12,....n
Zpifi
i=1
(i) Ny =
7
i=1
T T.e
(iii) N, = P, iz and Ny = D10
D pere + PjTie > pere + PjTie
k#j k#j
Example 2.1.3: The equation
1 1 1
t)==y[t+=|+y t+— |, 2.1.23
() zy( ej y( Zej (2.1.23)
with
1 1
plzz ’ p2:1 y T =~ and TZZE,
satisfies
2 1 1 1

2P0 e e

i=1

S0 (2.1.23) doesn't satisfy condition (i) of Theorem (2.1.4), but



(10 (3oe )= fomte o=, 2>

e

Which satisfies condition (ii) of Theorem (2.1.4). So all solutions of (2.1.23) oscillate.

Theorem 2.1.5: If Toex D, pie(fmxj <1, (2.1.24)
i=1
where 7, =max{r,}, i=12,..,n, then (2.1.4) has a nonoscillatory solution.

Proof: The characteristic equation of (2.1.4) is

F(1)=4 —Zn: pe™.
i=1

Obviously

and

T

F(ijzi_ipiefw |
i=1

Tmax Tmax

By using (2.1.24), we have

F[i]>0.
Tmax

Hence F(1)=0, has areal root A, (Oij

max

This means (2.1.4) has a nonoscillatory solution
y(t)=e*".
Example 2.1.4: The equation

ar

y(t)=e 2 y(t + %) +ae @ y(t+27), (2.1.25)



has the oscillatory solution

y(t) =e"sint,0<a<0.95. Equation (2.1.25) satisfies condition (i) of Theorem (2.1.4).

Example 2.1.5: The equation

y'(t)= ﬁ[y(t +1)+y(t+9)] . (2.1.26)

This equation does not satisfy conditions (i) and (ii) of Theorem 2.1.4, but does satisfy

condition (iii) of the same Theorem. In fact, set p, = p, = i , ,=1,7,=9,%0

In(p,z, + p,7,€)=1In 1.9,
10e 10

and

- b 1

p, + pze__1+e'

But

1 9 1
Inf —+—|>—-—.
(10e 10) l+e

Therefore (2.1.26) satisfies condition (iii) of Theorem (2.1.4), hence all solutions
of (2.1.26) oscillate.

We also can connect the phenomena of oscillation of equation (2.1.4) with the
roots of its characteristic equation by using the Laplace transform for the functions y(t)
and y(t +z)respectively.

The proof of the following result, will explain this idea.
Theorem 2.1.6: Assume that p, e R, 7, e R, i =12,...,,n, then every solution of the

linear advanced functional differential equation (2.1.4) oscillates if and only if the

characteristic equation



A— Z pe’ = (2.1.27)

has no real roots

Proof: = Assume that equation (2.1.27) has a real root 4, , then y(t)=¢*"' >0

is a nonoscillatory solution of equation (2.1.4) (contradiction).
< Assume equation (2.1.27) holds, and equation (2.1.4) has an eventually positive

solution y(t). By the fact that if y(t) is a solution of

Zp, y(t+7,(t))=0,

then y(t) is exponentially bounded, that is there exist positive constants M and « such

that [|y(t)] <Me*, so by Remark (1.3.2) the Laplace transform

o0

Y(s)= Ie’“y(t)dt ,

0

exist for Re s> a. Let o, be the abscissa of convergence of Y (s), that is
o, =inf{oc eR,Y (o) exists}
Then for any i=12,...,n, the Laplace transform of the shift function y(t+r),
exists and has abscissa of convergence o, .

Also by Lemma 1.3.2

0

J' e'y'(t)dt =sY(s)-y(0) , Res> o,

0

and

je’S‘y(t+ri )it =e*7Y (s)— e _[e y(t)d

0

with Re s> g,



Therefore by taking the Laplace transform of both sides of (2.1.4), we obtain

sY(s)- y(0)—i P, {e“iY(s)— e rfe‘“y(t)dt =0, (21.28)
and so

Y(s){s —Zl: pe® } = y(o)—zll pe’ Tfesty(t)dt . (2.1.29)
Set

F(s)=s —i pe’
and

#(s)=y(0)- " pe* [ey(tht.
i=1 0
Equation (2.1.29) becomes

Y(s):ﬁ, Re s> o, (2.1.30)

Clearly, F(s) and ¢(s) are entire functions. F(s)=0, for all real s. Since
y(t) > 0 (by hypothesis), then Y(s)is positive. F(s) is negative since F(—a0)=—oo
and the characteristic equation has no real roots. Claim that
O, = —0,
otherwise,

0y > —0.

#(s)
F(s)

But this quotient has no singularity on the real axis, since F(s) IS an entire

And by Theorem (1.3.1), the point s = o, must be a singularity of the quotient

function, and has no real roots. Thus o, =—o0, and so



lim ¢(s)=y(0),

t—ow

which is eventually positive. The proof is complete.

Theorem 2.1.7: Assume that p, >0 and z; >0, i =12,...,n.
The following statements are equivalent:
a) y'(t)- 2 pylt+z)=0, (2.1.31)
i=0

has a positive solution

b) The characteristic equation
A=Y pe =0, (2.1.32)
i=1

has a real root

¢) The advanced differential inequality
y'(t)-> pylt+7)=0, (2.1.33)
i=1

has a positive solution

Proof: See [5].



2.2 Equations with variable coefficients and constant advanced

argument.
In this section, some sufficient conditions are established for the oscillation of
all solutions of the advanced differential equation
y'(t)- pt)ylt+7)=0, t>t, (2.2.1)
Where the coefficient p(t)e C(t,,), %", and 7 is a positive constant.

The previous works for the studies of the oscillation of (2.2.1) are done by Ladas [5]

and Stavroulakis [11]. They proved that all solutions of (2.2.1) oscillate if

t+7

p(t)=0, liminf [ p(s)ds>%. (2.2.2)
t

Recently, Li and Zhu [9] improved the above result to the following form.

Theorem 2.2.1 [9]: Suppose that there exist a t, >t, +7, and a positive integer K,

such that
1 1
pK(t)Ze—K, qK(t)ze—K,tztl+Kr, (2.2.3)
_[ p(t{exp[eK‘lpK(t)—%]—l}dt = 0. (2.2.4)
ty +kt

Then every solution of (2.2.1) oscillates. Here p(t)e c(t,,),[0,0)] and the sequences

{p, ()}, {q,(t)}of functions are defined as follows:

p,(t)= Jp(s)pnfl(s)ds n>2, txt, (2.2.5)



t
q,(t)= J'p(s)ds R ) A

t

G)= [p),.()ds,  n22, tat+ne (2.26)

t

Proof: see [9].

Remark 2.2.1: If p(t)= pe(0,:0), then (2.2.3) reducesto pr 2% , Which together

with (2.2.4) indicates pz > l, which is necessary and sufficient condition for (2.2.1) to
e

have only oscillatory solutions.

Corollary 2.2.1: If there exists a positive integer K such that

. 1
liminf qK(t)>e—K,

liminf p, (t)> 1

t—o0 EFH
where p(t) , gy (t) are defined by (2.2.5) and (2.2.6) respectively, then every solution
of equation (2.2.1) oscillates.

Corollary 2.2.2: Suppose that there exist a t, >t,+z and a positive integer K such

that (2.2.3) holds and

| p(t)(eK-lpk(t)—ljdt = oo, (2.2.7)
t +Kz €
where p,(t) is defined by (2.2.5). Then every solution of equation (2.2.1) oscillates.
Proof: Since e* —1>xfor all x>0, so (2.2.7) implies (2.2.4). Accordingly, Theorem

(2.2.1) indicates the truth of the corollary.

