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Abstract 

        This thesis aimed to study the behavior of solutions and criterion of oscillation for 

solutions of first order advanced functional differential equations. So we tackle the 

conditions that limit oscillation for these linear and nonlinear equations, and the 

unknown function in the general form for this type of equations contains one advanced 

variable or more about the variable that represents the present state. 

        Such type of study is studied and classified according to the coefficients even if 

they are constants, constants and variables or all of them are variables. 

         This thesis contains in its contents basic concepts of functional differential 

equations and the definition of oscillation. It also contains several result due to 

oscillation theorems in addition to a set of examples that explain the main theorems. 

         The reason why the researcher studied the type of equations is because of anxious, 

the subject is interesting and important. 

         This study contains many modern results resulted in oscillation of advanced 

differential equations in both cases linear and nonlinear, also homogeneous and 

nonhomogeneous. Nonhomogeneous equations has been transformed by a specific 

transformation to homogeneous case. 

          Some theorems of advanced differential equations have been proved by 

contrasting them with delay differential equations and this is the out put of the study 

that the researcher accomplished. 

 

 

 

 



 viii 

الملخص 

اهتمت هذه الدراسة بدراسة سموك حمول ومعايير التذبذب لحمول فئة معينة من المعادلات التفاضمية 

الاقترانية المتقدمة من الدرجة الأولى، حيث تعرضنا لمشروط التي تحدد التذبذب لهذه المعادلات 

الخطية وغير الخطية، وكذلك تعرضنا للاقتران المجهول في الصورة العامة لهذه الفئة من 

. المعادلات والذي يحتوي عمى متغير متقدم واحد أو أكثر عن المتغير الذي يمثل الوضع الحالي

تمت دراسة هذه الفئة من المعادلات وتصنيفها بالاعتماد عمى المعاملات سواء كانت ثابتة أو ثابتة 

. ومتغيرة أو جميعها متغيرة

تحتوي ثنايا الرسالة عمى المفاهيم الأساسية لممعادلات التفاضمية الاقترانية وكذلك تعريف التذبذب 

وتحتوي أيضاً عمى العديد من النتائج التي تتعمق بنظريات التذبذب لهذه المعادلات بالإضافة إلى 

. مجموعة من الأمثمة التي توضح النظريات الرئيسية

. كانت الرغبة في دراسة هذا النوع من المعادلات لأن الموضوع ممتع وجدير بالاهتمام

تحتوي الرسالة عمى العديد من النتائج الحديثة الصادرة في نظرية التذبذب لممعادلات التفاضمية 

المتقدمة بحالتيها الخطية وغير الخطية وكذلك المعادلات المتجانسة وغير المتجانسة، حيث تم 

. تحويل المعادلة غير المتجانسة إلى معادلة متجانسة باستعمال تحويلًا معيناً 

بمقارنتها مع المعادلات  (advanced)تم برهنة بعض النظريات لممعادلات التفاضمية المتقدمة 

. ، وهذه تعتبر من النتائج التي استطعنا التوصل إليها في هذا البحث(delay)التفاضمية المتأخرة 
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Introduction 

Recently, there has been a lot of activities concerning the oscillatory and nonoscillatory 

behavior of delay differential equations; for example see [3], [4], [5] and [8] and 

references therein. But, for the oscillatory and nonoscillatory results of advanced 

differential equations, compared with those of delay differential equations, less is 

known up to know. 

With the past two decades, the oscillatory behavior of solutions of differential equations 

with deviating arguments has been studied by many authors. The problem of the 

oscillations caused by deviating arguments (delays or advanced arguments) has been the 

subject of intensive investigation. Among numerous works dealing with the study of 

this problem we choose to refer to L. E. El'sgol'ts [3], Ladde, Lakshmikanthan and 

Zhang [8], Gyori and Ladas [5], Erbe, Kong and Zhang [4], and Kordonis and Philos 

[7]. 

In the special case of an autonomous advanced differential equation a necessary and 

sufficient condition for the oscillation of all solutions is that its characteristic equation 

has no real roots, this appears in [5]. Also for advanced differential equations with 

oscillating coefficients, a necessary and sufficient conditions for the oscillation of all 

solutions is given by Li, Zhu and Wang [10]. 

An advanced functional differential equation is one in which the derivatives of the 

future state or derivatives of functionals of the future state are involved as well as the 

present state of the system. In fact when the derivatives of the future history are used, 

most of the literature is devoted to existence, uniqueness, and continuous dependence. 

In this research we consider theorems that provide sufficient conditions for the 

oscillation of solutions of the first order, linear, nonlinear and impulsive advanced 
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differential equations, taking different forms depending on the coefficients and on the 

advanced argument (which may be constants, variables or constants and variables) and 

the forcing terms of these equations. Also we consider theorems which give sufficient 

conditions for the oscillation of mixed type and of an alternating advanced and delay 

differential equations. 

Our research deals with the oscillation of the first order advanced functional differential 

equations. It consists of four chapters: 

Chapter one: contains the main concepts, definitions, lemmas, theorems, and 

preliminary material that are essential in the following chapters. 

Chapter two: devotes the oscillation theory of the linear advanced functional 

differential equation 

      



n

i

ii tytptytpty
1

))(()(  , 

where  

  0tp ,   0tpi , and   tti   are continuous ni ,...,2,1 , with special cases: 

(i) ip  and i  are constants ni ,...,2,1 ,  

(ii) ip  are variables, i  are constants ni ,...,2,1 , 

(iii) ip  and i  are variables. 

Chapter three: deals with oscillatory and nonoscillatory solutions of the nonlinear 

advanced differential equation of the form 

     



n

i

ii tyftpty
1

0))(( , 
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where   0tpi ,   tti  , ni ,...,2,1  are continuous. And as a special case of this 

nonlinear advanced differential equation: n=1,   0tp  almost everywhere  and  tp is 

locally integrable and   tt  . 

Chapter four studies oscillation theorems of special kinds of differential equations: 

impulsive, mixed type and alternately advanced and retarded differential equations. 

Symboles 

 =   , the set of real numbers. 

 =  ,0  the set of nonnegative real numbers . 

],[ baC : the set of all real valued continuous functions on the closed interval ],[ ba . 

],[1 baC : the set of all real valued continuously differentiable functions on ],[ ba . 

i

n

i
A

1
 = nAAA  ...21 . 

The triple (a,b,c) refers to definitions, theorems, examples, lemmas, corollaries, 

remarks, equations or inequalities where: 

a: refers to the chapter's number, 

b: refers to the section's number, 

c: refers to the number of definitions, theorems, examples, lemmas, corollaries, remarks, 

equations or inequalities. 

The symbol [x] means the reference number.  

. : any vector norm. 

 

 

 

 



 4 

Chapter one 

Preliminaries 

1.0  Introduction 

The aim of this chapter is to present some preliminary definitions, examples and 

results which will be used throughout the research. 

Section 1.1 introduces definitions of differential equations with deviating arguments 

and their classification with examples. 

Section 1.2 investigates the definition of oscillatory and nonoscillatory solutions of 

differential equations. 

Section 1.3 gives some basic lemmas and theorems of oscillation of differential 

equations by using the Laplace transform. 

Section 1.4 contains a detailed description of possible existence and uniqueness 

results that are needed in our treatment of the oscillation theory of advanced differential 

equations. 

Finally section 1.5 introduces some theorems which are important tools in 

oscillation theory, especially, the generalized characteristic equation and the existence 

of positive solutions of the first order advanced functional differential equation. 

1.1 Definitions and examples 

Definition 1.1.1: Differential equations with deviating arguments 

Differential equations with deviating arguments are differential equations, in which 

the unknown function appears with various values of the argument, and these, classified 

in the following three types: 
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1- differential equations with retarded arguments: 

A differential equation with retarded argument is a differential equation with 

deviating argument, in which the highest order derivative of the unknown function 

appears for just one value of the argument, and this argument is not less than all 

arguments of the unknown function, and its derivative appearing in the equation. 

2- Differential equations with advanced arguments: 

A differential equations with advanced argument is a differential equation with 

deviating argument, in which the highest order derivative of the unknown function 

appears of just one value of the argument, and this argument is not larger than the 

remaining arguments of the unknown function, and its derivative appearing in the 

equation. 

3- Differential equations with neutral arguments: 

A differential equation with neutral argument is a differential equation with 

deviating argument, which is not of retarded argument nor of advanced argument. 

That is, the highest order derivative of the unknown function in the differential  

equation with neutral argument, is evaluated both with the present state and at one 

or more past or future states. 

Example 1.1.1: Consider the following differential equations with deviating 

arguments: 

i. )))((),(,()( ttytytfty   

ii. ))(),(),(,()( 21   tytytytfty  

iii. )))(()),((),(),(,()( ttyttytytytfty    

iv. ))(),(),
2

(),
2

(,()( tyty
t

y
t

ytfty   
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v. )))(()),(()),((),(),(,()( ttyttyttytytytfty    

Then  

(i) and (iii) are with retarded arguments if  0)( t , and with advanced argument if 

0)( t . 

(ii) is with retarded argument if 1 >0 , 2 >0, and with advanced argument if 1 <0 , 

2 <0. 

(iv) is with retarded argument if t≥0 , and with advanced argument if t≤0. 

(v) is with neutral argument. 

It is possible that an equation belongs to one of the above mentioned arguments 

on one set of values of t, and to another type on another set. For example, the 

differential equation: 

))),((),(,()( ttytytfty   

is of retarded argument on intervals on which 0)( t , and of advanced argument on 

intervals on which 0)( t . 

1.2 Definition of oscillation 

The most frequently definitions of oscillation, used in the literature are the 

following two definitions: 

Definition 1.2.1: A nontrivial solution y(t) of a differential equation is said to be 

oscillatory solution if and only if it has arbitrarily large zeros for t≥t0, that is, there exists 

a sequence of zeros  nt  (y(tn)=0) of y(t) such that  


n
n

tlim . 

Otherwise, y(t) is called nonoscillatory. 

Definition 1.2.2: A nontrivial solution y(t) is said to be oscillatory, if it changes sign 

on [T,∞), T is any number. 
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Remark 1.2.1: Definition 1.2.1 is more general than definition 1.2.2, for example: 

y(t) = 1-sin t, 

is an oscillatory solution according to definition 1.2.1, and is nonoscillatory  solution 

according to definition 1.2.2. 

Example 1.2.1: The equation 

0)
2

3
()( 


tyty , 

has the oscillatory solutions: 

ttytty cos)(,sin)( 21  . 

Example 1.2.2: The equation 

0)1(
2

3
)(  tyty


, 

has the oscillatory solution: 

ttty
2

3
cos

2

3
sin)(


 , 

and also has the bounded nonoscillatory solution tAety )( where 

A is a constant and  is a root of the equation 0
2

3
 

 e  

( =-1.2931). 

