
Deanship of Graduate Studies 

Al – Quds University 

 

 

 

 

 

 

Molecular Characterization of Glucose-6-Phosphate 

Dehydrogenase Deficiency among Palestinians in the West 

Bank   

 

 

 

 

Eman Walid Talib Abu-Zahriyeh 

 

 

 

 

M.Sc. Thesis 

 

 

 

Jerusalem – Palestine 

 

 

 

1437 / 2016 



Molecular Characterization of Glucose-6-Phosphate 

Dehydrogenase Deficiency among Palestinians in the West 

Bank  

 

 

 

Prepared by: 

Eman Walid Talib Abu-Zahriyeh 

 

 

 

B.Sc. Medical Laboratory Sciences, Al-Quds University, 

Palestine 

 

 

 

Supervisor: Dr. Mahmoud A. Srour 

 

 

 

A thesis submitted in partial fulfillment of requirements for 

the degree of Master in Medical Laboratory Sciences / 

Hematology Track - Faculty of Health Professions - Al- 

Quds University 

 

 

 

1437 / 2016



 

 

Al – Quds University 

Deanship of Graduate Studies 

Department of Medical Laboratory Sciences 

 

 

 

Thesis Approval 

 

 

Molecular Characterization of Glucose-6-Phosphate Dehydrogenase 

Deficiency among Palestinians in the West Bank  

 

 

 

 

Prepared by: Eman Walid Talib Abu-Zahriyeh 

Registration No: 21310368 

 

 

Supervisor: Mahmoud Srour, PhD 

 

 

 

Master thesis submitted and accepted, Date:     24  /    8   / 2016  

The names and signatures of examining committee members are as follows: 

 

 

Head of Committee: Dr. Mahmoud A. Srour  

Internal Examiner: Dr. Rania Abu Seir   

External Examiner: Dr. Fekri Samarah   

 

 

Jerusalem – Palestine 

 

 

 

1437 Hijri / 2016 AD  



 

 

 

 

 

 

Dedication 

 

To my father and mother 

To my husband 

To my brothers and sisters 

To my family and friends 

To my teachers 

To my colleagues 

To whoever inspired me positively.



 

i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration 

I certify that this thesis submitted for the degree of Master, is the result of my own 

research, except where otherwise acknowledged, and that this study (or any part of the 

same) has not been submitted for a higher degree to any other university or institution. 

 

 

 

Signed  

 

 

Eman Walid Talib Abu Zahriyeh 

 

 

Date    22 / 8/ 2016 

 

 

  



 

ii 

 

Acknowledgement 

 

First and foremost I would like to express all my gratitude to my great Allah, almighty, the 

most merciful, for the power and endurance he gave me throughout my life and studying 

period.  

Words are inadequate in offering my gratitude to my supervisor in this project, Dr. 

Mahmoud Srour, for the valuable assistance, support and guidance in every fine detail, and 

assistance in troubleshooting of all types of technical problems in this project work.  

I cannot express enough sense of thanks to my examination committee, Dr. Rania Abu Seir 

and Dr. Fekri Samarah for the theoretical and relevant discussions of the results of this 

project, and whom completion of this project could not have been accomplished without 

their kind assistance and advice. 

Special thanks to Al Makassed Islamic Charitable Hospital (MICH) for giving me the 

opportunity to perform part of my project work at their laboratories, and financially 

covering part of this research. Special thanks to all the departments that helped me through 

my work. I cannot express enough sense of gratitude to my colleagues at the lab, for their 

continuous support. Thank you all for your support and encouragement. 

I would like, also, to convey thanks to my university (Al-Quds University) and all staff that 

had a hand in this project including the Deanship of Graduate Studies, the Deanship of 

Health Professions and the Department of Medical Laboratory Sciences for providing me 

the opportunity to do the project work and for opening the laboratory facilities and 

equipment. 

I would also like to thank my friend and colleagues at Al- Quds University for their 

support and encouragement, and for helping me collect the study samples especially Mr. 

Jaber Jameel, and Mai Baker. 

I greatly thank, my parents, brothers, sisters, and aunt for providing me with and 

continuous support and encouragement throughout my years of studying and through the 

process of researching and writing this thesis, this accomplishment would not have been 

possible without them.  



 

iii 

 

Last but not least, I would like to thank my husband, for his support, love and patience 

without any complaint, and for giving me the strength that keeps me standing, and the hope 

that keeps me believing that this affiliation would be possible. Thank you all from the 

bottom of my heart. 

  

 

  



 

iv 

 

Abstract 

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is considered the most common 

human enzyme disorder, affecting more than 400 million people worldwide with 

considerable variation in the enzyme among various racial groups. G6PD deficiency is a 

public health concern mainly in developing countries.  In the West Bank, there are no 

published studies about the common mutations of G6PD gene. 

The aim of this study is to investigate the most common genotypes of G6PD among 

Palestinians in the West Bank and to confirm the initial clinical classification of the G6PD 

deficiency by genotyping. 

 Sixty seven blood samples were collected from patients pre-diagnosed with G6PD 

deficiency. Samples were tested for G6PD activity by enzymatic assay at Al-Makassed 

Islamic Charitable Hospital in East Jerusalem. DNA sequencing was used to screen 

samples for G6PD mutations. 

A total of 6 variants were detected in the G6PD gene among the study patients, which are:  

c.202 G>A, c.376 A>G, c.404 A>C, c.406 C>T, c.563 C>T and c.1311 C>T. From the 6 

exonic variants detected, 5 were missense mutations resulting in 5 different G6PD variants. 

The Mediterranean variant (c.563 C>T) was the most frequent variant with a frequency of 

62.7% followed by A- (c.202 C>A+ c.367 A>G) and Asahi (c.202 G>A) with a 

frequencies of 16.4% and 5.9% respectively, while the Valladolid (c.406 C>T) and Cairo 

(c.404 A>C) have had a low frequency of about 1.5 % each. 

 Phenotypically, all patients with Mediterranean variant have an enzyme activity less than 

10 % which is consistent with its classification as class ΙΙ. Patients with A- variant have an 

enzyme activity between 10%-60% which is consistent with its classification as class ΙΙΙ.  

Patients with the Mediterranean variants had lower enzyme activity than patients with A- 

variants, 0.93 U/gHb compared to 3.45 U/gHb, respectively. 

 In conclusion, this study characterizes the molecular heterogeneity of G6PD variants 

among Palestinians in the West Bank. Among these, the Mediterranean variant was the 

most common in our patients (67%), followed by A- with a percentage of 16.4 %, and then 

Asahi with a percentage of 5.9 %, and an equal percentage of 1.5 % for Cario, and 

Valladolid. Phenotypically, G6PD variants detected in this study showed enzyme activity 
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consistent with their classification as class ΙΙ or class ΙΙΙ. This is the first study of G6PD 

genotypes in the West Bank. 
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Definitions 

Glucose-6-phosphate dehydrogenase deficiency (G6PD deficiency) is an X-linked 

recessive inborn error of metabolism that predisposes to hemolysis and resultant jaundice 

in response to a number of triggers, such as certain foods, and drugs. 

Neonatal Jaundice: is a yellow discoloration of the skin and eyes caused by 

hyperbilirubinemia.  

Favism: A condition characterized by hemolytic anemia after eating fava beans (Vicia 

fava) or being exposed to the pollen of the fava plant. 

X-inactivation: (also called lyonization) is a process by which one of the copies of the X 

chromosome present in female mammals is inactivated.  

X-linked recessive:  is a mode of inheritance in which a mutation in a gene on the X 

chromosome causes the phenotype to be expressed in males who are hemizygous for the 

gene mutation because they have one X and one Y chromosome) and in females who are 

homozygous for the gene mutation. 
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Abbreviations 

AIVHA: Acute intravascular hemolytic anemia  

CNSHA: Chronic non-spherocytic hemolytic anemia. 

G6PD: Glucose-6-phosphate dehydrogenase 

NADP: Nicotinamide adenine dinucleotide phosphate 

PCR: Polymerase chain reaction 

PPP: Pentose phosphate pathway 

RBC: Red blood cell 

ROS: Reactive oxygen species 

WHO: World health organization  
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Chapter one: Introduction 

1. Introduction 

1.1 Background 

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is considered the most common 

human enzyme disorder, affecting more than 400 million people worldwide with 

considerable variation in the enzyme among various racial groups (Al-Alimi et al., 2010; 

Riskin et al., 2012). The enzyme is known as one of the most polymorphic enzymes in 

humans; more than 400 biochemical variants have been reported from various populations. 

G6PD deficiency is an X-linked hereditary genetic disorder (Persico et al., 1986). All 

mutations of G6PD gene that cause the enzyme deficiency affect the coding sequence. The 

number of G6PD gene mutations associated with enzyme deficiency that have been 

reported so far according to the Human Gene Mutation Database are about 160 mutations 

(Ho, Cheng, & Chiu, 2007). The World Health Organizations (WHO) has classified G6PD 

variants into five groups based on their enzymatic activity and clinical manifestations, 

among the most common clinical manifestations of this disease are acute hemolysis, 

chronic hemolysis, neonatal jaundice ("Glucose-6-phosphate dehydrogenase deficiency. 

WHO Working Group," 1989).   
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1.2 Structure and function of G6PD enzyme  

The monomer of G6PD consists of 515 amino acids, with a molecular weight of about 59 

kDa (Cappellini & Fiorelli, 2008). In 1996 a three-dimensional model of the G6PD 

structure was published (Figure 1), at the same time the crystal structure of human G6PD 

has been explained and clarified (Au, Gover, Lam, & Adams, 2000). The enzyme is active 

as a tetramer or dimer and its activity is pH-dependent. Each monomer consists of two 

domains: the first domain is the N-terminal domain (amino acids 27-200), with a β-α-β 

dinucleotide binding site (amino acids 38-44), the second larger domain is a β+α domain, 

consisting of an antiparallel nine-standard sheet (Mason, 1996; Naylor et al., 1996). The 

dimer interface lies in a barrel arrangement, in this second part of the molecule. Both 

domains are linked by an α helix, containing the preserved eight-residue peptide that serves 

as the substrate binding site (amino acids 198-206) (Naylor et al., 1996). By viewing the 

structure, at (0.3 nm) resolution a molecule of the coenzyme NADP+ is shown in each 

subunit of the tetramer, distant from the active site and close to the dimer interface. The 

stability of the active quaternary structure is very important and crucial for normal G6PD 

activity  (Au et al., 2000).  