Example 2.2.1 [9]: Consider the following advanced differential equation

y'(t)—z—le(1+sint)y(t+7z)=o, t>0 (2.2.8)



Compared with (2.2.1), one has p(t)= Zie(1+sint), v =7 . Clearly,

t+7

lim inf | %(1+sins)ds:%(7z—2)<g,

which implies that condition (2.2.2) does not hold. But

e 1 . 1
t)= — ds = — 2 t
pl() 't[ 2e( +S|nS) S Ze(ﬂ'-l- Ccos )

t+z t+7

1+sins 7% + 2 cost —4sint
t ds = 2 ds =
5 0)- | ook [ LS o 2osss - 7278
e t+’1+sms

(1+S|ns)(7z +2C0SSs — 4sms)ds

pa(t): _[ p(S)pZ(S)dS= I

t t

8i (7[ —271'+(272' —8)COSt—47zSint)

t+7 t+7

p,(t)= I p(s)py(s)ds = J' 1;;;? > (z* — 27 + (227 —8)cos s — 4xsins)ds

t t

1
16e

[7[ —47? +2(72' —67z)cost 4(7z —4)Slnt]

liminf p4() 1618 [71' —4r? —2\/(7z —67[)2+4(72' —4)2J 166"

t—ow

and

t
o (t)= Li(1+ sins)ds = %(ﬂ' — 2cost)

1+sins 1 .
0, (t)= _[ p(s)ay(s)ds = _[ 17 (7z—2coss)ds=E(7z2—27zcost—4smt)

t t .
()= _[ p(s)g,(s)ds = J-1+836|3n3(7[2 —2c0ss —4sins s



8i (7z —272'+(272' —8)cost—47zsint)

t

q,(t)= _[ p(s)gs(s)ds = j 1J1FGS(;T > (z° — 27 — (2% —8)coss — 4sins ds

t—r t—7r

4r’ +2(7r —67z)cost 4( - )smt]

16e

t—ow

liminf q,(t)= 161e [72’ ~4r° —2\/(7z —67[)2+4(71' —4)2}

16e*

Hence by corollary (2.2.1) every solution of (2.2.8) oscillates.
Now let us generalize the result above to the differential equation with several

advanced arguments.
)-> p)ylt+7)=0, t=t, (2.2.9)
i=1

where p(t), p;(t)eCllty,)[0,0)] , 7, are positive constants, i=12,...,n.
First, define the sequence {p/"(t)} and {q"(t)}of functions for some i=12,..,n as

follows

p™(t)= J.pi(s)p.(m‘l)(s)ds, m>2, t>t, (2.2.10)

and



t
470)= [Pk, m22, tatemr @211)

t-r;
X. Li and Deming Zhu [9] used the above sequences to introduce oscillation criteria for

equation (2.2.9), which appears in the following result.

Theorem 2.2.2 [9]: Suppose that for some i e{1,2,...,n}there exist a t, >t, +, and

a positive integer m such that

m 1
p{™(t) = om qi(m)(t)zeim, t>t +me, (2.2.12)
and
I b, (t{exp[eml pi(m)(t)—%j—l}dt = o0 (2.2.13)

Where p{™(t) and g™(t) are defined by (2.2.10) and (2.2.11) respectively. Then every

solution of equation (2.2.9) oscillates.

Proof: see [9].

Corollary 2.2.3: If for some i e {1,2,...,n}there exist a positive integer m such that

liminf p§m>(t)>eim, liminf qi<m>(t)>im (2.2.14)

t—>w e

Where p™(t) and g™(t) are defined by (2.2.10) and (2.2.11), respectively, then every

solution of (2.2.9) is oscillatory.



Proof: Condition (2.2.14) holding implies that so do conditions (2.2.12) and (2.2.13).
Thus, by Theorem (2.2.2), the conclusion is true and the proof is finished.

Corollary 2.2.4: If for some ie{L2,..,n}there exist a t, >t,+7, and a positive

integer K such that (2.2.12) holds and

o0

1p0) - L |t — oo
| pbfep0-2a-x, (2:2.15)

t +Kr;
where pi(K) is defined by (2.2.10), then every solution of equation (2.2.9) oscillates.

Proof: According to e*—1> x for all x>0, and by the condition (2.2.15) implies that
(2.2.13) will be satisfied. Therefore, Theorem (2.2.2) shows that the claim is true.

Example 2.2.2 [9]: Consider the advanced differential equation
y'(t)- i(1+ cost)y(t +7z)— i(1+ sin t)y(t + zj =0 (2.2.16)
2e 2e 2
Rewriting this equation in form of equation (2.2.9), then

pl(t)=2ie(1+cost), pz(t)=2ie(1+sim)

T, =T T—ﬂ-
1= by T4
2

For this equation the conclusion in Laddas and Stavroulakis are not suitable since the

condition (2.2.2) does not satisfied:

t+ry t+7

.. . 1 1 1

liminf ds = liminf | —(1 ds =—(7-2)< =,

limin | p,(s)ds limin | 2e( +coss)ds 2e(7Z' )<e
and

v T %“Vz 1

liminf j pz(s)ds=tlmlnf 2—e(1+sms)ds= s <3

t t



While

t+7y

jpl I (1+coss)ds = 21e (7 - 2sint)

7 —2zsint —4cost
4e?

t+oy t+7z1
()= Tofopleks- | L5 (o zsinsis -
t

t

t+zy t+r
pY(t)= I py(s)pi*)(s)ds = I l+8228 > (7:2 —27sins —4cos s)ds
t

t

=8i(7[ — 27— (27T2—8)Sint—47TCOSt)

“(t)= t+J'Tlp1(s)pl(3)(s)ds = T 1;;:45 >(z* — 27— (22% —8)sins — 4z coss)ds
t

t

1
16e

imint pY(0)= 07| 7* ~47° ~2\{n* ~6r +ale? 4 |> 22

[7z —4z —2(7z —67z)smt 4( - )cost]

t—ow

16e*

and

Ipl I 1+ coss)ds_z—le(ﬁ+25int)

t—ry -

t t
_ W _ r1+coss 7% + 27sint — 4cost
[p ds= | 1o (7 +2sins)ds = =

t—7y t—mz

t t
G(t)= J. p,(s)a?(s)ds = J. 1+8(;2$S (2% + 27sins — 4coss)ds
t-7; t-m

= %(ﬁ — 27 + (2% ~8)sint — 4z cost)



o (t)= _t[ py(s)a®(s)ds = j 1;;25 > (z° — 27 + (2% —8)sins — 4coss )ds

t-7; t-z

- |zt — a4z + 22 - 67)sint — 4(r? - 4)cost]

16e
liminf g(t)= —[72'4 — 7% —2\|( — 67)? + A(r? — 4)? ]> 22
e 16e* 16e*

It follows from corollary (2.2.3) that every solution of equation (2.2.16) is
oscillatory.

Since equation (2.2.1) is a linear differential equation, if it has eventually
positive solution, then it also has eventually negative solution, that is, it has
nonoscillatory solutions. Thus, in order to study the nonoscillation of (2.2.1), it suffices
to consider the existence of eventually positive solution of (2.2.1).

All previous work of Ladas, Stavroulakis [11] and Li and Zhu [9], are under the
assumption that the coefficient p(t) has constant sign, that is, p(t)e C[t,,),R"].
These investigations, in general make use of the observation that if y(t)is an eventually
positive solution of (2.2.1), then

y'(t)-p(t)ylt+7)=0,
for all large t, so that y(t) is eventually nondecreasing. However, when the coefficient
p(t)is oscillatory, that is, p(t) takes positive and negative values, the monotonicity
does not hold any longer. All known results cannot be applied to the case where p(t) is

oscillatory. The following result gives necessary conditions for oscillation of equation

(2.2.1) when p(t) is an oscillatory function.



Theorem 2.2.3 [10]: Let {a, ¥, and {b,}", be two sequence in [t,,c0), satisfying

a,+2r<b <a 27

n+l
Assume that

p(t)>0,for t € UL [a,,b,]

Define function P(t)as follows

0, otherwise

P(t — { p(t)’t € U:O=1[an’bn - T]

to t—r

then every solution of (2.2.1) is oscillatory.

Proof: see [10].

Remark 2.2.1: The function sign (.) is the signum function, that is:

-1 r<0

sign(r)=4 0, r=0

1, r>0

Tp(t)'”[e J P(s)ds +1- sigr{ jP(s)dsﬂdt =0

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

Example 2.2.1 [10]: As an application of Theorem (2.2.3), we consider the

oscillation of the following equation
y'(t)-pt)y(t+1)=0, t>0,

where 7 =1 and the function p(t)is 6-periodic one with

(2.2.21)



-t , 0<t<1

pt)=4t-2, 1<t<4 (2.2.22)

6-t, 4<t<6

Obviously

t+7

liminf | p(s)ds = 1o

t—>w " 2

Therefore, the result of Ladas and Stavroulakis (equation (2.2.2)) cannot be applied to

(2.2.21). But if we denote.

n

a,=2+6(n-1) ,b =6n ,n>1
Then clearly a,,b, €[0,)
a,+2r<b <a,,—-2r, n=12,.. (2.2.23)

and p(t)>0 for t € Uy ,[a,,b,]. Furthermore, if we set

p(t)=| PO < iala b, ~7] (2.2.24)
0, otherwise

Then we have.