Example 1.2.3: The equation 

)()( tyty  , 

has a nonoscillatory solution 

ccety t ,)(  is a constant 
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Lemma 1.2.1: Let p and   be two positive constants. Let )(ty  be an 

eventually positive solution of the advance differential inequality 

 0)()(  tpyty                                                               (1.2.1) 

Then for  sufficiently large, 

 )()( tByty  ,                                                                   (1.2.2) 

where   B = 2)
2

(
p

   

Proof: Assume that t0 is such that 0)( ty   for 

 0tt , and )(ty  satisfies  (1.2.1) for 0tt   . For given  0ts , integrate both 

sides of (1.2.1) from 
2


s  to s, and by using the fact that y(t) is increasing for 

0tt  , we find that 

,0)
2

(
2

)
2

()( 


sy
p

sysy                                              (1.2.3) 

since y(t)>0, then 0)
2

( 


sy , and hence 

y(s) - 0)
2

(
2




sy
p

,                                                              (1.2.4) 

or 

)()
2

(
2

sysy
p




.                                                                  (1.2.5) 

Applying (1.2.5) for s=t+
2


, and for s=t, we have 

)
2

()(
2





 tyty

p
,                                                             (1.2.6) 

and 
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)()
2

(
2

tyty
p




,                                                                  (1.2.7) 

respectively. Combining (1.2.6) and (1.2.7) yields 

)()
2

(
2

)()
2

( 2 tyty
p

ty
p







,                                            1.2.8) 

and hence 

)()
2

()( 2 ty
p

ty


  ,                                                               (1.2.9) 

or 

)()( tByty  ,                                                                     (1.2.10) 

where  B= 2)
2

(
p

 

Theorem 1.2.1: Consider the advanced differential equation and inequalities: 

0)()()(  tytpty                                                                    (1.2.11) 

0)()()(  tytpty                                                                    (1.2.12) 

0)()()(  tytpty                                                                    (1.2.13) 

Assume that   ],,[ 0

 tCp , 0 , and 






t

t

e
t

dssp 1)(lim                                 (1.2.14) 

then  

(i) every solution of (1.2.11) oscillates. 

(ii) Inequality (1.2.12) has no eventually positive solution. 

(iii) Inequality (1.2.13) has no eventually negative solution. 

Proof: Assume that (1.2.11) has an eventually positive solution y(t). Then there 

exists  a 

0tt , such that for t≥t
*
, y(t) >0 and y(t+ )≥0. 

Also 0)(  ty  and 
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y(t) ≤y(t+ ),                                                                                   (1.2.15) 

since y(t) is increasing. And 

0)()()()()()(  tytptytytpty                                        (1.2.16) 

Thus 

0)()()(  tytpty ,                                                      (1.2.17) 

or 

)(
)(

)(
tp

ty

ty



.                                                                                    (1.2.18) 

By integrating both sides of (1.2.18) from t to t+ , we find 

ln 








t

t

dssp
ty

ty
)(

)(

)(
.                                                                   (1.2.19) 

Also from (1.2.14) it follows that there exists a constant c>0 and a t1 ≥t
*
, such that 






t

t

e
cdssp 1)( ,     t≥t1                                                                  (1.2.20) 

so 

ln c
ty

ty




)(

)( 
,                                                                               (1.2.21) 

or 

 tytyec ()( ).                                                           (1.2.22) 

But  e
c
≥ec, c , so (1.2.22) becomes 

ec y(t) ≤ y(t+ ),      1tt  .                                                        (1.2.23) 

Repeating the above procedure, it follows by induction that for any positive integer k 

)()()(  tytyec k ,  ktt  1 .                                                    (1.2.24) 
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Choose k such that 

kec
c

)(
4
2
 ,                                                                                     (1.2.25) 

which is possible, because ce>1. Now, fix a ktt  1 . Then because of (1.2.20), there 

exists a  ),( tt    such that 








t

c
dssp

2
)(          and  





t
c

dssp


2
)( .                                          (1.2.26) 

By integrating (1.2.11) over the intervals  [  ,t ], [ t , ]    , we find 











t

dssysptyy 0)()()()( ,                                         (1.2.27) 

and 





t

dssyspyty


 0)()()()( .                                                (1.2.28) 

By omitting the second terms in (1.2.27) and (1.2.28), and by using the increasing 

nature of y(t) and (1.2.26), we find 

)(
2

)(
2

)(
2

)()()( ty
c

ty
c

dssy
c

dssyspy
tt

 











.       (1.2.29) 

Thus 

y( ) ≥ )(
2

ty
c

 .                                                                                 (1.2.30) 

Also from (1.2.28), we conclude that 





t

y
c

dssyspty


 )(
2

)()()( , 

or 

)(
2

)(   y
c

ty .                                                                           (1.2.31) 
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Combining (1.2.30) and (1.2.31), gives 

)()
2

()(
2

)( 2   y
c

ty
c

y  ,                                                      (1.2.32) 

or 

2)
2

(
)(

)(

cy

y







.                       (1.2.33) 

But from (1.2.24) 

2

2 4
)

2
(

)(

)(
)(

ccy

y
ec k 







.                                                        (1.2.34) 

This contradicts (1.2.25). So the assumption of y(t) is eventually positive solution is not 

true. Therefore every solution  of equation (1.2.11) is oscillatory. 

By using parallel arguments we can prove (ii) and (iii) of the theorem. 

1.3 Some basic definitions, lemmas and theorems 

Definition 1.3.1: A function F is analytic at z0 if and only if there exist r>0, such that 

 zF exists for all ),( 0 rzBz , where  rzB ,0 is the ball centered at z0 and has radius =r. 

Definition 1.3.2: The function F has an isolated singular point at z=a if there exist, 

0R , such that F is analytic in    aRaB \, . 

Definition 1.3.3: The Laplace transform 

Let ),0[:x be a real valued function. The Laplace transform of x(t), denoted by            

)]([ txL  or X(s), is given by 

L[x(t)] = X(s) = 




0

)( dttxe st
                                                             (1.3.1) 
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X(s) is defined for all values of the complex variable s, for which the integral in (1.3.1) 

converges in the sense that: 






u

st

u
dttxe

0

)(lim    exists and is finite. 

Definition 1.3.4: Compact set 

A set K is said to be compact if whenever it is contained in the union of                 

a collection }{ GT  of open sets in  , then it is contained in the union of some finite 

number of sets in T . 

Definition 1.3.5: Locally integrable function 

A function is said to be locally integrable on an open set S in a finite dimensional 

Euclidean space if it is defined almost everywhere in S and has a finite integral on 

compact subset of S. 

Definition 1.3.6: Locally summable function 

 1L : All complex measurable functions f  on a set   such that  




df . The members of  1L  are called Lebesgue integrable (or summable) 

functions with respect to  . 

Remark 1.3.1: There exists 0  (possibly ≠ ∞),such that the integral in (1.3.1) 

converges for all s with Re s> 0 , and diverges for all s with Re s< 0 , 0  is called the 

abscissa of convergence  of X(s), where Re s is the real part of s. 

Lemma 1.3.1: Let ]),,0[[ Cx , and suppose that there exist positive constants M 

and   such that  

                  
tMetx )(  ,  for 0t , 



 14 

then the abscissa of convergence 0 of the Laplace transform X(s) of x(t) satisfies 

 0  . 

Furthermore, X(s) exists, and is an analytic function of s for Re s> 0 . 

Lemma 1.3.2: 

(i) Let ]),,0[[1 Cx , and let 0 , be the abscissa of convergence of the 

Laplace transform X(s) of x(t). Then the Laplace Transform of x'(t) has the 

same abscissa of convergence, and 




 

0

)0()()()]([ xssXdttxetxL st                                                      (1.3.2) 

for all s, with Re s> 0  

(ii) Let 

]),,0[[ Cx  

and let 0 , be the abscissa of convergence of the Laplace transform 

X(s) of x(t). Then the Laplace transform of the shift function x(t+ ) has the 

same abscissa of convergence, and 

 


 
0 0

)()()()]([


 dttxeesXedttxetxL stssst ,                       (1.3.3) 

for all s with Re s> 0  

Remark 1.3.2: It is well known that if  tx  satisfies   tMetx  , then the Laplace 

transform  sX  of  tx  which is given by (1.3.1) exists for sRe , M  and   are 

positive constants. 
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Theorem 1.3.1: Let  ]),,0[[ Cx , and assume that the abscissa of convergence 

0 of the Laplace transform X(s) of x(t) is finite, then X(s) has a singularity at the point 

0s , more precisely, there exist a sequence 

nnn iBS  , n=1,2,…. Such that 

0 n , for n≥1, 



n
nn

n
B 0lim,lim 0 , and  .)(lim 


sX

n
 

Proof: see[5]. 
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Chapter two 

Oscillation of linear advanced functional differential 

equations 

2.0 Introduction 

Our aim is to discuss oscillatory and nonoscillatory behavior of solutions of the 

first order functional differential equation 

      



n

i

ii ttytptytpty
1

))(()(  ,                                           (2-A) 

where 

  0tp ,   0tpi , and   0ti  are continuous and ni ,...,2,1 . 

In order to reach what will we hope, special cases for  tp ,  tpi  and  ti  are 

taken to obtain oscillation and nonoscillation criteria for all solutions of (2-A). 

In this chapter we present some of the oscillation results that recently have been 

obtained for this form of equations. 

In section 2.1 we introduce sufficient conditions for the oscillation of equation 

(2-A) with constant coefficients, single and several deviating arguments and   0tp . 

That is, we consider the following two equations: 

    tpyty , 

   



n

i

ii typty
1

 . 

In section 2.2 we study some oscillation results of equation (2-A) with variable 

coefficients, constant deviating arguments and   0tp . In section 2.3 we present 

oscillation criteria for the solutions of (2-A) with variable coefficients, variable 
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deviating arguments (with both several and single deviating arguments) and with 

  0tp . 

Finally section 2.4 concerns with the results of oscillation theorem of 

nonhomogeneous equations (with forcing terms). 

2.1. Equations with constant coefficients and constant advanced 

argument 

In this section we will consider equation (2-A) with the following assumptions: 

  0tp ,   0 ptpi ,   0 ti  and 1n                                 (2.1.1) 

so that equation (2-A) becomes 

    tpyty .                                                                                (2.1.2) 

Theorem 2.1.1: Assume that p and τ are positive numbers, and assume that 1ep , 

then equation (2.1.2) has a nonoscillatory solution. 

Proof: Let    ,tety   constant, be a solution of equation (2.1.2), then the 

characteristic equation of equation (2.1.2) will be 

   peF  .                                                                               (2.1.3) 

Observe that  

  00  pF , 

and 

0
111



















ep
peF . 

Hence, there exists a positive real number 












1
,0 , such that 

e
t
 is a nonoscillatory solutions of equation (2.1.2) 
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Corollary 2.1.1: If   0 ptp ,   0,   tt , then the condition 1ep is 

necessary and sufficient for all solutions of equation (2.1.2) to oscillate.  

Example 2.1.1: The equation:  

   1
3

1
 tyty , with ,

3

1
p  1  

has a nonoscillatory solution 

  tAety  , where A is any constant and λ is a constant satisfying the 

equation 

 e
3

1
 ,        )1,0( ,    6190615.0  

Remark 2.1.1: The oscillatory theory of differential equations with deviating 

argument present some new problems which are not present in the theory of 

corresponding ordinary differential equations. First order differential equations with 

deviating arguments can have oscillatory solutions while first order ordinary differential 

equations do not possess oscillatory solution. The following example explains this idea. 

