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Carcinogenicity is among the toxicological endpoints posing the highest concern for human health. Oral
slope factors (OSFs) are used to estimate quantitatively the carcinogenic potency or the risk associated
with exposure to the chemical by oral route. Regulatory agencies in food and drug administration and
environmental protection are employing quantitative structure-activity relationship (QSAR) models to
fill the data gaps related with properties of chemicals affecting the environment and human health. In
this background, we have developed quantitative structure-carcinogenicity regression models for
rodents based on the carcinogenic potential of 70 chemicals with wide diversity of molecular
structures, spanning a large number of chemical classes and biological mechanisms. All the developed
models have been assessed according to the Organization for Economic Cooperation and Development
(OECD) principles for the validation of QSAR models. We have also attempted to develop a
carcinogenicity classification model based on Linear Discriminant Analysis (LDA). Developed regression
and LDA models are rigorously validated internally as well as externally. Our in silico studies make it
possible to obtain a quantitative interpretation of the structural information of carcinogenicity along
with identification of the discriminant functions between lower and higher carcinogenic compounds by
LDA. Pharmacological distribution diagrams (PDDs) are used as a visualizing technique for the
identification and selection of chemicals with lower carcinogenicity. Constructive, informative and
comparable interpretations have been observed in both cases of classification and regression based

modeling.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

To assess the potential risk of human carcinogens, long-term
animal bioassays for carcinogenicity are regularly used to resolve
whether chemical agents are proficient of inducing cancer in
humans (CDER, 1997). According to the regulatory authorities of
Europe, USA and Japan, carcinogenicity studies should be per-
formed before the application for marketing approval of pharma-
ceuticals and chemicals (Miiller et al., 1999). Guidelines for
carcinogenicity testing of pharmaceuticals and chemicals specify
that long-term carcinogenicity studies in rodents should be
carried out to establish chemicals as a carcinogen (CDER, 1997).
Rodent carcinogenicity studies have been used for many years to
assess carcinogenic potential of chemicals with an ultimate goal
of assessing human carcinogenic risk (Ward, 2010).
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For evaluating the carcinogenic dose-response assessment and
carcinogenic potency, one most commonly used measure is oral
slope factor (OSF). The OSF is defined as an upper bound and it
resembles a 95% confidence limit on the increased cancer risk
from a lifetime exposure to a chemical or environmental con-
taminant (USEPA, 2009). The OSF is usually expressed in units of
proportion affected per mg/kg/day. OSF is most commonly used
by the Integrated Risk Information System (IRIS) of United States
Environmental Protection Agency (US EPA) because OSF provides
a linear extrapolation from the animal dose level to an environ-
mental exposure level that is most relevant to human health
(USEPA, 2009). OSF is generally reserved for use in the low-dose
region of the dose-response relationship. On the contrary, tumor
dose (TDsp) is not limited to the low-dose region and it is not true
indicator of cancer from environmental exposures. Another sig-
nificant variation is that TDsg does not provide a target organ-
specific dose-response. On the other hand, OSF provides informa-
tion on cancer at a target specific organ resulting from prolonged
exposure to a chemical (USEPA, 2009).

The US EPA’s IRIS provides information regarding health
effects of chemicals to which the public may be exposed from
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releases to environment and through the use and disposal of
chemicals. IRIS assessments provide a scientific foundation for
decisions to protect public health across EPA’s programs and
regions under an array of environmental laws. Over the past two
years, EPA has strengthened and smoothed the IRIS program,
improving transparency and increasing the number of final
assessments added to the IRIS database (IRIS Progress Report,
2011). The National Toxicology Program (NTP) plays a significant
role in the identification and assessment of carcinogens in the
US, while the International Agency for Research on Cancer
(IARC) plays a vital role internationally (National Toxicology
Program, 2005). Globally, the chemical industry and Regulatory
Agencies such as the US EPA spend millions of dollars in testing
and assessing the health risks associated with chemicals. But,
it is difficult for U.S.EPA, other federal agencies and research
organizations to make decisions regarding exposure guidelines
for environmental contaminants when such experimental
data are not available (USEPA, 2009). In such circumstances,
in silico approaches, specifically quantitative structure-activity
relationships (QSARs) have the ability to predict potential health
hazards from chemical exposure through the use of developed
correlation models. QSARs not only save time but also provide
valuable resources which could be endowed more sensibly (Deeb,
2010; Kar and Roy, 2010). The European Chemical Bureau
encourages the use of models in a regulatory framework while
other agencies explicitly forbid the use of models for making
regulatory decisions while allowing the use of correlations and
models for screening assessments. Predictive models are used by
Food and Drug Administration (FDA) to minimize false negatives
and false positives saving incalculable costs for manufacturers
(Benigni and Zito, 2004). On the other hand, increasing pressure
from social and economic background to cut out the use of animal
testing is another reason to develop alternative methods
(European Commission, Directive 2006/121/EC), such as in silico
QSAR models which also support 3Rs (replacement, refinement
and reduction of animals in research) (Benigni and Giuliani, 2003)
and Registration, Evaluation, Authorization and Restriction of
Chemicals (REACH) policies (Williams et al., 2009). However,
the QSAR models should be validated according to Organization
for Economic Cooperation and Development (OECD) principles for
reliable prediction. These principles provide best possible sum-
mary of the most important points that are necessitated to be
addressed to find consistent, reliable, reproducible and transpar-
ent QSAR models (OECD Document, 2007).

Successful development of in silico models to predict the
carcinogenic potency of structurally diverse chemicals has been
addressed in various scientific reports. A support vector machine
(SVM) model was developed by Massarelli et al. (2009) using 55
chemicals with hepatocarcinogenic potency to predict the
unwanted property for new chemical entities. Global and robust
QSAR models were established by Kar and Roy (2011) using
carcinogenicity data of 1464 structurally diverse compounds.
Further, Kar and Roy (2012) developed interspecies carcinogeni-
city correlation models for rat and mouse based on the carcino-
genic potential of 166 organic chemicals. In the above mentioned
reports, the carcinogenic potency used by the authors to develop
QSAR models was measured in TDsq scale. As discussed earlier, it
is quite clear that potency measurement in OSF scale is more
effective than TDsq scale and it is advantageous in the context of
low dose-response and target organ-specific dose-response.
Unfortunately, there is a lack of animal or human studies in the
literature to determine OSFs. Only a single QSAR model is found
using OSF values after thorough searching of scientific publica-
tions. Wang et. al. (2011) developed a QSAR model to predict the
OSFs of 70 chemicals based on male/female human, rat, and
mouse bioassay data obtained from the US EPA’s IRIS database

(http://www.epa.gov/iris/). Only internal validation was per-
formed for this study and OSF values of 5 chemicals were wrongly
reported (Wang et al., 2011) as identified in comparison with the
original US EPA’s IRIS database. In these perspectives, we have
developed a rodent quantitative carcinogenicity model using 70
chemicals (previous 68 molecules along with 2 new molecules
included in IRIS database) using the exact OSF values given in the
IRIS database. Linear Discriminant Analysis (LDA) has also been
applied to identify the discriminatory features between higher
and lower carcinogenic compounds. The structural fragments
identified by the QSAR model to be responsible for carcinogenic
potency are compared with the results of LDA and Pharmacolo-
gical Distribution Diagram (PDD) approaches. The present work is
aimed at determining an initial carcinogenicity classification of
diverse chemicals so that they can be predicted as more or less
toxic at the initial stage and finally development of a statistical
regression model to derive specific information regarding the
contribution of different structural and physicochemical compo-
nents towards carcinogenicity.

