

Deanship of Graduate Studies

Al-Quds University

Performance Comparison for High Availability

Solutions of MySQL Database

Alaa Yaser Fayez Mohsen

MSc Thesis

Jerusalem-Palestine

1441-2020

Performance Comparison for High Availability Solutions

of MySQL Database

Prepared By:

Alaa Yaser Fayez Mohsen

B.Sc.: Information Technology, Al-Quds University, Palestine

Supervisor: Dr. Nidal Kafri

A thesis submitted in partial fulfilment of the requirements for

the degree of Master of Computer Science/ Department of

Computer Science & IT/Faculty of Science &

Technology/Graduate Studies.

1441-2020

Al-Quds University

Deanship of Graduate Studies

Master of Computer Science

Thesis Approval

Performance Comparison for High Availability Solutions of MySQL

Database

Prepared By: Alaa Yaser Fayez Mohsen

Registration No: 21610049

Supervisor: Dr. Nidal Kafri

Master thesis submitted and accepted, Date: 10 June, 2020

The name and signatures of examining committee members are as follows:

1- Head of committee Dr. Nidal Kafri Signature: ……

2- Internal Examiner Dr. Rashid Jayousi Signature: ……

3- External Examiner Dr. Iyad Tumar Signature: ……

Jerusalem-Palestine

1441-2020

Dedication

I dedicate my thesis to my dearest parents who are always supporting

me without stop, and to my precious homeland Palestine.

Alaa Yaser Fayz Mohsen

i

Declaration

I certify that this thesis submitted for the degree of Master, is the result of my own research,

except where otherwise acknowledged, and that this study (or any part of the same) has not been

submitted for a higher degree to any other university or institution.

Signed……………………………

Alaa Mohsen

Date: 10 June, 2020

ii

Acknowledgments

Firstly, I thank God for everything, and I would like to thank my supervisor, Dr. Nidal Kafri

and teachers in the program. Without their meticulous effort and support, this thesis would not

have been the same.

In addition, I would like to dedicate special and great thanks to my family especially my parents,

sisters, grandfather and brothers for their love and encouragement. Also, to my colleagues and

friends.

iii

Abstract

MySQL is one of the most common relational database management system that is used around

the world and keeping it high available is important for most of its users. This research

concentrates on MySQL database high availability solutions, where the database performance

is evaluated and compared between two different high availability solutions. Noting that there

are multiple choices for high availability solutions of MySQL such as master-slave replication

with manual or automatic failover, MySQL NDB cluster, Galera Cluster for MySQL, MySQL

with Solaris Cluster, Oracle MySQL Cloud Service. In this research the chosen solutions are

InnoDB cluster (MySQL replication) and DRBD (Distributed Replicated Block Device) that

depends on replicated disk architecture. InnoDB cluster is provided officially by MySQL. Up

to our knowledge, there are no researches found related to performance comparison between

these two solutions, and both are considered an effective solution for high availability with

automatic failover. Each solution is evaluated using different replication modes of single

primary topology. Two modes of DRBD cluster is evaluated, which are Protocol A and Protocol

C. Also, two consistency levels are evaluated for InnoDB cluster, which are eventual and

before_and_after levels. The results are analyzed and compared, so that would be helpful for

decision makers in picking an appropriate high availability database solution for a given

application taking into account its cost.

The clusters are configured as recommended (best practice) for best performance and some

variables are changed with multiple values to have the best case. For faire comparison purpose

a benchmark tool is used as workload testing tool. The clusters are tested using read and write

quires. As a result, we found that InnoDB outperforms the performance of DRBD for write

tests. It shows higher performance in terms of throughput and total time. On the other hand, for

read test it outperforms DRBD when the number of concurrent users is high. This is because

InnoDB cluster has two nodes for read queries, and the received requests will be routed on two

nodes. But when the number of concurrent users is low the DRBD shows better performance.

iv

Table of Contents

List of Tables .. vi

List of Figures .. vii

List of Appendices .. viii

List of Abbreviations .. ix

Chapter 1... 1

1.1 Background and Motivation ... 1

1.2 Problem Statement .. 3

1.3 Contribution .. 4

1.4 Thesis Organization .. 5

Chapter 2... 6

2.1 Introduction ... 6

2.2 MySQL Replication ... 8

2.2.1. Replication Formats: ... 8

2.2.2. Replication Protocols: ... 9

2.3 MySQL InnoDB Cluster ... 15

2.3.1. MYSQL Router: .. 16

2.3.2. MySQL Shell: ... 16

2.3.3. InnoDB Consistency Level: ... 17

2.4 DRBD System Replicated Disk Architecture .. 18

2.4.1. Replication Mode: ... 19

2.4.2. DRBD Topologies: .. 19

Single-Primary Mode .. 19

Dual-Primary Mode... 20

2.4.3. Pacemaker / Corosync: .. 20

2.5 SysBench Tool.. 21

Chapter 3... 23

3.1 Performance Evaluation Techniques ... 23

3.2 MySQL High Availability Evaluation.. 24

3.3 Standalone Database Comparison ... 26

v

Chapter 4... 28

4.1 Methodology .. 28

4.2 Experiment Design .. 30

4.2.1. Data and Workload Characterization: .. 31

4.3 Experiment Environment ... 33

4.3.1. Physical Platforms: .. 33

4.3.2. Software Platforms: ... 35

4.3.3. Experiment Settings: ... 35

Chapter 5... 39

5.1 InnoDB Cluster .. 39

5.1.1. Eventual Consistency Level: ... 40

5.1.2. Before_and_After Consistency Level: ... 42

5.2 DRBD System .. 45

5.2.1. Protocol A: .. 45

5.2.2. Protocol C: .. 46

5.3 Comparison Between Two Clusters ... 49

5.3.1. Throughput: ... 49

5.3.2. Total Time: .. 51

5.3.3. Cost: .. 53

5.4 Limitations ... 54

5.5 Verification and Validation of the experimental Model ... 54

5.6 Summary of the results ... 56

Chapter 6... 57

6.1 Conclusion.. 57

6.2 Future work ... 58

References .. 59

Appendices .. 63

Appendix A ... 63

Appendix B ... 69

Abstract in Arabic ……………………………………………………….…………………………………………………………….………71

vi

List of Tables

Table 5.1: SysBench results of throughput for write test of eventual InnoDB consistency level 40

