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Abstract

This thesis is concerned with the oscillation and non oscillation of solutions
of a class of even order neutral differential equations. The general form of this

class of equations involves two delayed arguments.

The thesis presents main concepts and basic definitions of neutral differential
equations and establishes both necessary and sufficient conditions for non
oscillatory solutions. Several results in the oscillation theory of that class of
even order neutral differential equations are proposed and a number of

examples are given to illustrate the main theorems.

This study also investigates deeply and analyzes and compares, in order to
understand accurately, the results about necessary and sufficient conditions
for the oscillation and non oscillation of solutions of even order neutral

differential equations with constant and variable coefficients.
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Introduction

Differential equations with deviating arguments (DEWDA) are among the most
important equations in applied mathematics. This importance occurs because they provide
mathematical models for many real-life systems, in which the rate of change of the system

depends not only on its present state but also could depend on past or future states.

DEWDA initially was introduced in the eighteenth century by Laplace and
Condorcet [26] . Bernoulli ( 1728) while studying the problem of sound vibrating in a tube
with finite size investigated the properties of solutions of the first order of DEWDA, and
was the first to work in this area [1]. However, the systematic study of such type of
differential equations has begun in the twentieth century in connection with the needs of

applied science and technology [11] .

In the late thirties and early forties Minorsky in his study of ship stabilization and
automatic steering pointed out very clearly the importance of the consideration of the delay
in the feedback mechanism[8]. The great interest in the theory of automatic control and
dynamics systems, during these and later years, has certainly contributed significantly to

the rapid development of the theory of delay differential equations [26,11, 8].

Myshkis in his book (1950) introduced a general class of equations with delayed
arguments [8]. In 1958 G.A. Kamenskii [5] proposed a classification method for a general
class of DEWDA, he classified such type of equations into three types, they are: retarded
type, neutral type, and advanced types.

Oscillatory behavior of solutions of DEWDA is one of the most important properties
of this type of equations, besides existence of positive solutions, and asymptotic behavior
of solutions. This importance comes from the viewpoint of applications where these

properties provide a qualitative description of solutions of the DEWDA.

Since 1950 the oscillation theory of DEWDA has received the attentions of several
mathematicians as well as other scientists around the world. However, the theory of

oscillation of DEWDA has been extensively developed in the last 30 years.

In 1987 Ladde, Lakshmikantham, and Zhang in their well presented book [5],

introduced the first systematic treatment of oscillation and non oscillation theory of



DEWDA[4]. In 1991 Gyori, and Ladas introduced one of the most important books in the
oscillation theory of DEWDA. The last book is also a extensive reference for the theory of
DEWDA, and it contains several applications. Recently several books appeared that are

specialized in the subject of oscillation, such as Bainov and Mishev (1991), and Agarwal

(2000).

In parallel, during the second half of the twentieth century the area of applications of
DEWDA has greatly expanded. Now such equations find numerous applications in
physics, control theory, power systems engineering, material science, robotics, neural
networks, ecology, physiology, immunology, public health, and economics (see references

of [2,3,4,8,12,30]).

The simplest type of past dependence in differential equation is that in which the past
dependence is through the state variable and not the derivative of the state variable, in this
were DEWDA are the so-called retarded functional differential equations or delay

differential equations [8].

When the delayed argument occurs in the derivative of the state variable as well as

in the independent variable, the system is called neutral differential equations [8].

Although the oscillatory theory of non-neutral differential equations has been
extensively developed during the last three decades, only in the last ten or fifteen years
much effort has been devoted to the study of oscillatory behavior of neutral delay
differential equations (NDDE). From the viewpoint of applications, the study of oscillatory
behavior of solutions of NDDE, the study of other types of DEWDA, and its theoretical
interest are all important. Accordingly, NDDE have many applications in natural science,
technology, and economics. For more illustration, NDDE appear in the following

applications:

1. Study of vibrating masses attached to an elastic bar [4, 8].

2. Study of distributed networks containing loss-less transmission lines [4, 8].

3. Problems of economics where the demand depends on current price but supply
depends on the price at an earlier time [30].

4. To describe the Flip Flop circuit which is the basic element in a digital electronic

[12].



In fact, the appearance of neutral term in differential equations can cause or destroy
oscillation of its solutions. Moreover, in general the theory of neutral differential equations
presents complications which are unfamiliar for non-neutral differential equations: Most of
authors obtained sufficient rather than necessary conditions for oscillation of higher orders
NDDE. However, the conditions assumed differ from author to author due to the different
techniques they used and different forms of equations they considered. Also, it is
interesting to note that the conditions assumed by different researches for similar form of

equations are often not comparable, see [17].

In our thesis we study the oscillation of a certain class of even order NDDE of the forms

with constant or variable coefficients:
L) + 2x(e = D] + £ (£.x(g(0)) = 0 (1)

L@ + h(o)x(e - O] + £ (£,x(g(®)) = 0 )

datn

Throughout this thesis, the following conditions are assumed to hold; n = 2 is even;
T>0; 1>0; g € C[ty, ™), lim,, g(t) = o0; f € C([ty, 0) X R); uf(t,u) =

0 for (t,u) € [ty, ) X R,and f(t,u) is nondecreasing in u € R for each fixed t >
to; h(t) € C(R).

The outline of the thesis is as follows:

Chapter One: Contains the main concepts, definitions, and preliminary material that are

essential for the rest of the thesis.

Chapter Two: Is devoted to oscillation and non oscillation theories of equations (3) and

(4) for the case of constant coefficients

[x(t) +Ax(t -] +q@®)x(t—0)=0 3)

datn

L 1x(t) + x(t — D]+ qO)lx(E — )" = 0 4)

datn

wherey # 1 and y > 0.



Chapter Three and Chapter Four: highlight on Tanka's results, [20] and [21]
respectively. The theory of oscillation for equation (1)(respectively (2)) will be studied
since it is of extreme significance over earlier theories. Not only it provides necessary and
sufficient conditions for the oscillation, but also compares NDDE with ODE. The detailed
proof, the resulting corollaries along with its evidences, and lemmas, will be all presented

and proved along with the chapter.



Chapter One
Preliminaries

This chapter contains some basic definitions, and results which are essential for the rest of the
thesis. Sections 1.1 and 1.2, introduce the definition of DEWDA, their classification, and definition
of NDDE. Section 1.3, gives the meaning of solution of NDDE and sections 1.4 and 1.5,
introduce the definition of oscillation and some oscillatory phenomena caused by deviating

arguments. Section 1.6 contains basic lemmas related to the subject.

1.1 Differential equations with deviating arguments (DEWDA)

Differential equations with deviating arguments are differential equations in which the
unknown function appears with various values of the argument. They are classified into

three types:
1. Differential equations with retarded argument:

Differential equation with retarded argument is a differential equation with deviating
argument in which the highest-order derivative of the unknown function appears for just
one value of the argument, and this argument is not less than the remaining arguments of

the unknown function and its derivatives appearing in the equation.
ii. Differential equations with advanced argument:

Differential equation with advanced argument is a differential equation with
deviating argument in which the highest-order derivative of the unknown function appears
for just one value of the argument, and this argument is not larger than the remaining

arguments of the unknown function and its derivatives appearing in the equation.
iii. Differential equations of neutral type:

Neutral differential equation is a differential equation in which the highest-order
derivative of the unknown function is evaluated both with the present state and at one or

more past or future states.



Example 1.1.1:

) x()=f (t,x(t),x(t - T(t))).

2) x'()=f (t,x(t),x’(t - ‘L'(t))).

) X®) = fex@, % (5),x(0,x ()

4)  x'(@®) = £t x(6),x' (), x(z(6), x (z()).

5 x@)=f (t,x(t),x(t —1),x(t — r)).

6) x'(t) = £ (&x(6),x'(®), x(t — 7(t)),x"(t = 7(1)))

Equation (1), (2), (3), and (4) are equations with retarded argument if 7(¢t) > 0 in (1)
and (2),t > 0in (3),and t(t) < tin (4).

Equations (1), (2), (3), and (4) are equation with advanced argument if 7(¢t) < 0 in
(I)and (2),t < 0in (3),and 7(t) > tin (4).

Equations (5) and (6) are equations of neutral type.

1.2 Neutral delay differential equations (NDDE)

A neutral delay differential equations is a differential equations in which the highest-
order derivative of unknown function appears in the equation both with and without

delays (retarded arguments).
Example 1.2.1:

1) x'(t) = f(t,x(t),x'(t —1)),7 > 0, is a first order NDDE.
2) x't)=f (t,x(t),x'(t),x(t —1(t),x (t —7(®),x"(¢t - T(t))), 7(t) > 0 is second order
NDDE.

In general, the behavior of solutions of neutral type equations may be quite different
than that of non neutral- equations, and results, which are true for non- neutral equations,

may not be true for neutral equations.



1.3 Solution of NDDE

We shall be concerned with the oscillatory behavior of the solutions for even order neutral

differential equation of the forms

L lx(® + 2x(t = D] + £ (£,x(9®)) = 0 (13.1)
L x() + hox(t — D] + £ (6.2(9(0)) = 0. (13.2)

The following conditions are assumed to hold: n=>2iseven; 1 >0;t> 0;g €
Clty, ), lim;_,, g(t) = o; f € C([tg,©) X R), uf(t,u) = 0 for (t,u) € [ty, o) X

R, and f(t,u) is nondecreasing in

u € R for each fixed t > t, ; h(t) € C(R).

By a solution of (1.3.1) or (1.3.2), we mean a function x(t) that is continuous and satisfies
(1.3.1) or (1.3.2) on [ty, o) for somet, = t,. Therefore, if x(t) is a solution of (1.3.1) or
(1.3.2), then x(t) + Ax(t — 7) is n-times continuously on [t,,0) . Note that, x(t) itselfis

not continuously differentiable.

1.4 Definition of oscillation

There are various definitions for the oscillation of solutions of ordinary differential
equations (with or without deviating argument). In this section we give two different forms

of definitions of the oscillation. These forms are most frequently used in literature.

Definition 1.4.1: A non- trivial solution x(t) is said to be oscillatory if it has arbitrarily
lagre zeros for t> t, that is, there exists a sequence of zeros {t, }, (x(t,,) = 0) of x(t) such

thatlim,,_,, t,, = +o, otherwise x(t) is said to be non- oscillatory.
For non oscillatory solutions there exists a t; such thatx(t) # 0, forall t > t;.

Definitions 1.4.2: A non- trivial solution x(t) is said to be oscillatory if it changes sign on

(T,0), where T is any number.

As the solution x(t) is continuous, if it non oscillatory it must be eventually positive or
eventually negative. That is there exists a Top € R such that x(t) is positive for all t> T, or

is negative for all t> T.



Example 1.4.1: The equation
A0+ x(t-2)=0 (1.4.1)
Has oscillatory solutions x;(t) =sin t, and x; (t)= cos t.
Example 1.4.2: The equation
x'(t)—e3x(t—3)=0 (1.4.2)
Has non oscillatory solutions x(t) = et.

Example 1.4.3: the equation
" s
x'(t) + 4x (5— t) =0 (1.4.3)

Has an oscillatory solution x;(t) = sin2t, and a non oscillatory solution x, = et —

en—Zt‘

Example 1.4.4: Consider the equation
" 1 s 1 3
2= 2x (t=2)+3x(t-Z)=0,t20 (1.4.4)

Whose solution x(t) = 14 cost, it is oscillatory according to definition 1.4.1, and non
oscillatory according to definition 1.4.2. In fact, definition 1.4.1 is more general than

definition 1.4.2 and is the most used in literature, also, it is the one used in this thesis.
Example 1.4.5:

x'(t) — %x'(t) + 4t2x(t) = 0 (1.4.5)
Whose solution x(t) = sint?, this solution is not periodic but has an oscillatory property.

Example 1.4.6: Consider the NDDE

[x(t)—%x(t—Zﬂ]’—izx(t—%”) =0 (1.4.6)



It has an oscillatory solution x(t)= sin t.