 

Figure 1.1: Three-dimensional model of active G6PD dimer. The two identical subunits are located 

across a symmetrical axis (Cappellini & Fiorelli, 2008). 
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Glucose-6-phosphate dehydrogenase is the rate limiting enzyme in the pentose phosphate 

pathway (PPP), one of the two enzymatic pathways required for the metabolism of glucose 

in red blood cells (Al-Alimi et al., 2010). G6PD catalysis the first step in the PPP in which 

glucose-6-phosphate is oxidized into 6-phosphogluconolactone and at same time 

converting nicotinamide adenine dinucleotide phosphate (NADP) into its reduced form 

(NADPH) (Figure 2). NADPH is necessary for maintaining the reduced state of 

glutathione. Reduced glutathione is used for the reduction of peroxides and preventing the 

reactive oxygen  species (ROS) from accumulating in the red blood cells and affecting the 

red blood cells membrane’s integrity. Any defect in the membrane due to the deficiency of 

G6PD has a significant effect on the red blood cells’ survival leading to hemolysis (Prchal 

& Gregg, 2005). G6PD is the only enzyme that produces NADPH in red blood cells, since 

these cells do not have nucleus and mitochondria. Also the G6PD/NADPH pathway is the 

only source of reduced glutathione which is the only defense against oxidative stress in 

human red blood cells  (Riskin et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Pentose phosphate pathway. NADPH is a result of G6PD and 6-phosphogluconate 

dehydrogenase. It serves as a proton donor for the regeneration of reduced glutathione, and as a 

ligand for catalase. Cat: Catalase. GPX: Glutathione peroxidase. GR: Glutathione reductase. 

G6PDD: Glucose–6–phosphate dehydrogenase. 6PGD: 6-phosphogluconate dehydrogenase. GSH: 

Reduced glutathione. GSSG: oxidized glutathione (Cappellini & Fiorelli, 2008). 
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1.3 Genetics and molecular basis of G6PD deficiency 

G6PD deficiency is an X-linked recessive genetic disorder; therefore diseases involving 

this enzyme occur more frequent in males than females (Salvemini et al., 1999). Males are 

hemizygous for the G6PD gene, thus, they can have normal gene expression or be G6PD 

deficient. Females carrying two copies of the G6PD gene are either homozygous or 

heterozygous. Heterozygote females are a result of   X-chromosome inactivation, such 

females can be prone to the same pathophysiological phenotype (Beutler, Yeh, & 

Fairbanks, 1962). 

The G6PD gene in human is located in the telomeric region of the long arm of the X 

chromosome (Xq28), next to genes for hemophilia A, congenital dyskeratosis, and color 

blindness (Figure 3) (Trask, Massa, Kenwrick, & Gitschier, 1991). The gene was cloned in 

1986 (Persico et al., 1986), and consists of 13 exons and 12 introns spanning nearly 20 kb, 

and encoding 515 amino acid protein and a GC- rich (>70%) promoter region. The 

5’untranslated portion of the mRNA corresponds to exon 1 and part of exon 2, the 

initiation codon is in exon 2 (Chen et al., 1991). In the promoter region, there are many 

binding sites for the transcription factor SPI –GGCGGG and CCGCCC sequences similar 

to those in other housekeeping gene promoters (Reynolds et al., 1984; Toniolo, Filippi, 

Dono, Lettieri, & Martini, 1991). The wild-type G6PD is denoted as G6PD B (Cappellini 

& Fiorelli, 2008). 

 

Figure 1.3: Location of G6PD gene on X chromosome (Cappellini & Fiorelli, 2008). 
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All mutations of G6PD gene that cause enzyme deficiency affects the coding sequence 

(Bulliamy, Luzzatto, Hirono, & Beutler, 1997). The number of mutations associated with 

enzyme deficiency that have been reported according to the Human Gene Mutation 

Database are about 160 mutations; most of them are single-base substitutions leading to 

amino acid replacements. Rarely, a second mutation is present in cis (Hirono, Kawate, 

Honda, Fujii, & Miwa, 2002; Town, Bautista, Mason, & Luzzatto, 1992), and some of 

these mutations include small deletions, and a stop codon mutation (Franze et al., 1998). 

No frame shift mutations have been reported which suggests that a complete lack of this 

enzyme during mammalian development cannot be tolerated and is fatal (Kwok, Martin, 

Au, & Lam, 2002). 

1.4 Epidemiology 

 G6PD deficiency is considered the most common human enzyme disorder, affecting more 

than 400 million people worldwide, with considerable variation in the enzyme activity 

among various racial groups (Nkhoma, Poole, Vannappagari, Hall, & Beutler, 2009). The 

prevalence of the enzyme deficiency ranges from <3% in Northern America and Europe to 

15% - 25% in some regions of Africa and the Middle East (Kaplan & Hammerman, 2000). 

It is difficult to define the quantitative contribution of each allele to the overall prevalence 

of G6PD deficiency in any given population, because the epidemiological studies are based 

on screening the activity of the enzyme, which is not precise and doesn’t extend to global 

coverage. Lately molecular biology techniques have been used to define the prevalence of 

G6PD deficiency  (Cappellini & Fiorelli, 2008).  

In most regions of high prevalence of G6PD deficiency, several polymorphic alleles are 

found (Bulliamy et al., 1997; Cappellini et al., 1996). G6PD A- (p.Val68Met + 

p.Asn12Asp) accounts for about 90% of G6PD deficiency in the tropical regions of Africa, 

and is also frequent in North and South America, in the West Indies, Italy (Cappellini et 

al., 1994; Martinez di Montemuros, Dotti, Tavazzi, Fiorelli, & Cappellini, 1997), the 

Canary Islands (Pinto, Gonzalez, Hernandez, Larruga, & Cabrera, 1996), Spain, Portugal 

and in the Middle East, including Iran, Egypt and Lebanon (Kurdi-Haidar et al., 1990). 

The second most common G6PD variant is G6PD Mediterranean (p.Ser188Phe), which is 

found in all countries surrounding the Mediterranean Sea, and widespread in the Middle 

East, including Israeli Jews (Karimi et al., 2003), India and Indonesia. In many populations 
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around the Persian Gulf, G6PD A- and G6PD Mediterranean coexist at different 

frequencies (Bayoumi et al., 1996). 

The Seattle (p.Asp282His) and Union (p.Arg454Cys) variants are other examples of G6PD 

variants, which were found in southern Italy, Sardinia (De Vita et al., 1989; Fiorelli et al., 

1989), Greece, the Canary Islands (Cabrera, Gonzalez, & Salo, 1996), Algeria, Germany, 

Ireland, and China (Perng, Chiou, Liu, & Chang, 1992) (Figure1.4). 

 

Figure 1.4: Most common mutations along coding sequence of G6PD gene Exons are shown as 

open numbered boxes. Open circles are mutations resulting in classes II and III variants. Filled 

circles represent sporadic mutations causing severe variants (class I). Open ellipses are mutations 

causing class IV variants. Filled squares= small deletion. Cross: a nonsense mutation. F: a splice 

site mutation.  202A and 968C are the two sites of  substitution in G6PD-A (Cappellini & Fiorelli, 

2008). 

 

1.5 Diagnosis of G6PD Deficiency 

The diagnosis of G6PD deficiency is based on the measurement of enzyme activity by a 

quantitative spectrophotometric analysis detecting the generation of NADPH from NADP, 

the amount of NADPH produced will reflect the level of G6PD activity (Kaplan & 

Hammerman, 2011). In field research, where quick screening of a large number of patients 

is needed semi quantitative   analysis is available. The fluorescent spot test is one of the 

most common tests used for semi quantitative analysis, it is recommended by the 

International Committee for Standardization in Hematology (Beutler et al., 1979), it’s 

considered a simple, sensitive, and reliable test. This test indicates G6PD deficiency when 

the blood fails to fluoresce under ultraviolet light (Minucci, Giardina, Zuppi, & 
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Capoluongo, 2009). The disadvantage of this test is its low cut off point that will not be 

helpful in detecting female heterozygotes (Wang, Boo, Ainoon, & Wong, 2009). 

Some other qualitative screening tests are also available including the cresyl blue dye 

decolorization tests. These tests are based on staining the RBCs thus the G6PD deficient 

RBCs will satin poorly and can be identified microscopically. Among these tests, , the 

methemoglobin reduction test, in which the NADPH is detected indirectly by measuring 

the transfer of H+ ions from NADPH to an accepter (Luzzatto, 2006). For better diagnosis 

quantitative analysis is done specially on female that are missed diagnosed by the 

qualitative tests. Quantitative measurements are performed by adding a precise amount of 

hemolyzate to an assay mixture containing G6PD and NADP, the rate of NADPH 

generation in µmol per min per gm Hb is measured by a spectrophotometer at wavelength 

of 340 nm at 30°C. The assay is expressed as G6PD U/RBC or U/g Hb, the Hb 

concentration or the RBC count must be measured from the same blood sample on which 

the test is being performed (Kaplan & Hammerman, 2011). 

A disadvantage of biochemical G6PD testing is that it is not reliable when the test is 

performed during an episode of acute hemolysis. In this case falsely normal result may be 

found due to the presence of new and young RBCs (reticulocytes) with higher activity than 

the old RBCs that were hemolyzed and destructed. The solution for this problem is to 

perform the test after a couple of weeks after the hemolytic attack, or to determine the 

G6PD gene mutation by Polymerase Chain Reaction (PCR) since the DNA will not be 

affected by a hemolytic attack (Castro et al., 2005; Lin, Fontaine, Freer, & Naylor, 2005). 

1.6 Clinical manifestations 

The enzyme is known as one of the most polymorphic enzymes in humans; more than 400 

biochemical variants have been reported from various populations (Mason, Bautista, & 

Gilsanz, 2007). The WHO has classified G6PD variants into five groups based on their 

enzymatic activity and clinical manifestations ("Glucose-6-phosphate dehydrogenase 

deficiency. WHO Working Group," 1989) (Table 1.1). 
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Table1.1: Classification of G6PD variants based on enzyme activity. ("Glucose-6-phosphate 

dehydrogenase deficiency. WHO Working Group," 1989). 

Class Enzyme activity (%) Clinical effect 

I Sever deficiency  <2% CNSHA 

II <10 % Favism, AIVHA, Neonatal Jaundice 

III 10-60% AIVHA, Neonatal Jaundice 

IV 60-150% None 

V >150% None 

AIVHA: Acute intravascular hemolytic anemia (Drug or Infection-Induced). 