2. Materials and methods
2.1. Dataset

The OSF of 72 chemicals experimented on rat, mouse and human expressed as
mg/kg/day was reported in the USEPA’s IRIS database (http://www.epa.gov/iris/).
To develop rodent quantitative carcinogenicity models, Benzene and Benzidine (as
bioassays were performed on human) were excluded. As we are using only rodent
carcinogenic potency data for development of models, it fully complies with OECD
principle 1 (Defining the endpoint). OSFs were converted to mmol-based unit
instead of mg-based unit by dividing the OSFs by their respective molecular
weights prior to the development of the QSARs to prevent the influence of the
molecular weight of the compounds. Then, OSF values were transformed into
negative logarithmic function, thus obtaining corresponding pOSF indices. Hence
high value of pOSF means high carcinogenic potency.

2.2. Descriptor calculation and dataset splitting

A pool of 447 descriptors was calculated using Dragon 6 (TALETE srl, Italy),
Cerius 2 version 4.10 (Accelrys Inc., San Diego, CA) and Hyperchem Release 8.0.3
for windows (Hypercube Inc.) software. Data set splitting and methodological
steps performed for LDA and QSAR, descriptors thinning for LDA technique are
schematically represented in Fig. 1. Four compounds [Aniline(C05), Benzotrichlor-
ide (C11), Bis(chloromethyl)ether (C14) and 4,4’ Methylenebis(N,N’-dimethyl)ani-
line (C51)] were excluded during the development of regression based QSAR
models based on a preliminary analysis though all compounds were considered
during the classification QSAR model development.

The normality distribution of the response values of the training set data was
checked using different statistical tests. The normality distribution result and plot
are presented in Fig. S1 in Supplementary Materials section.

2.3. Chemometric tools for development of classification and regression based models

To classify higher and lower carcinogenic chemicals, the LDA approach was
employed. LDA is a well-known classification technique for feature extraction and
dimension reduction (Mitteroecker and Bookstein, 2011). The mean value of the
carcinogenic potency (pOSF) data distribution (obtained from the normality
distribution plot) is 2.80 (in logarithmic scale). The corresponding dose response
value of the mentioned pOSF value is 0.5 mg/kg/day which is taken as the
threshold for our LDA analysis. Compounds having the OSF value of 0.5 mg/kg/
day or less than 0.5 mg/kg/day, are classified as higher carcinogenic. For develop-
ment of regression based QSAR models, initially stepwise regression (Darlington,
1990) was carried out and then the variables selected in stepwise regression were
subjected to partial least squares (PLS) (Wold, 1995) analysis. Also, statistical
techniques like genetic function approximation (GFA-MLR) followed by multiple
linear regression (Fan et al., 2001) and genetic partial least squares (G/PLS) (Rogers
and Hopfinger, 1994; Wold, 1995) were applied. Sections 2.2 to 2.3 are written in
compliance with OECD principle 2 (Defining the algorithm).
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OSF of 72 chemicals were obtained from USEPA’s IRIS database. Experimental
bioassay data from rats, mice, and humans.

1
To construct the rodent carcinogenicity model, 2 chemicals were left out as the

corresponding toxicity values were calculated from humans. So, 70 chemicals are taken
finally.
¥

| Structures were drawn in Hyperchem Release 8.0.3 and optimized

¥
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descriptors were calculated descriptors were calculated using
using Hyperchem Release 8.0.3 Cerius 2 version 4.10 software.

399 descriptors (Constitutional, Topological, Walk path counts, Connectivity,
Information, ETA, Functional groups, Atom centered fragments, Atom type
E-state, Charge and Molecular) were calculated using Dragon 6
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Total 447 descriptors were calculated
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OSF values were sorted and randomly
75% compounds were taken as training
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Fig. 1. Schematic diagram of methodological steps performed for regression based QSAR and LDA.

2.4. Software

Software tools like STATISTICA 7.0 (STATSOFT Inc., USA), SPSS 9.0 (SPSS Inc.,
USA), MINITAB 14 (Minitab Inc., USA) and SIMCA-P 10.0 (UMETRICS, Umea,
Sweden, 2002) have been used in the present study.

2.5. Validation metrics for classification QSAR models

In the classification technique, validation may be performed to assess the
performance of the model in terms of correct qualitative prediction of the dependent
variable. Most commonly used validation parameters in classification techniques are
Accuracy, Sensitivity, Specificity, Precision, F-measure (Roy and Mitra, 2011). To
evaluate the classifier model performance and classification capability, a number of
statistical tests have been employed. Such tests include computation of Wilk's 1
statistics (Galvez-Llompart et al, 2011), Canonical index (R.) (Prado-Prado et al.,
2009), Matthews correlation coefficient (MCC) (Matthews, 1975), squared Mahala-
nobis distance (Galvez-Llompart et al, 2011) and plotting of Receiver Operating
Characteristic (ROC) curve (Fawcett, 2006). The method used to select the descriptors
was based on the Fisher-Snedecor parameter (F), which determines the relative
importance of candidate variables (Galvez-Llompart et al., 2011). Another statistic
which was used in the model was the chi-square y? to test the independence
between groups. We also took into consideration the probability-level (p < 0.05) and
the proportion between the cases and variables (p).

