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Bistatic EM Scattering Analysis of an Object above a Rough Surface
Using a Hybrid Algorithm Accelerated with the Adaptive
Cross Approximation Method

Mohammad Kouali* and Noor Obead

Abstract—Calculating the RCS (Radar Cross Section) of two 3D scatterers needs to numerically solve a
set of integral equations involving numerous unknowns. Such a 3D problem cannot be solved easily with
a conventional Method of Moments (MoM) by using a direct LU inversion. Thus, hybridization between
the Extended Propagation-Inside-Layer Expansion (E-PILE) and the Physical Optics approximation
(PO) significantly reduces the memory requirements and CPU time. The resulting method called
E-PILE+PO. In this work, we take advantage of the rank-deficient nature of the coupling matrices,
corresponding to the interactions between scatterer 1 (the object) and scatterer 2 (the rough surface),
to further reduce the complexity of the method by using the Adaptive Cross Approximation (ACA).

1. INTRODUCTION

In recent years, composite electromagnetic scattering from an object near a randomly rough surface has
attracted considerable interest in the fields of radar surveillance, target identification, object tracking,
ete.

Many methods have been proposed to solve scattering problem as a two-dimensional (2D) scattering
problem [1-9]. Other methods deal with scattering problems as three-dimensional (3D) problem [10-17].
As expected, it is significant for practical applications to study the case of three dimensional problems.

For large 3D problems, exact methods such as MoM are limited to the memory requirements. From
that point, some methods proposed assumptions to simplify the calculations. For example, in [10] a
hybrid method combines Kirchoff Approximation (KA) with MoM to study the scattering from 3D
perfect electric conductor located above 2D dielectric rough surface. In [11], KA is used to derive a
half-space Green function with the rough surface interface, and the MoM is applied in a complete 3D
problem.

The works in [13, 14] propose assumptions to compute the coupling between the scatterers from
the four-path model. In [15,16], a proposed method called Finite-Difference Time Domain (FDTD)
approach is used to discuss the scattering of a 3D object located above a 2D rough surface. An efficient
numerical PILE (Propagation-Inside-Layer Expansion) method for computing the field scattered by
rough layers is proposed in [4], then it is extended to solve a 3D problem called Extended-Propagation
Inside Layer Expansion (E-PILE) [5].

For a large scenario, the work in [6] proposes a method that combines E-PILE with FBSA (Forward-
Backward Spectral-Acceleration) method to calculate the local interaction on the rough surface and
combined E-PILE with PO (Physical Optics) to compute the interaction on the object. Moreover,
in [17] the forward-backward method is proposed to calculate the local interaction on the rough surface
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for a 3D problem. Furthermore, there have been other techniques to accelerate the computations like
Complex Multipole Beam Approach (CMBA) as in [18], and this method uses a series of beams at the
boundary instead of one beam. These beams are called Gabor functions, and this combination reduces
the size of the matrix. CMBA is combined with MoM in [19]. The Impedance Matrix Localization
method (IML) is introduced in [20]. This technique introduces new special basis functions and test
functions that localize the significant interactions and use them, and as a result the required memory
is reduced.

In [21], a proposed purely algebraic method called ACA is used to accelerate the electromagnetic
computations of MoM. In [22], ACA method is combined with E-PILE and FBSA to solve a 2D problem
with a huge number of unknowns.

Very recently, a bi-iteration model is proposed in [23], and the model is expressed by an outer and
inner iteration. The proposed model effectively solves more complicated scattering problem from a 3D
object located above a 2D rough surface.

In this paper, the ACA method is combined with the hybrid E-PILE4+PO method to solve a
3D problem. To solve this problem, the E-PILE method is combined with the physical optics (PO)
approximation to calculate the local interactions on both the object and the rough surface as in [25],
then the ACA is applied to compress the coupling matrices to accelerate the coupling steps of E-PILE.
As a result, the coupling matrices are strongly compressed without a loss of accuracy, and the memory
requirement is then strongly reduced.