CNSHA: Chronic non-spherocytic hemolytic anemia. 

  

Among the most common clinical manifestations of this disease are drug or infection 

induced hemolytic anemia, favism, neonatal jaundice, and chronic non–spherocytic 

hemolytic anemia, and an asymptomatic form of the disease is observed (Cappellini & 

Fiorelli, 2008). 

1.6.1. Neonatal jaundice:  

Neonatal jaundice is one of the most common clinical manifestations of G6PD deficiency 

(Kaplan & Hammerman, 2009), neonatal jaundice or hyperbilirubinemia is the result of 

imbalance between the production and conjugation of bilirubin, which will cause severe 

complications in neonates and can lead to bilirubin encephalopathy and kernicterus. The 

mechanism whereby G6PD deficiency causes neonatal jaundice is not yet understood. 

Hemolysis does not seem to contribute as much as impaired bilirubin conjugation and 

clearance by the liver where screening for G6PD deficiency is not done routinely, 

evaluating neonates with unexplained hyperbilirubinemia and testing for G6PD deficiency 

should be done within the first 24 hours of life (Kaplan & Hammerman, 2009). 

1.6.2. Chronic non-spherocytic hemolytic anemia: 

In some cases, variants of G6PD deficiency cause chronic hemolysis, resulting in 

congenital non-spherocytic hemolytic anemia. These variants are grouped in class 1 in the 

WHO classification (Cappellini & Fiorelli, 2008). The G6PD variants causing congenital 

non-spherocytic hemolytic anemia are sporadic and rise from independent mutations 

(Fiorelli, Martinez di Montemuros, & Cappellini, 2000). The diagnosis of the 

complications is based on clinical examinations and findings, the symptoms of this 

disorder are suspected during infancy and childhood in most cases. Many patients with 

congenital non-spherocytic hemolytic anemia have a history of sever neonatal jaundice, 
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chronic anemia exacerbated by oxidative stress that requires blood transfusion, gallstones, 

splenomegaly, and reticulocytosis. The concentration of lactate dehydrogenase and 

bilirubin are raised, and the hemolysis is mostly extravascular (Cappellini & Fiorelli, 

2008). 

1.6.3. Favism: 

Favism is the clinical sequelae of the ingestion of fava beans, it was first reported in the 

early 20
th

 century in the Mediterranean countries in addition to some other counties in the 

middle east, the far east, and north Africa due to the high consumption of fava beans 

(Belsey, 1973; Kattamis, Kyriazakou, & Chaidas, 1969). Nowadays favism is believed to 

be associated with the Mediterranean variant of G6PD deficiency. It should be noticed that 

not all G6PD - deficient patients undergo favism after the ingestion of fava beans. Many 

factors affect the development of the disorder, including the health of the patient and the 

amount of fava beans ingested. Favism can develop after the ingestion of fresh, dried or 

frozen beans, but mostly after eating fresh beans; the disorder is most frequent in the 

period when beans are harvested (Meloni, Forteleoni, Dore, & Cutillo, 1983). Isouramil, 

divicine, and convicine, are thought to be the toxic components of fava beans, increase the 

activity of the hexose monophosphate shunt promoting hemolysis.  Breastfed infants 

whose mothers have eaten fava beans are also at risk of hemolysis (Arese & De Flora, 

1990). 

Favism presents as acute hemolytic anemia, mostly after 24 hours of the ingestion of fava 

beans, clinical symptoms are, hemoglobinuria, elevated levels of bilirubin, acute and 

severe anemia leading to acute renal failure in some patients, as a result of ischemia or the 

precipitation of hemoglobin casts. In some cases a patient undergoing severs hemolytic 

attack can need a blood transfusion (Cappellini & Fiorelli, 2008). 

1.6.4. Infection-induced hemolytic anemia: 

Infection is the most typical cause of hemolysis in individuals with G6PD deficiency. 

Hepatitis virus A and B, cytomegalovirus, pneumonia, and typhoid fever are all notable 

causes. The severity of the hemolysis is affected by many factors including concomitant 

drug administration, liver function, and age. The total bilirubin levels are elevated by 

hepatitis as well as hemolysis, which may be a cause of diagnostic error (Cappellini & 

Fiorelli, 2008). 
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In sever hemolysis quick blood transfusion can improve the clinical course rapidly. Acute 

renal failure is a serious complication of viral hepatitis along with G6PD deficiency; 

pathogenic factors include acute tubular obstruction by hemoglobin casts. In some cases, 

hemodialysis is needed (Cappellini & Fiorelli, 2008). 

1.6.5. Drug-induced hemolytic anemia: 

Several drugs have been associated to acute hemolysis in G6PD patients. A specific drug 

directly causing hemolytic crises in a G6PD patient is difficult to establish for many 

reasons; first, an agent deems to be safe for some patients and not necessarily safe for 

others since pharmacokinetics can vary between individuals. Second, drugs with 

potentially oxidant effects are sometimes given to patients with an underlying illness (such 

as infection) that could cause hemolytic episode. Third, patients are often taking more than 

on type of medication. Fourth, hemolysis in G6PD deficiency is a self-limiting process, 

which means it doesn’t always produce clinically significant anemia and reticulocytosis 

(Cappellini & Fiorelli, 2008). 

Usually, safe alternative drugs and medications are available that physicians should be 

aware of. If no alternative treatment, decisions are based on clinical judgment of risk. 

Clinical hemolysis and jaundice arise within 24-72 hours of drug ingestion. 

Hemoglobinuria is a characteristic sign, anemia worsens until days 7-8. After drug 

termination, hemoglobin concentrations recover after 8-10 days. Heinz bodies are seen in 

the peripheral blood smear, detected by methyl violet staining, is a typical finding 

(Cappellini & Fiorelli, 2008; Edwards, 2002). 

1.7 Literature review 

G6PD deficiency is a public health concern in many countries. It has been estimated that 

200 to 400 million people worldwide are affected by G6PD deficiency, and that 7.5% of 

the global population carry one or two genes for the condition. The disease has been 

reported in almost all racial groups with prevalence rates ranging from less than 1% in 

Japan and Northern European populations to as high as 58% in Kurdish Jews (Al-Musawi 

et al., 2012). 

High rates of G6PD deficiency have been reported from tropical regions of Africa, the 

Middle East, tropical and subtropical regions of Asia, and the Mediterranean margin. Up to 
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now, more than 160 mutations associated with G6PD enzyme deficiency have been 

reported. G6PDA - genotype is a specific variant caused by two mutations p.Asn126Asp 

and p.Val68Met. The p.Val68Met mutation is responsible for 95% of the reported cases of 

G6PDA- variant in Africa (Shahjahani, Mortazavi, Heli, & Dehghanifard, 2013). From 

class II variant and with a low prevalence, G6PD-Santamaria is caused by two 

simultaneous mutations, p.Asn126Asp and p.Asp181Val. This genotype was first 

identified in Costa Rica (Monteiro et al., 2014) , and also found with low prevalence in 

northern Italy (Shahjahani et al., 2013). In Latin America, Monteiro et al. (2014) reported 

that low prevalence rates (<2% ) of G6PD deficiency were found in Argentina, Bolivia, 

Mexico, Peru and Uruguay, while studies performed in Curacao, Ecuador, Jamaica, Saint 

Lucia, Suriname and Trinidad, as well as some surveys carried out in areas of Brazil, 

Colombia and Cuba showed high prevalence rates (> 10%) of G6PD deficiency. In 

addition results showed that G6PD encoded by the G6PD A- (p.Asn126Asp and 

p.Val68Met) is the most broadly spread genotype across Latin America, identified in 

81.1% of deficient individuals surveyed in the continent (Monteiro et al., 2014). The most 

common dominant variant in Cambodia was G6PD Viangchan (c.871G>A; p.Val291Met) 

(Louicharoen & Nuchprayoon, 2005), while in Myanmar the Mahidol variant 

(c.487G>A,p.Gly163Ser ) genotype was found to be the most variant distributed among 

their population  (Bancone et al., 2014). In India the Mediterranean variant is more 

prevalent than the other variants (Shahjahani et al., 2013).  

In Tunisia, Benmansour et al. (2015) reported two new class III G6PD variants, G6PD 

Tunis (c.920A>C: p. Gln307Pro) and G6PD Nefza (c.968T>C: p.Leu323Pro). Four 

hundred and twenty three patients were screened for G6PD deficiency by a 

spectrophotometric method to determine the enzymatic activity. All deficient samples were 

confirmed by molecular analysis to characterize the mutations found in the patient’s 

samples, among the study population 14 different genotypes have been identified including 

the two novel missense mutations ( G6PD Tunis and G6PD Nefza)  (Benmansour et al., 

2013). 

In the Middle East, there are many cases of G6PD enzyme deficiency in Iran, Oman and 

Saudi Arabia. Many studies were done on cities and provinces of Iran for the prevalence of 

variants of G6PD enzyme deficiency, and to determine the frequency of G6PD enzyme 

deficiency and review the most prevalent mutations. The results of these studies and others 
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indicated a high prevalence of G6PD deficiency in Iran especially of Mediterranean and 

Chatman variants (Shahjahani et al., 2013). Noori-Daloii et al. (2004) identified the 

mutations in the G6PD gene in patients with favism in Iran and reported that the 

Mediterranean mutation (c.563C>T; p.Ser188Phe) is predominant in the area (69%) and 

26.7% of patients have Chatham mutation at nucleotide (c.1003G>A) among the studied 

population (Noori-Daloii, Najafi, Mohammad Ganji, Hajebrahimi, & Sanati, 2004) . 

G6PD deficiency is the most common hereditary blood disorder among Iraqis, most studies 

on the molecular basis of the disease was performed on Kurds in Northern Iraq. Al-

Musawi et al. (2012) studied the prevalence of G6PD deficiency and the characteristic of 

deficient variants and their enzyme levels among asymptomatic healthy blood donors in 

the Arab population of central Iraq. The study identified four polymorphic variants, namely 

the Mediterranean (c.563C>T), Chatam (c.1003G>A), A- (c.202G>A) and Aureus 

(c.143T>C) among the sample population, results showed that the Mediterranean variant 

was detected in 74.3% of the study population. The result of the previous study on Iraqi 

Arabs complement those reported on Iraqi Kurds, which gave a comprehensive idea about 

the distribution of G6PD variants in Iraq. An important finding of the study is that a 

significant number (~ 19%) of G6PD deficient cases remain uncharacterized compared to 

around ~3% in the earlier studies on Kurds, which may reflect the open admixture with 

other civilizations throughout the centuries, this finding shows the importance of DNA 

sequencing to determine whether the uncharacterized mutations were carried by gene flow 

or they represent novel mutations (Al-Musawi et al., 2012) . 