The calculation of the said statistical parameters involves determination of the
degree of correctiveness of predicted classification of compounds with respect to
their assigned a priori class. The ROC curve identifies the discrimination ability of
the classification system and the graph is obtained by plotting the sensitivity and
(1-specificity) indices along the Y and X axes respectively. The performance of a
diagnostic variable can be quantified by calculating the area under the ROC curve
(AUROC). The ideal test would have an AUROC of 1, whereas a random guess
would have an AUROC of 0.5 (Fawcett, 2006). In this study we have calculated two
new additional parameters (Perez-Garrido et al., 2011) namely the ROC graph
Euclidean distance (ROCED) and the ROC graph Euclidean distance corrected with
Fitness Function (FIT(1)) (ROCFIT) to have better explainable results. Mathematical
formulae of the parameters along with the theory of ROC graph have been
discussed in the Supplementary Materials section. PDD (Murcia-Soler et al.,
2003) is a graphical representation that provides a straightforward way of
visualizing the regions of minimum overlap between active and inactive com-
pounds or higher toxic and lower toxic compounds, as well as the regions in which
the probability of finding active compounds is maximum.

2.6. Validation metrics for regression based QSAR models

The robustness of the regression models was verified by using different types
of validation criteria. Section 2.6 is written in compliance with OECD principle 4
(Defining goodness-of-fit and robustness and defining predictivity). The quality of
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the equations was judged by the quality metric R? as well as the following
internal validation metrics: the leave-one-out cross validation parameter Qfoo,
leave-many-out (LMO) cross-validation metrics (in this study, we have used
L-10%-0, L-25%-0 and L-50%-O for the best model) (Geisser, 1975), external
validation metrics: R2req of QZyr1y. The 12, metrics namely 12, and Ar%, (Ojha
et al, 2011) have been developed by the present authors’ group for internal,
external and overall validation of models. It has been shown that the value of
Argwest) should preferably be lower than 0.2 provided that the value of 12, is
more than 0.5 (Roy et al., 2012). Similarly, 12, and Aroo) parameters can be
used for the training set and rzmmve,_am and Arf,,vem”) can be used for the overall set
(Roy et al., 2012). The 12, metrics have been used widely by our group (Kar et al.,
2010) as well as different other groups (Toropova et al., 2010; Shahlaei et al., 2010)
to check predictive ability of the developed QSAR models. More details about the
2, metrics are available at https://sites.google.com/site/rm2forqsarvalidation/.

The models were also subjected to the test for criteria of external validation as
suggested by Golbraikh and Tropsha (2002). Additional validation parameters like
Q2x(r2) (Schiiiirmann et al., 2008) and (Q2x(r3)) (Consonni et al., 2010) have also
tried to check the model reliability.

2.7. Y-randomization for regression based QSAR models

The best QSAR model (PLS model) was also subjected to a randomization test
(Wold et al., 1998). In an ideal case, the average of R%s for the randomized models
should be zero, i.e. R? should be zero. Accordingly, we have calculated the metric
CRf, using the following formula (Mitra et al., 2010):

R2 =Rx \/RP—R? @

For an acceptable model, the value of °R3 should be more than 0.5.

2.8. Applicability domain (AD) and limits of applicability of regression based QSAR
model

According to OECD principle 3, a QSAR model should be reported with a
defined domain of applicability. Technically, AD represent the chemical space
defined by the structural information of the chemicals used in model develop-
ment, i.e., the training set compounds in a QSAR analysis.Here, we have tried two
different approaches to assess AD. The applicability domain of the models was
checked using the (a) leverage approach (Gramatica, 2007) and (b) the DModX
(distance to the model in X-space) approach (Wold et al., 2001).

3. Result and discussions
3.1. Results obtained from the discriminant analysis

Considering the threshold value of 0.5 mg/kg/day (as stated
earlier), out of 70 compounds, 23 are identified as lower carcino-
genic compounds and 47 are identified as higher carcinogenic
compounds. To perform discrimination analysis, initially the total
pool of 447 descriptors was selected. As the number of descriptors
is too high for the LDA approach, a descriptor thinning approach
was used and finally 45 descriptors are selected. The thinning
approach is thoroughly discussed in Fig. 1.Then, molecular spec-
trum (Murcia-Soler et al., 2003) was designed using 45 indices
corresponding to the total 70 compounds under study, and is
presented in Fig. S2 in Supplementary Materials section. The
molecular spectrum shows different profiles of the higher carcino-
genic and lower carcinogenic groups, with clearly differentiated
zones for certain indices. Analyzing molecular spectrum, finally 15
indices were taken into account for LDA model development.

The set of 70 molecules was divided into two parts: a
discrimination set and a test set including both the higher and
lower carcinogenic molecules. Out of the 54 discrimination set
compounds, 35 compounds belong to the higher carcinogenic
group and 19 compounds belong to the lower carcinogenic group.
For the test set, 12 compounds belong to the higher carcinogenic
and 4 compounds belong to the lower carcinogenic group.

LDA was performed setting forward stepwise method of
variable selection with F=4 for inclusion; F=3.9 for exclusion.
The priori classification probabilities are set to same (0.5) for all
groups. The best discrimination function was obtained with the

variables nRNNOx, Cl—-086, MAXDP and Wap. The discriminant
function AP is represented with the following equation:

AP =6.51 x nRNNOx+6.84 x CI-086
+8.58 x Wap+3.59 x MAXDP—-3.489
nry = 54,1 = 0.483,R. = 0.719,Mahalanobis_distance = 4.522,
MCCryaining = 0.714,AUROCgining = 0.898
F(df = 4,49) = 13.118;(p < 0.0000),
72(df = 12) = 36.40; (p < 0.0000); p = 13.5;.
N7est = 16,MCCrest = 0.667,AUROCrest = 0.896
ROCED = 0.773,ROCFIT = 1.6 )

The LDA equation is comprised of only four independent
variables. The statistical data and parameters strongly account
for the significance of this derived equation. All the metrics are
within the acceptable limit for a reliable and acceptable LDA
model. The model correctly classified 34 compounds out of 35
compounds as higher carcinogenic compounds and 13 com-
pounds out of 19 compounds as lower carcinogenic compounds
for the discrimination set. The discrimination set showed the
following results: sensitivity=97.1%, specificity= 68.4%, pre-
cision=85%, accuracy=_387.0% and F-measure=90.7%. The devel-
oped LDA model was later used to predict the test set to validate
the model externally. The LDA model correctly classified 11
compounds out of 12 compounds as higher carcinogenic com-
pounds and 3 compounds out of 4 compounds as lower carcino-
genic compounds for the test set. The obtained validation
parameters for the test set are also encouraging. The results are
as follows: sensitivity=91.7%, specificity=75%, precision=91.7%,
accuracy=87.5% and F-measure=91.7%. All the results are
obtained based on the classification matrix obtained by LDA.