Example 2.1.2: The ordinary differential equation 

 tyy  , 

has the non-oscillatory solution     

  tety  . 

The delay differential equation 

  









2

3
tyty , 

has both oscillatory solutions: 

  tty sin1  ,   tty cos2    and nonoscillatory solution 
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  t
ety 0 , 0  satisfies   

0
2

3

0






 e ,  277410633.00  . 

While all solutions of advanced differential equation 

  









2

3
tyty , 

are oscillatory by Corollary (2.1.1) (p=1, 
2

3
    and   1

2

3
 eep


 ). 

From remark (2.1.1), the nature of solution changes completely after the 

appearance of the deviating argument in the equation. 

It is important to discuss oscillatory and nonoscillatory behavior of solutions of 

equation (2-A) with  

  0tp ,   0 ii ptp ,   0 ii t  , ni ,...,2,1 . So we have the following form 

   



n

i

ii typty
1

 .                                                                         (2.1.4) 

The following results concerning oscillatory and nonoscillatory behavior of 

equation (2.1.4). 

Theorem 2.1.2: If   



n

i

i
iepF

1

00 00 ,                                                    (2.1.5) 

where 0  satisfies the equation 





n

i

ii
iep

1

10 .                                                                                  (2.1.6) 

Then all solutions of (2.1.4) oscillate. 

Proof: Let   tety   be a solution of equation (2.1.4), then the characteristic equation 

of (2.1.4) is  

  



n

i

i
iepF

1

0
 ,                                                                   (2.1.7) 
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and so 

  



n

i

ii
iepF

1

1
 ,                                                                      (2.1.8) 

and 

  



n

i

ii
iepF

1

2  .                                                                        (2.1.9) 

Thus  F  is concave down and has a maximum value. 

The relation (2.1.6), shows that  0F  is a maximum value. But since 

  00 F , then the characteristic equation has no real roots. 

Hence all solutions of equation (2.1.4) oscillate. 

Theorem 2.1.3: If there exist 

0iN   ,   



ni

iN
1

1     such that 

0ln1
1













n

i ii

i

i

i

p

NN


                                                                    (2.1.10) 

Then all solutions of (2.1.4) oscillate. 

Proof: Let 

  tety  , then 

  tety  , so 





n

i

i
iep

1

0
  .                                                                           (2.1.11) 

write 

  



n

i

i
iepF

1

 ,                                                                       (2.1.12) 

or 
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n

i

ii
iepNF

1

  .                                                                (2.1.13) 

let 

  iepNf iii

   ,                                                                      (2.1.14) 

thus 

     



n

i

ifF
1

 ,                                                                              (2.1.15) 

  iepNf iiii

 


.                                                                      (2.1.16) 

The extreme value of  if  is at  

ii

i

i p

N


 ln

1
    ,                                                                               (2.1.17) 

so  

max     
i

ii

i

i p

N

i

ii

i

i

i
i ep

p

NN
f



















ln

1

ln                                           (2.1.18) 









 1ln

ii

i

i

i

p

NN


 .                                                                          (2.1.19) 

And thus 

Max      











01lnmax
1 ii

i

i

i
n

i

i
p

NN
fF


 ,                                   (2.1.20) 

 so the maximum value of   F  is negative, which means that the characteristic 

equation of (2.1.4) has no real roots. Therefore, all solutions of (2.1.4) oscillate. 

Theorem (2.1.4): Each of the following conditions is sufficient for all solutions of 

equation (2.1.4) to be oscillatory. 

(i) 



n

i

ii
e

p
1

1
                                                                                   (2.1.21) 
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(ii) 
e

n

i
i

n

i

i

n

p
1

1 1

1





















                          (2.1.22) 

(iii) There exists some j, such that  





























 



ji

epp

p

jjii

ji

ji

ji

i

eepp   .            

Proof: The proof of this theorem follows by an application of Theorem (2.1.3), for the 

following choices of iN  

(i) 





n

i

ii

ii
i

p

p
N

1




 ,           ni ,......,2,1  

(ii) 





n

i

i

i
iN

1




 

(iii) 






jk

jjKK

ii
i

epp

p
N




 ,      ji    and 







jk

jjKK

jj

j
epp

ep
N




 

Example 2.1.3: The equation 

   


















e
ty

e
tyty

2

11

2

1
 ,                        (2.1.23) 

with 

2

1
1 p     ,   12 p    ,  

e

1
1       and  

e2

1
2  , 

satisfies 





2

1

1

2

1

2

1

i

ii
eee

p . 

So (2.1.23) doesn't satisfy condition (i) of Theorem (2.1.4), but 
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ee

ppp
i

i
i

i

1

22

3
2121

2

1

2

1
2

1

















 



 . 

Which satisfies condition (ii) of Theorem (2.1.4). So all solutions of (2.1.23) oscillate. 

Theorem 2.1.5: If   1max

1

max 




















i

ep
n

i

i ,                        (2.1.24) 

where   i maxmax  ,    ni ,...,2,1 ,  then (2.1.4) has a nonoscillatory solution. 

Proof: The characteristic equation of (2.1.4) is 

  



n

i

i
iepF

1

 . 

Obviously 

  



n

i

ipF
1

00 , 

and 











 n

i

i

i

epF
1maxmax

max
11 




. 

By using (2.1.24), we have 

0
1

max











F . 

Hence   0F , has a real root   









max

0

1
,0


 . 

This means (2.1.4) has a nonoscillatory solution 

  t
ety 0 . 

Example 2.1.4: The equation 

   
 



2
2

22 







 



tyaetyety a

a

,                       (2.1.25) 
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has the oscillatory solution 

  tety at sin , 95.00  a . Equation (2.1.25) satisfies condition (i) of Theorem (2.1.4). 

Example 2.1.5: The equation 

      91
10

1
 tyty

e
ty  .                        (2.1.26) 

This equation does not satisfy conditions (i) and (ii) of Theorem 2.1.4, but does satisfy 

condition (iii) of the same Theorem. In fact, set 
e

pp
10

1
21  , 11  , 92  , so 

  









10

9

10

1
lnln 2211

e
epp  , 

and 

eepp

p








1

1

21

1 . 

But 

ee 











1

1

10

9

10

1
ln . 

Therefore (2.1.26) satisfies condition (iii) of Theorem (2.1.4), hence all solutions 

of (2.1.26) oscillate. 

We also can connect the phenomena of oscillation of equation (2.1.4) with the 

roots of its characteristic equation by using the Laplace transform for the functions  ty  

and  ty respectively. 

The proof of the following result, will explain this idea. 

Theorem 2.1.6: Assume that ip , i , ni ,...,2,1 , then every solution of the 

linear advanced functional differential equation (2.1.4) oscillates if and only if the 

characteristic equation 



 25 





n

i

i
iep

1

0
 ,                          (2.1.27) 

has no real roots  

Proof: Assume that equation (2.1.27) has a real root 0 , then   00 
t

ety
  

is a nonoscillatory solution of equation (2.1.4) (contradiction). 

Assume equation (2.1.27) holds, and equation (2.1.4) has an eventually positive 

solution  ty . By the fact that if  ty  is a solution of  

      



n

i

ii ttytpty
1

0 , 

then  ty  is exponentially bounded, that is there exist positive constants M and  such 

that   tety  ,  so by Remark (1.3.2) the Laplace transform  

   



0

dttyesY st , 

exist for Re  s . Let 0 be the abscissa of convergence of  sY , that is 

  Y,inf{0   }exists  

Then for any ni ,...,2,1 , the Laplace transform of the shift function  ty , 

exists and has abscissa of convergence 0 . 

Also by Lemma 1.3.2 

       


 

0

0yssYdttye st
 , 0Re s , 

and 

      


 
0 0

i

ii dttyeesYedttye stss

i

st



 , 

with Re  0s  
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Therefore by taking the Laplace transform of both sides of (2.1.4), we obtain  

        


 













n

i

stss

i

i

ii dttyeesYepyssY
1 0

00




,                      (2.1.28) 

and so 

      
















n

i

sts

i

n

i

s

i

i

ii dttyeepyepssY
1 01

0




.                      (2.1.29) 

Set  

  



n

i

s

i
iepssF

1


 

and  

      



n

i

sts

i

i

i dttyeepys
1 0

0



 . 

Equation (2.1.29) becomes  

 
 
 sF

s
sY


 ,  Re s 0                          (2.1.30) 

Clearly,  sF  and  s  are entire functions.   0sF , for all real s . Since 

  0ty (by hypothesis), then  sY is positive.  sF  is negative since   F  

and the characteristic equation has no real roots. Claim that 

0 , 

otherwise, 

0 . 

And by Theorem (1.3.1), the point 0s  must be a singularity of the quotient 
 
 sF

s
. 

But this quotient has no singularity on the real axis, since  sF  is an entire 

function, and has no real roots. Thus  0 , and so 
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 sF

s
sY


  , for all Rs . 

As s , through real values, then  

 
 
 sF

s
sY


 , leads to a contradiction because  sY  is positive and  sF  is negative, 

while 

   0lim ys
t



 , 

which is eventually positive. The proof is complete. 

Theorem 2.1.7: Assume that 0ip  and 0i , ni ,...,2,1 . 

The following statements are equivalent: 

a)    



n

i

ii typty
0

0 ,                           (2.1.31) 

has a positive solution 

b) The characteristic equation  





n

i

i
iep

1

0
 ,                          (2.1.32) 

has a real root 

c) The advanced differential inequality  

   



n

i

ii typty
1

0 ,                         (2.1.33) 

has a positive solution 

Proof: See [5]. 
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2.2 Equations with variable coefficients and constant advanced 

argument. 

In this section, some sufficient conditions are established for the oscillation of 

all solutions of the advanced differential equation 

      0 tytpty , 0tt                             (2.2.1) 

Where the coefficient       ,,0tCtp , and  is a positive constant. 

The previous works for the studies of the oscillation of (2.2.1) are done by Ladas [5] 

and Stavroulakis [11]. They proved that all solutions of (2.2.1) oscillate if 

  0tp ,  





t

t
t e

dssp
1

inflim .                                                         (2.2.2) 

Recently, Li and Zhu [9] improved the above result to the following form. 

Theorem 2.2.1 [9]: Suppose that there exist a  01 tt , and a positive integer K, 

such that  

 
KK

e
tp

1
 ,  

KK
e

tq
1

 , Ktt  1 ,                          (2.2.3) 

   




 


















ktt

K

K dt
e

tpetp

1

1
1

exp 1 .                         (2.2.4) 

Then every solution of (2.2.1) oscillates. Here        ,0,,0tctp  and the sequences 

)}({ tpn , )}({ tqn of functions are defined as follows: 

   




t

t

dssptp1  

     




t

t

nn dsspsptp 1    2n ,  0tt                           (2.2.5) 
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t

t

dssptq


1   ,      0tt  

   




t

t

nn dssqsptq


)(1 ,         2n ,   ntt  0                         (2.2.6) 

Proof: see [9]. 