In Kuwait, 2005 a study was performed on individuals from the 5 different provinces of 

Kuwait, all individuals belonged to known Kuwaiti tribes with minimal recent non-Kuwaiti 

admixture. The study has characterized the molecular heterogeneity of G6PD variants 

among ethnic Kuwaitis, the variants found in this study were G6PD Mediterranean, G6PD 

Chatham, G6PD A- and G6PD Aureus. The findings of this study suggests that gene flow 

from the Indian sub-continent, sub-Saharan African, and other parts of the Mediterranean 

may have  contributed to the G6PD mutations found on the Kuwaiti population (Alfadhli et 

al., 2005). 

Jaouni et al. (2011) studied the molecular characteristics of G6PD deficiency in Jeddah,  

Saudi Arabia, the majority of mutations were G6PD Mediterranean, followed by Chatham 

(Al-Jaouni, Jarullah, Azhar, & Moradkhani, 2011). In a study about neonatal jaundice in 
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the Makkah region, which aimed to detect the frequency at which the different types of 

neonatal jaundice occur in Makkah. This study included 239 neonates with neonatal 

jaundice, 20 anemic neonates and 21 healthy neonates.  Al Khotani et al. (2014) reported 

that the frequency of G6PD deficiency in the studied neonates was around ~6.6 % 

compared to 2%, 30.3%, 2%, 30.6%, and 14.7% in Yanbu, Al-Hofuf, Riyadh, Al-Qatif, Al 

Hasa, respectively. Al Khotani and his colleagues concluded that ABO incompatibility and 

G6PD deficiency are frequent causes of neonatal jaundice in Makkah and recommend the 

testing and determination of ABO and Rh incompatibility, G6PD deficiency and complete 

blood counts at birth to avoid serious complications (Alkhotani, Eldin, Zaghloul, & 

Mujahid, 2014). In another study done on a Saudi population, Alharibi et al. (2014) 

screened 2100 male subjects for G6PD deficiency to estimate the prevalence of G6PD 

deficiency among Saudi men, and to investigate the role of the A- variant in the study 

population. Of the 2100 men participating in the study 100 were shown to be G6PD 

deficient. The G6PD A- was only found in two subjects and therefore does not appear to 

have a role in G6PD deficiency in the studied population (Alharbi & Khan, 2014). 

In 2014, Osman et al. identified the Mediterranean mutation in Egyptian favism patients. A 

total of 100 unrelated Egyptian patients were included in the study, and the mutation was 

found in 87.7% of the patients concluding that G6PD Mediterranean mutation is the most 

common mutation causing G6PD deficiency among Egyptians with favism (Osman, 

Zahran, El-Sokkary, El-Said, & Sabry, 2014). 

In Lebanon, Inati et al. (2012) determined the prevalence of G6PD deficiency in a 

Lebanese population 3009 neonates and found that 62 neonates (2.1%) (49 males and 13 

females) were G6PD-deficient. Prevalence was 3.1% in males compared with 0.9% in 

females. There was a higher prevalence of G6PD deficiency among Muslims (2.6%) than 

among Christians (1.3%), and reported that consanguineous marriages are more common 

in Muslims in the study population (Inati, Abbas, Boumitri, & Tecle, 2012) . 

In Jordan, Karadsheh et al. (2005) studied the molecular heterogeneity of G6PD deficiency 

in two Jordanian populations, Amman area and the Jordan Valley. The molecular screening 

for the G6PD mutations resulted in six different mutations and a higher incidence of G6PD 

deficiency and G6PD A- mutation in Jordan Valley than in the Amman area (Karadsheh, 

Moses, Ismail, Devaney, & Hoffman, 2005).  
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Al-Swedan et al. (2012) investigated the most common molecular mutations of G6PD gene 

among Jordanians in northern Jordan, and examined the correlation between the genotype 

and phenotype of this enzyme deficiency. Seventy-five blood samples were collected from 

patients pre-diagnosed with G6PD deficiency on a clinical basis. Al-Swedan reported that 

the most common variant present in the patients is G6PD Mediterranean, with a frequency 

of 76.2%, followed by G6PD A- with 19%, and an equal frequency of 1.6% for G6PD 

Chatham, G6PD Santamaria and G6PD Cairo (Al-Sweedan & Awwad, 2012) . 

In Palestine, there are no published studies about the prevalence or mutations of G6PD 

deficiency except for two studies done in Gaza Strip by Sirdah et al. (2012) on the Gaza 

Strip population. This study is the first study done on Palestinians in the West Bank. 

Sirdah et al. (2012) investigated the molecular heterogeneity of G6PD deficiency in Gaza 

Strip, Palestine. Eighty unrelated Palestinian children hospitalized for hemolysis were 

studied. G6PD activity was determined by quantitative spectrophotometry and G6PD 

mutations were analyzed by sequencing of genomic DNA. The previous study identified 

three variants of G6PD mutations in the Gaza population which are G6PD Mediterranean, 

G6PD A- and G6PD Cairo. Other variants present in the Arab and Middle Eastern 

countries, such as G6PD Chatham and G6PD Aures, were absent from the studied 

population. The authors also reported a novel mutation that was designated as G6PD Gaza 

(c.536 G>A; p.Ser179Asn) that was found in a girl as a heterozygous genotype (Sirdah et 

al., 2012) . 

1.8 Problem statement 

G6PD deficiency is a public health concern mainly in developing countries. The disease 

has been reported in almost all racial groups with prevalence rates ranging from less than 

1% in Japan and Northern European populations to as high as 58% in Kurdish Jews (Al-

Musawi et al., 2012). Determination of the spectrum of mutations in G6PD gene will 

facilitate the molecular diagnosis of this disorder and aids in better characterization of the 

disease severity. A previous study by Sirdah et al (2012) has determined the spectrum of 

G6PD gene mutations among a cohort of G6PD patients in Gaza strip. However, there are 

no previous reports on the spectrum of G6PD gene mutation among Palestinian patients in 

West Bank. 
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1.9 Aims of the study  

The aims of this study are to investigate the most common molecular mutations of G6PD 

gene among Palestinian patients, and to confirm the initial clinical classification of G6PD 

deficiency by genotyping .This study is the first study done in the West Bank. 

1.10 Justification 

G6PD deficiency is a public health concern mainly in developing countries. In the West 

Bank, there are no published studies about the common mutations of G6PD gene. 

Determination of the spectrum of mutations in G6PD gene will facilitate the molecular 

diagnosis of this disorder and aids in better characterization of the disease severity. 

1.11 Hypothesis 

Two hypothesis were presented one of them will be proven and the other will be rejected; 

the null hypothesis (H0) will be retained, if the frequency of detected mutations in our 

study are consistent with the Middle Eastern populations findings especially Arabic ones. 

On the other hand, the alternative hypothesis (H1) will be returned if the Ho was rejected, if 

the frequencies of detected mutations in our study are inconsistent with the Middle Eastern 

population’s findings especially Arabic ones. 
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Chapter Two: Methodology 

2. Methodology 

2.1 Materials 

   Table 2.1: List of materials and instruments used in the study. 

Disposables 

Item Manufacturer/country 

EDTA tubes Greiner bio-one. UK 

Needles Medi-Plus. China 

Syringes Medi-Plus. China 

Chemicals and kits 

Item Manufacturer/country 

DNA extraction kits from blood 
MasterPure™ DNA Purification Kit for Blood 

Version II, Epicentre, USA 

lyophilized PCR master mix 
AccuPower® HotSart PCR PreMix, BIONEER, 

South Korea 

Gel extraction kit AccuPower® Gel Purification kit, BIONEER, 

Korea 

G6PD kit Randox 

 PCR primers Metabion, Germany 

50 bp leader marker GeneDirex 

TRIS base MP Biomedical, USA 

Chemicals and kits 

Item Manufacturer/country 

EDTA-Na bi-basic AVONCHEM Ltd. UK 

Agarose Hylabs, Israel 

Ethidium bromide Hylabs, Israel 

Machines and instruments 
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Item Manufacturer/country 

Thermal cycler Esco Healthcare Ltd. USA 

Nano-drop machine Thermo Scientific. USA 

Gel electrophoresis system Scie-Plas. UK 

Gel documentation system BIO-RAD GEL DOC 2000
®
, USA 

Kone Lab  Thermo scientific, Finland  

Cell dyne ruby Abbott, USA 

 

The sequence of the PCR primers is shown in Table (2.2). All PCR primers were obtained 

from Metabion (Germany). 

     Table 2.2: PCR primers used in this study*. 

Primer Sequence 5՝ → 3՝ Amplicon size (bp) 

Exons 

1+2 

F: CAG CGG CAG CGG GTA TG 

R: GGC CCT GCA ACA ATT AGT TGG 
1123 

Exons 

3+4+5 

F: CAC CAA GGG TGG AGG ATG ATG 

R: AGA GTG GTG GGA GCA CTG 
1076 

Exons 

6+7 

F: CTG GGA GGG CGT CTG AAT G 

R: GCT CTG CCA CCC TGT GC 
597 

Exons 

8+9 

F: GCC CTT GAA CCA GGT GAA CA 

R: TCC AGT GCC CGC ACA CAG 
853 

Exons  

10+11+12+13 

F: CAC TGG TCC ACA CCC TGA GA 

R: GTG CAG GTG AGG TCA AT 
956 

*All primers used in this study were taken from (Sirdah et al., 2012). 

2.2 Methods 

2.2.1. Study population:  

The study population consisted of patients pre-diagnosed with G6PD deficiency based on 

clinical bases throughout the West Bank region. Patients had a history of at least one 

episode of hemolytic anemia or neonatal jaundice with a positive family history of G6PD 

deficiency. List of patients' names and contact information were obtained from the patients' 

registration files at their primary clinics and hospitals. 

2.2.2. Questionnaire: 

An interview-based questionnaire was developed for this study (Appendix A). The 

questionnaire was designed to collect demographic information and medical history of the 

patient. Patients were contacted by telephone and the study was briefly explained and then 

invited for participation in the study. In case of acceptance they were invited to attend the 
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nearest clinical care center. Patients were asked to provide the information needed to 

complete the questionnaire. After that, they were asked to donate a blood sample and to 

provide a written consent, and those who were younger than 18 years were accompanied 

by their guardian and the guardian was asked to sign a consent form.  

