
Deanship of Graduate Studies 

 Al-Quds University  

 

 

 

Optimal Homotopy Asymptotic Method for Solving 

Fredholm Integral Equations of First and Second Kind 

 

Ayat Shaher Saeed Amro 

 

M.Sc. Thesis 

 

Jerusalem- Palestine 

1436/2015 



Optimal Homotopy Asymptotic Method for Solving Fredholm 

Integral Equations of First and Second Kind 

 

 

Prepared by : 

Ayat Shaher Saeed Amro 

 

B. Sc. Mathematics, Al-Quds Open University 

 Palestine 

 

Supervisor : Dr. Yousef Zahaykah 

 

A thesis Submitted in Partial Fulfillment of the Requirements for the 

Degree of Master of Mathematics at Al-Quds University 

 

1436/2015 





i 
 

Dedication 

 

I dedicate this thesis to my mother and my husband Nahed for 

their patience, understanding, support and a lot of love. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Declaration 

 

The work provided in this thesis , unless otherwise referenced , is the 

researcher's own work , and has not been submitted elsewhere for any other 

degree or qualification. 

 

Signature :  

Student's name : Ayat Shaher Saeed Amro  

Date : 26/05/2015 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Acknowledgement 

 

   I am thankful to my supervisor Dr. Yousef Zahaykah for his 

encouragement, guidance and support from the initial to the final level 

enabled me to develop and understand the subject. 

   I acknowledge Al-Quds University for supporting this work, and I wish 

to pay my great appreciation to all respected teachers and staff in the 

Department of Mathematics. 

   Lastly, I offer my regards to all of those who supported me during the 

completion of this thesis. 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 Table of Contents  

 

Page Contents 

 

i Dedication  

ii Declaration  

iii Acknowledgement 

iv Table of Contents  

vi List of Figures  

vii Abstract 

 ملخصال أ

1 Introduction 

6 Chapter One : Basic Theory 

7 1.1 Classification of Integral Equations 

7      1.1.1 Fredholm Integral Equations 

8      1.1.2 Volterra Integral Equations    

8      1.1.3 Singular Integral Equations  

9 1.2 Special Kinds of Kernels 

9      1.2.1 Separable or Degenerate Kernel 

9      1.2.2 Symmetric Kernel 

10 1.3 Linearity of Integral Equations  

11 1.4 Homogeneity of Integral Equations  

11 1.5 Eigenvalues and Eigenfunctions 

11 1.6 Review of Spaces and Operators 

31 1.7 Ill-Posed Problems  

29 1.8 The Fredholm Alternative 

36 1.9 The Method of Regularization 

 

38 

 

Chapter Two : 

Continuous Approximate Methods for Solving Linear 

Integral Equations of First and Second Kind 

18 2.1 Introduction   

19 2.2 The Adomian Decomposition Method 

43 2.3 The Homotopy Analysis Method (HAM) 

44       2.3.1 Description of (HAM) Method 

88      2.3.2 Linear Integral Equations of the First Kind 

51      2.3.3 Linear Integral Equations of the Second Kind 

53 2.4 Convergence of the Homotopy Analysis Method  

58 2.5 Basic Formulation of Optimal Homotopy Asymptotic 

Method (OHAM)  

 



v 
 

 

66 

Chapter Three : 

Optimal Homotopy Asymptotic Method (OHAM) for 

Solving the Linear Fredholm Integral Equations of the 

First Kind 

23 3.1 Introduction   

63 3.2 Application of OHAM to the Linear Fredholm Integral 

Equations of the First Kind 

29 3.3 Numerical Examples and Discussion 

 

87 

Chapter Four : 

Optimal Homotopy Asymptotic Method (OHAM) for 

Solving the Linear Fredholm Integral Equations of the 

Second Kind 

87 4.1 Introduction   

88 4.2 Application of OHAM to the Linear Fredholm Integral 

Equations of the Second Kind 

98 4.3 Numerical Examples and Discussion 

99 Conclusion 

100 References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Figures 

 

Page Title Figure 

79 The exact and OHAM solution for example 3.3.2 

 

3.1 

88 The exact and OHAM solution for example 3.3.2 

 

3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Optimal Homotopy Asymptotic Method for Solving Fredholm 

Integral Equations of First and Second Kind 

 

Abstract 

   Numerical Analysis is of great importance, for it is hard to find closed 

form solutions (exact solutions) for many applied engineering and scientific 

problems. Thus, it is natural to consider numerical procedures (algorithms) 

for obtaining approximate solutions of such problems.  

In this thesis, a semi-analytic approximating method, namely Optimal 

Homotopy Asymptotic Method (OHAM) is used to find continuous 

approximate solutions for Linear Fredholm Integral Equations of First and 

Second Kind.  

Within this work, the geometrical topological homotopy concept is used to 

construct algorithms for solving such integral equations. A homotopy 

equation, that depends on an embedding parameter belongs to interval 

       is assumed. As the parameter varies from   to   the solution of the 

homotopy equation (which is assumed to be a power series of the 

embedding parameter) varies continuously from a solution, which is easy to 

find, to the exact solution. The approximate continuous solution is obtained 

by truncating the series and using a finite number of its terms. Least 
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Squares Method is used to determine the so-called control-convergence 

scalars appear in the approximate solution.  

The derived algorithms are applied to solve several examples and the 

obtained solutions are compared with exact solutions. The results confirm 

the validity of OHAM and reveal that OHAM is effective, simple and 

explicit. 

After the classification of the integral equations we investigate some 

analytical and numerical methods for solving Fredholm Integral Equations 

of First and Second Kind such as the Adomian Decomposition Method and 

the Homotopy Analysis Method (HAM) which we study its convergence. 
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Introduction 

 

    Integral equations are among the most important mathematical topic in 

both pure and applied mathematics. It plays a very important role in 

modern science such as modeling and solving numerous problems in 

engineering, mechanics, and mathematical physics [2], [14]. 

   In fact, Integral equations are encountered in a variety of applications in 

many fields including continuum mechanics, potential theory, geophysics, 

electricity and magnetism, kinetic theory of gases, hereditary phenomena in 

physics and biology, renewal theory, quantum mechanics, radiation, 

optimization, optimal control systems, communication theory, 

mathematical economics, population genetics, queuing theory, and 

medicine [3] and [4]. Most of the boundary value problems involving 

differential equations can be converted into problems in integral equations 

that solved more effectively. They arise as representation formulas for the 

solutions of differential equations. Indeed, a differential equation can be 

replaced by an integral equation which incorporates its boundary 

conditions. As such, each solution of the integral equation automatically 

satisfies the correspondence boundary conditions. Integral equations also 

form one of the most useful tools in many branches of pure analysis, such 

as the theories of functional analysis and stochastic process [18], [2], [14]. 
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Even though, there are certain problems which can be formulated only in 

terms of integral equations. Since often it is hard or even impossible to find 

the exact solution of integral equations we resort to approximation and 

numerical solutions. For the numerical techniques and its related theory see 

Atkinson [10], Kress [18] and [5]. A computational approach to the 

solution of integral equations is therefore, an essential branch of scientific 

inquiry. 

   Mathematically, an integral equation is an equation in which an 

unknown function appears under an integral sign. There is a close 

connection between differential and integral equations, and some problems 

may be formulated either way. 

The most basic type of integral equation is called Fredholm equation of the 

first type; 

 ( )  ∫  (   ) ( )  

 

 

   

Here   is an unknown function,   is a known function and   is another 

known function of two variables; often called the kernel function (we take 

it to be square integrable function on            ). Note that the limits of 

integration are constants. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Differential_equation
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If the unknown function occurs both inside and outside of the integral, it is 

known as a Fredholm equation of the second type; 

 ( )   ( )   ∫  (   ) ( )  

 

 

  

The parameter   is an unknown factor, which plays the same role as the 

eigenvalue in linear algebra. Description of the theory of integral equations 

can be found in Kanwal [19], Kress [18] and [14]. 

   As mentioned, it is worth noting that integral equations often do not have 

an analytical solution, and must be solved numerically. One method to 

solve integral equations numerically requires discretizing variables and 

replacing the integral by a quadrature rule  

∑   (     ) (  )

 

   

  (  )                  

Where    are weights that depend on the quadrature rule and   ,    belong 

to the interval      .  

Then we have a system with   equations and   variables. By solving it we 

get the values of the   variables 

 (  )  (  )    (  )  
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   In recent years, much work has been carried out by researchers in 

mathematics and engineering in applying and analyzing novel numerical 

and semi analytical methods for obtaining solutions of integral equations, 

in particular of the first kind. Among these are the homotopy analysis 

method Liao [21] and [1], operational Tau method [12], homotopy 

perturbation method [22] , Adomian decomposition method [2], quadrature 

method [7],[17],[23] and [18], and automatic augmented Galerkin 

algorithms [20]. 

   In this thesis we will present analytic approximate solutions of Fredholm 

integral equations of first and second kinds. Namely we will consider 

"Optimal Homotopy Asymptotic Method (OHAM) ". This method is 

characterized by its convergence criteria which are more flexible than other 

methods, therefore it is applied successfully to obtain the solution of 

currently important problems in science. Further, the obtained results had 

shown its effectiveness, generalization and reliability [13], [16], [26].  Note 

that, throughout this thesis we will assume that the considered integral 

equations possess unique solution. 

The outline of the thesis is as follows: 

Chapter One is a general introduction  about integral equations, special 

kinds of kernels, linearity and homogeneity of integral equations, 
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eigenvalues and eigenfunctions, spaces and operators, the Riemann 

alternative,  and the method of regularization . 

Chapter Two introduces three continuous approximate methods for 

solving linear integral equations of first and second kinds, namely Adomian 

decomposition method, the homotopy analysis method (HAM) and the 

optimal homotopy asymptotic method (OHAM). We present the 

description of the first two methods and apply them to solve some 

examples. We discuss the convergence of the HAM method and the chapter 

end with the basic formulation of the OHAM method.  

Chapter Three is devoted to Optimal Homotopy Asymptotic Method 

(OHAM) for solving the linear Fredholm integral equations of  the first 

kind. We formulate the method for general Fredholm integral equation of 

the first kind. Several examples are proposed to demonstrate the efficiency 

and the accuracy of this method. 

In Chapter Four we applied optimal homotopy asymptotic method 

(OHAM) for solving the linear Fredholm integral equations of the second 

kind. As in chapter three, we formulate the method for general Fredholm 

integral equation of  the second kind. Two examples are discussed to 

demonstrate the validity of this technique. 
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Chapter One 

 

Basic Theory 

    An integral equation is an equation in which the unknown function  ( ) 

appears inside an integral sign. The most general form of the one 

dimensional linear integral equation reads 

 ( ) ( )   ( )   ∫  (   ) ( )   

 ( )

 ( )

                         (   ) 

where  ( ) and  ( ) are the limits of integration,   is a nonzero real or 

complex parameter, and  (   ) is a known function of two variables   and 

 ; called the kernel or the nucleus of the integral equation. The unknown 

function  ( ) that will be determined appears inside the integral sign. In 

many cases, the unknown function  ( ) appears inside and outside the 

integration as given in Equation (1.1). The functions  ( ) and  (   ) are 

given in advance. It is to be noted that the limits of integration  ( ) and 

 ( ) may be both variables, constants, or mixed Wazwaz [2]. 