Remark 2.2.1: If     ,0ptp ,   then (2.2.3) reduces to 
e

p
1

  , which together 

with (2.2.4) indicates  
e

p
1

 , which is necessary and sufficient condition for (2.2.1) to 

have only oscillatory solutions. 

Corollary 2.2.1: If there exists a positive integer K such that  

 
KK

t e
tp

1
inflim 


,   

KK
t e

tq
1

inflim 


, 

where  tpK  ,  tqK  are defined by (2.2.5) and (2.2.6) respectively, then every solution 

of equation (2.2.1) oscillates. 

Corollary 2.2.2: Suppose that there exist a  01 tt  and a positive integer K such 

that (2.2.3) holds and  

   




 









Kt

k

K dt
e

tpetp

1

11 ,                                             (2.2.7) 

where  tpK  is defined by (2.2.5). Then every solution of equation (2.2.1) oscillates. 

Proof: Since xex 1 for all 0x , so (2.2.7) implies (2.2.4). Accordingly, Theorem 

(2.2.1) indicates the truth of the corollary. 

Example 2.2.1 [9]: Consider the following advanced differential equation 

        0sin1
2

1
 tyt

e
ty , 0t                                                (2.2.8) 
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Compared with (2.2.1), one has    t
e

tp sin1
2

1
 ,   . Clearly, 

   








t

t
t ee

dss
e

1
2

2

1
sin1

2

1
inflim , 

which implies that condition (2.2.2) does not hold. But  

     







t

t

t
e

dss
e

tp cos2
2

1
sin1

2

1
1  

        
 







 



t

t

t

t
e

tt
dss

e

s
dsspsptp

2

2

212
4

sin4cos2
cos2

4

sin1

 

         
 






 


t

t

t

t

dssss
e

s
dsspsptp sin4cos2sin1

8

sin1 2

323  

    tt
e

sin4cos822
8

1 23

3
   

         
 






 


t

t

t

t

dsss
e

s
dsspsptp sin4cos822

16

sin1 23

434  

    tt
e

sin44cos624
16

1 2324

4
   

     
4

222324

44
16

22
44624

16

1
inflim

ee
tp

t











 , 

and 

     




t

t

t
e

dss
e

tq


 cos2
2

1
sin1

2

1
1  

          
 






t

t

t

t

tt
e

dss
e

s
dssqsptq

 

 sin4cos2
4

1
cos2

4

sin1 2

2212

 

        
 






t

t

t

t

dsss
e

s
dssqsptq

 

 sin4cos2
8

sin1 2

323  
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  tt
e

sin4cos822
8

1 23

3
   

         
 






t

t

t

t

dsss
e

s
dssqsptq

 

 sin4cos822
16

sin1 23

434  

    tt
e

sin44cos624
16

1 2324

4
   

     
4

222324

44
16

22
44624

16

1
inflim

ee
tq

t











 . 

Hence by corollary (2.2.1) every solution of (2.2.8) oscillates. 

Now let us generalize the result above to the differential equation with several 

advanced arguments. 

     



n

i

ii tytpty
1

0 ,     0tt                                             (2.2.9) 

where  tp ,        ,0,,0tCtpi  , i  are positive constants, ni ,...,2,1 . 

First, define the sequence )}({ tpm

i  and )}({ tqm

i of functions for some ni ,...,2,1  as 

follows 

    



it

t

ii dssptp



1 ,     0tt   

       



it

t

iii dsspsptp



12 , 0tt   

. 

. 

. 

       



it

t

m

ii

m

i dsspsptp



1 ,  2m ,  0tt                               (2.2.10) 

and 
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t

t

ii

i

dssptq


1 ,     itt  0  

       




t

t

iii

i

dssqsptq


12 ,     itt 20   

. 

. 

. 

       




t

t

m

ii

m

i

i

dssqsptq


1 ,     2m ,   imtt  0                       (2.2.11) 

X. Li and Deming Zhu [9] used the above sequences to introduce oscillation criteria for 

equation (2.2.9), which appears in the following result. 

Theorem 2.2.2 [9]: Suppose that for some },...,2,1{ ni there exist a itt  01  and  

a positive integer m such that  

  
m

m

i
e

tp
1

 ,     
m

m

i
e

tq
1

 ,  imtt  1                       (2.2.12) 

and 

    




 


















imt

m

i

m

i dt
e

tpetp
1

1
1

exp 1                        (2.2.13) 

Where   tp m

i  and   tq m

i  are defined by (2.2.10) and (2.2.11) respectively. Then every 

solution of equation (2.2.9) oscillates. 

Proof: see [9]. 

Corollary 2.2.3: If for some },...,2,1{ ni there exist a positive integer m such that 

  
m

m

i
t e

tp
1

inflim 


,    
m

m

i
t e

tq
1

inflim 


                       (2.2.14) 

Where   tp m

i  and   tq m

i  are defined by (2.2.10) and (2.2.11), respectively, then every 

solution of (2.2.9) is oscillatory. 
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Proof: Condition (2.2.14) holding implies that so do conditions (2.2.12) and (2.2.13). 

Thus, by Theorem (2.2.2), the conclusion is true and the proof is finished. 

Corollary 2.2.4: If for some },...,2,1{ ni there exist a itt  01  and a positive 

integer K  such that (2.2.12) holds and 

    




 









iKt

k

i

k

i dt
e

tpetp
1

11  ,                    (2.2.15) 

where  K

ip  is defined by (2.2.10), then every solution of equation (2.2.9) oscillates. 

Proof: According to xex 1  for all 0x , and by the condition (2.2.15) implies that 

(2.2.13) will be satisfied. Therefore, Theorem (2.2.2) shows that the claim is true. 

Example 2.2.2 [9]: Consider the advanced differential equation 

        0
2

sin1
2

1
cos1

2

1












 tyt
e

tyt
e

ty                   (2.2.16) 

Rewriting this equation in form of equation (2.2.9), then  

     t
e

tp cos1
2

1
1  ,    t

e
tp sin1

2

1
2   

 1 ,  
2

2


   

For this equation the conclusion in Laddas and Stavroulakis are not suitable since the 

condition (2.2.2) does not satisfied: 

      
 




1
1

2
2

1
cos1

2

1
infliminflim 1

 



t

t

t

t
tt ee

dss
e

dssp , 

and  

    










2 2

2

1

2

2
2sin1

2

1
infliminflim


 

t

t

t

t
tt ee

dss
e

dssp . 
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While  

        t
e

dss
e

dssptp

t

t

t

t

sin2
2

1
cos1

2

1
1

1

1

1  





 

         
22

1
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1
4

cos4sin2
sin2

4

cos1
2

1
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tt
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dsspsptp
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t

t

t

t
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s
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8
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3
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1
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8
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cos1 23
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e
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4
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 , 

and 
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e
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e
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t
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t
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1
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1
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1
4
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3
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t

t

t

t

dsss
e
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dssqsptq
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e
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 . 

It follows from corollary (2.2.3) that every solution of equation (2.2.16) is 

oscillatory. 

Since equation (2.2.1) is a linear differential equation, if it has eventually 

positive solution, then it also has eventually negative solution, that is, it has 

nonoscillatory solutions. Thus, in order to study the nonoscillation of (2.2.1), it suffices 

to consider the existence of eventually positive solution of (2.2.1). 

 All previous work of Ladas, Stavroulakis [11] and Li and  Zhu [9], are under the 

assumption that the coefficient  tp  has constant sign, that is,   ]),,[ 0

 tCtp . 

These investigations, in general make use of the observation that if  ty is an eventually 

positive solution of (2.2.1), then  

      0 tytpty , 

for all large t , so that  ty  is eventually nondecreasing. However, when the coefficient 

 tp is oscillatory, that is,  tp  takes positive and negative values, the monotonicity 

does not hold any longer. All known results cannot be applied to the case where  tp  is 

oscillatory. The following result gives necessary conditions for oscillation of equation 

(2.2.1) when  tp  is an oscillatory function. 
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Theorem 2.2.3 [10]: Let 

1}{ nna and 

1}{ nnb be two sequence in   ,0t , satisfying 

 22 1  nnn aba                                            (2.2.17) 

Assume that 

  0tp , for ],[1 nnn bat 

                         (2.2.18) 

Define function  tP as follows 

 
 



 






otherwise

battp
tP nnn

,0

],[, 1 
                         (2.2.19) 

If 

      

























  



 

dtdssPsigndssPetP
t

t

t

t

t0

1ln
 

                      (2.2.20) 

then every solution of (2.2.1) is oscillatory. 

Proof: see [10]. 

Remark 2.2.1: The function sign (.) is the signum function, that is: 

 






















0,1

0,0

0,1

r

r

r

rsign  

Example 2.2.1 [10]: As an application of Theorem (2.2.3), we consider the 

oscillation of the following equation 

      01  tytpty ,     0t ,                                   (2.2.21) 

where 1  and the function  tp is 6-periodic one with 
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Obviously 
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Therefore, the result of Ladas and Stavroulakis (equation (2.2.2)) cannot be applied to 

(2.2.21). But if we denote. 

 162  nan     , nbn 6   , 1n    

Then clearly   ,0, nn ba  

 22 1  nnn aba  ,   ,...2,1n                                  (2.2.23) 

and   0tp  for ],[1 nnn bat 
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which means that, 
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So by Theorem (2.2.2), every solution of (2.2.21) is oscillatory. 

2.3 Equations with variable coefficients and variable advanced 

argument 

In this section we will study the behavior of oscillatory solutions of the 

advanced differential equation (2-A) 

          



n

i

ii ttytptytpty
1

 ,                          (2.3.1) 

where 

  0tp ,   0tpi  ,  and    0ti  , are continuous,  ni ,...,2,1 . 

 Before studying the general form (2.3.1), let us take special cases: 

Let   0tp  , 1n , then (2.3.1) becomes. 
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       0 ttytpty     ,        0t                                  (2.3.2) 

First, we will introduce the following result for the advanced inequality 

         0sgn  tytptyty  ,                                        (2.3.3) 

where 

    ],[,  Cttp  , and   tt                                  (2.3.4) 

Theorem 2.3.1: If (2.3.4) holds and 
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dssp
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)(lim ,                                     (2.3.5) 

then all solutions of (2.3.3) are oscillatory. 

Proof: Assume that there exists an eventually positive solution  ty  of (2.3.3). From 

(2.3.5), there exists a 12 tt  such that 
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t

ecdssp



1 ,    2tt   

and   0ty ,    0 ty  for 2tt  . Hence, 

         tytptytpty  )( ,         2tt  . 

Dividing by  ty  and integrating from t    to   t   we obtain: 
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which is equivalent to 
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for 2tt  . Repeating the above procedure, there exists a sequence  kt  such that. 
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this implies that 

 
 


 ty

ty

t

)(
lim


. 

On the other hand, using the argument in the proof of Theorem (1.2.1), we can get 

 
 

2
2)(










cty

ty 
, 

for large t , this leads to a contradiction. Thus all solutions of (2.3.3) are oscillatory. 

The following examples illustrate the sharpness of conditions of Theorem 2.3.1. 