2. MATHEMATICAL FORMULATIONS

Let us consider an incident electromagnetic (EM) plane wave that illuminates the system composed
of two perfect electric conductors (PEC) scatterers (object+rough surface) as shown in Fig. 1. The
incident electromagnetic fields are written as

E;(R) = ée™ R H;(R) = —k; x E;(R), (1)

where k is the wave number, k a unit vector that gives the direction of the wave propagation, and
Mo = /o \ €0 the intrinsic impedance of the air. Note that the time harmonic convention eIt is
assumed and suppressed throughout this paper. Solving the scattering problem is done by finding the
electric surface current on the first scatterer (S7) and the second scatterer (S2).

Figure 1. A 3-D model of an object above a rough surface.
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To obtain the first coupling integral equation between S; and S5, we use the boundary conditions
on scatterer 1 (the object) Si, VR € S;

n; XHi(R/)—i-fll X][

1
Ji(Ry) XVRIG(Rl,Rl)dS—i-ﬁl X/ JQ(RQ)XVRQG(RQ,R/)dS = iJl(R/)’ (2)
S1

Sa

local interactions coupling interactions

where fs dS is the principal value integral; G(Rq, R’) = exp(—ikor)/4mr is the free-space Green function
with r the distance between the two points R; and R’; and J1, Jo are the electric currents on the two
scatterers S; and So, respectively. G(Rqa,R’) = exp(—ikor)/4mr is the free-space Green function with
r the distance between the two points Ry and R’.

Using the boundary conditions on scatterer 2 (the rough surface) Sy, the second coupling integral
equation VR/ € S5 is obtained from

ny x HY (R ) +hy x][

1
JQ(RQ) XVRQG(RQ,RI)dS‘i—ﬁQ X/ Jl(Rl)XleG(Rl,R,)dS = §J2(R/), (3)
Sa

S1

local interactions coupling interactions

Equations (2) and (3) can be explained as the total current on the surface. Taking S as an example:
the total current is the current from the incident wave, the surface current that occurs on the surface
from local interactions, and the current that is produced as a result of the interaction occurring because
of the presence of the second scatterer.

In order to solve the integral equations for two scatterers using MoM, we first discretize the two
surfaces, and each surface is divided into small segments, then the surface current is calculated at each
segment. The pulse function is used as the basis functions and delta functions as the test functions.
The result of applying MoM is a linear system of the form ZX = b, and this linear system describes
the total scene. In detail, the unknown vector X contains all the unknown surface currents for scatterer
1 and scatterer 2 in the form

X1
X = 4
X )
where X7 is the surface current on the first scatterer, and Xy contains the surface currents for the
second scatterer. X1, X are expanded in the form

X1 = (5)

and

Xo= |7 (6)

| J2(R)?) |

Here, N1, Ny are the numbers of unknowns in the first and second scatterer, respectively. As can
be noticed, X vector has a dimension of (N; + N2) x 1. For a 3D problem, the current on each
segment should represent the X,y,z components of the current, so J1(R1) = Jo, X + Jy,, ¥ + J;,2 and
J2(R2) = JpyXx + Jy,¥ + Joyz. The column vector b which represents the incident field is equal to
(b =1 x H;), and it has a dimension of ((N1 + N2) x 1) and is described as

by
b =
o) 7
where by, by are the incident wave on scatterer 1 and scatterer 2, respectively. Z represents the
impedance matrix for the whole scene, and its dimension is (N1 + Na) X (N1 + N2). Z can be expressed
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as a matrix of the sub-matrices in the form

7 _ |:_Zl Z_12] (8)
Zy Zy

Here Z; is the impedance matrix for the first scatterer from the local interaction on its surface as
if it is alone in free space, in other words, the impedance matrix without any effects of the existence
of the other scatterer. Moreover, Zo; is the impedance matrix that describes the coupling between the
two scatterers. In the same way, Zs is the impedance matrix of the second scatterer without any effects
of the first scatterer, and Zy; describes the effect of the coupling happens because of the existence of
the first scatterer. To summarize, the linear system of the form ZX = b is represented in the form:

o 7)) = g
Zy 7o) Xy b

The direct way to solve this system is to find Z~! and multiply it with b, then X = Z~'b. This solution
is acceptable when the size of Z is small, and this is limited to small (< 10)) size of scatterers. A direct
solution divides the impedance matrix into two parts called Lower and Upper (MoM-LU), then the
calculations are done, and the MoM-LU will be the reference solution for our results since it is an exact
solution for the system X = Z~'b. The RCS from the proposed method will be tested and compared
with RCS obtained from the MoM-LU.