Table 5.2: SysBench results of throughput for read test for eventual InnoDB consistency level 41

Table 5.3:SysBench result of throughput for write test of before_and_after InnoDB consistency level

 .. 42

Table 5.4: SysBench result of throughput for read test of before_and_after InnoDB consistency level

 .. 43

Table 5.5: SysBench results of throughput for write test of DRBD-Protocol A 46

Table 5.6:SysBench results of throughput for write test of DRBD-Protocol C 47

Table 5.7: SysBench results of throughput for read test of DRBD-Protocol C 48

Table 5.8: SysBench results of throughput for write test for all clusters with all types 49

Table 5.9: SysBench results of throughput for read test for all clusters with all types 50

Table 5.10: SysBench results of total time for write test for all clusters with all types 52

Table 5.11::SysBench results of total time for read test for all clusters with all types 53

Table 5.12: Summary of the results as the best high availability solution in terms of performance (low

<25 , high > 25) ... 56

Table A.1: coefficient of variation for results of InnoDB eventual level throughput of 30 trials of

experiments for write test .. 66

Table A.2:coefficient of variation for results of InnoDB before_and_after level throughput of 30 trials

of experiments for write test .. 66

Table A.3: coefficient of variation for results of DRBD Protocol A throughput of 30 trials of

experiments for write test .. 66

Table A. 4: coefficient of variation for results of DRBD Protocol C throughput of 30 trials of

experiments for write test .. 67

Table A.5: coefficient of variation for results of InnoDB eventual level throughput of 30 trials of

experiments for read test ... 67

Table A.6: coefficient of variation for results of InnoDB before_and_after level throughput of 30 trials

of experiments for read test ... 67

Table A.7: coefficient of variation for results of DRBD Protocol A throughput of 30 trials of

experiments for read test ... 68

Table A.8: coefficient of variation for results of DRBD Protocol C throughput of 30 trials of

experiments for read test ... 68

Table B.1: sample of the data that is generated into database by SysBench tool and used in the

experiment .. 69

vii

List of Figures

Figure 2.1::Asynchronous replication [11]] ... 10

Figure 2.2:Synchronous replication [11] ... 11

Figure 2.3: Transaction commit with semi synchronous replication [1] .. 12

Figure 2.4:Active replication - Atomic broadcast [13] ... 13

Figure 2.5: MySQL Group Replication Protocol [15] .. 14

Figure 2.6:InnoDB cluster architecture [22] .. 16

Figure 2.7:DRBD architecture .. 18

Figure 2.8:DRBD with MySQL Architecture [29] .. 21

Figure 4.1:InnoDB cluster architecture of single primary topology [38].. 34

Figure 4.2:DRBD architecture of single primary topology [39] .. 34

Figure 5.1:Throughput for write test for eventual InnoDB consistency level .. 41

Figure 5.2: Throughput for read test for InnoDB eventual consistency level .. 42

Figure 5.3:Throughput for write test for InnoDB before_and_after consistency level.......................... 43

Figure 5.4: Throughput of read test for before_and_after InnoDB consistency level 44

Figure 5.5 : Throughput of InnoDB cluster for read and write tests for both levels 45

Figure 5.6:Throughput of write test for DRBD-Protocol A ... 46

Figure 5.7:Throughput for write test for DRBD-Protocol C .. 47

Figure 5.8 :Throughput of read test for DRBD-Protocol C ... 48

Figure 5.9 : SysBench result of throughput for best cases of write/read tests of two modes of DRBD

cluster .. 49

Figure 5.10 : Throughput of write test for two clusters with all modes ... 50

Figure 5.11:Throughput of read test for two clusters with all modes .. 51

Figure 5.12: Total time for write test for two cluster with all modes ... 52

Figure 5.13 : Total time for two clusters for read test of all types ... 53

file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007884
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007885
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007886
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007887
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007888
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007889
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007890
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007891
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007892
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007893
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007894
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007896
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007897
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007899
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007900
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007901
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007902
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007902
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007903
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007904
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007905
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007906

viii

List of Appendices

Appendix A ……………………………………………………………………………….……… 63

 Range………………………………………………………………………………..…..63

 Variance and Standard Deviation………………………………………………….……63

 Standard deviation………………………………………………………………………64

 Coefficient of Variation (C.O.V)……………………………………………..….……..64

 Mean absolute Deviation…………………………………………………………….…64

 Confidence Interval (CI) for the Mean…………………………………………………65

Appendix B………………………..…………………………………………………..…………..69

ix

List of Abbreviations

Abbreviation Full word

M.Sc. Master’s degree

HA High Availability

CRUD Create, Read, Update, Delete

DRBD Distributed Replicated Block Device

OLTP Online Transaction Processing

VIP Virtual IP Address

VM Virtual Machine

MHz Mega Hertz

NoSQL Not Only SQL

Mbps Megabit Per Second

CRM Cluster Resource Manager

HADBMSs High Availability Database Management Systems

DBMSs Database Management Systems

TCP Transmission Control Protocol

 SMEs Subject-Matter Experts

1

Chapter 1

Introduction

1.1 Background and Motivation

MySQL database is most popular open source relational database management system that used