Example 2.3.1: Consider the equation. 

 
 

  02
2ln

2
 ty

te
ty  ,   00  tt .                         (2.3.6) 

Here 

 
 

0
2ln
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te
tp    ,    tt 2 , and therefore  
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2ln
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. 

So all solutions of (2.3.6) are oscillatory. 

Example 2.3.2: Consider the equation 
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2ln

1
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te
ty ,                           (2.3.7) 

where 

 
 

0
2ln
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te
tp ,      tt 2 . 

Then  
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Consequently, (2.3.7) does not satisfy the conditions of Theorem (2.3.1), and therefore 

(2.3.7) has the non-oscillatory solution 

  tty    ,    
2ln

1
  . 

In the following result, we establish the asymptotic behavior of solutions of (2.3.2). 

Theorem 2.3.2: Assume that   0tp , and 

 





t

t
t

dssp 1lim .                            (2.3.8) 

Then the amplitude of every oscillatory solution of (2.3.2) tends to    as   t . 

Proof: Let  ty  be an oscillatory solution of (2.3.2).  

Then there exists a sequence  nt ,  ,...2,1n  of zeros of   ty with the property that 

 nn tt 1   and     0ty      on   1, nn tt    for   ,...2,1n    

Setting    )(max
1

tyS
nn tttn  , ,...2,1n , we see that 

)( nn yS  , for some     1,  nnn tt    and    0
ny   

Hence 

  0 ny . 

Let 

    nnn t ,min 1 ,           ,...2,1n   . 

Integrating (2.3.2) from n  to n  we get, 

      sdsyspy
n

n
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Hence 
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Which yields, 
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dsspssS nnn 1,max .                           (2.3.9) 

From (2.3.8), we have 

 









n

n

dssp 1 , 

for sufficiently large n , say Nn  . From (2.3.9), 1 nn ss  is impossible. Therefore 

1 nn ss . 

This implies that. 

N

Nn

nnn SSSS

1

1

2

1

1
.....

11


 



















 ,    Nn  . 

Letting n , we get 




n
s

Slim ,  and the proof is complete. 

Remark 2.3.1: Condition (2.3.8) guarantees that the amplitude of every oscillatory 

solution tends to infinity. But it is possible that the equation has a bounded non-

oscillatory solution even though condition (2.3.8) holds. 

The following example explains Remark 2.3.1. 

Example 2.3.3: The equation 

   1





ty
ee

N
ty

NNt
,                         (2.3.10) 

satisfies condition (2.3.8), but it has the bounded non-oscillatory solution 
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   NteAty  1 , 

where N  is a positive integer and A  is any constant. 

Now we introduce the following result for the advanced equation 

     )(tytpty  ,                               (2.3.11) 

where 

  0tp   ,    tt      are continuous. 

Theorem 2.3.3: If   
 

 


t

t
t

dssp



1lim ,                                                        (2.3.12) 

and  t  is nondecreasing with   


t
t

lim ,then every solution of (2.3.11) is 

oscillatory. 

Proof: Without loss of generality, let   0ty  be a nonoscillatory solution of (2.3.11) 

such that 

  0)( ty   ,   1tt  . Integrating (2.3.11) from  t  to   t , we have  

       
 

0)()(  
t

t

dssysptyty



 , 

or equivalently 
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t

dssptyty



 1)(  .                                                      (2.3.13) 

From (2.3.13) and  
 

1
t

t

dssp



, when t  is sufficiently large, therefore (2.3.13) is a 

contradiction. The proof is complete. 

 We can obtain the following results by utilizing the ideas of section 1.2. We 

shall merely state the following results and omit the proof. 
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Theorem 2.3.4: If    
 

e
dssp

t

t
t

1
lim  





, 

then (2.3.11) has a non-oscillatory solution. 

 We shall now try to extend the above results to the case of a more complicated 

advanced argument. Consider 

     ))(,( tytytpty   ,                                            (2.3.14) 

where 

],[  Cp , ],[  C ,   is nondecreasing in t  for fixed v  and   tvt  ,  

and     21 ,, vtvt    for  12 vv  ,  021 vv . 

Corollary 2.3.1: In addition to the above conditions if 

 
 










,

1lim

t

t
t

edssp   , for any                                                     (2.3.15) 

then all solutions of (2.3.14) oscillate. 

Proof: Without loss of generality, assume that there exists a positive solution   0ty  

for  01 ttt  , then    0 ty    and hence 

     1tyty ,     ,)(, ttyt  . 

 Thus 

     ),( tytpty  , 

which contradicts Theorem 2.3.1 

Example 2.3.4: Consider the equation 

   )(2 tytytty   ,                         (2.3.16) 

where        2, vtvt       ,     ttp  , (2.3.16) satisfies the conditions of corollary 

(2.3.1). Therefore all solutions of (2.3.16) oscillate. 
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 Let us present another form of advanced differential equation. 

Consider the advanced differential equation 

      0)(  ttytpty  ,                         (2.3.17) 

where      0tp   and     0t   are continuous. 

Theorem 2.3.5: Assume that 

 
 






tt

t
t

dssp



lim ,                                      (2.3.18) 

exists, then (2.3.17) has a bounded nonoscillatory solution. 

Proof: see [8] 

Example 2.3.5 [8]: The equation  

    01
2

3
 tyty


 ,                                          (2.3.19) 

satisfies the conditions of Theorem (2.3.5), so (2.3.19) has a bounded solution, which is 

  stAety  , 

where A is any constant, and s is a root of the equation    0
2

3
 ses


   2931.1s . 

Also (2.3.19) has the oscillatory solution 

  ttty
2

3
sin

2

3
cos


 . 

Back to equation (2.3.1) with   0tp , then we have the advanced equation with 

several deviating arguments 

      



n

i

ii ttytpty
1

 ,                                                               (2.3.20) 

where   0tpi and   0ti  are continues, ni ,...,2,1 . 
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Theorem 2.3.6: If for some ni ,...,2,1 , either 
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, 

then all solutions of (2.3.20) oscillate, where  

       },.....,,min{ 21min tttt n   

Proof: Without loss of generality, assume that there exists a positive nonoscillatory 

solution   0ty , for 0tt  . This implies that there exists a 1t such that    0 tty i  

for 1tt  ,  nIi . From (2.3.20) we have 

       0
1

 


n

i

ii ttytpty  ,                                               (2.3.21) 

and 

       0
1

min  


n

i

i tpttyty   .                                     (2.3.22) 

Comparing (2.3.21) and (2.3.22), we obtain a contradiction to Theorem (1.2.1) 

and the proof is complete. 

Also Kordonis and Philos [7] gave a nice result for the advanced differential equation 

       0 
Jj

jj ttytpty  ,                         (2.3.23) 

where J is an (nonempty) initial segment of natural numbers and for Jj , jp  and 

j are nonnegative continuous real-valued functions on the interval  ,0 . The set 

J may finite or infinite. 
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The result of Kordonis and Philos is the following Theorem. 

Now we are able to discuss oscillatory and non-oscillatory behavior of solutions 

of equation (2-A) which is: 

         



n

i

ii ttytptytpty
1

)( ,                        (2.3.24) 

where 

  0tp ,    0tpi , and   0ti    are continuous,  ni ,...,2,1  

 The discussion will be done by transforming (2.3.24) to the form of that of 

equation (2.3.20) with satisfaction of the conditions of Theorem (2.3.6), on the resulting 

equation after transformation. To do that, let 
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But from (2.3.25) 
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Therefore (2.3.26) will be of the form 
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where 
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                         (2.3.28) 

 Equation (2.3.27) is of the form of (2.3.20). We see that the transformation 

(2.3.25) preserves oscillation. Therefore we can apply the above results with respect to 

(2.3.20) to equation (2.3.24). For example we have the following Theorem. 

Theorem 2.3.7: If any one of the following conditions holds 

1.  
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and  tqi   satisfies the condition 
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, where      },...,max{ 1max ttt n  . 

Then all solutions of (2.3.24) oscillate, where  tqi  is defined by (2.3.28) 

Example 2.3.6: Consider the advanced differential equation 
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Here   1tp ,   21 tp ,     132  tptp , and  
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Equation (2.3.29) satisfies any one of the conditions of Theorem (2.3.7) for example, for 

condition (1): 
e

edte

t

t
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1
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22 









 . Similarly we can make sure for the rest of the 

conditions. So by Theorem (2.3.7) all solutions of equation (2.3.29) oscillate. In fact 

  tty sin  is a solution of equation (2.3.29). 
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2.4. Equations with forcing terms 

 In this section we want to discuss oscillation of solution of the non-

homogeneous advanced differential equation 

       



n

i

ii tqttytpty
1

)( ,               (2.4.1) 

where      0, tptq i   and    0ti   are continuous,   ni ,...,2,1 .                        (2.4.2) 

The following Theorem gives the main result of  oscillation of equation (2.4.1). 

Theorem 2.4.1:  Assume that 

(i) (2.4.2) holds. 

(ii) There exists a function  tQ  and two constants 1q , 2q  and sequences  mt ,  mt   such 

that   

   tqtQ  ,   1qtQ m     ,   2qtQ m  ,  
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tlim  and    21 qtQq   for 

0t . 
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where 

        tttt n ,.....,,min 21min   



 51 

Then every solution of equation (2.4.1) oscillates. 

Proof: Let  ty  be a non-oscillatory solution of (2.4.1) such that 

   0ty ,   0)(  tty i  , for 1tt   and let 

     tQtytx  , 

 

then  

     tQtytx  , 

    0)(
1




n
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ii ttytp  ,     for  1tt  . 

Suppose 

  01  qtx ,   for 12 ttt  , 

since 

      0 tytQtx , 
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     mmm tytQtx     ,  2ttm   

this is a contradiction. So 

  01  qtx   ,    for all  2tt  . 

Let 
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That is  
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has an eventually positive solution. But it is impossible according to condition (iii). The 

proof is complete. 

Example 2.4.1: Consider the diffrerential equation 
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So by Theorem (2.4.1) all solutions of equation (2.4.6) oscillate. In fact  

  tty sin   is a solution of (2.4.6). 
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Example 2.4.2: Consider the equation  

  ttytyty cos
2

3

2





















.                                                (2.4.7) 

By applying Theorem (2.4.1) on equation (2.4.7) all conditions of the theorem are 

satisfied, so all solutions of equation (2.4.7) are oscillatory. In fact  

  tty sin   is a solution of (2.4.7). 
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Chapter Three 

Oscillatory and nonoscillatory solutions of first order nonlinear 

advanced differential equations 

3.0 Introduction: 

 In this chapter we will discuss oscillatory and nonoscillatory behavior of 

solutions of the first order nonlinear advanced differential equation 

       



n

i

iii tyftpty
1

0))(( ,                                      (3-A) 

where 

  ],[  Ctpi , with    0tpi ; nIi ,    ],[  ti ,   tti   

],[ Cf . 

 This chapter contains two sections. In section 3.1 we introduce sufficient 

conditions for the oscillation of equation (3-A) when 1n . 

 In section 3.2 we study some oscillatory results for equation (3-A) with several 

deviating arguments. 

