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Abstract 

This thesis is concerned with the oscillation and non oscillation of solutions 

of a class of even order neutral differential equations. The general form of this 

class of equations involves two delayed arguments. 

The thesis presents main concepts and basic definitions of neutral differential 

equations and establishes both necessary and sufficient conditions for non 

oscillatory solutions. Several results in the oscillation theory of that class of 

even order neutral differential equations are proposed and a number of 

examples are given to illustrate the main theorems. 

This study also investigates deeply and analyzes and compares, in order to 

understand accurately, the results about necessary and sufficient conditions 

for the oscillation and non oscillation of solutions of even order neutral 

differential equations with constant and variable coefficients.  
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  الملخص

لحلول فئة معينه من المعادلات التفاضلية  التذبذب وعدمتهتم هذه الأطروحة بخاصية التذبذب 

يحتوي على اشتمال  المعادلات الفئة من و الشكل العام لهذه ، المتعادلة من الدرجة النونية الزوجية

  .على متغيرين متأخرين عن المتغير الذي يمثل الوضع الحاليلاقتران المجهول ا

و تؤسس  ،للمعادلات التفاضلية المتعادلة و التعاريف الأساسيةالمفاهيم  على تقدم  هذه الأطروحة

هذه الأطروحة على العديد من النتائج   تحتوي. لحلوللعدم تذبذب االشروط الضرورية و الكافية 

 .الصادرة في نظرية التذبذب لتلك الفئة من المعادلات التفاضلية المتعادلة من الدرجة الزوجية

   .الرئيسية النظريات لتوضيح تقترح عدد من الأمثلة

ط والشر حول النتائجفي  ،دقيق فهم من أجل ، تحقق هذه الدراسة أيضا بعمق وبالتحليل وبالمقارنة 

المعادلات التفاضلية المتعادلة من الدرجة الزوجية لحلول   وعدمهللتذبذب  ةو الكافي ةالضروري

  .بوجود عوامل ثابتة ومتغيرة
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Introduction 

 Differential equations with deviating arguments (DEWDA) are among the most 

important equations in applied mathematics. This importance occurs because they provide 

mathematical models for many real-life systems, in which the rate of change of the system 

depends not only on its present state but also could depend on past or future states. 

DEWDA initially was introduced in the eighteenth century by Laplace and 

Condorcet ሾ26ሿ . Bernoulli ( 1728) while studying the problem of sound vibrating in a tube 

with finite size investigated the properties of solutions of the first order of DEWDA, and 

was the first to work in this area [1]. However, the systematic study of such type of 

differential equations has begun in the twentieth century in connection with the needs of  

applied science and technology ሾ11ሿ . 

 In the late thirties and early forties Minorsky in his study of ship stabilization and 

automatic steering pointed out very clearly the importance of the consideration of the delay 

in the feedback mechanismሾ8ሿ. The great interest in the theory of automatic control and 

dynamics systems, during these and later years, has certainly contributed significantly to 

the rapid development of the theory of delay differential equations ሾ26 , 11 , 8ሿ.   

 Myshkis in his book (1950) introduced a general class of equations with delayed 

arguments ሾ8ሿ. In 1958 G.A. Kamenskii ሾ5ሿ proposed a classification method for a general 

class of DEWDA, he classified such type of equations into three types, they are: retarded 

type, neutral type, and advanced types. 

Oscillatory behavior of solutions of DEWDA is one of the most important properties 

of this type of equations, besides existence of positive solutions, and asymptotic behavior 

of solutions. This importance comes from the viewpoint of applications where these 

properties provide a qualitative description of solutions of the DEWDA. 

 Since 1950 the oscillation theory of DEWDA has received the attentions of several 

mathematicians as well as other scientists around the world. However, the theory of 

oscillation of DEWDA has been extensively developed in the last 30 years. 

 In 1987 Ladde, Lakshmikantham, and Zhang in their well presented book [5], 

introduced the first systematic treatment of oscillation and non oscillation theory of 
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DEWDAሾ4ሿ. In 1991 Gyori, and Ladas introduced one of the most important books in the 

oscillation theory of DEWDA. The last book is also a extensive reference for the theory of 

DEWDA, and it contains several applications. Recently several books appeared that are 

specialized in the subject of oscillation, such as Bainov and Mishev (1991), and Agarwal 

(2000).     

In parallel, during the second half of the twentieth century the area of applications of 

DEWDA has greatly expanded. Now such equations find numerous applications in 

physics, control theory, power systems engineering, material science, robotics, neural 

networks, ecology, physiology, immunology, public health, and economics  (see references 

of ሾ2,3,4,8,12,30ሿ).  

The simplest type of past dependence in differential equation is that in which the past 

dependence is through the state variable and not the derivative of the state variable, in this 

were DEWDA are the so-called retarded functional differential equations or delay 

differential equations ሾ8ሿ. 

 When the delayed argument occurs in the derivative of the state variable as well as 

in the independent variable, the system is called neutral differential equations  ሾ8ሿ. 

 Although the oscillatory theory of non-neutral differential equations has been 

extensively developed during the last three decades, only in the last ten or fifteen years 

much effort has been devoted to the study of oscillatory behavior of neutral delay 

differential equations (NDDE). From the viewpoint of applications, the study of oscillatory 

behavior of solutions of NDDE, the study of other types of DEWDA, and its theoretical 

interest are all important. Accordingly, NDDE have many applications in natural science, 

technology, and economics. For more illustration, NDDE appear in the following 

applications: 

1. Study of vibrating masses attached to an elastic bar  ሾ4 , 8ሿ. 

2.  Study of distributed networks containing loss-less transmission lines  ሾ4 , 8ሿ. 

3. Problems of economics where the demand depends on current price but supply 

depends on the price at an earlier time  ሾ30ሿ. 

4.  To describe the Flip Flop circuit which is the basic element in a digital electronic  

ሾ12ሿ. 
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In fact, the appearance of neutral term in differential equations can cause or destroy 

oscillation of its solutions. Moreover, in general the theory of neutral differential equations 

presents complications which are unfamiliar for non-neutral differential equations: Most of 

authors obtained sufficient rather than necessary conditions for oscillation of higher orders 

NDDE. However, the conditions assumed differ from author to author due to the different 

techniques they used and different forms of equations they considered. Also, it is 

interesting to note that the conditions assumed by different researches for similar form of 

equations are often not comparable, see [17]. 

In our thesis we study the oscillation of a certain class of even order NDDE of the forms 

with constant or variable coefficients: 

          ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0.                                                                   (1) 

           ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻሿ ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0.                                                               (2) 

Throughout this thesis, the following conditions are assumed to hold; ݊ ൒ 2 is even; 

߬ ൐ 0; ߣ  ൐ 0 ;  ݃ א ,଴,∞ሻݐሾܥ ݈݅݉௧՜ஶ ݃ሺݐሻ ൌ ∞; ݂ א ଴,∞ሻݐሺሾܥ ൈ Թሻ; ,ݐሺ݂ݑ  ሻݑ ൒

0 for  ሺݐ, ሻݑ א   ሾݐ଴,∞ሻ ൈ Թ, and ݂ሺݐ, ݑ ሻ is nondecreasing inݑ א Թ for each fixed ݐ ൒

;଴ݐ  ݄ሺݐሻ א  . ሺԹሻܥ

The outline of the thesis is as follows: 

Chapter One: Contains the main concepts, definitions, and preliminary material that are 

essential for the rest of the thesis. 

Chapter Two: Is devoted to oscillation and non oscillation theories of equations (3) and 

(4) for the case of constant coefficients  

 ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔሻݐሺݍ െ ሻߪ ൌ 0                                                                  (3) 

 ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔ|ሻݐሺݍ െ ሻ|ఊߪ ൌ 0                                                              (4) 

where ߛ ് 1  and  ߛ ൐ 0. 
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Chapter Three and Chapter Four:  highlight on Tanka's results, [20] and [21] 

respectively. The theory of oscillation for equation (1)(respectively (2)) will be studied 

since it is of extreme significance over earlier theories. Not only it provides necessary and 

sufficient conditions for the oscillation, but also compares NDDE with ODE. The detailed 

proof, the resulting corollaries along with its evidences, and lemmas, will be all presented 

and proved along with the chapter. 
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Chapter One 

Preliminaries 

This chapter contains some basic definitions, and results which are essential for the rest of the 

thesis. Sections 1.1 and 1.2, introduce the definition of DEWDA, their classification, and definition 

of NDDE. Section 1.3, gives  the meaning of solution of  NDDE  and  sections 1.4 and 1.5, 

introduce the definition of oscillation and some oscillatory  phenomena caused by deviating 

arguments. Section 1.6 contains basic lemmas related to the subject.  

 1.1 Differential equations with deviating arguments (DEWDA) 

Differential equations with deviating arguments are differential equations in which the 

unknown function appears with various values of the argument. They are classified into 

three types: 

i. Differential equations with retarded argument: 

 Differential equation with retarded argument is a differential equation with deviating 

argument in which the highest-order derivative of the unknown function appears for just 

one value of the argument, and this argument is not less than the remaining arguments of 

the unknown function and its derivatives appearing in the equation. 

ii. Differential equations with advanced argument: 

 Differential equation with advanced argument is a differential equation with 

deviating argument in which the highest-order derivative of the unknown function appears 

for just one value of the argument, and this argument is not larger than the remaining 

arguments of the unknown function and its derivatives appearing in the equation. 

iii. Differential equations of neutral type: 

 Neutral differential equation is a differential equation in which the highest-order 

derivative of the unknown function is evaluated both with the present state and at one or 

more past or future states. 
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Example 1.1.1: 

ݔ (1 ′ሺݐሻ ൌ ݂ ቀݐ, ,ሻݐሺݔ ݐ൫ݔ െ ߬ሺݐሻ൯ቁ. 

ݔ (2 ′′ሺݐሻ ൌ ݂ ቀݐ, ,ሻݐሺݔ ݔ ′൫ݐ െ ߬ሺݐሻ൯ቁ. 

ݔ (3 ′′ሺݐሻ  ൌ ݂ሺݐ, ݔ ,(ሺ೟మݔ
′ ቀ௧
ଶ
ቁ , ,ሻݐሺݔ ݔ ′ሺݐሻሻሻ 

ݔ (4 ′′ሺݐሻ ൌ ݂ሺݐ, ,ሻݐሺݔ ݔ ′ሺݐሻ, ,ሻ൯ݐ൫߬ሺݔ ݔ ′൫߬ሺݐሻ൯. 

ݔ (5 ′ሺݐሻ ൌ ݂ ቀݐ, ,ሻݐሺݔ ݐሺݔ െ ߬ሻ, ݔ ′ሺݐ െ ߬ሻቁ. 

ݔ (6 ′′ሺݐሻ ൌ ݂ ቀݐ, ,ሻݐሺݔ ݔ ′ሺݐሻ, ݐ൫ݔ െ ߬ሺݐሻ൯, ݔ ′′൫ݐ െ ߬ሺݐሻ൯ቁ 

Equation (1), (2), (3), and (4) are equations with retarded argument if ߬ሺݐሻ ൐ 0 in (1) 

and (2), ݐ ൐ 0 ݅݊ ሺ3ሻ, ܽ݊݀ ߬ሺݐሻ ൏  .ሺ4ሻ ݊݅ ݐ

 Equations (1), (2), (3), and (4) are equation with advanced argument if ߬ሺݐሻ ൏ 0 in 

(1) and (2), ݐ ൏ 0 ݅݊ ሺ3ሻ, and ߬ሺݐሻ ൐  .in ሺ4ሻ ݐ

Equations (5) and (6) are equations of neutral type. 

1.2 Neutral delay differential equations (NDDE) 

A neutral delay differential equations is a differential equations in which  the highest-

order derivative of unknown function appears in the equation both with and without 

delays (retarded arguments). 

Example 1.2.1: 

ݔ (1 ′ሺݐሻ ൌ ݂൫ ݐ, ,ሻݐሺݔ ݐᇱሺݔ െ ߬ሻ൯, ߬ ൐ 0, is a first order NDDE. 

ݔ  (2 ′′ሺݐሻ ൌ  ݂ ቀݐ, ,ሻݐሺݔ ݔ ′ሺݐሻ, ݐ൫ݔ െ ߬ሺݐሻ൯, ݔ ′൫ݐ െ ߬ሺݐሻ൯, ݔ ′′൫ݐ െ ߬ሺݐሻ൯ቁ, ߬ሺݐሻ ൐ 0 is second order 

NDDE. 

In general, the behavior of solutions of neutral type equations may be quite different 

than that of non neutral- equations, and results, which are true for non- neutral equations, 

may not be true for neutral equations. 

 



7 
 

1.3 Solution of NDDE 

We shall be concerned with the oscillatory behavior of the solutions for even order neutral 

differential equation of the forms 

           ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                                            (1.3.1)    

           ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻሿ ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0.                                                          (1.3.2)       

 The following conditions are assumed to hold:   ݊ ൒ 2 is even ; ߣ  ൐ 0;  ߬ ൐  0; ݃ א

,଴,∞ሻݐሾܥ lim௧՜∞ ݃ሺݐሻ ൌ ∞; ݂ א ଴,∞ሻݐሺሾ׋ ൈ Թሻ, ,ݐሺ݂ݑ ሻݑ ൒    0  for  ሺݐ, ሻݑ א ሾݐ଴,∞ሻ ൈ

Թ, and  ݂ሺݐ,  ሻ  is nondecreasing inݑ

ݑ  א Թ for each fixed  ݐ ൒ ; ଴ݐ ݄ሺݐሻ א   .ሺԹሻܥ

By a solution of (1.3.1) or (1.3.2), we mean a function  ݔሺݐሻ that is continuous and satisfies 

(1.3.1) or (1.3.2) on ሾݐ௫,∞ሻ for someݐ௫ ൒  ሻ is a solution  of (1.3.1) orݐሺݔ  ଴. Therefore, ifݐ

(1.3.2 ), then ݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻ is n-times continuously on  ሾݐ௫,∞ሻ . Note that,  ݔሺݐሻ itself is 

not continuously differentiable. 

1.4 Definition of oscillation 

 There are various definitions for the oscillation of solutions of ordinary differential 

equations (with or without deviating argument). In this section we give two different forms 

of definitions of the oscillation. These forms are most frequently used in literature. 

Definition 1.4.1: A non- trivial solution ݔሺݐሻ is said to be oscillatory if it has arbitrarily 

lagre zeros for t≥ t0 that is, there exists a sequence of zeros ሼݐ௡ሽ, ሺ ݔሺݐ௡ሻ ൌ  0ሻ of ݔሺݐሻ such 

thatlim௡՜∞ ௡ݐ ൌ ൅∞, otherwise ݔሺݐሻ is said to be non- oscillatory. 

For non oscillatory solutions there exists a t1 such thatݔሺݐሻ  ് 0, for all ݐ ൒    .ଵݐ

Definitions 1.4.2: A non- trivial solution ݔሺݐሻ is said to be oscillatory if it changes sign on 

(T,∞), where T is any number. 

As the solution ݔሺݐሻ is continuous, if it non oscillatory it must be eventually positive or 

eventually negative. That is there exists a T0 א R such that ݔሺݐሻ is positive for all t≥ T0 or 

is negative for all t≥ T0. 
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Example 1.4.1: The equation 

ݔ ′ሺݐሻ ൅ ݔ  ቀݐ െ గ
ଶ
ቁ ൌ 0                                                                                   (1.4.1)  

Has oscillatory solutions x1(t) =sin t, and x2 (t)= cos t. 

Example 1.4.2: The equation 

ሻݐԢሺݔ െ ݁ଷݔሺݐ െ 3ሻ ൌ 0                                                                                 (1.4.2)                             

Has non oscillatory solutions  ݔሺݐሻ ൌ ݁௧. 

Example 1.4.3: the equation 

ݔ            ′′ሺݐሻ ൅ ݔ4  ቀగ
ଶ
െ ቁݐ ൌ 0                                                                               (1.4.3)  

Has an oscillatory solution ݔଵሺݐሻ ൌ sin ଶݔ  and a non oscillatory solution ,ݐ2 ൌ ݁ଶ௧ െ

 ݁గିଶ௧. 

Example 1.4.4: Consider the equation 

ݔ  ′′′ሺݐሻ െ ଵ
ଶ
 ݔ ቀݐ െ గ

ଶ
ቁ ൅ ଵ

ଶ
ݔ ቀݐ െ ଷగ

ଶ
ቁ ൌ 0, ݐ ൒ 0                                          (1.4.4) 

Whose solution ݔሺݐሻ ൌ  1 ൅ cos  it is oscillatory according to definition 1.4.1, and non ,ݐ

oscillatory according to definition 1.4.2. In fact, definition 1.4.1 is more general than 

definition 1.4.2 and is the most used in literature, also, it is the one used in this thesis. 

Example 1.4.5: 

ݔ  ′′ሺݐሻ െ ଵ
௧
ݔ ′ሺݐሻ ൅ ሻݐሺݔଶݐ4  ൌ 0                                                                   (1.4.5) 

Whose solution ݔሺݐሻ ൌ sin tଶ , this solution is not periodic but has an oscillatory property. 

Example 1.4.6: Consider the NDDE 

ቂݔሺݐሻ െ ଵ
ଶ
ݐሺݔ െ ቃ Ԣߨ2 െ ଵ

 ଶ
ݔ ቀݐ െ ଷగ

ଶ
ቁ ൌ 0                                                     (1.4.6) 



9 
 

It has an oscillatory solution x(t)= sin t. 

Example 1.4.7: Consider the NDDE 

 ሾ ݔሺݐሻ െ ݁௧ݔ ሺݐ െ 1ሿ′′′ ൅ ௘మ೟

௘య
ݐଷሺݔ െ 1ሻ ൌ 0                                                 (1.4.7) 

It has a non oscillatory soltuon  x(t)= e-t, but x(t)  ՜ 0 as t՜ ∞. 

 1.5 Effects of deviating arguments on oscillation 

The oscillation theory of DEWDA presents some new problems, which are not 

presented in the theory of corresponding ordinary differential equations (ODE). However, 

results for oscillation of differential equations may not be true for DEWDA. 

In this section we consider some oscillatory and non oscillatory phenomena caused by 

deviating arguments, through the discussion of the following example. 

Example 1.5.1: Consider the equation   

ݔ  ′ሺݐሻ ൅ ݔߚ ቀݐ െ గ
ଶఉ
ቁ ൌ ߚ      ,0 א ܴ ך ሼ0ሽ                                                      (1.5.1) 

It has oscillatory solution x1(t)ൌ sinݐߚ, ሻݐଶሺݔ ݀݊ܽ ൌ cos    While the equation . ݐߚ

ݔ           ′ሺݐሻ ൅ ሻݐሺݔߚ  ൌ ߚ       ,0 א ܴ ך ሼ0ሽ                                                                (1.5.2)                        

Has non- oscillatory solutionݔሺݐሻ ൌ ݁ିఉ௧. 

This example shows that first order DEWDA can have oscillatory solution. While, as 

known, the first order scalar ODES that contain the unknown function do not possess 

oscillatory solution. 

Example 1.5.2: Consider the equation 

ݔ ′′ሺݐሻ െ ݔ9 ቀݐ െ గ
ଷ
ቁ ൌ 0                                                                                 (1.5.3) 

It has oscillatory solution x1(t) = sin3t, and x2 (t)= cost 3t. But equation 

ݔ ′′ሺݐሻ െ ሻݐሺݔ9  ൌ 0                                                                                        (1.5.4) 
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Has non oscillatory solutions x1(t)= e3t, and x3(t)= e-3t 

It is obvious that the nature of solution changes completely after the appearance of 

deviating argument in the equation. 

Example 1.5.3: Consider the equation 

ݔ  ′′ሺݐሻ ൅ ߨሺ2ݔ  െ ሻݐ ൌ  0                                                                               (1.5.5) 

It has an oscillatory solution ݔଵሺݐሻ ൌ cos ሻݐଶሺݔ and non oscillatory solution ,ݐ ൌ ݁௧ െ

݁ଶగି௧. 

Here, in second order DEWDA one solution is oscillatory, but the other is non oscillatory, 

and this case can never occur in second order linear ODE, where either all solutions are 

oscillatory or all solutions are non oscillatory. 

1.6 Some basic lemmas 

This section contains basic lemmas needed later in the thesis. 

We begin by classifying all possible non oscillatory solutions of equation (1.3.1) according 

to their asymptotic behavior as ݐ ՜ ∞. 

Lemma 1.6.1 (ሾૠሿ): (Kiguradze ) Let  ݊ ൒ 2 and ߪ ൌ ݎ݋ 1 െ 1      and let   ݑ א  ௡ሾܶ,∞ሻܥ

satisfies  

ሻݐሺ௡ሻሺݑሻݐሺݑߪ                   ൏ 0 ,    for  ݐ ൒ ܶ .  

Then there exist  an integer  ݆ א ሼ0,1,2, …… , ݊ሽ and a number  ݐ଴ ൒ ܶ such that  ሺെ1ሻ௡ି௝ିଵߪ ൌ 1  

and  

               ቊ ݑሻݐሺݑ 
ሺ௜ሻሺݐሻ ൐ ݐ                                   ,0 ൒ ଴  ,       0ݐ ൑ ݅ ൑ ݆,            

 ሺെ1ሻ௜ି௝ ݑሺݐሻݑሺ௜ሻሺݐሻ ൐ ݐ                    0 ൒ ݆       ,   ଴ݐ ൑ ݅ ൑ ݊              
      

Lemma1.6.2 (ሾ૛ૢሿ):  let ݔሺݐሻ  be a non oscillatory solution of (1.3.1) . Then one of the 

following two cases holds: 

(I) There is an integer ݆ with 0 ൑ ݆ ൑ ݊, ሺെ1ሻ௡ି௝ିଵߪ ൌ 1   and a number ݐ଴ ൒ ܶ  such that  

ሻݐሻሺݔܮሻሺݐሺݔ                ൐ ݐ                      ,0 ൒  ଴ ,                                                                (1.6.1)ݐ

           ቊሺݔܮሻሺݐሻሺݔܮሻ
ሺ௜ሻሺݐሻ ൐ ݐ                   0 ൒ ଴  ,       0ݐ ൑ ݅ ൑ ݆  

ሺെ1ሻ௜ି௝ሺݔܮሻሺݐሻሺݔܮሻሺ௜ሻሺݐሻ ൐ ݐ    ,0 ൒ ݆       ,  ଴ݐ ൑ ݅ ൑ ݊,
                                         (1.6.2)   

(II) There is a number  ݐ଴ ൒ ܶ   such that   

ሻݐሻሺݔܮሻሺݐሺݔ              ൏ ݐ                      ,0 ൒  ଴                                                                                 (1.6.3)ݐ

               ሺെ1ሻ௜ሺݔܮሻሺݐሻሺݔܮሻሺ௜ሻሺݐሻ ൐ ݐ            0 ൒ ଴  ,       0ݐ ൑ ݅ ൑ ݊                                               (1.6.4) 
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 and 

             lim௧՜∞ሺݔܮሻሺݐሻ ൌ 0  ,    lim௧՜∞ ሻݐሺݔ ൌ 0                                                                         (1.6.5) 

Note: Where  ܮሺݐሻ ൌ ሾݔሺݐሻ െ hሺtሻ xሺݐ െ ߬ሻሿ. Furthermore the case (II) can hold only when 

ሺെ1ሻ௡ߪ ൌ 1 and ݄ሺݐሻ is eventually positive. 