An integral equation in which nonlinear operations are performed upon the 

unknown function is called nonlinear integral equation. If the unknown 

function depends on   variables, the integral equation is then an  -
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dimensional integral equation. Analogously, one can also consider system 

of integral equations. 

In this thesis we will consider only    - dimensional linear integral 

equations.    

  1.1 Classification of Integral Equations  

  Integral equations appear in many types. The types depend mainly on the 

limits of integration and the kernel of the equation as follows: 

1.1.1 Fredholm Integral Equations  

   For Fredholm integral equations, the limits of integration are fixed. 

Further, the unknown function  ( ) may appears only inside the integral 

equation as 

 ( )   ∫  (   ) ( )   

 

 

                                     (   ) 

   This integral equation is called Fredholm integral equation of first kind. 

However, for Fredholm integral equations of the second kind, the unknown 

function  ( ) appears inside and outside the integral sign and is given as 

 ( )   ( )   ∫  (   ) ( )       

 

 

                             (   ) 

If  ( )    then the integral equation is called homogeneous [19]. 
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1.1.2 Volterra Integral Equations 

   In Volterra integral equations, at least one of the limits of integration is a 

variable. For the first kind Volterra integral equations, the unknown 

function  ( ) appears only inside the integral sign; 

 ( )   ∫  (   ) ( )   

 

 

  

   However, Volterra integral equations of the second kind, the unknown 

function  ( ) appears inside and outside the integral sign. The second kind 

is represented by the form: 

 ( )   ( )   ∫ (   ) ( )  

 

 

  

Again if  ( )    then the integral equation is called homogeneous [2]. 

1.1.3 Singular Integral Equations 

When one of the limits of integration or both are infinite or when the kernel 

 (   ) becomes unbounded at one or more points in the interval of 

integration, the integral equation is called singular integral equation. 

For example, the integral equations 

 ( )   ( )   ∫   |   | ( )  
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 ( )   ∫
 

 ( )   ( )
 ( )  

 

 

           

where  ( ) is strictly monotonically increasing and differentiable function 

in some interval       and   ( )    for every   in the interval, are 

singular integral equations [2]. 

 

1.2 Special Kinds of Kernels 

1.2.1 Separable or Degenerate Kernel 

    A kernel  (   ) is called separable or degenerate if it can be 

expressed as the sum of a finite number of terms, each of which is the 

product of a function of   only and a function of   only, as 

 (   )  ∑  ( )  ( )

 

   

 

where the functions   ( ) and   ( )are linearly independent function. 

1.2.2 Symmetric Kernel   

  If the kernel satisfies  (   )   (   ), then it is called symmetric kernel. 
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1.3 Linearity of Integral Equations  

   Linear integral equations are of the form 

 ( )   ( )   ∫  (   ) ( )  

 ( )

 ( )

 

where only linear operations are performed upon the unknown function 

inside the integral sign, that is, the exponent of the unknown inside the 

integral sign is one, for example 

 ( )  
 

 
  

 

 
 ∫(   ) ( )  

 

 

 

here the unknown function   appears in a linear form. 

   If the equation contains nonlinear functions of  ( ), such as   ,       , 

     ,   (     )   or the unknown function   under the integral sign has 

exponent other than one, the integral equation is called nonlinear, and they 

are of the form 

 ( )   ( )   ∫  (     ( ))  

 ( )

 ( )

  

for example 

 ( )    ∫(     )  ( )  

 

 

  

   It is important to point out that linear equations, except Fredholm integral 

equations of the first kind, give a unique solution if such a solution exists. 
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   However, solution of nonlinear equation may not be unique. Nonlinear 

equations usually give more than one solution and it is not usually easy to 

handle [2]. 

 

1.4 Homogeneity of Integral Equations  

   Integral equations are classified as homogeneous or inhomogeneous, as 

stated before, if the function  ( ) in the second kind of Volterra or 

Fredholm integral equation is identically zero, the equation is called 

homogeneous. Otherwise it is called inhomogeneous. Notice that this 

property holds for equations of the second kind only. 

For example 

 ( )    ∫(   )  ( )  

 

 

 

is inhomogeneous because  ( )    , whereas the following equation 

 ( )  ∫(     )  ( )  

 

 

 

is homogeneous because  ( )     

 

1.5 Eigenvalues and Eigenfunctions 

   The concepts of eigenvalues and eigenfunctions are central to the theory 

of integral equations. 
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If we write the homogeneous and linear Fredholm equation as 

 ( )   ∫ (   ) ( )  

 

 

  

we have the classical eigenvalue or characteristic value problem;   is the 

eigenvalue and the nontrivial solution  ( ) is itself called the 

corresponding eigenfunction or characteristic function, and their pair is 

known as the eigenpair of the integral equation. 

   Some major results about positive kernels are as follows [17]: 

(1) If the kernel  (   ) is continuous and positive for        , then 

the homogenous integral equation of the second kind has a characteristic 

value       which is positive, simple, larger in modulus than any other 

characteristic value.  

 (2) If    (   ) and    (   ) are two distinct continuous and positive 

kernels for         such that    (   )     (   ) , then their largest 

characteristic values satisfy      . 

(3) If  (   )     is a continuous symmetric kernel, then it has a nonzero 

characteristic value. 
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1.6 Review of Spaces and Operators  

Definition 1.1 Normed Space  

   A normed space   is a vector space with a norm defined on it. A norm on 

a vector space   is a real-valued function on   whose value at an     is 

denoted by ‖ ‖ and which has the properties 

(i) ‖ ‖     

(ii) ‖ ‖    if and only if      

(iii) ‖  ‖  | |‖ ‖  

(iv) ‖   ‖  ‖ ‖  ‖ ‖                   (Triangle inequality) 

here   and   are arbitrary vectors in   and   is any scalar. 

Definition 1.2 Metric Space 

A metric space is a pair (   ), where   is a set and d is a metric on   (a 

distance function on   ), that is, a function defined on     such that for 

all         we have : 

(i)   is real-valued, finite and nonnegative. 

(ii)  (   )       if and only if       . 

(iii)  (   )   (   )  

(iv)  (   )   (   )   (   )           (Triangle inequality) 
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Definition 1.3 Cauchy Sequence and Completeness 

   A sequence (  ) in a metric space   (   ) is said to be Cauchy or 

fundamental if for every     there is an    ( ) such that  

 (     )    for every        

  The space   is said to be complete if every Cauchy sequence in   

converges in  . 

Definition 1.4 Banach Space 

   A Banach space is a complete normed space . 

Definition 1.5 Inner Product Space, Hilbert Space 

   An inner product on a vector space   is a mapping of     into the 

scalar field   of   , that is , to every pair of vectors   and   it associates a 

scalar  

〈   〉  

called the inner product of   and  , such that for all vectors       and a 

scalar α we have 

(i) 〈    〉   〈   〉    

(ii) 〈   〉  〈   〉̅̅ ̅̅ ̅̅ ̅ 

(iii) 〈     〉  〈   〉  〈   〉 

(iv) 〈   〉    , 〈   〉    if and only if     

   An inner product on   defines a norm on   given by  

‖ ‖  √〈   〉 
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and a metric on   given by  

 (   )  ‖   ‖  √〈       〉 

   A vector space   together with an inner product defined on   is called an 

inner product space. 

   A Hilbert space is a complete inner product space. For example    with 

the inner product 〈   〉  ∑     ̅
 
    is a Hilbert space (over      ). 

(Here we mean that     (         ) and     (         )) We 

know that    is complete (in the standard norm, which is the one arising 

from the inner product just given) and so    is a Hilbert space [6].     

Definition 1. 6   -Functions and   - Spaces  

   The set of all functions  ( ) of the real variable   on an interval (   ) , 

where         , is called the function space   (   ),  ( ) is 

called an   -function, if  

∫| ( )|   

 

 

   

in the Lebesgue sense. We say that  ( ) is square integrable on an interval 

      if | ( )|  is integrable on        

   The set of   -functions forms a complete linear vector space , and with an 

appropriate norm and inner product the space    is a Hilbert space . 
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   The norm ‖ ‖  (the    norm) of an   -function   is defined as 

‖ ‖  [∫| ( )|   

 

 

]

 
 

 

Definition 1.7   -Space 

   The set of    -functions (where     ) generalizes     -space. Instead 

of square integrable, the measurable function   must be  -integrable, to be 

in   . 

On a measurable space  , the     norm of a function   is 

‖ ‖   [∫| ( )|   

 

]

 
 

 

   The   -functions are the functions for which this integral converges. 

   For    , the space of   -functions is a Banach space which is not 

a Hilbert space [17]. 

   In the case where    , we have   ( ) defined as 

  ( )                              ‖ ‖     

where 

‖ ‖           | ( )|           

Definition 1.8 Regularity Condition 

   A two-dimensional kernel function  (   ) is an   -function if the 

following conditions are satisfied: 
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(i) for each set of values of   and   in the square        , 

∬| (   )|     

  

  

   

(ii) for each value of   in      , 

∫| (   )|   

 

 

   

(iii)  for each value of   in      , 

∫| (   )|   

 

 

   

These are called the regularity conditions of the kernel  (   ) [19]. 

Definition 1.9  Operators 

   An operator       assigns to every function     a function     . 

It is therefore a mapping between two function spaces. 

   There are many kinds of operators such as differential operator, integral 

operator, binary operator, Hermitian operator and identity operator. 

Definition 1.10 Linear Operators 

   A linear operator   is an operator such that 

(i) the domain  ( ) of   is a vector space and the range  ( ) lies 

in a vector space over the same field, 
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(ii) for all      ( ) and a scalar   , 

 (   )         

 (  )       

Definition 1.11 Null Space 

The null space of a linear operator   is the set of all    ( ) such that 

    . 

Definition 1.12 Injective, Surjective and Bijective Operators 

   An operator    ( )    is said to be injective or one-to-one if different 

points in the domain have different images, that is, if for any  

        ( ),  

          implies             

or equivalently, 

                                        implies             

  An operator   is surjective or onto provided  ( ( ))   ; in other 

words, if for each            for some    ( )  

  An operator   is said to be bijective or bijection if it is both injective and 

surjective, see [6]. 

Definition 1.13 Inverse Operators 

   Let   and   be Banach spaces    ( )    an injective linear operator 

and  ( )   , then there exists a mapping  

     ( )   ( ) 
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given by 

   ( )     

  ( )   ; which maps every     ( ) onto that    ( ) for which 

    . 

   The mapping     is called the inverse of  . 

   We clearly have  

            for all    ( ) 

            for all     ( ). 

Definition 1.14 Continuity 

   Let   (   ) and   (   ̃) be metric spaces. An        is said to 

be continuous mapping at a point      if for every     there is a 𝛿    

such that  

 ̃(      )              for all   satisfying   (    )  𝛿 . 

  is said to be continuous mapping if it is continuous at every point of  .   