The area under the ROC curve (AUROC) was also determined to
check the performance of the classification model for both the
discrimination and test sets. The calculated values of AUROC for
discrimination and test set are 0.898 and 0.896 respectively. The
results are quite on the higher side of the acceptable limit of 0.5.
AUROC also strongly supports the reliability of our developed
discrimination model. ROC curves for the discrimination and test
sets are represented in Fig. S3 in Supplementary Materials
section. The ROCED parameter can take values between 0 (perfect
classifier for both training and test set) to 4.5 (random classifier).
The parameter ROCED bears a value of 0 for a perfect classifier, a
value greater than 2.5 is considered as random classifier and
above 4 is considered as bad classifier. Our model showed a value
of 0.773 for ROCED, which corresponds to a good quality of the
ROC analysis. ROCFIT was calculated by dividing the ROCED with
Wilk’s A value, and an acceptable value of 1.6 was obtained. These
two parameters prove the following points: 1. the obtained model
has a similar accuracy for the training and test series, 2. both
training and test sets have ratings close to perfection and 3. A
maximum accuracy on the test set. The MCC usually varies from
—1 to +1 referring to an inverse classification to a perfect
classification respectively, whereas a value of 0 corresponds to
random classification performance. The present study also
showed an acceptable value for the MCC; a value of 0.714 for
the training and 0.667 for the test set. The training set shows a
near perfect classifier value of MCC (0.714) than the test set,
where the value is still close to perfect classification instance.

The discriminant equation has been used to calculate the DF
value for all the compounds from which PDD was developed for
the discrimination and test set compounds. Table 1 shows the DF
(AP) of each compound for discrimination and test sets, obtained
as the difference between the variables defining the groups of
higher carcinogenic and lower carcinogenic molecules. Molecules
with DF values higher than 0.5 (AP > 0.5) were classified as lower
carcinogenic, while AP <0 corresponds to higher carcinogenic
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Results obtained by linear discriminant analysis and regression analysis carried out with 70 compounds. Observed and calculated/predicted OSF carcinogenicities of 66
chemicals for which quantitative models are constructed.

CompoundID Chemical name In silico methods
LDA Regression based QSAR
OSF mg/kg/ Classification based Discriminant Classification Observed Calculated/predicted
day on threshold value Function with developed carcinogenicity carcinogenicity
0.5mg/kg/day (AP) LDA model Log10(MW/OSF)  Log;o(MW/OSF) (PLS
Model)
Discrimination
set
co2 Acrylamide 0.5 P -1.891 + 2.153 3.229
co3 Acrylonitrile 0.54 P —2.514 + 1.992 2.825
co4 Aldrin 17 N 2.756 - 1.332 2.064
Cco5 Aniline 0.0057 P —2.581 + NU NU
c10 Benzo[a]pyrene 7.3 N 5.290 - 1.539 2.285
C11 Benzotrichloride 13 N —2.462 + NU NU
c12 Benzyl chloride 0.17 P —1.390 + 2.872 2.879
C13 Bis(chloroethyl)ether 1.1 N —0.313 + 2.114 2.699
c14 Bis(chloromethyl)ether 220 N —-2.914 + NU NU
C15 Bromate 0.7 P —2.434 + 2.265 2.937
c16 Bromodichloromethane 0.062 P —2.941 + 3.422 3.467
Cc18 Carbon tetrachloride 0.07 P —3.024 + 3.342 3.561
Cc19 Chlordane 0.35 P 3.934 - 3.068 1.657
c2o0 Di(2- 0.0012 P 0.194 ] 5.490 4.653
ethylhexyl)adipate
c21 Di(2- 0014 P 1.379 - 4.446 5.197
ethylhexyl)phthalate
Cc22 Dibromochloromethane 0.084 P —2.844 + 3.394 3.800
c23 1,2-Dibromoethane 2 N —3.196 + 1.973 2.630
C24 3,3'-Dichlorobenzidine 045 P —1.807 + 2.750 2.709
C25 p,p'-DDA 0.24 P -1.677 + 3.125 2.947
C26 p.p’-DDE 0.34 P —1.755 + 2971 2.950
Cc27 DDT 0.34 P -1.621 + 3.018 3.035
Cc29 Dichloromethane 0.0075 P —3.067 + 4.054 2.694
c30 1,3-Dichloropropene 0.05 P —1.687 + 3.346 2.255
C31 Dichlorvos 0.29 P —0.851 + 2.882 2.896
32 Dieldrin 16 N 4.768 - 1377 2.064
c33 1,4-Dioxane 0.1 P —2.535 + 2.945 2.513
C35 Epichlorohydrin 0.0099 P —1.550 —+ 3.971 2.598
C36 Folpet 0.0035 P 0.133 §) 4.928 5.341
Cc38 Furmecyclox 0.03 P 0.532 - 3.923 4.330
C40 Heptachlor epoxide 9.1 N 3.602 - 1.631 1.881
Cc41 Hexachlorobenzene 1.6 N —2.363 + 2.250 2.433
c42 Hexachlorobutadiene 0.078 P -2.616 + 3.524 2.818
c43 alpha-HCH 6.3 N 4613 - 1.664 2.067
C45 Technical HCH 1.8 N 4.613 - 2.208 2.067
C46 Hexachlorodibenzo-p- 6200 N —0.036 + -1.200 -0.858
dioxin
Cc49 Hydrazine/Hydrazine 3 N —3.489 + 1.029 1.353
sulfate
C50 Isophorone 0.00095 P —0.823 + 5.163 4237
C51 4.4~ 0046 P —2.559 + NU NU
Methylenebis(N,N’-
dimethyl)aniline
C52 N-Nitroso-di-n- 5.4 N 5.126 - 1.467 1.503
butylamine
Cc53 N-Nitroso-N- 22 N 4,583 - 0.603 0.169
methylethylamine
C54 N-Nitrosodi-N- 7 N 4.955 - 1.270 1.348
propylamine
C55 N- 2.8 N 4.819 - 1.680 1.163
Nitrosodiethanolamine
C56 N-Nitrosodiethylamine 150 N 4.736 - -0.167 1.132
C58 N- 0.0049 P -0.7 + 4.607 4,295
Nitrosodiphenylamine
Cc59 N-Nitrosopyrrolidine 2.1 N 4,780 - 1.678 1.213
C60 Pentachlorophenol 0.4 P —1.303 + 2.823 3.426
c61 Prochloraz 0.15 P 0.891 - 3.400 2914
C62 Propylene oxide 0.24 P —2.705 + 2.384 2.379
C65 1,1,2,2- 0.2 P —2.835 + 2.924 3.193
Tetrachloroethane
C66 1,1,2-Trichloroethane 0.057 P —-1.710 + 3.369 2.923
Cc67 2,4,6-Trichlorophenol 0.011 P —-1.471 + 4.254 3.480
C69 2,4,6-Trinitrotoluene 0.03 P —0.955 + 3.879 4.001
C70 Vinyl chloride 0.72 P —3.068 + 1.939 1.908
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Table 1 (continued )