As the size of the impedance matrix increases, the memory needed and the computational time
for the inverse of Z rise rapidly making it not an efficient way. Indeed, it calculates the inverse of
the impedance matrix in an efficient way. E-PILE gives the surface current at the first scatterer as
follows [17]

Y?=Z7Yb) —Zs1Z;'by), p=0
Xlz{ 1 =2y (b1 —ZxnZ; by), p 10)

Y — v, Y, p>0

where p is the order and refers to the number of interactions between the two scatterers, and 1\71671 is
the characteristic matrix and equals to:

M = 27225 Zy5, (11)
Similarly, the surface current at the second scatterer is expressed as

X YY) =275 (by —Z12Z7'by), p=0 (12)
9 = _ _
YP = MY P, p>0
where - S
M, = Zy'Z19Z7 ' Zo1, (13)

To reduce the calculations, E-PILE method is combined with PO approximation on both scatterers as
in [24], and the surface current at the first scatterer (the object) is given by

Y? = 2(b; — Zy12by), for p=10
{Y%p) = 1\_/IC71Y§p_1), for p >0 (14)
where 1\7[071 = 279127Z15.
Similarly, the surface current on the second scatterer (rough surface) is given by
Y) = 2(by — Z132by), for p=0
{Yép) = MC,QYépfl), for p >0 (15)

where MC72 = 22122221.

To summarize, after applying PO approximation at the two scatterers, the equations of the currents
and the characteristic matrix are simplified significantly, and there is no need to calculate Zfl and Z, L
This reduces the time and memory used. In the following sections, PO1 indicates that the physical
optics approximation is applied on scatterer 1, and PO2 indicates that PO is applied on scatterer 2.

As a result, PO accelerates the computations and reduces the memory requirements. Recently,
a very attractive method is developed to accelerate the computations called Adaptive Cross
Approximation (ACA) which will be discussed in the following section.
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3. E-PILE COMBINED WITH PO AND ACCELERATED BY ACA

In the previous section, PO approximation is combined with E-PILE to accelerate the computations
of the local interactions on each scatterer (E-PILE4+PO1+PO1). In this section, the ACA is used
to accelerate the computations of the coupling between the two scatterers (Zs1, Z12) of complexity
O(N1N3).

ACA is first introduced in [21], and it proposes an adaptive method to approximate matrix by
multiplication of two approximated rectangular matrices. From that time, ACA was widely used for
several reasons, one of them is its pure algebraic structure, that makes ACA easily used with other
existing methods without any changes in the method structure. Moreover, using ACA, as will be
discussed later, does not need full foreknowledge of the matrix. In other words, there is no need to
compute all elements of the matrix. ACA chooses some elements to approximate the whole matrix, and
these are the only elements to be calculated. To have a clear understanding about ACA, consider matrix
Z with dimensions m x n. ACA approximates Z™*" by a new matrix Z"™*", and the approximated
matrix is a multiplication of two rectangular matrices V, U, in the form of [21]:

men — ﬁmxr\_/—rxn’ (16)

where U,V are the rectangular matrices; r is the effective rank of the matrix Z™*"; u; is the ith row

of the matrix U; and v; is the 7th column of the matrix V. From that equation, since the rank of the
matrix is less than or equal to the minimum dimension of the matrix (r < min(m,n)), the ACA takes
its importance. Instead of save an impedance with m x n entities, ACA provides ((m+n) x r) elements
to be saved, which is very efficient when we deal with matrices of large sizes. If we consider R as the
error matrix between the impedance matrix (Z) and approximated matrix (Z), then the ACA aims to
achieve