Example 1.4.7: Consider the NDDE
" t
[x(®) = e'x (¢t = 11" + S 23t —1) = 0 (14.7)

It has a non oscillatory soltuon x(t)= e, but x(t) — 0 as t— oo.

1.5 Effects of deviating arguments on oscillation

The oscillation theory of DEWDA presents some new problems, which are not
presented in the theory of corresponding ordinary differential equations (ODE). However,

results for oscillation of differential equations may not be true for DEWDA.

In this section we consider some oscillatory and non oscillatory phenomena caused by

deviating arguments, through the discussion of the following example.

Example 1.5.1: Consider the equation

x’(t)+ﬁx(t—%)=o, B €R\ {0} (1.5.1)

It has oscillatory solution x;(t)= sin 8t, and x,(t) = cos St . While the equation
x(t)+ Bx(t) =0, pBeERN\{0} (1.5.2)
Has non- oscillatory solutionx(t) = e A,

This example shows that first order DEWDA can have oscillatory solution. While, as
known, the first order scalar ODES that contain the unknown function do not possess

oscillatory solution.

Example 1.5.2: Consider the equation
" Vs
x'(1)=9x(t =) =0 (1.5.3)
It has oscillatory solution x,(t) = sin3t, and x, (t)= cost 3t. But equation

x'(t) — 9x(t) =0 (1.5.4)



Has non oscillatory solutions x,(t)= ¢!, and x3(t)= ¢™'

It is obvious that the nature of solution changes completely after the appearance of

deviating argument in the equation.
Example 1.5.3: Consider the equation
x't)+ x@Rr—-t)=0 (1.5.5)

It has an oscillatory solution x;(t) = cost, and non oscillatory solution x,(t) = et —

le[—t.

Here, in second order DEWDA one solution is oscillatory, but the other is non oscillatory,
and this case can never occur in second order linear ODE, where either all solutions are

oscillatory or all solutions are non oscillatory.

1.6 Some basic lemmas
This section contains basic lemmas needed later in the thesis.
We begin by classifying all possible non oscillatory solutions of equation (1.3.1) according

to their asymptotic behavior as t — .

Lemma 1.6.1 ([7]): (Kiguradze ) Let n>2 and 6 =10or -1 and let u € C™[T, )

satisfies
ou(®u™ () <0, fort=>T.
Then there exist an integer j € {0,1,2,......,n} and a number t, > T such that (-1)* /=g =1
and
{ u(@®u®D ) > o0, t=t,, 0<i<j,
D u@®uD@) >0 t=ty, j<i<n

Lemmal.6.2 ([29]): let x(t) be a non oscillatory solution of (1.3.1) . Then one of the
following two cases holds:

(I) There is an integer j with 0 < j <n,(-1)"/*¢ =1 and a number ¢, > T such that

x(t)(Lx)(t) > 0, t=ty, (1.6.1)
{(Lx)('ii).(Lx)(")(t) >0 t>t,, q < z <j (1.6.2)
D UL)®OU)P@) >0, t=t,, j<i<n,
(IT) There is a number t, =T such that
x()(Lx)(t) <0, t =t (1.6.3)
DI L) LD > 0 t>t,, 0<i<n (1.6.4)

10



and
lim(Lx)(t) =0 , lime,x(t) =0 (1.6.5)

Note: Where L(t) = [x(t) — h(t) x(t — 7)]. Furthermore the case (II) can hold only when
(—1)"¢ = 1 and h(t) is eventually positive.
Definition 1.6.1 ([7]): Let V'denote the set of all non oscillatory solutions of (1.3.1). For
an integer j with 0 <j<n and(-1)""/"'¢ =1, we denote Njto be the set of all non
oscillatory solutions x of (1.3.1) which satisfy (1.6.1) and (1.6.2). In addition, we denote
Ny~ to be the set of all non oscillatory solutions x of (1.3.1) which satisfy (1.6.3)-(1.6.5).
Lemma (1.6.2) means that every non oscillatory solution x € )V falls into one and only one
of the classes »; (0 <j <n, (-1)"/~'¢ = 1) and Ny . More precisely, N has the following
decomposition:

N =N, 1UN, 53U ...UNMUNy foro=1 andniseven;

N =N UM, 3 U...UN,UN, foro=1 andnisodd;

N =N, UN,,_, U ...UM, UN, for o = —1and nis even,
N =N, UN,, 5 U ..U N UNG foro=—-1andnisodd;

Note: V;~ can appear only when h(t) is eventually positive, so if h(t) is either oscillatory
or eventually negative, then (1.3.1) cannot possess a non oscillatory solution x(t) satisfies
(1.6.3), so that in this case the class V; should be removed from decomposition from .
Let x € IV then we see by (1.6.2) that the asymptotic behavior of (Lx)(t) as t — o is as
follows:
(1) If j = 0, then either

(i-1)  lim, e (Lx)(t) = const # 0 or

(1-2)  lim,e, (Lx)(t) =0.

(i1) If 1 <j<n-—1,then one of the following three cases holds:
(ii-1)  limgLe (L)g(t) = const # 0;
(11-2)  limie (L;zit) = const # 0;
(ii3) limew ™02 =0;  and  limg e o2 =
(iii) If j = n, then either
(iii-1) limg, (];I)l(z(lt) =const # 0 or
(ifi-2) Ty 2 = o0

11



Lemma 1.6.3([5]):
If xisasinlemma 1.6.1 and for some k =0,1,..,n—2,

limy,e x®(@#)=¢c, c€R (1.6.6)
Then

lim,_,e x**D () = 0 (1.6.7)

12



Chapter Two
Oscillation and Non oscillation for Linear and Nonlinear Equations

2.1 Oscillation and non oscillation of linear equation

In this part of the study, equation (A) theorems that present oscillation and non oscillation
will be demonstrated. Relying on the coefficient value, this part will be divided into several
sections. According to equation (A) outcomes, confirming conditions for oscillation and
non oscillation of equation (2.1.1) will be derived taking into consideration the fact that

this equation is a special case for equation (A).

We consider the neutral linear functional differential equations of type

dn

= [x@® = h®Ox(z(®)] + o 21 p:i(O)x(9: () = 0 (A)
Where n = 2,0 = 1 or — 1, and the following conditions are assumed to hold:
a. h:[ty, ) — R is continuous and satisfies |h(t)| < A on [t,, ) for some constant
<1,
b. 1: [ty, ) — R is continuous and increasing, t(t) < ¢ for ¢ = t, and lim,_,,, T(t) = o;
c. eachp;: [ty,©) = (0,) is continuous, 1 < i < N;
d. each g;: [ty, ) = Ris continuous and satisfies lim;_,, g; (t) =, 1 <i < N.

From equation (A), we have a special equation

L x(0) + Ax(t = D] + p(D)x(t — 0) = 0 @.1.1)

Where i = 1,h(t) = -4, 1> 0,0 € R,p € C[ty,»),p(t) > 0for t > t,.

The main results are contained in theorems 2.1.1 and 2.1.3. Theorems 2.1.1 presents
sufficient condition for the non oscillation of equation (2.1.1). Theorems 2.1.3 and 2.1.4
present sufficient condition for the oscillation of equation (2.1.1).

Case 1: equation (2.1.1) has a non oscillatory solution if
f;’ t"Ip(t)dt < (2.1.2)

The objective of this case is to obtain criteria for equation (A) to have non oscillatory

solutions of two types described in section 1.6:

Type (I):  lim;_,, (Lﬁ(t) =const # 0 forsome k € {0,1,..n— 1};

Type (II):  lim;_,, o - 0; and lim.,,

00 ool _

tl-1 - =

forsome [ € {1,2,..n — 1}

13



where (Lx)(t) = x(t) — h(t)x(r(t)).
=  Solutions of type (I) :We start with Type (I) solutions, and note that such solutions
can be completely characterized in case
h(t)h(‘r(t)) > 0 is satisfied (which include the case of one-signed).
Theorem 2.1.1([7]): Suppose that (2.1.3) holds

h(Oh(z(¢)) =0 for all large t. (2.1.3)
Equation (A) has a non oscillatory solution x(t) satisfying
x(@®)[x(®) —h®x(x(®) ] >0 (2.1.4)
and
lim,.,,, “OOMO) _ onsi 2 0 2.1.5)
forsome k € {0,1,.....,n — 1} if and only if
Ly fo ™ (O pi(O)de < o0 (2.1.6)

= Solutions of type (II) : We now consider non oscillatory solutions of
type II of equation (A), that is, those solutions x(t) which satisfy (2.1.4) and

lim,..,, 0O O) ~ g and lim,._, w — too @2.1.7)

n-l-1
for some [ € {1,2,...n — 1} such that (-1) : o=1.
If x(t) is one such solution of (A), then integration of (A) gives

Lt x(g:(0) [pi(Ddt < 0

and
N~ L e x(gi(®) [pu(e)dt = o
For some T >t sufficiently large. Since (2.1.4) holds, then (Lx)(t) satisfies case (I) from
Lemma (1.6.2), so (Lx)(¢t) is a function of Kiguaradze degree [ for some [ € {1,2,..n —
1} such that (1) 6=1. Thus, there exist positive constants a, 8 and T such that
[x(®)] = at’™* and |x(t)| < Bt for t =T,
Combining the above inequalities, which follows readily from (2.1.3) and (2.1.7), we see

that
L f 7 (O] p(Ddt < oo (2.1.8)
and

i f " O] py(D)dt = oo (2.1.9)

14



Thus, (2.1.8) and (2.1.9) are necessary conditions for the existence of a solution x(t)
satisfying (2.1.4) and (2.1.7) of equation (A) for which (2.1.3) is satisfied.

The following theorem presents sufficient conditions for the existence of such a solution of
(A) in the case where h(t) = 0 for t > t,.

Theorem 2.1.2([7]): Suppose that h(t) =0 for t >t,. Let [ € {1,2,...n — 1} be such

that (-l)n_HGZI. Equation (A) has a non oscillatory solution x(t) satisfying (2.1.4) and
(2.1.7) if

Lo f T (O] pi(D)dt < oo (2.1.10)
and

Lo e g1 pi(Ddt = w0 2.1.11)
Example 2.1.1: Consider the special case of (A) with N=1

o [0 = hOx(r®)] + op(Dx(g (1)) = 0 e.112)

In addition to (a-d) assume that (2.1.3) is satisfied. Condition (2.1.6), (2.1.10) and (2.1.11)

for this equation reduce to

ft: t"k1[g(O]*p(t) dt < o (2.1.13)

f;; t" 1 [g(O)]ip(t) dt < o (2.1.14)
and

Joy " g1 'p(0) dt = o0 (2.1.15)

respectively. Suppose that g(t) satisfies

0 <lim,_, inf<2 < lim,_,, sup 22 < o0 (2.1.16)
(Example of such g(t) are

g)=t+é , g@®) = ut, g(t) =t +sint
Where § and pu are positive constant). Then, the set of (2.1.6) for all k=0,1,...,n—1
reduces to a single condition

Jey " tp(D)dt < oo (2.1.17)
From Theorem 2.1.1 it follows that if (2.1.17) holds , then (2.1.12) has a solution x(t)
satisfying (2.1.5) for every k € {0,1, .....,n — 1}, and that if
f:: t"1=ep(t)dt = o

then (2.1.12) cannot have a solution x(t) satisfying (2.1.5) for any ke{o1,....n—
1}, we note that theorem 2.1.2 is not applicable to equation (2.1.12) subject to (2.1.16),
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since in this case conditions (2.1.14) and (2.1.15) are not consistent for any [, since g(t)
1s finite ast — .
Next, suppose that g(t) =t? , where 8 € (0,1) is a constant. Then, (2.1.14) and (2.1.15)
become

f;: t"1HO () dt < oo (2.1.18)
and

f;: 0D p(t) dt = w0 (2.1.19)
Since lim,, t% = . Which may hold simultaneously; for example, the function p(t) =
t’,y being a constant, from inequality (2.1.18) we have
n—1l—-1+10+y<0=y<I(1-6)-n+1 And, from inequality (2.1.19) we have
n—Il+60(l-1D+y>0 = y>l-n—-6(-1), so it satisfies both (2.1.18) and (2.1.19) if
t,>0 and l-n-0(-1)<y< I(1-60)—n+1. According to theorem 2.1.2, condition
(2.1.18) and (2.1.19) for some
1€{01,....,n—1} with (-1)"*/s=1 guarantee the existence of a solution x(t) of equation
(2.1.12) which has the asymptotic behavior (2.1.7)
Example 2.1.2: Consider the equation

dZ
dt?