an.T P(t)ln{e j P(s)ds +1— sign[ jP(s)ds] dt

-7

[
E

:'S[P(t)ln ej‘ P(s)ds +1-sign jP(s)ds dt

P(t)In ej P(s)ds +1— sign j.P(s)ds dt

4
2 t—7 t—7
i
4

P(t)In ej P(s)ds +1— sign jP(s)ds dt

t—7 t—7




(t—2)In j[ ds+e'[P s)ds +1— sign [jP(s)dsﬂdt

t

(6-t)In e[}P ds+j ds+j dsJ+1 sign “P(s)dsﬂdt

t-r

+

A U1 N —

:_ (s—2)ds.|nej‘(s 2)ds — .t[ }

N Sy

2

Lol o foom

:It 2|n[ejs 2dstt+j6 tIn{e[2+J:6 sdsD

=2In2+ ZInZ—ZInZ :Zlnz>0
2 2 2 2

which means that,

T P(t)ln{e j P(s)ds +1— sign( j P(S)dSHdt =

ER t-7 -7
So by Theorem (2.2.2), every solution of (2.2.21) is oscillatory.
2.3 Equations with variable coefficients and variable advanced
argument

In this section we will study the behavior of oscillatory solutions of the

advanced differential equation (2-A)

y(t Zp. y(t+7(t (2.3.1)

where
p(t)>0, p,(t)>0, and 7,(t)>0 , are continuous, i=12,..,n.
Before studying the general form (2.3.1), let us take special cases:

Let p(t)=0, n=1, then (2.3.1) becomes.



y(t)- p)y(t+=(t)=0

First, we will introduce the following result for the advanced inequality

y'(t)sgn y(t)- p(t)y((t)) =0,

where

p(t),z(t) e C[R",R'], and z(t)>t

Theorem 2.3.1: If (2.3.4) holds and

z(t)
lim J' p(s)ds >—

t—>w

then all solutions of (2.3.3) are oscillatory.

z(t)>0

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

Proof: Assume that there exists an eventually positive solution y(t) of (2.3.3). From

(2.3.5), there exists a t, >t such that

—

1)

T

p(s)ds>c>e™, txt,

RN S—

and y(t)>0, y'(t)>0 for t >t,. Hence,

y'(t)= p(t)y(z(t))= p(t)y(t),

Dividing by y(t) and integrating from t to z(t) we obtain:

for t > t,. Repeating the above procedure, there exists a sequence t, such that.

(1) 3 (o) 5
ny—( ) ' t=1

t>t,.



this implies that

lim Y0)

=40
t—o0 y(t)

On the other hand, using the argument in the proof of Theorem (1.2.1), we can get

y(t) e
for large t, this leads to a contradiction. Thus all solutions of (2.3.3) are oscillatory.

The following examples illustrate the sharpness of conditions of Theorem 2.3.1.

Example 2.3.1: Consider the equation.

y'(t)- 2 ty(2t)=o, t>t,>0. (2.3.6)

Here

D
[
>
N
A ——
—

lim
—0

t

r(t) 2t
[ p(s)ds = lim | 2 &_2.1
) oot e(ln2)s e e

So all solutions of (2.3.6) are oscillatory.

Example 2.3.2: Consider the equation

Y0 g =0 @a7)
where
p(t)=e(|n12) >0, olt)-2t

Then



D |

( 2t
1 d
_m _m —=
Consequently, (2.3.7) does not satisfy the conditions of Theorem (2.3.1), and therefore

(2.3.7) has the non-oscillatory solution

In the following result, we establish the asymptotic behavior of solutions of (2.3.2).

Theorem 2.3.2: Assume that p(t)>0, and

t+7

lim [ p(s)ds <1. (2.3.8)

t—>w
t

Then the amplitude of every oscillatory solution of (2.3.2) tendsto «© as t— .

Proof: Let y(t) be an oscillatory solution of (2.3.2).
Then there exists a sequence t,, n=12,... of zeros of y(t)with the property that
t ,—t >z and y{t)=0 on (t,t ) for n=12,..

n?n+l

Setting S, =max, ..., |y(t), n=12,..., we see that

S, =|y(&,)], forsome ¢, e(t,.t,.,) and y'(&,)=0
Hence

¥(¢, +7)=0.
Let

r, =min{t, ,,,¢, + 7}, n=12,... .

Integrating (2.3.2) from £, to 7, we get,

Tn

-y(&,)= fp(s)y(s+r)ds.

Sn



Hence

Ty $nt+r
V€)= [ pllyle +r)ds < maxfycv)] ) [ plskis.
¢n e ¢n
Which yields,

[

S, <max{s,,s,.,} _[p(s)ds. (2.3.9)

n?<n+l

¢n
From (2.3.8), we have

Sn+T
j p(s)ds < <1,
&

for sufficiently large n, say n>N. From (2.3.9), s, >s,,, is impossible. Therefore

n+1

Sn < Sn+1lu '

This implies that.

Letting n — oo, we get

limS, =o0, and the proof is complete.

Remark 2.3.1: Condition (2.3.8) guarantees that the amplitude of every oscillatory
solution tends to infinity. But it is possible that the equation has a bounded non-
oscillatory solution even though condition (2.3.8) holds.

The following example explains Remark 2.3.1.

Example 2.3.3: The equation

y(t)= ﬁy(t +1), (2.3.10)

satisfies condition (2.3.8), but it has the bounded non-oscillatory solution



y(t)= AlL—e™),
where N is a positive integer and A is any constant.

Now we introduce the following result for the advanced equation

y(t)= pt)y(e(®)), (2.3.12)
where

p(t)>0 , z(t)>t are continuous.
Theorem 2.3.3: If !L_rrolor(jt)p(s)ds >1, (2.3.12)

t
and z(t) is nondecreasing with !imr(t):oo,then every solution of (2.3.11) is

oscillatory.

Proof: Without loss of generality, let y(t)> 0 be a nonoscillatory solution of (2.3.11)

such that
y(z(t))>0, t>t,. Integrating (2.3.11) from t to z(t), we have
T(t)
y(z®)-y(t)- [ p(s)y(z(s))ds =0,
t
or equivalently

-y(t)=> y(r(t))[rf)p(S)ds —1} . (2.3.13)

t

o(t)
From (2.3.13) and _[p(s)ds >1, when t is sufficiently large, therefore (2.3.13) is a
t
contradiction. The proof is complete.
We can obtain the following results by utilizing the ideas of section 1.2. We

shall merely state the following results and omit the proof.



r(t)
Theorem 2.3.4: If lim j p(s)ds <%,

t—>w

then (2.3.11) has a non-oscillatory solution.
We shall now try to extend the above results to the case of a more complicated

advanced argument. Consider

y'(t)= pt)y(Act, y()) . (2.3.14)
where
p eC[R",R'], AeC[R" xR, R], A is nondecreasing in t for fixed v and Alt,v)>t
and A(t,v,)<At,v,) for v,|=|, vv,>0.
Corollary 2.3.1: In addition to the above conditions if

Alt,n)
lim Ip(s)ds >e?  forany n (2.3.15)
—w g

t
then all solutions of (2.3.14) oscillate.
Proof: Without loss of generality, assume that there exists a positive solution y(t)> 0
for t>t >t ,then y'(t)>0 and hence

yt)2y(t)=7, Al y®)>Al7).
Thus

y'(t)= p(t)y(Act. 7)),
which contradicts Theorem 2.3.1

Example 2.3.4: Consider the equation
y(t)=ylt + y’(®) | (2.3.16)

where  A(t,v)=t+v?> , p(t)=+'t, (2.3.16) satisfies the conditions of corollary

(2.3.1). Therefore all solutions of (2.3.16) oscillate.



Let us present another form of advanced differential equation.

Consider the advanced differential equation
y'(t)+ plt)ylt+2(t)=0, (23.17)
where p(t)>0 and z(t)>0 are continuous.

Theorem 2.3.5: Assume that

t+z(t)

lim j p(s)ds, (2.3.18)

t—>w

exists, then (2.3.17) has a bounded nonoscillatory solution.

Proof: see [8]

Example 2.3.5 [8]: The equation
y'(t )+3—”y(t+1) 0, (2.3.19)

satisfies the conditions of Theorem (2.3.5), so (2.3.19) has a bounded solution, which is

y(t)= Ae*,
where Ais any constant, and s is a root of the equation s+ %ﬂes =0 (s=-1.2931).
Also (2.3.19) has the oscillatory solution
3 3
t)=cos =t +sin 2t
y(t)=cos= )

Back to equation (2.3.1) with p(t)=0, then we have the advanced equation with

several deviating arguments
Z P, (t)y(t +7,( (2.3.20)

where p,(t)>0and 7,(t)>0 are continues, i =12,...,n



Theorem 2.3.6: If for some i =12,...,n, either

t+7;(t)

lim [ p (s>,

t—o t e

or

T ( n

lim j Zp, ds>—

to® i=
then all solutions of (2.3.20) oscillate, where

7 (©) = min{z, (t), 7, (t),....., 7, [t )}
Proof: Without loss of generality, assume that there exists a positive nonoscillatory
solution y(t)>0, for t>t,. This implies that there exists a t,such that y(t+z,(t))>0

fort>t, iel, . From (2.3.20) we have

Zp y(t+7,(t)>0, (2.3.21)

and

n

y'(t)-y(t+ 75O P ()20 (23.22)

i=1
Comparing (2.3.21) and (2.3.22), we obtain a contradiction to Theorem (1.2.1)
and the proof is complete.