[Rmm| = ||z - HZan

<<z )

where ¢ is a given tolerance, and || @ || denotes the matrix Frobenius norm, which is calculated by the
square root of the sum of the absolute squares of the matrix elements. The choice of the € depends on
the application and the required accuracy of the results. After determining the value of e, ACA starts
to generate U and V. The matrices U and V are constructed by selecting rows and columns from the
Z matrix, while U and V are generated, and the algorithm generates an approximate error matrix R,
which is equal to || Z|| — Z. Each time a new row or column of Z is chosen, the corresponding error vector
(row or column) is calculated by subtracting the actual column or row vector from the corresponding
column or row vector of the approximate matrix that has been constructed in the previous iteration. The
key point of choosing row or column returns to the index where the largest enter of the last computed
error column or vector is located. At the end of ACA algorithm, the two matrices U and V are filled,
and ACA is terminated when the following condition is satisfied

IR| < ellZ]|. (18)

Since the full knowledge of Z is not necessary, ACA provides an estimation to the norm of Z when
computing the error matrix R, and the norm of the error matrix is estimated after the kth iteration as

[R® ] =~ o) v (19)
and
Al Al =0 || v |2 5 (k—1) || kilT T 2 2
121 = ||z[" = 0@ ||V = | 2%+ 237 [uFw] - [vivT | + el Ivel®, (20)
j=1
Recall that the equation to calculate the unknown currents on scatterer 1 by combining PO with E-PILE

is in the form

X9 = 2(by — Z912by), for p=0
{ 1 (1 21 2) b (21)

Xgp) = Mc,lYipfl), for p >0
and MCJ = 22212212.
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Similar equation to Eq. (21) can be written for scatterer 2. Once the equation ZX = b is solved
for X, the scattered fields are computed by using Huygens principle on the electric current densities,
and the normalized Radar Cross Section (NRCS) of the two scatterers can be calculated by

2
1B
277PZ ’

in which E?® is the total scattered electric field in the far field region, and P; is the incident power.

NRCS = lim 47 R? (22)

4. NUMERICAL RESULTS

In this section, the ACA is applied to approximate the coupling matrices Zio and Zs;, then the
calculations of Xy,X3, M. and M, using this approximation will significantly accelerate the time
needed and the memory used in the computations.

To implement the proposed method, consider that the scenario of a plate of dimension 1y x 1)\g
is located above rough surface of dimension 8y x 8 \g which obeys a Gaussian process with a Gaussian
height spectrum of root mean square height o, = 0.2\, and correlation lengths are L., = L.y, = 1)q.
The two scatterers are separated by distance of 5\g, and sampling steps are Az = Ay = \o/10. The
geometry of the problem is shown in Fig. 2. The number of unknowns: Ny = 300, No = 19, 200.

2

Figure 2. Composite model of plate above a rough surface.

The surface height auto correlation function is a Gaussian type:

(#-5)
Calz,y) = ofe\ Hoe Ho), (23)

where L., and L, are the surface correlation lengths along x and y directions, respectively.

The proposed algorithm called (E-PILE+PO1+PO2+ACA), where PO1 stands for applying
Physical Optics on scatterer 1, and PO2 stands for applying Physical Optics on scatterer 2.

In simulations, the ACA convergence threshold is chosen to be ¢ = 0.001 since we notice that the
curves are perfectly matched when ¢ < 0.001.

The RCS of the proposed method (E-PILE4+PO1+PO2+ACA) is compared with the RCS for the
exact method MoM-LU and the E-PILE4+PO14+PO2 method for three cases as follows:

Case 1: the plate is considered above a smooth surface (two parallel plates, the results are shown
in Fig. 3).

Case 2: the plane wave is at normal incidence (the incident angles: 6; = 0°,¢; = 0°), the results
are shown in Fig. 4.