Definition 1.6.1 (ሾૠሿ): Let ࣨdenote the set of all non oscillatory solutions of (1.3.1).  For 

an integer j with 0 ൑ ݆ ൑ ݊ andሺെ1ሻ௡ି௝ିଵߪ ൌ 1 , we denote ௝ࣨ to be  the set of all non 

oscillatory solutions ݔ of (1.3.1) which satisfy (1.6.1) and (1.6.2). In addition, we denote 

଴ࣨ
ି  to be the set of all non oscillatory solutions ݔ of (1.3.1) which satisfy (1.6.3)-(1.6.5). 

Lemma (1.6.2) means that every non oscillatory solution ݔ א ࣨ falls into one and only one 

of the classes ௝ࣨ (0 ൑ ݆ ൑ ݊, ሺെ1ሻ௡ି௝ିଵߪ ൌ 1) and ଴ࣨ
ି. More precisely,  ࣨ has the following 

decomposition: 

     

ࣨ ൌ ௡ࣨିଵڂ ௡ࣨିଷ ׫ … ׫. ଵࣨڂ ଴ࣨ
ି ߪ ݎ݋݂  ൌ ; ݊݁ݒ݁ ݏ݅ ݊ ݀݊ܽ    1

ࣨ ൌ ௡ࣨିଵڂ ௡ࣨିଷ ׫ … ׫. ଶࣨڂ ଴ࣨ ߪ ݎ݋݂ ൌ    ; ݀݀݋ ݏ݅ ݊ ݀݊ܽ   1
ࣨ ൌ ௡ࣨڂ ௡ࣨିଶ ׫ … ׫. ଶࣨڂ ଴ࣨ ߪ ݎ݋݂    ൌ െ1 ܽ݊݀ ݊ ݅݊݁ݒ݁ ݏ,
ࣨ ൌ ௡ࣨڂ ௡ࣨିଶ ׫ … ׫. ଵࣨڂ ଴ࣨ

ି ߪ ݎ݋݂     ൌ െ1 ܽ݊݀ ݊ ݅݀݀݋ ݏ;  ۙ
ۖ
ۘ

ۖ
ۗ

 

Note: ଴ࣨ
ି can appear only when ݄ሺݐሻ is eventually positive, so if  ݄ሺݐሻ is either oscillatory 

or eventually negative, then (1.3.1) cannot possess a non oscillatory solution ݔሺݐሻ satisfies 

(1.6.3), so that in this case the class ଴ࣨ
ି should be removed from decomposition from  ࣨ. 

Let ݔ א ௝ࣨ.then we see by (1.6.2) that the asymptotic behavior of  ሺLxሻሺtሻ as  t ՜ ∞ is as 

follows: 

(i) If j ൌ 0, then either  

   (i-1)      lim୲՜ஶሺLxሻሺtሻ ൌ const ് 0    or  

   (i-2)      lim୲՜ஶሺLxሻሺtሻ ൌ0.  

(ii) If  1 ൑ j ൑ n െ 1, then one of the following three cases holds: 

   (ii-1)     lim୲՜ஶ
ሺ୐୶ሻሺ୲ሻ
୲ౠ

ൌ const ് 0;        

   (ii-2)     lim୲՜ஶ
ሺ୐୶ሻሺ୲ሻ
୲ౠషభ

ൌ const ് 0;        

   (ii-3)    lim୲՜ஶ
ሺ୐୶ሻሺ୲ሻ
୲ౠ

ൌ 0;      and     lim୲՜ஶ
|ሺ୐୶ሻሺ୲ሻ|
୲ౠషభ

ൌ ∞.  

(iii) If  j ൌ n, then either  

   (iii-1)   lim୲՜ஶ
ሺ୐୶ሻሺ୲ሻ
୲౤షభ

ൌ const ് 0    or 

   (iii-2)   lim୲՜ஶ
|ሺ୐୶ሻሺ୲ሻ|
୲౤షభ

ൌ ∞.   
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Lemma 1.6.3ሺሾ5ሿሻ: 

If  ݔ is as in lemma 1.6.1  and for some  ݇ ൌ 0,1, … , ݊ െ 2 , 

                  lim௧՜ஶ ሻݐሺ௞ሻሺݔ ൌ ܿ,       ܿ א Թ                                                              (1.6.6)          

Then  

                 lim௧՜ஶ ሻݐሺ௞ାଵሻሺݔ ൌ 0                                                                            (1.6.7) 
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Chapter Two 

Oscillation and Non oscillation for Linear and Nonlinear Equations  

2.1  Oscillation and non oscillation of linear equation  

In this part of the study, equation (A) theorems that present oscillation and non oscillation 

will be demonstrated. Relying on the coefficient value, this part will be divided into several 

sections. According to equation (A) outcomes, confirming conditions for oscillation and 

non oscillation of equation (2.1.1) will be derived taking into consideration the fact that 

this equation is a special case for equation (A). 

We consider the neutral linear functional differential equations of type  

       ௗ
೙

ௗ௧೙
ሻݐሺݔൣ െ ݄ሺݐሻݔ൫߬ሺݐሻ൯൧ ൅ ߪ ∑ ሻ൯ேݐ൫݃௜ሺݔሻݐ௜ሺ݌

௜ୀଵ ൌ 0                                (A) 

Where ݊ ൒ 2, ߪ ൌ ݎ݋ 1 െ 1, and the following conditions are assumed to hold: 

a. ݄: ሾݐ଴,∞ሻ ՜ Թ is continuous and satisfies |݄ሺݐሻ| ൑  ଴, ∞) for some constantݐ] on ߣ

λ<1; 

b. τ: ሾݐ଴,∞ሻ ՜ Թ is continuous and increasing, τ(t) < t for t ൒ ݐ଴ and lim௧՜∞ ߬ሺݐሻ ൌ ∞; 

c. each ݌௜: ሾݐ଴,∞ሻ ՜ ሺ݋,∞ሻ is continuous, 1 ൑ ݅ ൑ ܰ; 

d. each ݃௜: ሾݐ଴,∞ሻ ՜ Թ is continuous and satisfies lim௧՜∞ ݃௜ ሺݐሻ ൌ ∞, 1 ൑ ݅ ൑ ܰ. 

From equation (A), we have  a special equation  

              ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔሻݐሺ݌ െ ሻߪ ൌ 0                                            (2.1.1)                              

Where ݅ ൌ 1, ݄ሺݐሻ ؠ െߣ, ߣ ൐ 0, ߪ א Թ, ݌ א ,଴,∞ሻݐሾ׋ ሻݐሺ݌ ൐ 0 for  ݐ ൒  .଴ݐ

The main results are contained in theorems 2.1.1 and 2.1.3. Theorems  2.1.1 presents 

sufficient condition for the non oscillation of equation (2.1.1). Theorems 2.1.3 and 2.1.4 

present sufficient condition for the oscillation of equation (2.1.1).  

Case 1: equation (2.1.1) has a non oscillatory solution if                        

׬      ݐሻ݀ݐሺ݌௡ିଵݐ ൏ ∞∞
௧బ

                                                                                   (2.1.2) 

The objective of this case is to obtain criteria for equation (A) to have non oscillatory 

solutions of two types described in section 1.6: 

Type ሺI):     lim௧՜∞
ሺ௅௫ሻሺ௧ሻ
௧ೖ

ൌ const ് 0     for some  ݇ א ሼ0,1,… ݊ െ 1ሽ; 

 

Type ሺII):     lim௧՜∞
ሺ௅௫ሻሺ௧ሻ
௧೗

ൌ 0;      and     lim௧՜∞
|ሺ௅௫ሻሺ௧ሻ|
௧೗షభ

ൌ േ∞ 

      for some  ݈ א ሼ1,2,… ݊ െ 1ሽ. 
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where   ሺݔܮሻሺݐሻ ൌ ݔሺݐሻ െ ݄ሺݐሻݔ൫߬ሺݐሻ൯. 

 Solutions of type (I) :We start with Type  ሺI) solutions, and note that such  solutions 

can be completely characterized in case   

      ݄ሺݐሻ݄൫߬ሺݐሻ൯ ൒ 0  is satisfied (which include the case of one-signed). 

Theorem 2.1.1ሺሾૠሿሻ: Suppose that (2.1.3) holds                

         ݄ሺݐሻ݄൫߬ሺݐሻ൯ ൒ 0     for all large (2.1.3)                                                                       .ݐ 

     Equation (A) has a non oscillatory solution ݔሺݐሻ satisfying    

ሻݐሺݔሻൣݐሺݔ           െ hሺtሻݔ൫߬ሺݐሻ൯ ൧ ൐ 0                                                                             (2.1.4) 

and 

         lim௧՜∞
௫ሺ௧ሻି୦ሺ୲ሻ௫൫ఛሺ௧ሻ൯

௧ೖ
ൌ const ് 0                                                                (2.1.5) 

     for some  ݇ א ሼ0,1,… . . , ݊ െ 1ሽ                if and only if          

             ∑ ׬ ∞௡ି௞ିଵݐ
௧బ

ே
௜ୀଵ ሾ ௜݃ሺݐሻሿ௞݌௜ሺݐሻ݀ݐ ൏ ∞                                                                   (2.1.6) 

 Solutions of type (II) : We now consider non oscillatory solutions of  

type II  of equation (A), that is, those solutions ݔሺݐሻ which satisfy (2.1.4) and  

    lim௧՜∞
௫ሺ௧ሻି୦ሺ୲ሻ௫൫ఛሺ௧ሻ൯

௧೗
ൌ 0  and    lim௧՜∞

௫ሺ௧ሻି୦ሺ୲ሻ௫൫ఛሺ௧ሻ൯
௧೗షభ

ൌ േ∞                          (2.1.7)    

  for some  ݈ א ሼ1,2,… n െ 1ሽ such that ൫-1൯
n-௟-1

σ=1. 

 If   ݔሺݐሻ is one such solution of (A), then integration of (A) gives 

             ∑ ׬ ∞௡ି௟ିଵݐ
்

ே
௜ୀଵ หݔ൫ ௜݃ሺݐሻ൯ห݌௜ሺݐሻ݀ݐ ൏ ∞  

                                                

 and  

             ∑ ׬ ∞௡ି௟ݐ
்

ே
௜ୀଵ หݔ൫ ௜݃ሺݐሻ൯ห݌௜ሺݐሻ݀ݐ ൌ ∞                                                    

For some ܶ ൐  ሻ satisfies case (I) fromݐሻሺݔܮsufficiently large. Since (2.1.4) holds, then ሺ  0ݐ

Lemma (1.6.2), so  ሺݔܮሻሺݐሻ  is a function of Kiguaradze degree  ݈ for some ݈ א ሼ1,2, …݊ െ

1ሽ such that ൫-1൯
n-௟-1

σ=1. Thus, there exist positive constants ߙ,   and T such that ߚ
|ሻݐሺݔ| ൒ |ሻݐሺݔ|    ௟ିଵ    andݐߙ ൑ ݐ   ௟     forݐߚ ൒ ܶ, 

Combining the above inequalities, which follows readily from (2.1.3) and (2.1.7), we see 

that  

             ∑ ׬ ∞௡ି௟ିଵݐ
0ݐ

ே
௜ୀଵ ሾ݃௜ሺݐሻሿ௟ିଵ݌௜ሺݐሻ݀ݐ ൏ ∞                                                                 (2.1.8) 

and   

             ∑ ׬ ∞௡ି௟ ݐ
0ݐ

ே
௜ୀଵ ሾ݃௜ሺݐሻሿ௟݌௜ሺݐሻ݀ݐ ൌ ∞                                                                      (2.1.9) 
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Thus, (2.1.8) and (2.1.9) are necessary conditions for the existence of a solution ݔሺݐሻ 

satisfying (2.1.4) and (2.1.7) of equation (A) for which (2.1.3) is satisfied. 

The following theorem presents sufficient conditions for the existence of such a solution of 

(A) in the case where ݄ሺݐሻ ൒ 0   for  ݐ ൒   .଴ݐ

Theorem 2.1.2ሺሾૠሿሻ: Suppose that ݄ሺݐሻ ൒ 0   for  ݐ ൒ ݈ ଴. Letݐ א ሼ1,2, … ݊ െ 1ሽ be such 

that ൫-1൯
n-௟-1

σ=1. Equation (A) has a non oscillatory solution ݔሺݐሻ satisfying (2.1.4) and 

(2.1.7)  if  

             ∑ ׬ ∞௡ି௟ିଵݐ
௧బ

ே
௜ୀଵ ሾ݃௜ሺݐሻሿ௟݌௜ሺݐሻ݀ݐ ൏ ∞                                                        (2.1.10) 

and   

             ∑ ׬ ∞௡ି௟ݐ
௧బ

ே
௜ୀଵ ሾ݃௜ሺݐሻሿ௟ିଵ݌௜ሺݐሻ݀ݐ ൌ ∞                                                        (2.1.11) 

Example 2.1.1: Consider the special case of (A) with N=1  

                ௗ
೙

ௗ௧೙
ሻݐሺݔൣ െ ݄ሺݐሻݔ൫߬ሺݐሻ൯൧ ൅ ሻ൯ݐ൫݃ሺݔሻݐሺ݌ߪ ൌ 0                                   (2.1.12) 

In addition to (a-d) assume that (2.1.3) is satisfied. Condition (2.1.6), (2.1.10) and (2.1.11) 

for this equation reduce to                                               

׬                   ∞௡ି௞ିଵݐ
0ݐ

ሾ݃ሺݐሻሿ௞݌ሺݐሻ ݀ݐ ൏ ∞                                                                   (2.1.13) 

׬                   ∞௡ି௟ିଵݐ
0ݐ

ሾ݃ሺݐሻሿ௟݌ሺݐሻ ݀ݐ ൏ ∞                                                                     (2.1.14) 

and 

׬                   ∞௡ି௟ݐ
0ݐ

ሾ݃ሺݐሻሿ௟ିଵ݌ሺݐሻ ݀ݐ ൌ ∞                                                                     (2.1.15) 

respectively.  Suppose that ݃ሺݐሻ satisfies 

                 0 ൏ lim௧՜∞ inf
௚ሺ௧ሻ
௧
 ൑ lim௧՜∞ sup

௚ሺ௧ሻ
௧
൏ ∞                                                    (2.1.16)             

(Example of such ݃ሺݐሻ are  
                ݃ሺݐሻ ൌ ݐ േ ሻݐሺ݃           ,   ߜ ൌ ሻݐሺ݃              ,ݐߤ ൌ ݐ ൅ sin  ݐ
Where  ߜ   and   ߤ    are positive constant).  Then, the set of (2.1.6) for all  ݇ ൌ 0,1, . . . , ݊ െ 1 

reduces to a single condition   

׬                           ݐሻ݀ݐሺ݌௡ିଵݐ ൏ ∞∞
0ݐ

                                                                           (2.1.17) 

From Theorem 2.1.1 it follows that if  (2.1.17)  holds , then  (2.1.12) has a solution ݔሺݐሻ 

satisfying (2.1.5)  for every ݇ א ሼ0,1, … . . , ݊ െ 1ሽ , and that if     

׬                       ݐሻ݀ݐሺ݌௡ିଵିఢݐ ൌ ∞∞
௧బ

                                                                             

 then (2.1.12)  cannot have a solution ݔሺݐሻ satisfying  (2.1.5)  for any           ݇ א ሼ0,1, … . . , ݊ െ

1ሽ, we note that theorem 2.1.2 is not applicable to equation (2.1.12) subject  to  (2.1.16), 
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since in  this case conditions (2.1.14) and (2.1.15) are not consistent for any  ݈,  since  ݃ሺݐሻ 

is finite  as ݐ ՜ ∞ . 

Next, suppose that  ݃ሺݐሻ ൌ ߠ ఏ , whereݐ א ሺ0,1ሻ is a constant.  Then, (2.1.14) and (2.1.15) 

become  

׬                   ∞௡ି௟ିଵା௟ఏݐ
௧బ

ݐ݀ ሻݐሺ݌ ൏ ∞                                                                           (2.1.18) 

and 

׬                   ∞௡ି௟ାఏሺ௟ିଵሻݐ
௧బ

ݐ݀ ሻݐሺ݌ ൌ ∞                                                                         (2.1.19) 

Since   lim௧՜∞ ఏݐ ൌ ∞ .  Which may hold simultaneously; for example, the function  ݌ሺݐሻ ൌ

,ఊݐ   being a constant, from inequality (2.1.18) we have  ߛ

 ݊ െ ݈ െ 1 ൅ ߠ݈ ൅ ߛ ൏ ߛ  ฺ  0 ൏  ݈ሺ1 െ ሻߠ െ ݊ ൅ 1,   And, from inequality (2.1.19) we have     

݊ െ ݈ ൅ ሺ݈ߠ െ 1ሻ ൅ ߛ ൐ 0   ฺ ߛ   ൐ ݈ െ ݊ െ ሺ݈ߠ െ 1ሻ, so it satisfies both (2.1.18) and (2.1.19) if   

଴ݐ ൐ 0   ܽ݊݀   ݈ െ ݊ െ ሺ݈ߠ െ 1ሻ ൏ ߛ ൏  ݈ሺ1 െ ሻߠ െ ݊ ൅ 1. According to theorem 2.1.2, condition 

(2.1.18) and (2.1.19) for some 

݈ א ሼ0,1, … . . , ݊ െ 1ሽ  with ሺെ1ሻn-௟-1σ=1 guarantee the existence of  a solution ݔሺݐሻ  of  equation 

(2.1.12) which has the asymptotic behavior  (2.1.7) 

Example 2.1.2: Consider the equation  

      ௗ
మ

ௗ௧మ
ሾݔሺݐሻ െ ݐሺݔߣ െ ሻሿߩ ൅ ሺ݁ߣఘ െ 1ሻ݁ሺ௩ିଵሻ௧ݔሺݐݒሻ ൌ 0  , ݐ ൒ 0                                      (2.1.20) 

where 0 ൏ ߣ ൏ ߩ , 1 ൐ ݒ and ݋ ൐ 0 . 

(i) Suppose that  ݁ߣఘ ൐ 1 .Then , (2.1.20)  is  a special case of (2.1.12) 

in which  ݊ ൌ 2, ߪ ൌ 1, ݄ሺݐሻ ൌ , ߣ ߬ሺݐሻ ൌ ݐ െ ,ߩ ሻݐሺ݌ ൌ ሺ݁ߣఘ െ 1ሻ݁ሺ௩ିଵሻ௧ and       

݃ሺݐሻ ൌ ࣨ  From section 1.6 we have .ݐݒ ൌ ଵࣨڂ ଴ࣨ
ି   for (2.1.20). 

Note that ଴ࣨ
ି ് ߶.  Since   ݄ሺݐሻ ൌ ߪis positive  and  ሺെ1ሻ௡  ߣ ൌ 1 is, more specifically, 

since the proper solution is positive, then  we have from lemma(1.6.2) case II in section  

1.6 ሾݔሺݐሻ െ λݔሺݐ െ ሻሿߩ ൏ 0.  So   |ݔሺݐሻ| ൏ λ|ݔሺݐ െ ሻ൯หݐ൫߬ି௠ሺݔሻ|  and hence  หߩ ൏ λ୫|ݔሺݐሻ|.  Which 

implies that    

lim௧՜∞ ሻݐሺݔ ൌ 0. To explain that, the set of all solutions ݔሺݐሻ of equation (A) satisfies  

ሻݐሺݔሻൣݐሺݔ െ ݄ሺݐሻݔ൫߬ሺݐሻ൯൧ ൏ 0  is  ଴ࣨ
ି, and this class ଴ࣨ

ି is empty if  

ߪ ൌ 1  and  ݊  is odd     or     ߪ ൌ െ1  and  n  is even,   

 note that ߬଴ሺݐሻ ൌ ሻݐ௜ሺ߬  ,ݐ ൌ ߬ ቀ߬௜ିଵሺݐሻቁ , ߬ି௜ሺݐሻ ൌ ߬ିଵ ቀ߬ିሺ௜ିଵሻሺݐሻቁ,   

since ߬ሺݐሻ ൑ |ሻݐሺݔ|  ,Then  .ݐ ൑  ሻ൯ݐ൫߬ሺݔߣ

ݐ ൑ ߬െ1ሺݐሻ, so we have  หݔ൫߬ିଵሺݐሻ൯ห ൑ |ሻݐሺݔ|ߣ ൑  ሻ൯ݐ൫߬ሺݔଶߣ

߬ିଵሺݐሻ ൑ ߬ିଶሺݐሻ, so we have   หݔ൫߬ିଶሺݐሻ൯ห ൑ ሻ൯หݐ൫߬ିଵሺݔหߣ ൑  ሻݐሺݔଶߣ
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Continuing in this manner we have  

หݔ൫߬ି௠ሺݐሻ൯ห ൑ ሻݐሺݔ ሻ . Equation (2.1.20) has a solutionݐሺݔ௠ߣ ൌ ݁ି௧  belonging to the class 

଴ࣨ
ି. 