3.1 Oscillation of first order nonlinear homogeneous advanced 

differential equations 

Consider the equation 

      ))(( tyftpty  .                                                                      (3.1.1) 

We have the following result. 

Theorem 3.1.1: If 

(i)   ],[  Ct ,   tt   for  t ,  t  is strictly increasing on  . 

(ii)  tp  is locally integrable and    0tp , almost everywhere. 
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(iii)   0uuf  for 0u ,  ],[ f ,  uf  is nondecreasing in u , 
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and if 
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Then every solution of (3.1.1) oscillates. 

Proof: Let  ty  be a nonoscillatory solution of (3.1.1), without loss generality, assume 

that    0ty  for )(0

 ttt  . Then 

        0)((  tyftpty  ,  for  0tt  . Thus  ty is nondecreasing. 

From (3.1.1), it follows that 
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for sufficiently large t . Therefore  
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 This is a contradiction to condition (3.1.3). Therefore  ty  is oscillatory . 

Now we present a result concerning the asymptotic behavior of the equation  

       ttyftpty  ,                                                                 (3.1.4) 

Theorem 3.1.2: Assume that equation (3.1.4) satisfies the following conditions: 

p , ],[  C ,   0tp , ],[ Cf  

  qt 0 , and   0yyf  for 0y . 

If  

 


dttp . 

Then all nonoscillatory solutions of (3.1.4) tend to  as t . 

Proof: Let   0ty be a nonoscillatory solution of (3.1.4) for sufficiently large t . Then 

  0 ty , and so  ty  is nondecreasing. 

Claim that   


cty
t
lim ,                                                                                (3.1.5) 

otherwise c , and then there exists a 0ttt   such that  

    0 kttyf   for tt  and   0 kcf . 

Thus  

          0 ktpttyftpty  .                                               

That is, 

      0 tkpty .                                                                              (3.1.6) 

Integrating (3.1.6) from t  to t yields 
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Hence  ty will become negative for sufficiently large t . This is a contradiction 

to the fact that   0ty . Therefore c , which completes the proof. 

Theorem 3.1.3: Assume that the hypothesis of Theorem (3.1.1) hold except that the 

relation (3.1.3) is replaced by 
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Then every solution of (3.1.1) oscillates. 

Proof: Assume that there is a nonoscillatory solution   0ty ,    0ty  for 

00  tt . So   0 ty and hence   ty as t (by Theorem (3.1.2)). There exists 

a   ttt ,  such that 

   





t

t
e

M
dssp

2
 and  

 






t

t
e

M
dssp



2
.                                                 (3.1.8) 

Now integrating (3.1.1) from t  to t yields 
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which implies  
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Setting  
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l  is finite because of (3.1.10). From (3.1.1) we have  
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where  tt   . Taking the limit inferior in equation (3.1.11), we obtain 
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This is a contradiction because (3.1.8) hold, which completes the proof. 
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Example 3.1.1: Consider the nonlinear advanced differential equation 
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 , 1  .                                                          (3.1.12) 

Note that  

  
  

t
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ds
se





2

ln
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,  

and 

  
 

1lim 
 yf
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M

y
. 

Therefore (3.1.12) satisfies the conditions of Theorem (3.1.3), so all solutions of 

(3.1.12) oscillate. 

While the equation 
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ln

1
  , 1 ,                                                          (3.1.13) 

does not satisfy the conditions of Theorem (3.1.3). In fact (3.1.13) has the 

nonoscillatory solution 

  mtty  , 
ln

1
m . 
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3.2 Nonlinear advanced differential equations with several deviating 

arguments 

Consider the advanced nonlinear differential equation 

       



n

i

iii tyftpty
1

 ,                                                                 (3.2.1) 

where  

  0tpi ,   tti  , ni ,...,2,1 , are continuous. For oscillatory solutions of (3.2.1) we 

have the following result. 

Theorem 3.2.1: If   0uufi for 0u ,  ufi in nondecreasing in u , 
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,  ni ,...,2,1 ,                                                     (3.2.2)   

And if 
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lim ,                                                                (3.2.3) 

where },....,,max{ 21 nMMMM  ,  and       },.....,min{ 1 ttt n  . 

Then every solution of (3.2.1) oscillates. 

Proof: Let  ty be a nonoscillatory solution of (3.2.1). Without loss of generally 

assume that   0ty . So   0 ty  and thus  ty  is nondecreasing and   ty as 

t  (as in the proof of Theorem (3.1.2)). From (3.2.1), we have 
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This is a contradiction to condition (3.2.3). Therefore   0ty  is an oscillatory solution 

of (3.2.1). 

Now let us introduce the oscillation criteria of the first order nonlinear advanced 

differential inequalities  

               0,...,1  ttyttyftptytaty m ,                      (3.2.4) 

               0,...,1  ttyttyftptytaty m ,                      (3.2.5) 

and equation 

               0,...,1  ttyttyftptytaty m .                      (3.2.6) 

For these we have the following result. 

Theorem 3.2.2: Assume that p , ],[  Ci ,   0tp ,   0ti , mi ,...,2,1 , 

],[  Ca , and f satisfies: 

],[  mCf ,   myyyfy ,...,, 211  0 . Furthermore , assume that: 
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kdssa
i

inflim , mi ,...,2,1 ,                                    (3.2.7) 
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where ik , and there exist nonnegative numbers  k  and  j , mj ,...,2,1  such that 
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1 ,  0k  
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mn sssksssf
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21

2121  ,                                                   (3.2.8) 

for all ms  , and 
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dssp


1
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where 

ik

mi
ec




1
min and     )(),...,(min 1 ttt m  . 

 Then (3.2.4) has no eventually positive solution, (3.2.5) has no eventually 

negative solution, and every solution of (3.2.6) is oscillatory. 

Proof: See [8]. 

Example 3.2.1: The equation  
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3 3

23
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tytyty ,                                              (3.2.10) 

note that   0ta ,   3tp , 
2

1


  ,  22  , 

3

1
1  , 

3

2
2  , and  
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  t , so 
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t

t
t

ds , and 1min  ik
ec .  

So equation (3.2.10) satisfies the conditions of Theorem (3.2.2), so every 

solution of (3.2.10) is oscillatory. In fact, the functions    tty 3

1 cos ,    tty 3

2 sin  

are oscillatory solutions of (3.2.10). 
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Theorem 3.2.3 [8]: If    0ta  in Theorem (3.2.2), then (3.2.7), (3.2.8) and (3.2.9) 

can be replaced by the condition 
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where 
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 ,                                                           (3.2.12) 

and the conclusion of theorem (3.2.2) remains valid. 

Example 3.2.2: Consider the advanced type differential inequality 
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1
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  tytyetyety tt ,                                (3.2.13) 

It does not satisfy conditions of Theorem (3.2.3), since  
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In fact (3.2.13) has the positive solution   tety 2 .  

 Another kind of advanced nonlinear differential equations, consider the 

equation: 

     ))(()),...,((, 1 tytytfty m ,                                                     (3.2.14) 

where ],[   mCf ,   tti  on t and   ],[  Cti , mIi . 
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Theorem 3.2.4: Assume that there exists a function ],[  Ca such that 

      ,sgn,...,, 001 ytayyytf m                                                           (3.2.15) 

for 0t , 0yyi  , 00 yyi , mi ...,2,1 , and  
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t e

dssa


1

lim ,                                                                           (3.2.16) 

where      },...,min{ 1 ttt m  . Then every solution of (3.2.14) is oscillatory. 

Proof: Assume that  ty  is a nonoscillatory solution of (3.2.14). Without loss of 

generality, assume that   0ty , then from (3.2.14) and (3.2.15), we obtain a first order 

advanced differential inequality 

       0
 tytaty  ,                                                                     (3.2.17) 

this implies that (3.2.17) has a positive solution  ty . On the other hand, from Theorem 

(2.3.1), equation (3.2.17) has no eventually positive solution under condition (3.2.16). 

this contradiction completes the Proof. 

Example 3.2.3: Consider the advanced nonlinear differential equation 

 
 

     tytyty
te

ty 432
2ln

2 3131 ,                                              (3.2.18) 

which satisfies condition (3.2.15), and 

    

t

t
ee

dssa

2
12

. 

Then all solution of (3.2.18) oscillate. 
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Theorem 3.2.5: Assume that there exists a function  ta  such that ],[  Ca  and  

    001 sgn,...,,0 ytayyytf m  ,                                                   (3.2.19) 

on t , 0yyi  , 00 yyi , mi ,...,2,1  and  

 
 








t

t
t e

dssa


1

suplim ,                                                                     (3.2.20) 

where      },...,max{ 1 ttt m  . Then equation (3.2.14) has a nonoscillatory solution.  

Proof: see [8]. 

Now we shall present sufficient conditions for the existence of  nonoscillatory 

solutions of the nonlinear advanced differential equation:  

          
n

i

mii tytyftqty  ,...,1 ,                                              (3.2.21) 

where 

(i)  ],,[[,  aCq ji  ,   0tqi and   


tj
t

lim , ni ,...,2,1  and mj ,...,2,1  and 

there is at least one iq which is different from zero. 

(ii) ],[  m

i Cf , if is nondecreasing with respect to every element, and  

  0,...,11 mi uufu  as 01 juu , mj ,...,2,1 . 

Theorem 3.2.6 : Let conditions (i) and (ii) hold. If 

   





n

i

i dttq
1

.                                                                              (3.2.22) 

Then equation (3.2.21) has a nonoscillatory solution. 

Proof: see [8]. 
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Example 3.2.4: Consider the equation 
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1 2 tytye
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so by Theorem (3.2.6), equation (3.2.23) should have a nonoscillatory solution.We see 

that   te
e
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1
,   11  tt ,  

2

1
2  tt  and  
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 In fact   2
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ety   is such a solution of (3.2.23). 
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Chapter Four 

Oscillation of solutions of Special Kinds of differential 

equations 

4.0 Introduction 

In this chapter we will study oscillation criteria for three Kinds of differential 

equations, impulsive differential equations with advanced argument, mixed type 

differential equations and an equation of alternately advanced and retarded argument.  

Section 4.1 introduces sufficient conditions for the oscillation of the first order 

impulsive differential equation with advanced argument: 

  

     

     
















 Nktybtyty

tttytpty

kkkk

k

,

,

                                                             4-A 

where  

......0 10  kttt  are fixed points with 


k
k

tlim  

  }1{kb , ,...}2,1{Nk  

  ,[ ,0tp  is locally summable function and 0 is constant. 

Section 4.2 deals with oscillation of the mixed type equation 

            021  tytatytaty  , 0tt                                             4-B 

with nonnegative coefficients   2,1, itai , one delayed argument   tt   and one 

advanced argument   tt  . 

Section 4.3 concerns with oscillations in one equation of alternately advanced and 

retarded argument. 
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4.1 Impulsive differential equations with advanced argument 

Some times it is necessary to deal with phenomena of an impulsive nature, for 

example, voltage or forces of large magnitude that act over very short time intervals. 