by many of companies and organizations to organize their data, and for different range of

purposes such as data warehousing, logging application, ecommerce purposes etc.,[1]. Also, it

is used to store anything from a single record of information to large number of records. High

availability is one of the highest priorities for companies/organizations who are caring about

their end user satisfaction for the services they provide, where high availability indicates

minimal downtime, it is important to ensure data is readily available in situations like server

crash, failover, or other data disaster and no organization can afford downtime, even it is merely

for a few seconds. Consequently, if their services are not available like an application or site

fails to load because of problems with their databases, will result in losing their customers and

so decreasing their revenues. Therefore, thinking of high available solution is important for

their database, and the database that this research talks about is MySQL DBMS.

Different database high availability solutions may have different effects on database

performance. Therefore, the database administrator who is responsible for optimizing the

database performance, must decide which appropriate high availability solution for used

application. In this case, he must choose a trade-off between (high availability) and the cost [2].

Therefore, this research will be helpful for the decision maker in picking the suitable high

availability solution for their requirements, since it compares two different well-known and

popular high availability MySQL databases regard database performance (i.e. , how they differ

in affecting the database performance), it also clarify the resources needed for each solution

2

which is important for cost calculate, and it discuss the most suitable solution for the business

size based on the experiments result, noting these points are important for them when they pick

their decision.

There is more than one solution for MySQL database high availability, and organization choose

the one that is suitable for its requirements and resources. Furthermore, the DB performance

will be taken into consideration to help them in choosing a good and appropriate one according

to their requirements (i.e., a feasible solution). In this work a comparison of database

performance will be carried out between two databases high availability solutions, which are

InnoDB cluster technology and DRBD system (distributed replicated storage system) for Linux

platform with MySQL service. They are chosen because both provide an effective high

availability with automatic failover (not manual) and can be built over Unix system, also there

are no researches did any comparison between them, where this comparison considers

throughput and response time in order to maximize customer satisfaction.

Moreover, from my experience as a database administrator in a company, I have been asked

about which high availability solution between DRBD and InnoDB cluster has better

performance and consider the best for company’s requirements, where they often use DRBD

solution, but the client asked for an official solution from MySQL. Therefore, to answer this

question we felt there is a need for a scientific approach that could help and be needed for other

companies and organizations.

Researches about the performance of MySQL high availability solutions are rarely found. Most

of previous works talked about database performance evaluations as standalone databases with

another, where they focused on doing a comparison between standalone database management

systems either relational or non-relational DBMS. One of those researches that is related is

carried out by Raju Shrestha [3] where he did a performance comparison between MySQL HA

solutions. In [3] they studied and evaluated master-slave and cluster-based high availability

database solutions, qualitatively as well as quantitatively. This paper investigated effectiveness

of the two major solutions to high availability database: traditional master-slave replication and

modern cluster-based techniques (Galera cluster). Authors used SysBench tool to execute tests

(read-only and read-write quires) over both solutions, where it is implemented using MariaDB

10.1 with Galera cluster. Results shown that traditional master-slave replication solution

3

performs equal or better in terms of throughput and response time. Despite some performance

lag, author summarized that the Galera cluster is an effective solution for applications and

services where data consistency and high availability is critical.

Also, in Adfinis SyGroup [4] a comparison for MySQL/MariaDB high availability was done

between Galera Cluster vs. DRBD replication, it compares two different High-Availability

solutions for MySQL databases, one is a block-device based replication solution, the other

extends MariaDB internals to provide synchronous replication. This comparison focused more

on network traffic, commit latency, replication, load balancing, failover and resynchronization.

1.2 Problem Statement

Database (MySQL) high availability may affect its’ performance. So, achieving extreme high

availability, will need extreme cost. A trade-off between availability, performance, cost, locking

and complexity can occur comparing to standalone DB , where the data will be replicated on

more than one node continuously and this may cause replication latency between nodes which

affects badly on DB performance [5]. So, companies/organizations who care about keeping their

MySQL database up for long time, will choose one of MySQL high availability solutions, where

these solutions could have different effects on performance of database. So, a comparison for

DB performance will be carried out for two of these high availability solutions which are,

InnoDB cluster and DRBD system with MySQL service.

This research evaluates the performance of the two clusters under different replication types

which includes synchronous and asynchronous modes. This will help them to choose the

suitable and appropriate solution for their application and satisfies their requirements. It should

be noted that the evaluation is done in terms of throughput (i.e., transaction per unit time) and

total response time.

Thus, the main question of this work is which of the above mentioned high available MySQL

solution (i.e., InnoDB cluster and DRBD) performs better than the other and in which cases?

4

1.3 Contribution

This research aims to evaluate and compare MySQL database performance for two of high

availability solutions for MySQL. These solutions are InnoDB cluster and DRBD system

(distributed replicated block device) with MySQL service. The evaluation considers the

database transactions throughput and the total/elapsed time needed. Where the testing is carried

out with different replications modes and using different read and write queries to evaluate the

performance of these clusters/solutions.

The results show that InnoDB cluster outperforms the performance of DRBD for write tests, it

shows higher performance in terms of throughput and total time. On the other hand, for read test

it outperforms DRBD when the number of concurrent users is high, , but when the number of

concurrent users is low the DRBD shows better performance.

The results of this evaluation can have significant help for decision makers in companies or who

are caring about having their MySQL database up for long time (high available). In other word,

this comparison can help them in choosing a suitable solution that fits their requirements and

resources.