The possible asymptotic behavior of the members ݔሺݐሻ of   ଵࣨ  are:                        

lim௧՜∞
௫ሺ௧ሻିλ௫ሺ௧ିఘሻ

௧
ൌ const ് 0                                                                          (2.1.21)                 

lim௧՜∞ ሻݐሺݔ െ λݔሺݐ െ ሻߩ ൌ const ് 0       (2.1.22)                              

lim௧՜∞
௫ሺ௧ሻିλ௫ሺ௧ିఘሻ

௧
ൌ 0    , lim௧՜∞ ሻݐሺݔ െ λݔሺݐ െ ሻߩ ൌ േ∞                               (2.1.23)     

If ݒ ൏ 1 then, since  ݃ሺݐሻ ൌ ሻݐሺ݌  ,satisfies (2.1.16)  ݐݒ ൌ ሺ݁ߣఘ െ 1ሻ݁ሺ௩ିଵሻ௧  and  ݊ ൌ 2, we 

have     ׬ ݏሻ݀ݏሺ݌ଶିଵݏ ൌ ׬ ఘ݁ߣሺݏ െ 1ሻ݁ሺ௩ିଵሻ௦݀ݏ ൌ∞
௔

∞
௔ ሺ݁ߣఘ െ 1ሻ ׬ ∞ሺ௩ିଵሻ௦݁ݏ

௔  use the integration  ݏ݀

by parts     

                 ሺ݁ߣఘ െ 1ሻ ׬ ∞ሺ௩ିଵሻ௦݁ݏ
௔ ݏ݀ ൌ ሺ݁ߣఘ െ 1ሻ lim୅՜∞ ׬ ሺ௩ିଵሻ௦஺݁ݏ

௔   ݏ݀

                                                     ൌ ሺ݁ߣఘ െ 1ሻ lim୅՜∞
ୣሺυషభሻ౩

ሺυିଵሻమ
൫ሺυെ 1ሻs െ 1൯ ቚAa 

                                                     ൌ ሺെ1ሻሺ݁ߣఘ െ 1ሻ ୣ
ሺυషభሻ౗

ሺυିଵሻమ
൫ሺυ െ 1ሻa െ 1൯ ൏ ∞ 

Since υ െ 1 ൏ 0,  then (2.1.17) holds, and so (2.1.20) has a solution satisfying (2.1.21)as 

well as a solution satisfying (2.1.22). However, there is no solution of (2.1.20) which has 

the asymptotic property (2.1.23), because the condition  

(2.1.9)  which is necessary for the existence of such a solution is violated for equation 

(2.1.20). 

If ݒ ൒ 1, then, 

׬         s2­1pሺݏሻ ds=ሺ݁ߣఘ െ 1ሻ limA ՜∞ ׬ seሺజିଵሻs
A

a
ds=∞

∞
a

 

Since  υ െ 1 ൐ 0, then equation ׬ ݐሻ݀ݐሺ݌௡ିଵݐ ൌ ∞∞
௧బ

 (n = 2) holds, so that (2.1.20) has neither 

a solution satisfying (2.1.21) nor  a solution satisfying (2.1.22). Since (2.1.8) is not 

satisfied.   

(ii) Suppose that  λe஡ ൏ 1 .then , (2.1.20)  is  a special case of (2.1.12)  

 in which 

݊ ൌ 2, ߪ ൌ െ1, ݄ሺݐሻ ൌ , ߣ ߬ሺݐሻ ൌ ݐ െ ,ߩ ሻݐሺ݌ ൌ ሺ݁ߣఘ െ 1ሻ݁ሺ௩ିଵሻ௧ and ݃ሺݐሻ 

  ൌ   .ݐݒ

From section 1.6 we have  ࣨ ൌ ଴ࣨڂ ଶࣨ   and the possible types of asymptotic behavior of 

non oscillatory solutions xሺtሻ of (2.1.20) are (2.1.21) and (2.1.22), 

          lim୲՜ஶሾxሺtሻ െ λxሺt െ ρሻሿ ൌ 0                                                                    (2.1.24)                  

and  
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          lim୲՜ஶ
୶ሺ୲ሻି஛୶ሺ୲ି஡ሻ

୲
ൌ ∞ or െ ∞                                                                 (2.1.25)                

Exactly the same statements as in (i) hold for solutions which satisfy (2.1.21) and (2.1.22), 

depending on whether 1 > ݒor 1 < ݒ. Equation (2.1.20) has a solution ݔሺݐሻ ൌ ݁ି௧satisfying 

(2.1.24). 

Case 2: equation (2.1.1) has oscillatory solution if  

׬             ݐሻ݀ݐሺ݌௡ି1ିఌݐ ൌ ∞∞
௧0

          for some  ߝ ൐ 0                               

This   result is based on the following theorems due to Joar̆ݏ and Kusanoሾ7ሿ. 

• Oscillation criteria : We are  interested in the situation in which all 

proper solutions of equation (A) are oscillatory.  Since this situation is equivalent to the 

nonexistence of non oscillatory solutions of (A), Jaroš and Kusano obtained   conditions 

under which none of the solution classes appearing in the classification ࣨ in section 1.6 

has a member they   derivation of the result is based on the following lemma due to 

Kitamura ሾ28, .݌ 487ሿ  which provide oscillation criteria for functional differential 

inequalities of the form  

         ൛ݑߪሺ௡ሻሺݐሻ ൅ ሻݐሺݑ ሻ൯ൟsgnݐ൫݃ሺݑሻݐሺ݌ ൑ 0                                                      (2.1.26) 

where  ݊ ൒ 2, ߪ ൌ േ1, :݌ ሾܽ,∞ሻ ՜ ሺ݋,∞ሻ is continuous, ݃: ሾܽ,∞ሻ ՜ ሺ݋,∞ሻ 

is continuous, and lim௧՜∞ ݃ ሺݐሻ ൌ ∞. 

We introduce the following lemma which is useful in the proof of theorem 2.1.3. 

Let  ݃כሺݐሻ ൌ minሼ݃ሺݐሻ,  ሽݐ

Lemma 2.1.1ሺሾ૞ሿሻ: Let σ ൌ 1  and n be even.  There is no non oscillatory solution of 

(2.1.26) if  

׬          ሾ݃כሺݐሻሿ௡ି1∞
௔ ሾ݃ሺݐሻሿିఌ݌ሺݐሻ݀ݐ ൌ ∞    for some   (2.1.27)                                       ߝ 

Let ݔሺݐሻ be a non oscillatory solution of equation (A), letݔሺݐሻ െ ݄ሺݐሻݔ൫߬ሺݐሻ൯ ൌ ሺݔܮሻሺtሻ from 

(A) we have ሺݔܮሻሺ୬ሻሺtሻ ൌ ∑ߪ ݔሻݐሺ݅݌ ቀ݃݅ሺݐሻቁ
ܰ
݅ൌ1  , for ௜݃ሺݐሻ ൑   that is ,ݐ

ሺݔܮሻሺ୬ሻሺtሻ ൑ ∑ߪ ݔሻݐሺ݅݌ ቀ݃݅ሺݐሻቁ
ܰ
݅ൌ1  , for ݃௜ሺݐሻ ൑ ሻ ሼ݅ݐሻሺ௜ሻሺݔܮIt follows that ሺ  .ݐ ൌ 0,1, … . , ݊ െ

1ሽ is strictly monotone and of constant sign eventually. Hence 

ሺݔܮሻሺݐሻ ൐ 0    or   ሺݔܮሻሺݐሻ ൏ 0  from large ݐ, that is  ݔሺݐሻ െ ݄ሺݐሻݔ൫߬ሺݐሻ൯ is eventually one-

signed, we examine  ݄ሺݐሻ in two cases: 

ሻݐሺݔ ሻ is eventually positive : Since࢚ሺࢎ (1 െ ݄ሺݐሻݔ൫߬ሺݐሻ൯ is eventually  

one-signed. Then, the function   ݔሺݐሻൣݔሺݐሻ െ hሺtሻݔ൫߬ሺݐሻ൯ ൧ is either eventually positive or 

eventually negative. 
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  (1-i) Consider the case where  ݔሺݐሻൣݔሺݐሻ െ hሺtሻݔ൫߬ሺݐሻ൯ ൧ ൐ 0 for large ݐ. Put ݒሺݐሻ ൌ ሻݐሺݔ െ

hሺtሻݔ൫߬ሺݐሻ൯. Since, in this case, |ݒሺݐሻ| ൑   we see from  (A) that ,ݐ ሻ| for largeݐሺݔ|

         ൛ݒߪሺ௡ሻሺݐሻ ൅ ∑ ൫ݒሻݐ௜ሺ݌ ௜݃ሺݐሻ൯ே
௜ୀ1 ൟsgn ݒሺݐሻ ൑ 0       

Provided   ݐ is large enough. It follows that  ݒሺݐሻ is a non oscillatory solution of each of the 

differential inequalities  

         ൛ݒߪሺ௡ሻሺݐሻ ൅ ሻݐሺݒ ሻ൯sgnݐ൫݃௜ሺݒሻݐ௜ሺ݌ ൑ 0      1 ൑ ݅ ൑ ܰ                                            ሺ2.1.28ሻ௜ 

for all sufficiently large ݐ, and that  ݔሺݐሻ is a member of ௟ࣨ  if   and only if  ݒሺݐሻ is a solution 

of degree ݈ of  ሺ2.1.28ሻ௜ , for each 1 ൑ ݅ ൑ ܰ. 

  (1-ii) Consider the case where  ݔሺݐሻൣݔሺݐሻ െ ݄ሺݐሻݔ൫߬ሺݐሻ൯ ൧ ൏ 0 for large  . Put ݓሺݐሻ ൌ

݄ሺݐሻݔ൫߬ሺݐሻ൯ െ |ሻݐሺݓ|  ሻ. Sinceݐሺݔ ൑ ݄ሺݐሻหݔ൫߬ሺݐሻ൯ห ൑  .ሻ൯หݐ൫߬ሺݔหߣ

We find  หݓ൫߬ିଵሺݐሻ൯ห ⁄ߣ ൑  ሻ|, which combined with (A), yieldsݐሺݔ|

       ൛ሺെߪሻݓሺ௡ሻሺݐሻ ൅ 1ିߣ ∑ ݓሻݐ௜ሺ݌ ቀ߬ି1൫ ௜݃ሺݐሻ൯ቁቅே
௜ୀ1 sgn ݓሺݐሻ ൑ 0. 

It follows that  

൛ሺെߪሻݓሺ௡ሻሺݐሻ ൅ ݓሻݐ௜ሺ݌1ିߣ ቀ߬ି1൫ ௜݃ሺݐሻ൯ቁቅ sgn ݓሺݐሻ ൑ 0, 1 ൑ ݅ ൑ ܰ                                 ሺ2.1.29ሻ௜ 

for all sufficiently large ݐ, and that  ݔሺݐሻ is a member of 0ࣨ
ି if   and only if  ݓሺݐሻ is a 

solution of degree 0 of  ሺ2.1.29ሻ௜ ,  for each 1 ൑ ݅ ൑ ܰ. 

 ሻ is eventually negative : we will be  interested in this  case and the case where࢚ሺࢎ (2

݄ሺݐሻ is oscillatory and such that     ݄ሺݐሻ݄൫߬ሺݐሻ൯ ൒ 0     for all large ݐ,in these cases,  we 

must have   ଴ࣨ
ି is empty as was note in section 1.6, then there is no solution of (A) 

satisfying ݔሺݐሻൣݔሺݐሻ െ hሺtሻݔ൫߬ሺݐሻ൯ ൧ ൏ 0 for large ݐ, then, the function ݒሺݐሻ ൌ ሻݐሺݔ െ

hሺtሻݔ൫߬ሺݐሻ൯ satisfies   

            ሺ1 െ |ሻݐሺݒ|ሻߣ ൑  (2.1.30)                                                                    ݐ ሻ| for largeݐሺݔ|

Provided the Kiguradze degree of  ݔሺݐሻ is positive. From (A) and (2.1.30) we see that  ݒሺݐሻ 

satisfies  

       ൛ݒߪሺ௡ሻሺݐሻ ൅ ሺ1 െ ൫ݒሻݐ௜ሺ݌ሻߣ ௜݃ሺݐሻ൯sgn ݒሺݐሻ ൑ 0,      1 ൑ ݅ ൑ ܰ                                   ሺ2.1.31ሻ୧ 

for all sufficiently large ݐ, and that  ݔሺݐሻ is a member of ௟ࣨ if   and only if  ݒሺݐሻ is a solution 

of degree ݈ of  ሺ2.1.31ሻ୧ for each 1 ൑ ݅ ൑ ܰ. 

Jaros and Kusano derived oscillation criteria for equation (A) to obtain conditions which 

preclude all the possible solution classes  ௟ࣨ, 0 ൑ ݈ ൑ ݊, and 0ࣨ
ି appearing in the 

classification ࣨ. That this is indeed possible can be seen from the above observations 

combined with lemma 2.1.1which apply directly to the functional differential 

inequalitiesሺ2.1.31ሻ୧, 1 ൑ ݅ ൑ ܰ. 

Here, the interesting case where ݄ሺݐሻ is eventually negative, so 0ࣨ
ି is empty. 
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The following theorem follows in this manner. 

Theorem 2.1.3ሺሾ૞ሿሻ:  Let ߪ ൌ 1 and ݊ be even. Suppose that ݄ሺݐሻ is eventually negative 

or that ݄ሺݐሻ is oscillatory and satisfies (2.1.3). All proper solutions of (A) are oscillatory if 

there is ݅ א ሼ0,1, … . . , ܰሽ such that          

׬ ሾ݃௜כሺݐሻሿ௡ିଵሾ݃௜ሺݐሻሿିఌ
ஶ
௧బ

 ݐሻ݀ݐ௜ሺ݌ ൌ ∞           for some  ߝ ൐ 0                               (2.1.32)               

Where  ݃௜כሺݐሻ ൌ minሼ ௜݃ሺݐሻ,  .ሽݐ

Proof: According to classification ࣨ, ݈ א ሼ1,3,… , ݊ െ 1ሽ, and 0ࣨ
ି  are the possible classes of 

non oscillatory solution of  (A) with  ߪ ൌ 1 and ݊ be even. Our task is, to show that all of 

these solution classes are empty if the hypotheses of the theorem are satisfied. In this case  

0ࣨ
ି is necessary empty. Suppose that  ௟ࣨ ് ݈  for some  ׎ א ሼ1,3,… , ݊ െ 1ሽ.  Then, each of the 

inequalities in  ሺ2.1.31ሻ possesses a non oscillatory solution of degree ݈. However, this 

impossible, because from Lemma 2.1.1 applied to ሺ2.1.31ሻ௜ it follows that (2.1.32) prevent  

ሺ2.1.31ሻ௜ from having a non oscillatory solution of any kind. Thus we must have  ௟ࣨ ൌ   ׎

for all  ݈ א ሼ1,3,… , ݊ െ 1ሽ . ᇝ   

Example 2.1.3 : Consider  the  equations  

                ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ሻሿݐߙሺݔߣ ൅ ሻݐߚሺݔሻݐሺ݌ ൌ 0                                                          ሺ2.1.33ሻ 

Where  0 ൏ ߣ ൏ 1 , 0 ൏ ߙ ൏ ߚ , 1 ൐ 0 and  ݌: ሾݐ଴,∞ሻ ՜ ሺ0,∞ሻ  is continuous,ݐ଴ ൐ 0. This is a 

special case of (A) in which ߪ ൌ 1 , ܰ ൌ 1, ݄ሺݐሻ ൌ െߣ, ߬ሺݐሻ ൌ ,ݐߙ ሻݐሺ݌ ൌ ሻݐሻ  ܽ݊݀ ݃ଵሺݐଵሺ݌ ൌ  . ݐߚ

Noting that ݃כሺݐሻ ൌ minሼ1,  we have all proper solutions of  equation (2.1.33) are ,ݐሽߚ

oscillatory if  

׬  ݐሻ݀ݐሺ݌୬ିଵିகݐ ൌ ∞∞
௧0

,          for some  ߝ ൐ 0   

Theorem 2.1.4ሺሾ૚૙ሿሻ: Consider the equation 

            ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻሿ ൅ ݐሺݔሻݐሺ݌ െ ሻߪ ൌ 0, ݐ ൒  ଴                                           (2.1.34)ݐ

Where  ݌, ݄ א ,଴,∞ሻݐሺሾܥ Թሻ, and assume that  ݊ is even and that the hypotheses  ሺ1ܪሻ and 

ሺ2ܪሻ are satisfied. 

ሺ1ܪሻ  There exist positive constants ݄ଵ and ݄ଶ.  such that ݄ଵ ൑ ݄ሺݐሻ ൑ ݄ଶ. 

ሺ2ܪሻ  There exists a positive constant ݌ such that 

ሻݐሺ݌            ൒ ݌ ൐ 0. 
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Furthermore, assume that  ݄ሺݐሻ is not eventually negative. Then every solution of equation 

(2.1.34) oscillates. 

The example below illustrates Theorem 2.1.4. 

Example 2.1.4: The NDDE  

         ௗ
మ

ௗ௧మ
ቂݔሺݐሻ ൅ ቀଵ

ଶ
൅ cos ቁݐ ݐሺݔ െ ሻቃߨ2 ൅ ቀଷ

ଶ
൅ cos ቁݐ ݐሺݔ െ ሻߨ4 ൌ 0, ݐ ൒ 0,       

Note that there is nonnegative ݄ଵ ൌ 1 2⁄  and ݄ଶ ൌ 3 2⁄   such that1 2⁄ ൑ ݄ሺݐሻ ൑ 3 2⁄ , 

and ݌ሺݐሻ ൒ ଷ
ଶ
൐ 0, satisfies the hypotheses of theorem 2.1.4. Therefore, every solution of this 

equation oscillates. For example, ݔሺݐሻ ൌ ୡ୭ୱ ௧
ଷ ଶାୡ୭ୱ ௧⁄

 is an oscillatory solution. 

The following example shows that if we remove the hypotheses ሺ2ܪሻ from theorem 2.1.4, 

the result may not true. 

Example 2.1.5: The NDDE  

݀ଶ

ଶݐ݀ ൤ݔ
ሺݐሻ ൅ ൬

1
2 ൅ cos ൰ݐ ݐሺݔ െ ሻ൨ߨ2 ൅ ൬

3
2 ൅ cos ൰ݐ ݐሺݔ െ ሻߨ4 ൌ 0, ݐ ൒ 0, 

Satisfies all the hypotheses of theorem 2.1.4 except   ሺ2ܪሻ. Since 0 ൏ ሻݐሺ݌ ൏ 1, note that 

ሻݐሺݔ ൌ ଵݐ ଶ⁄  is a non oscillatory solution of this equation. 

 

Remark 2.1.1:  From case 1we have the following result  

Equation (2.1.1) with 0 ൏ ߣ ൏ 1 is oscillatory if     

׬                             ݐሻ݀ݐሺ݌௡ିଵିఌݐ ൌ ∞ஶ
௧బ

          for some  ߝ ൐ 0                                       (2.1.35) 

and equation (2.1.1) is non oscillatory  if 

׬                                 ݐሻ݀ݐሺ݌௡ିଵݐ ൏ ∞ஶ
௧బ

 .                                                                      (2.1.36) 

Remark 2.1.2: If   ݌ሺݐሻ ൌ ܿ  ௡    whereିݐܿ ൐ 0  condition (2.1.2) and  

(2.1.35) fail to be satisfied.                                                            
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2.2 Non Oscillation of nonlinear equation    

     In this section we discuss the non oscillatory behavior of the equation  

ௗ೙

ௗ௧೙
ሻݐሺݔൣ െ ݄ሺݐሻݔ൫߬ሺݐሻ൯൧ ൅ ሻ݂ݐሺ݌ߪ ቀݔ൫݃ሺݐሻ൯ቁ ൌ 0                                                   (2.2.1) 

Where ݊ ൒ 2, ߪ ൌ േ1, and the following conditions are always assumed to hold: 

a) ߬ሺݐሻ א ሻݐሻ, ߬ሺ∞,0ݐሻ, ߬ is nondecreasing on ሾ∞,0ݐሾܥ ൏ ݐ for ݐ ൒  and 0ݐ

lim௧՜∞ ߬ሺݐሻ ൌ ∞; 

b) ݄ሺݐሻ א , ሻ,∞ሻ  0ݐሾ߬ሺܥ |݄ሺݐሻ| ൑ ݄ ൏ 1 for ݐ ൒  where ݄ is a positive constant, and  , 0ݐ

݄ሺݐሻ݄൫߬ሺݐሻ൯ ൒ 0 for ݐ ൒  ; 0ݐ

c) ݌ሺݐሻ א ሻݐሺ݌ ሻ and∞,  0ݐሾܥ ൐ ݐ ݎ݋݂ 0 ൒  ; 0ݐ

d) ݂ሺݑሻ א ݑሻݑ൫ሺെ∞,∞ሻ\ሼ0ሽ൯ and ݂ሺܥ ൐ 0 for ݑ ് 0 ; 

e) ݃ሺݐሻ א   ݀݊ܽ ሻ∞,  0ݐሾܥ lim௧՜∞ ݃ሺݐሻ ൌ ∞ . 

Definition 2.2.1:   Equation (2.2.1)  is called strictly sublinear if there is a number α such 

that 0 ൏ ߙ ൏ 1 and  
|fሺuଵሻ|
|uଵ|஑

൒
|fሺuଶሻ|
|uଶ|஑

          for       |uଵ| ൑   |uଶ|, uଵuଶ ൐ 0 .    

 

Equation (2.2.1)  is called strictly super linear if there is a number β ൐ 1 such that  
|fሺuଵሻ|
|uଵ|ஒ

൑
|fሺuଶሻ|
|uଶ|ஒ

          for       |uଵ| ൑   |uଶ|, uଵuଶ ൐ 0 .    

The equation 

   ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔ|ሻݐሺ݌ െ ݐሺݔ ݊݃ݏ ሻ|ఊߪ െ ሻߪ ൌ 0   

Is a special case of equation (2.2.1), is strictly sublinear if െ∞ ൏ ߛ ൏ 1 and is strictly super 

linear if 1 ൏ ߛ ൏ ∞  . 