[x(t) — Ax(t — p)] + (Ae? — De@Vix(vt) =0, t =0 (2.1.20)
where 0 <A< 1,p>o0andv>0.

(1) Suppose that Ae? > 1 .Then, (2.1.20) is a special case of (2.1.12)
inwhich n=2,0=1h(t) =1,7(t) =t — p,p(t) = (le? — 1)e® Dt and
g(t) = vt. From section 1.6 we have ™ = nUNg  for (2.1.20).
Note that Ny~ # ¢. Since h(t) = A is positive and (—1)"¢ = 1 is, more specifically,
since the proper solution is positive, then we have from lemma(1.6.2) case II in section
1.6 [x(¢) —dx(t —p)] <0. So |x(®)| <Alx(t —p)| and hence |x(z7™(t))| <A™ |x(¢)|. Which
implies that
lim,_, x(t) = 0. To explain that, the set of all solutions x(t) of equation (A) satisfies
x(t) [x(t) — h(t)x(r(t))] <0 is Ny, and this class Ny is empty if
oc=1and nisodd or o =-1 and n iseven,
note that 7°(t) = t, 7i(t) = r(ri—l(t)), i) = 771 (r—<i-1>(t)),
since T(t) < t. Then, |x(t)| < /lx(r(t))
t < v'(t), so we have |x(z71(®))| < Ax(®)] < 22x(z (1))

TH(t) < T72(t), so we have |x(772(8))| < A|x(z71(6))] < A2x(¢)

16



Continuing in this manner we have
|x(‘r‘m (t))| < A™x(t) . Equation (2.1.20) has a solution x(t) = e~ belonging to the class
Ny

The possible asymptotic behavior of the members x(¢t) of M are:
limtqu = const # 0 (2.1.21)
lim;_, x(t) — Ax(t — p) = const # 0 (2.1.22)
lim,,,, X072 o fim, | x(t) — Ax(t — p) = +oo (2.1.23)

t
If v < 1 then, since g(t) = vt satisfies (2.1.16), p(t) = (e? —1)e® V¢ and n = 2, we
have  [*s27'p(s)ds = [, s(Ae? —1)e@ Dsds = (AeP — 1) [ se@ D5 ds use the integration
by parts

(Ae? — 1) f; se®W Vs ds = (lef — 1) limy,., f: se@1s gg

e(u—l)s
(v-1)?

e(v—1)

= (1e” — 1) lim,_,,

(©-ns-1)[2

a((1)—1)a—1)<oo

= (-DOe? -1 5

Since v—1 <0, then (2.1.17) holds, and so (2.1.20) has a solution satisfying (2.1.21)as
well as a solution satisfying (2.1.22). However, there is no solution of (2.1.20) which has
the asymptotic property (2.1.23), because the condition

(2.1.9) which is necessary for the existence of such a solution is violated for equation
(2.1.20).

Ifv = 1, then,

faw % Ip(s) ds=(Ae” — 1) limy_ faA se@=1s ds=co

Since v — 1 > 0, then equation f:: t" 1p(t)dt =« (n = 2) holds, so that (2.1.20) has neither
a solution satisfying (2.1.21) nor a solution satisfying (2.1.22). Since (2.1.8) is not
satisfied.
(i1) Suppose that AeP < 1 .then, (2.1.20) is a special case of (2.1.12)
in which
n=20=-1Lht)=21,7(t) =t —p,p(t) = (le? — 1)e@ VDt and g(t)
= vt.
From section 1.6 we have V' = NV,UJN, and the possible types of asymptotic behavior of
non oscillatory solutions x(t) of (2.1.20) are (2.1.21) and (2.1.22),
lime_ o [x(t) —Ax(t—p)] =0 (2.1.24)

and
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lim, o, X2 = 00 05 — 0o (2.1.25)

Exactly the same statements as in (i) hold for solutions which satisfy (2.1.21) and (2.1.22),
depending on whether v < lor v > 1. Equation (2.1.20) has a solution x(t) = e~ ‘satisfying
(2.1.24).

Case 2: equation (2.1.1) has oscillatory solution if

f:j t"1=Ep(t)dt = o for some € > 0

This result is based on the following theorems due to Joar$ and Kusano[7].
e Oscillation criteria : We are interested in the situation in which all
proper solutions of equation (A) are oscillatory. Since this situation is equivalent to the
nonexistence of non oscillatory solutions of (A), Jaro§ and Kusano obtained conditions
under which none of the solution classes appearing in the classification V' in section 1.6
has a member they derivation of the result is based on the following lemma due to
Kitamura [28,p.487] which provide oscillation criteria for functional differential
inequalities of the form

{Ju(")(t) + p(t)u(g(t))}sgn u(t) <o (2.1.26)
where n > 2, 0 = 1, p:[a, ) = (0,») is continuous, g: [a, ) = (0,x)
is continuous, and lim,_,,, g (t) = oo.
We introduce the following lemma which is useful in the proof of theorem 2.1.3.
Let g.(t) = min{g(t), t}
Lemma 2.1.1([5]): Let c =1 andnbeeven. There is no non oscillatory solution of
(2.1.26) if

f;o[g*(t)]”‘l [g(®)] ép(t)dt = o forsome ¢ (2.1.27)

Let x(t) be a non oscillatory solution of equation (A), letx(t) — h(t)x(z(t)) = (Lx)(t) from
(A) we have (LX) ™ (0) = o XV, p,(6)x (gi(t)) , forg,(t) < t, that is

L)) < 02 p,(0x (9,)) . forg,(0) < ¢. Tt follows that (Lx)D(£) {i = 0,1,....,n —
1} is  strictly monotone and of constant sign  eventually.  Hence
(Lx)(t) >0 or (Lx)(t) <0 from large t, that is x(¢t) — h()x(z(t)) is eventually one-
signed, we examine h(t) in two cases:

1) h(t) is eventually positive : Since x(t) — h(t)x(z(t)) is eventually
one-signed. Then, the function  x(¢)[x(t) —h(®Ox(z(t))] is either eventually positive or

eventually negative.
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(1-1) Consider the case where x(t)[x(t) —h(®x(z(t))]> 0 for large t. Put v(t) = x(t) —
h(Hx(z(t)). Since, in this case, |v(t)| < |x(¢)| for large t, we see from (A) that
{ov™(@®) + T, p:(O)v(g:(D)}sgnv(t) < 0
Provided t is large enough. It follows that v(t) is a non oscillatory solution of each of the
differential inequalities
{ov™@®) + p,(Ov(g:([®))sgnv(t) <0 1<i<N (2.1.28);
for all sufficiently large t, and that x(t) is a member of &v; if and only if v(t) is a solution
of degree [ of (2.1.28);, foreach /1 <i < N.
(1-ii) Consider the case where x(0)[x(t) — h(H)x(z(t))] <0 for large . Put w(t) =
h(®O)x(t(®)) — x(t). Since |w()| < h(®)|x(z())] < A|x(z(®))].
We find |w(z71(t))|/2 < |x(¢)|, which combined with (A), yields
{(caw™(®) + 27 B p(Ow (7 (g:(0)) )} sen w(t) < 0.
It follows that
{(caw™(®) + 17 p(Ow (7 (g:(0)) )} senw(®) < 0,1 < i < N (2.1.29);
for all sufficiently large t, and that x(t) is a member of »; if and only if w(t) is a
solution of degree 0 of (2.1.29);, foreach 7 <i < N.
2) h(t) is eventually negative : we will be interested in this case and the case where
h(t) is oscillatory and such that  h(¢)h(z(t)) =0 for all large t,in these cases, we
must have Ny~ is empty as was note in section 1.6, then there is no solution of (A)

satisfying x(£)[x(t) —h()x(z(¢)) ] < 0 for large t, then, the function v(t) = x(t) —

h(©x(z(r)) satisfies
(I = Dlv(®)] < |x(@)| for large t (2.1.30)
Provided the Kiguradze degree of x(t) is positive. From (A) and (2.1.30) we see that v(t)
satisfies
{ov™@®) + (1 - Dpi(Ov(g:(0)sgnv(®) <0, I<i<N (2.1.31);

for all sufficiently large t, and that x(t) is a member of ; if and only if v(¢) is a solution
of degree [ of (2.1.31); foreach /1 <i < N.

Jaros and Kusano derived oscillation criteria for equation (A) to obtain conditions which
preclude all the possible solution classes™,0<!<n, and N, appearing in the
classification . That this is indeed possible can be seen from the above observations
combined with lemma 2.1.1which apply directly to the functional differential
inequalities(2.1.31);, / < i < N.

Here, the interesting case where h(t) is eventually negative, so V™ is empty.
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The following theorem follows in this manner.

Theorem 2.1.3([5]): Let 0 = 1 and n be even. Suppose that h(t) is eventually negative
or that h(t) is oscillatory and satisfies (2.1.3). All proper solutions of (A) are oscillatory if
thereis i € {0,1, ....., N} such that

ftzo[gi*(t)]”‘l[gi(t)]“s p;(t)dt = oo for some € > 0 (2.1.32)

Where g;.(t) = min{g;(t), t}.
Proof: According to classification v, I € {1,3,...,n — 1}, and ;" are the possible classes of
non oscillatory solution of (A) with ¢ = I and n be even. Our task is, to show that all of
these solution classes are empty if the hypotheses of the theorem are satisfied. In this case
Ny~ is necessary empty. Suppose that N, # @ for some ! € {1,3,..,n—1}. Then, each of the
inequalities in (2.1.31) possesses a non oscillatory solution of degree [. However, this
impossible, because from Lemma 2.1.1 applied to (2.1.31); it follows that (2.1.32) prevent
(2.1.31); from having a non oscillatory solution of any kind. Thus we must have N, =¢
forall 1 €{1,3,.,n—1}.0
Example 2.1.3 : Consider the equations

L x(0) + Ax(@n)] + p(©)x(Br) = 0 (2.1.33)

Where 0<1<1,0<a<1,B>0and p:[ty, o) — (0,00) is continuous,t, > 0. This is a
special case of (A) in which o =1,N=1,h(t) = =14,7(t) = at,p(t) = p,(t) and g,(t) = Bt .
Noting that g,(t) = min{1, 8}t, we have all proper solutions of equation (2.1.33) are
oscillatory if
f:; t"1"Ep(t)dt = o, for some & > 0

Theorem 2.1.4([10]): Consider the equation
L [x() + h@Ox(t — D] + pOx(t —0) =0, £ 2 1, (2.1.34)

Where p,h € C([ty, ©), R), and assume that n is even and that the hypotheses (H1) and
(H2) are satisfied.

(H1) There exist positive constants h; and h, such that h; < h(t) < h,

(H2) There exists a positive constant p such that

p(t)=p>0.
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Furthermore, assume that h(t) is not eventually negative. Then every solution of equation

(2.1.34) oscillates.
The example below illustrates Theorem 2.1.4.

Example 2.1.4: The NDDE

daz

-z [x(t) + G + cos t) x(t — 27r)] + G + cos t) x(t—4m) =0,t =0,

Note that there is nonnegative h; = 1/2 and h, = 3/2 such thatl/2 < r(t) < 3/2,

and p(t) = % > 0, satisfies the hypotheses of theorem 2.1.4. Therefore, every solution of this

cost
3/2+cost

equation oscillates. For example, x(t) = is an oscillatory solution.

The following example shows that if we remove the hypotheses (H2) from theorem 2.1.4,

the result may not true.