Case 3: the plane wave is horizontally polarized with incident angles §; = 45° and ¢; = 0°, and the
results are shown in Fig. 5.
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Figure 3. The RCS of a two parallel
plates S7 of dimension 1)y x 1Ay above Sy of
dimension 8¢ x 8¢ computed by MoM-LU and
the proposed method E-PILE4+PO1+PO2+ACA.
The two scatterers are separated by distance of
5Ao, and illuminated by a vertically polarized
plane wave at an incident angle of §; = 0°, ¢; = 0°.
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Figure 5. The RCS of plate above a
Gaussian rough surface computed by MoM-LU,
E-PILE4PO1+P0O2 and the proposed method
E-PILE4+PO1+PO2+ACA. The two scatterers
are of dimensions of 1Ay X 1Ag and 8Ag x 8,
separated by distance of 5\, and illuminated by
a horizontally polarized plane wave at an incident
angle of 8; = 45°, ¢; = 0°.
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Figure 4. The RCS of plate above a

Gaussian rough surface computed by MoM-LU,
E-PILE4PO1+PO2 and the proposed method
E-PILE4PO14+PO2+ACA. The two scatterers
are of dimensions of 1)y x 1Ay and 8Ay x 8,
separated by distance of 5)g, and illuminated by
a horizontally polarized plane wave at an incident
angle of 6; = 0°, ¢; = 0°.
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Figure 6. The RCS of plate above a

Gaussian rough surface computed by MoM-LU,
E-PILE4+PO1+4+P0O2 and the proposed method E-
PILE4PO14+PO2+ACA. The two scatterers are
of dimensions of 1 g x1Ag and 8 A\g X8\, separated
by distance of 5\, and illuminated by a vertically
polarized plane wave at an incident angle of 6, =
45°, ¢; = 0°.

Case 4: the plane wave is vertically polarized with incident angles 6; = 45° and ¢; = 0°, and the

results are shown in Fig. 6.

From Fig. 2, we notice that the results of MoM-LU are almost identical to those obtained from
the proposed algorithm E-PILE4+PO1+PO2+ACA. Now the scenario of a plate above rough surface
with Gaussian height distribution is tested. The results are shown in Figs. 4, 5, 6, for different incident

angles and wave polarization.

As shown from the results, the proposed method shows almost the same RCS of the E-PILE method
combined with PO applied on both scatterers for most scattering angles.

As discussed in this section, ACA accelerates the computations and reduces the required time
compared with the computation time needed from the methods that we discussed in the introduction
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Figure 7. Comparison of time requires for the three methods, MoM-LU, E-PILE combined with
PO and E-PILE combined with PO accelerated by ACA. The time is for scenario of square plate of
dimensions from 1)y X 1Ay to 5Ag X BAg and the rough surface is of dimension of 5Ag X 5Ag.

of this paper. To verify this, we measure the time required for the MoM-LU, E-PILE4+PO14+PO2, and
E-PILE4PO14PO2+ACA, and the simulations are launched several times. Then we take the average
time needed. The computations are tested for a fixed size of rough surface of 5y x 5\, then the size of
the plate is changed from 1)\ X 1)\g to 5Ag X 5Ag. Fig. 7 shows a comparison among the times required
for the MoM-LU, E-PILE4+PO1+4+P0O2, and E-PILE+PO1+PO2+ACA.

From Fig. 7, we can notice that using the ACA allows us to reduce the computing time significantly.
In a deeper look, at plate size of 5y ACA approximately decreases the time 60 percent compared with
the time MoM-LU takes. Also, the RCS from applying PO is almost the same as the RCS from PO
combined with ACA, but the time used in PO combined with ACA is clearly less than the time used in
PO only. The effect of ACA appears clearly for more geometry sizes where the unknowns are huge.

5. CONCLUSION

In this paper, an efficient hybrid method to study the electromagnetic scattering from a 3-D problem of
two scatterers is presented. The method is based on the rigorous E-PILE method, originally developed
to study the scattering for 2-D electromagnetic problems. A major advantage of the E-PILE method is
that it can be combined with algorithms originally developed to solve problems of scattering from a single
scatterer in free space. Consequently, the E-PILE method is combined with the PO approximation to
calculate the local interactions on both the object and the rough surface. In this paper, the E-PILE4+PO
method is accelerated by using the ACA to accelerate the computation of the coupling matrices involved
in E-PILE. As a result, the ACA method permits to strongly compress the coupling matrices without
a loss of accuracy, so the memory requirement is strongly reduced.
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