Note: We say that a non oscillatory solution ݔ of equation (2.2.1) or the inequality 

  ቄݔߪሺ௡ሻሺݐሻ ൅ ሻ݂ݐሺ݌ ቀݔ൫݃ሺݐሻ൯ቁቅ  sgn ݔ൫݃ሺݐሻ൯ ൑ 0.                                                            (2.2.2) 

are of class ୨ࣨ if  x satisfies 

ቊ
ሺݔܮሻሺݐሻሺݔܮሻሺ௜ሻሺݐሻ ൐ 0,                        0 ൑ ݅ ൑ ݆,

     ሺെ1ሻ௜ି௝  ሺݔܮሻሺݐሻሺݔܮሻሺ௜ሻሺݐሻ ൐ 0,          ݆ ൅ 1 ൑ ݅ ൑ ݊,
 

for all sufficiently large t . 
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Theorem 2.2.1ሺሾ૛ૢሿሻ: Let (a)-(e), (2.2.3) and (2.2.4) be satisfied.  

           τ  is locally Lipschitz continuous on ሾ0ݐ  , ∞ሻ                                              (2.2.3) 

           h is locally Lipchitz continuous on ሾτሺ0ݐ  ሻ,∞ሻ                                           (2.2.4) 

Assume that equation (2.2.1) is strictly sublinear and 0 ൑ j ൑ n െ 1,  ሺെ1ሻ୬ି୨ିଵσ ൌ 1 . Assume 

in addition that  gכሺtሻ ൌ min ሼgሺtሻ, tሽ. satisfies  

              lim୲՜ஶ inf
 gכሺtሻ
୥ሺ୲ሻ

൐ 0                                                                                   (2.2.5) 

Then, a necessary and sufficient condition for (2.2.1) to have a non oscillatory solution of 

class  ୨ࣨ is that  

׬            t୬ି୨ିଵஶ
୲బ

pሺtሻหfሺcሾgሺtሻሿ୨ሻหdt൏ ∞,              for some ܿ ് 0.                                              (2.2.6) 

Theorem 2.2.2ሺሾ૛ૢሿሻ: Let (a)-(e), (2.2.3) and (2.2.4) be satisfied.            

Assume that equation (2.2.1) is strictly super linear and 1 ൑ j ൑ n െ 1 , ሺെ1ሻ୬ି୨ିଵσ ൌ 1. 

Assume in addition that  ݃כሺݐሻ ൌ min ሼ݃ሺݐሻ,   ሽ. satisfiesݐ

              lim୲՜ஶ inf
୥כሺ౪ሻ
୲
൐ 0                                                                                    (2.2.7) 

Then, a necessary and sufficient condition for (2.2.1) to have a non oscillatory solution of 

class  ୨ࣨ is that  

׬             ௡ି௝ஶݐ
t0

ሻሿ௝ିଵ൯ห dt ൏ݐሻห݂൫ܿሾ݃ሺݐሺ݌ ∞          for some c ് 0                       (2.2.8) 

Example 2.2.1: Consider the equation  

  ௗ
೙

ௗ௧೙
ሾݔሺݐሻ െ . ݐ ݊݅ݏ ݄ ݐሺݔ െ ሻሿߨ2 ൅ ݐሺݔ|ሻݐሺ݌ߪ െ ߬ሻ|ఊݔ ݊݃ݏሺݐ െ ߬ሻ ൌ 0                                 (2.2.9) 

where n ൒ 2 , σ ൌ 1 or െ 1 , p א Cሾ0,∞ሻ , pሺtሻ ൐ 0  on ሾ0,∞ሻ , and τ , h, γ  are constants 

such that |݄| ൏ 1 , |ߛ| ൏ ∞ , |߬| ൏ ∞ . First, notice that  

case (II)  in lemma 1.6.2 does not occur (that is, the class ଴ࣨ
ି  for equation (2.2.9) is 

always empty) since the function hሺtሻൌ h sin t  takes a nonpositive value on [T, ∞) for all 

T. Let j be an integer satisfying: 1 ൑ j ൑ n െ 1  and  ሺെ1ሻ୬ି୨ିଵσ ൌ 1. 

Remark2.2.1:  Theorem 2.2.1 shows that equation (2.2.9) with െ∞ ൏ ߛ ൏ 1 has a non 

oscillatory solution of class ୨ࣨ   if and only if                    

׬     ݐ|ሻܿఊݐሺ݌௡ି௝ିଵݐ െ ߬|ఊ௝݊݃ݏሺݐ െ ߬ሻ݀ݐ ൏ ∞ฺஶ
t0

׬ tnെjെ1൅γj pሺtሻdt ൏ ∞ ,
∞

t0
 

While theorem 2.2.2 shows that equation (2.2.9) with 1 ൏ ߛ ൏ ∞ has a non oscillatory 

solution of class ୨ࣨ   if and only if  

׬  ݐ|ሻ൫ܿఊݐሺ݌௡ି௝ݐ െ ߬|ఊሺ௝ିଵሻ൯݊݃ݏሺݐ െ ߬ሻ݀ݐ ൏ ∞ฺஶ
t0

׬ tnെj൅γሺjെ1ሻ pሺtሻdt ൏ ∞ .
∞

t0
 

 Consider the special case that n is even and σ = 1 in equation (2.2.9).  

We see that if γ ൏ 1   and the condition 
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׬                    tஓሺ୬ିଵሻ pሺtሻdt ൌ ∞ஶ
୲బ

                                                                                             (2.2.10) 

are satisfied, then all the classes ୨ࣨ, j  ൌ  1, 3, . . . , n—  1, for equation  (2.2.9) are empty. 

Since ଴ࣨ
ି  is also empty, we can conclude the following: Let n be even, σ = 1 

and γ ൏ 1, then equation (2.2.9) has no non oscillatory solutions if and only if (2.2.10) 

holds. Similarly, if n be even, σ = 1 and γ ൐ 1.  Then equation (2.2.9) has no non oscillatory 

solutions 

 if and only if           ׬ tሺ୬ିଵሻ pሺtሻdt ൌ ∞ .ஶ
୲బ

 

The following results concerning the non oscillatory solution of the  

Equations: 

൫ݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻ൯
ሺ௡ሻ ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0 ,  for  ݐ ൒  ଴                                  (2.2.11)ݐ

and 

൫ݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻ൯
ሺ௡ሻ ൅ ݂ߪ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                               (2.2.12) 

Where ߣ is a real number, ߬ ൐ 0 , ݊ ൒ 2, ߪ ൌ േ1, ݃  א ∞଴,∞ሻ , lim௧՜ݐሾܥ ݃ሺݐሻ ൌ ∞ ,

݄ሺݐሻ א ଴ݐሾܥ െ ߬,∞ሻ , ݂ א ଴,∞ሻݐ൫ሾܥ ൈ ሺ0,∞ሻ൯,  

݂ ሺݐ, ሻݑ ൒ 0 for  ሺݐ, ሻݑ א ൫ሾݐ଴,∞ሻ ൈ ሺ0,∞ሻ൯ , and ݂ ሺݐ,   ሻ is nondecreasingݑ

if  ݑ א ሺ0,∞ሻ for each fixed ݐ א ሾݐ଴,∞ሻ. 

.૛ ܕ܍ܚܗ܍ܐ܂ ૛. ૜ ሺሾ27ሿሻ: Suppose that |ߣ| ് 1 , ,ݐሺ݂ݔ ሻݔ ൐ 0 ሺݔ ് 0ሻand |݂ሺݐ, |ሻݔ ൑

|݂ሺݐ, |ݔ|  ሻ| forݕ ൏ , |ݕ| ݕݔ ൐ 0.  If                                                                                                                   

׬                     ,ݏ௡ିଵ |݂ሺݏ ݇ሻ|ା∞ ݏ݀  ൏ ൅∞                                                              (2.2.13)                         

for some ݇ ് 0 , then equation(2.2.11)  has a bounded  non oscillatory solution. 

Theorem 2.2.4 ሺሾ27ሿሻ:  Suppose that 

|ߣ| ് 1 , ݃ሺݐሻ ൑ , ݐ ,ݐሺ݂ݔ ሻݔ ൐ 0, ሺݔ ് 0ሻܽ݊݀ |݂ሺݐ, |ሻݔ ൑ |݂ሺݐ, |ݔ|  ݎ݋݂ |ሻݕ ൏ , |ݕ| ݕݔ ൐

0.  If                        

׬                      ቚ݂ ቀݐ, ܴ݇൫݃ሺݐሻ൯ቁቚା∞ ݏ݀  ൏ ൅∞                                                       (2.2.14)             

For some ݇ ് 0 , where ܴሺݐሻ ൌ  ௡ିଵ then (2.2.11) has an unbounded non oscillatoryݐ

solution. 
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Theorem 2.2.5ሺሾ18ሿሻ: Let ݇ be an integer with  0 ൑ ݇ ൑ ݊ െ 1 . Suppose that equation 

(2.2.15) holds  

   ݄ሺݐሻ ൐ െ1   and   ݄ሺݐሻ ൌ ݄ሺݐ െ ߬ሻ,      ݐ ൒  ଴.                                                   (2.2.15)ݐ

Then equation (2.2.12) has a positive solution ݔሺݐሻ such that  

ሻݐሺݔ                  ൌ ቂ ௖
ଵା௛ሺ௧ሻ

൅ ሺ1ሻቃ݋  ݐ        ݏܽ                         ௞ݐ ՜ ∞   

for some ܿ ൐ 0    if and only if    

׬                      ,ݐ௡ି௞ିଵ݂ሺݐ ܿሾ݃ሺݐሻሿ௞ሻ݀ݐ ൏ ∞   ∞
௧బ

    for some   ܿ ൐ 0 .                               

If  ߣ ൌ 1 in equation (2.2.11) , then the function  

ሻݐሺݔ   ൌ ߙ)  ௞ݐ ߙ א Թ, ߙ ് 0, ݇ א Ժ , 0 ൑ ݇ ൑ ݊ െ 1), is a nontrivial solution of the 

equation   ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൌ 0 , 

 and so it is natural to expect that, if  ݂ is small enough in some sense, equation   (2.2.11) 

possesses a positive solution  ݔሺݐሻ which behaves like 

 the function ݐߙ௞ as ݐ ՜ ∞ . 

For the case  |ߣ| ൏ 1,  the smallness condition on ݂ is characterized by the integral 

condition        

׬             ,ݐ௡ି௞ିଵ݂ሺݐ ܿሾ݃ሺݐሻሿ௞ሻ݀ݐ ൏ ∞   for som݁  ܿ ൐ 0∞
௧బ

                                  (2.2.16) 

In fact, it is known that equation (2.2.11) with |ߣ| ൏ 1  has a solution ݔሺݐሻ satisfying 

lim௧՜∞
௫ሺ௧ሻ
௧ೖ

 (exist and is positive finite value) if and only if (2.2.16) holds, see [7], [18]. 

It has been observed that there is a slight difference between the case ߣ ൌ െ1 and the 

caseെ1 ൏ ߣ ൑ 1.  M.Naito discussed the case ߣ ൌ ൅1 and he proved that the same result 

as the case|ߣ| ൏ 1, more precisely, we have the following theorem. 

Theorem 2.2.6ሺሾ15ሿሻ: Let ݇ be an integer with 0 ൑ ݇ ൑ ݊ െ 1. Then the equation  

ௗ೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔ െ ߬ሻሿ ൅ ݂ߪ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                                      (2.2.17) 
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has a solution ݔሺݐሻ satisfying lim௧՜∞
௫ሺ௧ሻ
௧ೖ

 (exist and is positive finite value) if  and only if  

(2.2.16) holds. 

Remark 2.2.2: The purpose in  ሾ18ሿ is to extend this result to the equation  

        ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻሿ ൅ ݂ߪ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0 

where ݄ሺݐሻ א ଴ݐሾܥ െ ߬,∞ሻ ; ݊ ൒ 2 ; ߪ  ൌ േ1 for the case  equation  

(2.2.15), of course (2.2.15) means that ݄ሺݐሻ  is a ߬ െ periodic function satisfying   ݄ሺݐሻ ൐

െ1 , ൒   ଴ , and hence there areݐ

a constants ߤ and ߣ such that െ1 ൏ ߤ ൑ ݄ሺݐሻ ൑ ߣ  ൏ ∞ for ݐ ൒  .଴ݐ

Remark 2.2.3: 

 If  ߣ ൒ 1  then the linear equation  

 ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔሻݐሺ݌ െ ሻߪ ൌ 0         

has a non oscillatory solution if  ׬ t୬ିଵ pሺtሻdt ൏ ∞ஶ
୲బ

, and  the equation   

   ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔ|ሻݐሺ݌ െ ݐሺݔ ݊݃ݏ ሻ|ఊߪ െ ሻߪ ൌ 0       

has a non oscillatory solution if    ׬ ሻݐሺ݌୫୧୬ሼఊ,ଵሽሺ௡ିଵሻݐ ൏ ∞∞  .            
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2.3 Oscillation of Nonlinear Equation. 

We investigate the oscillatory behavior of the equation   

ሻݐሺݔൣ ൅ ݄ሺݐሻݔ൫߬ሺݐሻ൯൧
ሺ௡ሻ ൅ ሻ݂ݐሺ݌ ቀݔ൫݃ሺݐሻ൯ቁ ൌ 0                                              (2.3.1) 

Where, ݄ሺݐሻ, ߬ሺݐሻ א ,଴,∞ሻݐሺሾܥ ܴାሻ , ଴ݐ ൒ 0 , ݄ሺݐሻ ء 0  on any half line ሾݐ଴,∞ሻ , ߬ሺݐሻ ൑ ,ݐ

݃ሺݐሻ ൑    .with commute delayed argument i.e ,ݐ

߬൫݃ሺݐሻ൯ ൌ ݃൫߬ሺݐሻ൯, ݐ ൒  .଴ݐ

The following assumptions are made for their use in this section: 

(1) ݂ሺݑ ൅ ሻݒ ൑ ݂ሺݑሻ ൅ ݂ሺݒሻ                 if ݑ, ݒ ൐ 0 

(2) ݂ሺݑ ൅ ሻݒ ൒ ݂ሺݑሻ ൅ ݂ሺݒሻ               if ݑ, ݒ ൏ 0 

(3) ݂ሺ݇ݑሻ ൑ ݂݇ሺݑሻ                         if ݇ ൒ 0  and ݑ ൐ 0 , for each ݇ א  , ܭ

         Where ܭ ൌ ሼ݇: ݄ሺݐሻ ൌ ݇ for some  ݐ א ሾݐ଴,∞ሻሽ . 

(4) ݂ሺ݇ݑሻ ൒ ݂݇ሺݑሻ                       if ݇ ൒ 0  and ݑ ൏ 0 , for each ݇ א  ܭ

(5) ݂ሺݑሻ is bounded away from zero if ݑ is bounded  away from zero . 

׬ (6) ∞ሻݏሺ݌
௧బ

ݏ݀ ൌ ∞ . 

(7) ߬ሺݐሻ א ሻݐ଴,∞ሻሻ and ߬Ԣሺݐଵሺሾܥ ൒ ܾ , where b is positive constant . 

(8) There exists a positive constant M such that ݄൫݃ሺݐሻ൯݌ሺݐሻ ൑  .ሻ൯ݐ൫߬ሺ݌ܯ

The main result is contained in the following theorem: 

Theorem 2.3.1ሺሾ10ሿሻ: Assume that conditions (1)-(8) hold. Then, 

If n is even, every solution of equation (2.3.1) is oscillatory. 

Proof: Suppose that equation (2.3.1) has non oscillatory solution ݔሺݐሻ. 

Without loss of generality, assume that ݔሺݐሻ  is eventually positive (the proof is similar 

when ݔሺݐሻ  is eventually negative). That is ݔሺݐሻ ൐ 0,  

ሻ൯ݐ൫݃ሺݔ ൐ ሻ൯ݐ൫߬ሺݔ ,0 ൐ 0, and ݔ ቀ߬൫݃ሺݐሻ൯ቁ ൐ 0 for ݐ ൒ ଵݐ ଵ for someݐ ൒  .଴ݐ

Set     ݖሺݐሻ ൌ ሻݐሺݔ ൅ ݄ሺݐሻݔ൫߬ሺݐሻ൯.                                                                                (2.3.2)  
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Since  ݄ሺݐሻ is nonnegative then  ݖሺݐሻ ൐ 0 for  ݐ ൒ ሻ൯ݐଵ . Using the fact that ߬൫݃ሺݐ ൌ ݃൫߬ሺݐሻ൯ for  

ݐ ൒  :ଵ , then from (1), and (3) we haveݐ

         ݂ ቀݖ൫݃ ሺݐሻ൯ቁ ൌ ݂ ൬ݔ൫݃ሺݐሻ൯ ൅ ݄൫݃ሺݐሻ൯ݔ ቀ߬൫݃ሺݐሻ൯ቁ൰ 

                               ൑ ݂ ቀݔ൫݃ሺݐሻ൯ቁ ൅ ݄൫݃ሺݐሻ൯݂ ൬ݔ ቀ݃൫߬ሺݐሻ൯ቁ൰                                            (2.3.3) 

Since  ݔ൫݃ሺݐሻ൯ ൐ 0, and ݔሺ߬ሺ݃ሺݐሻ ሻ ሻ ൐ 0  from (1) we have (2.3.3)  

Now using (2.3.1) and (2.3.2) we obtain  

ሻݐሺ௡ሻሺݖ            ൌ െ݌ሺݐሻ݂ ቀݔ൫݃ሺݐሻ൯ቁ                                                                              (2.3.4) 

From (2.3.3) and (2.3.4) we have: 

ሻݐሺ௡ሻሺݖ ൅ ሻ݂ݐሺ݌ ቀݖ൫݃ሺݐሻ൯ቁ ൑ ሻݐሺ௡ሻሺݖ ൅ ሻݐሺ݌ ቂ݂ ቀݔ൫݃ሺݐሻ൯ቁ ൅ ݄൫݃ሺݐሻ൯݂ ൬ݔ ቀ݃൫߬ሺݐሻ൯ቁ൰ ቃ. 

Hence 

ሻݐሺ௡ሻሺݖ ൅ ሻ݂ݐሺ݌ ቀݖ൫݃ሺݐሻ൯ቁ ൑ ሻ൯݂ݐሻ݄൫݃ሺݐሺ݌  ൬ݔ ቀ݃൫߬ሺݐሻ൯ቁ൰                                            (2.3.5)  

Since  ݔ൫݃ሺݐሻ൯ ൐ 0 for  ݐ ൒ ሻݐሺ௡ሻሺݖ , ଵݐ ൑ 0 and so, ݖሺ௜ሻሺݐሻ  is monotonic for  ݅ ൌ 0,1, … , ݊ െ. 

Therefore ݖሺ௡ିଵሻሺݐሻ ൐ 0  or  ݖሺ௡ିଵሻሺݐሻ ൏ 0 eventually, if ݖሺ௡ିଵሻሺݐሻ ൑ 0 then from the facts that 

ሻݐሺ௡ሻሺݖ ൑ 0 and  ݌ሺݐሻ ء 0 , imply that ݖሺݐሻ ൏ 0 eventually , so a contradiction .  Hence there 

exists ݐଶ ൒ ሻݐሺ௡ିଵሻሺݖ  ଵ such thatݐ ൐ 0 for  ݐ ൒  . ଶݐ

From (2.3.1), and the fact that  ߬Ԣሺݐሻ ൒ ܾ ൐ 0 , we have: 

ሻݐሻ൯߬Ԣሺݐሺ௡ሻ൫߬ሺݖ      ൅ ሻ൯݂ݐ൫߬ሺ݌ ൬ݔ ቀ݃൫߬ሺݐሻ൯ቁ൰ ߬Ԣሺݐሻ ൌ 0                                 (2.3.6) 

Let ݐଷ ൒ ሻ൯ݐሺ݊െ1ሻ൫߬ሺݖ  ଶ such thatݐ ൐ 0 for  ݐ ൒  ଷ to infinity, weݐ then integrate (2.3.6) from , 3ݐ

get : 

׬      ሻ൯݂ݏ൫߬ሺ݌ ൬ݔ ቀ݃൫߬ሺݏሻ൯ቁ൰ ߬Ԣሺݏሻ݀ݏ ൌ ଷሻ൯ݐሺ௡ିଵሻ൫߬ሺݖ െ ∞ܮ
௧య

 . 

where  L=lim௧՜∞ ሻݐሺ௡ିଵሻሺݖ ሻ. Sinceݐሺ௡ିଵሻሺݖ ൐ 0 eventually, we show that: 

׬      ሻ൯݂ݏ൫߬ሺ݌ ൬ݔ ቀ݃൫߬ሺݏሻ൯ቁ൰ ߬Ԣሺݏሻ݀ݏ ൏ ∞∞
௧య

                                                                                 (2.3.7) 

Using (2.3.7), with (7), and (8), follows that: 
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׬      ሻ൯݂ݏሻ݄൫݃ሺݏሺ݌ ൬ݔ ቀ݃൫߬ሺݏሻ൯ቁ൰ ߬Ԣሺݏሻ݀ݏ ൏ ∞∞
௧య

                                                                      (2.3.8) 

Integrating (2.3.5), and using (2.3.8), we show that:   

׬      ሻ݂ݏሺ݌ ቀݖ൫݃ሺݏሻ൯ቁ ݏ݀ ൏ ∞∞
௧య

                                                                                                       (2.3.9) 

Since (5) and (6) hold, then (2.3.9) implies that  limݐ՜∞ inf  ሻݐሺݖ ൌ 0. 

 But ݖሺݐሻ is positive and monotonic, so ݖሺݐሻ  ՜ 0 as ݐ ՜ ∞  . So ݖሺݐሻ is decreasing, implies 

that ݖᇱሺtሻ ൑ 0 eventually. For  ݊ ൐ ᇱሺtሻݖ , 1 ՜ 0  

as t ՜ ∞ since ݖԢሺtሻ is monotonic and ݖሺtሻ ൐  Ԣሺtሻ isݖ ሺtሻ is concave up ሻ.Henceݖ) 0

increasing ,which implies that   z˝ሺtሻ ൐ 0 . for  z˝ሺtሻ is monotonic and negative . 

Continuing in this manner we have: 

ሻݐሺ௜ାଵሻሺݖሻݐሺ௜ሻሺݖ     ൑ 0 , for    ݅ ൌ 0,1,… , ݊ െ 1                                                   (2.3.10) 

with strict inequality holding for ݅ ൏ ݊ െ 1.If  ݊ is even , using (2.3.10) and the fact that  

ሻݐሺ௡ሻሺݖ ൑ 0 ,we get to ݖሺtሻ ൏ 0, and this contradicts ݖሺtሻ ൐ 0, and this complete the proof. □ 

Remark 2.3.1: If  ݊ is odd, then ሺtሻ ൏ ሺtሻݖ  ՜ 0 as   t ՜ ∞ , so that any solution of  

equation (2.3.1) is either oscillatory or tends to zero as t ՜ ∞. 