Also Kordonis and Philos [7] gave a nice result for the advanced differential equation

)-> b, O)y(t+7,(t))=0, (2.3.23)

jed

where Jis an (nonempty) initial segment of natural numbers and for jeJ, p; and
r;are nonnegative continuous real-valued functions on the interval [0,00). The set

J may finite or infinite.



The result of Kordonis and Philos is the following Theorem.
Now we are able to discuss oscillatory and non-oscillatory behavior of solutions

of equation (2-A) which is:
y'(t)=pt)y(t)+ 2 Oyt + 7 (), (2.3.24)
where

p(t)>0, p,(t)>0,and 7;(t)>0 arecontinuous, i=12,..,n

The discussion will be done by transforming (2.3.24) to the form of that of
equation (2.3.20) with satisfaction of the conditions of Theorem (2.3.6), on the resulting

equation after transformation. To do that, let

y(t)zexpﬁ p(u)du}z(t) L t2t. (2.3.25)
%

Y()- xp{j p(u)du}z'aw p(t)z(t)expﬁ p(u)du]

/)= p(t>y<t>+expﬁ p(u)du}.z'a),
thus

e [k 00~ a0yt 50)



n t

~Sen| | p<u>du}.pi<t>y<t+q<t>>

i=1 t

n [ ter () t+7; (t)

Son [ oo ookt 50

i=1 t,

~Sen) ot n0en) - ookt 50

i=1 t

b

But from (2.3.25)

)09 - )

4

Therefore (2.3.26) will be of the form
Zq 2(t+7,(t)),

where

t

qi<t>=exp[t”j(&u)du}pi(t)

(2.3.26)

(2.3.27)

(2.3.28)

Equation (2.3.27) is of the form of (2.3.20). We see that the transformation

(2.3.25) preserves oscillation. Therefore we can apply the above results with respect to

(2.3.20) to equation (2.3.24). For example we have the following Theorem.

Theorem 2.3.7: If any one of the following conditions holds

t+7; (t)

1 lim | qi(s)ds>% , forsome i=12,...,n.

t—>w

t+rmm n

2. lim J' Zq, ds>—

t—>w i



1
t+7; n
J 1
lim |{q(s >— ,
l:l =1 ;t”m J. ]
and q,(t) satisfies the condition

t+7mmﬁ)

lim jqi(s)ds >0.
t—o0 ty

t+rmax

4. lim _[ Zq s)ds >1, where 7, (t)=max{z(t)....z,(t)}.

tow

Then all solutions of (2.3.24) oscillate, where g (t) is defined by (2.3.28)

Example 2.3.6: Consider the advanced differential equation

y'(t)=y(t)+ Zy[t + 2j+ y(t+7)+ y(t +377[] . (2.3.29)

Here p(t)=1, pt)=2, p,(t)=ps(t)=1, and 5t)= 7. z,(t)=x, fs(t)=37”-

3z

And Ch(t) =2e? , qz(t)z er, qs(t) =
Equation (2.3.29) satisfies any one of the conditions of Theorem (2.3.7) for example, for

t+f
T

condition (1): lim _[ 2e2dt = ze? >l Similarly we can make sure for the rest of the
e

t—ow

conditions. So by Theorem (2.3.7) all solutions of equation (2.3.29) oscillate. In fact

y(t)=sint is a solution of equation (2.3.29).



2.4. Equations with forcing terms

In this section we want to discuss oscillation of solution of the non-

homogeneous advanced differential equation

Z p(t)y(t +z,(t))=q(t), (2.4.1)

where q(t), p,(t)>0 and z,(t)>0 are continuous, i=12,..,n. (2.4.2)
The following Theorem gives the main result of oscillation of equation (2.4.1).
Theorem 2.4.1: Assume that

(i) (2.4.2) holds.

(i) There exists a function Q(t) and two constants q,, g, and sequences {t’ }, {t} such
that

Q(t)=alt) Qt,)=0, . Qtr)=a,, limt, =0, limt; =0 and ¢, <Q(t)<q, for
t>0.

(i) p,(t), i =12,...,n satisfy any one of the conditions

I+T

P, =lim Ip ds>e1forsome|_12 ..... nand j=12,..,n, (2.4.3)

to>w

{ n Zn:Pu*} >e’, (2.4.4)
and

lim > pi(s)ds>=, (2.4.5)

where



Then every solution of equation (2.4.1) oscillates.

Proof: Let y(t) be a non-oscillatory solution of (2.4.1) such that

y(t)>0, y(t+z(t))>0 , for t >t and let

then
X(t)=y'(t)-Q),
:r1gﬁ”ﬁ+qﬁ»>0, for t>t.
i=1
Suppose
x(t)+q, <0, fort>t,>t,
since
x(t)+Q(t)= y(t)>0,
especially

X(t,)+Q(t,)=y(t,) . t,>t,
this is a contradiction. So
x(t)+q >0 , forall t>t,.

Let

then



>

= > p Wl + 5, (0) + Qe +7,(1)] zp. Jx(t+7.0)+a]

SIOERION
That is

Z(t)- > pit)e(t+ 7 (1) 2

i=1

has an eventually positive solution. But it is impossible according to condition (iii). The

proof is complete.

Example 2.4.1: Consider the diffrerential equation

y'(t)= ly(t +%)+%cost :

2

p(t)=%, r(t)=2, q(t)=%cost, Q(t):%sint.

Since |Q(t)|s%, then qlz—%, qZ:%, and t/ =%(4m+3):>Q(t’)=

m m

So by Theorem (2.4.1) all solutions of equation (2.4.6) oscillate. In fact

y(t)=sint isasolution of (2.4.6).

(2.4.6)

1
5= g, and



Example 2.4.2: Consider the equation

y'(t)= y(t +%)+ y[t+%r}+cost. (2.4.7)

By applying Theorem (2.4.1) on equation (2.4.7) all conditions of the theorem are
satisfied, so all solutions of equation (2.4.7) are oscillatory. In fact

y(t)=sint isasolution of (2.4.7).



Chapter Three
Oscillatory and nonoscillatory solutions of first order nonlinear
advanced differential equations

3.0 Introduction:

In this chapter we will discuss oscillatory and nonoscillatory behavior of

solutions of the first order nonlinear advanced differential equation
y'(t)-2 pOf(yE®))=0, (3-A)
i=1
where
p(t)eC[R", K], with p,(t)>0;iel,, 7(t)e[R,R], 7,(t)>t
f e C[R,R].
This chapter contains two sections. In section 3.1 we introduce sufficient
conditions for the oscillation of equation (3-A) when n=1.

In section 3.2 we study some oscillatory results for equation (3-A) with several

deviating arguments.
3.1 Oscillation of first order nonlinear homogeneous advanced
differential equations

Consider the equation

y'(t)=pt)f (y(z (). (3.L.1)
We have the following result.

Theorem 3.1.1: If
(i) z(t) e C[R",R], z(t)>t for te R, z(t) is strictly increasing on R .

(i) p(t) is locally integrable and p(t)> 0, almost everywhere.



(iii) uf(u)>0 for u=0, f e[R,]], f(u) is nondecreasing in u,

. u

lim——=M , 3.1.2

um f (u) <o ( )
and if

_z‘(t)

lim [ p(s)ds >M. (3.1.3)

Then every solution of (3.1.1) oscillates.

Proof: Let y(t) be a nonoscillatory solution of (3.1.1), without loss generality, assume

that y(t)>0 for t, <t <z(t"). Then
y'(t)= p(t)f (y(z(t))=>0, for t>t,. Thus y(t)is nondecreasing.

From (3.1.1), it follows that

r(t)

y(z®)-y(t)= [ p(s)f (y(z(s)ds

or
z(t)
y(e®)+ [ p(s)f (y(z(s)))ds =0.
This implies
B @)t
s et - LU ey
and hence
T(t
_y(@)
J Pl <o)

for sufficiently large t. Therefore



)
lim | p(s)ds <M.

t—>w
t

This is a contradiction to condition (3.1.3). Therefore y(t) is oscillatory .

Now we present a result concerning the asymptotic behavior of the equation
y'(t)= pO)f (y(t + (1)), (3.14)
Theorem 3.1.2: Assume that equation (3.1.4) satisfies the following conditions:
p, zeC[R",R'], p(t)>0, f eC[R,NR]
0<z(t)<q,and yf(y)>0 for y=0.

If
T p(t)dt = .

Then all nonoscillatory solutions of (3.1.4) tend to was t — .
Proof: Let y(t)>0be a nonoscillatory solution of (3.1.4) for sufficiently large t. Then
y'(t)>0, and so y(t) is nondecreasing.