   Assume that   and   are normed spaces, and        . An operator 

       is said to be continuous operator if  

‖    ‖    

implies 

‖      ‖   . 
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Definition 1.15 Bounded Linear Operators [6] 

    Let   and   be normed spaces and    ( )    be a linear operator, 

where  ( )   . The operator   is said to be bounded if there is a real 

number   such that for all    ( ), 

‖  ‖   ‖ ‖  

Definition 1. 16 Coercive Operator 

Let   be a Hilbert space and let       be a bounded linear operator 

such that 〈    〉   ‖ ‖ 
  for all     where   be positive constant, then 

  called a coercive operator, see [18]. 

Theorem 1.1 A linear operator is continuous if and only if it is bounded .  

Proof: Let          be bounded and let (  ) be a sequence in   with 

        . Then from ‖   ‖   ‖  ‖ it follows that 

           . Thus,   is continuous at    , and because of the 

theorem, a linear operator is continuous if it is continuous at one element, it 

is continuous everywhere in  .  

Conversely, let   be continuous and assume there is no       such that  

‖  ‖   ‖ ‖ for all    . Then there exists a sequence (  ) in   with 

‖  ‖    and ‖   ‖   . Consider the sequence     ‖   ‖    . Then 

        , and since   is continuous,      ( )     

   . This is a contradiction to ‖   ‖    for all  . Hence,   is 

bounded, [18]. 



21 
 

Theorem 1.2 Finite Dimension [6] 

   If a normed space   is finite dimensional, then every linear operator on   

is bounded . 

Theorem 1.3 [6] 

Every finite dimensional subspace   of a normed space   is closed in  . 

Proof:   is a finite dimensional normed vector space. Hence   is complete. 

Let (  )    such that    ,                 

Since   is complete then      So   is closed.                                            

Theorem 1.4 (Inverse Operator) [6] 

   Let     be vector spaces, both real or complex. Let    ( )    be a 

linear operator with domain  ( )    and range  ( )   . Then: 

(i) The inverse      ( )   ( ) exists if and only if  

      implies    . 

(ii) If      exists, it is a linear operator. 

Theorem 1.5 (Open Mapping Theorem ) [16]  

   Let   and   be Banach spaces, and let       be a bijective bounded 

linear operator. Then a bijective         is a bounded linear operator. 

Theorem 1.6 (Geometric Series Theorem) [18] 

    Let   be a Banach space, and let   be a bounded operator from   into  , 

with ‖ ‖   . Then             is a bijective operator,  (   )   is a 

bounded linear operator, and  
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‖(   )  ‖  
 

  ‖ ‖
 

The series 

(   )   ∑  

 

   

 

is called the Neumann series, under the assumption ‖  ‖   , it converges 

in the space of bounded operators from   to  , see [18].   

Definition 1.17 Compactness 

   A metric space   is said to be compact if every sequence in   has a 

convergent subsequence. A subset   of   is said to be compact if   is 

compact considered as a subset of  , that is, if every sequence in   has a 

convergent subsequence whose limit is an element of  . 

A set     is called relatively compact if every sequence (  )    

contains a convergent subsequence.  

Theorem 1.7 (Finite Dimensional Domain or Range) [6] 

 Let   and   be normed spaces and       a linear operator. Then: 

(a) If   is bounded and     ( )   , the operator   is compact. 

(b)  If        , the operator   is compact. 

Proof : (a) let (  ) be any bounded sequence in  . Then the inequality 

‖   ‖  ‖ ‖‖  ‖ shows that (   ) is bounded. Hence (   ) is 

relatively compact. It follows that (   ) has a convergent subsequence. 

Since (  ) was an arbitrary bounded sequence in  , the operator   is 
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compact (   is compact if and only if it maps every bounded sequence (  ) 

in   onto a sequence (   ) in   which has a convergent subsequence). 

(b) follows from (a) by noting that        implies boundedness of   

(if a normed space X is finite dimensional, then every linear operator on X 

is bounded) and     ( )       (                 ).                                          

We mention that an operator   with        is often called an operator 

of finite rank.       

 

1.7 Ill-Posed Problems  

   For problems in mathematical physics, in particular for initial and   

boundary value problems for partial differential equations, Hadamard [9]  

postulated three properties : 

(1) Existence of a solution.  

. (2) Uniqueness of the solution  

(3) Continuous dependence of the solution on the data .  

   The third postulate is motivated by the fact that in all applications  

the data will be measured quantities. Therefore, one wants to make sure  

that small errors in the data will cause only small errors in the solution. A  

problem satisfying all three requirements is called well-posed [18]. 

   A Fredholm integral equation of the first kind has the form given in 

equation (1.2). 
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   These equations are inherently ill-posed problems, meaning that the 

solution is generally unstable. This ill-posedness makes numerical solutions 

very difficult, as a small error can lead to an unbounded error [17]. 

In research of the solution of this class of integral equations, it has been 

found that the eigenvalues of continuous Fredholm integral operators form 

a sequence that converges to zero. The solutions of Fredholm integral 

equations can be expressed in terms of the singular values of integral 

operators, where the singular values are the reciprocals of the square roots 

of the eigenvalues. As a result, those singular values that correspond to 

zero eigenvalues will become arbitrarily large [17].  

 This is justified as follows: It is known that when  (   ) is continuous, 

symmetric, and nondegenerate, the eigenvalue problem 

∫  (   ) ( )  

 

 

   ( ) 

has an infinite number of real eigenvalues    such that           , with 

associated eigenfunctions   ( ). The function   ( ) can be normalized to 

  ( ) such that 〈  ( )   ( )〉   . Thus,  

∫ (   )  ( )  

 

 

     ( )                                (   ) 

Both  ( ) and  ( ) can be expanded in a series of   ( ) as 

 ( )  ∑  

 

   

  ( )          〈    〉  ( )  ∑  

 

   

  ( )      (   ) 
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Substituting (1.6) and (1.7) into equation (1.2) and comparing coefficients 

of   ( ) on both sides, we get 

           

Hence,  ( ) can be expressed as 

 ( )  ∑
  
  

 

   

  ( )                                      (   ) 

In practice, we use an approximation of the series (1.8) by truncating it to   

terms; thus, 

  ( )   ∑
  
  

 

   

  ( )      

   Suppose that a small error 𝜖
 
 is introduced in the evaluation of   , 

resulting in an error 𝛿  ( )   in the values of   ( )  . Then  

         ( )    𝛿  ( )   ∑
(   𝜖

 
)

  

 

   

  ( )       𝛿  ( )   ∑
𝜖
 

  

 

   

  ( ) 

which in view of the orthonormality of   ( ) gives 

〈𝛿  ( )   𝛿  ( )  〉  ∑
𝜖 

 

  
 

 

   

 

   Thus, no matter how small the errors 𝜖
 
 are, the squared error in   ( ) 

will grow. 

   Another source of ill-posedness comes from the Riemann-Lebesgue 

lemma [24], which states that if any function  ( ) is square-integrable,  
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then 

   
   

∫ ( )    
  (   )

 
  

 

 

   

This result implies that if  ( ) is a solution of equation (1.2) and  (   ) is 

square-integrable, then  

 ( )      
  (   )

 
 for     

will satisfy equation (1.2) for any value of  . 

   Another aspect of the problem is that if  

∫ (   ) ( )  

 

 

   

for any          and  ( ) is any solution of equation (1.2), then 

 ( )   ( ) is also a solution of equation (1.2). Moreover, if both 

 ( ) and  (   ) are continuous but  ( ) is not continuous, then equation 

(1.2) is not solvable [17].  

Definition 1.18 

   Let          be an operator from a subset   of a normed space   into 

a subset   of a normed space  . The equation  

                                                             (   ) 

is called well-posed or properly posed if   is bijective and the inverse 

operator            is continuous. Otherwise, the equation is called ill-

posed or improperly posed.   
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   According to this definition we may distinguish three types of ill-posed-

ness . If   is not surjective, then equation (1.9) is not solvable for all 

   . If   is not injective, then equation (1.9) may have more than one 

solution . Finally, if            exists but is not continuous, then the 

solution     of Equation (1.9) does not depend continuously on the data     

The latter case of instability is the one of primary interest in the study of ill-

posed problems. We note that the three properties, in general, are not 

independent. 

   For a long time the research on improperly posed problems was 

neglected, since they were not considered relevant to the proper treatment 

of applied problems.    

   Note that the well-posedness of a problem is a property of the operator  

  together with the solution space   and the data space   including the  

norms on   and  . Therefore, if an equation is ill-posed one could try to  

restore stability by changing the spaces   and   and their norms. But, in  

general, this approach is inadequate, since the spaces   and  , including  

their norms are determined by practical needs. In particular, the space    

and its norm must be suitable to describe the measured data and, especially 

the measurement errors [18]. 
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Example1.1 By the Riemann-Lebesgue lemma, we know 

∫  (   )    (  )  

 

 

          

which means that high frequency noise in a solution may be screened out 

by the integral operator, or it is equivalent to say that a very small change 

in the data   (in Equation(1.2))  may lead to a large change in the solution 

  (in Equation(1.2)). 

Thus, we know the problem of Fredholm integral equation of first kind is 

ill-posed.  

Theorem 1.8 

 Let   and   be normed spaces and let          be  

a compact linear operator. Then the equation of the first kind  

       is improperly posed if   is not of finite dimension [18] . 

Proof : We prove the theorem by contradiction. 

To this end let   be of infinite dimension and assume that     exists and 

continuous. That is        is properly posed. Then     is bounded. 

Since   is compact then               is compact. Hence X is of 

finite dimension, contradiction. Therefore        is improperly posed if 

  is not of finite dimension.                                                                        
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1.8 The Fredholm Alternative 

    In the early 1900s, Ivar Fredholm gave necessary and sufficient 

conditions for the solvability of a large class of Fredholm integral equations 

of the second kind; and with these results, he then was able to give much 

more general existence theorems for the solution of boundary value 

problems. 

   The basic theorems of the general theory of integral equations, which 

were first presented by Fredholm, correspond to the basic theorems of 

linear algebraic systems [10]. 

   In this section we state and prove the most important result of Fredholm. 

Theorem 1.9, [17], If   is regular value , then both (1.3), and its transposed 

equation 

 ( )   ( )   ∫  (   ) ( )   

 

 

 

are solvable for any free term  ( ), and both equations have unique 

solutions. The associated homogeneous equation, with  ( )   , has only 

the trivial solution. 

Theorem 1.10, [17], The nonhomogeneous Fredholm integral equation of 

the second kind (1.3) is solvable if and only if the free term  ( ) satisfies 

the condition 
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∫ ( )  
 ( )  

 

 

                   

where    
 ( )  denotes the complete set of linearly independent solutions 

of the associated transposed equation . 

Theorem 1.11, [17], If   is an eigenvalue, then both the homogeneous 

Fredholm integral equation of the second kind (1.3) and the transposed 

equation have nontrivial finitely many solution. 