Unfortunately, up to our knowledge the absence of recorded data from real-life systems or

previous research results on evaluation of these particular solution, makes the validation of our

results based on real-life systems difficult. Thus, we faced a limitation problem in validation of

the outcomes of our results with either historical real data or other previously obtained results.

Therefore, we carried out validation of our results based on subjective approach i.e., subject-

matter experts (SMEs) opinions validation approach technique to evaluate the significance

differences in performance of the two alternative solutions, and according to the SMEs the

results are valid and can be accredited.

5

1.4 Thesis Organization

This thesis is organized as follows: in next chapter a background introduces definition, notions

and theory relevant to this work such as high availability and MySQL replications. Chapter 3

presents literature reviews and background of MySQL performance comparison and evaluation.

Chapter 4 introduces the research design and methodology used. In chapter 5 we present the

experiments, results, and discussion of the results. Finally, chapter 6 presents the conclusion and

future work.

6

Chapter 2

 Background

In this chapter, the main concepts of high availability and replication are discussed in general,

then focusing on MySQL database group replication and DRBD (distributed replicated block

device).

In computing, high availability refers to systems that are durable and likely to operate

continuously without failure for a long time. As databases are increasingly deployed in

environments, the need to have them highly available has increased also, where it can be trusted

to work properly in cases of hardware or software failures.

2.1 Introduction

The meaning of High Availability varies depending on the requirements of your application and

business, where it is measured as a percentage, For instance, 99% availability (two nines) in a

period of one year means the system can have up to 3.65 days of down time, 99.99% or (four

nines) as is considered excellent uptime , 100% availability indicates that the system is always

up and will never come down (zero downtime).

There are basically three component that can help achieving high availability, which are: first is

elimination of single point of failure (SPOF), which is causing the system failure if any

component of the system failed. This failure can be avoided by adding redundancy in

infrastructure and data, which acts as a standby service ready to take over in case the primary

failed. Second component is a reliable crossover from a failed to a standby component. The third

7

component is detection of failures, as this will enable the framework to either take corrective

actions on the same primary system, or failover the services to a standby system.

Duplication entire MySQL servers could be done by different redundancy options. Shared

storage architecture, replicated disk architecture and MySQL replication are some ways that can

be followed as redundancy options. Considering that the standby servers have access to the

primary server’s data. These options are discussed in the following sections and some are used

in this research [6].

 Shared Storage Architecture:

Is a way to remove some single points of failure. It requires specialist hardware usually with a

SAN (storage area networks), where if an active server dies, the standby server can mount the

same filesystem, perform any necessary recovery operations and start MySQL on the failed

server’s files. Considering that, it is Complex to operate (specially for DBAs) [6].

 Replicated disk architecture:

Redundancy through disk replication (RAID over ethernet) is another way to keep the data safe

in case of failure on a master server. DRBD (Distributed Replicated Block Device) is an example

of this option, which is commonly used for MySQL in combination with tools from the Linux-

HA. In this research a comparison between this option and another redundancy option (MySQL

replication) is carried out regard the database performance.

 MySQL Replication:

Redundancy through MySQL replication is at the relational database management system layer,

it is a process that enables data from one MySQL database server (the master) to be copied

automatically to one or more other nodes of MySQL database servers (the slaves), which has

potential for scaling out. Replication works because events written to the binary log are read

from the master and then processed on the slave in different format, that is clarified in following

sections.

This study presents two different ways of the redundancy options mentioned before. This aims

to have a duplicate for MySQL database server for different purposes as automatic failover,

8

scalability, and could be used for analyzing data on the slave in order not to overload the master.

These are InnoDB cluster that depends on MySQL group replication technology [7], and a

DRBD (distributed replicated block device) with MySQL service, which depends on a replicated

device architecture. A comparison between these solutions is carried out based-on the

performance of the database, and how the end user will be affected of these clusters regards the

response time and throughput.

2.2 MySQL Replication

The MySQL database management system provides mechanism to configure master-slave

replication. That allows configuring one or more servers as slaves (replicas) of another server,

or even to behave as master for local updates. This mechanism of MySQL replication works in

a simple three-part process:

 • Firstly, the master records changes/updates on its data from application or client in its binary

log (these records are called binary log events).

 • Then, the slave nodes copy the master’s binary log events to its relay log.

• Finally, slave replays the events in the relay log, applying the changes to its own data [8].

The events are written to binary logs in different replication format according to the type of

events, which is discussed in the following.

2.2.1. Replication Formats:

MySQL uses the primary copy replication method, and supports three kinds of replication,

statement-based, row-based formats and can use a mixed format logging [8].

 Statement-Based Replication

In this approach, every SQL statement that could modify the data is logged on the master

server [8], where statements are logged to the binary log exactly as they were executed.

Then those SQL statements are replayed on the slaves against the same dataset and in

the same context. The binary logs do not grow as fast with statement-based replication

https://mariadb.com/kb/en/binary-log/

9

as they do in row-based replication. It generally requires less data to be transferred

between the master and the slave, as well as taking up less space in the update logs.

MySQL originally were based on this approach that depends on propagation of SQL

statements from master to slave. It has been around from the beginning of MySQL

version 3.23 [9].

 Row Based Replication

The master writes events to the binary log that indicate how individual table rows are

changed, where every row modification gets logged on the master and then applied on

the slave. Instead of replicating the statement that performs the changes, the row-based

approach replicates each row being inserted, deleted, or updated separately with values

that were used for the operation [1], which is logged to the binary log separately, noting

that statements are not logged.

 Mixed Mode Replication

Server uses a combination of statement-based logging and row-based logging, where it

can change the binary logging format in real time according to the type of event.