CompoundID Chemical name In silico methods
LDA Regression based QSAR
OSF mg/kg/ Classification based Discriminant Classification Observed Calculated/predicted
day on threshold value Function with developed carcinogenicity carcinogenicity
0.5mg/kg/day (AP) LDA model Log1o(MW/OSF)  Log;0(MW/OSF) (PLS
Model)
c71 BDE-209 0.0007 P —0.553 + 6.137 5.933
Test set
co1 Acephate 0.0087 P -0.771 + 4.323 2.870
Co6 Aramite 0.025 P 1.014 - 4127 2.878
Cco7 Azobenzene 0.11 P —2.430 + 3.219 2.643
c17 Bromoform 0.0079 P -3.259 + 4.505 3.637
Cc28 1,2-Dichloroethane 0.091 P -0.599 + 3.036 2.639
C34 1,2-Diphenylhydrazine 0.8 P —2.746 + 2.362 2274
c37 Fomesafen 0.19 P 1.822 - 3.364 2.383
c39 Heptachlor 4.5 N 2.587 - 1.919 1.883
C44 beta-HCH 1.8 N 4614 - 2.208 2.067
c47 Hexachloroethane 0.014 P —2.808 + 4228 3.731
c48 Hexahydro-1,3,5- 0.11 P -1.125 + 3.305 3.670
trinitro-1,3,5-triazine
Cc57 N- 51 N 4431 - 0.162 —0.804
Nitrosodimethylamine
C63 Quinoline 3 N —2.54 + 1.634 2.722
C64 1,1,1,2- 0.026 P -1.694 + 3.810 3.194
Tetrachloroethane
C68 Trifluralin 0.0077 P 0.269 U 4.639 4.741
C72 Dichloroacetic acid 0.05 P —-1.913 + 3.411 3.616

P=Higher carcinogenic compounds (bioassay value 0.5 mg/kg/day or less than that), N=Lower carcinogenic compounds (bioassay value more than 0.5 mg/kg/day).
Discriminant function values higher than 0.5 (AP > 0.5) were classified as lower carcinogenic which is assigned with (—), while AP < 0 corresponds to higher carcinogenic
molecules which is assigned with (+), and the compounds with AP values between 0 and 0.5 were classified as undetermined carcinogenicity which is assigned with (U).

NU-Not used in QSAR model development.
Discrimination set:
For the higher carcinogenic group:

Undetermined (U)=5.714%, False prediction (—)=11.429%, Overall accuracy=82.857%, Adjusted accuracy=_87.879%.

For the lower carcinogenic group:

Undetermined (U)=0%, False prediction (+ )=36.842%, Overall accuracy =63.158%, Adjusted accuracy=63.158%.

Test set:
For the higher carcinogenic group:

Undetermined (U)=8.333%, False prediction (—)=16.667%, Overall accuracy=75%, Adjusted accuracy=_81.818%.

For the lower carcinogenic group:

Undetermined (U)=0%, False prediction (+ )=25%, Overall accuracy="75%, Adjusted accuracy =75%.

molecules, and the compounds with AP values between 0 and
0.5 were classified as molecules with undetermined carcinogeni-
city. These discriminant conditions are imposed to minimize the
percentage of error, i.e. to give the lowest possible number of false
positives.

The overall accuracy was 82.9% in the higher carcinogenic
group and 63.2% in the lower carcinogenic group for the dis-
crimination set. The cross-validation test was applied to the AP
function with a group of 4 lower carcinogenic and 12 higher
carcinogenic molecules not used in the discriminant function. The
fact is that both the overall accuracy (75% for both higher
carcinogenic and lower carcinogenic group) and the adjusted
accuracy (81.8% for higher carcinogenic group, 75% for lower
carcinogenic group) for the test set are quite similar to the
discrimination set.

The discrimination of carcinogenicity was carried out to show
that the obtained discriminant function values in the LDA for both
the groups make it possible to separate the two populations. To
design the PDD, we observed that the maximum of the E;
(expectancy to get lower carcinogenic compounds) and E, (expec-
tancy to get higher carcinogenic compounds) values are distrib-
uted on different sides of AP=0. We obtained positive values for
lower carcinogenic compounds (with a maximum value around

AP=6) and negative values for higher carcinogenic compounds
(with a maximum value of AP= —4, approximately), in both the
discrimination and the test groups. The values calculated for the
discriminant function and the corresponding classification appear
in Table 1. PDDs are presented in Fig. S4 for the discrimination set
and the test set, respectively in Supplementary materials section.
On analysis of Fig. S4, although overlapping of E; can be seen in
the E, region for the discrimination set of compounds, the over-
lapping building blocks are significantly lower. On the other side,
only one block of E; is overlapped in the E, region for the test set.
Less is the overlapping between E; and E,, more meaningful is the
PDD. The studied PDD for the test set is more significant and
reliable than the discrimination set as the overlapping of E; and E,
are significantly less. Using the PDD, it is possible to discriminate
between higher and lower carcinogenic groups within a structu-
rally heterogeneous set of compounds and it constitutes a valu-
able tool in the validation of discrimination analysis for our study.

A contribution plot (Fig. 2) was developed for the best
discriminating descriptors (Eq. (2)) by taking the product of their
average values with their corresponding coefficients as in the
discriminant Equation. The indices nRNNOx, CI-086 and Wap
show marked positive contributions to the lower carcinogenic
group. This demonstrates the importance of the presence of
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number of aliphatic N-nitroso groups
O, Aliphatic
N—N

‘Aliphatic

(nRNNOx index) and hydrophobicity measure of Cl atom attached
to sps hybridized carbon (C1) atom (CI-086 index, an atom
centered fragments) in relation to the lower carcinogenicity of
our studied compounds. WAP is the Wiener index, which is the
sum of the number of edges in the shortest paths in a chemical
graph between all pairs of non-hydrogen atoms in a molecule.
Fig. 2 confirms that these three indices are the major discrimina-
tory features between higher and lower carcinogenic groups.
Again, if we compare among these three indices, nRNNOx dis-
tinctly makes the major difference between two groups. It is quite
significant that all the compounds comprising of nRNNOx group
are identified as the lower carcinogenic compound. It is quite
interesting to point out that N-Nitrosodiphenylamine (C58) which
contains aromatic N-nitroso fragment shows higher carcinogeni-
city. So, it is quite clear that though nitroso fragment containing
compounds are carcinogenic but aromatic N-nitroso compounds
are higher carcinogens than the aliphatic N-nitroso compounds.
In our discrimination analysis studies only aliphatic N-nitroso
containing compounds are showing lower carcinogenic property
very clearly. Further explanation on the mechanistic contribution
of this feature to the carcinogenicity is given in the QSAR
interpretation section in details.
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Fig. 2. Average contribution of indices to the discriminant functions for higher
and lower carcinogenic molecules groups.