2.2.3. Specimen collection, transportation and preservation: 

 Two samples of venous blood were collected in a K3EDTA tubes from each patient. Each 

tube contained one to three milliliters of blood. Specimens were transported from the blood 

collection site to the main laboratory at Al-Makassed Islamic Charitable Hospital (MICH) 

in Jerusalem where CBC and G6PD activity were performed. Then samples were 

transferred to the laboratory at Al- Quds University where genomic DNA was extracted as 

well as DNA analysis. Samples were processed within one week of collection.  Specimens 

were transported in a temperature-insulating box and kept at 6 + 2°C from the time of 

specimen collection until the preparation of genomic DNA. 

2.2.4. G6PD quantitative enzymatic activity: 

The enzyme activity was measured using the commercially available G6PD screening test 

(Randox Laboratories, Ltd, Antrim, UK) at Al-Makassed Hospital in Jerusalem According 

to the manufacturer’s instructions, 0.2 ml of whole blood was washed with 2 ml of 0.9% 

NaCl solution, the sample was centrifuged at 3000 rmp for 10 minutes after that the 

supernatant was discarded, and this step was repeated three times. The washed RBCs were 

suspended in 0.5 ml of Digitonin and the sample was let to stand for 15 minutes at +4°C, 

the mixture was centrifuged again and the activity was measured on Kone lab machine. 

G6PD was expressed as U/gHb. The reference values for Randox G6PD screening test 

methodology is 7 to 20 U/gHb. 

2.2.5. Preparation of genomic DNA:  

Genomic DNA was prepared from the buffy coat using a commercially available kit 

(MasterPure™ DNA Purification Kit for Blood Version II, Epicentre, USA).  Briefly, 

whole blood was centrifuged at 3,500 x g for 3 – 5 minutes.  Then, 200 µL of the buffy 

coat were transferred into a 1.5 mL tube, mixed well.  This was followed by the addition of 

600 µL Red Cell Lysis (RCL) buffer. The tubes were, then, mixed by inversion three times 

with flicking the bottom of the tubes; in order to re-suspend the WBCs.  Then, the mixture 
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was incubated at room temperature for 10 minutes with shaking every 5 minutes.  After 

that, precipitation of the WBCs was achieved by centrifugation at 10,000 × g for 25 

seconds.  This, usually, resulted in a small white pellet that settled underneath a clear 

reddish supernatant, indicating a good RBC lysis step.  If the supernatant was not clear or 

the pellet contained a reasonable amount of intact RBCs, the RBC lysis step was repeated 

by adding additional RCL buffer.  The supernatant was discarded and the pellet was re-

suspended in about 25 µL of the left over. Then, the WBCs were lysed by emulsifying the 

cells in 300µL of the Tissue and Cell Lysis (TCL) solution.  The highly viscous solution 

was pipetted several times in order to insure complete cell lysis.  The next step was the 

protein precipitation step; that was achieved by salting out  and involved the addition of 

175  µL of the MPC solution (a highly concentrated; 6M, NaCl aqueous solution) followed 

by vigorous shaking of the solution for 15 – 30 seconds.  After that, clear clumps would 

appear indicating the success of the protein salting out process.  Retaining a clear DNA 

solution and getting rid of the protein debris was achieved by centrifugation at 10,000 ×g 

for 10 min.  Then, the supernatant was transferred into a new 1.5 mL tube and the former 

tube was discarded.  For precipitation of the DNA from the solution, 500 µL of absolute 

isopropanol were added to each tube, then, tubes were inverted 30 – 40 times.  The sample 

was centrifuged at 10,000 x g for 10 minutes, then, the supernatant was discarded and the 

pellet was rinsed twice with 500 µL of 70% ethanol and centrifuged each time for 5 min at 

13.000×g, and the pellet was left on (40 °C) in order to get rid of the volatile alcohol.  

Finally, hydration of the DNA was done by the addition of  80  µL of 1/2 TE buffer with 

pH 7.5, and the DNA solution was preserved at -20°C and later used for DNA 

amplification. 

2.2.6. Assessment of DNA concentration and purity: 

Assessment of the DNA concentration and purity were determined spectrophotometrically 

by the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific
®
).  Purity and DNA 

concentration were assessed by measuring the optical densities A260, A280, A230. A ratio 

A260/280 greater than (1.8) indicating a good purity and minimum protein interferences of 

the DNA preparation were used for PCR amplification.  All samples gave A260/230 ratio 

greater than (2.0); which infers acceptable salt interferences. 
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2.2.7. Gene Amplification: 

Gene amplification was achieved by Polymerase Chain Reaction (PCR) technique, where 

lyophilized master mix kit (AccuPower® HotSart PCR PreMix, BIONEER, Korea) was 

used. The PCR master mix contained a lyophilized mixture of Hot-start Taq DNA 

Polymerase, Buffer, MgSO4, dNTPs and the loading buffer.  Primers and DNA samples as 

well as the nuclease-free water were added to the mix (Table 2.3) The PCR components 

were mixed in the provided (0.2 mL) test tubes and the reactions were run using a thermal 

cycler (Esco Healthcare Ltd. USA) was used. Thermal cycling programs and the annealing 

temperatures of the primers are shown in (Table 2.3). 

          Table 2.3: Components of PCR reaction. 

Reaction component Volume (µL) 

Lyophilized master mix 0 

DNA sample (100 µg/mL) 3 

Forward Primer (10µM) 0.5 

Reverse Primer (10 µM) 0.5 

DEPC- Water 16 

Total Volume 20 

 

   Table 2.4: Thermal cycling program used for gene amplification. 

Step Duration Temperature (°C) 

Initial denaturation 5 min. 94 

35 cycles: 

Denaturation 

Annealing 

Extension 

 

40 sec. 

1min 

1min 

 

94 

57 

72 

Final extension  5 min 72 

 

The PCR products were analyzed by running the PCR product on 1% agarose gel at 100 

Volts for 30 min. All bands were then purified from the gel. 

The criteria for mutation analysis depended on the prevalence of the given mutation in the 

Middle East area; we started with the most common mutation (i.e. G6PD Mediterranean) 

that exists in exon 6, to the less common ones. Homozygote females and positive males 

were not analyzed further, whereas, negative and heterozygote females and negative males 

underwent further investigations for the next most common mutations, and the same 

rhythm was followed towards the least common ones. 
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2.2.8. Gel purification: 

The gel was purified by cutting the DNA fragment from the agarose gel; the slice of DNA 

was weighed in a 1.5 ml micro-centrifuge tube. Then, three volumes of Gel Binding Buffer 

were added to one volume of the gel slice. The sample was then incubated at 60   C for 10 

minutes, and vortexed every 2-3 minutes during incubation for complete dissolving. After 

dissolving the gel slice, the color of the mixture must turn yellow indicating that the pH of 

the mixture is < 7.5 which means that the DNA fragment can effectively bind to the DNA 

binging filter. For increasing the typical yield, one volume of absolute isopropanol was 

then added to one volume of the gel slice, and the sample was mixed gently. After that, the 

mixture was transferred to the DNA binding column and centrifuged for 1 minute at 

13,000 rpm. Then, the flow-through was poured off and the DNA binding filter column 

was re-assembled with a 2.0 ml collection tube. For washing, 500 µl of Buffer 2 was added 

to the DNA binding column tube and centrifuged for 1 minute at 13,000 rpm. Then, the 

flow-through was poured off and the washing step was repeated twice. To remove the 

residual ethanol, the sample was centrifuged at 13,000 for 3 minutes, and then the DNA 

filter column was transferred to a new 1.5 ml micro-centrifuge tube. Finally, for elution 40 

µl of Buffer was added to the center of the binding filter column and centrifuged for 1 

minute at 13,000 rpm. 

2.2.9. DNA Sequencing: 

The PCR products from the 2.2.7 section were subjected to cycle sequencing amplification 

using either the F or R primers or both. The PCR products were cleaned with sodium 

acetate and ethanol. The purified amplicon was suspended in formamide-based buffer and 

loaded onto the DNA sequencer. The DNA sequencing was performed at hy-Labs 

laboratories in Jerusalem. The DNA sequence results received for the sequencing lab was 

analyzed visually and then using the BLAST bioinformatics tool. 

2.2.10. Ethical considerations: 

The Ethical approval for this study was obtained from the Research Ethics committee at 

Al-Makassed Isalmic Hospital. In addition, all patients or their guardians in case of minors 

who accepted to participate in this study were briefed about the study objectives and asked 

to sign an informed consent.  
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2.2.11. Statistical analysis: 

Microsoft Excel 2013 was used to calculate means and standard deviations, and to 

calculate the percentages and to draw the pie charts. 
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Chapter Three: Results 

3. Results 

3.1 Study population 

Sixty seven blood samples were collected from patients pre-diagnosed with G6PD 

deficiency on clinical bases, including forty seven males (70.1 %) and twenty females 

(29.9 %), from the West Bank region. The patients' aged ranged from one day to 47 years 

(Appendex B).  All patients enrolled in this study were tested for G6PD enzyme activity 

and all patients had an activity result below the normal range (7.0-20 U/gHb). Based on the 

results of the G6PD quantitative enzymatic activity these patients were all included in this 

study. 

Figure (3.1) shows the distribution of the patients participating in this study based on their 

residency among cities of the West Bank. The highest percentage of G6PD deficiency 

patients was found in Jerusalem (50.7%, 34 of 67), while the lowest percentage of patients 

was found in Qalqilya (1.5%, 1 of 67) (Figure 3.1). However, the distribution of patients 

based on the mother’s origin also showed that the highest proportion of patients 

participating in this study was from Jerusalem (21 of 67 ), and the lowest proportion was 

from Haifa and Qalqilya with the same percentage of 1.5 % for each city (Figure 3.2). 
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Figure 3.1: Distribution of G6PD deficiency patients based on residency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Distribution of G6PD deficiency patients based on mother’s origin. 

  

3.2 PCR and DNA sequencing  

The 5 amplicons spanning the 13 exons of G6PD gene were amplified by PCR. A 

representative agarose gel of these amplicons is shown in Figure (3.3A). The amplicons 

were purified from agarose gels and used for DNA sequencing (Figure 3.3). 
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Figure 3.3: Mutation detection in G6PD gene. A) Different amplicon sizes of G6PD exons 

in agarose gel 1%. B) Sequence results for a heterozygous female with the Mediterranean 

variants (563 C>T). C) A normal sequence result (563 C). 