Example 2.3.1:  consider the NDDE                                                                              

     ୢ
మ

ୢ୲మ
൫xሺtሻ ൅ ሺ2 ൅ costሻxሺt െ 2πሻ൯ ൅ ሺ3 ൅ costሻxሺt െ 4πሻ ൌ 0                                        (2.3.11) 

Here ݊ ൌ 2,  ݄ሺݐሻ ൌ 2 ൅ ሻݐሺ݌   , ݐݏ݋ܿ ൌ 3 ൅ ሻݔሺ݂ , ݐݏ݋ܿ ൌ ሻݐሺ߬  , ݔ ൌ ݐ െ   , ߨ2

and ሺݐሻ ൌ ݐ െ ሻ൯ݐሻ are commute i.e.  ݃൫߬ሺݐሻ    and   ߬ሺݐThe delay arguments   ݃ሺ   . ߨ4 ൌ

߬൫݃ሺݐሻ൯ ൌ ݐ െ  ሻ satisfies theݐሺ݌   ሻ satisfies conditions (1)-(5), andݔthe function    ݂ሺ , ߨ6

divergent integral in condition (6). Also conditions (7) and (8) are satisfied by (2.3.11). 

Thus all conditions of theorem 2.3.1 are satisfied. Therefore, we can conclude that every 

solution of equation (2.3.11)  is oscillatory. In fact, ݔଵሺݐሻ ൌ
cos t

3൅cos t
ሻݐଶሺݔ  ,    ൌ

sin t
3൅cos t

    are 

oscillatory solutions of  (2.3.11). 

Example 2.3.2:  consider the NDDE 

ୢమ

ୢ୲మ
൫xሺtሻ ൅ ݄xሺt െ πሻ൯ ൅ 2݁ሺଷగ⁄ଶሻሺ݄݁ିగ െ 1ሻݔ ቀݐ െ ଷ

ଶ
ቁߨ ൌ 0,                                                (2.3.12) 
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Where  ݄ ൐ ݁గ , equation (2.3.12) has the unbounded oscillatory solution xሺtሻ ൌ e୲ sin t. 

Remark 2.3.2: If  ߛ ൏ 1 , 0 ൏ ߣ ൏ 1      then the equation  

    ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔ|ሻݐሺ݌ െ ݐሺݔ ݊݃ݏ ሻ|ఊߪ െ ሻߪ ൌ 0                         (2.3.13) 

 has no non oscillatory solution if and only if 

׬   tஓሺ୬ିଵሻpሺtሻdt ൌ ∞ஶ
୲బ

.  

And if ߛ ൐ 1, and n is even then it has no non oscillatory solution if and  

only if   ׬ t୬ିଵpሺtሻdt ൌ ∞ஶ
୲బ

.   

In particular equation (2.3.13)  with 0 ൏ ߣ ൏ 1 is oscillatory      

If and only if    

׬            t୫୧୬ሼஓ,ଵሽሺ୬ିଵሻ pሺtሻdt ൌ ∞ ஶ                                                                     (2.3.14) 

Remark 2.3.3: Equation (2.3.13) is oscillatory if 

׬       ∞୫୧୬ሼఊ,ଵሽሺ௡ିଵሻݐ minሼ݌ሺݐሻ, ݐሺ݌ െ ߬ሻሽ݀ݐ ൌ ∞                               (2.3.15)  

with  ߣ ൒ 1. ሺSee ሾ19ሿሻ. 
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Chapter Three 

Necessary and Sufficient Conditions for Oscillation of Solution of NDDE 
Compared with an ODE 

 In this chapter we will mention main results for the oscillation of  

Solution of the equation: 

           ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                                         (3.1.1) 

by using new approach in which we  provide conditions related to a 

certain ODE. 

3.1 Main result  

The following confirm the required results. 

Theorem 3.1.1ሺሾ૛૙ሿሻ : Equation (3.1.1) is oscillatory if and only if  

ሻݐሺ௡ሻሺݔ                              ൅ ଵ
ଵାఒ

݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                              (3.1.2) 

is oscillatory. 

Using the known oscillation results for the equations: 

ሻݐሺ௡ሻሺݔ                            ൅ ݐሺݔሻݐሺ݌ െ ሻߪ ൌ 0                                                        (3.1.3) 

and 

ሻݐሺ௡ሻሺݔ               ൅ ݐሺݔ|ሻݐሺ݌ െ ݐሺݔ ሻ|ఊsgnߪ െ ሻߪ ൌ 0                                           (3.1.4) 

We can obtain oscillation results for the equations 

ௗ೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔሻݐሺ݌ െ ሻߪ ൌ 0                                                          (3.1.5) 

and 

ௗ೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔ|ሻݐሺ݌ െ ݐሺݔ ݊݃ݏ ሻ|ఊߪ െ ሻߪ ൌ 0                               (3.1.6) 
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Corollary 3.1.1 : 

 (i) Equation (3.1.5) is oscillatory if  

׬                ∞௡ିଶݐ ݐሻ݀ݐሺ݌ ൌ ∞                                                (3.1.7)                               

(ii) Suppose that (3.1.7) fails, then  equation (3.1.5) is oscillatory if 

               lim௧՜∞ sup  t ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൐ ሺ1 ൅ ሻሺ݊ߣ െ 1ሻ!                       (3.1.8)                               

or if  

                lim௧՜∞ inf  t ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൐ ሺ1 ൅ ሻሺ݊ߣ െ 1ሻ! 4⁄                                              (3.1.9)                         

Equation (3.1.5)   has non oscillatory solution if    

               lim௧՜∞ sup ݐ   ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൏ ሺ1 ൅ ሻሺ݊ߣ െ 2ሻ! 4⁄                                          (3.1.10)  

To prove corollary 3.1.1 we need the following oscillation result for equation (3.1.2).  

Lemma 3.1.1ሺሾ16ሿሻ :    

(i)  Equation (3.1.3)  is oscillatory if  (3.1.7)   holds                                       

(ii) Suppose that (3.1.7) fails, then  equation (3.1.3) is oscillatory if 

                    lim௧՜∞ sup t ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൐ ሺ݊ െ 1ሻ!                  

or if  

                    lim௧՜∞ inf  t ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൐ ሺ݊ െ 1ሻ! 4⁄                                       

equation (3.1.3) has  non oscillatory solution if    

                    lim௧՜∞ sup ݐ  ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൏ ሺ݊ െ 2ሻ! 4⁄ . 

Proof of corollary 3.1.1: 

Combining Theorem3.1.1 with Lemma 3.1.1, we obtain corollary 3.1.1.  

This completes the proof. ᇝ 

Now we give an example that illustrates this result: 

Example 3.1.1: We consider the linear neutral differential equation  
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                       ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݐሺݔןݐܿ െ ሻߪ ൌ 0                                                  (3.1.11) 

Where ܿ ൐ 0, ߙ א Թ, applying corollary 3.1.1, we conclude that: 

Equation (3.1.11) is oscillatory if either:  

ሺiሻ  ߙ ൌ െ݊ ܽ݊݀ ܿ ൐ ሺ1 ൅ ሻሺ݊ߣ െ 1ሻ! 4⁄ ,  

Since  

lim௧՜∞ inf  ݐ ׬ ݏ௡ሻ݀ିݏ௡ିଶሺܿݏ ൌ∞
௧ lim௧՜∞ inf  ܿݐ ׬ ∞ ݏଶ݀ିݏ

௧   

                                                  =lim௧՜∞ inf   ܿݐ lim஺՜∞ ׬ ஺ ݏଶ݀ିݏ
௧   

                         ൌ lim௧՜∞ inf    ܿݐ  lim஺՜∞ ൬
െ1ݏ

െ1
 ฬ
ܣ

ݐ
൰ 

                         ൌ lim௧՜∞ inf   ܿݐ  ൬lim஺՜∞ െ
ଵ
஺
െ ቀെ ଵ

௧
ቁ൰ 

                        ൌ lim௧՜∞ inf   ܿ  ൐ ሺ1 ൅ ሻሺ݊ߣ െ 1ሻ! 4⁄  

if  ܿ ൐ ሺ1 ൅ ሻሺ݊ߣ െ 1ሻ! 4⁄ .  Or 

(ii)  If  ߙ ൐ െ݊,  

we let  ߙ ൌ െ݊ ൅ ߝ where ,ߝ ൐ 1,   

׬ ݏఈሻ݀ݏ௡ିଶሺܿݏ ൌ∞
௧ ܿ ׬ ∞ ݏ௡ାሺି௡ାఌሻିଶ݀ݏ

௧   

                            ൌ ܿ ׬ ∞ ݏఌିଶ݀ݏ
௧  

                            ൌ ܿ  lim஺՜∞ ׬ ݏఌିଶ݀ݏ ൌ ܿ lim
஺՜∞

 ௦
ഄషభ

ఌିଵ
஺
௧ ฬ

ܣ

ݐ
ൌ ∞.   

Equation (3.1.11) has non oscillatory if either:   

(iii)   ߙ ൌ െ݊  and  ܿ ൏ ሺ1 ൅ ሻሺ݊ߣ െ 2ሻ! 4⁄  

 lim௧՜∞ sup t ׬  ݏ݀ ሻݏሺ݌ ௡ିଶݏ ൌ lim௧՜∞ sup t ׬ ∞   ݏ݀ ןݏܿ ௡ିଶݏ
௧  ∞

௧                                                                                                     

                                                         ൌ    lim௧՜∞ sup t ܿ ׬ ∞   ݏ݀ ןݏ ௡ିଶݏ
௧  

                                                   ൌ  lim௧՜∞ sup t ܿ  ൬
௦షభ

ିଵ
 ฬ
∞

ݐ
൰ 
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                                      ൌ lim௧՜∞ sup t ܿሺെ1ሻ ቀlim஺՜∞
ଵ
஺
െ ଵ

௧
ቁ                                                                                           

                                            ൌ   lim௧՜∞ sup t ܿ ቀ
ଵ
௧
ቁ                                                                                          

                                            ൌ   lim௧՜∞ sup   ܿ 

Hence equation (3.1.11)  is non oscillatory if   ܿ ൏ ሺ1 ൅ ሻሺ݊ߣ െ 2ሻ! 4⁄  

(iv)   ߙ ൏ െ݊ , so ߙ ൅ ݊ ൏0  lim௧՜∞ sup t ׬ ݏ݀ ሻݏሺ݌ ௡ିଶݏ ൌ   lim  ௧՜∞ sup t  ׬ ∞   ݏ݀ ןݏܿ ௡ିଶݏ
௧    ∞

௧  

                                       ൌ  lim௧՜∞ sup t   ׬ ∞   ݏ݀ ןݏܿ ௡ିଶݏ
௧                                                                                         

                                            ൌ   lim௧՜∞ sup t  ܿ ׬ ∞   ݏ݀ ןݏ ௡ିଶݏ
௧               

                                       ൌ   lim௧՜∞ sup t   ܿ ׬ ∞   ݏ݀ ଶିן௡ାݏ
௧  

                             ൌ lim
௧՜∞

  sup t ܿ  lim 
஺՜ஶ

ଵିן௡ାݏ

݊൅ן െ1
อ
ܣ

ݐ
 

since    ߙ ൅ ݊ ൏0   

                                         ൌ   lim௧՜∞ sup ݐ௡ାן   ቀ
௖

௡ାିןଵ
ቁ=0 

 

Corollary 3.1.2: equation (3.1.5) is oscillatory if (3.1.12)  holds. 

׬                                  ݐሻ݀ݐሺ݌௡ିଵିఢݐ ൌ ∞∞
௧బ

                                                                     (3.1.12)               

equation   (3.1.5) has non oscillatory solution if (3.1.13)  holds. 

׬                                 ݐሻ݀ݐሺ݌௡ିଵݐ ൏ ∞∞
௧బ

                                                                         (3.1.13)   

To prove corollary 3.1.2 we need the follwing lemmas:  

Lemma 3.1.2ሺሾ28ሿ ሻ: Let n be even. If  

׬            כ݃
ሺ௡ିଵሻሺݐሻ݃ିఌሺݐሻ∞ ݐሻ݀ݐሺ݌ ൌ ∞        for some   ߝ ൐ 0, 

then 

ሻݐሺ௡ሻሺݔ  ൅ ሻ൯ݐ൫݃ሺݔሻݐሺ݌ߤ ൌ 0  is oscillatory, and consequently 

  (3.1.3) is oscillatory. 

Where ݃כሺݐሻ ൌ minሼ݃ሺݐሻ,  . ሽݐ

Lemma 3.1.3ሺሾ16ሿሻ: Asume that           

                          lim௧՜∞ inf ݃ሺݐሻ ݐ ൐ 0⁄ . 
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i. Equation (3.1.3 is strongly oscillatory if and only if either (3.1.7)                                              

or 

              lim௧՜∞ sup t ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൌ ∞. 

ii. Equation (3.1.3) is strongly non oscillatory if and only if  

׬                          ∞௡ିଶݐ
௧ ݐሻ݀ݐሺ݌ ൏ ∞  

 and  

             lim௧՜∞ ݐ ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൌ 0 . 

Lemma 3.1.4ሺሾ22ሿሻ: Suppose that  ݃ሺݐሻ ൐ ݐ    for      ݐ ൒   ଴   andݐ

                       lim௧՜∞ inf ݃ሺݐሻ ݐ ൏ ∞⁄ , 

then equation (3.1.3) is  strongly  oscillatory  if and only if  

                       lim௧՜∞ sup   ݐ ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൌ ∞, 

and equation (3.1.3) ) is  strongly  non oscillatory  if and only if  

                       lim௧՜∞   ݐ ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൌ 0.  

Note that corollary 3.1.1 implies corollary 3.1.2 . 

Proof of corollary 3.1.2:Suppose that  (3.1.12)  holds, from lemma 3.1.2 it follows that the 

equation  

ሻݐሺ௡ሻሺݔ                          ൅ ሻ൯ݐ൫݃ሺݔሻݐሺ݌ߤ ൌ 0                                                       (3.1.14)   

is oscillatory for all constants  ߤ ൐ 0. Lemma 3.1.3. and lemma 3.1.4 have shown that 

equation (3.1.14) is oscillatory for all   ߤ ൐ 0 if and only if either  (3.1.7)   holds or 

                          lim௧՜∞ sup   ݐ ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൌ ∞, 

this means that if (3.1.12)  holds, then either (3.1.7)  or (3.1.8) is  satisfied, 

and so equation (3.1.5) is oscillatory .  

Suppose next that (3.1.13) holds. Then   

            0 ൑ lim௧՜∞   ݐ ׬ ∞௡ିଶݏ
௧ ݏሻ݀ݏሺ݌ ൑ lim௧՜∞   ׬ ∞௡ିଵݏ

௧ ݏሻ݀ݏሺ݌ ൌ 0. 
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consequently, if  (3.1.13) holds, then (3.1.10) is satisfied, and so (3.1.5) has non oscillatory 

solution. ᇝ 

Corollary 3.1.3: Equation (3.1.6) is oscillatory if and only if  (3.1.15)holds. 

׬    ሻݐሺ݌୫୧୬ሼఊ,ଵሽሺ௡ିଵሻݐ ൌ ∞∞                                                                                 (3.1.15) 

To prove corollary 3.1.3, we need the following result which has been obtained by 

Kitamuraሾ28, corollary 3.1 ሿ. 

Consider the equation  

ሻݐሺ௡ሻሺݔ                           ൅ ሻ݂ݐሺ݌  ቀݔ൫݃ሺݐሻ൯ቁ ൌ 0                                                (3.1.16) 

Lemma 3.1.5ሺሾ૛ૡሿ ሻ: Let ݊ be even, assume that           

                          lim௧՜∞ inf ݃ሺݐሻ ݐ ൐ 0⁄ , 

 the condition (2.3.17) is a necessary and sufficient condition for  (3.1.16)  to be oscillatory  

׬                              t୬ିଵpሺtሻdt ൌ ∞ஶ
୲బ

                                                                            (3.1.17) 

Proof of corallary 3.1.3: 

From lemma 3.1.5  equation (3.1.16) is oscillatory ,so with theorem3.1.1 we obtain 

corollary 3.1.3. ᇝ 

Let us consider the equation 

           ௗ
೙

ௗ௧೙
ሻݐሺݔൣ ൅ ݐሺݔҧߣ െ ҧ߬ሻ൧ ൅ ݂ҧ ቀݐ, ൫ݔ ҧ݃ሺݐሻ൯ቁ ൌ 0                                           (3.1.18)   

Where ߣҧ ൐ 0, ҧ߬ ൐ 0, ݂ҧ א ଴,∞ሻݐሺሾܥ ൈ Թሻ, ҧ݃ א ,଴,∞ሻݐሾܥ lim௧՜∞ ҧ݃ሺݐሻ ൌ ∞, 

,ݐҧሺ݂ݑ ሻݑ ൒ ,ݐሺ ݎ݋݂ 0 ሻݑ א ሾݐ଴,∞ሻ ൈ Թ.  

From theorem 3.1.1, we obtain the following comparison result. 

Corollary 3.1.4: Suppose that ߣҧ ൑ ,ߣ ҧ݃ሺݐሻ ൒ ݃ሺݐሻ for   ݐ ൒ ,ݐ଴,and ห݂ҧሺݐ ሻหݑ ൒

|݂ሺݐ, ,ݐሻ| for  ሺݑ ሻݑ א ሾݐ଴,∞ሻ ൈ Թ. If equation (3.1.1) is oscillatory , then ሺ3.1.18ሻ is 

oscillatory. 

To prove corollary 3.1.4 we need the following result due to H. Onoes ሾ6ሿ. 
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Lemma 3.1.6ሺሾ6ሿ. ሻ: If the differential inequality  

ሻݐሺ௡ሻሺݔ                           ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൑ 0 

Has an eventually positive solution, then the differential equation  

ሻݐሺ௡ሻሺݔ                           ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0 

Has an eventually positive solution.  

Proof of corollary 3.1.4: Assume that (3.1.18) has non oscillatory solution, then theorem 

3.1.1 implies that  

ሻݐሺ௡ሻሺݔ                                ൅ ଵ
ଵାఒഥ

݂ҧ ቀݐ, ൫ݔ ҧ݃ሺݐሻ൯ቁ ൌ 0, 

has a non oscillatory solution ݔሺݐሻ. Without loss of generality, we may assume that  

ሻݐሺݔ ൐ 0 for all ݐ. For the case where ݔሺݐሻ ൏ 0 for all large ݕ ,ݐሺݐሻ ؠ െݔሺݐሻ is an 

eventually positive solution of 

ሻݐሺ௡ሻሺݕ                               ൅ ଵ
ଵାఒഥ

ሚ݂ ቀݐ, ൫ݕ ҧ݃ሺݐሻ൯ቁ ൌ 0, 

Where ሚ݂ሺݐ, ሻݑ ൌ െ݂ҧሺݐ, െݑሻ,  and hence the case  ݔሺݐሻ ൏ 0 can be treated similarly. From 

Lemma 1.6.1 it follows that  ݔሺݐሻ is eventually nondecreasing. In view of the hypothesis of 

corollary 3.1.4, we see that  ݔ൫ ҧ݃ሺݐሻ൯ ൒ ݐ  ሻ൯ for all largeݐ൫݃ሺݔ ൒   ଴, andݐ

                െݔሺ௡ሻሺݐሻ ൌ ଵ
ଵାఒഥ

݂ҧ ቀݐ, ൫ݔ ҧ݃ሺݐሻ൯ቁ  

 െݔሺ௡ሻሺݐሻ ൒ ଵ
ଵାఒ

݂ҧ ቀݐ, ൫ݔ ҧ݃ሺݐሻ൯ቁ ൒ ଵ
ଵାఒ

݂ ቀݐ, ൫ݔ ҧ݃ሺݐሻ൯ቁ ൒ ଵ
ଵାఒ

݂ ቀݐ,  ሻ൯ቁݐ൫݃ሺݔ

We have the differential inequality  

                 ଵ
ଵାఒ

݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൅ ሻݐሺ௡ሻሺݔ ൏ 0, 

that has non oscillatory solution, hence from lemma 3.1.6 the differential equation  

                 ଵ
ଵାఒ

݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൅ ሻݐሺ௡ሻሺݔ ൌ 0 , 

has non oscillatory solution, so from theorem 3.1.1 equation 3.1.1 has a non oscillatory 

solution. This completes the proof.□ 



38 
 

 

3.2  Proof of the “if” part of theorem 3.3.1 (Sufficient condition) 

We want to prove that if the equation 

ௗ೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                                                    (3.2.1) 

has a non oscillatory solution, then the equation 

ሻݐሺ௡ሻሺݔ   ൅ ଵ
ଵାఒ

݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                                                         (3.2.2) 

has a non oscillatory solution.  

 The following lemmas are required to complete the proof. 

Lemma 3.2.1: Let  ߣ ് 1 and ݈ א Գڂሼ0ሽ. Suppose that ݑ א ሾܶܥ െ ߬,∞ሻ, 

ሺ∆ݑሻሺݐሻ א ,ଵሾܶ,∞ሻܥ ሺ∆ݑሻሺݐሻ ൒ 0, ሺ∆ݑሻ′ሺݐሻ ൒ 0 foݐ  ݎ ൒ ܶ,  and    lim௧՜∞ ሺ∆ݑሻ′ሺݐሻ ௟ݐ ൌ 0.⁄  

For the case ߣ ൐ 1, assume moreover that lim௧՜∞ ௧ିߣ ఛ⁄ ሻݐሺݑ ൌ 0. Then  

ሻݐሺݑ                        ൌ ଵ
ଵାఒ

ሺ∆ݑሻሺݐሻ ൅ ݐ௟ሻ           ሺݐሺ݋ ՜ ∞ሻ.  

Where   ሺ∆ݑሻሺtሻ ൌ ሻݐሺݑ ൅ ݐሺݑߣ െ ߬ሻ. 