Statement-based logging is used by default, but automatically switches to row-based

logging in particular case. This is recommended for MySQL version 5.1, to avoid

problems for users who upgrade from version 5.0 or earlies because those versions had

no row-based replication and users have had to use statement-based replication, where

MySQL developers did not want server to make a sudden switch [1].

2.2.2. Replication Protocols:

Classification of replication protocols can be done according to where and when updates and

changes happens on master database, can be performed on the replicas database servers [8]. And

regarding to when updates can be propagated, different main replication options could be used

10

with MySQL workloads, which are MySQL Asynchronous, Semi-Synchronous Replication and

MySQL Group Replication [10].

 Asynchronous Replication:

MySQL replication by default is asynchronous, this type of replication particularly suitable for

modern application such as website. It is considered asynchronous because the master does not

wait for the slaves to apply the changes. But instead just dispatches each change request to the

slaves and assumes they will catch up eventually and replicate all changes [1] as shown in Figure

2.1. With asynchronous replication, if the master crashes, transactions that it has committed

might not have been transmitted to any slave, which may have a missing transaction [11].

 Synchronous Replication:

In contrast, synchronous replication keeps the master and slaves in sync and does not allow a

transaction to be committed on the master unless the slave agrees to commit it as well. The

synchronous replication makes the master wait for all the slaves to keep up with the writes [1].

Where a request is sent to all storage nodes being involved in the transaction, and the transaction

is not committed till all nodes indicate that they are ready, then it becomes committed and the

application/client get informed of the success of the transaction [12] as shown in Figure 2.2.

Figure 2.1::Asynchronous replication [11]]

11

Asynchronous replication is faster than synchronous for reasons, relates to that it requires extra

synchronizations to guarantee consistency, which is usually implemented through protocol

called two-phase commit. This guarantee consistency between the master and slaves, which

requires extra messages to ping-pong between master and slave [1].

 Semi-synchronous Replication:

Semi-synchronous replication falls between asynchronous and fully synchronous replication.

The idea about it is to ensure the changes are written to disk on at least one slave before allowing

execution to continue. This action avoids sending a reply to the client until the transaction has

been written to the relay log of at least one slave. This means it does not wait for all slaves to

acknowledge receipt, it just requires only one receipt [13] as shown in Figure 2.3.

Figure 2.2:Synchronous replication [11]

12

 MYSQL Group Replication:

Database replication is traditionally handled in two ways, either with synchronous (eager)

replication or with asynchronous (lazy) replication. But they have problems one can consider

such as synchronous replication which is slow and deadlock prone, and asynchronous

replication does not enforce consistency between the replicas even though it is efficient.

Therefore, to address this problem, replicated databases based on group communication have

been proposed for some time [14].

Atomic Broadcast

Techniques based on group communication typically rely on a primitive called total order

broadcast or atomic broadcast, it ensures that messages are delivered reliably and in the same

order on all replicas [14]. Where a client sends the transaction to the primary and it processes

the transaction to all participants using an atomic broadcast, then replicas apply the writes

according to delivery order of the atomic broadcast as shown in Figure 2.4. Consequently,

conflicts are detected and if a transaction needs to be aborted, it is aborted on all servers [15].

Figure 2.3: Transaction commit with semi synchronous replication [1]

13

Group Replication Technique

Group Replication is the latest evolution of MySQL Replication. It is a technique that can be

used to implement fault-tolerant systems. Group replication is designed to make data replication

more robust and reliable. It consists of set of servers that each have their own entire copy of the

data and interact with each other through message passing.

 MySQL Group Replication provides distributed state machine replication with strong

coordination between servers. In this technique (state machine replication) the whole transaction

is put into a message, and the message is broadcast (total order broadcast) to the servers as

shown in Figure 2.5. That is provided by the communication layer that apply a set of guarantees

such as atomic message and total order message delivery [16].

Group Communication System (GCS) protocols provide a failure detection mechanism, a group

membership service, safe and completely ordered message delivery. These key properties

ensure that data is consistently replicated across the group of servers. Furthermore, at the very

core of this technology lies an implementation of the Paxos algorithm [16], that acts as the group

communication engine. Where it is an efficient and highly fault-tolerant algorithm, for

reaching consensus in a distributed system [17].

Figure 2.4:Active replication - Atomic broadcast [13]

14

Performance Tuning:

Group communication is a plugin, and one of the key components of a group replication plugin

is a group communication thread (GCT), which runs in loop when the plugin is loaded [18].

This threads’ wait value is determined by this variable A group_replication_poll_spin_loops.

where this variable represents in InnoDB cluster, the number of times the group communication

thread waits for the communication engine mutex. Since group communication thread (GCT),

receives messages from the group and from the plugin, handles quorum and failure detection

related tasks, sends out some keep alive messages and handles the incoming and outgoing

transactions from/to the server/group, and waits for incoming messages in a queue. So, when

there are no messages, the GCT waits, and by configuring this wait to be a little longer (doing

an active wait) before going to sleep, can prove to be beneficial in some cases [19].

Thus, different values are tried for this variable in the configuration of MySQL cluster in the

experiment of this research. That is to check the case that the performance of MySQL can be

improved and take it for comparison with the other cluster.

Figure 2.5: MySQL Group Replication Protocol [15]

15

MySQL Group Replication Topologies

It is possible to setup MySQL group replication with different topologies of masters and slaves,

which are single primary mode (the simplest topology), and multi primary mode.

 Single-Primary Mode

In this topology, the group has a single primary server that is set to read-write mode. Thus, only

a single server writes to the group and all other members in the group are set to read-only mode.