3.3 Detection of G6PD mutations  

A total of 6 variants were detected in the G6PD gene among the study patients. The exonic 

variations that were detected in this study were:  c.202 G>A, c.376 A>G, c.404 A>C, c.406 

C>T, c.563 C>T and c.1311C>T. All of these variations are summarized in Table (3.1). 

From the 6 exonic variants detected, 5 were missense mutations resulting in 5 different 

G6PD variants summarized in Table (3.1). G6PD Mediterranean was the most frequent 

variant with a frequency of 62.7% followed by G6PD A- and G6PD Asahi with the 

frequencies of 16.4% and 5.9% respectively, while the G6PD Valladolid and Cairo has had 

a low frequency of about 1.5 % each . 
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Table 3.1: Genetic variants detected in G6PD gene among the study patients. 

Variant ID
a
 Chr: bp

a
 

cDNA 

change 
AA change 

Exon 

number 
SNP type 

rs1050828 X:154536002 c.202 G>A p.Val68Met Exon 4 Non-synonymous 

rs1050829 X:154535277 c.376 A>G p.Asn126Asp Exon 5 Non-synonymous 

rs782322505 X:154535249 c.404 A>C p.Asn135Thr Exon 5 Non-synonymous 

rs970457 X:154535247 c.406 C>T p.Arg136Cys Exon 5 Non-synonymous 

rs5030868 X:154534419 c.563 C>T p.Ser188Phe Exon 6 Non-synonymous 

rs2230037 X:154532439 c.1311 C>T p.Tyr437= Exon 11 Synonymous 
a
ENSEMBL Genetic Variation available at: 

http://asia.ensembl.org/Homo_sapiens/Gene/Variation_Gene/Table?db=core;g=ENSG00000160211;r=X:154

531391-154547572. Accessed on August 24
th

, 2016. 

 

Table 3.2: Frequency of G6PD variants among study patients. 

G6PD variant Frequency, n (%) 

G6PD Med p.Ser188Phe 42 (62.7%) 

G6PD A- p.Asn126Asp + p.Val68Met 11 (16.4%) 

G6PD Asahi p.Val68Met 4 (5.9%) 

G6PD Cairo p.Asn135Thr 1 (1.5%) 

G6PD Valladolid p.Arg136Cys 1 (1.5%) 

Undetermined -- 8 (12%) 

 

The first exonic variation found in this study was c.563 C>T (G6PD Mediterranean), 

which was detected in exon 6, and changes an amino acid from serine (TCC) to 

phenylalanine (TTC) at position 188 (Figure 3.3), (Table 3.1). The majority of the study 

patients had this variation; 32 of 47 males, as well as 8 of 20 females with the 

heterozygous genotype CT and 2 of 20 females with the homozygous genotype TT. The 

allele frequency for the normal allele (C) was 0.30 in males and 0.70 in females (Table 

3.3). 

Table 3.3: Allele frequencies of G6PD variants in 67 patients with 

G6PD deficiency. 

Exon Variation 
Allele frequency 

in males (n=47) 

Allele frequency 

in females (n=20) 

Ex 4 202 G>A 
G: 0.83 

A: 0.17 

G: 0.82 

A: 0.18 

Ex 5 

367 A>G 
A: 0.85 

G: 0.15 

A: 0.89 

G: 0.11 

404 A>C 
A: 0.98 

C: 0.02 

A: 0.00 

C: 0.00 

406 C>T 
C: 0.98 

T: 0.02 

C: 0.00 

T: 1.00 

Ex 6 563 C>T 
C: 0.32 

T: 0.68 

C: 0.70 

T: 0.30 

 

http://ensembl/
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The c.202 G>A variation that is located in the coding region of exon 4, and results in the 

change between the G and the A allele from a GTG codon to an ATG codon (Figure 3.4), 

and a change in amino acid from valine to methionine at position 68 (Table 3.1). It was 

found in 8 out of the 47 males, and 7 out of the 20 females. The allele frequency for 

normal allele (G) was 0.82 in males and 0.82 in females (Table 3.3). 

 

 

 

 

 

Figure 3.4: Sequence analysis of PCR products of exon 4 (c.202 G>A) 

 

The c.367 A>G (G6PD A) variation was detected and found in exon 5 at position 376 

resulting in an amino acid change from asparagine AAT to aspartate GAT at position 126 

(Figure 3.5), (Table 3.1). Five out of forty seven males carried this mutation, and 7 of 20 

females. The allele frequency for the normal allele A was 0.85 in males and 0.89 in 

females (Table 3.3). 

 

 

 

 

 

Figure 3.5: Sequence analysis of PCR products of exon 5 (c.367 A>G). 

Sequence analysis of PCR products of exon 5 also revealed the c.404 A>C (G6PD Cairo) 

variation the results in the amino acid change from asparagine (AAC) to threonine (ACC) 

at position 135 (Figure 3.6), (Table 3.1). This variation was detected in one male. The 

allele frequency for the normal allele (A) was 0.98 in males (Table 3.3). 



 

28 

 

 

 

 

 

 

 

Figure 3.6: Sequence analysis of PCR products of exon 5 (c.404 A>C) 

The last exonic variation detected in exon 5 in this study was c.406 C>T (G6PD 

Valladolid) that changes the amino acid arginine to cysteine C>T (figure 3.7), (Table 3.1). 

This variation was detected in one male, the allele frequency for the normal allele (C) was 

0.98 in males (Table 3.3).  

 

 

 

 

 

 

Figure 3.7: Sequence analysis of PCR products of exon 5 (c.406 C>T) 

3.4 Genotype-phenotype confirmation 

 Phenotypically, all patients with G6PD Mediterranean have an enzyme activity less than 

10 % (0.93 U/gHb) which is consistent with its classification as class ΙΙ. G6PD A- and 

G6PD Asahi patients have an enzyme activity between 10%-60% which is consistent with 

their classification as class ΙΙΙ with an enzyme activity of 3.45 U/gHb, 2.70, respectively 

(Table 3.4). 
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Table 3.4: Summary of G6PD enzyme activity. 

Variant 
Enzyme Activity, U/g Hb 

( Reference range: 7-20 U/gHb) 

G6PD Mediterranean 0.39 + 1.95 

G6PD A- 3.45 + 3.45 

G6PD Asahi 2.70 + 1.6 

G6PD Valladolid 2.2 

G6PD Cairo 2.3 

 

3.5 Undetected basis for G6PD deficient samples 

The genetic cause for G6PD deficiency in seven patients was not determined. No 

mutations were detected across the 13 exons and exon/intron junctions of G6PD gene and 

the underlining G6PD mutations remain unknown in these samples. Further analysis of the 

promoter region and intronic sequences may help understand the genetic basis of G6PD 

deficiency in these samples.  
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Chapter Four: Discussion 

4. Discussion 

Sixty seven patients were screened for mutations in the G6PD gene, including forty seven 

males (70.1 %) and twenty females (29.9 %) from the West Bank region, Palestine. The 

highest percentage of G6PD deficiency patients was found in Jerusalem (50.7%, 34 of 67), 

while the lowest percentage of patients was found in Qalqilya (1.5%, 1 of 67).  While the 

distribution of patients based on the mother’s origin also showed that the highest 

proportion of patients participating in this study was from Jerusalem (21 of 67 ), and the 

lowest proportion was from Haifa and Qalqilya with the same percentage of 1.5 % for each 

city. 

 In this study, five missense mutations were detected resulting in 5 different G6PD 

variants; G6PD Mediterranean was the most frequent variant with a frequency of 62.7% 

followed by G6PD A- and G6PD Asahi with a the frequencies of 16.4% and 5.9% 

respectively, while the G6PD Valladolid and Cairo has had a low frequency of about 1.5 

%. 

The c.563 C>T mutation (G6PD Mediterranean) was found in 42 of the 67 patients (67%) 

participating in this study (32hemizygous males, 8 heterozygous females and 2 

homozygous females). According to the World health Organization (WHO) classification 

of G6PD variants, G6PD Mediterranean is grouped under class ΙΙ variants, which have an 

enzyme activity less than 10 %. In the present, study all patients with this variant were 
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found to suffer from neonatal jaundice or favism. The enzyme activity for male patients 

and homozygous females was 0.93 + 1.95 U/gHb (normal range 7-2 U/gHb). 

G6PD Mediterranean is found Arabs, Italians, Greeks, other nations in the Mediterranean 

area, as well as the Middle Eastern, African and Asian ethnic groups. (Kurdi-Haidar et al., 

1990). The highest incident is found among Kurdish Jews (70%) (Beutler, 1994). In 

addition, Italy has a frequency of G6PD deficiency of 60% (Martinez di Montemuros et al., 

1997), Turkey 80% (Oner et al., 2000), and India 60% (Sukumar, Mukherjee, Colah, & 

Mohanty, 2004). The percentage of G6PD Mediterranean in the patients in this study (67 

%) is consistent with findings among other Arab  populations in the region; for example, 

Saudi Arabia (89.1 %) (Al-Jaouni et al., 2011), Kuwait (74.2%) (Alfadhli et al., 2005), Iraq 

(74.3%) (Al-Musawi et al., 2012), and Jordan (76.2%) (Al-Sweedan & Awwad, 2012), but 

with a lower percentage in a study conducted in Gaza Strip (35.4%) (Sirdah et al., 2012). 

c.202 G>A and c.376 A>G were detected in exon 4 and 5, respectively; these two point 

mutations give rise to what is called G6PD A- (Town et al., 1992). They were found in 

16.4 % of the study patients (5 males and 6 females). Studies from Jordan reported that 

G6PD A- had a percentage of (19%) (Al-Sweedan & Awwad, 2012), while a study from 

Gaza had a higher percentage of G6PD A- among their populations study (28.5%) (Sirdah 

et al., 2012). In addition,  studies done on Arabic populations in the region showed a lower 

frequency of G6PD A-  compared to our results, for example; Saudi Arabia  had a 

frequency of 5.8% (Al-Jaouni et al., 2011), and a study done on a Kuwaiti population had a 

frequency of 12.4% (Alfadhli et al., 2005). Furthermore, prevalence rates for this variant is 

2% in Turkey (Oner et al., 2000), 3.7% in Italy (Martinez di Montemuros et al., 1997), and 

46% in Algeria (Nafa et al., 1994). According to the WHO classification of G6PD variants, 

G6PD A- is grouped under class ΙΙΙ variants, which are characterized by a moderate to 

mild deficiency in the enzyme activity (10 % - 60%). Enzyme activity for patients with the 

G6PD genotype was 3.45 + 3.2 U/gHb (normal range 7-20 U/gHb). The clinical 

manifestation among the patients with this variant was neonatal jaundice or favism but 

with a lower frequency then that seen with the patients with the Mediterranean genotype  

 The c.202 G>A mutation was found in exon 4 and results in an amino acid change from 

valine to methionine. This mutation was named G6PD Asahi, it was found in 3 males and 

one female (5.9 %) of the study population. This mutations was reported in a Jordanian  

study with a percentage of 3.6 % (Karadsheh et al., 2005). G6PD Asahi is grouped under 
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class ΙΙΙ variants with an enzyme activity from 10% - 150% which is consistent with our 

result (2.7 + 1.6 U/gHb). Patents with this variant suffered from favism or neonatal 

jaundice. 