Claim that  lim y(t)=c=oo, (3.1.5)

otherwise ¢ < oo, and then there exists a t* >t > t, such that
f(y(t+7(t))>k >0 for t" >tand f(c)>k >0.
Thus
y'(t)= p)f (y(t+z(t)))> p(tk > 0.
That is,
y'(t)= kp(t)>0. (3.1.6)

Integrating (3.1.6) from t to t"yields



y{t')- y(t)=k fp(S)ds >0,

or

Hence y(t)will become negative for sufficiently large t. This is a contradiction
to the fact that y(t) > 0. Therefore ¢ =0, which completes the proof.

Theorem 3.1.3: Assume that the hypothesis of Theorem (3.1.1) hold except that the

relation (3.1.3) is replaced by
«(t)
lim J. ds > — (317)
ey

Then every solution of (3.1.1) oscillates.
Proof: Assume that there is a nonoscillatory solution y(t)>0, y(z(t))>0for
t>t,>0.So y'(t)>0and hence y(t)—woas t — oo (by Theorem (3.1.2)). There exists

at” e(t,z(t)) such that

_!‘p(s)ds > % and tj p(s)ds > ZMe' (3.1.8)

Now integrating (3.1.1) from t to t"yields

y(e0)-y()= [ ols) yleleos 1(ylel DAL .19)



which implies

vit)> £ 5
> f(y(z(t)) e M 2
— () folel ))I 2ej
and hence
yelt) . ye@) vl (2eY
Y(t*) B f(y T t))) f(y r t*»)(l\/lj ' (3.1.10)
Setting

r(t)
BWELEIUCUR AV (3.111)
t
where t <& < r(t). Taking the limit inferior in equation (3.1.11), we obtain
| z(t)
Inl >—Ilim j
M 5o 4

>
('DIH

But rr|1alx , and therefore

«(t)
el [pl

This is a contradiction because (3.1.8) hold, which completes the proof.



Example 3.1.1: Consider the nonlinear advanced differential equation

2
"(t)= At), A>1. 3.1.12
VO= G YA 4> (3112)
Note that
At
I(elnzﬂ,)sdszs’
t
and
. y
M=Ilim——=1
> £(y)

Therefore (3.1.12) satisfies the conditions of Theorem (3.1.3), so all solutions of
(3.1.12) oscillate.
While the equation

y'(t)= ;y(ﬂt) L A>1, (3.1.13)

(eln A}
does not satisfy the conditions of Theorem (3.1.3). In fact (3.1.13) has the

nonoscillatory solution



3.2 Nonlinear advanced differential equations with several deviating

arguments

Consider the advanced nonlinear differential equation

Y= p0)1(r 1) 21)

where
p(t)>0, 7,(t)>t, i=12,..,n, are continuous. For oscillatory solutions of (3.2.1) we
have the following result.

Theorem 3.2.1: If uf,(u)>0for u=0, f,(u)in nondecreasing in u,

. u .
Im—=M >0, i=12,.., , 3.2.2
I Ew M0 " (3.2.2)
And if
) g
l I (Z P, (s)jds >M*, (3.2.3)
- 9 T

where M* =max{M,,M,,...,M}, and z,(t)=min{z(t),....,7,(t)}.
Then every solution of (3.2.1) oscillates.

Proof: Let y(t)be a nonoscillatory solution of (3.2.1). Without loss of generally

assume that y(t)>0. So y'(t)>0 and thus y(t) is nondecreasing and y(t)—> coas

t — oo (as in the proof of Theorem (3.1.2)). From (3.2.1), we have

r,(t) n

y(@(t)-yt)= | > pi(s)fi(y(n(s))ds

i=1

n z(t)

= Zl: fi(y(@ (1) J. pi(s)s



and so

Therefore

This is a contradiction to condition (3.2.3). Therefore y(t)> 0 is an oscillatory solution
of (3.2.1).

Now let us introduce the oscillation criteria of the first order nonlinear advanced

differential inequalities

y(t)+a)yt)- pO)f (y(t+ 7). y(t+7,(t) =0, (3.2.4)

y'(©)+a(t)y(t)- pt)f (y(t+7()).... y(t+7,(t))<0, (3.2.5)
and equation

y'(t)+a)yt)- pO)f (y(t + 7). y(t+7,(t)=0. (3.2.6)

For these we have the following result.

Theorem 3.2.2: Assume that p, 7, e C[R",%"], p(t)>0, 7,(t)>0, i=12,...,m,
aeC[R",NR], and f satisfies:

f eC[R™ N1, V,f(Y,,Y,..Y,) >0. Furthermore , assume that:

t+7;(t)

liminf  [(-a(s))ds =k, >—o0, i=12,...,m, (3.2.7)

towo
t



where k; € R, and there exist nonnegative numbers k and «;, j=12,..,m such that

Zm:ai =1, k>0

i=1

£S5, 850080 )| = K[si| ™ [s,] ™ Js| ™ (3.2.8)
forall seR™, and

o t+7,(t) 1

liminf _[ p(s)ds>%, (3.2.9)

t

where

c=mine“and z,(t)=min{z,(t),...,z, (t)}.

1<i<m
Then (3.2.4) has no eventually positive solution, (3.2.5) has no eventually

negative solution, and every solution of (3.2.6) is oscillatory.

Proof: See [8].

Example 3.2.1: The equation

2

y'(t)- 3Mt + %ﬂé[y(t +27)l: =0, (3.2.10)

note that a(t)=0, p(t)=3, rl:%, r,=2rm, alzé, a, =§,and

t+z;

ki = liminf (—a(s))ds=0>—o0, i =12
t

t+£
2
7,(t)=Z so liminf I 3ds =% and ¢ =mine" =1.
2 t—oo " 2
So equation (3.2.10) satisfies the conditions of Theorem (3.2.2), so every
solution of (3.2.10) is oscillatory. In fact, the functions y,(t)=cos’(t), v,(t)=sin’(t)

are oscillatory solutions of (3.2.10).



Theorem 3.2.3 [8]: If a(t)<0 in Theorem (3.2.2), then (3.2.7), (3.2.8) and (3.2.9)

can be replaced by the condition

t+z, (t) M t+z, (t)
lim J' p(s)ds > ?exp(—li_m j(— a(s))ds} : (3.2.11)

t—o t—o

where

|a1 |a an

e VA2 R 2
oo | (Y Y|

1<i<m

M

(3.2.12)

and the conclusion of theorem (3.2.2) remains valid.

Example 3.2.2: Consider the advanced type differential inequality

y'(t)—ey(t)—e [yt +1)]§Mt + %ﬂg >0, (3.2.13)

It does not satisfy conditions of Theorem (3.2.3), since

t+7,

liminf [e*ds =0, r*(t)=%
t

1
t+—

2
liminf [e*ds=0, M =1.

t—w
t

In fact (3.2.13) has the positive solution y(t)=e?.

Another kind of advanced nonlinear differential equations, consider the

equation:
y'(t)=f(t, y(z@).... y(z, 1)), (3.2.14)

where f e C[R* xR", K], 7,(t)>ton teR*and 7,(t)eC[R", K], iel,.



Theorem 3.2.4: Assume that there exists a function a e C[R*,R"] such that

F L Yyreens Y )SIN Yo = AL Yo, (3.2.15)

for t>0, |y;|>|yo|, ¥i¥o 20, i=12..,m, and
7. (t)
lim j ds>— (3.2.16)
e g

where z,(t) = min{z, (t)....,z,,(t }. Then every solution of (3.2.14) is oscillatory.
Proof: Assume that y(t) is a nonoscillatory solution of (3.2.14). Without loss of

generality, assume that y(t)> 0, then from (3.2.14) and (3.2.15), we obtain a first order
advanced differential inequality

y'(t)-alt)y(=(t)=0, (3.2.17)
this implies that (3.2.17) has a positive solution y(t). On the other hand, from Theorem

(2.3.1), equation (3.2.17) has no eventually positive solution under condition (3.2.16).

this contradiction completes the Proof.

Example 3.2.3: Consider the advanced nonlinear differential equation

V0= g 7 @), (3.2.18)

which satisfies condition (3.2.15), and

2 1
.fa(s)ds—g>g.

t

Then all solution of (3.2.18) oscillate.



Theorem 3.2.5: Assume that there exists a function a(t) such that a e C[%®*,%"] and

0< F(E Yoo Vi JSON Yo < (L)Y, (3.2.19)

onteR", |yi|<|yo|. Vi¥o =0, i=12..,m and

7" (1)
limsup | a(s)ds<%, (3.2.20)
t

tow

where 7" (t) = max{z,(t),...,z,,(t }. Then equation (3.2.14) has a nonoscillatory solution.

Proof: see [8].