In this case they don’t interact with each other at all, they all connect only to the master. Also,

the server which join the group will learn about the primary server and is automatically set to

read-only mode. This configuration is useful for a system that has many reads and few writes

[8].

 Multi-Primary Mode

In multi-primary mode, any member joins the group and compatible with the group members is

set to read-write mode, where there are no special roles for any member, even if they are issued

concurrently. Consequently, writing simultaneously is possible in this mode [20].

2.3 MySQL InnoDB Cluster

MySQL InnoDB Cluster is a collection of products that work together to provide a complete

high availability solution for MySQL. It is composed of three main parts: Group Replication

(GR), MySQL Shell and MySQL Router. Three servers are needed at least to configure InnoDB

cluster, either in a single primary, or multiple primary mode with InnoDB engine.

InnoDB cluster depends on group replication technology, that is clarified in preceding sections.

In this cluster each MySQL server instance runs MySQL group replication that provides the

mechanism to replicate data within the cluster with built-in failover [21].

16

2.3.1. MYSQL Router:

MySQL router is lightweight middleware that is used to route connections between the

application and back-end MySQL servers, and handle the failover and load balancing. Where it

acts as a proxy to hide the multiple MySQL instances on the network and map the data requests

to one of the cluster instances. Thus, it stands between application servers and the GR setup, as

shown in Figure 2.6. It makes the cluster transparent for the application, that is why application

believes that it is talking to a single MySQL server. But in fact, there is a cluster consists of

multiple servers there. Furthermore, MySQL router selects a new MySQL server if there any

connection fails between the already connected MySQL server and application. In this case,

applications will be designed to retry the connection.

2.3.2. MySQL Shell:

MySQL shell is used for configuring InnoDB Cluster. It is an advanced command-line client

and code editor for the MySQL Server, which supports development and administration for the

MySQL server. Also, it provides the developer and DBA with a single intuitive, flexible, and

powerful interface for all MySQL related task. Moreover, it supports different languages such

as (JavaScript, python and SQL).

Figure 2.6:InnoDB cluster architecture [22]

17

2.3.3. InnoDB Consistency Level:

The configuration of a group’s consistency can be guaranteed based on the point at which the

transaction is wanted to be synchronized across the group. The points of synchronizing

transactions across a group could be at the time of a read operation or at the time of a write

operation. The consistency level can have a different impact on read-only (RO) and read-write

(RW) transactions processed by the group. Thus, one can determine the consistency level

according to his situation with MySQL group replication as following [23]:

 Eventual Level: It is the GR default consistency level, where read only and read-write

transactions do not wait for preceding transactions to be applied before executing. It

could result in outdated values of RO transaction, and RW transactions could result in a

rollback when a primary failover happens.

 Before_On_Primary_Failover: In this level, the new RO or RW transactions with a

newly elected primary that is applying backlog from the old primary are held (not

applied), until any backlog has been applied.

 Before: A RW transaction waits for all preceding transactions to complete before being

applied and A RO transaction waits for all preceding transactions to complete before

being executed, that will cause a long wait time.

 After: A RW transaction waits until its changes have been applied to all other members.

This can be considered as synchronous writes as the return from commit happens only

when all members have applied it. This value has no effect on RO transactions, and it

has impact on network latency.

 Before_and_After: In this level a RW transaction waits for all preceding transactions

to complete before being applied and until its changes have been applied on other

members. Also, a RO transaction waits for all preceding transactions to complete before

execution takes place. That is why this level considered as the highest level that

guarantee the transaction consistency.

18

In this research the experiments are carried out using two of these consistency levels, which

guarantee the lowest and the highest transaction consistency (i.e., eventual and

before_and_after).

2.4 DRBD System Replicated Disk Architecture

DRBD (device replicated block device) is designed for high availability clusters and software

defined storage. Where it is a software-based, shared-nothing, replicated storage solution, and

mirroring the content of block devices (hard disks, partitions, logical volumes etc.) between

hosts. It is developed by LINBIT, which provides networked RAID 1 functionality for

GNU/Linux [24]. Since It implements mirroring across two disks as shown in Figure 2.7. Thus,

two copies of information exist, and when a disk fail, the information can still be acquired

through the other copy [25]. Each peer of a DRBD resource acts in one of two roles, it may be

either secondary or primary node. This is controlled by a cluster manager software called

heartbeat, that initiates the failover process in case the primary node (active) leaves the cluster

unexpectedly (crashes) [26]. Consequently, all the modifications that happened to data must be

initiated on the primary node and reflected on the secondary node. The secondary node can’t be

used for neither read nor write access, where it is passive node.

Figure 2.7:DRBD architecture

19

2.4.1. Replication Mode:

DRBD mirrors the data in real time and transparently. Thus, the applications are not aware of

multiple nodes. DRBD replication can be either synchronously or asynchronously replicated

modes and there are three degrees of replication synchronicity as the following :

Protocol A

It is asynchronous replication protocol, which means that local write operations are considered

achieved on the primary node when local disk write are finished, and the replication packet has

been placed in the local TCP send buffer. However, if there is a host forced failover, then some

data loss can occur. This setup is more common in replicating stacked resources in a wide area

network [24].

Protocol B

This protocol is memory synchronous (semi-synchronous) replication protocol. The local write

operations are considered achieved, once it is occurred on primary and replicated data has

reached the peer node. In this mode no writes are lost in case of forced fail-over.

Protocol C

Synchronous replication protocol, which is the most commonly used protocol and the default

one. Using this mode means that the Local write operations on the primary node are considered

completed only after both the local and the remote disk writes have been confirmed, where it

guarantees the prevention of any data loss in failover.