Example 2.1.5: The NDDE

d? 1 3
— — — — = >
TE [x(t) + <2 + cos t) x(t 27r)] + (2 + cos t) x(t—4m)=0,t =0,

Satisfies all the hypotheses of theorem 2.1.4 except (H2). Since 0 < p(t) < 1, note that

x(t) = t1/2 is a non oscillatory solution of this equation.

Remark 2.1.1: From case 1we have the following result
Equation (2.1.1) with 0 < 4 < 1 is oscillatory if

ft‘: t" 1 Ep(t)dt = oo for some & > 0 (2.1.35)
and equation (2.1.1) is non oscillatory if

f: t" Ip(t)dt < oo . (2.1.36)

Remark 2.1.2: If p(t) = ct™ where ¢ > 0 condition (2.1.2) and
(2.1.35) fail to be satisfied.
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2.2 Non Oscillation of nonlinear equation

In this section we discuss the non oscillatory behavior of the equation

dn

atn

[x(6) = h(®)x(x()] + op(O)f (x(9(®))) = 0 (2.2.1)
Wheren = 2,0 = 11, and the following conditions are always assumed to hold:

a) t7(t) € C[ty,©), T is nondecreasing on [t,,©), T(t) <tfort=>t, and
lim;_, T(t) = oo;

b) h(t) € Clt(t, ),©),|h(t)| < h < 1fort =t,, where h is a positive constant, and
h(t)h(t(t)) = 0fort > ¢,;

c) p(t) EClt, ,o)andp(t) >0 fort=>t,;

d) f(u)e C((—oo, oo)\{O}) and f(u)u > 0foru # 0;

e) g(t) €Clt, ,©)and lim,_, g(t) = .

Definition 2.2.1: Equation (2.2.1) is called strictly sublinear if there is a number a such

that 0 < @ < 1 and
[fCuy)l - [fCuy)l

[ug[@ 7 fugl®

for |ug| < |uyl, uu, > 0.

Equation (2.2.1) is called strictly super linear if there is a number 3 > 1 such that

|fCuy)l < [f(uz)]
|u1|B - |'~12|B

for |uy| < |uyl, uu, > 0.

The equation

:? [x(t) + Ax(t—D)] +p@®)|x(t —0)|[Ysgnx(t —0) =0
Is a special case of equation (2.2.1), is strictly sublinear if —o <y < 1 and is strictly super
linearif 1 <y < oo .

Note: We say that a non oscillatory solution x of equation (2.2.1) or the inequality
{ax(")(t) +p(Of (x(g(t)))} sgnx(g(t)) < 0. (2.2.2)
are of class JV; if x satisfies

{ L) L)D(@) > 0, 0<i<jy,
D W)®OULODPE) >0, j+1<i<n,

for all sufficiently large t .
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Theorem 2.2.1([29]): Let (a)-(e), (2.2.3) and (2.2.4) be satisfied.
T is locally Lipschitz continuous on [t, ,00) (2.2.3)

h is locally Lipchitz continuous on [t(t, ), o) (2.2.4)

Assume that equation (2.2.1) is strictly sublinear and 0 <j<n-1, (-1)"7 ¢ =1 . Assume

in addition that g (t) = min {g(t), t}. satisfies

LA (2.2.5)

. . (
lim_, 4, inf=
iMoo Inf s

Then, a necessary and sufficient condition for (2.2.1) to have a non oscillatory solution of
class J; is that

Jo e p@|f(clg(®1)]di< o, for some ¢ # 0. (2.2.6)
Theorem 2.2.2([29]): Let (a)-(e), (2.2.3) and (2.2.4) be satisfied.

Assume that equation (2.2.1) is strictly super linear and 1<j<n-1, (-1)" 7 lc=1.

Assume in addition that g,(t) = min {g(¢),t}. satisfies
lim,_, inf% >0 (2.2.7)

Then, a necessary and sufficient condition for (2.2.1) to have a non oscillatory solution of
class V; is that

ft:O t" I p®)|f(clg(O) )| dt< o0 for some ¢ # 0 (2.2.8)
Example 2.2.1: Consider the equation
% [x(®) —hsint.x(t —2m)] + op@®)|x(t —T)|[Vsgnx(t—1) =0 (2.2.9)
where n>2,06 =1or—1,p € C[0,), p(t) >0 on[0,»), and T,h,y are constants
such that |h| < 1, |y| < o, || < oo . First, notice that
case (II) in lemma 1.6.2 does not occur (that is, the class Ny for equation (2.2.9) is
always empty) since the function h(t) = h sint takes a nonpositive value on [T, <) for all
T. Let j be an integer satisfying: 1 <j<n-17 and (-1)" 7 'c = 1.
Remark2.2.1: Theorem 2.2.1 shows that equation (2.2.9) with —c0 <y <1 has a non

oscillatory solution of class JV; if and only if
f: t" I p(t)cY |t — t|Vsgn(t — 1)dt < 00 = f: "I p(D)dt < oo,

While theorem 2.2.2 shows that equation (2.2.9) with 7/ <y < has a non oscillatory

solution of class V; if and only if
ftzo t"Ip(©)(c?|t — 7|YUD)sgn(t — 1)dt < o0 = ftj 0D p()dt < oo
Consider the special case that n is even and ¢ = 1 in equation (2.2.9).

We see that if y < 1 and the condition
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J @D p()dt = oo (2.2.10)

are satisfied, then all the classes Vj,j = 1,3,...,n— 1, for equation (2.2.9) are empty.
Since NV, is also empty, we can conclude the following: Let n be even, o = 1

and y < 1, then equation (2.2.9) has no non oscillatory solutions if and only if (2.2.10)
holds. Similarly, if n be even, o =1 and y > 1. Then equation (2.2.9) has no non oscillatory
solutions

if and only if f: t=D p(t)dt = 0.

The following results concerning the non oscillatory solution of the

Equations:
(x(®) + Ax(t =)™ + f (t,x(g(t))) =0, for t > t, 2.2.11)
and

(x(®) + h(Ox(c =)™ + of (£,x(g(®))) = 0 (2.2.12)

Where A is a real number, T>0,n>2, 0 =11, g € Clty,©), lim,,, g(t) = o,
h(t) € Clty — 7,%) , f € C([te,®) X (0,)),

f (t,u) = 0for (t,u) € ([to,oo) x (0, oo)) ,and f (t,u) is nondecreasing
if u € (0,) for each fixed t € [t,, ).

Theorem 2.2.3 ([27]): Suppose that || = 1,xf(t,x) > 0 (x # 0)and |f(¢t,x)| <
|f (&, )| for |x| < |yl,xy > 0. If

[T 5™ f (s, k)| ds < +oo (2.2.13)

for some k # 0, then equation(2.2.11) has a bounded non oscillatory solution.

Theorem 2.2.4 ([27]): Suppose that

Al =1, gt) <t,xf(t,x)>0,(x #0)and |f(t,x)| < |f(t,y)| for |x| <|yl,xy >

0. If
[ |f(t, kR(g(t)))| ds < +o (2.2.14)

For some k # 0, where R(t) = t™ ! then (2.2.11) has an unbounded non oscillatory

solution.
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Theorem 2.2.5([18]): Let k be an integer with 0 < k <n —1 . Suppose that equation
(2.2.15) holds

h(t) > —1 and h(t) =h(t—1), t=t,. (2.2.15)

Then equation (2.2.12) has a positive solution x(t) such that

_[_c¢ k
x(t) = [1+h(t) + 0(1)] t as t > o

for some ¢ > 0 if and only if

f;: t" k1 (L, c[g(®)]¥)dt <o forsome ¢ >0.

If A =1 in equation (2.2.11) , then the function

x(t)=atlt (@€Ra#0,k€Z,0<k<n-—1), is a nontrivial solution of the

equation % [x(t)+ x(t—-1)] =0,

and so it is natural to expect that, if f is small enough in some sense, equation (2.2.11)

possesses a positive solution x(t) which behaves like
the function at® ast — .

For the case |A| <1, the smallness condition on f is characterized by the integral

condition

f:z t" k11 (t, c[g(t)]*)dt < oo forsome ¢ > 0 (2.2.16)

In fact, it is known that equation (2.2.11) with |A] < 1 has a solution x(t) satisfying

lim;_,, % (exist and is positive finite value) if and only if (2.2.16) holds, see [7], [18].

It has been observed that there is a slight difference between the case 4 = —1 and the
case—1 < A < 1. M.Naito discussed the case A = +1 and he proved that the same result

as the case|A| < 1, more precisely, we have the following theorem.

Theorem 2.2.6([15]): Let k be an integer with 0 < k < n — 1. Then the equation

dTL

datn

[x(t) + x(t —D)] + of (t,x(g(t))) =0 (2.2.17)
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has a solution x(t) satisfying limt_,w% (exist and is positive finite value) if and only if

(2.2.16) holds.

Remark 2.2.2: The purpose in [18] is to extend this result to the equation

dn

dtm

[x(6) + h()x(t — D] + of (£,x(9(1))) = 0
where h(t) € C[ty — T,%) ;n = 2; 0 = +1 for the case equation

(2.2.15), of course (2.2.15) means that h(t) is a T — periodic function satisfying h(t) >

—1, > t,, and hence there are
a constants ¢ and A such that —1 < u < h(t) < A < oo fort > t,.
Remark 2.2.3:

If A =1 then the linear equation

;_; [x(t) + Ax(t — )] +p(®)x(t —0) =0

has a non oscillatory solution if [*t"~* p(®)dt < e, and the equation
L [e(e) + Ax(t = D] + POl (e — ) sgnx(t — ) = 0

has a non oscillatory solution if [~ t™MrBM=Dp(t) < oo,
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2.3 Oscillation of Nonlinear Equation.

We investigate the oscillatory behavior of the equation

[x(®) + hOx(z®)]™ +p©)f (x(9(D)) = 0 2.3.1)

Where, h(t),7(t) € C([ty,©),R;),to = 0,h(t) # 0 on any half line [ty, ), T(t) <'t,

g(t) < t, with commute delayed argument i.e.

(g(®) = g(z(®), t = t,.

The following assumptions are made for their use in this section:

(D) flu+v) < f@+fw) if u,v>0
) fw+v) 2f@+fw) ifu,v<0
3) flkw) < kf(uw) ifk>0 andu>0,foreachk e K,

Where K = {k: h(t) = k for some t € [ty,©)}.

(4) flku) = kf (W) ifk>0 andu<o0, foreachk e K

(5) f(u) is bounded away from zero if u is bounded away from zero .
©6) Jo p(s)ds = oo,
(7) =(t) € C1([ty,©)) and 7'(t) = b, where b is positive constant .

(8) There exists a positive constant M such that h(g (t))p(t) < Mp (‘L’(t)).
The main result is contained in the following theorem:
Theorem 2.3.1([10]): Assume that conditions (1)-(8) hold. Then,
If n is even, every solution of equation (2.3.1) is oscillatory.
Proof: Suppose that equation (2.3.1) has non oscillatory solution x(¢).

Without loss of generality, assume that x(¢) is eventually positive (the proof is similar

when x(t) is eventually negative). That is x(t) > 0,
x(g(®)) > 0,x(z(t)) > 0, and x (‘L’(g(t))) > 0 for t > t, for some t; > t,.

Set  z(t) = x(t) + h(Ox(z(t)). (2.3.2)
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Since h(t) is nonnegative then z(t) >0 for ¢t > ¢, . Using the fact that t(g(t)) = g(z(¢)) for

t = t; , then from (1), and (3) we have:
£ (29 ©)) = £ (x(9®) + h(g(®)x ((9(®)))

< £ (x(9®)) + h(g®)f (x (9(r®))) 2323)

Since x(g(t)) >0, and x(z(g(t))) > 0 from (1) we have (2.3.3)
Now using (2.3.1) and (2.3.2) we obtain

20 = —p(Of (x(9(®)) (23.4)
From (2.3.3) and (2.3.4) we have:
0@ +p©f (2(9(9)) = 20® +p© [£ ((9©)) + Hg@)f (x (@) ) ]
Hence
2@ +pof (2(90)) = PO (x(9(:®))) (2.3.5)

Since x(g(©)) >0 for t>¢ ,zM™(¢) <0 and so, z?(t) is monotonic for i =0,1,..,n —.
Therefore z»V(t) >0 or z™V(t) < 0 eventually, if z"V(t) < 0 then from the facts that
z™(t) <0 and p(t) 0, imply that z(t) < 0 eventually , so a contradiction . Hence there

exists t, > t, such that z®V(t) >0for t>¢,.