Theorem 1.12, [17], The Fredholm integral equation of the second kind 

(1.3) has at most countably many eigenvalues whose only possible 

accumulation point is the point at infinity. 

For more details see [17], [19]. 

Theorem 1.13 (Fredholm Alternative), [10] 

   Let   be a Banach space, and let       be compact. Then the 

equation (   )         has a unique solution     if and only if 

the homogeneous equation (   )    has only the trivial solution 

   . In such a case, the bijective operator         has a bounded 

inverse (   )
  

 . 

Proof : We remark that the theorem is a generalization of the following 

standard result for finite dimensional vector spaces  : If   a matrix of 

order  , with      or   , the linear system      has a unique 
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solution     for all     if and only if the homogeneous linear system 

     has only the zero solution    . 

(i) Let   be of finite-rank and bounded, and let              be a basis 

for       ( ). Rewrite the equation (   )    as 

  
 

 
                                                   (    ) 

If this equation has a unique solution    , then 

  
 

 
                                              (    ) 

For some uniquely determined set of constants           . 

   By substituting (1.11) into equation (1.10), we have  

 {
 

 
  

 

 
∑    

 

   

}  
 

 
   

 

 
 ∑     

 

   

    

Multiply by  , and then simplify to obtain 

 ∑    

 

   

 ∑     

 

   

                                 (    ) 

Using the basis      for      ( ), write 

   ∑    

 

   

               ∑     
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The coefficients      and       are uniquely determined. Substituting into 

(1.12) and rearranging, 

∑{    ∑     

 

   

}   ∑    

 

   

 

   

 

By the independence of the basis elements   , we obtain the linear system 

    ∑     

 

   

                                            (    ) 

Claim: This linear system and the equation (   )    are completely 

equivalent in their solvability with (1.11) furnishing a one-to-one 

correspondence between the solutions of the two of them. 

   We have shown above that if   is a solution of (   )   , then 

(          ) is a solution of (1.13). In addition, suppose    and    are 

distinct solutions of (   )   . Then  

                   and                                          

are also distinct vectors in      ( ), and thus the associated vectors of 

coordinates (  
( )

   
( )

     
( )

) and (  
( )

   
( )

     
( )

)  

    ∑   
( )
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must also be distinct. 

   For the converse statement, suppose (          ) is a solution of (1.13). 

Define a vector     by using (1.11), and then check whether this   

satisfies the integral equation (1.10): 

(   )   {
 

 
  

 

 
∑    

 

   

}  
 

 
   

 

 
 ∑     

 

   

 

            
 

 
{ ∑        ∑     

 

   

 

   

} 

   
 

 
{∑     

 

   

 ∑    

 

   

 ∑  

 

   

∑     

 

   

}         

   
 

 
∑{       ∑     

 

   

}  

 

   

 

                                                                

because         ∑      
 
         for               

Since of the linear independence of the basis vectors             , 

distinct coordinate vectors (          ) lead to distinct solution vectors   

in (1.11). This complete the proof of the above claim. 



34 
 

   Now consider the Fredholm alternative theorem for (   )    with 

this finite rank  . Suppose the bijective operator        . Then, 

    (   )     . 

For the converse, assume (   )    has only the solution    , and 

we want to show that (   )    has a unique solution for every    . 

Consider the associated linear system (1.13). It can be shown to have a 

unique solution for all right-hand sides (          ) by showing that the 

homogeneous linear system has only the zero solution. The latter is done by 

means of the equivalence of the homogeneous linear system to the 

homogeneous equation (   )   , which implies    . But since 

(1.13) has a unique solution, so must (   )   , and is given by (1.11). 

Note that (   )
  

is bounded by the Open Mapping Theorem . 

   (ii) Assume now that ‖    ‖   , with    finite rank and bounded. 

Rewrite (   )    as 

[  (    )]                                       (    ) 

Pick an index     for which  

‖    ‖  | |  

and fix it. By the Geometric Series Theorem 
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   [  (    )]
  

 

exists and is bounded, with 

‖  ‖  
 

| |  ‖    ‖
 

The equation (1.14) can now be written in the equivalent form  

                                                  (    ) 

The operator      is bounded and finite rank. The boundedness follows 

from that of     and   . To show it is finite rank, let      (  )  

                . Then  

     (    )                          

a finite dimensional space. 

Assume (   )     implies    . This yields 

(      )     implies     

But from part (i), this says (      )    has a unique solution   for 

every    , and in particular, for       as in (1.15). By the 

equivalence of (1.15) and (   )   , we have (   )    is 

uniquely solvable for every    .                                                       
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1.9 The Method of Regularization 

The method of regularization consists of replacing ill-posed problem by 

well-posed problem. The method of regularization transforms the linear 

Fredholm integral equation of the first kind (Equation 1.2) to the 

approximation Fredholm integral equation 

   ( )   ( )  ∫ (   )  ( )  

 

 

                            (    ) 

where   is small positive parameter. It is clear that (1.16) is a Fredholm 

integral equation of the second kind that can be written  

  ( )  
 

 
 ( )  

 

 
∫ (   )  ( )  

 

 

                            (    ) 

Moreover, the solution   ( ) of Equation (1.16) converges to the solution 

 ( ) of Equation (1.2) as     according to the following lemma [2]: 

Lemma 1.1 

Suppose that the integral operator of (1.2) is continuous and coercive in the 

Hilbert space where  ( )  ( )  and   ( ) are defined, then: 

(i) |  | is bounded independently of  , and 

(ii) |  ( )   ( )|    when      
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In summary, by combining the method of regularization with any of the 

methods used for solving Fredholm integral equation of the second kind, 

we can solve Fredholm integral equation of the first kind. The method of 

regularization transforms the first kind to a second kind.  

The exact solution  ( ) of (1.2) can thus be obtain by 

 ( )     
   

  ( )  
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Chapter Two 

 

Continuous Approximation Methods for Solving Linear Fredholm 

Integral Equations of First and Second Kind  

 2.1 Introduction  

A variety of analytic and numerical methods have been used to handle 

Fredholm integral equations. Among many traditional commonly used 

methods are:  The direct computation method, the successive 

approximations method, and converting Fredholm equation to an 

equivalent boundary value methods.  

In this chapter we study three of  recently developed numerical methods 

that used to obtain continuous approximate solutions to Fredholm integral 

equations, namely the Adomian Decomposition Method (ADM) [2], the 

Homotopy Analysis Method (HAM) [1] and the Optimal Homotopy 

Analysis Method [25] (OHAM). Basically, each of these methods assumes 

that the solution is given as an infinite series, usually converges rapidly to 

the exact solution, whose components are functions that determined 

recursively. The continuous approximate solution is then obtained by 

truncating the infinite series. In the last section we reformulate the  method 

of OHAM. The derivation is done for a general operator equation, in which 
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the operator is decomposed into a sum of two parts; an easier part (linear), 

used to find an initial guess to the exact solution, and a nonlinear one. A 

homotopy equation is then applied, using the two parts of the operator, to 

derive various approximate functions (solutions in a sense to be explained) 

used as basis to construct the required approximate solution.  In this chapter 

we also discuss the analysis of convergence of HAM ([1], [15]) and present 

several examples where we applied ADM and HAM methods. Examples 

using OHAM are discussed in Chapters 3 and 4. Much of the details 

presented in Sections 2, 3 and 4 come from [1] and [2].    

2.2 The Adomian Decomposition Method 

  The Adomian decomposition method (ADM) was introduced and 

developed by George Adomian [2]. The ADM is based on decomposing the 

unknown function  ( ) as an infinite series of components as 

 ( )  ∑   ( ) 

 

   

                                                (   ) 

where the components   ( )     will be determined recursively. The 

Adomian decomposition method concerns itself with finding the 

components   ( )   ( )   ( )   individually. The determination of these 

components can be achieved in an easy way through a recurrence relation 

that usually involves simple integrals that can be easily evaluated. 
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To set up the recurrence relation, we substitute (2.1) into the Fredholm 

integral equation (1.3) to get 

∑   ( )

 

   

  ( )   ∫  (   )(∑   ( ))

 

   

  

 

 

                (   ) 

The zeroth component   ( ) is identified by all terms that are not included 

under the integral sign. This means that the components   ( )     of the 

unknown function  ( ) are completely determined by setting the 

recurrence relation 

  ( )   ( )         ( )   ∫  (   )  ( )  

 

 

                (   ) 

In view of (2.3), the components   ( )   ( )   ( )   ( )   are 

completely determined. As a result, the solution  ( ) of the Fredholm 

integral equation (1.3) is readily obtained in a series form by using the 

series assumption in (2.1). 

It is clearly seen that the decomposition method converted the integral 

equation into an elegant determination of computable components. It was 

formally shown that if an exact solution exists for the problem, then the 

obtained series converges very rapidly to that exact solution. The 

convergence concept of the decomposition series was thoroughly 
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investigated by many researchers to confirm the rapid convergence of the 

resulting series, see [2] and the references therein. However, for concrete 

problems, where an exact solution is not obtainable, a truncated number of 

terms are usually used for numerical purposes. The more components we 

use the higher accuracy we obtain. 

Example 2.1 

Solve the following Fredholm integral equation 

 ( )           
 

 
 ∫  ( )  

 

 

                       (   ) 

Substituting the decomposition series (2.1) into both sides of (2.4) gives 

∑   ( )

 

   

      
 

 
 ∫ ∑   ( )

 

   

  

 

 

 

Proceeding as stated above, we arrive at the following recurrence relation: 

  ( )       
 

 
      ( )  ∫   ( )  

 

 

      

Consequently, we obtain   ( ),   ( )   as  

   ( )  ∫   ( )  

 

 

 ∫ (     
 

 
)  
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  ( )  ∫    ( )  

 

 

 
 

 
∫   

 

 

 
 

 
                          

  ( )  ∫    ( )  

 

 

 
 

 
∫   

 

 

 
 

 
                            

  ( )  ∫    ( )  

 

 

 
 

 
∫   

 

 

 
 

  
                           

and so on. Using (2.1) we get the series solution 

 ( )       
 

 
 

 

 
(  

 

 
 

 

 
 

 

 
  )                 (   ) 

Notice that the sum of infinite geometric series at the right side is given by 

  
 

  
 
 

    

Hence the series solution (2.5) converges to the exact solution 

 ( )           

Example 2.2 

Solve the following Fredholm integral equation 

 ( )           ∫ ( )  

 

 

                       (   ) 
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Substituting the decomposition series (2.1) into both sides of (2.6) gives 

∑   ( )

 

   

        ∫ ∑   ( )

 

   

  

 

 

 

Proceeding as stated above, we arrive at the following recurrence relation: 

  ( )              ( )  ∫  ( )  

 

 

      

Consequently, we obtain    ( ),   ( )   ( )   as  

   ( )       ( )      ( )        

and so on. Using (2.1) we get the series solution 

 ( )         (       )                        (   ) 

Hence the series solution (2.7) is the exact solution 

 ( )          

2.3 The Homotopy Analysis Method (HAM) 

In this method, as stated before, the solution is considered as the 

summation of an infinite series. The (HAM) and the (OHAM) that will be 

presented in the next section, are both based on a fundamental concept 

from topology and differential geometry, namely homotopy. Roughly 

speaking, by means of the (HAM), one constructs a continuous mapping of 
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an initial guess approximation to the exact solution of considered 

equations. An auxiliary linear operator is chosen to construct such kind of 

continuous mapping and an auxiliary parameter is used to ensure the 

convergence of solution series. The method possesses great freedom in 

choosing initial approximations and auxiliary linear operators. 