 The purpose of this section is to study oscillation and nonoscillation of the 

solutions of impulsive differential equations with advanced argument. Let 

}...,3,2,1{N . Consider the impulsive differential equation with an advanced argument 

     

     
















 Nktybtyty

tttytpty

kkkk

k

,

,

                                                         (4.1.1) 

under the following hypothesis: 

(A1) ......0 10  kttt  are fixed points with 


k
k

tlim ; 

(A2)   ,,[ 0tp  is locally summable function, 0 is constant; 

(A3)     ,11, kb  are constants for Nk . 

Definition 4.1.1: A function   ,,[ 0ty  is said to be a solution of equation 

(4.1.1) on  ,0t if the following conditions are satisfied: 

(i)  ty  is absolutely continuous on each interval  1, kk tt , Nk , and  10 ,tt ; 

(ii) for any   ,0ttk ,  kty  and  kty  exists and    kk tyty  , Nk ; 

(iii) for ktt  , Nk ,  ty  satisfies       tytpty  almost everywhere and for each 

ktt  ,      kkkk tybtyty  , Nk . 

Definition 4.1.2: A solution of (4.1.1) is said to be nonoscillatory if it is either 

eventually positive or eventually negative. Otherwise, it is called oscillatory. 
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Bainov and Dimitrova [1] established the following results for oscillation of solutions of 

(4.1.1), under the assumption that    ,0[,,[ 0tCp , 0 , and }{ kt satisfies (A1). 

They introduced the following conditions: 

(H1) 10 t  

(H2) There exists a positive constant T  such that Ttt kk 1 , Nk . 

(H3) There exists a constant 0M  such that for any Nk the inequality kbM 0 is 

valid 

Theorem 4.1.1 [1]: Suppose that 

(a) Conditions (H1) and (H2) hold. 

(b)     1]1sup[lim  




k

k

t

t

k
k

dsspb


. 

Then all solutions of (4.1.1) are oscillatory. 

Proof: let  ty  be a nonoscillatory solution of (4.1.1). Without loss of generality 

assume that   0ty  for 00  tt . Then   0ty  for 0tt  . From (4.1.1), it follows 

that  ty  is nondecreasing in    ],[, 10 




 ii

ki
k tttt , where 10  kk ttt . 

Integrate (4.1.1) from it  to  1 kiti  we obtain 

         



i

i

t

t

ii dssysptyty
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iii dssysptytyty


 0                                    (4.1.2) 

Since  

         ,1010 iiiii tybtybty                                         (4.1.3) 

then (4.1.2) and (4.1.3) yield the inequality  

          .011 
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i

t

t

iii dsspbtyty


                                       (4.1.4) 
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Inequality (4.1.4) is valid only if  

     





i

i

t

t

i
i

dsspb


11suplim , which contradicts condition (b) of the 

theorem. So the proof is complete. 

Together with (4.1.1), consider the differential equation with an advanced argument 

   
     

      
















0,1 tttpbtP

txtPtx

k
ttt k 


                                                    (4.1.5) 

Assume that a product equals to unit if the numbers of factors is equal to zero. 

Theorem 4.1.2 [12]: Assume that (A1)-(A3) hold. Then all solutions of (4.1.1) are 

oscillatory if and only if all solutions of (4.1.5) are oscillatory. 

Proof: see [12]. 

Jurang Yan [12] also established the following results for equation (4.1.1). He also used 

the following condition: 

(A4)      ,0,,0tp  is locally summable function and 0 is constant. 

Theorem 4.1.3 [12]: Assume that (A1)-(A3) hold and there exists a sequence of 

intervals  },,{ nn  such that 


n
n

lim  and   nn for all 1 Nn . If   0tp  for 

all  nn
Nn

t  ,




   and 

    11suplim 








t

t

k
stst

dsspb
k

, for   



nn

Nn

t , ,                 (4.1.6) 

then all solutions of (4.1.1) are oscillatory. 

Proof: let  ty  be a nonoscillatory solution of (4.1.1) and suppose that   0ty  for 

0tTt  . 

From Theorem (4.1.2), equation (4.1.5) has also a positive solution  tx  on  ,T . 

Thus, for    



nn

Nn
t , , 

where 
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                         ,01 


tpbtP k
ttt k 

  and hence, 

                      0 tx  almost everywhere for   



nn

Nn
t , , which implies  tx  is 

nondecreasing in   



nn

Nn
, . Integrating (4.1.5) from t  to t , we obtain that for 

  



nn

Nn
t , ,  

        0 



t

t

dssxsPtxtx . 

By using the nondecreasing character of  tx , we derive that 

 

      01 







 




t

t

dssPtxtx  for   



nn

Nn
t , ,  

which contradicts (4.1.6). 

Theorem 4.1.4 [12]: Assume that (A1), (A3), (A4) hold and  

    11suplim 








t

t

k
stst

dsspb
k

, 

then all solutions of (4.1.1) are oscillatory. 

Proof: The proof of this theorem can be obtained by applying Theorem (4.1.3) 

immediately.   

Theorem 4.1.5 [12]: Assume (A1), (A3), (A4) hold and  

   
e

dsspb

t

t

k
stst

k

1
1inflim 








, 

then all solutions of (4.1.1) are oscillatory. 

For existence of a nonoscillatory solution of (4.1.1), we have the following result. 
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Theorem 4.1.6 [12]: Assume (A1), (A3), (A4) with 1kb  hold and there exists      

a   0tT   such that for all Tt   

   
e

dsspb

t

t

k
sts k

1
]1 








 

Then equation (4.1.1) has a nonoscillatory solution. 

Proof: see [12]. 

Example 4.1.1: Let  kmtk  , m is a positive integer,   0tp  is a locally 

summable function and 0 ,   ,1kb , Nk , are constants. 

Consider the impulsive differential equation (4.1.1). Since mtt kk 1  , there is at 

most one point of impulsive effect on each ],[ tt , t . So, 
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Then we have the following cases 

(i) Let 
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If 1},max{ 21  ddd , then by Theorem (4.1.4) all solutions of equation (4.1.1) are 

oscillatory. 

(ii) Let      }1inf{lim1 





t

t

k
t

dsspbc  

and  

   





t

t
t

dsspc inflim2  

If 
e

ccc
1

},min{ 21  , then by Theorem (4.1.5) all solution of (4.1.1) are oscillatory. 

(iii) If there is 0tT  such that  

 
e

t
1

 , for all Tt  , 

where 

         







t

t

t

t

kk dssptttdsspbt },,1max{ , Tt  , 

then by Theorem (4.1.6), equation (4.1.1) has a nonoscillatory solution on  ,T . 

Bainov and Dimitrava [1] established a sharp result for oscillation of the 

nonhomogeneous  impulsive differential equation with deviating argument: 

       

      













kkkk

k

tybtyty

tttqtytpty ,
,                                                    (4.1.7) 

under the following assumptions: 

(H4)    ,,0Cq  

(H5) there exists a function    ,1Cv  such that     0,  ttqtv  
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(H6) there exist constants 1q , and 2q  and two sequences }{ it and }{ it with 




i
t

i
t

tt limlim  and   1qtv i  ,   2qtv i  ,   21 qtvq  . 

Theorem 4.1.7 [1]: Suppose that 

(i) conditions (H1), (H2), (H4)- (H6) hold. 

(ii)  





k

k

t

t
k

dssp 1suplim . 

(iii) Nkbk  ,0 . 

Then all solutions of equation (4.1.7) oscillate. 

Proof: : Let  ty  be a solution of (4.1.7) for 00  tt . 

Set 

      .1qtvtytz   

Then from (4.1.7) we obtain 

  
     

      









kkkkk Atzbtztz

tztptz 
                                                              (4.1.8) 

where  

  .01  qbtvbA kkkk  

Let the inequality (4.1.8) has a positive solution  tz  for 01 ttt  . Integrating (4.1.8) 

from kt  to kt , 1ttk  , we get  

          ,0 







k

k

t

t

kkk dssptztztz  

      .01 
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t

t

k dssptz  

The last inequality contradicts condition (ii) of the theorem. 

If   0tz  , for 1tt   be a solution of the inequality (4.1.8), then 

          ,01  iiii txqtvtxtz  for 

  1tti  . Also a contradiction. 
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Jankowski [6] studied the existence of solutions for first order impulsive ordinary 

differential equations, with advanced argument with boundary conditions. 

For ],0[ TJ   , 0T , let Ttttt mm  110 ...0 . 

Put },...,,{\ 21 mtttJJ  . Consider the advanced impulsive differential equation 
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,00

,, 

                                           (4.1.9) 

where        kkk tytyty , and the hypothesis  

(H7)   ,JCf ,  JJC , ,   Ttt  , Jt ,   ,CIk  for 

mk ,...,2,1 ,   ,Cg  and if there exists a point Jt 
~

 such that 

  },...,,{
~

21 mtttt  , then },...,,{
~

21 mtttt   . 

Put ],0[ 10 tJ  ,  1,  kkk ttJ , mk ,...,2,1 . Introduce the spaces: 

   
 

  









 


 mk

mkJCJyJy
JPCJPC

kk

,...,2,1

,...1,0

for tyexist   thereand

,,|,:
,

k

 

and 

     
   

  


















 mk

mkJCJyJPCy
JPCJPC

kk

,...,2,1

,...1,0

for tyexist   thereand

,,|,
,

k

1

11  

Note that  JPC  and  JPC1  are Banach spaces with respective norms: 

   tyy
Jt

PC


 sup , 
PCPCPC

yyy 1 . 

By a solution of (4.1.9) we mean a function  JPCy 1  which satisfies: 

(i) The differential equation in (4.1.9) for every Jt  . 

(ii) The boundary condition in (4.1.9). 

(iii) At every mktk ,...,2,1,   , the function y satisfies the second condition in (4.1.9). 
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Definition 4.1.3: Lower and upper solution of problem (4.1.9)  

We say that  JPCu 1  is a lower solution of (4.1.9) if 

  

   

    

    













0,0

,...,2,1,

,

Tuug

mktuItu

JttFutu

kkk ,                             

and u  is an upper solution of (4.1.9) if the above inequalities are reversed. 

Theorem 4.1.8 [6]: Let assumption (H7) hold. Moreover, assume that 

(H8)  JPCzy 1

00 ,   are lower and upper solutions of problem (4.1.9), respectively, and 

   tytz 00   on J , 

(H9) there exist functions   ,, JCMK , M is nonnegative and such that  

         vvtMuutKvutfvutf  ,,,,  

for    tyuutz 00  ,      tyvvtz  00  , Jt , 

(H10) there exist constants   mkLk ,...,2,1,1,0  , such that  

         ][ kkkkkkk twtwLtwItwI  , mk ,...,2,1 , 

for any ww, with        ,00 kkkk tytwtwtz  , mk ,...,2,1 , 

(H11) conditions: 
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(H12) there exists 0  such that for any    ]0,0[, 00 yzuu   with uu   and 

   ],[, 00 TyTzvv   with vv  we have 
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   vugvug ,,  , 

     vvvugvug  ,, . 

Then there exist solutions ],[, 00 yzwv   of problem (4.1.9). 