As for G6PD Cario (c.404 A>C) a variation located in exon 5 was found in one male 

patient from Nablus (1.5 % of the study patients), with an enzyme activity of about 2.3 

U/gHb, and suffered from favism. This mutation was reported  once in a Jordanian study 

with a percentage of 1.3 % (Al-Sweedan & Awwad, 2012), and with a higher percentage in 

a study done on patients from Gaza ( 19.6 %) (Sirdah et al., 2012). 

The c.406 C>T variation located in exon 5 resulting in an amino acid change from 

Arginine to Cysteine at position 136 is known as G6PD Valladolid, it was found in one 

male patient (1.5%) from Jerusalem and suffered from neonatal jaundice with a positive 

family history of G6PD deficiency. with an enzyme activity of about 2.2 U/gHb. This 

mutation was reported previously in two cases in a Jordanian study with a percentage of 

7.1 % (Karadsheh et al., 2005). Table 4.1 shows a comparison of the G6PD variants found 

in the presents study and with the Middle Eastern and regional populations. 

Table 4.1: Comparison of common G6PD variants in this study with Middle Eastern and regional 

populations.  

Country 

G6PD Variant  

Mediterranean 

% 

A- 

% 

Asahi 

% 

Valladolid 

% 

Cairo 

% 
References 

West Bank 62.7 16.4 5.9 1.5 1.5 Present study 

Gaza Strip 35.4 28.6 - - 19.6 (Sirdah et al., 2012) 

Jordan 76.2 19 3.6 7.1 1.6 
(Al-Sweedan & Awwad, 

2012) 

KSA 89.1 5.8 - - - (Al-Jaouni et al., 2011) 

Kuwait 74.2 12.4 - - - (Alfadhli et al., 2005) 

Iraq 74.3 6.6 - - - (Al-Musawi et al., 2012) 

Algeria 23 46 - - - (Nafa et al., 1994) 

Turkey 80-84.2 4-7 - - - (Oner et al., 2000) 

Israeli 

Jews 
83.3-95.5 - - - - 

(Kurdi-Haidar et al., 

1990) 

  

In conclusion, this study characterizes the molecular heterogeneity of G6PD variants 

among Palestinians the West Bank. Among these, G6PD Mediterranean (c.563 C>T) was 
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the most common in our patients (67%), followed by G6PD A- (c.202 G>A + c.376) with a 

percentage of 16.4 %, and then G6PD Asahi (c202 G>A) with a percentage of 5.9 %, and 

an equal percentage of 1.5 % for G6PD Cario (c.404 A>C), and G6PD Valladolid (c406 

C>T). Phenotypically all patients with certain mutations found have had an enzyme 

activity result consistent with their classification as class ΙΙ or class ΙΙΙ. This is the first 

study of G6PD genotypes in the West Bank. 
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Appendices 

Appendix A 

 استببنة

يبجغزٛشفٙ ثشَبيج انعهٕو انطجٛخ انًخجشٚخ / يغبس عهى انذو فٙ دائشح انعهٕو  غبنجخ -اًٚبٌ ٔنٛذ اثٕصاْشّٚ –اَب انطبنجخ 

 جبيعخ انقذط . -كهّٛ انذساعبد انعهٛب -انطجٛخ انًخجشٚخ

أيب ٚعشف ثًشض انزفٕل أ اًَٛٛب  G6PDاقٕو ثجحش ثعُٕاٌ رحذٚذ انطفشاد انجُٛٛخ انًغججّ نًشض َقص اَضاٚى 

 ٍٛانفٕل فٙ انعفخ انغشثٛخ فٙ فهغط

Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency 

among Palestinians in the West Bank-Palestine 

ٔانز٘ ٚٓذف انٗ انزعشف عهٗ انجُٛبد انًغججّ نٓزا انًشض ٔرحذٚذْب ٔنذساعّ انعلاقّ ثٍٛ انًُػ انجُٛٙ ٔانًُػ  

عٍ أ٘ غفشاد جذٚذِ . حٛش عٛزى عحت عُٛبد دو يٍ انًشظٗ انًصبثٍٛ ثٓزا انظبْش٘ نٓزا انًشض , ٔانكشف 

انًشض ٔيٍ صى عٛزى عًم انفحٕصبد انٕساصّٛ انلاصيّ نهكشف ٔانزعشف عٍ انطفشاد انًغججّ نٓزا انًشض فٙ انعفّ 

 فهغطٍٛ. -انغشثّٛ

انحصٕل عهٛٓب عٕف رعبيم ثغشّٚ ربيّ نزنك فبٌ انعُٛبد انًغحٕثّ ٔانفحٕصبد انزٗ عزجشٖ عهٛٓب ٔانُزبئج انزٗ عٛزى 

ٔنغشض انجحش انعهًٙ فقػ ٔنٍ ٚزى الافصبح عٍ أ٘ َزٛجّ الا ثًٕافقّ انًشٚط َفغّ أ ٔنٙ ايشِ  ساجٛب يٍ انًشظٗ 

انزعبٌٔ لارًبو انجحش ٔانحصٕل عهٗ انُزبئج انًشجِٕ يًب قذ ٚغبْى فٙ انزشخٛص انجضٚئٙ ٔانجُٛٙ نٓزا انًشض يًب قذ 

 ٔيعشفّ يذٖ حذِ ْزا انًشض . ٚغٓم قٙ ٔصف

 ٔرقجهٕا فبئق الاحزشاو

 

 صاْشّٚ  ًٚبٌ اثٕإ

 دائشح انعهٕو انطجٛخ انًخجشٚخ /يغبس عهى انذو                     

 كهّٛ انذساعبد انعهٛب     

 جبيعخ انقذط
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استببن  

Questionnaire 
 

 ...……:Nameالاعى: ............................................................................................................

 

 :Residencyيكبٌ انغكٍ:........................................................................................................

 

 ………………:Phone numberانٓبرف:................................................................................

 

 ..………………………………………………………………………:DOBربسٚ  انًٛلاد:

 

 Gender:                                  Female    اَضٗ Male       انجُظ:                                     ركش 

 

 Fathers originاصم الاة :...................................................................................................

 

 Mothers originاصم الاو :....................................................................................................

 

 …………………………………………………………………………:Religionانذٚبَّ: 

 

 :No             Parents Consanguinity         لا Yes    ْم رٕجذ صهّ قشاثّ ثٍٛ الاة ٔالاو:          َعى 

 

 No          Family History          لا Yes ثبنعبئهّ           َعى G6PDْم ٕٚجذ احذ يصبة ثُقص اَضاثى 

 

 …...………………………………… Age of Onsetانعًش عُذ انزشخٛص ٔانجذ  ثظٕٓس الاعشاض

 

 G6PD Resultيغزٕٖ الاَضاٚى ثبنذو.......................................................................................... 

 

 Hb levelَغجّ انًٕٓٛجهٕثٍٛ ................................................................................................... 

 

 ..........................................................................................Clinical Manifestationانزشخٛص
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 Declaration                                                                                              ا 
 

 

 أ ٔنٙ ايشِ- ٚقعٙ ثقجٕل عحت عُّٛ دو يٍ انًشٚط لاجشا  –انزٕقٛ  فٙ اعفم ْزِ انٕسقّ يٍ قجم انًشٚط 

انفحٕصبد انلاصيّ نغشض انجحش انعهًٙ ٔالاغلا  عهٗ يهف انًشٚط يٍ قجم انجبحش اٌ نضو الايش لا ز أ٘ 

يعهٕيبد قذ رفٛذ انجحش ٔنّ جضٚم انشكش. 

 

 

 By signing the bottom of this page  by the patient or guardian entails the permission 

to take a blood sample from the patient to perform the necessary tests for the scientific 

research. And look into the patients medical files by the researcher if needed to take 

any information that may help the research, and we are very thankful. 

 

 

 

 Signatureا تى    / 

______________ 
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Appendix B 

Summary of the patients’ demographic and clinical information. 
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P
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1 Jerusalem M At birth Jenin Y Y NJ 0.3 16.9 Med 