In this section, we present an iterative scheme based on the (HAM) for the 

first and second kind of linear Fredholm integral equations [1].  

2.3.1 Description of HAM Method 

We concern ourselves with an operator equation           

where  ( ) is unknown real-valued function to be determined.  

Let   ( ) denote an initial guess of the exact solution ( )      , 

  (           ( )     ), and   (                ) denote auxiliary 

parameter, function and linear operator respectively. Then using           

as an embedding parameter, we construct such a homotopy 

(     )   (   )     ( )      ( )   (   ) 

   ̂   (   )    ( )  ( )                                                 (   ) 

It should be emphasized that there is a great freedom in choosing   ( ),  , 

 ,  ( ). 

Enforcing the homotopy (2.8) to be zero, i.e. 
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 ̂   (   )    ( )  ( )         

Thus, we have the so-called zero-order deformation equation 

(     )   (   )     ( )      ( )   (   )           (   ) 

When       the Equation (2.9) leads to 

 (   )      ( )                                               (    ) 

and if      , since      and  ( )     , it gives 

 (   )     ( )                                                 (    ) 

Thus, as the embedding parameter   increases from   to  ,  (   ) varies 

continuously from the initial approximation   ( ) to the exact 

solution  ( ). Such continuous variation is called deformation in 

homotopy. 

By Taylor’s theorem,  (   ) can be expanded in a power series of   as 

 (   )    ( )  ∑   ( )  

 

   

                           (    ) 

where 

  ( )  
 

  

   (   )

   
|                                           (    ) 
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If   ( ),  ,  , and  ( ) are properly chosen so that the power series (2.12) 

of  (   ) converges at       Then, the power series converges to the 

exact solution. That is   

 ( )    (   )     ( )  ∑   ( )

 

   

                  (    ) 

 Define the vector 

  ( )  (  ( )   ( )   ( )       ( ))                  (    ) 

According to Equation (2.13), the governing equation of   ( ) can be 

derived from the zero-order deformation equation (2.9). Differentiating the 

zero-order deformation equation (2.9)   times with respective to   and 

then dividing by    and finally setting      , we have the so-called    -

order deformation equation 

    ( )         ( )     ( )  (  ( ))                       

  ( )                                                   (    ) 

where 

  (    ( ))  
 

(   ) 

       (   ) 

     
|                    (    ) 
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and  

   {
         
          

  

Note that the high-order deformation equation (2.16) is governing by the 

linear operator  , and the term   (  ( )) can be expressed simply by 

(2.17) for any nonlinear operator  . 

Therefore,   ( ) can be easily obtained, especially by means of 

computational software such as MATLAB. The solution  ( ) given by the 

above approach is dependent of      ( )  and   ( ). Thus, unlike all 

previous analytic techniques, the convergence region and rate of solution 

series given by the above approach might not be uniquely determined. If 

∑   ( ) 
    tends uniformly to a limit as      then this limit is the 

required solution. 

It is worth to noting that the governing equation for the component   ( ), 

i.e. Equation (2.16),  can be obtained directly by substituting from Equation 

( 2.14) into Equation (2.9) using the power series expansion  

 ( (   ))     (  ( ))  ∑   (  ( )   ( )   ( )     ( ))  

 

   

    (  ( ))    ∑   (  ( ))  
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and equating the coefficients of equal powers of  . The result is the 

establishment of the simple recursion formula 

    ( )     ( )  (  ( ))  

    ( )        ( )     ( )    (    ( ))                    

which is Equation (2.16). 

2.3.2 Linear Integral Equations of the First Kind 

Consider the linear integral equation (1.2). Let 

       ( )    ∫ (   ) ( )  

 

 

    

Equation (2.17) implies that 

  (    ( ))  (    ) ( )   ∫  (   )    ( )  

 

 

  

Thus the     -order deformation equation (2.16) reduces to 

    ( )         ( )  

    ( ) [(    ) ( )   ∫ (   )    ( )  

 

 

]     (    ) 

Choose       ,   ( )    ( )        and H( )      and substitute into 

(2.18) to get the following simple iteration formula for   ( ) 
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  ( )     ( )                                                                                    (    ) 

  ( )       ( )   ∫ (   )    ( )  

 

 

         

Using the notation 

      (   )   (   )            (   )  ∫  (   )    (   )  

 

 

          

the solution  ( ) given by Equation (1.2) becomes 

 ( )    ( )  ∑   ( )

 

   

                                                                       

   ( )  ∑ ( ( )  ∑(
 

 
) (  ) ∫  (   ) ( )  

 

 

 

   

)

 

   

    (    ) 

This series converges uniformly provided ||    ||    where   is the 

identity operator, the operator   is defined by   ( )  ∫  (   ) ( )  
 

 
 

and ‖ ‖ is the maximum norm, see [1],[18]. 

To find an approximate continuous solution, we truncate the series solution 

in (2.14) and use only a finite number of terms. That is, the approximate 

solution will be  ( )  ∑   ( ) 
   . 
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Example 2.3 

Consider the Fredholm integral equation of the first kind 

 

 
    ∫     ( )   

 
 

 

 

For which the exact solution is  ( )       . Let  ( )  
 

 
    and 

 (   )      , we begin with 

  ( )   
 

 
     

Its iteration formulation reads 

  ( )      ( )  ∫        ( )             

 
 

 

 

This in turn gives 

  ( )  
 

  
      ( )  

 

  
      ( )  

  

   
     

and so on. Consequently, the approximate solution is given by 

 ( )( )     (
 

 
 

 

  
 

 

  
 

  

   
  )            

that converges to the exact solution 

 ( )      
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2.3.3 Linear Integral Equations of the Second Kind 

Here we consider the linear Fredholm integral equation of second kind 

(1.3) and we rewrite it in the form  

       ( )    ( )    ∫ (   ) ( )  

 

 

    

Then, Equation (2.17) leads to 

  (    ( ))      ( )  (    ) ( )   ∫ (   )    ( )  

 

 

  

and the    -order deformation equation (2.16) reduces to  

             ( )          ( )  

    ( ) [    ( )  (    ) ( )   ∫  (   )    ( )  

 

 

]    (    ) 

Substituting   ( )   ( ),  ( )   ,      and  ( )     we obtain 

the following iterative formula 

  ( )     ( )                                                           (    ) 

  ( )   ∫  (   )    ( )  
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Therefore the solution  ( ) becomes 

           ( )  ∑   ( )

 

   

 

          ( )   ∫   (   ) ( )  

 

 

   ∫  (   ) ( )  

 

 

   

                      ( )  ∑   ∫   (   ) ( )  

 

 

 

 

   

 

where   

      (   )   (   )   (   )  ∫ (   )    (   )  

 

 

          

Note that this solution is the one we obtain when the method of successive 

approximations is used to solve (1.3). Again this series solution converges 

uniformly if ‖  ‖    where the operator   is defined as in the previous 

subsection, See [1] and [18]. 

Example 2.4  

Consider the linear Fredholm integral equation of the second kind 

 ( )       ( )   
 

 
∫    ( )  ( )  
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Note that  ( )     ( ) and  (   )     ( ). 

Starting with   ( )        ( ). Its iteration formula reads 

  ( )  
 

 
∫    ( )     ( )  

 
 

 

         

This in turn gives 

  ( )  
 

 
   ( )    ( )  

 

 
   ( )    ( )  

 

 
   ( )  

          ( )  
 

  
   ( )    

and so on. Consequently, the approximate solution is given by 

 ( )( )      ( )     ( ) (
 

 
 

 

 
 

 

 
 

 

  
  )             

that converges to the exact solution 

 ( )     ( )     ( ) 

 

2.4 Convergence of the Homotopy Analysis Method 

 In this section we state and prove two theorems about the convergence of 

the series solution of the Fredholm integral equations of first and second 

kind that we derived in the previous two sections using HAM method. 
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Theorem 2.1 

As long as the series 

 ( )     ( )  ∑   ( )

 

   

 

convergence, where   ( ) is governed by Equation 

    ( )         ( )  

    ( ) (    ) ( )   ∫ (   )    ( )  

 

 

 

 it must be the exact solution of the integral Fredholm integral equation 

(1.2). 

Proof. If the series (2.14) converges, we can write 

 ( )  ∑   ( ) 

 

   

 

and it holds that 

   
   

  ( )     

We can verify that 
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∑   ( )        ( ) 

 

   

    (     )    (       )  

   ( )                                                   (    ) 

which gives us according to (2.23), 

   
   

∑   ( )        ( ) 

 

   

    
   

  ( )                          (    ) 

Furthermore, using (2.24) and the definition of the linear operator  , we 

have  

∑     ( )        ( ) 

 

   

  ∑   ( )        ( ) 

 

   

   

   ( ) ∑     (    ( ))

 

   

            

Since     and  ( )    we have 

∑     (    ( ))

 

   

                                (    ) 

Now, 

∑     (    ( ))

 

   

 ∑(    ) ( )   ∫  (   )    ( )  
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                                ( )   ∫ (   ) (∑     ( )

 

   

)  

 

 

 

                            ( )   ∫  (   ) (∑   ( )

 

   

)   

 

 

 

                                 ( )   ∫  (   ) ( )  

 

 

                   

Therefore 

 ( )   ∫ (   ) ( )  

 

 

  

and so,  ( ) must be the exact solution of Equation (1.2).                       

Theorem 2.2  

As long as the series 

 ( )     ( )  ∑   ( )

 

   

  

convergence, where   ( ) is governed by 

            ( )          ( )  

    ( ) [    ( )  (    ) ( )   ∫  (   )    ( )  
 

 
]  
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it must be the exact solution of the integral Fredholm integral equation 

(1.3). 

Proof : The proof is similar to the proof of Theorem (2.1), except now  

      ∑     (    ( ))

 

   

 ∑     ( )  (    ) ( )   ∫ (   )    ( )  

 

 

 

   

 

                    ∑     ( )

 

   

  ( )   ∫  (   ) (∑     ( )

 

   

)  

 

 

 

                    ∑   ( )

 

   

  ( )   ∫ (   ) (∑   ( )

 

   

)   

 

 

         

                            ( )   ( )   ∫ (   ) ( )  

 

 

                   

Therefore 

 ( )   ( )   ∫  (   ) ( )  

 

 

  

and so,  ( ) must be the exact solution of Equation (1.3).                       
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2.5 Basic Formulation of Optimal Homotopy Asymptotic Method 

(OHAM) 

Consider the operator equation of the form, [13],   

 ( ( ))   ( )                                         (    ) 

where   is an operator,  ( ) is unknown function, and  ( ) a known 

analytic function. Assume that   can be decomposed into two operators   

(linear) and   (nonlinear) such that  

         

According to OHAM, one can construct an optimal homotopy 

map                                   (   )               

that satisfies the homotopy equation 

  ̂ ( (   )  )  (   ){ ( (   ))   ( )} 

                     ( ){ ( (   ))   ( )}                        (    )  

where the auxiliary  ( ) function is nonzero for    ;  ( )    

and         is an embedding parameter.  