From (2.3.1), and the fact that 7'(t) = b > 0, we have:
2O ()7 ® +p(O)f (x (9(:®))) 7 =0 (2.3.6)

Let t; > t, such that z(*~?) (r(t)) > 0 for t > t;, then integrate (2.3.6) from ¢, to infinity, we

get:
o p ) (x () T'(9)ds = 20D (x(e) - L.
where L=lim,,z™ Y (¢t). Since z®~V(¢t) > 0 eventually, we show that:
12 p(©)f (x (9(:)))) 7' (9)ds < o (2.3.7)

Using (2.3.7), with (7), and (8), follows that:
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Jo. p(h(g())f (x (g(T(S)))) 7'(s)ds < (2.3.8)
Integrating (2.3.5), and using (2.3.8), we show that:

2 p6)f (2(9())) ds < o0 (23.9)
Since (5) and (6) hold, then (2.3.9) implies that lim,_ inf z(t) = 0.

But z(t) is positive and monotonic, so z(t) — 0 ast -« . So z(t) is decreasing, implies

that z'(t) < 0 eventually. For n > 1,2z'(t) - 0

ast - o since z'(t) is monotonic and z(t) > 0 (z(t) is concave up ).Hence z'(t) is
increasing ,which implies that z"(t) >0 . for z"(t) is monotonic and negative .

Continuing in this manner we have:
zOWzHV () <0,for i=01,..,n—1 (2.3.10)

with strict inequality holding for i <n — 1.If n is even , using (2.3.10) and the fact that
zM(t) < 0,we get to z(t) < 0, and this contradicts z(t) > 0, and this complete the proof. O

Remark 2.3.1: If n is odd, then (t) < z(t) - 0as t— o , so that any solution of

equation (2.3.1) is either oscillatory or tends to zero as t = oo.
Example 2.3.1: consider the NDDE

(%) + (2 + cost)x(t — 2m)) + (3 + cost)x(t — 4m) = 0 (2.3.11)
Heren =2, h(t) =2+ cost, p(t) =3 +cost, f(x)=x, ©(t) =t —2m,

and (t) =t—4n . The delay arguments g(t) and (¢t) are commute i.e. g(r(t)) =
‘L'(g(t)) =t — 6m, the function f(x) satisfies conditions (1)-(5), and p(t) satisfies the
divergent integral in condition (6). Also conditions (7) and (8) are satisfied by (2.3.11).

Thus all conditions of theorem 2.3.1 are satisfied. Therefore, we can conclude that every

. . . . __ cost __ sint
solution of equation (2.3.11) is oscillatory. In fact, x;(t) = o X2 (t) = T Are
oscillatory solutions of (2.3.11).

Example 2.3.2: consider the NDDE
dz T, -7 3 j—
F(X(O + hx(t— 1)) + 2eC™/D(he ™ — 1)x (t - En) =0, (2.3.12)
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Where h > e™ , equation (2.3.12) has the unbounded oscillatory solution x(t) = etsint.

Remark 2.3.2: If y <1,0<A<1 then the equation

dn

e [x(t) + Ax(t —D)] +p@®)|x(t — )| sgnx(t —0) =0 (2.3.13)

has no non oscillatory solution if and only if
ft‘: tY@-Dp(t)dt = oo.
And if y > 1, and n is even then it has no non oscillatory solution if and
only if f:}o t"1p(t)dt = oo.
In particular equation (2.3.13) with 0 < A < 1 is oscillatory

If and only if
f°° tmin{y,1}(n-1) p(t)dt = oo (2.3.14)

Remark 2.3.3: Equation (2.3.13) is oscillatory if
[7 eminrB0=D min{p(t), p(t — 7)}dt = (2.3.15)

with 1 > 1. (See [19]).
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Chapter Three

Necessary and Sufficient Conditions for Oscillation of Solution of NDDE
Compared with an ODE

In this chapter we will mention main results for the oscillation of
Solution of the equation:
L@ + 2x(t - ) + £ (t.2(9()) = 0 (3.1.1)
by using new approach in which we provide conditions related to a
certain ODE.

3.1 Main result

The following confirm the required results.

Theorem 3.1.1([20]) : Equation (3.1.1) is oscillatory if and only if

x® () + = f (£, x(g(1)) = 0 (3.1.2)
is oscillatory.
Using the known oscillation results for the equations:
xM() +p®x(t—0)=0 (3.1.3)
and
xM™ () + p)|x(t — 0)|Vsgnx(t — o) = 0 (3.1.4)

We can obtain oscillation results for the equations

L [x(@®) + Ax(t = D] + p(O)x(t —0) = 0 (3.1.5)
and
L [x(®) + 2x(t = D)) + p(O1x(t — )Y sgnx(t —0) = 0 (3.1.6)
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Corollary 3.1.1 :
(i) Equation (3.1.5) is oscillatory if

[Pt 2 p(t)dt = o (3.1.7)
(i1) Suppose that (3.1.7) fails, then equation (3.1.5) is oscillatory if

lim,_,, sup tf:os"‘2 p(s)ds > (1 + ) (n—1)! (3.1.8)

or if
lim,_,inf t ["s""2p(s)ds > (1 + D (n — 1)!/4 (3.1.9)
Equation (3.1.5) has non oscillatory solution if
lim,_,sup t["s"2p(s)ds < (1+D(n—2)!/4 (3.1.10)
To prove corollary 3.1.1 we need the following oscillation result for equation (3.1.2).
Lemma 3.1.1([16]) :
(i) Equation (3.1.3) is oscillatory if (3.1.7) holds
(i1) Suppose that (3.1.7) fails, then equation (3.1.3) is oscillatory if
lim,_,, suptf:O s"2p(s)ds > (n—1)!
or if
lim,_,, inf tftoo s"2p(s)ds > (n—1)!/4
equation (3.1.3) has non oscillatory solution if
lim,_,., sup t ftoo s"2p(s)ds < (n —2)!/4.
Proof of corollary 3.1.1:
Combining Theorem3.1.1 with Lemma 3.1.1, we obtain corollary 3.1.1.
This completes the proof. O
Now we give an example that illustrates this result:
Example 3.1.1: We consider the linear neutral differential equation
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L e(t) + Ax(t = D] + ctx(t — 0) = 0 (3.1.11)

Where ¢ > 0, ¢ € R, applying corollary 3.1.1, we conclude that:

Equation (3.1.11) is oscillatory if either:

(i) a=—-nandc> A +A)(n—-1)/4,

Since
. . o0 —_ — . . 0 _
lim,, inft [~ s"?(cs™)ds =lim,_, inf tc [ s~2ds
. " - A _2
=lim,._,, inf tc lim,_,, [, s™%ds

)

= lim,_,, inf tc <hmA*°° i (_ 1))

A t

-1
= lim;_,, inf tc lim (S—
A—oo \ -1

=lim,inf ¢ > A +1)(n—-1)!/4

ifc>A+A)n-1)"/4. Or
(i) If a > —n,
welet « = —n+ ¢, wheree > 1,
f:o s 2(cs®)ds = cftoo sntnte)-24g
= cf:osg‘zds

g&-1 A

. A L .
= c limy_,, ft s872ds = clim

= 00,
A-ooo £—1

t

Equation (3.1.11) has non oscillatory if either:
(i) a=-nand c< A+ A)(n—-2)/4

lim,_, sup t ftw s"2 p(s) ds = lim,_,, sup tftoc s"2 cs%ds

. 00 p—
= lim,,suptc [ s"?s%ds

J

-1

= lim,,suptc (_1
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= lim;_ sup tc(—1) (limA_m% - %)

lim;_,,suptc G)

lim,_, sup ¢
Hence equation (3.1.11) is non oscillatory if ¢ < (1 +2)(n—2)!/4

(iv) a<-n,s0a+n<0 lim,, sup tf:o s"2p(s)ds = lim ;,,supt f:o s"2 ¢cs%ds

. 00 -
= lim;,supt [ s"?cs*ds

. el —
lim,_,supt c [ s"?s*ds

. 0 -—
lim,,supt c [ s™*"*ds

Sn+<x—1 A

=lim suptc lim
t—ow p A-oo N+ -1 ¢

since a+n <0

— i n+o ¢ _
= limy,,supt (—n+0<_1) 0

Corollary 3.1.2: equation (3.1.5) is oscillatory if (3.1.12) holds.
f;: t"=1=€p(t)dt = o (3.1.12)
equation (3.1.5) has non oscillatory solution if (3.1.13) holds.
f:: t" Ip(t)dt < oo (3.1.13)
To prove corollary 3.1.2 we need the follwing lemmas:
Lemma 3.1.2([28] ): Let n be even. If
[ g V() g ) p(H)dt =0 for some & > 0,
then
xM(t) + up(t)x(g (t)) = 0 is oscillatory, and consequently
(3.1.3) is oscillatory.
Where g,(t) = min{g(t),t}.
Lemma 3.1.3([16]): Asume that

lim,_,, infg(t)/t > 0.
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i.  Equation (3.1.3 is strongly oscillatory if and only if either (3.1.7)

or
lim,_,., supt ftoo s"2p(s)ds = .

ii.  Equation (3.1.3) is strongly non oscillatory if and only if
Jo 2 p(0)dt <

and

lim,_,, t f:o s"2p(s)ds=0.

Lemma 3.1.4([22]): Suppose that g(t) >t for t>t, and
lim,_,, infg(t)/t < o,

then equation (3.1.3) is strongly oscillatory if and only if
lim,_,., sup t ftoos"‘z p(s)ds = o,

and equation (3.1.3) ) is strongly non oscillatory if and only if
lim,_,, tf:o s"2p(s)ds = 0.

Note that corollary 3.1.1 implies corollary 3.1.2 .

Proof of corollary 3.1.2:Suppose that (3.1.12) holds, from lemma 3.1.2 it follows that the

equation

xM(t) + ,up(t)x(g(t)) =0 (3.1.14)

is oscillatory for all constants u > 0. Lemma 3.1.3. and lemma 3.1.4 have shown that
equation (3.1.14) is oscillatory for all p > 0 if and only if either (3.1.7) holds or

lim,_,, sup t f:o s"2p(s)ds = w,
this means that if (3.1.12) holds, then either (3.1.7) or (3.1.8) is satisfied,
and so equation (3.1.5) is oscillatory .

Suppose next that (3.1.13) holds. Then

0 <lim,, tftoo s"2p(s)ds < lim,_,, ftoo s 1p(s)ds = 0.
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consequently, if (3.1.13) holds, then (3.1.10) is satisfied, and so (3.1.5) has non oscillatory

solution. O

Corollary 3.1.3: Equation (3.1.6) is oscillatory if and only if (3.1.15)holds.

f°° tmin{y,l}(ﬂ—l)p(t) = o0 (3115)

To prove corollary 3.1.3, we need the following result which has been obtained by

Kitamura[28, corollary 3.1 ].
Consider the equation

x™ () + p(o)f (x(g(t))) =0 (3.1.16)
Lemma 3.1.5([28] ): Let n be even, assume that

lim,_ infg(t)/t >0,
the condition (2.3.17) is a necessary and sufficient condition for (3.1.16) to be oscillatory

J e tp(Hde = oo (3.1.17)

Proof of corallary 3.1.3:

From lemma 3.1.5 equation (3.1.16) is oscillatory ,so with theorem3.1.1 we obtain

corollary 3.1.3. O

Let us consider the equation

dTL

— [x(®) + Ax(t = D] + f(t,x(g(t))) =0 (3.1.18)
Where 1 > 0,7 > 0, f € C([ty,©) X R), g € C[ty, ), lim,, g(t) = oo,

uf(t,u) = 0 for (t,u) € [ty,©) X R.