Lemma 3.2.2: Let  λ ൌ 1. Suppose that  ݑ א ሾܶܥ െ ߬,∞ሻ,  ݑሺݐሻ ൐ 0 for  

ݐ ൒ ܶ െ ߬ . If  ሺݑ߂ሻሺ ݐሻ is nondecreasing and concave on  ሾܶ,∞ሻ, then there  exists  a 

constant α such that  

0 ൏
1
2
ሺݑ߂ሻሺ ݐሻ െ ߙ ൑ ሻݐሺݑ ൑

1
2
ሺݑ߂ሻሺ ݐሻ ൅

1
2
ሺݑ߂ሻሺ ܶ ൅ 2߬ሻ,     ݐ ൒ ܶ ൅ 2߬. 

Lemma 3.2.3: Let  λ ൌ 1. suppose that  ݑ א ሾܶܥ െ ߬,∞ሻ,  ݑሺݐሻ ൐ 0 for  

ݐ ൒ ܶ െ ߬ . If  ሺݑ߂ሻሺ ݐሻ is nondecreasing and convex on ሾܶ,∞ሻ, then there  exist  a 

constant α such that  

     0 ൏ ଵ
ଶ
ሺݑ߂ሻሺ ݐሻ െ ߙ ൑ ሻݐሺݑ ൑ ଵ

ଶ
ሺݑ߂ሻሺ ݐ ൅ ߬ሻ ൅ ଵ

ଶ
ሺݑ߂ሻሺ ܶ ൅ 2߬ሻ,         ݐ ൒ ܶ ൅ 2߬. 
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Lemma 3.2.4: let ߣ ൌ 1 and ݈ א Գ. Suppose that  ݑ א ሾܶܥ െ ߬,∞ሻ,   ݑሺݐሻ ൐ ݐ    ݎ݋݂  0 ൒

ܶ െ ߬.  Assume moreover that 

ݑ∆ א ሻݐሻሺݑ∆ଶሾܶ,∞ሻ, ሺܥ ൒ 0, ሺ∆ݑሻ′ሺݐሻ ൒ ሻݐሻ′′ሺݑ∆ሺ  ݎ݄݁ݐ݅݁ ݀݊ܽ  0 ൑ 0   or  ሺ∆ݑሻ′′ሺݐሻ ൒

0   for    ݐ ൒ ܶ, ܽ݊݀  lim௧՜∞ ሺ∆ݑሻ′ሺݐሻ ௟ݐ ൌ 0. ⁄݄݊݁ݐ   

ሻݐሺݑ ൌ
1
2 
ሺ∆ݑሻሺݐሻ ൅ ݐ௟ሻ     ሺݐሺ݋ ՜ ∞ሻ. 

Lemma 3.2.5: Let ݑ א ሻݐሺݑ  ௡ሾܶ,∞ሻ satisfyܥ ് 0 and ݑሺݐሻݑሺ௡ሻሺݐሻ ൑ 0 for ݐ ൒ ܶ. Then 

there exists an integer ݇ א ሼ1,3, … , ݊ െ 1ሽ   such that 

ቐ
ሻݐሺ௜ሻሺݑሻݐሺݑ ൐ 0, 0 ൑ ݅ ൑ ݇ െ 1,

                                            
ሺെ1ሻ௜ି௞ݑሺݐሻݑሺ௜ሻሺݐሻ ൒ 0, ݇ ൑ ݅ ൑ ݊,

                                           (3.2.3)          

   for ݐ ൒ ଵܶ. In particular, ሻݐԢሺݑ ൒ 0 for ݐ ൒ ଵܶ. 

Remark 3.2.1: A function ݑሺݐሻ satisfying ሺ3.2.3ሻ  for all large ݐ is called a function of 

Kiguradze degree  ݇. Let ݑሺݐሻ be a function of Kiguradze degree ݇ א ሼ1,3, … , ݊ െ 1ሽ 

satisfying ݑሺݐሻ ൐ 0 for all large ݐ, it can be shown (cf. [2],[3],[19]) that  

                       lim௧՜ஶ ሻݐሺ௜ሻሺݑ ൌ 0,   ݅ ൌ ݇ ൅ 1, ݇ ൅ 2,… , ݊ െ 1                                                 (3.2.4) 

And that one of the following three cases holds:  

lim௧՜ஶ ሻݐሺ௞ሻሺݑ ൌ ݐݏ݊݋ܿ ൐ 0  ܽ݊݀  lim
௧՜ஶ

ሻݐሺ௞ିଵሻሺݑ ൌ ∞;                                                               (3.2.4a) 

lim௧՜ஶ ሻݐሺ௞ሻሺݑ ൌ 0  ܽ݊݀   lim
௧՜ஶ

ሻݐሺ௞ିଵሻሺݑ ൌ ∞;                                                                              (3.2.4b) 

lim௧՜ஶ ሻݐሺ௞ሻሺݑ ൌ 0  ܽ݊݀   lim
௧՜ஶ

ሻݐሺ௞ିଵሻሺݑ ൌ ݐݏ݊݋ܿ ൐ 0. ሻ                                                    (3.2.4c) 

If ሺ3.2.4ܽሻholds, then we put ݈ ൌ ݇, and if ሺ3.2.4ܾሻor ሺ3.2.4ܿሻholds, then we put ݈ ൌ ݇ െ

1. Then it is easy to verify that ݈ א ሼ0,1,2, … , n െ 1ሽ, 

lim௧՜ஶ
௨ᇱሺ௧ሻ
௧೗

ൌ 0  and   lim௧՜ஶ
௨ሺ௧ሻ
௧೗

ൌ ܮሺ   ܮ ൐ ܮ ݎ݋ 0 ൌ ∞ሻ.                                                          (3.2.5) 
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Lemma 3.2.6:  Let  ߣ ് 1. Suppose that  ݑ א ሾܶܥ െ ߬,∞ሻ, ∆ݑ א ሻݐሻሺݑ∆௡ሾܶ,∞ሻ and ሺܥ ൐

0 for ݐ ൒ ܶ. For the case ߣ ൐ 1, assume moreover that  lim
௧՜ஶ

ିߣ
೟
ഓݑሺݐሻ ൌ  ሻ is aݐሻሺݑ∆ሺ ݂ܫ .0

function of Kiguradze ݇ for some  ݇ א ሼ1,3, … , ݊ െ 1ሽ  then there exist a constant α  

  and an integer ݈ א ሼ0,1,2, … , ݊ െ 1ሽ  such that  

ሻݐሺݑ                           ൒ ଵ
ଵାఒ

ሺ∆ݑሻሺݐሻ െ ௟ݐߙ ൐ 0    

 For all large ݐ ൒ ܶ. 

Proof of the "if" part of Theorem 3.3.1: It is sufficient to prove that if equation (3.2.1) 
has a non oscillatory solution, then equation (3.2.2) has a non oscillatory solution. Let ݔሺݐሻ 

be a non oscillatory solution of (3.2.1). Without loss of generality, we may assume that 

ሻݐሺݔ ൐ 0 for all large ݐ. Then ሺ∆ݔሻሺݐሻ ൐ 0  and ሺ∆ݔሻሺ௡ሻሺݐሻ ൑ 0 for all large t. In view of  Lemma 

3.2.5, we find that ሺ∆ݔሻሺݐሻ is a function of Kiguradze degree ݇ for some ݇∈ሼ1,3, … , ݊ െ

1ሽ, and hence lim௧՜ஶሺ∆ݔሻሺ௞ሻሺݐሻ ൌ const.  Since 0 ൏ ሻݐሺݔ ൑   ሺ∆ݔሻሺݐሻ for all large ݐ, we 

have lim௧՜ஶିߣ௧ ఛ⁄ ሻݐሺݔ ൌ 0 if ߣ ൐ 1. By Lemmas 3.2.2, 3.2.3 and 3.2.6, there are a 

constant ߙ and an integer ݈∈ሼ0,1,2,… , ݊ െ 1ሽsuch that  

ሻݐሺݔ ൒
1

1 ൅ ߣ
ሺ∆ݔሻሺݐሻ െ ௟ݐߙ ൐ 0  for all large ݐ 

Put ݓሺݐሻ ൌ ሺ1 ൅ ሻݐሻሺݔ∆ሻିଵሺߣ െ ሻݐሺݔ  ௟. Thenݐߙ ൒ ሻݐሺݓ ൐ 0 for all large ݐ. From the 

monotonicity of ݂ it follows that  

െݓሺ௡ሻሺݐሻ ൌ
1

1 ൅ ߣ
ሺ∆ݔሻሺ௡ሻሺݐሻ ൌ

1
1 ൅ ߣ ݂ሺݐ, ሻሻሻݐሺ݃ሺݔ ൒  

1
1 ൅ ߣ ݂ሺݐ,  ሻሻሻݐሺ݃ሺݓ

for all large ݐ. Lemma 3.1.6 implies that (3.2.2) has a non oscillatory solution.  

The proof is complete. □ 

Note: The proof of the lemmas in this section can be found in [ 20 ]. 
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3.3 Proof of the “only if” part of the theorem 3.1.1. (Necessary condition) 

In this section we give the proof of the "only if" part of Theorem 3.1.1. To this end, we 

require the following result concerning an "inverse" of the operator∆. 

Lemma 3.3.1: Let ܶכ and ܶ be numbers such that maxሼݐ଴, 1ሽ ൑ כܶ ൑ ܶ െ ߬, and let ݇∈Գ and 

ܯ ൐ 0. Define the set ܻ as follows:  

  Y ൌ ሼݕ א ሾܥ :ሻ∞,כܶ ሻݐሺݕ ൌ 0, ݐ א ሾ ,כܶ ܶሿ, |ሻݐሺݕ| ݀݊ܽ ൑ ,௞ݐܯ ݐ ൒ ܶሽ. 

Then there exists a mapping Φ on Y which has the following properties:   

(i) Φ maps ܻ into ܥሾ  ;ሻ∞,כܶ

(ii) Φ is continuous on Y in the ܥሾ   ;ሻ-topology∞,כܶ

(iii) Φ satisfies ሺΦyሻሺtሻ ൅ λሺ Φyሻሺt െ τሻ ൌ yሺtሻ for ݐ ൒ ܶ and y∈Y; 

ሺivሻ If  λ = 1 and y∈Y is nondecreasing on ሾ  ݐ ሻ, then (Φy)(t) ≥ 0 for∞,כܶ ൒    ;כܶ

(v) If  λ > 1, then lim௧՜ஶߣ
ି೟ഓ(Φy)(t) = 0 for y ∈ Y.  

Here and hereafter, ܥሾ  ሻ is regarded as the Frechet space of all continuous functions on∞,כܶ

ሾ ,כܶ ∞ሻ with the topology of uniform convergence on every compact subinterval of ሾ ,כܶ ∞ሻ. 

We divide the proof of Lemma 3.3.1 into the two cases 0 < λ ≤ 1 and λ > 1.  

Proof of Lemma 3.3.1: The case 0 < λ ≤ 1. 

 For each y∈Y, we define the function Φy on ሾ ,כܶ ∞ሻ by 

ሺΦyሻሺtሻ ൌ

ە
ۖ
۔

ۖ
ݐሺݕሻ௜ߣ෍ሺെۓ െ ݅߬ሻ,

௠

௜ୀ଴

ݐ א ሾܶ ൅݉߬, ܶ ൅ ሺ݉ ൅ 1ሻ߬ሻ,

݉ ൌ 0,1, … ,
0, ݐ א ሾ ,כܶ ܶሻ

 

 (i) Let y∈Y. Note thatݕሺܶሻ ൌ 0. It is obvious that ሺΦyሻሺtሻ is continuous on ሾ ሻ∞,כܶ െ ሼܶ ൅

݉߬:݉ ൌ 0,1,2, … ሽ. We observe that  

   lim௧՜்ି଴ሺΦyሻሺtሻ ൌ 0 ൌ ሺܶሻݕ ൌ lim௧՜்ା଴ሺΦyሻሺtሻ, 
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And that if ݉  ൒  1, then 

                 lim௧՜்ା௠ఛି଴ሺΦyሻሺtሻ ൌ ∑ ሺെߣሻ௜ݕሺܶ ൅݉߬ െ ݅߬ሻ௠ିଵ
௜ୀ଴   

                                                     ൌ ∑ ሺെߣሻ௜ݕሺܶ ൅݉߬ െ ݅߬ሻ ൅ ሺെߣሻ௠ݕሺܶሻ௠ିଵ
௜ୀ଴   

                                                     ൌ ∑ ሺെߣሻ௜ݕሺܶ ൅ ݉߬ െ ݅߬ሻ௠
௜ୀ଴   

                                                      ൌ lim
௧՜்ା௠ఛା଴

ሺΦyሻሺtሻ.  

Consequently, ሺΦyሻሺtሻ is continuous on ሾ ,כܶ ∞ሻ. 

 (ii) It suffices to show that if ൛ݕ௝ൟ
∞

݆ ൌ 1 is a sequence in Cሾ ,כܶ ∞ሻ converging to 

ሾܥ ∋ݕ ,כܶ ∞ሻuniformly on every compact subinterval of ሾ ,כܶ ∞ሻ, then ൛Φݕ௝ൟ converges to Φݕ 

uniformly on every compact subinterval of ሾ ௝ݕሻ. We claim that Φ∞,כܶ ՜  Φݕ uniformly on 

௠ܫ ؠ ሾܶ ൅݉߬, ܶ ൅ ሺ݉ ൅ 1ሻ߬ሿ,݉ ൌ 0,1,2, … Then we easily conclude that ൛Φݕ௝ൟ converges to Φݕ 

uniformly on every compact subinterval of ሾ ,כܶ ∞ሻ. Observe that  

݌ݑݏ
ݐ א ௠ܫ

ห൫Φݕ௝൯ሺݐሻ െ ሺΦݕሻሺݐሻห ൑ ∑ ௜௠ߣ
௜ୀ଴ ݌ݑݏ

ݐ א ௠ܫ
หݕ௝ሺݐ െ ݅߬ሻ െ ݐሺݕ െ ݅߬ሻห  

                                                ൑ ∑ ௜௠ߣ
௜ୀ଴ ݌ݑݏ

ݐ א ௠ܫ
หݕ௝ሺݐሻ െ   ሻหݐሺݕ

For    ݉  ൌ  0,1,2, …. then we see that  

݌ݑݏ                
ݐ א ௠ܫ

ห൫Φݕ௝൯ሺݐሻ െ ሺΦݕሻሺݐሻห ՜ 0  ሺ݆ ՜ ∞ሻ,   ݉ ൌ 0,1,2, … .,  

So that ൛Φݕ௝ൟ converges to Φݕ uniformly on ܫ௠for ݉  ൌ  0,1,2, … 

 (iii) Let ݕ∈ܻ. If ݐ∈ሾܶ, ܶ ൅ τሻ, then ሺݕߔሻሺݐ െ τሻ ൌ 0 and  

ሺΦݕሻሺݐሻ ൌ ሻݐሺݕ ൌ ሻݐሺݕ െ ݐሻሺݕሺΦߣ െ ߬ሻ. 

If ݐ א ሾܶ ൅݉߬, ܶ ൅ ሺ݉ ൅ 1ሻ߬ሿ,݉ ൌ 1,2, … then  

                            ሺΦݕሻሺݐሻ ൌ ሻݐሺݕ ൅ ∑ ሺെߣሻ௜௠
௜ୀଵ ݐሺݕ െ ݅߬ሻ  

                                           ൌ ሻݐሺݕ െ ∑ߣ ሺെߣሻ௜ିଵݕሺݐ െ ߬ െ ሺ݅ െ 1ሻ߬ሻ௠
௜ୀଵ    
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                                            ൌ ሻݐሺݕ െ ∑ߣ ሺെߣሻ௜ݕሺݐ െ ߬ െ ݅߬ሻ௠ିଵ
௜ୀ଴   

                                            ൌ ሻݐሺݕ െ ݐሻሺݕሺΦߣ െ ߬ሻ,  

Since ݐ െ ߬߳ሾܶ ൅ ሺ݉ െ 1ሻ߬, ܶ ൅ ݉߬ሻ.  

      (iv) Assume that ߣ ൌ 1. Let y∈Y be nondecreasing on ሾ ,כܶ ∞ሻ. Notice that ݕሺݐሻ ൒ ሺݕ ሻכܶ ൌ

0 for ݐ ൒ ሻݐሻሺݕIt is easy to see that ሺΦ .כܶ ൌ ሻݐሺݕ ൒ ݐ ݎ݋0݂ א ሾܶ, ܶ ൅ ߬ሻ ܽ݊݀ሺΦݕሻሺݐሻ ൌ 0 for ݐ א

ሾ ,כܶ ܶሻ. let ݐ א ሾܶ ൅ ݉߬, ܶ ൅ ሺ݉ ൅ 1ሻ߬ሿ, ݉ ൌ 1,2, …  if ݉  ൒  1 is odd, then 

                        ሺΦݕሻሺݐሻ ൌ ∑ ሾݕሺݐ െ 2݆߬ሻ െ ݐሺݕ െ ሺ2݆ ൅ 1ሻ߬ሻሿ ൒ 0.ሺ௠ିଵሻ/ଶ
௝ୀ଴   

If ݉  ൒  2 is even, then                

          ሺΦݕሻሺݐሻ ൌ ∑ ሾݕሺݐ െ 2݆߬ሻ െ ݐሺݕ െ ሺ2݆ ൅ 1ሻ߬ሻሿ ൅ ݐሺݕ െ ݉߬ሻ ൒ 0.
ቀ೘మ ቁିଵ
௝ୀ଴  Therefore we obtain 

ሺΦݕሻሺݐሻ ൒ 0  for ݐ ൒ The proof for the case 0 .כܶ ൏ ߣ ൑ 1 is complete.□  

Proof of Lemma 3.3.1:  The case ࣅ ൐ 1. 

 For each ݕ∈ܻ, we assign the function Φݕ on ሾ ,כܶ ∞ሻ as follows:  

                  ሺΦݕሻሺݐሻ ൌ ൜െ∑ ሺെߣሻି௜ݕሺݐ ൅ ݅߬ሻ,    ݐ א ሾܶ െ ߬,∞ሻ,ஶ
௜ୀଵ

 ሺΦݕሻሺܶ െ ߬ሻ,              ݐ א ሾ ,כܶ ܶ െ ߬ሻ.
  

Let ݕ∈ܻ. Then  

             หሺെߣሻି௜ݕሺݐ ൅ ݅߬ሻห ൑ ݐሺܯ௜ିߣ ൅ ݅߬ሻ௞ ൑ 2௞ିଵିߣܯ௜ሺݐ௞ ൅ ݅௞߬௞ሻ           (3.3.1) 

For ݐ ൒ ܶ െ ߬, ݅ ൌ 1,2, … Thus we see that the series ∑ ሺെߣሻି௜ݕሺݐ ൅ ݅߬ሻஶ
௜ୀଵ  converges uniformly 

on every compact subinterval of ሾܶ െ τ,∞ሻ, so that Φ is well-defined, and ሺΦݕሻሺݐሻ is 

continuous on ሾ ,כܶ ∞ሻ and satisfies  

|ሺΦݕሻሺݐሻ| ൑
2௞ିଵܯ
ߣ െ 1

௞ݐ ൅ ,ܮ ݐ ൒ ܶ െ ߬ 

For each y∈Y, where ܮ ൌ 2௞ିଵ߬ܯ௞ ∑ ௜݅௞.ஶିߣ
௜ୀଵ  This means that (i) and (v) follow.  

(ii) Take an arbitrary compact subinterval I of ሾܶ െ τ,∞ሻ. Let ߝ ൐ 0. 
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There is an integer ݍ ൒ 1 such that  

                                    ∑ ݐሺܯ௜ିߣ ൅ ݅߬ሻ௞ ൏ ఌ
ଷ
ݐ   , א ஶ.ܫ

௜ୀ௤ାଵ                                                     (3.3.2) 

Let ሼݕ௜ሽ ஶ
௝ୀଵ be a sequence in Y converging to y∈Y uniformly on every compact subinterval 

of ሾ ,כܶ ∞ሻ. There exists an integer ݆଴ ൒ 1 such that  

                                    ∑ ݐ௝ሺݕ௜หିߣ ൅ ݅߬ሻ െ ݐሺݕ ൅ ݅߬ሻห ൏ ఌ
ଷ
ݐ   , א ݆   ,ܫ ൒ ݆଴

௤
௜ୀଵ .  

It follows from (3.3.1) and (3.3.2) that                      

             ห൫Φݕ௝൯ሺݐሻ െ ሺΦݕሻሺݐሻห ൑ ∑ ௜௤ିߣ
௜ୀଵ หݕ௝ሺݐ ൅ ݅߬ሻ െ ݐሺݕ ൅ ݅߬ሻห  

                                                           ൅ห∑ ሺെߣሻ௜ݕ௜ሺݐ ൅ ݅߬ሻஶ
௜ୀ௤ାଵ ห  

                                                           ൅ห∑ ሺെߣሻ௜ݕሺݐ ൅ ݅߬ሻஶ
௜ୀ௤ାଵ ห 

                                             ൑ ఌ
ଷ
൅ 2. ఌ

ଷ
ൌ ݐ   ,ߝ א ,ܫ ݆ ൒ ݆଴, 

Which implies that Φݕ௝ converges Φݕ uniformly on I. We see that 

 Φݕ௝  ฺ  Φݕ uniformly on ሾ ,כܶ ܶ െ ߬ሿ,  because of  ሺΦݕሻሺݐሻ ൌ ሺΦݕሻሺܶ െ ߬ሻ on ሾ ,כܶ ܶ െ ߬ሿ for 

y∈Y. Consequently, we conclude that Φ is continuous on Y.  

      (iii) Let y∈Y. Observe that  

ݐሻሺݕሺΦߣ                   െ ߬ሻ ൌ ∑ ሺെߣሻିሺ௜ିଵሻݕሺݐ ൅ ሺ݅ െ 1ሻ߬ሻஶ
௜ୀଵ  

                                           ൌ ሻݐሺݕ ൅ ∑ ሺെߣሻି௜ݕሺݐ ൅ ݅߬ሻஶ
௜ୀଵ  

                                           ൌ ሻݐሺݕ െ ሺΦݕሻሺݐሻ,    ݐ ൒ ܶ. 