 Equation (2.27) is called optimal homotopy equation or zero-order 

homotopy equation. 
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Note that if     , we get  (   )    ( ), and when     ,we obtain 

 (   )   ( )  the exact solution. Thus, as   varies from   to  , the 

solution  (   ) arrives from   ( )  at  ( ) ,where     ( ) is the solution 

of Equation (2.27) when we substitute      i.e    ( ) satisfies 

                 (   ( ))   ( )                                         (    ) 

 Next, we choose the auxiliary function  ( ) to be the power series in  ; 

  ( )               where    are constants  for all            

 To get an approximate solution, we expand  (           ) by Taylor’s 

series, [8], about   in the following manner: 

 (           )      ( )  ∑   

 

   

(         ) 
              (    ) 

Substituting from Equation (2.29) into Equation (2.27) and equating the 

coefficients of like powers of  , we obtain the following        to the     

 order problems governing equations of 

  ( )   (    )     (         ): 

 (  ( ))   ( )     

 (  (    ))   (  ( ))      (  ( ))  
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       (  (       ))   (  (    ))

     (  ( ))    [ (  (    ))    (  ( )   (    ))]  

  (  (         ))   (    (           ))   

             (  ( ))

 ∑      (    (           ))

   

   

     (  ( )   (    )       (           ))           (    ) 

          where      are the coefficient of      in the expansion of   for 

  ( (           ))  about the embedding parameter  ; 

         ( (           ))

   (  ( ))  ∑   (  ( )   (    )

 

   

     (         ) 
  

Note that the governing equations are linear and can be easily solved for 

           

It has been observed that the convergence of the series in Equation (2.29) 

depends upon the auxiliary constants               .  

If it is convergent at     , one get  

 (            )    ( )  ∑   (         )    

 

   

            (    ) 
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This equation is the source of the required approximate solutions. 

  Substituting from Equation (2.29) into 

 ( (  ))   ( )   ( ( ))     

leads to the following residual formula  

 (         )   ( (         ))   ( )   ( (         ))  

If  (         )    then  (         ) is the exact solution of the 

problem. 

For the determination of auxiliary constants                    

there are different methods. One method is the Least Squares; 

 (          )  ∫   (            )  
 

 

 

where        is an interval depending on the given problem. The unknown 

constants    can be identified from the conditions  

  

   
 

  

   
   

  

   
                                         (    ) 

With these constants known, the approximate solution is well-determined 

as 

 ( )( )    ( )    (    )    (       )      (         )  
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Chapter Three 

 

Optimal Homotopy Asymptotic Method (OHAM) for Solving the 

Linear Fredholm Integral Equations of the First Kind  

 3.1 Introduction   

In this chapter we aim to reconstruct optimal homotopy asymptotic method 

(OHAM) for solving Fredholm integral equations of first kind. This method 

was proposed by Marinca et al. [25] and characterized by its convergence 

criteria which are more flexible than other methods. 

We consider the following general form of the linear Fredholm integral 

equation of the first kind                                                                                

 ( )   ∫ (   ) ( )  

 

 

                              (   ) 

where a and b are constants, the functions  (   ) ,  ( ) are known 

functions and   is a nonzero parameter . 

  We present and discuss several examples to demonstrate the ability of the 

method to solve linear Fredholm integral equations of first kind. The results 

show that the method is very effective and simple. 
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3.2 Application of OHAM to the Linear Fredholm Integral Equations 

of the First Kind  

In this section we formulate the optimal homotopy asymptotic method 

(OHAM) for solving the linear Fredholm integral equations of the first kind 

considered in Equation (3.1). Using OHAM, we can obtain a family of 

homotopy equations as follows: 

(   ) ( (   ))

  ( )[ ( (   ))   ( )   ( (   ))]                       (   ) 

where           is an embedding parameter  (   ) is the unknown 

function and  ( ) is a nonzero auxiliary function for 

     with  ( )   . 

The auxiliary function  ( )  is defined by means of a finite power series as  

 ( )  ∑   
 

 

   

 

 where    are auxiliary constants with  j= 1,2,… . As explained in Section 

2.5, we define the operator   to be 

 ( (   ))   (   ) 

and take the operator   as 
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 ( (   ))    (   )   ∫  (   ) (   )   

 

 

 

Note that  ( ( ))   ( )   ( ( ))    reduced to Equation (3.1). 

Upon substituting   and   in Equation (3.2) we get 

(   ) (   )   ( ) [ ( )   ∫ (   ) (   )  

 

 

]                   (   ) 

  Setting       in (3.3) we obtain 

 ( (   ))                                               (   ) 

  and substituting      ,we get 

 ( ) [ ( )   ∫ (   ) (   )  

 

 

]     

  Since  ( )      , we get 

[ ( )   ∫ (   ) (   )  

 

 

]   ( (   ))   ( )   ( (   )) 

                                                        (   ) 

  Let  (   )    ( ) and  (   )   ( ) be the solutions of (3.4), and 

(3.5), respectively.  
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  Note that by construction,   is chosen such that   ( ) is easy to find, 

while  ( ) is the required solution that we need to determine.  

  To obtain an approximate solution to  ( ), we use Taylor series 

expansion (in powers of  ) as follows: 

 (           )    ( )  ∑   (         )      

 

   

           (   ) 

If the series (3.6) converges when    , then one has 

 (           )    ( )  ∑   (         )

 

   

                     (   ) 

That is, it converges to the exact solution. In terms of auxiliary 

constants         Equation (3.3) reads 

(   ) (           )   ( ) [ ( )   ∫  (   ) (           )  

 

 

]  

Substitute from Equation (3.6) we obtain 

(   ) [  ( )  ∑   (         )  

 

   

]   

∑   
 

 

   

[ ( )   ∫  (   ) (  ( )  ∑   (         )  

 

   

)  

 

 

] (   ) 
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 Equating the coefficients of like powers of   in Equation (3.8), as we did 

in Section (2.5), we get the following        to     order approximations 

  ( )    ,  

  (    )     ( )     ∫  (   )  ( )  
 

 

  

  (       )    (    )     ( )

    ∫ (   )  (    )      ∫ (   )  ( )  

 

 

 

 

  

  (          )    (       )     ( )     ∫ (   )  (       )  

 

 

 

    ∫  (   )  (    )  

 

 

    ∫  (   )  ( )   

 

 

 

  (             )   

  (          )     ( )     ∫  (   )  (          )  

 

 

 

                 ∫ (   )  (       )  

 

 

    ∫ (   )  (    )   
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            (         )      (           )     ( ) 

 ∑    ∫  (   )    (           )           
 

 

 

   

 

Note that these approximations are given recursively and depends on the 

auxiliary constants             . Further, these approximations are the 

solutions of the corresponding         to     order problems given in 

Equation (    ) in Section (2.5). Notice also that by   ( ) we mean   ( ) 

or   ( ).  

Finding the constants              leads to the  th-order approximation  

 ( )(         )    ( )  ∑   (         )

 

   

              (   ) 

Now, as mentioned before, the exact solution  ( ) satisfies the operator 

equation  

 ( ( ))   ( ( ))   ( )                               (    ) 

Hence substituting the approximation given by (3.9) into (3.10), we obtain 

the residual equation: 

 (         )   ( )   ∫  (   ) ( )(         )  
 

 

 



68 
 

It is important to note that if  (         )   , then  ( )(         ) 

will be the exact solution, see [11]. 

For the determination of the auxiliary constants             , there are 

different methods (Galerkin's Method , Ritz Method , Least Squares 

Method and Collection Method, see [13]) that can be used. 

As stated in section (2.5) we will apply Least Squares Method.  

Consider the mapping   

 (       )  ∫   (         )  
 

 

                       (    ) 

The required scalars         are the one that minimize  . Thus we 

compute 

  

   
  ∫  (         )

 

 

  

   
                                (    ) 

Then the unknown constants             can be identified by solving the 

algebraic system 

  

   
 

  

   
   

  

   
                                          (    ) 

With these constants known (namely convergence-control 

constants        , the approximate solution of order   (Equation (3.10)) 

is well-determined, see [25]. 
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3.3 Numerical Examples and Discussion 

   In this section, we will present some examples of linear Fredholm 

integral equations of first kind. The aim is to demonstrate the efficiency of 

the algorithm based on OHAM technique when applied to approximate 

solutions of linear Fredholm integral equations of first kind. 

Example 3.3.1 

 Consider the following linear Fredholm integral equation of first kind [11], 

 

 
   ( )  ∫

 

 
   ( )    ( )  ( )      

 
 

 

                       (    ) 

Then  ( )  
 

 
    ( )  To apply OHAM, we take 

  ( (   ))   (   )       

 ( (   ))     (   )   ∫ (   ) ( )  

 

 

                         

   (   )  ∫
 

 
   ( )    ( )  ( )  

 
 

 

 

In this case Equation (3.8) becomes 
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(   ) [  ( )  ∑   (         )  

 

   

]   

∑   
 

 

   

[
 

 
   ( ) ∫

 

 
   ( )    ( ) (  ( )  ∑   (         )  

 

   

)  

 
 

 

] 

….(3.15) 

Equating corresponding powers of   in both sides leads to the following  

                      - order solutions, respectively:  

          ( )     

         (    )     ( )     ∫  (   )  ( )  
 

 

 

                         
 

 
     ( )    ∫

 

 
   ( )    ( )   ( )    

 
 

 

 

         (       )    (    )     ( ) 

                                ∫  (   )  (    )      ∫  (   )  ( )  

 

 

 

 

 
 

 
     ( )    ∫

 

 
   ( )    ( )   ( )   

 

 
     ( )

 
 

 

 

   ∫
 

 
   ( )    ( )   ( )     

 
 

 

∫
 

 
   ( )    ( )   ( )  
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  or we write  

  ( )     

  (    )  
 

 
     ( )  

  (       )  
 

 
     ( )  

 

 
     ( )  

 

 
  

    ( )  

With the aid of (3.7), we have 

 (         )    ( )    (    )    (       )    

or equivalently 

 (         )       ( )  
 

 
     ( )  

 

 
  

    ( )       (    ) 

According to Equation (3.9), the second order approximation of (3.11) 

reads 

 ( )(       )    ( )    (    )    (       ) 

       ( )  
 

 
     ( )  

 

 
  

    ( ) 

To find the constants    and    appear in this approximation we apply the 

Least Squares Method. First notice that the residual equation corresponding 

to this approximate solution is 
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          (       )   
 

 
   ( ) 

 ∫
 

 
   ( )    ( ) (     ( )  

 

 
     ( )  