Though CI—-086 and WAP are not as significant as nRNNOx, but
effect of CI—-086 is also observed in the discrimination between
higher and lower carcinogenic compounds. Compounds like
alpha-HCH (C43), Heptachlor epoxide (C40), Aldrin (C04) are
classified as lower carcinogenic compounds as they contain high
number of the CI—-086 feature (6, 3 and 2, respectively). On the
contrary, though Chlordane (C19) contains 4 Cl—086 feature but
it is classified in the higher carcinogenic group. The other
fragmental properties and physicochemical properties have effec-
tive contribution to higher carcinogenicity of Chlordane.

Significantly, MAXDP has a positive contribution towards
higher carcinogenic compounds. MAXDP is a topological index
that represents the maximum positive intrinsic state difference
and can be related to the electrophilicity of the molecule (Kier
et al., 1991). The result of contribution plot signifies that com-
pounds carrying electrophilic property shows higher carcinogenic
value and vice versa. Further analysis has been performed in the
regression analysis part.

3.2. Results obtained from the regression analysis

Statistically significant QSAR models were developed using
different chemometric tools. A detailed report of the statistical
quality of various models is elaborated in Table 2. Among the
various models developed, the best results were obtained from
the PLS technique based on giving equal importance to internal as
well as external predictivity. The developed equation is as
follows:

log1o(MW/OSF) = 0.237-2.112 x (NnRNNOx)
+0.626 x (MAXDP)—0.499 x (C1-089)
+2.415 x (Mp)—0.231 x (nCXr)—1.633 x (nArOR)
+0.252 x (nArX)—0.804 x (C—005)

Nrraining = 50,LV = 7,R* = 0.800,Q7,, = 0.643,

fom%fo = 0-716vQ§725%7o = 0-7“va750%70 =0.717

Nrest = 16,Qf1 = Royoq = 0.645,12, ) = 0.624,Ar%, 1) = 0.155,

Fmtest

Q2%,=0.605,Q% =0.714 3)

Eq. (3) involving 8 descriptors and 7 latent variables (LVs)
could explain 80.0% of the variance. The statistical significance of
the developed model is reflected from the acceptable values of
Qf00 (0.643) and Q2x(r1) (0.645). To check the model reliability in
terms of internal validation, the leave-many-out (LMO) cross-
validation (10%, 25% and 50%) tools were also applied. LMO cross-
validation for 10%, 25% and 50% data point removal could predict
71.6%, 71.1% and 71.7% respectively of total variance. The com-
pounds deleted in different cycles of leave-many-out cross-
validation are indicated in Table S1 in Supplementary Materials
section. The obtained value of rZ ., is more than 0.5 and the
value of differences between r, and r/Z metrics (A2 osp)) s less
than 0.2 inferring that the predicted OSF carcinogenicity value for
these molecules, calculated using the above equation, are in close
proximity to the experimental data.

Quite close values for the Qzxr1) (0.645) and Q22 (0.605)
parameters indicate that the test set selected for the QSAR model

Table 2
Statistical quality of the developed carcinogenicity QSAR models.
Response variable  Model No.  Statistical Tool ~ No. of Descriptors ~ R* Q? RZrea 2 est AltZest)
Carcinogenicity 1 Stepwise MLR 9 0.822 0.706 0.636 0.621 0.204
2? PLS 8 (LV=7) 0.800 0.643 0.645 0.624 0.155
3 GFA (Linear) 6 0.711 0.599 0.572 0.471 0.231
4 G/PLS (Linear) 7 (LV=4) 0.683 0.547 0.730 0.652 0.086

2 The best model.



92 S. Kar et al. / Ecotoxicology and Environmental Safety 82 (2012) 85-95

development has similar distribution of response as the training
set. Thus, the model may be considered statistically significant
and satisfactory for predicting the carcinogenicity of a new set of
molecules. Again, the function ngt(F:%) (0.714) which is indepen-
dent of the external data distribution and fulfils some basic
mathematical properties such as ergodic and associative proper-
ties, also shows a satisfactory value for the model. Acceptable
values of all these parameters for the best model indicate that the
obtained model has statistical reliability and good internal as well
as external predictive potential. Moreover, the carcinogenicity
values of all the compounds calculated/predicted using Eq. (3)
was plotted against the observed carcinogenicity data and the
resulting graph (Fig. S5 in Supplementary Materials section)
showed that the points were limitedly scattered about the line
of fit. This again implicated the predictive efficacy of the devel-
oped QSAR model. The PLS model also satisfied the statistical
validation parameters set forth by Golbraikh and Tropsha (2002).
For the PLS model, these statistical parameters yielded the
following results: Q*>=0.643, *=0.727, (I° —13)/I°=0.085, (* — %)/
?=0.002, k=0.86, K'=0.85.

The VIPs (Variable Importance Projections) and the coefficient
histogram of the original descriptors for Model 2 are presented as
histograms in Fig. S6 and Fig. S7 in Supplementary Materials
section. To comply with the OECD Principle 5, mechanistic
interpretation should be given for any predictive QSAR model as
far as possible. Here, we explain the interpretation and impor-
tance of each descriptor appearing in the best regression equation
modeling rodent carcinogenicity with suitable examples:

(a) nRNNOxis the most important descriptor according to the VIP
plot and it has a negative contribution towards carcinogeni-
city. It signifies the number of aliphatic N-nitroso groups. As
the descriptor has a negative contribution towards the carci-
nogenicity, presence of nRNNOx functional group decreases
the carcinogenicity, and with the absence of nRNNOx, carci-
nogenicity of a compound increases. N-Nitroso-N-methy-
lethylamine (C53), N-Nitrosodi-N-propylamine (C54) and
N-Nitrosodiethylamine (C56) comprising of aliphatic
N-nitroso group showing lower carcinogenicity values
(0.603, 1.270 and -0.167, respectively). On the contrary,
compounds like Di(2-ethylhexyl)adipate (C20), Isophorone
(€50) and BDE-209 (€C71) are showing high carcinogenic value
due to the absence of nRNNOx. Quite interestingly, though
N-Nitrosodiphenylamine (C58) is a nitroso compound but it
contains aromatic N-nitroso fragment; as a result it shows
high carcinogenicity value (4.607). Again, it is worth mention-
ing that nRNNOx fragment is also the most important dis-
criminating index between higher and lower carcinogenic
property. So, further explanation has been given below
regarding the mechanism of this particular fragment towards
carcinogenicity.