Now we shall present sufficient conditions for the existence of nonoscillatory

solutions of the nonlinear advanced differential equation:

y’(t):iqia)fi(y(rl(t»,...,y<rm<t>)>, (3.2.21)

where

(i) .7, €Cl[ax)R], g(t)=0and limz,(t)=c0, i=12..,n and j=12,..,m and

too0

there is at least one g, which is different from zero.

(i) f, eC[R"™,R], f isnondecreasing with respect to every element, and
u, fi(Uy,...,u,)>0 as uu; >0, j=12,.,m.

Theorem 3.2.6 : Let conditions (i) and (ii) hold. If

i‘jqi (t)dt <o (3.2.22)

Then equation (3.2.21) has a nonoscillatory solution.

Proof: see [8].



Example 3.2.4: Consider the equation

' 1 —t 2 1
t)=—e ylt+1l)y’ | t+=1|, 3.2.23
V(t)= e y(t+1y [ 2) (32.23)
so by Theorem (3.2.6), equation (3.2.23) should have a nonoscillatory solution.We see

that Q(t)=2iee"t, o(t)=t+1, rz(t)=t+% and

ieftdt =0<w.
2e

t

In fact y(t)=e? is such a solution of (3.2.23).



Chapter Four

Oscillation of solutions of Special Kinds of differential

equations

4.0 Introduction

In this chapter we will study oscillation criteria for three Kinds of differential

equations, impulsive differential equations with advanced argument, mixed type

differential equations and an equation of alternately advanced and retarded argument.

Section 4.1 introduces sufficient conditions for the oscillation of the first order

impulsive differential equation with advanced argument:

y(t)=plt)ylt+z)  t=t,
y(t;)— y(t )=b.y(t ) keN

where

0<t, <t <...<t, <... are fixed points with Emtk =00
beR—{-1, keN={2,..}

pe ([toyoo),iR) is locally summable function and 7z > 0 is constant.

Section 4.2 deals with oscillation of the mixed type equation

y(t)+a,t)y(z(t) +a,)y(e(t) =0, t=1,

4-A

4-B

with nonnegative coefficients a;(t),i=212, one delayed argument (z(t)<t) and one

advanced argument (o(t)>t).

Section 4.3 concerns with oscillations in one equation of alternately advanced and

retarded argument.



4.1 Impulsive differential equations with advanced argument

Some times it is necessary to deal with phenomena of an impulsive nature, for
example, voltage or forces of large magnitude that act over very short time intervals.

The purpose of this section is to study oscillation and nonoscillation of the
solutions of impulsive differential equations with advanced argument. Let

N ={12,3...,}. Consider the impulsive differential equation with an advanced argument

y(t)=pt)ylt+7) , t=t,
(4.1.1)

y(tk*)— y(t,)=by(t) keN
under the following hypothesis:
(Ap) 0<t, <t <...<t, <... are fixed points with liﬂltk =0
(A2) p e ([ty, ), R) is locally summable function, z > 0is constant;
(A3) b, €(—o0,—1)U(~1,0) are constants for k € N .
Definition 4.1.1: A function vy e([t,,o0),R) is said to be a solution of equation
(4.1.1) on [t,,c0)if the following conditions are satisfied:
(i) y(t) is absolutely continuous on each interval (t,,t..,), ke N, and (t,.t,);
(ii) for any t, e[t, ), y(t; ) and ylt, ) exists and y{t;)=y(t,), ke N;
(iii) for t =t , ke N, y(t) satisfies y'(t)= p(t)y(t + ) almost everywhere and for each
t=t., y(&)-y(t)=by) keN.
Definition 4.1.2: A solution of (4.1.1) is said to be nonoscillatory if it is either

eventually positive or eventually negative. Otherwise, it is called oscillatory.



Bainov and Dimitrova [1] established the following results for oscillation of solutions of
(4.1.1), under the assumption that p e C([t,,),[0,0)), 7 >0, and {t,}satisfies (Ay).
They introduced the following conditions:

(Hy) O0<z <t

(H2) There exists a positive constant T >z such that t,, —t, 2T, ke N.

(H3) There exists a constant M >0 such that for any k € N the inequality 0<M <b, is
valid

Theorem 4.1.1 [1]: Suppose that

(@) Conditions (H;) and (Hy) hold.
&

(b) !iir;sup[(lJr b,) Ip(s)ds]>1.

t -7
Then all solutions of (4.1.1) are oscillatory.

Proof: let y(t) be a nonoscillatory solution of (4.1.1). Without loss of generality

assume that y(t)>0 for t>t, >0. Then y(t+7)>0 for t >t,. From (4.1.1), it follows
that y(t) is nondecreasing in (to,tk)u[gk(ti,tiﬂ)] , Where t, >t, >t,,.

Integrate (4.1.1) from t, — 7 to t,(i > k +1) we obtain

5

y(t) -yt =)= [ p(s)y(s +7)ds

yit) -yt )= y(t, +0)  plo)y(s +)s (412)
Since
y(ti + 0) = (1+ bi )y(ti - O) = (1+ bi )y(ti )’ (4.1.3)

then (4.1.2) and (4.1.3) yield the inequality

5

y(t, —7)+ y(t, ){(1+ b,) I p(s)ds —1} <0. (4.1.4)

ti—-7



Inequality (4.1.4) is valid only if

1

Ilmsup(1+b)_|'p(s)ds§1, which contradicts condition (b) of the

i—o0
ti—7

theorem. So the proof is complete.

Together with (4.1.1), consider the differential equation with an advanced argument

x'(t) = Pt)x(t + 7) (4.1.5)

where
P(t)= tg}:[m(“ b )p(t), t=>t,

Assume that a product equals to unit if the numbers of factors is equal to zero.
Theorem 4.1.2 [12]: Assume that (A;)-(As) hold. Then all solutions of (4.1.1) are
oscillatory if and only if all solutions of (4.1.5) are oscillatory.

Proof: see [12].

Jurang Yan [12] also established the following results for equation (4.1.1). He also used
the following condition:

(Az) pe([t,,«),(0,0)) is locally summable function and z > 0 is constant.
Theorem 4.1.3 [12]: Assume that (A;)-(As) hold and there exists a sequence of

intervals {(£,,7, )}, such that lim &, =co and 7, —&, >z forall n>N >1. If p(t)>0 for

all te U(£,7.) and
n=N

t+7

Iimsupj (L+b )p(s)ds>1, for te U (&5, —7), (4.1.6)
s<tk<s+z- n=N

t—>w

then all solutions of (4.1.1) are oscillatory.

Proof: let y(t) be a nonoscillatory solution of (4.1.1) and suppose that y(t)>0 for
t>T >t,.

From Theorem (4.1.2), equation (4.1.5) has also a positive solution x(t) on [T,oo).

Thus, for te ;l(/;n,nn ~7),



P(t)= TI (1+b )p(t)=0, and hence,

t<t <t+7

x'(t)>0 almost everywhere for t e CJN(Cn,ﬂn —7), which implies x(t) is
nondecreasing in C{l(gn,nn —7). Integrating (4.1.5) from t to t+ 7, we obtain that for

te nt)N(é’n!nn _T)’

K(t)-x(t+ )+ [P + )i =0.

t

By using the nondecreasing character of x(t), we derive that

x(t)+ x(t + T)D‘TP(s)ds —1} <0 forte n;(gn 1, —7),

t

which contradicts (4.1.6).
Theorem 4.1.4 [12]: Assume that (A;), (As), (As) hold and

t+7

!imsupj [T @+b,)p(s)ds>1,
—® t S<t, <S+7

then all solutions of (4.1.1) are oscillatory.
Proof: The proof of this theorem can be obtained by applying Theorem (4.1.3)
immediately.

Theorem 4.1.5 [12]: Assume (A1), (As), (A4) hold and

t+7

liminf | TT (1+b,)p(s)ds> 1,

t—o0 f S<t, <S+7 e

then all solutions of (4.1.1) are oscillatory.

For existence of a nonoscillatory solution of (4.1.1), we have the following result.



Theorem 4.1.6 [12]: Assume (A1), (As), (As) with b, >—1 hold and there exists

a T2>t,suchthatforall t>T

t+r

J T @+b)pls)s] <

i S<t, <S+7
Then equation (4.1.1) has a nonoscillatory solution.
Proof: see [12].

Example 4.1.1: Let t, =o+kmz, mis a positive integer, p(t)>0 is a locally

summable function and 7 >0, b, e(~1x), k € N, are constants.
Consider the impulsive differential equation (4.1.1). Since t,,, —t, =mz , there is at

most one point of impulsive effect on each [t,t+7], t>0o. So,

t+7 t+7

[ 11 @en)ps)s=@+b,) [ pls)ds, if 4 cfti+o)

t S<t, <s+r7

or
t+r trr
I [T (1+b,)p(s)ds= J’p(s)ds, if some t, g[t,t+7), keN
t S<ty <s+r t

Then we have the following cases
(i) Let
t+7

d, = limsup {1+ bk)f p(s)ds, t<t, <t+7}

t

and

t+7

d, = limsup I p(s)ds
t



If d=max{d,,d,}>1, then by Theorem (4.1.4) all solutions of equation (4.1.1) are

oscillatory.