 

 
  

    ( ))   

 
 

 

 

    
 

 
   ( )  

 

 
   ( ) (   

 

 
   

 

 
  

 )                      

Therefore, the associated function defined by Equation (3.11) reads 

         (     )  ∫   (       )  

 
 

 

   

              ∫ (
 

 
    ( )    

 
    ( ) (  

    

 
   

    

 
   

 ))

 

 
 

 

                     

Hence the algebraic system corresponding to minimizing  ;  

  

   
 

  

   
   

leads to      and     . Therefore, the approximate solution becomes 

 ( )(       )     ( )  

 It is the exact solution that we can find by applying the method of 

regularization as follows:  

Equation (3.14) can be transformed into 
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  ( )  
 

  
   ( )  

 

 
∫

 

 
   ( )    ( )  ( )    

 
 ⁄

 

                 (    ) 

This Fredholm integral equation is a linear of second kind and will be 

solved by the direct computation method. To achieve this we write 

Equation (3.17) as  

  ( )  (
 

  
 

 

 
)    ( )                                    (    ) 

where 

  ∫
 

 
   ( )  ( )    

 
 ⁄

 

                                     (    ) 

To determine    , we substitute (3.18) into (3.19) to get 

  ∫
 

 
   ( ) (

 

  
 

 

 
)    ( )    

 
 ⁄

 

  

 
 

    
                                             

Substituting instead of   in (3.18), we obtain 

  ( )  
 

    
   ( )  

Now the exact solution  ( ) of Equation (3.17) is given as 
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 ( )     
   

  ( )      
   

 
 

    
   ( )     ( )  

Example 3.3.2 

In this example we consider the linear Fredholm integral equation of first 

kind 

 

 
   ∫

 

 
     ( )   

 

 

                              (    ) 

First, we use regularization method to find the exact solution. According to 

regularization method, Equation (3.20) can be transformed into 

  ( )  
 

  
   

 

 
∫

 

 
      ( )    

 

 

                         (    ) 

or equivalently 

  ( )  (
 

  
 

 

 
)                                       (    ) 

where  

  ∫
 

 
    ( )    

 

 

                                          (    ) 

To determine  , we substitute (3.22) into (3.23) to get 
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  ∫
 

 
  (

 

  
 

 

 
)      

 

 

  
 

    
                        

Use   in (3.22) gives    ( )  
 

    
    

Hence the exact solution is 

 ( )     
   

  ( )      
   

 
 

    
   

 

 
    

 Next, we apply OHAM method.  Thus, let 

 ( )  
 

 
  , 

 ( (   ))   (   )  

 ( (   ))    (   )  ∫
 

 
     ( )  

 

 

  

Then Equation (3.8) reads  

(   ) [  ( )  ∑   (         )  

 

   

]   

∑   
 

 

   

[
 

 
   ∫

 

 
    (  ( )  ∑   (         )  

 

   

)  

 

 

] 

Similar to the previous example, the corresponding                    and 

     -order approximations are 
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           ( )    

           (    )     ( )     ∫  (   )  ( )  
 

 

 

                  
 

 
   

   

           (       )

   (    )  
 

 
   

 

   ∫
 

 
      (    )     

 

 

∫
 

 
      ( )  

 

 

 

                         
 

 
    

  
 

 
  

    
 

 
   

   

           (          )    (       )  
 

 
   

  

                              ∑   ∫
 

 
        (           )  

 

 

 

   

 

  
 

 
   

  
 

 
   

  
 

 
   

  
 

 
  

    
 

  
  

    
 

 
     

   

With the aid of Equation (3.9) and using   ( )   (    )   (       ) 

and   (          ), the third approximate solution of (3.20) reads  
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   ( )(          )  
 

 
   

  
 

 
   

  
 

 
   

  
 

 
  

    
 

  
  

    

 
 

 
     

                                                                  (    ) 

To calculate the constants       and   , we use Least Squares Method. The 

corresponding residual equation is 

 (          )

  ( ( )(          ))   ( )(          )    ( )

 ∫
 

 
     ( )(          )  

 

 

 

           
 

 
   ∫

 

 
    (

 

 
   

  
 

 
   

  
 

 
   

  
 

 
  

    
 

  
  

   
 

 

 
 

 
     

 )    

 
 

 
   

 

 
   

  
 

 
   

  
 

 
   

  
 

  
  

    
 

  
  

    
 

 
     

   

We compute  
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Therefore, the partial derivatives of    are 

  

   
  

    
 

   
 

   
 

    
 

    
 

   
 

   
 

   
 

     
 

  
 

     
 

   
 

    

   
 

   
 

  

 
     

  
 

     

   
 

   
 

  
 

  
 

  
 

  

  
 

   

  
 

   

   
 

 

  
  

            
  

   
 

    
 

   
 

  
 

   
 

    

  
 

    

   
 

  
 

  
 

   
 

  
 

  

  
 

  

  
 

  

  
 

                           
 

  
  

  

   
   

    

   
 

  
 

   
 

   
 

   
 

  

  
 

  

   
 

   

   
 

 

  
   

Equating these equations with zero and solving the resulted system gives   

                              

                               

                                   

Hence, the final approximate solution reads 

 ( )(          )                      

Note that the corresponding absolute error is 

|            |  |                        |

                     



79 
 

where        ( )(          )  Hence the maximum norm of error is  

‖            ‖      |(             ) ( )|        

                                               . 

We compute also the    norm. It is 

 ‖            ‖   [∫ |(             )( )| 
 

 
]

 

 
           

The following figure illustrates the exact solution and OHAM solution for 

this example.   
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Now we compute the second order approximate solution of (3.20) 

 ( )(       ). According to (3.9) we have 

 ( )(       )    ( )    (    )    (       )  

Hence 

 ( )(       )  
 

 
   

  
 

 
   

  
 

 
  

      

Again to determine the constants    and     , we use the Least Squares 

Method. The details are as follows:  

 (       )   ( )  ∫
 

 
     ( )(       )  

 

 

     

   
 

 
   ∫

 

 
    (

 

 
   

  
 

 
   

  
 

 
  

   )  
 

 

 

                 
 

 
   

 

 
   

  
 

  
  

    
 

 
   

  

Therefore 

  

   
   

 

 
   

 

 
   

  

 
  

   
 

 

 
                           

Hence the partial derivatives of    are 
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Equating these equations with zero and solving the resulting system gives  

     and     . Therefore the approximate solution is 

 ( )(          )  
 

 
     

It is the exact solution. 

Example 3.3.3 

In this example we consider the linear Fredholm integral equation of first 

kind   

 

 
   ∫     ( )   

 

 

                                         (    ) 

Analogous to the previous examples, we use the method of regularization 

to find the exact solution of this equation. It is  ( )      

To apply OHAM method, note that 

 ( )  
 

 
                       ( (   ))   (   )       and  
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  ( (   ))    (   )  ∫     ( )  

 

 

  

Proceeding as in the previous two examples, we get   

          ( )     

          (    )  
 

 
   

   

          (       )   
 

 
    

  
 

 
   

  
 

 
  

     

         (          )

 
 

 
   

  
 

 
   

  
 

 
   

  
 

 
  

    
 

 
  

    
 

 
     

   

Hence the third order approximation reads 

 ( )(          )  
 

 
   

     
  

 

 
   

  
 

 
  

    
 

 
  

    

  
 

 
     

                                                               (    ) 

Applying Least Squares Method gives  
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Hence  

 ( )(          )                     

   Note that the corresponding absolute error is  

|            |  |                    |  

                                              

where again        ( )(          )  Hence the maximum norm of error 

is  

‖            ‖      |(             ) ( )|        

                                               . 

We compute also the    norm. It is 

 ‖            ‖   [∫ |(             )( )| 
 

 
]

 

 
            

The following figure illustrates the exact solution and OHAM solution of 

this example. 
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Figure 3.2 

Example 3.3.4 

 In this example we consider the Fredholm integral equation  
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                                       (    ) 

Note that;  ( )     ( (   ))   (   )  and  

  ( (   ))    (   )   ∫ (   ) (   )  
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(   ) [  ( )  ∑   (         )  

 

   

]   

∑   
 

 

   

[  ∫  (  ( )  ∑   (         )  

 

   

)  

 

 

]         (    )  

By equating the coefficients of equal powers of   in Equation (2.28), we 

get to the following recurrence relation 

  ( )   , 

             (         )      (           )      

 ∑   ∫       (           )           
 

 

 

   

                 

Consequently, we obtain    ( )    and  (    )       and so on. 

According to Equation (3.9), the first order approximate solution reads  

 ( )(    )    ( )    (    )            

Proceeding as before, we applied Least Squares Method to determine   . 

First we notice that the residual equation is  

 (    )    ∫    ( )(    )     
 

 
      

 

 

 

Therefore the associated function defined by Equation (3.11) reads 
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 (  )  ∫   (    )  
 

 

  
 

 
 

 

 
   

 

  
  

  

and  

  

   
  

 

 
 

 

  
     

Identifying this equation by zero, we get       Hence  ( )(    )      

This is the exact solution. We obtain it using regularization method as used 

in previous examples. 

 As a conclusion, we note that the proposed examples demonstrate the 

accuracy of the solutions obtained by OHAM when compared with exact 

solutions even with low order approximations. It reveals also that this 

method is a simple and an efficient method. Note also that a MATLAB 

procedure was used to determine the auxiliary constants in Examples 3 and 

4. 
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Chapter Four 

 

Optimal Homotopy Asymptotic Method (OHAM) for Solving the 

Linear Fredholm Integral Equations of the Second Kind  

 4.1 Introduction   

In the previous chapter, we have reconstructed the optimal homotopy 

asymptotic method (OHAM) to solve Fredholm's linear integral equations 

of first kind. Motivated by the "good" results, we, in this chapter, derive an 

algorithm based on OHAM method to find approximate continuous 

solutions for Fredholm's linear integral equations of second kind. We will 

apply this algorithm on several examples and determine approximate 

continuous solutions to Fredholm's linear integral equations within it.  

In this chapter we concern ourselves with Fredholm's linear integral 

equation of the second kind                                                                           

 ( )   ( )   ∫  (   ) ( )   

 

 

                       (   ) 

where   and   are constants, the functions  (   ) ,  ( ) are known and   

is a nonzero parameter. 
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4.2 Application of OHAM to the Linear Fredholm Integral Equations 

of the Second Kind  

In the present section, we reformulate the optimal homotopy asymptotic 

method (OHAM) for solving Fredholm's integral equations of second kind. 

To this end consider Equation (4.1). 

Applying OHAM to Equation (4.1), as discussed in Section (2.5), a family 

of homotopy equations is presented as: 

(   )[ ( (   ))   ( )]

  ( )[ ( (   ))   ( )   ( (   ))]                      (   )  

where, as stated in earlier sections,           is an embedding parameter,  

  (   ) is unknown real-valued function and  ( ) is a nonzero auxiliary 

function for       with  ( )   .  