Major N-nitroso compounds have been classified by the IARC
as Group 2B carcinogens (IARC Monographs, 2006). The
cytotoxic effect of major N-nitroso compounds on tumor cell
is known to result from the DNA binding of alkylating species
generated during metabolic composition. The DNA adduct is
mainly formed by Sy2 nitrosation mechanism (Enoch and
Cronin, 2010). The reaction is presented in Fig. S8 in
Supplementary Materials section. Another important path-
way is confirmed by Tanno et al. (1996) that the generation of
NO from aromatic N-nitroso compounds at ambient tempera-
ture by trapping of NO as a nitrosyl complex. Thus, the
cytotoxicity originating from NO is expected to be potent in
aromatic N-nitroso compounds as they have NO-generating
ability, compared with that in aliphatic N-nitroso compounds.
A conjugating effect between the aromatic ring carbon and

neighboring nitrogen influences the NO generating ability for
aromatic N-nitroso compounds. On the other hand, NO
production from the aliphatic N-nitroso compounds was not
observed and those N-nitroso compounds did not show
effective cytotoxic activity. The above mentioned mechanism
and our developed QSAR equation can fully support why
aromatic N-nitoso compounds are showing higher carcino-
genic property than the aliphatic N-nitroso compounds.

(b) MAXDP is the maximum positive intrinsic state difference
and it can be related to the electrophilicity of the molecule.
Electrophilicity contributes postively towards carcinogenicity
and it acts as one of the most important features in carcino-
genicity prediction for our studied compounds. Compounds
carrying electrophilic property shows higher carcinogenic
values and vice versa. Most genotoxic carcinogens are strong
electrophiles. Chemical carcinogens are converted into elec-
trophilic reactants and/or metabolites with electron-deficient
sites. These electrophilic compounds can then exert their
carcinogenic effects through covalent interaction with cellular
macromolecules (Klaassen and Watkins, 1999). To identify
specific structural alerts of carcinogenicity, Ashby and Ten-
nant (Ashby and Tennant, 1991; Putz et al., 2011) found that
the majority of the rodent carcinogens were among the group
of chemicals containing an electrophilic alert. All the previous
studies strongly support our obtained interpretation.

(c) CI-089, an atom centered fragment descriptor, refers to the
hydrophobicity measure of Cl atom attached to a sp, hybri-
dized carbon (C1) atom. CI—-089 has a detrimental effect to
carcinogenicity according to our model. Hexachlorodibenzo-
p-dioxin (C46), Hexachlorobenzene (C41) and Aldrin (C04)
show lower carcinogenic profile since they contain high
number of CI—089 fragments (6, 6 and 2, respectively).

(d) Mp is the mean atomic polarizability which is a constitutional

descriptor, and is measured by summation of the atomic

contributions (Hemmateenejad et al., 2005). Atomic polariz-
ability is a sum over all atoms in the molecule and describes
the molecule’s ability to polarize in a magnetic field. The more
polarizable molecules are more carcinogenic according to our
developed QSAR model due to the positive contribution
towards carcinogenic property. Increase in carcinogenicity
with atomic polarizability is already reported in the literature

(Jelcic, 2004).

nCXr is defined as the number of X (halogen) on ring C(sp3).

This functional group count descriptor has a negative con-

tribution towards carcinogenicity. Aldrin (C04) and Dieldrin

(€32) are showing lower carcinogenicity values due to pre-

sence of high number of chlorine atoms on ring C(sp3).

nArOR can be explained as the number of ether linkages

(aromatic) which has a detrimental effect towards carcino-

genicity. Hexachlorodibenzo-p-dioxin (C46) contains 2 ether

linkages between aromatic groups and shows low carcino-
genicity value.

nArX is defined as the number of X (halogen) on an aromatic

ring. This functional group count descriptor is conducive to

carcinogenicity. Compounds like BDE-209 (C71) is showing
high carcinogenicity value due to high number of nArX count

(10). Again, Hexachlorodibenzo-p-dioxin (C46) is showing a

very poor carcinogenicity value though it contains 6 nArX

functional counts. In this particular case, compound C46 has
high number of (6) CI-089 fragment (one of the most
important descriptor after nRNNOx and MAXDP) and 2 nArOR
functional counts which are detrimental for carcinogenicity.

Note that C1-089 has a negative coefficient while nArX has a

positive coefficient which indicates that bromine has more

positive impact on carcinogenicity than chlorine (the present
data set has no fluorine or iodine containing compounds) and
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thus C1-089 acts as a penalty factor for the nArX term in case
of chlorine containing compounds.

(h) Atom centered fragment descriptor, C—005 is calculated based
on fragment based approach for log P prediction. C—005 refers
to the hydrophobicity measure of CH3X fragment, where, X-
represents any heteroatom (O, N, S, P, Se and halogens).
According to the VIP plot, it is least significant among the
obtained eight descriptors. It has a negative contribution
towards the carcinogenicity. N-Nitroso-N-methylethylamine
(€53) contains one CHsX fragment, and hence, it shows lower
carcinogenic profile. Also, the contribution of nRNNOx fragment
cannot be denied for N-Nitroso-N-methylethylamine as it con-
tains a nRNNOx fragment which negatively contributes to
carcinogenicity. On the contrary, though Dichlorvos (€31) con-
tains two CH3X fragments but it shows higher carcinogenic
profile due to lower number of -Cl fragments than the other
studied compounds. The effect of other descriptors also exerts
significant contribution for this exceptional case.

The PLS loading plot for the response variable (carcinogenicity)
and the descriptors included in the final model are shown in
Fig. 3. The carcinogenicity is explained significantly by the first
component. The loading plot shows that the first component is
dominated by the electronic parameters (MAXDP on the positive
side, and nRNNOx on the negative) and the second component is
dominated predominantly by solubility/hydrophobicity with
Cl-089, C—005 and nArOR lying on the negative side. Mp, nCXr
and nArX share the features of both components.

Model 2 was validated using a randomization test through
randomly reordering (100 permutations) response data using
SIMCA 10.0 (UMETRICS, Umea, Sweden, 2002). The randomization
parameter model 2 is well above the permissible limit indicating
that the model is not obtained by chance. Carcinogenicity inter-
cept values are R>=(0.0, 0.077), Q*=(0.0, —0.774). The randomi-
zation plot is presented in Fig. S9 in Supplementary Materials
section. The lack of chance correlation in the PLS model is also
well reflected from the value of CR% (0.761) which is higher than
the acceptable threshold value of 0.5. Both results suggest that
the obtained model is not derived by chance.