(ii) Let ¢, =liminf{{L+b, )Tp(s)ds}

t

and

t+7

c, = liminf I p(s)ds
t

If c=min{c,c,}> 1 , then by Theorem (4.1.5) all solution of (4.1.1) are oscillatory.
e
(i) If there is T >t,such that

¢(t)£%,forall t>T),

where

t+7 t+7
#(t)=max{(L+b,) [ p(s)ds,t <t, <t+z, [ p(s)s}, t=T,
t t
then by Theorem (4.1.6), equation (4.1.1) has a nonoscillatory solution on [T,oo).

Bainov and Dimitrava [1] established a sharp result for oscillation of the

nonhomogeneous impulsive differential equation with deviating argument:

y(t)- pt)ylt+z)=alt). t=t, | @17
Y(t; )_ Y(tk ) =D, y(tk )

under the following assumptions:

(Hs) g eC([0,0) %)

(H5) there exists a function v e Cl(iR+ , SR) such that v'(t)=q(t)t>0



(H6) there exist constants g,, and g, and two sequences {t}c R and {t'} — R" with

limt =limt/ =00 and v(t)=q,, v(t)=0d,, ¢, <V(t)<aq,.

t—o t—ow

Theorem 4.1.7 [1]: Suppose that

0] conditions (Hs), (H2), (H4)- (Hs) hold.

(i) limsup J.p(s)ds >1.

ty
(i) b >0keN.
Then all solutions of equation (4.1.7) oscillate.

Proof: : Let y(t) be a solution of (4.1.7) for t >t, > 0.
Set
2(t) = y(t) - v(t) + oy
Then from (4.1.7) we obtain
2'(t)> p(t)z(t +7)
2(t; )~ 2(t, )=b,2(t, )+ Ak}
where
A =b(t, )-b.q, >0.

(4.1.8)

Let the inequality (4.1.8) has a positive solution z(t) for t>t, >t,. Integrating (4.1.8)

fromt tot, +7,t >t , weget

2(t, +7)—2(t, +0)> z(t, + T)Tp(s)ds,

t
ty+7
2(t, + r{ I p(s)ds —1} <0.
t
The last inequality contradicts condition (ii) of the theorem.

If z(t)<0, for t >t, be a solution of the inequality (4.1.8), then
2(t)) = x(t/) - v(t))+q, = x(t/)> 0, for

t' >t . Also a contradiction.



Jankowski [6] studied the existence of solutions for first order impulsive ordinary
differential equations, with advanced argument with boundary conditions.

For J=[0,T], T>0,let0=t, <t <..<t, <t ,=T.

Put J'=J\{t,t,,...t. }. Consider the advanced impulsive differential equation
y
Ayt )=1(y(t,)) k=12,..,m (4.1.9)

where Ay(t, )= y(tk+ )— y(tk’ ) and the hypothesis

(Hy) feCUxRxRR), aecC,JI), t<alt)<T, teld, 1 eCRR) for
k=12,...m, ¢ eC(in?R,ER) and if there exists a point teJ such that
a(f)eft,t,,...t,}, thent eft,,t,,...t, } .

Put J,=[0,t], J, =t .t.,], k=12,...m. Introduce the spaces:

:J >R, y|J, €C(J,, R)k=041....
PC(J)=PC(J,“R)={y - R,y €C, Rk =01 m}

and there exist y(tﬁ)for k=12,..,m
and

PC'(J)= Pcl(J,iR)z{y ePC(I) 13, eC' (I, M)k =01..m }

and thereexist y'(t; Jfor ~ k=12,..,m

Note that PC(J) and PC'(J) are Banach spaces with respective norms:

I¥lre =SUPLYO)] ¥l =¥l 1y

PC*

By a solution of (4.1.9) we mean a function y e PC*(J) which satisfies:

(i)  The differential equation in (4.1.9) for every te J'.
(i)  The boundary condition in (4.1.9).

(iii) Atevery t,,k=12,...,m , the function vy satisfies the second condition in (4.1.9).



Definition 4.1.3: Lower and upper solution of problem (4.1.9)

We say that u e PC*(J) is a lower solution of (4.1.9) if

and u is an upper solution of (4.1.9) if the above inequalities are reversed.

Theorem 4.1.8 [6]: Let assumption (H;) hold. Moreover, assume that
(Hs) ¥,,2, € PCl(J) are lower and upper solutions of problem (4.1.9), respectively, and
2,(t) < yo(t) on J,

(Ho) there exist functions K,M e C(J, %), M is nonnegative and such that

(H1o) there exist constants L, €[0,1),k =1,2,...,m, such that

Ik(W(tk))_Ik(W(tk))Z_I—k[V_V(tk)_W(tk)]v k=12,...,m,
for any w,wwith z,(t ) <w(t )< w(t )< y,(t,.), k=12,..,m,

(H11) conditions:

m

M *(t)dt[l_[(lJr L, )} <1with M*(t)=M(t)e

o t—y

i=1
And
T n
5=[M(s)ds+> L, <1
0 i=1

(Hip) there exists >0 such that for any u,Ue[z(0)Y,(0)] with u<d and

v,V €[z,(T), y,(T)] with v <v we have



g(u,v)>g(a,v),

9(u,v)-g(u,v)<y(V-v).

Then there exist solutions v,w €[z, y,] of problem (4.1.9).
Proof: see [6]

Example 4.1.2 [6]: For J =[0,T], we consider the problem

y'(t)= 4" + 4, t)sin(y(a(t)) - 4t)te I\ {3,
Ay(t,)=Ly(t,), (4.1.10)
0=2y*(0)+y(T)-k,

where
22 €C3,R )R =[0,00), 2 eC(J,I)t<aft)<T,ted,0<t <T,L=00<k<l,
Take y,(t)=0,2,(t)=-LteJ . Indeed, z,(t)< y,(t) on J,and
Fyo(t)=A,(t) - 4(t)=0= y(t),
Fz,(t) =4, (t)e™ -1 - A, (t)sin1< 0= z)(t),
AYo(t,)=L.O=1,(y,(t,)).
Azy(t,) =02 L(-1)=1,(z(t)),
9(%(0). y5(T))=9(0.0)=—k <0,
9(20(0).%,(T)) = g(-1-1)=1-k >0.
It proves that y,,z, are lower and upper solutions of problem (4.1.10), respectively.
Moreover K(t)=4(t), M(t)=4,(t), L =L, so assumption (Ho), (Hi), (H12) are
satisfied. If we extra assume that:

T a.(l}jh(s)ds
[Aet dtrL<, (4.1.11)

0



then problem (4.1.10) has solutions in the segment [-1,0], by Theorem (4.1.8).

For example, if we take L:%, T=rx, 4t)=2>0, A4(t)=4""Tsint for teJ,

a(t)= 7 then condition (4.1.11) holds if 0 < /3 < % .

4.2 Mixed type differential equations

In this section we will introduce the oscillation of the mixed differential equation:
y()+a,t)y((t)+a,t)y(o(t) =0, t=t, (4.2.2)

with nonnegative coefficients a(t), one delayed argument (z(t)<t) and one advanced

argument (o(t)>1).

L. Berezansky and Y. Domshlak [2] studied equation (4.2.1) with both constant and

variable coefficients which appears in Corollary (4.2.1) and in Theorem (4.2.1)

respectively.

A special case of equation (4.2.1) is the following differential equation
y(t)+ay(t—7)+ayt+o)=0, (4.2.2)

where 7>0,0>0,a >0k=12.

Corollary 4.2.1 [2]: Suppose for the characteristic polynomial of (4.2.2)
F()=A+ae™ +ae™,

the following condition holds
F(1)>0, forall Ae(—o0,).

Then all solution of (4.2.2) are oscillatory.

Proof: see [2]



Theorem 4.2.1 [2]: Let z(t)—>cand assume that there exist functions

b,(t), j =12, such that
a,(t)=b,(t)=0,j=12t>ty;

the following limits exist and finite:

t o)

B,; :=lim [by(s)ds, B,;:=lim ij(s)ds, j=12,

t—>
” z(t) t

with
B,+B,,>0;

and the following system has a positive solution {y,, y,}:

- (BllBZZ - BlZBZl)ylyZ - Bllyl + Bzzy2+1= 0
In Yi— Bllyl - Blzyz <0
In Y, + 821Y1 + BzzYz <0.

Then all solution of (4.2.1) are oscillatory.