From theorem 3.1.1, we obtain the following comparison result.

Corollary  3.1.4:  Suppose that A <24,g(t) = g(t)for t > tyand|f(t,u)| =
|f(t,w)| for (t,u) € [ty,©) X R. If equation (3.1.1) is oscillatory , then (3.1.18) is

oscillatory.

To prove corollary 3.1.4 we need the following result due to H. Onoes [6].
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Lemma 3.1.6([6]. ): If the differential inequality

x™) + f (t,x(g(t))) <0

Has an eventually positive solution, then the differential equation

x® () + f (£x(g()) = 0
Has an eventually positive solution.

Proof of corollary 3.1.4: Assume that (3.1.18) has non oscillatory solution, then theorem

3.1.1 implies that
x® () + == F (£x(3())) = 0,

has a non oscillatory solution x(t). Without loss of generality, we may assume that
x(t) > 0 for all t. For the case where x(t) < 0 for all large t, y(t) = —x(t) is an

eventually positive solution of

y®(©) + o5 f (£y(3®)) =0,

142

Where f(t,u) = —f(t,—u), and hence the case x(t) < 0 can be treated similarly. From
Lemma 1.6.1 it follows that x(t) is eventually nondecreasing. In view of the hypothesis of

corollary 3.1.4, we see that x(g(t)) = x(g(t)) for all large t > ¢, and
—x™(p) = 1__11 _(t,x(g(t)))

—0© 2 757 (62(0®)) 2 75 £ (6x(0®)) = 75 £ (6 x(9®))

We have the differential inequality

= (t,x(g(t))) +x™() <0,

1+4

that has non oscillatory solution, hence from lemma 3.1.6 the differential equation

1 (tx(g(®)) +x™(@®) =0,

1+1

has non oscillatory solution, so from theorem 3.1.1 equation 3.1.1 has a non oscillatory

solution. This completes the proof.o
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3.2 Proof of the “if” part of theorem 3.3.1 (Sufficient condition)
We want to prove that if the equation

d’n
prd!

x(®) + Ax(t — O]+ f (t,x(g(t))) =0 (3.2.1)

has a non oscillatory solution, then the equation
1
x™(t) +mf(t,x(g(t))) =0 (3.2.2)
has a non oscillatory solution.

The following lemmas are required to complete the proof.

Lemma 3.2.1: Let A # 1 and [ € NU{0}. Suppose that u € C[T — 7, ),

(Au)(t) € CY[T, ), (Au)(t) = 0,(Au) (t) = 0for t > T, and lim,, (Au) (t)/t' = 0.

For the case A > 1, assume moreover that lim,_,, A7¢/%u(t) = 0. Then
u(®) =  AW®) +o(th) (- ).

Where (Auw)(t) = u(t) + Au(t — 7).

Lemma 3.2.2: Let A = 1. Suppose that u € C[T — 7,), u(t) > 0 for

t>T—1.If (Au)(t) is nondecreasing and concave on [T,), then there exists a

constant a such that

0 <%(Au)(t)—a < u(t) S%(Au)(t)+%(Au)(T+2T), t=>T+ 27

Lemma 3.2.3: Let A = 1. suppose that u € C[T — 1, ), u(t) > 0 for

t=>T—1.1If (Au)(t) is nondecreasing and convex on [T, ), then there exist a

constant a such that

0 <§(Au)(t)—a§u(t) S%(Au)(t+r)+%(Au)(T+2t), t>T+ 21
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Lemma 3.2.4: let A =1 and [ € N. Suppose that u € C[T —7,0), u(t) >0 for t=

T—rt. Assume moreover that
Au € C?[T, ), (Au)(t) = 0,(Au) (t) = 0 and either (Aw)'(t) <0 or (Aw)'(t) =
0 for t=>T, and lim,_. (Au)'(t)/t' = 0.then

u(t) = % Aw)(@) +o(th) (t > ).

Lemma 3.2.5: Let u € C"[T, o) satisfy u(t) # 0and u(t)u™(t) < 0fort > T. Then

there exists an integer k € {1,3,...,n — 1} such that

u(®u@(t) >0, 0<i<k-1,
(3.2.3)
(—D"*Fu@u® () = 0, k<i<n,

for t > T;.In particular,u'(t) = 0 for t > T;.

Remark 3.2.1: A function u(¢t) satisfying (3.2.3) for all large t is called a function of

Kiguradze degree k. Let wu(t) be a function of Kiguradze degree ke {13,..,n—1}
satisfying u(t) > 0 for all large ¢, it can be shown (cf. [2],[3],[19]) that

lime, u®(t)=0, i=k+1,k+2,..,n—1 (3.2.4)

And that one of the following three cases holds:

lim,_o u® () = const > 0 and gimu(k‘l)(t) = oo; (3.2.4a)
lim,, u®(t) = 0 and tlimu(k‘l)(t) = o0; (3.2.4b)
lim;_,0o u®(t) = 0 and gimu("‘l)(t) = const > 0.) (3.2.4¢)

If (3.2.4a)holds, then we put [ = k, and if (3.2.4b)or (3.2.4c)holds, then we put | = k —
1. Then it is easy to verify thatl € {0,1,2, ...,n — 1},

lim, ., 22 = 0 and lime, P =L (L>00r L = o). (3.2.5)
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Lemma 3.2.6: Let A # 1. Suppose that u € C[T — 7, ), Au € C™[T, o) and (Au)(t) >
t
0 for t = T. For the case A > 1, assume moreover that tlim/l_?u(t) =0.If (Au)(t) isa

function of Kiguradze k for some k € {1,3,...,n — 1} then there exist a constant «
and an integer [ € {0,1,2, ...,n — 1} such that
u(t) = — (Au)(®) — at! >0

Forall large t = T.

Proof of the "if" part of Theorem 3.3.1: It is sufficient to prove that if equation (3.2.1)
has a non oscillatory solution, then equation (3.2.2) has a non oscillatory solution. Let x(t)
be a non oscillatory solution of (3.2.1). Without loss of generality, we may assume that
x(t) > 0 for all large t. Then (Ax)(t) > 0 and (Ax)™(t) < 0 for all large t. In view of Lemma
3.2.5, we find that (Ax)(t) is a function of Kiguradze degree k for some ke{1,3,...,n —
1}, and hence lim,_,, (Ax)®(t) = const. Since 0 < x(t) < (Ax)(t) for all large t, we
have limt_,ooxl_t/fx(t) =0ifA > 1. By Lemmas 3.2.2, 3.2.3 and 3.2.6, there are a

constant « and an integer [{0,1,2, ...,n — 1}such that
®) = ! (Ax)(t) — at! > 0 foralll t
X “1+1 X a or all large

Put w@®) =0 +2D)1(Ax)() —at!. Then x(t)=w(®)>0 for all large t. From the

monotonicity of f it follows that

1 1 1
W) = 57 @O = 57 F (XG0 = 757/ EWwe®))

1+41
for all large t. Lemma 3.1.6 implies that (3.2.2) has a non oscillatory solution.

The proof is complete. O

Note: The proof of the lemmas in this section can be found in [ 20 ].
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3.3 Proof of the “only if’ part of the theorem 3.1.1. (Necessary condition)

In this section we give the proof of the "only if" part of Theorem 3.1.1. To this end, we

require the following result concerning an "inverse" of the operatorA.

Lemma 3.3.1: Let T, and T be numbers such that max{t,, 1} < T, <T —, and let k€N and

M > 0. Define the set Y as follows:
Y ={y € C[T,,0):y(t) = 0,t € [T,,T],and |y(t)| < Mt*,t > T}.
Then there exists a mapping ® on Y which has the following properties:

(1) ® maps Y into CI[T,, x);
(i1) @ is continuous on Y in the C[T,, »)-topology;
(i) @ satisfies (®@y)(t) + AM(Py)(t—1) = y(t) for t = T and yeY;

(iv) If A=1and yeY is nondecreasing on [T,, ), then (dy)t)>0 fort > T,;

v) If A>1, then limtqooﬂ_%(d)y)(t) =0foryeY.

Here and hereafter, C[T,, «) is regarded as the Frechet space of all continuous functions on

[T,, ) with the topology of uniform convergence on every compact subinterval of [T,, ).
We divide the proof of Lemma 3.3.1 into the two cases 0 <A <1and A > 1.
Proof of Lemma 3.3.1: The case 0 <A <1.

For each yeY, we define the function ®y on [T,, ) by

( (=Diy(t—it), t€[T+mr, T+ (m+ 1)),
@)® = iho

m=20,1,..,
0, t €|[T,T)

(1) Let yeY. Note thaty(T) = 0. It is obvious that (®y)(t) is continuous on [T,, o) — {T +

mr:m = 0,1,2,...}. We observe that

limr_o (@y)(£) = 0 = y(T) = limy7,o(Py) (D),
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And that if m > 1, then
LM rime—o (@Y (V) = TG (=D)'y(T + mz — i)
= X (DY (T + me = iv) + (=)"y(T)
= 22 (=D'y(T + mz — it)

= lim (Dy)(b).

t->T+mt+0

Consequently, (®y)(t) is continuous on [T, o).

ii) It suffices to show that if {y; P s a sequence in C[T,,») converging to
Hj=1

y € C[T., »)uniformly on every compact subinterval of [T,, ), then {®y;} converges to oy
uniformly on every compact subinterval of [T,,). We claim that ®y; - &y uniformly on
Ly = [T +mt, T+ (m+ Dt],m =0,1,2,.. Then we easily conclude that {®y;} converges to ay

uniformly on every compact subinterval of [T,, ). Observe that

sup |(®y;)(®) — (@YD) < TRt sup |y;(t —it) — y(t — i)
tel, tel,

<TA sup |y (0) - y(0)]
tel,

For m = 0,1,2,.... then we see that

sup |(©y;,)(®) — (@y)()] =0 (- ©), m=1012,..,
tel,

So that {®y;} converges to oy uniformly on I,,form = 0,1,2, ...
(ii1) Let yey. If t [T, T + 1), then (@y)(t — ) = 0 and

(@y)(t) = y(&) = y(©) = A(Py)(t — D).
Ifte[T+mt, T+ (m+1r],m=12,..then
(@y)() = y(&) + T, (=D y(t — i)
=y — AL, (DYt -7 - (- 1)
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=y(t) =AY (Diy(t — T —in)
=y(t) — A(Py)(t — 1),

Since t — t€[T + (m — 1)7, T + mr).

(iv) Assume that 1 = 1. Let ye Y be nondecreasing on [T,, ). Notice that y(t) > y(T,) =
ofort=>T,. It is easy to see that (dy)(t) =y(t) = 0fort € [T, T + ) and(®y)(t) =0fort e

[T.T).lett € [T+ mr, T+ (m + 1)t],m = 1,2, ... if m > 1is odd, then
(@) () = 27V [yt - 2j1) — y(t - (2j + DD)] = 0.

If m = 21is even, then

m

(@y)(t) = Zgzg_l[y(t —2j7) —y(t — (2j + D) + y(t —m1) = 0. Therefore we obtain

(@y)(t) = 0 fort = T.. The proof for the case 0 < 1 < 1 is complete.o
Proof of Lemma 3.3.1: The case 4 > 1.

For each yeY, we assign the function @y on [T,, ») as follows:

_ (2Rt +it), t€E[T —1,0),
@) = { (Dy)(T - 7), te[T,T -1
Let yeY. Then
|07ty (t +in)| < A7IM(E + in)* < 2K ITMATI(ER + ikTh) (3.3.1)

For t >T —1t,i =1,2,.. Thus we see that the series Y.2,(—1)"'y(t + i) converges uniformly
on every compact subinterval of [T — 7 ), so that ® is well-defined, and (®y)(¢) is

continuous on [T,, o0) and satisfies

k-1

2
[(@y) ()] < th+ 1, t>T—1

A-1
For each yeY, where L = 2¥-1M7* 322, 27i*. This means that (i) and (v) follow.