2.4.2. DRBD Topologies:

Single-Primary Mode

Primary role in this mode is on one of cluster member, where the application can only write to

it, and the secondary node is simply a real time replica of the primary. It is guaranteed that only

one cluster node manipulates the data at any moment.

20

Dual-Primary Mode

In this mode the DRBD resource has primary role on both cluster nodes at the same time, where

the application can freely write to both DRBD resources simultaneously, and DRBD kernel

driver allows write attempts to happen to DRBD resource on both nodes sharing the resource.

By design, a DRBD resource is supposed to have the same contents on both nodes of a cluster.

However, it is a bit dangerous, where application can have some form of locking logic. But it is

the preferred approach for load-balancing clusters [24].

Optimizing DRBD Performance

There are number of configuration options for tuning the throughput of DRBD. One of

the recommendations for tuning DRBD to optimize its performance is tweaking the I/O

unplug watermark. The I/O unplug watermark affects how often the I/O subsystem's

controller is forced to process pending I/O requests during normal operation. Some

storage controllers deliver better performance with small values. However, others

perform better when left alone, and others setting as high as max-buffers is advisable.

On the other hand, in some cases there is no significant effects of this setting [27]. Where

there is no universally recommended setting for this option, since it is hardware

dependent. Thus, in this research three values are experimented for this variable. Thus,

the best case could be taken for performance evaluation.

2.4.3. Pacemaker / Corosync:

DRBD uses Pacemaker and Corosync tools for communication and managing cluster as

illustrated in Figure 2.8. Pacemaker is an open source cluster resource manager (CRM) that

performs tasks to control how the cluster behaves as to start, stop, monitor, recover or move

around a resource. The resource in high availability configuration can be something as simple

as an IP address that floats between cluster nodes or something as complex as a database instance

with complex configuration [28].

Corosync is an open source program that provides cluster membership and messaging

capabilities referred to as the messaging layer (cluster communication layer), where it serves

21

three primary purposes; it provides reliable message passing between cluster nodes, establishes

the cluster membership, and determines quorum. Corosync is the default cluster

communications layer in the Linux HA stack [28].

Pacemaker and Corosync also used to manage the failover when a resource becomes

unavailable, that is by using a virtual IP method for redirecting clients to the active node as

shown in Figure 2.8.

2.5 SysBench Tool

SysBench is a benchmark suite, open source benchmarking tool, that allows one to quickly get

an impression of system performance. It provides benchmarking capabilities for Linux, supports

testing CPU, memory, file I/O, mutex performance, and database performance as MySQL

benchmarking.

 SysBench is used to evaluate MySQL clusters performance in this research. It is simple to use,

open source, provide scripts for load testing, and it automatically generates a data into the

database.

Figure 2.8:DRBD with MySQL Architecture [29]

http://sysbench.sourceforge.net/

22

It includes an Online Transaction Processing (OLTP) test profile, where it is a true database-

backed benchmark that conducts transactional queries to an instance of MySQL in a CentOS

environment. A LUA [30] scripts can be used to execute benchmarks by this tool, where those

scripts, handle input from command line parameters, that define the modes of benchmark that

is supposed to use which are: prepare, run and cleanup. The prepare command should be

executed before run command, that is to generate a data into database by defining the number

of tables and number of rows for each one. Moreover, these scripts define how the benchmark

will be executed [31].

23

Chapter 3

Literature Review and Related Work

While using the database high availability HA, the performance also should be taken into

consideration. High availability database may affect its’ performance. There is a trade-off

between performance, cost, locking and complexity comparing to standalone DB [1].

Companies and organizations who care about keeping their MySQL database up for long time,

will choose one of MySQL high availability solutions, recall that these solutions have different

effects on performance of the database.

While there has been much research on evaluating the performance of database as standalone

server, and there are researches for comparison between standalone servers for relational and

non-relational database management systems, few researchers have taken clusters or high

availability solutions into consideration. So, a comparison for DB performance is carried out in

this research for two of high availability solutions, which are InnoDB cluster and DRBD system

with MySQL service. This comparison aims to evaluate the performance of two clusters under

different replication types, taking into account the throughput and response time, which are the

most common metrics used in previous works.

3.1 Performance Evaluation Techniques

 Paul, Subharthi [32] in his survey tried to emphasize the importance of database systems in

enterprise setups and looked at the methods and metrics that are used to evaluate the

performance of database systems. In [32] he discussed some of the analytical modeling methods

for evaluating systems that are applicable for database systems, which are: queuing models, cost

models, simulation modeling and benchmarking (which is used in this research). Where

24

benchmarking method is considered the best, when multiple database systems need to be

evaluated against each other. But it suffers from the inherent setback, that it assumes all systems

to be fully installed and operational. It relies on the effectiveness of the synthetic workloads as

real workloads are non-repeatable and hence not good for effective benchmarking.

Also, he classified the Database Performance Evaluation Techniques for specialized Databases

as Web-Database Systems, which serves the back-ends of Web-Servers, Real-time Database

Systems, Enterprise Data Mining System. These DBs are huge database often called (data

mining systems) that stores historical and redundant data, and Object-Oriented Systems

performance Evaluation. Moreover, they listed different benchmarks that could be used for

evaluating different performance aspects of such systems [32].

3.2 MySQL High Availability Evaluation

A performance comparison between MySQL high availability solutions had been made by Raju

Shrestha [3], where he studied and evaluated master-slave and cluster-based high availability

database solutions, qualitatively as well as quantitatively. He investigated effectiveness of the

two major solutions to high availability database which are: traditional master-slave replication,

and modern cluster-based techniques (Galera cluster). Author used SysBench tool to do the

experiment of executing tests (read-only and read-write quires) over both solutions, where it is

implemented using MariaDB 10.1 with Galera cluster. Results show that traditional master-

slave replication solution performs equal or better in terms of throughput and response time.