The proof for the case λ>1 is complete.□  

Lemma 3.2.2: Let ݓ א ݇ ௡ሾܶ,∞ሻ be a function of Kiguradze degree ݇ for someܥ א

ሼ1,3, … , ݊ െ 1ሽ, then lim௧՜ஶ
௪ሺ௧ାఘሻ
௪ሺ௧ሻ

ൌ 1 for each ߩ ൐ 0.  

Proof: We may assume that ݓሺݐሻ ൐ 0 for all large ݐ. Recall that ݓሺݐሻ satisfies one of 

(3.2.4a)- (3.2.4c) If (3.2.4a) holds, then  
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lim
௧՜ஶ

ݐሺݓ ൅ ሻߩ
ሻݐሺݓ

ൌ lim௧՜ஶ
ݐሺ௞ሻሺݓ ൅ ሻߩ
ሻݐሺ௞ሻሺݓ

ൌ 1. 

In exactly the same way, we have ݈݅݉௧՜ஶ
௪ሺ௧ାఘሻ
௪ሺ௧ሻ

ൌ 1 for the case (3.2.4c). Assume that 

(3.2.4b) holds, by the mean value theorem, for each large fixed ݐ ൒ ܶ, there is a number 

  ሻ such thatݐሺߟ

ݐሺݓ ൅ ሻߩ െ ሻݐሺݓ ൌ ݐ   ݀݊ܽ  ሻ൯ݐሺߟᇱ൫ݓߩ ൏ ሻݐሺߟ ൏ ݐ ൅  .ߩ

Thus we obtain  

ݐሺݓ ൅ ሻߩ
ሻݐሺݓ െ 1 ൌ ߩ

௞ିଵݐሻ൯ݐሺߟᇱ൫ݓ

ሾߟሺݐሻሿ௞ିଵݓሺݐሻ ቈ
ሻݐሺߟ
ݐ ቉

௞ିଵ

 

By (3.2.4b) we conclude that lim௧՜ஶ
௪ᇲሺ௧ሻ
௧ೖషభ

ൌ 0  and lim௧՜ஶ
௪ሺ௧ሻ
௧ೖషభ

ൌ ∞, so that lim௧՜ஶ
௪ሺ௧ା௣ሻ
௪ሺ௧ሻ

ൌ 1. 

Now we prove the "only if" part of Theorem 3.1.1. 

Proof of the "only if" part of Theorem 3.1.1:  

We show that if equation (3.2.2) has a non oscillatory solution, then equation (3.2.1) has a 

non oscillatory solution. Let z(t) be a non oscillatory solution of (3.2.2). Without loss of 

generality, we may assume that ݖሺݐሻ is eventually positive. Set ݓሺݐሻ ൌ ሺ1 ൅  ሻݐሺݓ ሻ. Thenݐሺݖሻߣ

is an eventually positive solution of  

ሻݐሺ௡ሻሺݓ                 ൅ ݂ ቀݐ, ሺ1 ൅ ሻ൯ቁݐ൫݃ሺݓሻିଵߣ ൌ 0                                                          (3.3.3) 

Lemma 3.2.5 implies that ݓሺݐሻ is a function of Kiguradze degree ݇ for some ݇ א

ሼ1,3, … , ݊ െ 1ሽ, and one of the cases (3.2.4a)- (3.2.4c) holds. Hence,  lim௧՜ஶ
௪ሺ௧ሻ
௧ೖ

ൌ const ൒0. 

From lemma 3.3.6 it follows that  

ݐሺݓ                 ൅ 2߬ሻ ൑ ଷ
ଶ
ݐ      ,ሻݐሺݓ ൒ ଵܶ                                                                       (3.3.4) 

for some ଵܶ ൒  .଴ݐ

We can take a sufficiently large number ܶ ൒ ଵܶ such that ݓሺ௜ሻሺݐሻ ൐ 0   

 ሺ݅ ൌ 0,1,2, … , ݇ െ 1ሻ, ሻ൯ݐ൫݃ሺݓ ൐ 0 for ݐ ൒ ܶ, and  
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כܶ                 ؠ minሼܶ െ ߬, infሼ݃ሺݐሻ: ݐ ൒ ܶሽሽ ൒ max  ሼ ଵܶ, 1ሽ. 

Recall (3.2.4). Integrating (3.3.3),we have  

ሻݐሺݓ             െ ܲሺݐሻ ൌ ׬ ሺ௧ି௦ሻೖషభ

ሺ௞ିଵሻ! ׬
ሺ௥ି௦ሻ೙షೖషభ

ሺ௡ି௞ିଵሻ!
݂ ቀݎ, ௪ሺ௚ሺ௥ሻሻ

ଵାఒ
ቁ݀ݏ݀ݎஶ

௦
௧
்  

For ݐ ൒ ܶ, where  

                   ܲሺݐሻ ൌ ሺ௧ି்ሻೖ

௞!
ሺ௞ሻሺ∞ሻݓ ൅ ∑ ሺ௧ି்ሻ೔

௜!
௞ିଵ
௜ୀ଴ ݐ    ,ሺ௜ሻሺܶሻݓ ൒  ,כܶ

and  ݓሺ௞ሻሺ∞ሻ ൌ lim௧՜ஶݓሺ௞ሻሺݐሻ ൒ 0. 

Consider the set ܻ of functions ܥ∋ݕሾ   ሻ which satisfies∞,כܶ

ሻݐሺݕ ൌ 0  for ݐ א ሾ ,כܶ ܶሿ  and   0 ൑ ሻݐሺݕ ൑ ሻݐሺݓ െ ܲሺݐሻ  for ݐ ൒ ܶ. 

Then ܻ is closed and convex, and there is a constant ܯ ൐ 0 such that 

|ሻݐሺݕ| ൑ ݕ ௞ on ሾܶ,∞ሻ forݐܯ א ܻ, by lim௧՜ஶ ሻݐሺݓ ⁄௞ݐ ൌ  ݐݏ݊݋ܿ ൒ 0. Lemma 3.3.1 implies that 

there exists a mapping Φ on ܻ satisfying (i)-(v) of lemma 3.3.1.  

Put  ሺΨݕሻሺݐሻ ൌ ൫Φy൯ሺݐሻ ൅
௉ሺ௧ሻ

ସሺଵାఒሻ
, ݐ ൒ ݕ    ,כܶ א ܻ. 

For each ݕ א ܻ, we define the mapping ࣠: ܻ ՜ ,כሾܶܥ ∞ሻ as follows:  

ሺ࣠ݕሻሺݐሻ ൌ ቐන
ሺݐ െ ሻ௞ିଵݏ

ሺ݇ െ 1ሻ!

௧

்
න

ሺݎ െ ሻ௡ି௞ିଵݏ

ሺ݊ െ ݇ െ 1ሻ! ݂
ҧሺݎ, ሺ ݕሻ൫݃ሺݎሻ൯ሻ݀ݏ݀ݎ,

ஶ

௦
ݐ ൒ ܶ,

0, ݐ א ሾ ,כܶ ܶሿ,
 

Where  

݂ҧሺݐ, ሻݑ ൌ ൞
݂ ቀݐ, ሺ1 ൅ ሻ൯ቁݐ൫݃ሺݓሻିଵߣ , ݑ ൒ ሺ1 ൅ ,ሻ൯ݐ൫݃ሺݓሻିଵߣ

݂ሺݐ, ,ሻݑ 0 ൑ ݑ ൑ ሺ1 ൅ ,ሻ൯ݐ൫݃ሺݓሻିଵߣ
0, ݑ ൑ 0,

 

For  ݐ ൒ ܶ and ݑ∈ܴ. In view of the fact that  

0 ൑ ݂ҧሺݐ, ሻݑ ൑ ݂ ቀݐ, ሺ1 ൅ ሻ൯ቁݐ൫݃ሺݓሻିଵߣ , ሺݐ, ሻݑ א ሾܶ,∞ሻ ൈ ܴ, 
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We see that ࣠ is well defined on Y and maps Y into itself. Since Φ is continuous on Y, by 

the Lebesgue dominated convergence theorem, we can show that ࣠ is continuous on Y as 

a routine computation.  

Now we claim that ࣠(Y) is relatively compact. We note that ࣠(Y) is uniformly bounded 

on every compact subinterval of ሾ ,כܶ ∞ሻ, because of ࣠ሺYሻ ؿ ܻ. By the Ascoli-Arzela 

theorem, it suffices to verify that ࣠ (Y) is equicontinuous on every compact subinterval of 

ሾ ,כܶ ∞ሻ. Let ܫ be an arbitrary compact subinterval of ሾ ݇ ሻ. If∞,כܶ ൌ 1, then 

            0 ൑ ሺ࣠ݕሻԢሺݐሻ ൑ ׬ ሺ௦ି௧ሻ೙షమ

ሺ௡ିଶሻ!
ஶ
௧  ݂ ቀݏ, ௪ሺ௚ሺ௦ሻሻ

ଵାఒ
ቁ݀ݏ        for ݐ ൒ ܶ  and  ݕ א ܻ 

If  ݇ ൒ 3, then  

0 ൑ ሺ࣠ݕሻԢሺݐሻ ൑ න
ሺݐ െ ሻ௞ିଶݏ

ሺ݇ െ 2ሻ!
න

ሺݎ െ ሻ௡ି௞ିଵݏ

ሺ݊ െ ݇ െ 1ሻ!

ஶ

௦

௧

்
 ݂ ൬ݎ,

ሻሻݎሺ݃ሺݓ
1 ൅ ߣ

൰  ݏ݀ݎ݀

for ݐ ൒ ܶ  and  ݕ א ܻ. Thus we see thatሼሺ࣠ݕሻᇱሺݐሻ: ݕ א ܻሽ  is uniformly bounded on ܫ. The 

mean value theorem implies that ࣠(Y) is equicontinuous on I. Since |ሺ࣠ݕሻሺݐଵሻ െ ሺ࣠ݕሻሺݐଶሻ| ൌ

0  for ݐଵ, ଶݐ א ሾ ,כܶ ܶሿ, we conclude that ࣠(Y) is equicontinuous on every compact subinterval 

of ሾ  .ሻ∞,כܶ

By applying the Schauder-Tychonoff fixed point theorem to the operator ࣠, there exists a 

෤ݕ א ܻ  such that ݕ෤ ൌ  .෤ݕ࣠

Put ݔሺݐሻ ൌ ሺΨݕ෤ሻሺݐሻ.Then we obtain 

              ሺ∆ݔሻሺݐሻ ൌ ሻݐ෤ሺݕ ൅ ௉ሺ௧ሻାఒ௉ሺ௧ିఛሻ
ସሺଵାఒሻ

ݐ   ,  ൒ ܶ 

Since  

ሺ∆ݔሻሺݐሻ ൌ ሻݐሺݔ ൅ ݐሺݔߣ െ ߬ሻ                                                                                                                           ൌ

ሺΨݕ෤ሻሺݐሻ ൅ ݐ෤ሻሺݕሺΨߣ െ ߬ሻ 

                               =ሺΦݕ෤ሻሺݐሻ ൅ ௉ሺ௧ሻ
ସሺଵାఒሻ

൅ ߣ ቂሺΦݕ෤ሻሺݐ െ ߬ሻ ൅ ௉ሺ௧ିఛሻ
ସሺଵାఒሻ

ቃ 

                               ൌ ሾሺΦݕ෤ሻሺݐሻ ൅ ݐ෤ሻሺݕሺΦߣ െ ߬ሻሿ ൅ ௉ሺ௧ሻାఒ௉ሺ௧ିఛሻ
ସሺଵାఒሻ

 

By lemma 3.3.1(iii) we obtain 
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                ሺ∆ݔሻሺݐሻ =ݕ෤ሺݐሻ ൅ ௉ሺ௧ሻାఒ௉ሺ௧ିఛሻ
ସሺଵାఒሻ

                                                                                       (3.3.5) 

And hence  ሺ∆ݔሻሺݐሻ is a function of Kiguradze degree ݇. 

Since  ܲሺݐሻ ൒ ܲሺݐ െ ߬ሻ ൒ ܲሺܶሻ ൌ ሺܶሻݓ ൐ 0 ฺ ܲ is increasing for  ݐ ൒ ܶ ൅ ߬, so that 

 0 ൏ ሺ∆ݔሻሺݐሻ =ݕ෤ሺݐሻ ൅ ௉ሺ௧ሻାఒ௉ሺ௧ିఛሻ
ସሺଵାఒሻ

൑ ሻݐ෤ሺݕ ൅ ௉ሺ௧ሻାఒ௉ሺ௧ሻ
ସሺଵାఒሻ

ൌ ሻݐ෤ሺݕ ൅ ௉ሺ௧ሻ
ସ
 

 But ݕ෤ሺݐሻ א ܻ ฺ ሻݐ෤ሺݕ ൑ ሻݐሺݓ െ ܲሺݐሻ 

             0 ൏ ሺ∆ݔሻሺݐሻ ൑ ሻݐሺݓ െ ܲሺݐሻ ൅ ௉ሺ௧ሻ
ସ
ൌ ሻݐሺݓ െ ଷ

ସ
ܲሺݐሻ                                                   (3.3.6) 

 for  ݐ ൐ ܶ ൅ ߬. We will show that  

               0 ൏ ሻݐሺݔ ൑ ሺ1 ൅       ሻfor all large t.                                                           (3.3.7)ݐሺݓሻିଵߣ

Then the proof of the "only if" part of Theorem 3.1.1 will be complete, since (3.3.5) and 

(3.3.7) imply that  

݀௡

௡ݐ݀
ሾݔሺݐሻ ൅ ݐሺݔߣ െ ߬ሻሿ ൌ ሻݐ෤ሺ௡ሻሺݕ ൌ ሺ࣠ݕ෤ሻሺ௡ሻሺݐሻ ൌ െ݂ҧሺݐ,  ሻሻሻݐሺ݃ሺݔ

ൌ െ݂ሺݐ,  ሻሻሻݐሺ݃ሺݔ

for all large t, which means ݔሺݐሻ is a non oscillatory solution of (3.2.2). 

If ݓሺ௞ሻሺ∞ሻ ൐ 0, then we put ݈ ൌ ݇, and if ݓሺ௞ሻሺ∞ሻ ൌ 0, then we put ݈ ൌ ݇ െ 1. It can be shown 

that ݈݅݉௧՜ஶ
ሺ∆௫ሻᇲሺ௧ሻ

௧೗
ൌ 0. Indeed, since  

lim
௧՜ஶ

ሺ∆ݔሻሺ௞ሻሺݐሻ ൌ lim
௧՜ஶ

ሻݐ෤ሺ௞ሻሺݕ ൅ lim
௧՜ஶ

ܲሺ௞ሻሺݐሻ ൅ ݐሺ௞ሻሺܲߣ െ ߬ሻ
4ሺ1 ൅ ሻߣ  

                                     ൌ lim
௧՜ஶ

ሺ࣠ݕ෤ሻሺ௞ሻሺݐሻ ൅ ௪ሺೖሻሺஶሻ
ସ

ൌ ௪ሺೖሻሺஶሻ
ସ

, 

We see that if ݈ ൌ ݇, then ݈݅݉௧՜ஶ
ሺ∆௫ሻᇲሺ௧ሻ

௧೗
ൌ ݈݅݉௧՜ஶ

ሺ∆௫ሻሺೖሻሺ௧ሻ
௞!௧

ൌ 0, and that if ݈ ൌ ݇ െ 1, then 

݈݅݉௧՜ஶ
ሺ∆௫ሻᇲሺ௧ሻ

௧೗
ൌ ݈݅݉௧՜ஶ

ሺ∆௫ሻሺೖሻሺ௧ሻ
ሺ௞ିଵሻ!

ൌ 0.  

First assume that λ≠1. From Lemma 3.3.6 it follows that ݔሺݐሻ ൐ 0 for all large ݐ ൒  In .כܶ

view of Lemma 3.2.1 and the fact that 
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 ݈݅݉௧՜ஶ
௉ሺ௧ሻ
௧೗

ൌ ݐݏ݊݋ܿ ൐ 0, we have  

ሻݐሺݔ ൑
1

1 ൅ ߣ
ሺ∆ݔሻሺݐሻ ൅

3
4ሺ1 ൅  ሻݐሻܲሺߣ

For all large t. Hence, by (3.3.6), we obtain ݔሺݐሻ ൑ ሺ1 ൅   .ሻ for all large tݐሺݓሻିଵߣ

Next we assume that ߣ ൌ 1 and ݈ ് 0. Since ݕ෤ሺݐሻሺൌ ሺ࣠ݕ෤ሻሺݐሻሻ is nondecreasing in ݐ א ሾ ,כܶ ∞ሻ, 

from Lemma 3.3.1 (iv), we see that ሺΦݕ෤ሻሺݐሻ ൒ 0 for ݐ ൒ ሻݐሺݔ so that ,כܶ ൒ ܲሺݐሻ/ሾ4ሺ1 ൅  ሻሿ forߣ

ݐ ൒ ሻݐሺݔ ,Hence .כܶ ൐ 0 for ݐ ൒ ܶ. By using Lemma 3.2.4 and the same argument as in the 

case λ≠1, we can show that ݔሺݐሻ ൑   ሺ1 ൅   .ሻ for all large tݐሺݓሻିଵߣ

Finally we suppose that ߣ ൌ 1 and ݈ ൌ 0. Then ݇ ൌ 1 and ݓሺ௞ሻሺ∞ሻ ൌ 0. Therefore, 

ܲሺݐሻ ൌ ሺܶሻ on ሾݓ ,כܶ ∞ሻ. As in the case ߣ ൌ 1 and ݈ ് 0, we have ݔሺݐሻ ൒ ܲሺݐሻ/ሾ4ሺ1 ൅  ሻሿ forߣ

ݐ ൒ ሻݐሺݔ which implies that ,כܶ ൐ 0 for ݐ ൒ ሻݐሻᇱሺݔ∆Note that ሺ .כܶ ൒ 0 ܽ݊݀ ሺ∆ݔሻ″ሺݐሻ ൑ 0 for ݐ ൐ ܶ, 

since ݇ ൌ 1. By Lemma 3.2.2, (3.3.6) and (3.3.4), we conclude that  

ሻݐሺݔ                                ൑ ଵ
ଶ
ሺ∆ݔሻሺݐሻ ൅ ଵ

ଶ
ሺ∆ݔሻሺܶ ൅ 2߬ሻ  

                                       ൑ ଵ
ଶ
ቂݓሺݐሻ െ ଷ

ସ
ሺܶሻݓ ൅ ሺܶݓ ൅ 2߬ሻ െ ଷ

ସ
 ሺܶሻቃݓ

                                       ൑ ଵ
ଶ
ݐ    ,ሻݐሺݓ ൒ ܶ ൅ 2߬. 

The proof is complete. □ 
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Chapter Four 

Necessary and Sufficient Conditions for the Oscillation of Solution with 
Positive Variable Coefficients 

In this chapter we will mention main results for the oscillation of  

Solution of the equation: 

           ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻሿ ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0.                                                       (4.1.1) 

which is a certain kind of generalization of theorem 3.1.1 with the following assumptions 

(H1) and (H2):  

ሺ1ܪሻ          0 ൑ ߤ ൑ ݄ሺݐሻ ൑ ߣ ൏ 1    for ݐ א Թ; 

                                          ሺ2ܪሻ          1 ൏ ߣ  ൑ ݄ሺݐሻ ൑ ݐ for           ߤ א Թ.  

4.1 Main result  

Throughout this chapter we use the notation:  

ሻݐ଴ሺܪ ൌ ሻݐ௜ሺܪ       ;1 ൌ ݄ሺݐሻ݄ሺݐ െ ߬ሻ…݄ሺݐ െ ሺ݅ െ 1ሻ߬ሻ,      ݅ ൌ 1,2, … .. 

We define the function ܵሺݐሻ on Թ by 

                    ܵሺݐሻ ൌ ൞

∑ ሺെ1ሻ௜ܪ௜ሺݐሻஶ
௜ୀ଴ if ሺ1ܪሻholds,

for ݐ א Թ.
∑ ሺିଵሻ೔శభ

ு೔ሺ௧ା௜ఛሻ
ஶ
௜ୀଵ if ሺ2ܪሻholds,

 

 Where ܵሺݐሻ converges uniformly on Թ, and hence S(t) is continuous on Թ.  We will show 

that  

                 0 ൏ ଵିఒ
ଵିఓమ

൑ ܵሺݐሻ ൑ ଵିఓ
ଵିఒమ

ݐ          , א Թ                                                               (4.1.2) 

We note that if ߤ ൌ ߣ ൌ ܿ ് 1, then 

1 െ ߣ
1 െ ଶߤ

ൌ
1 െ ߤ
1 െ ଶߣ

ൌ
1

1 ൅ ܿ
,  and      ܵሺݐሻ ൌ

1
1 ൅ ܿ

. 
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Theorem 4.1.1ሺሾ૛૚ሿሻ: Suppose that ሺ1ܪሻ or ሺ2ܪሻholds. Then equation (4.1.1) is oscillatory 

if and only if  

ሻݐሺ௡ሻሺݔ                          ൅ ݂൫ݐ, ܵ൫݃ሺݐሻ൯ݔሺ݃ሺݐሻሻ൯ ൌ 0                                                           (4.1.3) 

is oscillatory.  

Theorem 4.1.1 means that (4.1.1) has a non oscillatory solution if and only if (4.1.3) has a 

non oscillatory solution. 

Theorem 4.1.1 is a generalization of theorem 3.1.1 with ܿ ് 1. Indeed, for the case where 

݄ሺݐሻ ؠ ܿ ൐ 0   and ܿ ് 1, we see that ܵሺݐሻ ൌ ሺ1 ൅ ܿሻିଵ and that (3.1.1) is oscillatory if and only 

if  

ሻݐሺ௡ሻሺݕ ൅ ݂ ቀݐ, ሺ1 ൅ ܿሻିଵݕ൫݃ሺݐሻ൯ቁ ൌ 0 

is oscillatory . ሺPut ݔሺݐሻ ൌ ሺ1 ൅ ܿሻݕሺݐሻሻ. 

Now we assume that  

           ݄ሺݐ ൅ ߬ሻ ൌ ݄ሺݐሻ, ݄ሺݐሻ ് 1    ܽ݊݀ ݄ሺݐሻ ൒ 0       for ݐ א Թ.                                           (4.1.4) 

since (H1) or (H2) holds, and ܵሺݐሻ ൌ ሾ1 ൅ ݄ሺݐሻሿିଵ.  