(i1) Take an arbitrary compact subinterval I of [T — 7 ). Let € > 0.
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There is an integer g > 1 such that
Rgn A Mt +in)k <2, telL (3.3.2)

Let {y;} 2, be a sequence in Y converging to yeY uniformly on every compact subinterval

of [T,, ©). There exists an integer j, = 1 such that
L2yt + i~y +in| <z, tel jzjo
It follows from (3.3.1) and (3.3.2) that
|(@y,)(®) = (@Y)®)| < L, 27 |y (¢ + i0) — y(t + i)
+|EZ g1 (D) yit + i)
|22 (-D)'y (¢ + i)

<-+2

wm
wm

=¢ teL, j>j,

Which implies that ®y; converges ®y uniformly on I. We see that

®y; = &y uniformly on [T.,T — 1], because of (y)(t) = (Py)(T —7) on [T, T — 7] for

yeY. Consequently, we conclude that @ is continuous on Y.
(ii1) Let ye Y. Observe that
M@y)(t — 1) = T2 (=)~ Vy(t + (i - D7)
=y(®) + X2y (t + i)
=y(@) - (@y)@®), t=T.
The proof for the case A>1 is complete.o

Lemma 3.2.2: Let we C*T,) be a function of Kiguradze degree k for some k€

{1,3,..,n — 1}, then lim;_,,, W‘%f) = 1for eachp > 0.

Proof: We may assume that w(t) >0 for all large ¢t. Recall that w(¢) satisfies one of
(3.2.4a)- (3.2.4¢) If (3.2.4a) holds, then
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w(t+p) w®(t +p)
im =lim;,————=
too  w(t) ¢ w® (1)

w(t+p)
w(t)

In exactly the same way, we have lim,_, =1 for the case (3.2.4c). Assume that

(3.2.4b) holds, by the mean value theorem, for each large fixed ¢ > T, there is a number

n(t) such that
w(t+p) —w(t) =pw' () and t <n(t) <t+p.

Thus we obtain

wit+p) _ w(n®)t< @]"‘1
w(t) P wo| ¢

w(t)

By (3.2.4b) we conclude that lim,_,, % = 0 and lim,,,, 7 = o, 50 that lim,, witip) _

w(t)

Now we prove the "only if" part of Theorem 3.1.1.
Proof of the "only if" part of Theorem 3.1.1:

We show that if equation (3.2.2) has a non oscillatory solution, then equation (3.2.1) has a
non oscillatory solution. Let z(t) be a non oscillatory solution of (3.2.2). Without loss of
generality, we may assume that z(¢) is eventually positive. Set w(t) = (1 + 2)z(t). Then w(t)

is an eventually positive solution of
wm (@) + £ (6@ + D w(g®)) =0 (3.3.3)

Lemma 3.2.5 implies that w(t) is a function of Kiguradze degree k for some k€
{1,3,..,n—1}, and one of the cases (3.2.4a)- (3.2.4c) holds. Hence, limt_,m% = const =0.

From lemma 3.3.6 it follows that
wit+20) <2w(t), t=T (3.3.4)
for some T, > t,.

We can take a sufficiently large number T > T, such that w®(t) > 0

(i=012..,k-1), w(g(®)>0fort>T,and
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T, = min{T — 7,inf{g(¢t): t = T}} = max {Ty, 1}.

Recall (3.2.4). Integrating (3.3.3),we have

_ (tE=9)*1 oo (ros)nkt w(g(r))
w(t) - P(t) _fT (k-1 fs (n—k-1)! f(r, 141 )drds

Fort > T, where
P(t) = 2w O () + T W O(), e,
and w® (o0) = lim,_,,w®(t) > 0.
Consider the set Y of functions y eC|[T,, ) which satisfies
y(@)=0 forte[T,T] and 0<y(t) <w(t)—P() fort=T.

Then Y 1is closed and convex, and there is a constant M >0

ly(®)| < Mtk on [T, ) fory € Y, by lim,_,,, w(t)/t* = const > 0. Lemma 3.3.1 implies

there exists a mapping @ on Y satisfying (i)-(v) of lemma 3.3.1.

P(t)
4(1+2)°

Put (Wy)(t) = (dy)(®) + t=T, y€eY.

For each y € Y, we define the mapping F:Y - C[T,, ») as follows:

N

t t— k-1 00( _ )n—k—l_

Fy»@® = {L ((k _S)l)! (:1 _Sk Y fr,(g())drds, t=T,
0, t e|[T,T],

Where

e+ w(g®)),  uz@+07w(g®),

flew = f(t,w), 0<us< 1+ w(g®),
0, u<o,

For t = T and ueR. In view of the fact that

0<ftw<f(LA+Dw(g®)), (Lu)€[T,0) xR,
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We see that F is well defined on Y and maps Y into itself. Since @ is continuous on Y, by
the Lebesgue dominated convergence theorem, we can show that F is continuous on Y as

a routine computation.

Now we claim that F(Y) is relatively compact. We note that F(Y) is uniformly bounded
on every compact subinterval of [T,, ), because of F(Y) c Y. By the Ascoli-Arzela
theorem, it suffices to verify that F (YY) is equicontinuous on every compact subinterval of

[T,, o). Let I be an arbitrary compact subinterval of [T, o). If k = 1, then

0 (Fy) @) <[22 f (s, W(g(s))) ds fort>T and y €Y

t  (n-2)! 141

If k = 3, then

' Lt—s) 2 (@ (r—s)t w(g(r))
0=Fy) (t)SL k-2 ). m—k—D1 f(r‘ 142 )drds
fort > T and y € Y. Thus we see that{(Fy)'(t): y € Y} is uniformly bounded on I. The
mean value theorem implies that F(Y) is equicontinuous on I. Since |(Fy)(t,) — (Fy)(t,)| =

0 forty,t, € [T, T], we conclude that F(Y) is equicontinuous on every compact subinterval

of [T, ).

By applying the Schauder-Tychonoff fixed point theorem to the operator F, there exists a
y €Y suchthaty = Fy.

Put x(t) = (W9)(t).Then we obtain

P(t)+AP(t-1)

>
4(1+2) t=T

(Ax)(t) = y(t) +
Since

(Ax)(t) = x(t) + Ax(t — 1) -
WO +AEN(E D)
=(@(®) + o+ [ @D -7 + 157

4(14+2) 4(1+2)

P(D)+AP(t—T)

= [(@7)(0) + A@F)(¢ — 7)) + 222

By lemma 3.3.1(iii) we obtain
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(@) (0) =5 (6) + HEETED (3.3.5)

And hence (Ax)(¢) is a function of Kiguradze degree k.
Since P(t) = P(t — 1) = P(T) = w(T) > 0 = P isincreasing for t > T + 1, so that

0 < (Ax)(t) =5(t) + LD < 5(e) + 220 = (1) + 20

4(1+2) 4(1+2)
Butj(t) ey = $(@) < w(t) — P(t)
0< (A <w(t) —P@) + 22 ”“) w(t) - 2P(t) (3.3.6)
for t > T + 7. We will show that
0 < x(t) < (1+ ) tw(t)forall large t. (3.3.7)

Then the proof of the "only if" part of Theorem 3.1.1 will be complete, since (3.3.5) and
(3.3.7) imply that

n

d _

p7e [x(t) + 2x(t = )] = P (@) = FN™ () = —F (£, x(9(©)))
= —f(t,x(g(®)))

for all large t, which means x(t) is a non oscillatory solution of (3.2.2).

If w®(e0) > 0, then we put I = k, and if w®(w0) = 0, then we put [ = k — 1. It can be shown

that lim,_, (sz ® = 0. Indeed, since

P®@) + AP (t — 1)

tlim (Ax)®(t) = tlim}”/(") ® + gim

CE))
W w®)
— (k) (°°) (»)
llm(Ty) (t) +2—=2 P

) ' )

We see that if =k, then lim, (Axt)l(t) = liMyeo (A"il ® — 0, and that if I=k—1, then
@' ® _ @)W _

lim o 1 = lim;_e oo =0

First assume that A#1. From Lemma 3.3.6 it follows that x(¢t) > 0 for all large t > T,. In

view of Lemma 3.2.1 and the fact that
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. P(t
limg_, o % = const > 0, we have

1 3
X(t) < 1—+/1(Ax)(t) + mp(t)

For all large t. Hence, by (3.3.6), we obtain x(¢t) < (1 + 2)~*w(t) for all large t.

Next we assume that 1 =1 and ! # 0. Since 5(t)(= (F¥)(¢t)) is nondecreasing in ¢ € [T,, ),
from Lemma 3.3.1 (iv), we see that (@7)(t) = 0 for t > T,, so that x(¢t) = P(t)/[4(1 + )] for
t > T.. Hence, x(t) >0 for ¢t > T. By using Lemma 3.2.4 and the same argument as in the

case A£1, we can show that x(t) < (1 + 2)"tw(¢) for all large t.

Finally we suppose that A =1 and [ =0. Then k =1 and w®(e0) = 0. Therefore,
P(t) =w(T) on [T, ). As in the case 1=1 and [ # 0, we have x(t) = P(t)/[4(1 + 2)] for
t = T,, which implies that x(¢) > 0 for t > T.,. Note that (Ax)'(t) = 0 and (4x)(t) < 0 for t > T,
since k = 1. By Lemma 3.2.2, (3.3.6) and (3.3.4), we conclude that

x() < 5 (Ax)(6) +5 (AX)(T + 27)
< 2[w®) = 2w + w(T +21) = 2w(1)|
<sw(), t=T+2r

The proof'is complete. O
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Chapter Four

Necessary and Sufficient Conditions for the Oscillation of Solution with
Positive Variable Coefficients

In this chapter we will mention main results for the oscillation of

Solution of the equation:

I 1x(t) + h(O)x(t — )] + f (tx(g®)) =o. (4.1.1)

dat™

which is a certain kind of generalization of theorem 3.1.1 with the following assumptions

(H1) and (H2):
(H1) 0<u<hl)<i<1l forteR;
(H2) 1< A<h(@®)<u fort € R.
4.1 Main result
Throughout this chapter we use the notation:
Hy(t) =1, H;(t)=h@®h(t—-7)..ht-(>G—-D71), i=12,...
We define the function S(t) on R by

2o(—1DiH(t) if (H1)holds,
S(t) = fort € R.
. (_1)i+1 .
> if (H2)holds,

=1y (¢+it)

Where S(t) converges uniformly on R, and hence S(t) is continuous on R. We will show

that

0<

1—

1‘:2 <s(t)<%, teR (4.1.2)

We note that if y = 1 = ¢ # 1, then

1
= 1-x 11¢ ™ SO=737
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Theorem 4.1.1([21]): Suppose that (H1) or (H2)holds. Then equation (4.1.1) is oscillatory
if and only if

x™@) + £(t,5(g(®)x(g()) = 0 (4.1.3)
is oscillatory.

Theorem 4.1.1 means that (4.1.1) has a non oscillatory solution if and only if (4.1.3) has a

non oscillatory solution.

Theorem 4.1.1 1S a generalization of theorem 3.1.1 with ¢ # 1. Indeed, for the case where

h(t) =c>0 andc # 1, we see that S(t) = (1 + ¢)~! and that (3.1.1) is oscillatory if and only
if

YO @ + £ (6,1 + ) y(g(®)) =0
is oscillatory . (Put x(t) = (1 + c)y(t)).
Now we assume that
h(t+1)=h(t), h(t) #1 andh(t) =0 fort e R. (4.1.4)
since (H1) or (H2) holds, and S(¢) = [1 + k()]
Consequently, from Theorem4.1.1, we have the following result.
Corollary 4.1.1: Suppose that (4.1.4)holds. Then (4.1.1) is oscillatory if and only if

x™(t) +f(t M) =0 (4.1.5)

" 1+h(g(8)

is oscillatory.