The auxiliary function  ( ) is defined by the finite sum (power series)   

 ( )  ∑   
 

 

   

 

where    are auxiliary constants with  j= 1,2,… . The operators   and   are 

given by the formulas 

          ( (   ))    (   )  ( (   ))   ∫  (   ) ( )   
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Then, equation (4.2) becomes 

(   )  (   )   ( )   

 ( ) [ (   )   ( )   ∫ (   ) ( )  

 

 

]                   (   ) 

  Note that, by taking       in (4.3) we obtain 

 (   )   ( )                                                      (   ) 

  and when we set   equal to one, we get  

 ( ) [ (   )   ( )   ∫  (   ) ( )  

 

 

]     

  Because  ( )     , we arrive at 

[ (   )   ( )   ∫  (   ) ( )  

 

 

]                        (   ) 

  Let us denote the solutions  (   ) and  (   ) of Equations (4.4) and 

(4.5) by   ( ) and  ( ) respectively. It is clear from Equation (4.5) that 

 (   ) is the exact solution that we are looking for. Again, in sympathy 

with the philosophy that underlines OHAM idea, the operator (linear)   is 

chosen so that   ( ) is easy to find.  
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  To reach our destination, the approximate solution of  ( )   (   ), we 

appeal to Taylor series and expand  ( ) in a power series with powers in   

as: 

 (          )    ( )  ∑   (         )   

 

   

           (   ) 

Note that we introduce the scalars,         to mark the dependence of our 

approximate solutions on the so-called convergence-control auxiliary 

scalars         . If the series (4.6) converges when    , one gets 

 (           )    ( )  ∑   (         ) 

 

   

                 (   ) 

That is, if (4.6) converges when     ; it converges to the solution of 

(4.1). Equation (4.7) is the source of our desired approximations. Using the 

auxiliary constants in Equation (4.3), we get  

    (   )  (           )   ( )                                                       

 ( ) [ (           )   ( )   ∫ (   ) (          )  

 

 

] (   )  

Substitute from (4.6), we obtain 

(   ) [  ( )  ∑   (         )  

 

   

  ( )]   
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∑   
 

 

   

[  ( )  ∑   (         )  

 

   

  ( )

  ∫ (   ) (  ( )  ∑   (         )  

 

   

)  

 

 

]  (   )  

 Proceeding as before, we equate the coefficients of like powers of   in 

Equation (4.9). Consequently, we get the following        to     -order 

approximations. 

The        -order approximation:   ( )   ( )  

The       -order approximation: 

  (    )      ∫  (   )  ( )   
 

 

 

The        -order approximation:  

  (       )  (    )  (    )

    ∫  (   )  (    )      ∫  (   )  ( )  

 

 

 

 

  

 The       -order approximation: 

           (          ) 

 (    )  (       )      (    )     ∫ (   )  (       )  
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               ∫  (   )  (    )  

 

 

    ∫  (   )  ( )   

 

 

 

The        -order approximation: 

           (             )

 (    )  (          )      (       )      (    ) 

    ∫ (   )  (          )  

 

 

    ∫ (   )  (       )  

 

 

 

    ∫  (   )  (    )  

 

 

    ∫  (   )  ( )  

 

 

       

In general,     -order approximation:  

  (         )  (    )    (           ) 

 ∑       (           )

   

   

    ∑    ∫  (   )    (           )  
 

 

 

   

  

                                                                                                             (    ) 

Again, it is worth mention that these approximations are the solutions of 

the corresponding order problems given by Equation (    ) in Section 

(2.5).  
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Note also, these approximations are given recursively and depend on the 

auxiliary constants             .  

Finding these scalars leads to the  th-order approximation: 

 ( )(         )    ( )  ∑   (         ) 

 

   

             (    ) 

To determine         , note that Equation (4.1) is equivalent to the 

equation 

 ( ( ))   ( ( ))   ( )                          (    ) 

Thus substituting  ( )(         ) in (4.12) and using the definitions of  

  and  , we obtain the residual equation: 

         (         ) 

   (         )   ( )   ∫  (   )  (         )  
 

 

      (    ) 

Clearly, if  (         )    , then  ( )(         ) will be the exact 

solution. 

Now to determine the auxiliary constants             we proceed as 

before and apply the Least Squares Method, i.e. we find              that 

minimize the function 
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 (       )  ∫   (         )   
 

 

                                   (    )  

Thus, we compute 

  

   
  ∫  (         )

 

 

  

   
                         (    ) 

and solve the algebraic system 

  

   
 

  

   
   

  

   
                                           (    ) 

With these constants known, the continuous approximate solution of order 

  (Equation (4.12)) is well-determined, see [25]. 

4.3 Numerical Examples and Discussion 

We now present some examples of Fredholm linear integral equations of 

the second kind to reveal the efficiency and reliability of the OHAM 

method. 

Example 4.3.1 

For the Fredholm integral equation of second kind  

 ( )       ∫    ( )       
 

 

                                  (    ) 

the exact solution is  ( )    . To apply OHAM, note that   
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 ( (   ))    (   ),  ( (   ))   ∫  (   ) ( )  
 

 
 ∫    ( )  

 

 
 

and        ( )        

The OHAM method assumes that the solution  ( ) has the series form 

(4.6). Substituting the power series in both sides of the homotopy Equation 

(4.2) gives 

(   ) [  ( )  ∑   (         )  

 

   

     ] 

            ∑   
 

 

   

[  ( )  ∑   (         )  

 

   

     

 ∫  (  ( )  ∑   (         )  

 

   

)  

 

 

]             (    )  

We equate the like powers of  . Therefore, we obtain the following 

recurrence relation  

  ( )      , 

           (    )     ∫    ( )  

 

 

 

                   
 

 
   . 
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  (         )

 (    )    (           )  ∑       (           )

   

   

 ∑   ∫       (           )  
 

 

 

   

                  

Consequently, we obtain    (       )   
 

 
    

 

 
    

 

 
  

     

and so on . Using Equation (4.11) gives the second order approximation 

         ( )(       )    ( )    (    )    (       ) 

                                        
 

 
    

 

 
    

 

 
  

   

To find the constants    and   , we Proceed as before and apply the Least 

Squares Method. The residual equation (4.13) reads 

 (       )   ( )(       )   ( )  ∫  (   ) ( )(       )  
 

 

 

  
 

 
    

 

 
    

 

  
  

   
 

 
               

Thus 

 (     )  ∫   (       )  
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Differentiating with respect to           and setting the derivatives equal 

to zero, we get the system 

  

   
 

     
 

    
 

       

   
 

     
 

   
 

    

  
 

    

   
 

  

  
    

  

   
 

    
 

   
 

    

   
 

    

   
 

  

  
    

The solution of this system is     
 

 
         . Therefore the second 

order approximation is  ( )(       )    . It is the exact solution. 

Example 4.3.2 

We use OHAM to find a second order approximate solution for the 

Fredholm integral equation 

 ( )      ( )    ∫   ( )       

 
 

 

                                     (    ) 

The exact solution is  ( )      . We take  ( (   ))    (   ), 

 ( (   ))   ∫  (   ) ( )  
 

 
 ∫   ( )  

   

 
 and  

 ( )      ( )     Proceeding as in the previous example, we set the 

following iteration relation  

  ( )      ( )   ,   (    )      (  
  

 
)  
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  (         )

 (    )    (           )  ∑       (           )

   

   

 ∑   ∫      (           )  
 

 

 

   

                  

Consequently, we obtain    (       )           (  
  

 
)   

      

With the aid of Equation (4.11), the second order approximation reads  

           ( )(       )    ( )    (    )    (       ) 

               ( )  [  (  
  

 
)       (  

  

 
)   

 ]       

Using the Least Squares Method gives       then      . Hence   

 ( )(       )     ( ). Again it is the exact solution. 
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Conclusion 

 

   In this thesis we have presented a semi analytical method called the 

optimal homotopy asymptotic method (OHAM). Based on this technique 

we construct algorithms to find approximate continuous solutions for 

Fredholm linear integral equations of the first and the second kind. We 

apply these algorithms on several examples in chapter three and chapter 

four. The results show the high accuracy of the obtained solutions when 

compared with exact solutions. Besides the reliability of the OHAM, stands 

a remarkable feature of this method; its simplicity. It assumes a homotopy 

equation whose solution is assumed to be a power series of the embedding 

parameter. Upon substituting this series in the homotopy equation a 

recurrence relation is reached. The required approximate solution is a sum 

of finite numbers of (basis) functions generated by the recurrence relation. 

We utilize the Least Squares Method to determine the control scalars 

appear in the (basis) functions. In the first chapter we present the basic 

theory related to integral equations and in the second chapter we present 

the Adomian Decomposition Method as well as the Homotopy Analysis 

Method.  
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 التكاملية من النوع الأول والثاني (Fredholm)لحل معادلات  ((OHAMطريقة 

 اعداد الطالبة : آيات شاهر سعيد عمرو

 اشراف : د. يوسف زحايقة 

‌

 ملخص

 

ايجاد الحلول ذ انه من الصعوبة إمة جدا. ايعتبر حقل التحليل العددي من الحقول المعرفية اله   

الحاجة الطبيعية الى  تبرز لذلك ت الهندسية والعلمية.كثير من مسائل التطبيقاالمغلقة )الحقيقية( ل

 تطوير طرق عددية لوضع حلول تقريبية لهذه المسائل.

يجاد حلول ( لبناء طرق عددية تستخدم لإOHAMسلوب المعروف )البحث استخدمنا الأفي هذا 

ول والثاني, وفي اطار هذا العمل ( التكاملية الخطية من النوعين الأFredholmتقريبية لمعادلات )

( لبناء تلك الطرق, حيث تم افتراض تحقق Homotopyجي )وبولوتم استخدام المفهوم الهندسي الت

( تنتمي قيمها Embedding Parameter( محتوية على معلمة تضمينية )Homotopyمعادلة )

الصفر والواحد, بحيث انه عند تغير قيمة المعلمة من الصفر الى الواحد  الى الفترة المغلقة بين

يتغير حل تلك المعادلة )والذي هو عبارة عن متسلسلة قوة في المعلمة( بطريقة متصلة من حل 

يسهل ايجاده الى الحل المغلق )الحقيقي( المنشود. وللحصول على الحل التقريبي يتم قطع المتسلسلة 

حدود من حدودها. ولتحديد الثوابت التي تظهر في الحل التقريبي )التي تعرف واستخدام عدد م

 بثوابت التحكم في التقارب( نستخدم طريقة المربعات الصغرى.  

مثلة التي لها حلول مغلقة معروفة على العديد من الأ ةلقد تم في هذا البحث تطبيق الطرق المطور

 ‌ لى كونها طريقة بسيطة وفعالة.    إن هذه الطريقة تتصف بالدقة اضافة أشارت النتائج الى أو



 ‌ب
 

ساليب التحليلية التي تستخدم لحل عض الألية استخدمنا بوبعدما صنفنا المعادلات التكاميضا أ 

 (Adomian)قة النوعين الأول والثاني وهي طري الخطية التكاملية من (Fredholm)معادلات 

    . (HAM)وأيضا طريقة 

 