Proof: see [2]

Example 4.2.1: Consider the equation

y'(t)+%y(%j+%y(t+a)=0, t>t,>0,

where #>1, >0, a,a, >0.Put b(t):= al(t):% and b,(t)=a,(t)

Theorem (4.2.1). Then B, =a,Inx, B,=a,Inu, B,,=B,,=0.

System (4.2.6) turns into the system
—a Yy, Inu+1=0
Iny, —ay,Inu—a,y,Inu<0

Iny, <0

a,

=—=1n
t

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)



which is equivalent to the system

!
aInu

Vi

—In[a, Inp]-1<y,a,Inu
Iny, <0
and this in turn is equivalent to the system

1
a Inp

Vi

—In[ailny]—l< y, <1
a,Inu
The last system has a solution if and only if

iy e

a,Inu elnu

(4.2.8)

Thus, (4.2.8) is sufficient for oscillation of all solution of (4.2.7). Note that (4.2.8) does

not depend on o .

4.3 Oscillation in equation of alternately retarded and advanced type

In this section we want to study the oscillation of all solutions of the following

differential equation

y'(t)+ py(Z{%D ~0,t>0,

where pis a real number and [.] denotes the greatest integer function.

We can look on equation (4.3.1) as equation of the form

y(t)+ pylt—z(t))=0, t>0,

where the argument of deviation is given by

(4.3.1)

(4.3.2)



dt):t—{%] (4.3.3)

The argument r(t) is a periodic function of period two. Furthermore, for every integer
n, z(t) is negative for 2n—1<t < 2n and is positive for 2n <t <2n+1. Therefore, in
each interval [2n—1,2n+1), equation (4.3.1) is of alternately advanced and retarded
type. More precisely, for every integer n,

r(t)=t—2n for 2n-1<t<2n+1
And

~1<7(t)<1 for 2n-1<t<2n+1.

We can write z(t) in the form

t, 0<t<1
t—-2, 1<t<3
(t)=qt—-4, 3<t<5

t—-6, 5<t<7

Also the curve of z(t) can bee seen in the following figure:

) 4

B / / / /
T T T T T =t
1 2 3 4 4 G 7 B g

-1 4

Figure (1): the graph of z(t)=t - Z{t—gl}



Therefore equation (4.3.1) is of advanced type in [2n—1,2n], and of retarded type in
(2n,2n+1).
Definition 4.3.1: Solution of equation (4.3.1)
By a solution of equation (4.3.1) we mean a function y(t) which satisfies the following
properties:
(i)  y(t) is continuous on [0,).
(ii) y'(t) exists at each point t e [0,c0), with the possible exception of the points
t=2n+1, ne N where one-sided derivatives exist.
(ili) Equation (4.3.1) is satisfied on each interval of the form
[2n-12n+1)NNR"for neN.
With equation (4.3.1) we associate an initial condition of the form
y(0)=4,, (4.3.4)
where a, is a given real number.

The following lemma deals with existence and uniqueness of solution of equation

(4.3.1).

Lemma 4.3.1 [5]: Assume that p,a, R and p =1.
Then the initial value problem (4.3.1) and (4.3.4) has a unique solution y(t).
Furthermore, y(t) is given by

y(t)=[1- p(t-2n)a,,, for te[2n-12n+1)NR", neN, (4.3.5)

where the sequence {a,} satisfies the equations

a, . =(1- for n=012,..
2n+1 ( p)aQn } (436)

a,, , =+ p)a,, for n=12,...



Proof: Let y(t) be a solution of (4.3.1) and (4.3.4). then in the interval
[2n-12n+1)~R", and forany ne N, (4.3.1) becomes

y'(t)+ pa,, =0, (4.3.7)
where we have used the notation a, = y(n) for ne N . Then the solution of (4.3.7) with
initial condition y(n):a2n is given by (4.3.5). By the continuity of the solution as

t —>2n+1 and for t=2n-1, (4.3.5) yields (4.3.6) and (4.3.7). So we have proved that
if y(t) is a solution of (4.3.1) and (4.3.4) then y(t) is given by (4.3.5) where the

sequence {a, |} satisfies (4.3.6).
Conversely, given a, e%Rand because p=-1, the equation (4.3.6) has a unique

solution {a,}. Now by direct substitution into (4.3.1) we can see that y(t)as defined by

(4.3.5) is a solution. The proof is complete.
The following Theorem provides necessary and sufficient conditions for the oscillation

of solutions of equation (4.3.1).

Theorem 4.3.1 [5]: Assume that p e 9% and p = —1. Then every solution of

equation (3.4.1) oscillates if and only if
pe(—oo-1)ULx). (4.3.8)

Proof: Assume that (4.3.8) holds. Then either p<—1 or p>1 and in either case it
follows from (4.3.6) that the sequence {a, } oscillates. As y(n)=a,for ne N, y(t) also

oscillates. Conversely, assume that every solution y(t) of (4.3.1) oscillates, and for the
sake of contradiction, assume that

|p|<1. (4.3.9)
Let y(t) be the solution of (4.3.1) with y(0)=a, =1. Then from (4.3.6) and because of
(4.3.9),

a,>0 for n=012,... .

Hence for te[2n-12n+1) and ne N, [2n—t|<1, so (4.3.5) yields



y(t) = [1_ p(t - 2n)]aZn 2 [1_ | p| |t - 2n|]a2n 2 (1_ | p|)a2n > 0.

This contradicts the assumption that y(t) oscillates and the proof is complete.

Another example of alternately retarded and advanced equations is the differential

equation
y'(t)+ py@t + %D =0,t>0 (4.3.10)

where pis areal number and [.] denotes the greatest integer function.
Equation (4.3.10) can be written in the form
y'(t)+ py(t—of(t))=0, t>0 (4.3.11)

where the argument deviation is given by

a(t):t—{t+1]

2

is linear periodic function with period1. More precisely, for every integer n,
oft)=t—n, for n-Lctensl,
2 2

Also —ESO'(t)<1,f0r n-tctensl,
2 2 2 2

We see that in each interval {n —%,n +%) , equation (4.3.10) is of alternately advanced

and retarded type. It is of advanced type in [n—%,nj and of retarded type in

(n, n+ %) , see figure (2).

The argument o(t) will be of the form



t 0£t<1

2

t-1, l£t<§

2 2

olt)=1t-2, Scpe,

2 2

t-3, §S'[<Z

2 2

whose sketch appears in figure (2).

Cl'[fj ®

1

2

2 / / /
. . T — t
13 22 31
2 2 2

Figure (2): The graph of of(t)=t —{t +ﬂ

The existence and uniqueness of solution and the necessary and sufficient condition for

the oscillation of all solutions of equation (4.3.10) appear in the following lemma and

theorem respectively.

Lemma 4.3.2 [5]: Assume that p,a, e R and p = -2.

Then the initial value problem (4.3.10) and (4.3.4) has a unique solution y(t).

Furthermore, y(t) is given by
1 1) ...
y(t)=[1- p{t-n)a,, for te[n_i’mijﬂm neN, (4.3.12)

where the sequence {a,} satisfies the equation



_27P, forn=012,. (4.3.13)
2+p

n+l

Proof: Let y(t) be a solution of (4.3.10) and (4.3.4). Then in the interval
1 1 .
[n—a,n+§jm*}{ forany ne N, (4.3.10) becomes

y'(t)+ pa, =0, (4.3.14)
where we have used the notation a, =y(n) for ne N. The solution of (4.3.14) with

initial condition y(n)=a is given by (4.3.12). By the continuity of the solutions as

n

t—n +% andfor t=n —%, (4.3.12) yields

1 1 1 1
n+=|=(1-=pla and yn-=|=|1+=p |a,
y[ +2) ( zp)” y( zj (+2p)”

from which (4.3.13) follows. The remaining part of the proof is similar to that of

Lemma (4.3.1) and is omitted. The proof is complete.

Theorem 4.3.2 [5]: Assume that p e % and p = —2. Then every solution of equation
(4.3.10) oscillates if and only if

pe(-0,-2)U[2,x). (4.3.15)
Proof: Assume that (4.3.15) holds. Then either p<—2 or p>2 and in either case it

follows from (4.3.13) that the sequence {a,} oscillates. As y(n)=a, for ne N, y(t)

also oscillates. Conversely, assume that every solution y(t) of (4.3.10) oscillates and,
for the sake of contradiction, assume that

p|<2. (4.3.16)

Let y(t) be the solution of (4.3.10) with y(0)=a, =1. Then from (4.3.13), a, >0 for
1 1 1 .
ne N . Hence for te{n—z,n+§j and ne N, |t—n|s§ , S0 (4.3.12) yields
y(t)=[1- p(t—n)a, >[1-|p| ft-nlla, >(-|p|la, > 0.

This contradicts the assumption that y(t) oscillates and the proof is complete.
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