The oscillatory behavior of solutions of non-neutral differential equations of the form
x® () + £ (t,x(g()) = 0 (4.1.6)

Theorem 4.1.1, with the known oscillation results for non-neutral differential equations

of the form (4.1.6), can be used to obtain oscillation criteria for the
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linear neutral differential equation
Lo x(®) + h(D)x(t = D]+ p(Ox(t — 0) = 0 (4.1.7)

and for the nonlinear neutral differential equation

L) + h(O)x(t = D]+ pOlx(t — ) x(t —0) = 0 (4.1.8)
where y > 0,y # 1 and the following conditions are assumed to hold:

o ER; p EClty, ), pt)>0 fort=>t,. (4.1.9)
First let us show that S(t) satisfies (4.1.2).
Lemma 4.1.1([ 21 ]): If (H1) or (H2) holds, then S(t) satisfies (4.1.2).
From theorem 4.1.1, lemma 4.1.1, lemma 3.1.6, we have the following result.
Corollary 4.1.2: Suppose that (H1) or (H2) holds. If

x™ () +

1-1
1-pu?

f(tx(g(®)) =0 (4.1.10)

is oscillatory, then (4.1.1) is oscillatory. If

x™(t) + f_‘/{‘zf (t,x(g(t))) =0 (4.1.11)
has a non oscillatory solution, then (4.1.1) has a non oscillatory solution.
Proof: Assume that there exists a non oscillatory solution of (4.1.1).

Then Theorem 4.1.1 implies that (4.1.3) has a non oscillatory solution x(t). Without loss
of generality, we may assume that x(t) > 0 for all large t, since the case x(t) < 0 can be

treated similarly. Put

y(@®) = (1 =21 - p?)~x(t). From Lemma 4.1.1we have
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2 1-2 1-2
2O =10 f(65(9)x(9®)) 2 7=/ (t,1 - sz(g(t)))

1
—_y(m —
y M (t) I

12

1-1
= 1_—#2}‘ (f'y(g(t)))
For all large t. From Lemma 3.1.6 it follows that (4.1.10) has a non oscillatory solution.
Consequently, if (4.1.10) is oscillatory, then (4.1.12) is oscillatory.

Let y(t) be an eventually positive solution of (4.1.11). Thus

YO © + 5 f (£y(9(®)) =0

—x () I = £ (1y(g(0)) = —x™(®) = £ (£¥(9(D))

(1-212) 1-12

n — 1-p
M) =f <t. (1_;)x(g(t))>

Then Lemma 4.1.1 implies that x(¢) = (1-22)(1 — ) ly(t) is an eventually positive

solution of

xM () + f(t,5(g()x(g(1))) <0,

and hence (4.1.1) has a non oscillatory solution, by Lemma 3.1.6 and Theorem 4.1.1 . This

completes the proof.o0

The following oscillation result was established by Kitamura [22, Corollaries 5.1 and 3.1].

Lemma 4.1.2: assume that (4.1.9) holds. If (3.1.12) holds, then the equation (3.1.3) is

oscillatory. If (3.1.13) holds then equation (3.1.3) has a non oscillatory solution.

Lemma 4.1.3: let y > 0 and y # 1. Assume that (4.1.9) holds. Then the equation (3.1.4) is

oscillatory if and only if equation (3.1.15) holds.

Combining Corollary 4.1.1 with Lemmas 4.1.2 and 4.1.3, we have the following
oscillation criteria for (4.1.7) and (4.1.8).

Corollary 4.1.3: If (3.1.12) holds, then (4.1.7) is oscillatory. If (3.1.13) holds, then

(4.1.7) has a non oscillatory solution.
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Corollary 4.1.4: Equation (4.1.8) is oscillatory if and only if (3.1.15) holds.

Remark 4.1.1: Corollary 4.1.3 with (H1) have been already established by Jaros and
Kusano [7, Theorems 3.1 and 4.1]. Corollary 4.1.3 with (H2) extends the results in [9,
Theorem 1] and [10, Theorem 7].

Remark 4.1.2: Corollary 4.1.4 with (H1) has been obtained by Y. Naito [29] in the case

where h(t) is locally Lipschitz continuous.
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4.2 Proof of the “if” part of theorem 4.1.1.(Sufficient condition)

Want to show that if equation (4.1.1) has a non oscillatory solution, then equation (4.1.3)

has a non oscillatory solution.
The following lemmas are required to complete the proof.

Lemma 4.2.1: Let H1 and the following condition (4.2.1) hold:

u € C[T — 1,), (M) (t) € Cl[T,oo)
{ (au) () = 0, (aw)'(®) =0for t=T, and (4.2.1)
lim,_,, (Au)' (¢)/t' = 0. for some 1 €{0,1,..}
Then
u(t) = S(t)(Aw)(t) + o(th) (t - o). 4.2.2)

Lemma 4.2.2: Suppose that H2 and (4.2.1) hold. Assume, moreover, that

lim,_, A7*u(t) = 0. Then (4.2.2) holds.

Lemma 4.2.3: Suppose that (H1) or (H2) holds. Let u € [T—1t,0) satisfy

Au € C[T, o) and (Au)(t) > 0 for t > T. ASsume moreover, that limt_,oo/l_éu(t) = 0 if (H2)holds.
if (Auw)(¢) is a function of Kiguradze degree k for some k € {1,3,...,n — 1},
then there exist a constant « > 0 and an integer [ € {0,1,2, ...,n — 1} such that

u(t) = S@[ (Aw)(t) — at'] > 0 for all large ¢t = T. 4.2.3)
Proof: Recalling (3.2.5), we have

limt_m(Aut)#=0 and gimmiﬁ=L (L>0o0rL =)

For some [ € {0,1,2, ...,n — 1}. Choose a constant « > 0 so small that a« < L. By lemmas 4.1.1,

4.2.1and 4.2.2, we conclude that (4.2.3) holds.o
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Proof of the "if"" part of Theorem 4.1.1: Let x(¢t) be a non oscillatory solution of (4.1.1).
Without loss of generality, we may assume that x(t) > 0 for all large t. Then (Ax)(¢t) >
0 and (Ax)™(¢) < 0 for all large t. By virtue of Lemma 3.2.5, we see that (Ax)(¢) is a
function of Kiguradze degree k for some ke {1,3,...,n — 1}. From Lemma 4.2.3, there are a

constant a > 0 and an integer [ € {0,1,2, ...,n — 1} such that
x(t) = SO[(Ax)(t) —at'] >0 forall larget.

Set w(t) = (Ax)(t) — at'. Then x(t) = S(t)w(t) > 0 for all large t. we see that —-w®™(t) =
—(Ax)™ (1) = f(t,x(g(t)) = f(t, S(g(®)w(g(®))

For all large t. Lemma 3.1.6 implies that (4.1.3) has a non oscillatory solution. The proof

is complete. O
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4.3 Proof of the “only if ” part of theorem 4.1.1. (Necessary condition)

In this section we give the proof of the "only if" part of Theorem 4.1.1.

We define the following mapping @ which is an "inverse" of the operator A.

© (=DH(t)v(t —it) if (H1)holds,

(@) =] o (i . .
Zi=1Hi(1t+iT)v(t +it)  if (H2)holds,

For t R, where
ve{veCR):|v(t) < Mmaxf{tk,1},t e R} =V, (4.3.1)
M > 0and k €{1,2, ... }. The properties of the mapping ® are as follows.

Lemma 4.3.1: The mapping @ is well-defined on V' and has the following properties (i)-
(iv):

(1) @ maps V into C(R);
(i1) @ is continuous on V in the C(R)-topology;
(iii)) @ satisfies (A(@v))(t) = v(t) forte R and veV.

(iv)  If (H2) holds, then lim, A #(®v)(t) = 0 for v € V.

Proof of the "only if'" part of Theorem 4.1.1: We show that if (4.1.3) has a non
oscillatory solution, then (4.1.1) has a non oscillatory solution. Let w(t) be a non
oscillatory solution of (4.1.3). We may assume that w(t) is eventually positive. Lemma
3.2.5implies that w(t) is a function of Kiguradze degree k for some k {1,3,..,n—1}.
Hence, (3.2.3) holds and one of the cases (3.2.4a)- (3.2.4¢) is satisfied.

We can take a sufficiently large number T > 1 such that

wD(t) >0 =012,..,k—1), w(g(t)) >0 fort >T.Integrating (4.1.3), we have

w(t) = P() = [ 2 7O p () drds 2 0 (4.3.2)

T (k-1)! Js  (n—k-1)!

Fort > T, where F(t) = f(t,S(g())w(g())),
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t-T t-T i
P() = 0w ) (o0) + 3ot D (),

And w®(00) = lim,_,,w®(t) € [0,).note that P(T) =w(T) and P(t) > w(T)>0 for t>T.

Consider the set Y of functions y € C(R) which satisfies
y®)=0fort<T and 0<y() <w(t)—P(t) fort>T.

Then Y is closed and convex. Set

(%) P(t), t=T,

"= (§>P(T), t<T.

By w®(w) € [0,), there is a constant M > P(T) such that w(t) <Mt* and P(t) <
Mt*for ¢t = T. Define the set V by (4.3.1). We easily see YV and n€V.

For each yeY, we define the mapping F: Y »C(R) as follows:

j‘ (t-s)k1 oo(r —sn—k-1
T (k=1 s (n—k-1)!

Fy)(®) =4 x f(r, (@y)(g(r) + (CDn)(g(r))) drds, t=T,
0, t<T,
Where

=1ftw, 0<u<S(g®)w(g®),

) F@®),  uzs(g®)w(g®),
ftw) =
0, u<o,
Fort =T and ueR. In view of (4.3.2) and the fact that

0 < f(t,u) <F(t), (t,u) € [T, o) X R,

We see that Fis well-defined on Y and maps Y into itself. Since @ is continuous on Y, by
the Lebesgue dominated convergence theorem, we can show that F is continuous on Y as a

routine computation.

Now we claim that F(Y) is relatively compact. We note that F (Y) is uniformly bounded

on every compact subinterval of R, because of F(Y)cY. by the Ascoli-Arzela theorem, it
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suffices to verify that F (Y) is equicontinuous on every compact subinterval of R. Let I be

an arbitrary compact subinterval of [T, «0). If k = 1, then

0 (s—t)"“z

0S(FY'® <, T F(s)ds, t=T, ye€Y.

If k = 3, then

t(t=5)*"2 foo (r—s)" k-

1 1
0<Fy) @</, Tt S e F(r)drds

for t > T and yeY. thus we see that {(Fy)'(¢):yeY} is uniformly bounded on I. the mean
value theorem implies that F (Y) is equicontinuous on I. Since [(Fy)(t,) — (Fy)(t,)| =
0 forty,t, € (—»,T], we conclude that F (Y) is equicontinuous on every compact

subinterval of R.

By applying the Schauder-Tychonoff fixed point theorem to the operator F, there exists a
y €Y suchthaty = Fj.

Put x(t) = (@9)(t) + (@n)(t). Then we obtain
WO® =50 +L=FN®O+>0, t=T, (4.3.3)
By (iii) of Lemma 4.3.1, and hence (Ax)(t) is a function of Kiguradze degree k.
We will show that
0 < x(t) < S()w(t) for all largt. (4.3.4)
Then the proof of Theorem 4.1.1 will be complete, since (4.3.3) and (4.4.4)imply that
L@ + h(Ox(t = D] = FDDO = —F (6, x(9(5)

=—f(t,x(g®))

For all large t, which means that x(t) is a non oscillatory solution of (4.1.1).

If w® () > 0,then we put! = k,and if w® () = 0,then we putl=k—1.

OICHN

tl

By (4.3.3), we find that lim,_,_, (Ax)® (¢) = C) w® (), so that lim,_,,
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From Lemma 4.2.3 it follows that x(t) >0 for all larget > T. In view of Lemmas 4.1.1,

4.2.1and 4.2.2, and the fact that lim,_ %t) = const > 0, we have

x® o5
SO <y +

0]
2

P(t)

+ —
2

) <w®) - P+

+22 = w(t)

For all large t. This completes the proof. o
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