 Consequently, from Theorem4.1.1, we have the following result.  

Corollary 4.1.1: Suppose that (4.1.4)holds. Then (4.1.1) is oscillatory if and only if  

ሻݐሺ௡ሻሺݔ         ൅ ݂ ቀݐ, ௫ሺ௚ሺ௧ሻሻ
ଵା௛ሺ௚ሺ௧ሻሻ

ቁ ൌ 0                                                                                  (4.1.5) 

is oscillatory.  

The oscillatory behavior of solutions of non-neutral differential equations of the form  

ሻݐሺ௡ሻሺݔ                  ൅ ݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                                                                          (4.1.6) 

  Theorem 4.1.1, with the known oscillation results for non-neutral differential equations 

of the form (4.1.6), can be used to obtain oscillation criteria for the 
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 linear neutral differential equation  

               ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻሿ ൅ ݐሺݔሻݐሺ݌ െ ሻߪ ൌ 0                                                     (4.1.7) 

and for the nonlinear neutral differential equation  

                 ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻሿ ൅ ݐሺݔ|ሻݐሺ݌ െ ݐሺݔሻ|ఊିଵߪ െ ሻߪ ൌ 0           (4.1.8) 

where ߛ ൐ 0, ߛ ് 1  and the following conditions are assumed to hold:  

ߪ                   א ܴ; ݌          א ሻݐሺ݌     ,଴,∞ሻݐሾܥ ൐ 0        for ݐ ൒  ଴.                                                   (4.1.9)ݐ

First let us show that S(t) satisfies (4.1.2). 

Lemma 4.1.1ሺሾ ૛૚ ሿሻ: If (H1) or (H2) holds, then ܵሺݐሻ satisfies (4.1.2). 

From theorem 4.1.1, lemma 4.1.1, lemma 3.1.6, we have the following result. 

Corollary 4.1.2: Suppose that (H1) or (H2) holds. If  

ሻݐሺ௡ሻሺݔ                     ൅ ଵିఒ
ଵିఓమ

݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                                                            (4.1.10)  

is oscillatory, then (4.1.1) is oscillatory. If  

ሻݐሺ௡ሻሺݔ                        ൅ ଵିఓ
ଵିఒమ

݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݔ ൌ 0                                                             (4.1.11)  

has a non oscillatory solution, then (4.1.1) has a non oscillatory solution.  

Proof: Assume that there exists a non oscillatory solution of (4.1.1). 

 Then Theorem 4.1.1 implies that (4.1.3) has a non oscillatory solution ݔሺݐሻ. Without loss 

of generality, we may assume that ݔሺݐሻ ൐ 0  for all large ݐ, since the case ݔሺݐሻ ൏ 0 can be 

treated similarly. Put 

ሻݐሺݕ  ൌ ሺ1 െ ሻሺ1ߣ െ   ሻ. From Lemma 4.1.1we haveݐሺݔଶሻିଵߤ
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െݕሺ௡ሻሺݐሻ ൌ െ
1 െ ߣ
1 െ ଶߤ

ሻݐሺ௡ሻሺݔ ൌ
1 െ ߣ
1 െ ଶߤ

݂ ቀݐ, ܵ൫݃ሺݐሻ൯ݔ൫݃ሺݐሻ൯ቁ ൒  
1 െ ߣ
1 െ ଶߤ

݂ ൭ݐ,
1 െ ߣ
1 െ ଶߤ

ሻ൯൱ݐ൫݃ሺݔ

ൌ
1 െ ߣ
1 െ ଶߤ ݂ ቀݐ, ൫݃ݕ

ሺݐሻ൯ቁ 

For all large ݐ. From Lemma 3.1.6 it follows that (4.1.10) has a non oscillatory solution.  

Consequently, if (4.1.10) is oscillatory, then (4.1.12) is oscillatory.  

Let ݕሺݐሻ be an eventually positive solution of (4.1.11). Thus 

ሻݐሺ௡ሻሺݕ     ൅ ଵିఓ
ଵିఒమ

݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݕ ൌ 0 

െݔሺ௡ሻሺݐሻ ሺଵିఓሻ
ሺଵିఒమሻ

ൌ ଵିఓ
ଵିఒమ

݂ ቀݐ, ሻ൯ቁݐ൫݃ሺݕ ฺ െݔሺ௡ሻሺݐሻ ൌ ݂ ቀݐ,                 ሻ൯ቁݐ൫݃ሺݕ

െݔሺ௡ሻሺݐሻ ൌ ݂ ቆݐ, ሺଵିఓሻ
ሺଵିఒమሻ

                ሻ൯ቇݐ൫݃ሺݔ

Then Lemma 4.1.1 implies that ݔሺݐሻ ൌ ሺ1 െ ଶሻሺ1ߣ െ  ሻ is an eventually positiveݐሺݕሻିଵߤ

solution of  

ሻݐሺ௡ሻሺݔ  ൅ ݂ሺݐ, ܵሺ݃ሺݐሻሻݔሺ݃ሺݐሻሻሻ ൑ 0, 

and hence (4.1.1) has a non oscillatory solution, by Lemma 3.1.6 and Theorem 4.1.1 . This 

completes the proof.□  

The following oscillation result was established by Kitamura [22, Corollaries 5.1 and 3.1]. 

Lemma 4.1.2:  assume that (4.1.9) holds. If (3.1.12) holds, then the equation (3.1.3) is 

oscillatory. If (3.1.13) holds then equation (3.1.3) has a non oscillatory solution. 

Lemma 4.1.3: let ߛ ൐ 0  and ߛ ് 1. Assume that (4.1.9) holds. Then the equation (3.1.4) is 

oscillatory if and only if equation (3.1.15) holds. 

Combining Corollary 4.1.1 with Lemmas 4.1.2 and 4.1.3, we have the following 

oscillation criteria for (4.1.7) and (4.1.8).  

Corollary 4.1.3: If  (3.1.12) holds, then (4.1.7) is oscillatory. If (3.1.13) holds, then 

(4.1.7) has a non oscillatory solution.  
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Corollary 4.1.4: Equation (4.1.8) is oscillatory if and only if (3.1.15) holds.  

Remark 4.1.1: Corollary 4.1.3 with (H1) have been already established by Jaros and 

Kusano [7, Theorems 3.1 and 4.1]. Corollary 4.1.3 with (H2) extends the results in [9, 

Theorem 1] and [10, Theorem 7].  

Remark 4.1.2: Corollary 4.1.4 with (H1) has been obtained by Y. Naito [29] in the case 

where ݄ሺݐሻ is locally Lipschitz continuous.  
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4.2 Proof of the “if” part of theorem 4.1.1.(Sufficient condition) 

Want to show that if equation (4.1.1) has a non oscillatory solution, then equation (4.1.3) 

has a non oscillatory solution.  

The following lemmas are required to complete the proof. 

Lemma 4.2.1: Let H1 and the following condition (4.2.1) hold: 

       ቐ   
ݑ א ሾܶܥ െ ߬,∞ሻ, ሺ∆ݑሻሺݐሻ א 1ሾܶ,∞ሻܥ
ሺ∆ݑሻሺݐሻ ൒ 0,       ሺ∆ݑሻ′ሺݐሻ ൒ ݐ  ݎ݋݂ 0 ൒ ܶ,   and
 limݐ՜∞ ሺ∆ݑሻ′ሺݐሻ ݈ݐ ൌ 0.⁄         for some  ݈ א ሼ0,1, … ሽ

                                   (4.2.1) 

Then  

ሻݐሺݑ                ൌ Sሺtሻሺ∆ݑሻሺݐሻ ൅ ݐ௟ሻ           ሺݐሺ݋ ՜ ∞ሻ.                                              (4.2.2) 

Lemma 4.2.2: Suppose that   H2 and (4.2.1) hold. Assume, moreover, that  

lim௧՜∞ ௧ିߣ ఛ⁄ ሻݐሺݑ ൌ 0. Then (4.2.2) holds. 

Lemma 4.2.3: Suppose that (H1) or (H2) holds. Let ݑ  א   ሾܶ െ ߬,∞ሻ satisfy 

ݑ∆ א ሻݐሻሺݑ∆௡ሾܶ,∞ሻ and ሺܥ ൐ 0 for ݐ ൒ ܶ. Assume moreover, that limݐ՜∞ߣ
െݑ߬ݐሺݐሻ ൌ 0 if ሺH2ሻholds. 

if ሺ∆ݑሻሺݐሻ is a function of Kiguradze degree k for some k א ሼ1,3, … , ݊ െ 1ሽ, 

then there exist a constant ߙ ൐ 0  and an integer ݈ א ሼ0,1,2, … , ݊ െ 1ሽ such that  

ሻݐሺݑ         ൒ ܵሺݐሻሾ ሺ∆ݑሻሺݐሻ െ ௟ሿݐߙ ൐ 0  for all large ݐ ൒ ܶ.                                     (4.2.3) 

Proof: Recalling (3.2.5), we have  

           lim௧՜ஶ
ሺ∆௨ሻᇲሺ௧ሻ

௧೗
ൌ 0  and    lim

௧՜ஶ

ሺ∆௨ሻሺ௧ሻ
௧೗

ൌ ܮሺ  ܮ ൐ ܮ ݎ݋ 0 ൌ ∞ሻ 

For some ݈ א ሼ0,1,2, … , ݊ െ 1ሽ. Choose a constant ߙ ൐ 0 so small that ߙ ൏  ,By lemmas 4.1.1 .ܮ

4.2.1and 4.2.2, we conclude that (4.2.3) holds.□  
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Proof of the "if" part of Theorem 4.1.1: Let ݔሺݐሻ be a non oscillatory solution of (4.1.1). 

Without loss of generality, we may assume that ݔሺݐሻ ൐ 0 for all large ݐ. Then ሺ∆ݔሻሺݐሻ ൐

0  and ሺ∆ݔሻሺ௡ሻሺݐሻ ൑ 0  for all large ݐ. By virtue of Lemma 3.2.5, we see that ሺ∆ݔሻሺݐሻ is a 

function of Kiguradze degree ݇ for some kא ሼ1,3, … , ݊ െ 1ሽ. From Lemma 4.2.3, there are a 

constant  ߙ ൐ 0 and an integer ݈ א ሼ0,1,2,… , ݊ െ 1ሽ such that  

ሻݐሺݔ  ൒ ܵሺݐሻሾሺ∆ݔሻሺݐሻ െ ௟ሿݐߙ ൐ 0     for all large ݐ.  

Set ݓሺݐሻ ൌ ሺ∆ݔሻሺݐሻ െ ሻݐሺݔ ௟. Thenݐߙ  ൒ ܵሺݐሻݓሺݐሻ ൐ 0 for all large ݐ. we see that െݓሺ௡ሻሺݐሻ ൌ

െሺ∆ݔሻሺ௡ሻሺݐሻ ൌ ݂ሺݐ, ሻሻሻݐሺ݃ሺݔ ൒ ݂ሺݐ, ܵሺ݃ሺݐሻሻݓሺ݃ሺݐሻሻሻ 

For all large t. Lemma 3.1.6 implies that (4.1.3) has a non oscillatory solution. The proof 

is complete. □ 
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4.3 Proof of the “only if ” part of theorem 4.1.1. (Necessary condition) 

In this section we give the proof of the "only if" part of Theorem 4.1.1. 

We define the following mapping  Φ which is an "inverse" of the operator ∆.  

        ሺΦߥሻሺݐሻ ൌ ൝
∑ ሺെ1ሻ௜ܪ௜ሺݐሻߥሺݐ െ ݅߬ሻஶ
௜ୀ଴ ݂݅ ሺ1ܪሻ݄ݏ݈݀݋,

∑ ሺିଵሻ೔శభ

ு೔ሺ௧ା௜ఛሻ
ݐሺߥ ൅ ݅߬ሻஶ

௜ୀଵ ݂݅ ሺ2ܪሻ݄ݏ݈݀݋,
 

For ݐ∈Թ, where  

ߥ          א ሼߥ א :ሺԹሻܥ |ሻݐሺߥ| ൑ ,௞ݐmaxሼܯ 1ሽ, ݐ א Թሽ ؠ   (4.3.1)                                                  ,ࢂ

 ܯ ൐  0 and ݇ ∈ ሼ1,2,… ሽ. The properties of the mapping Φ are as follows. 

Lemma 4.3.1: The mapping Φ is well-defined on ܸ and has the following properties (i)-

(iv): 

(i) Φ maps V into C(Թ); 

(ii) Φ is continuous on V in the C(Թ)-topology;  

(iii) Φ satisfies ሺ∆ሺΦυሻሻሺtሻ ൌ υሺtሻ for t∈ Թ and υ∈V. 

(iv) If (H2) holds, then lim௧՜ஶߣ
ି೟ഓሺΦߥሻሺݐሻ ൌ 0 for  ߥ א ܸ. 

Proof of the "only if" part of Theorem 4.1.1: We show that if (4.1.3) has a non 

oscillatory solution, then (4.1.1) has a non oscillatory solution. Let ݓሺݐሻ be a non 

oscillatory solution of (4.1.3). We may assume that ݓሺݐሻ is eventually positive. Lemma 

3.2.5implies that ݓሺݐሻ is a function of Kiguradze degree ݇ for some ݇ ∈ሼ1,3, … , ݊ െ 1ሽ. 

Hence, (3.2.3) holds and one of the cases (3.2.4a)- (3.2.4c) is satisfied.  

We can take a sufficiently large number ܶ ൐ 1 such that 

ሻݐሺ௜ሻሺݓ  ൐ 0ሺ݅ ൌ 0,1,2, … , ݇ െ 1ሻ, ሻ൯ݐ൫݃ሺݓ ൐ ݐ ݎ݋݂  0 ൒ ܶ. Integrating ሺ4.1.3ሻ, we have 

ሻݐሺݓ          െ ܲሺݐሻ ൌ ׬ ሺ௧ି௦ሻೖషభ

ሺ௞ିଵሻ! ׬
ሺ௥ି௦ሻ೙షೖషభ

ሺ௡ି௞ିଵሻ!
ஶ
௦

௧
் ݏ݀ݎሻ݀ݎሺܨ ൒ 0                                                (4.3.2) 

For ݐ  ൒  ܶ, where ܨሺݐሻ ൌ ݂ሺݐ, ܵሺ݃ሺݐሻሻݓሺ݃ሺݐሻሻሻ, 
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        ܲሺݐሻ ൌ ሺ௧ି்ሻೖ

௞!
ሺ௞ሻሺ∞ሻݓ ൅ ∑ ሺ௧ି்ሻ೔

௜!
ሺ௜ሻሺܶሻ௞ିଵݓ

௜ୀ଴ , 

And ݓሺ௞ሻሺ∞ሻ ൌ lim௧՜ஶݓሺ௞ሻሺݐሻ א ሾ0,∞ሻ. note that ܲሺܶሻ ൌ ሻݐሺܶሻ and ܲሺݓ ൒ ሺܶሻݓ ൐ 0 for ݐ ൒ ܶ. 

Consider the set Y of functions ݕ א   ሺܴሻ which satisfiesܥ

ሻݐሺݕ          ൌ ݐ ݎ݋݂ 0 ൑ ܶ  and  0 ൑ ሻݐሺݕ ൑ ሻݐሺݓ െ ܲሺݐሻ  for ݐ ൒ ܶ. 

Then Y is closed and convex. Set 

ሻݐሺߟ ൌ ൞
൬
1
2൰ܲ

ሺݐሻ, ݐ ൒ ܶ,

൬
1
2൰ܲ

ሺܶሻ, ݐ ൏ ܶ.
 

By ݓሺ௞ሻሺ∞ሻ א ሾ0,∞ሻ, there is a constant ܯ ൒ ܲሺܶሻ such that ݓሺݐሻ ൑ ሻݐ௞ and ܲሺݐܯ ൑

ݐ ௞forݐܯ ൒ ܶ. Define the set ܸ by (4.3.1). We easily see ܻ⊂ܸ and η∈ܸ. 

For each y∈Y, we define the mapping ࣠: ܻ→ܥሺԹሻ as follows:  

         ሺ࣠ݕሻሺݐሻ ൌ ൞
׬ ሺ೟షೞሻೖషభ

ሺೖషభሻ! ׬ ሺೝషೞሻ೙షೖషభ
ሺ೙షೖషభሻ!

ಮ
ೞ

௧
்

ൈ ݂ҧ ቀݎ, ሺΦݕሻ൫݃ሺݎሻ൯ ൅ ሺΦߟሻ൫݃ሺݎሻ൯ቁ݀ݏ݀ݎ, ݐ ൒ ܶ,
ݐ   ,0 ൑ ܶ,

 

Where  

         ݂ҧሺݐ, ሻݑ ൌ ቐ
,ሻݐሺܨ ݑ ൒ ܵ൫݃ሺݐሻ൯ݓ൫݃ሺݐሻ൯,
݂ሺݐ, ,ሻݑ 0 ൑ ݑ ൑ ܵ൫݃ሺݐሻ൯ݓ൫݃ሺݐሻ൯,
0, ݑ ൑ 0,

 

For ݐ  ൒ ܶ and ݑ∈Թ. In view of (4.3.2) and the fact that  

         0 ൑ ݂ҧሺݐ, ሻݑ ൑ ,ݐሻ,          ሺݐሺܨ ሻݑ א ሾܶ,∞ሻ ൈ Թ, 

We see that ࣠is well-defined on Y and maps Y into itself. Since Φ is continuous on Y, by 

the Lebesgue dominated convergence theorem, we can show that ࣠ is continuous on Y as a 

routine computation.  

Now we claim that ࣠(Y) is relatively compact. We note that ࣠ (Y) is uniformly bounded 

on every compact subinterval of  Թ, because of ࣠ሺܻሻ⊂ܻ. by the Ascoli-Arzela theorem, it 
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suffices to verify that ࣠ (Y) is equicontinuous on every compact subinterval of Թ. Let I be 

an arbitrary compact subinterval of ሾܶ,∞ሻ. If ݇ ൌ 1, then 

         0 ൑ ሺ࣠ݕሻᇱሺݐሻ ൑ ׬ ሺ௦ି௧ሻ೙షమ

ሺ௡ିଶሻ!
ݐ       ,ݏሻ݀ݏሺܨ ൒ ݕ     ,ܶ א ܻ.ஶ

௧  

If ݇ ൒ 3, then 

          0 ൑ ሺ࣠ݕሻԢሺݐሻ ൑ ׬ ሺ௧ି௦ሻೖషమ

ሺ௞ିଶሻ! ׬
ሺ௥ି௦ሻ೙షೖషభ

ሺ௡ି௞ିଵሻ!
ஶ
௦ ௧ݏ݀ݎሻ݀ݎሺܨ

்  

for ݐ ൒ ܶ and y∈Y. thus we see that ሼሺ࣠ݕሻᇱሺݐሻ: y∈Yሽ is uniformly bounded on I. the mean 

value theorem implies that ࣠ (Y) is equicontinuous on I. Since |ሺ࣠ݕሻሺݐଵሻ െ ሺ࣠ݕሻሺݐଶሻ| ൌ

,ଵݐ ݎ݋݂  0 ଶݐ א ሺെ∞, ܶሿ, we conclude that ࣠ (Y) is equicontinuous on every compact 

subinterval of Թ.  

By applying the Schauder-Tychonoff fixed point theorem to the operator ࣠, there exists a 
෤ݕ א ܻ  such that ݕ෤ ൌ  .෤ݕ࣠

Put ݔሺݐሻ ൌ ሺݕߔ෤ሻሺݐሻ ൅ ሺߟߔሻሺݐሻ. Then we obtain  

          ሺΔݔሻሺݐሻ ൌ ሻݐ෤ሺݕ ൅ ௉ሺ௧ሻ
ଶ
ൌ ሺ࣠ݕ෤ሻሺݐሻ ൅ ௉ሺ௧ሻ

ଶ
൐ ݐ   ,0 ൒ ܶ,                                                 (4.3.3) 

By (iii) of Lemma 4.3.1, and hence ሺΔݔሻሺݐሻ is a function of Kiguradze degree ݇.  

We will show that  

          0 ൏ ሻݐሺݔ ൑ ܵሺݐሻݓሺݐሻ  for all larg (4.3.4)                                                                     .ݐ 

Then the proof of Theorem 4.1.1 will be complete, since (4.3.3) and (4.4.4)imply that  

         ௗ
೙

ௗ௧೙
ሾݔሺݐሻ ൅ ݄ሺݐሻݔሺݐ െ ߬ሻሿ ൌ ሺ࣠ݕ෤ሻሺ௡ሻሺݐሻ ൌ െ݂ҧሺݐ,  ሻሻሻݐሺ݃ሺݔ

                                                    ൌ െ݂ሺݐ,  ሻሻሻݐሺ݃ሺݔ

For all large ݐ, which means that ݔሺݐሻ is a non oscillatory solution of (4.1.1).  

If  ݓሺ௞ሻሺ∞ሻ ൐ 0, then we put ݈ ൌ ݇, and ݂݅ ݓሺ௞ሻሺ∞ሻ ൌ 0,then we put ݈ ൌ ݇െ 1.  

 By ሺ4.3.3ሻ, we ϐind that limݐ՜∞ሺ∆ݔሻሺ݇ሻሺݐሻ ൌ ቀ
1

2
ቁ ∞՜ݐሺ݇ሻሺ∞ሻ, so that  limݓ

ሺ∆ݔሻԢሺݐሻ
݈ݐ

ൌ 0. 
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From Lemma 4.2.3 it follows that ݔሺݐሻ ൐0 for all largeݐ ൒ ܶ. In view of Lemmas 4.1.1, 

4.2.1and 4.2.2, and the fact that lim௧՜ஶ
௉ሺ௧ሻ
௧೗

ൌ ݐݏ݊݋ܿ ൐ 0, we have  

         ௫ሺ௧ሻ
ௌሺ௧ሻ

൑ ሻݐ෤ሺݕ ൅ ௉ሺ௧ሻ
ଶ
൅ ௉ሺ௧ሻ

ଶ
൑ ሻݐሺݓ െ ܲሺݐሻ ൅ ௉ሺ௧ሻ

ଶ
൅ ௉ሺ௧ሻ

ଶ
ൌ  ሻݐሺݓ

For all large t. This completes the proof. □ 
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