2 Jerusalem M At birth Hebron N N NJ 1.7 17 Med 

3 Jerusalem M At birth Jerusalem N Y NJ 2.2 10.5 Valladolid 

4 Jerusalem M At birth Jerusalem Y Y NJ 2 16 Med 

5 Jerusalem M At birth Jerusalem Y N NJ 1.9 15.8 Med 

6 Jerusalem F At birth Jerusalem Y N NJ 6 15.1 G6PD A- 

7 Jerusalem M At birth Jerusalem N Y Nj 0.6 16.8 Med 

8 Ramallah F At birth Bethlehem N N NJ 4.1 16.7 Asahi 

9 Jerusalem F At birth Jerusalem N N NJ 6 16 ND 

10 Jerusalem M At birth Jerusalem N Y NJ 0.4 11.7 Med 

11 Jerusalem F At birth Jerusalem N Y NJ 4.7 11.4 Med 

12 Hebron M 4 Hebron N Y Favism 0.6 14.4 Med 

13 Ramallah M 2 Haifa Y N Favism 2 14.2 Asahi 

14 Nablus M 3 Nablus Y Y Favism 0.7 11.7 Med 

15 Nablus F 2 Nablus Y Y Favism 5.1 13.7 G6PDA- 

16 Nablus M 4 Nablus N Y Favism 0.5 12.9 Med 

17 Nablus M 5 Nablus N Y Favism 2.2 13.6 Asahi 

18 Nablus M 2 Nablus Y Y Favism 2.3 15.2 Cairo 

19 Nablus M 1 Nablus N Y Favism 0.7 12.2 Med 

20 Nablus F 6 Nablus Y Y Favism 5.8 12.1 G6PD A- 

21 Nablus M 7 Nablus N Y Favism 2.6 13.3 Asahi 

22 Nablus M 3 Nablus N Y Favism 0.7 12.4 Med 

23 Nablus F 4 Nablus N Y Favism 2.7 12.4 G6PD A- 

24 Nablus M 2 Nablus Y Y Favism 3.1 8.6 G6PD A- 

25 Bethlehem F 7 Bethlehem N Y Favism 1.3 12.2 Med 

26 Bethlehem M 6 Bethlehem N Y Favism 0.1 13.2 Med 

27 Hebron M 3.5 Hebron N Y Favism 0.8 14.9 G6PD A- 

28 Jerusalem F 6 Jerusalem Y Y Favism 3.9 10.8 G6PD A- 

29 Jerusalem M 7 Jerusalem Y Y NJ 4.2 15.1 G6PD A- 

30 Jerusalem F 2.6 Jerusalem Y Y Favism 1.8 12.8 G6PD A- 

31 Jerusalem M 25 Hebron N Y Favism 0.09 14.4 Med 

32 Jerusalem F 4 Hebron N Y Favism 1.2 12.7 Med 

33 Jerusalem M 10 Jerusalem N Y Favism 0.7 15.7 ND 

34 Jerusalem M 1 month Hebron Y N NJ 1.8 12.9 ND 

35 Jerusalem M At birth Jerusalem N N NJ 0.5 17.5 Med 

36 Jerusalem F 20 Hebron N Y Favism 0.4 12 Med 
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37 Hebron M 5 Hebron N Y Favism 0.4 11.9 Med 

38 Ramallah M 11 Ramallah N N Favism 1.5 14.9 G6PD A- 

39 Ramallah M 2 Ramallah Y Y Favism 3.1 15.3 G6PD A- 

40 Jerusalem F 2 days Hebron N Y NJ 0.9 17.3 Med 

41 Jenin M 6 Jenin Y Y Favism 6.1 12.9 ND 

42 Jerusalem M at birth Bethlehem N Y NJ 0.12 18.1 Med 

43 Jerusalem M at birth Jerusalem N Y NJ 0.05 16.8 Med 

44 Jerusalem M 1 weak Hebron N Y NJ 3.3 11.6 Med 

45 Jerusalem M 3 Hebron N Y Favism 0.3 13.2 Med 

46 Jerusalem M 4 Hebron N Y Favism 0.6 12.3 Med 

47 Ramallah M 3 Jenin Y Y Favism 0.1 15.9 Med 

48 Jerusalem F at birth Hebron N N NJ 5.3 21.4 G6PD A 

49 Jerusalem M at birth Jerusalem N N NJ 0.02 11 Med 

50 Jenin M 6 Jenin Y Y Favism 0.5 11.6 Med 

51 Jenin M 8 Jenin N N Favism 0.4 14.3 Med 

52 Gaza M 2.5 Gaza N N favism 4.7 4.06 ND 

53 Jerusalem M At birth Ramallah N N NJ 3.8 16.5 Med 

54 Jenin M 12 Jenin N N Favism 0.7 12.7 Med 

55 Qalqilya M 4 Qlqilya N N Favism 0.02 13.8 Med 

56 Jenin F 2 Jenin N Y Favism 1.3 11.9 Med 

57 Jenin M At birth Jenin N Y NJ 3 11.6 Med 

58 Gaza M 3 Gaza Y Y Favism 2.2 12.1 Med 

59 Jerusalem F At birth Jerusalem N N NJ 6.3 16.3 Med 

60 Jerusalem M At birth Jerusalem N N NJ 1.3 15.9 Med 

61 Jenin F 3 Jenin N N Favism 4.4 12.5 Med 

62 Jenin M 2 Jenin N Y Favism 5.1 14.9 ND 

63 Jerusalem M 4 Jerusalem N Y Favism 0.3 12.1 Med 

64 Hebron F 5 Hebron N N Favism 5.3 13.4 Med 

65 Jerusalem M 7 Jerusalem N N Favism 2 12.2 Med 

66 Jerusalem F at birth Hebron N N NJ 4.3 17.3 Med 

67 Jerusalem F 8 Jerusalem N Y Favism 3.9 10.3 ND 

M: Male, F: Female, Y: Yes, N: No, NJ: Neonatal Jaundice, Med: Mediterranean, ND: Not Detected. 
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 ا ملخص

في  ا فلسط ني ا شعبفىسفبت في  6 جلىكىز امن  د وج نا ه  ةنبزعنقص  تىص ف ا جزيئي ا 

 فلسط ن – ا ضفة ا غ ب ة

 إعداد الطالبة: إيمان وليد طالب أبو زاهرية

 إشراف الدكتور: محمود عبد الرحمن سرور

 

( ْٙ أكضش الاظطشاثبد الإَضًٚٛخ انجششٚخ G6PDفٕعفبد ) 6انٓٛذسٔجٍٛ يٍ انجهٕكٕص إٌ َقص إَضٚى َبصعخ 

َٕ  فٙ يخزهف انشعٕة. إٌ  400يزعذد الأشكبل نهغبٚخ؛ فقذ رى رعشٚف أكضش يٍ  G6PD شٕٛعب. ٔ حٛش أٌ إَضٚى

نى ٚزى َشش أ٘ دساعخ  ْٕ يصذس قهق عهٗ انصحخ انعبيخ فٙ انجهذاٌ انُبيٛخ ثشكم سئٛغٙ. إلا أَّ G6PD َقص إَضٚى

 فٙ انعفخ انغشثٛخ. G6PD حٕل انطفشاد انشبئعخ نجٍٛ

ثٍٛ انفهغطٍُٛٛٛ فٙ انعفخ  G6PD رٓذف ْزِ انذساعخ إنٗ انزعشف عهٗ الأًَبغ انٕساصٛخ الأكضش شٕٛعب يٍ الإَضٚى

 انغشثٛخ ٔدساعخ انعلاقخ ثٍٛ انًُػ انجُٛٙ ٔانًُػ انظبْش٘ نُقص ْزا الإَضٚى.

. رى قٛبط َشبغ إَضٚى G6PD ٔ عزٍٛ عُٛخ دو يٍ انًشظٗ يغجقٙ انزشخٛص ثُقص إَضٚى رى جً  عج  

نهعُٛبد ثٕعبغخ فحص الأَضًٚٛخ فٙ يغزشفٗ جًعٛخ انًقبصذ الإعلايٛخ انخٛشٚخ فٙ انقذط انششقٛخ. رى  G6PD ال

 .G6PD اعزخذاو رغهغم قٕاعذ انحًط انُٕٔ٘ نزشخٛص انعُٛبد نطفشاد

ثٍٛ انًشظٗ انزٍٚ شًهزٓى انذساعخ. كبَذ الا زلافبد فٙ  G6PD يزغٛشاد فٙ جٍٛ 6 رى انكشف عًب يجًٕعّ

 <c.202 G> A، c.376 A> G، c.404 A> C، C c.406 الإكغَٕبد انزٙ رى انكشف عُٓب فٙ ْزِ انذساعخ:

T، C c.563> T ٔ c.1311 C>Tيًب غفشاد يغهطخ  5انًكزشفخ، رى انكشف عٍ  الإكغَٕٛخ 6. يٍ انًزغٛشاد ال

انًزغٛش الأكضش شٕٛعب انجحش الأثٛط انًزٕعػ  G6PD . كبٌ G6PDيزغٛشاد يخزهفخ يٍ إَضٚى 5أدٖ إنٗ حذٔس 

ثهذ  G6PD ٪ عهٗ انزٕانٙ، فٙ حٍٛ أ5.5ٌ٪ ٔ 16.4ثُغجخ  G6PD A-  ٔG6PD Asahi ٪، رهٛٓب62.7ثُغجخ 

 ٪.1.5انٕنٛذ ٔانقبْشح كبَب ثُغجخ يُخفعخ حٕانٙ 

نذٚٓى َشبغ إَضًٚٙ ثُغجخ أقم انجحش الأثٛط انًزٕعػ  G6PD نجًٛ  انًشظٗ انزٍٚ ٚعبٌَٕ يٍ انظبْش٘ كبٌ انًُػ

٪ ْٕٔ 60-٪ 10نذٚٓى َشبغ إَضًٚٙ ثٍٛ  -G6PD A . يشظΙΙٗ ٪، ْٕٔ يب ٚزغق ي  رصُٛفٓب ظًٍ انطجقخ10يٍ 

ٚعبٌَٕ يٍ يزغٛشاد انجحش . ٔكبَذ َغجخ انُشبغ الإَضًٚٙ نهًشظٗ انزٍٚ ΙIΙ يب ٚزغق ي  رصُٛفٓب ظًٍ انطجقخ

 . G6PD A- 0.53 U/gHb  ٔ3.45U/gHb أقم يٍ أٔنئك انزٍٚ ٚعبٌَٕ يٍ الأثٛط انًزٕعػ 

ثٍٛ انفهغطٍُٛٛٛ فٙ انعفخ انغشثٛخ. ٔيٍ ثٍٛ ْؤلا ،  G6PD فٙ انخزبو، ْزِ انذساعخ ٚعٍٛ انزجبَظ انجضٚئٙ نًزغٛشاد 

c.202  -G6PD A) ٪(، ٚه67ّٛالأكضش شٕٛعب ثٍٛ انًشظٗ ) (c.563 C> T)انجحش الأثٛط انًزٕعػ  G6PD كبٌ

G> A + c.376 صى16.4( ثُغجخ ٔ ،٪ G6PD ( ْٙأعبC202 G ثُغجخ )1.5٪، َٔغجخ يزغبٔٚخ ثـ 5.5< أ ٪

(. ثبنُغجخ نهًُػ انظبْش٘، كبٌ َزٛجخ انُشبغ c406 C> Tثهذ انٕنٛذ ) G6PD( انقبْشح، c.404 A> Cٔ) G6PDنم



 

46 

 

. ْزِ انذساعخ ْٙ ΙΙΙ أٔ ΙΙ شظٗ انزٍٚ ٚعبٌَٕ يٍ ثعط انطفشاد ثًب ٚزفق ي  رصُٛفٓب ظًٍ فئخالإَضًٚٙ نكم انً

 فٙ انعفخ انغشثٛخ ٔفهغطٍٛ.G6PD الأٔنٗ عٍ انًُػ انجُٛٙ ل

  