According to the OECD guidelines (OECD Document, 2007), it is
desirable to verify the applicability domain of a model using multi-
ple approaches. Chemicals considered in the present modeling work
are diverse and mostly environmental contaminants and pesticides:
the main categories include a) aliphatic alcohols, amines, nitrosa-
mines, ethers, halogenated derivatives, b) aromatic alcohols, ethers,
nitrosamines, halogenated derivatives, c¢) cyclic ethers. The range of
the dependent variable for the training set compounds is —1.2 to
6.137 while the ranges for descriptors are as following: nRNNOx (0
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Fig. 3. The loading plot of the first two principal components for the PLS model
(Model 2).

to 1), MAXDP (0 to 5.57), CI—089 (0 to 6), Mp (0.462 to 1.295), nCXr
(0-6), nArOR(0 to 2), nArX(0 to 10) and C—005 (0 to 2). Based on
Y-response (here, rodent carcinogenicity) of the training set, all test
compounds are inside of the AD. Based on X-responses, compound
C17 (Bromoform) is considered as outside of the AD marginally for
the Mp variable. There is not a single compound outside of the AD
for other 7 descriptors derived from regression models. The applic-
ability domain for the PLS model was checked using the leverage
approach. Leverage values of training compounds €31 (Dichlorvos),
C46 (Hexachlorodibenzo-p-dioxin) and C71 (BDE-209) being greater
than the critical value of 0.54 (h > h"), these compounds behave as
influential observations although they are not response outliers. All
16 test set compounds were found to be within the applicability
domain of the model. Further, at 99% confidence level, DModX
values of all test compounds are below the critical value of 3.719.
Considering leverage and DModX processes of the AD tests, we
conclude that all 16 test compounds are inside of the AD and their
predictions are highly reliable. Based on the three applied
approaches, we can confidently predict 15 test compounds based
on the developed model after rigorous tests for validation and
applicability domain check. Williams plot (Fig. S10) and DModX
plot (Fig. S11) are presented in Supplementary Materials section.

4. Comparison between interpretation of classification and
regression models

The results obtained from the discriminant model and the
regression models are comparable to each other. The descriptors
appearing in the classification model would ideally discriminate the
higher and lower carcinogenic groups. The classification model
comprises of only four variables that are representative of the
discriminatory features between higher and lower carcinogens.
Out of four descriptors, indices nRNNOx, CI—086 and Wap show
marked positive contributions to the lower carcinogenic group.
Making a comparison among these indices, nRNNOx is the most
important one, which is quite clear from Fig. 2. Significantly, MAXDP

Table 3
Comparison of quality between our best models with the previous developed
model.

SI  Previously developed model (Wang Our developed best model
No. et al. 2011)

1  According to OECD principle 1, QSAR Benzene and Benzidine are left
model should be developed for the  out for QSAR model development
defined endpoint. Here, along with  and Linear Discriminatory
the rodent (rat and mouse), human Analysis.
endpoint was used for 2 chemicals
(Benzene and Benzidine) for the
QSAR study.

2 QSAR model was developed with 70 External validation is performed.
chemicals without external
validation.

3 QSAR model contains 12 latent
variables. (R*=0.771, Q*=0.732)

Best QSAR model contains 7 latent
variables. (R>=0.800, Q*=0.643,
R2,0a=0.645)
4 Oral slope factor values of Models are developed after

5 chemicals are wrongly reported if correction of all these values.

we compare with the original

USEPA’s IRIS database.

Name Reported® Original source®
Acrylamide 4.5 0.5
Carbon tetrachloride 0.13 0.07
1,2-Dibromoethane 85 2
1,4-Dioxane 0.011 0.1
Pentachlorophenol 0.12 0.4

2 All values are in mg/kg/day.
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has a positive contribution towards higher carcinogenic compounds.
Most interestingly our QSAR results also identified nRNNOx frag-
ment and MAXDP as important indices for the regression model. As
the nRNNOx descriptor has a negative contribution towards carci-
nogenicity, presence of nRNNOx functional groups decreases the
carcinogenicity and with the decreasing number of nRNNOx, carci-
nogenicity of a compound increases. Analyzing the regression
model, it is quite clear that MAXDP contributes postively towards
carcinogenicity (Ashby and Tennant, 1991; Putz et al., 2011). This
observation is also fully supported from the results of LDA and
contribution plot (Fig. 2). Structural fragments like C/—089, nCXr,
nArOR, nArX and C— 005 are also identified as important features for
carcinogenicity prediction. A comparison between previous work
(Wang et al.,, 2011) and our proposed work is presented in Table 3.
The major success of our studied model is that results from both
techniques conclude in the same direction.

5. Conclusion

Combined analysis of the descriptors used in the best regression
based QSAR equation and LDA suggest that the carcinogenicity often
depends on the electrophilicity and particular structural fragments of
the chemicals. Most genotoxic carcinogens are strong electrophiles.
These electrophilic compounds can exert their carcinogenic effects
through covalent interaction with cellular macromolecules. Based
upon the descriptor MAXDP in the best QSAR model, the majority of
the training set chemicals could be considered as electrophiles that
interact with DNA, RNA and protein macromolecules which majorly
act as nucleophiles. One of the major identified fragments for lower
carcinogenic property is nRNNOx fragment which has a negative
contribution to carcinogenicity. Most interestingly, nRNNOx fragment
is also identified as the major discriminatory feature between higher
and lower carcinogenic group by LDA analysis and it has a positive
contribution towards lower carcinogenic group. It should be note-
worthy to mention that all the nitroso compounds have carcinogenic
property but presence of the nRNNOx index in a particular compound
can discriminate between higher and lower carcinogens. The Mp
descriptor signifies that more polarizable molecules are more carci-
nogenic. The CI-089, nCXr, nArOR and C—005 fragments have
negative contributions towards carcinogenicity. The descriptor nArX
has a positive contributions towards carcinogenicity. It appears that
bromine has more positive impact on carcinogenicity than chlorine
(the present data set has no fluorine or iodine containing compounds)
and thus CI-089 acts as a penalty factor for the nArX term in case of
chlorine containing compounds. Satisfyingly, the results obtained
from regression based QSAR and LDA techniques are quite comple-
mentary to each other and the interpretations are quite similar for
both techniques which help us to understand the major structural
features and physicochemical properties for the carcinogenic property
of our studied compounds. The structural features identified by the
regression based QSAR model to be responsible for carcinogenic
potency are successfully confirmed from the results of LDA and
PDD approaches. Though intrinsic complexity and multistage nature
of carcinogenicity is a major limitation in its prediction, the current in
silico methods have provided some structural alerts to determine the
potential carcinogenic modes of action via direct interaction with
DNA and other macromolecules. The obtained results can be used as a
starting point for regulatory decision making and risk assessment in
future.
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