Proof: see [6] 

Example 4.1.2 [6]: For ],0[ TJ  , we consider the problem 
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,

},{\,sin
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1121

kTyy

tLyty

tJtttytetty ty 

                   (4.1.10) 

where 

        10,0,0,,,,,,0,,, 121   kLTtJtTttJJCJC  . 

Take     Jttzty  ,1,0 00 . Indeed,    tytz 00   on J , and  

       ,0 0110 tytttFy    

       ,01sin]1[ 02

1

10 tztettFz     

    10110 0. tyILty  , 

      10110 10 tzILtz  , 

       00,0,0 00  kgTyyg , 

       011,1,0 00  kgTzzg . 

It proves that 00 , zy  are lower and upper solutions of problem (4.1.10), respectively. 

Moreover    ttK 1 ,    ttM 2 , LL 1 , so assumption (H9), (H10), (H12) are 

satisfied. If we extra assume that: 
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 ,                                                                  (4.1.11) 
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then problem (4.1.10) has solutions in the segment ]0,1[ , by Theorem (4.1.8).  

For example, if we take 
2

1
L , T ,   01   t ,     tet Tt sin2

   for Jt , 

   t  then condition (4.1.11) holds if 
4

1
0   . 

4.2 Mixed type differential equations 

In this section we will introduce the oscillation of the mixed differential equation: 

              021  tytatytaty  , 0tt  ,                                      (4.2.1) 

with nonnegative coefficients  tai , one delayed argument   tt   and one advanced 

argument   tt  . 

L. Berezansky and Y. Domshlak [2] studied equation (4.2.1) with both constant and 

variable coefficients which appears in Corollary (4.2.1) and in Theorem (4.2.1) 

respectively. 

A special case of equation (4.2.1) is the following differential equation 

        021   tyatyaty ,                                                      (4.2.2) 

where   2,1,0,0,0  kak . 

Corollary 4.2.1 [2]: Suppose for the characteristic polynomial of (4.2.2)  

     eaeaF 21   , 

the following condition holds 

  0F , for all   , . 

Then all solution of (4.2.2) are oscillatory. 

Proof: see [2] 
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Theorem 4.2.1 [2]: Let   t and assume that there exist functions 

  ,2,1, jtbj such that 

      0,2,1,0 ttjtbta jj  ;                                                            (4.2.3) 

the following limits exist and finite: 

 
 




t

t

j
t

j dssbB


lim:1 ,  
 




t

t

j
t

j dssbB



lim:2 , 2,1j  ,                          (4.2.4) 

with  

02211  BB ;                                                                                     (4.2.5) 

and the following system has a positive solution },{ 21 yy : 

  

 















.0ln

0ln

01

2221212

2121111

2221112121122211

yByBy

yByBy

yByByyBBBB

                                  (4.2.6) 

Then all solution of (4.2.1) are oscillatory. 

Proof: see [2] 

Example 4.2.1: Consider the equation  

      ,0,0 0
21 








 ttty

t

at
y

t

a
ty 


                                    (4.2.7) 

where 1 , 0 , 0, 21 aa . Put    
t

a
tatb 1

11 :   and    
t

a
tatb 2

22 :   in 

Theorem (4.2.1). Then ln111 aB  ,  ln212 aB  , 02221  BB . 

System (4.2.6) turns into the system 

  01ln11  ya  

  0lnlnln 22111   yayay  

  0ln 2 y  



 80 

which is equivalent to the system 

  
ln

1

1

1
a

y   

   ln1]lnln[ 221 aya   

  0ln 2 y  

and this in turn is equivalent to the system 

  
ln

1

1

1
a

y   

  1
ln

1]lnln[
2

2

1 


y
a

a




 

The last system has a solution if and only if 
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1
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1]lnln[
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1

2

1

e
a

a

a a



.                                               (4.2.8) 

Thus, (4.2.8) is sufficient for oscillation of all solution of (4.2.7). Note that (4.2.8) does 

not depend on  . 

4.3 Oscillation in equation of alternately retarded and advanced type 

In this section we want to study the oscillation of all solutions of the following 

differential equation  

  0
2

1
2 















 


t
pyty , 0t ,                                                         (4.3.1) 

where p is a real number and [.]  denotes the greatest integer function. 

We can look on equation (4.3.1) as equation of the form 

     0 ttpyty  , 0t ,                                                            (4.3.2) 

where the argument of deviation is given by 
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2

1
2

t
tt .                                                                             (4.3.3) 

The argument  t  is a periodic function of period two. Furthermore, for every integer 

n ,  t  is negative for ntn 212   and is positive for 122  ntn . Therefore, in 

each interval )12,12[  nn , equation (4.3.1) is of alternately advanced and retarded 

type. More precisely, for every integer n , 

  ntt 2  for 1212  ntn  

And 

  11  t  for 1212  ntn . 

We can write  t  in the form 

   





























75,6

53,4

31,2

10,

tt

tt

tt

tt

t  

Also the curve of  t  can bee seen in the following figure: 

 

 

 

 

 

Figure (1): the graph of   
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Therefore equation (4.3.1) is of advanced type in ]2,12[ nn  , and of retarded type in 

 12,2 nn . 

Definition 4.3.1: Solution of equation (4.3.1) 

By a solution of equation (4.3.1) we mean a function  ty  which satisfies the following 

properties: 

(i)  ty  is continuous on  ,0 . 

(ii)  ty  exists at each point   ,0t , with the possible exception of the points 

12  nt , n  where one-sided derivatives exist. 

(iii) Equation (4.3.1) is satisfied on each interval of the form 

 )12,12[ nn for n . 

With equation (4.3.1) we associate an initial condition of the form  

    00 ay  ,                                                                                         (4.3.4) 

where 0a  is a given real number. 

The following lemma deals with existence and uniqueness of solution of equation 

(4.3.1). 

Lemma 4.3.1 [5]: Assume that 0,ap  and 1p . 

Then the initial value problem (4.3.1) and (4.3.4) has a unique solution  ty . 

Furthermore,  ty  is given by 

     nantpty 2]21[  , for  )12,12[ nnt , n ,                                  (4.3.5) 

 where the sequence }{ na  satisfies the equations 

    
 

 
.

 ,...2,1for    1

,..2,1,0for    1
 

212

212













napa

napa

nn

nn
                                                 (4.3.6) 
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Proof: Let  ty  be a solution of (4.3.1) and (4.3.4). then in the interval 

   12,12 nn , and for any Nn , (4.3.1) becomes 

    02 
npaty ,                                                                                (4.3.7) 

where we have used the notation  nyan   for Nn . Then the solution of (4.3.7) with 

initial condition   nany 2  is given by (4.3.5). By the continuity of the solution as 

12  nt  and for 12  nt , (4.3.5) yields (4.3.6) and (4.3.7). So we have proved that 

if  ty  is a solution of (4.3.1) and (4.3.4) then  ty  is given by (4.3.5) where the 

sequence  na  satisfies (4.3.6). 

Conversely, given 0a and because 1p , the equation (4.3.6) has a unique 

solution  na . Now by direct substitution into (4.3.1) we can see that  ty as defined by 

(4.3.5) is a solution. The proof is complete. 

The following Theorem provides necessary and sufficient conditions for the oscillation 

of solutions of equation (4.3.1). 

Theorem 4.3.1 [5]: Assume that p  and 1p . Then every solution of 

equation (3.4.1) oscillates if and only if  

      ,11, p .                                                                         (4.3.8) 

Proof: Assume that (4.3.8) holds. Then either 1p  or 1p  and in either case it 

follows from (4.3.6) that the sequence  na  oscillates. As   nany  for Nn ,  ty  also 

oscillates.  Conversely, assume that every solution  ty  of (4.3.1) oscillates, and for the 

sake of contradiction, assume that 

  1p .                                                                                                (4.3.9)  

Let  ty  be the solution of (4.3.1) with   10 0  ay . Then from (4.3.6) and because of 

(4.3.9), 

0na                 for ,...2,1,0n  . 

Hence for  12,12  nnt  and Nn , 12  tn , so (4.3.5) yields 
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      .01]21[]21[ 222  nnn apantpantpty  

This contradicts the assumption that  ty  oscillates and the proof is complete. 

Another example of alternately retarded and advanced equations is the differential 

equation 

  0
2

1

















 tpyty , 0t                                                          (4.3.10) 

where p is a real number and [.]  denotes the greatest integer function. 

Equation (4.3.10) can be written in the form  

     0 ttpyty  , 0t                                                           (4.3.11) 

where the argument deviation is given by 
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1
ttt ,  

is linear periodic function with period1. More precisely, for every integer n , 

    ntt  ,  for 
2

1

2

1
 ntn . 

Also    
2

1

2

1
 t , for 

2

1

2

1
 ntn . 

We see that in each interval 









2

1
,

2

1
nn , equation (4.3.10) is of alternately advanced 

and retarded type. It is of advanced type in 







 nn ,

2

1
 and of retarded type in 











2

1
,nn , see figure (2). 

The argument  t  will be of the form 
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whose sketch appears in figure (2). 

 

 

 

 

 

Figure (2): The graph of    
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The existence and uniqueness of solution and the necessary and sufficient condition for 

the oscillation of all solutions of equation (4.3.10) appear in the following lemma and 

theorem respectively. 

Lemma 4.3.2 [5]: Assume that 0,ap  and 2p . 

Then the initial value problem (4.3.10) and (4.3.4) has a unique solution  ty . 

Furthermore,  ty  is given by 

                 nantpty ]1[  , for 
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1
,

2

1
nnt , n ,                       (4.3.12) 

where the sequence }{ na  satisfies the equation 

. 

. 

. 
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 nn a
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p
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2

2
1 , for ,...2,1,0n                                       (4.3.13) 

Proof: Let  ty  be a solution of (4.3.10) and (4.3.4). Then in the interval 
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1
nn  for any Nn , (4.3.10) becomes 

    ,0
npaty                                                                                 (4.3.14) 

where we have used the notation  nyan   for Nn . The solution of (4.3.14) with 

initial condition   nany   is given by (4.3.12). By the continuity of the solutions as 

2

1
 nt  and for 

2

1
 nt , (4.3.12) yields  
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1
1

2

1
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from which (4.3.13) follows. The remaining part of the proof is similar to that of 

Lemma (4.3.1) and is omitted. The proof is complete. 

Theorem 4.3.2 [5]: Assume that p  and 2p . Then every solution of equation 

(4.3.10) oscillates if and only if 

      ,22, p .                                                   (4.3.15) 

Proof: Assume that (4.3.15) holds. Then either 2p  or 2p  and in either case it 

follows from (4.3.13) that the sequence  na  oscillates. As   nany   for Nn ,  ty  

also oscillates. Conversely, assume that every solution  ty  of (4.3.10) oscillates and, 

for the sake of contradiction, assume that 

  2p .                                                                                             (4.3.16) 

Let  ty  be the solution of (4.3.10) with   10 0  ay . Then from (4.3.13), 0na  for 

Nn . Hence for 









2

1
,

2

1
nnt  and Nn , 

2

1
 nt , so (4.3.12) yields 

      .01]1[]1[  nnn apantpantpty  

This contradicts the assumption that  ty  oscillates and the proof is complete. 
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