This is because of simpler setup and better performance. However, cluster-based solution is

superior when it comes to high availability, data consistency and scalability as it offers

instantaneous failover, no data inconsistency and loss of data. Also, at the same time providing

both read and write scalability. Therefore, despite some performance lag, author summarized

that the Galera cluster is an effective solution for applications and services where data

consistency and high availability is critical.

The ways of fault tolerant of MySQL database have been talked about by Ari J. Flinkman [33],

he looked at ways to build a fault-tolerant MySQL installation in his research, by creating an

25

active/passive setup using either MySQL’s standard replication, shared storage or DRBD, he

also talked about MySQL Cluster and NDB Storage Engine, (where this research focused on

InnoDB storage engine). This can be used to create a setup with multiple active server instances

with redundant, distributed storage for data. He summarized that the shared storage is always

problematic when used with databases which are not designed for it, and the replication with

DRBD might be good low-cost alternative to shared storage but it is limited to Linux. He

considered the MySQL cluster is definitely the best bet in such quest, and it might prove

influential for future designs of HADBMSs if it lives to deliver all the promises made.

Bart Oles [5] looked at the two main high availability solutions for MySQL and MariaDB, and

how they can each be affected by latency issues. He clarified the effects of master/slave

replication for MySQL high availability and multi-master replication. While the term latency

refers to several kinds of delays incurred in the processing of data, but he talked about it as a

definition of how long it takes for a piece of information to move from stage to another. Where

master slave replication for MySQL comes with multiple configuration options to optimize

replication process. He talked about essential replication related parameters, which are: parallel

apply, logical clock algorithm, compression, selective master-slave replication and replication

mode. Moreover, author discussed the multi master replication (MariaDB) and the points that

cause common latency issues. These points are the slowest node in the cluster, horizontal

scaling, write operations, geolocated clusters, high ping and transaction size. Where some of

them are considered of the experiment for this research, for tuning the database to give better

performance.

In [4] (Adfinis SyGroup website) a comparison for MySQL/MariaDB high availability is carried

out between Galera cluster vs. DRBD replication. Where they compared two different high

availability solutions for MySQL databases, one is a block-device based replication solution and

the other extends MariaDB internals to provide synchronous replication. This comparison

focused on some points such as network traffic, commit latency and replication.

 DRBD supports synchronize and asynchronies modes. However, the galera cluster can only be

used synchronously. Moreover, load balancing in DRBD is typically used in an Active/Passive

setup, in contrast, Galera cluster is a pure Multi-Master solution. Authors also explained about

the failover. In DRBD environment, if the active node goes down, the Cluster stack (typically

26

Pacemaker with Heartbeat or Corosync) has to detect the problem and switch the services over

to another node. While in Galera Cluster, when a single node goes down, the remaining nodes

in the cluster continue working without interruption and the client currently connected to the

failing node would retry the connection via a load balancer without notice any interruption [4].

Pukdesree et al. [34] had published their research with name of “Performance Evaluation of

Distributed Database on PC Cluster Computers”, which aims to evaluate the distributed database

approach, that can improve the performance of database system. They used an open source

DBMSs and evaluated the distributed database system using SysBench benchmark tool. Where

the test was executed using two types of operations, which are read/write and read only scripts.

It was in term of the number of processed requests in specific time period. Authors configured

the cluster using MySQL Cluster 7.0. On the other hand, some researches articles claimed that

the version of MySQL Cluster 7.0 has greatly higher performance than previous versions, while

they used Red Hat Enterprise Linux 5 operation system. Moreover, the test was over different

number of storage nodes to check the performance when it increased i.e., its scalability. They

summarized that the number of succeeded transactions per second (throughput) improved

significantly, when number of data storage increased, which depends on the results they got.

However, their evaluation was limited by the maximum number of data storage nodes to eight

data storage machines.

3.3 Standalone Database Comparison

Other researches introduce different type of database management systems and compare the

database performance between them as standalone database. Where Shivani [35] evaluated the

performance of different NoSQL databases, where NoSQL refers to non-relational database

management systems. These NoSQL databases are (MongoDB, Couchbase, Cassandra, HBase)

under various parameters like creation, insertion, update, and throughput. YCSB benchmark

(Yahoo Cloud Serving Benchmark) has been used to drive performance tests, which provides

data generator and a set of workloads that are defined as a set of CRUD operations. Also, the

article analyzed the result of running the CRUD operation over each database instance and

27

compared the time needed for insertion, update, creation operations and the throughput for each

one. It concluded that MongoDB performs better than Cassandra for insert operations for

various sizes of data sets, and Couchbase and MongoDB perform better than Cassandra regard

the throughput [35].

Some researches tried to compare between relational and non-relational database system to

prove which outperform other as Lokesh Kumar [36], who attempts to use NoSQL database to

replace the relational database, where he focused on one of NoSQL database (MongoDB) and

made a comparative study with MySQL. Also, a method is suggested to integrate with different

two technologies of these two types of databases by adding a middleware (Metadata) between

application layer and database layer. Where the comparison was based on terms/concepts and

behalf the quires and based on Query Execution speed/performance (for basic and complex

queries) between mongo database and MySQL. Consequently, the result showed that MongoDB

spends less time than MySQL, and it concluded that NoSQL(MongoDB) is better to be used

instead of MySQL because of two factors which are, ease of use and timing performance [36].

Response time, throughput, latency, creation/Insertion time and delay are the most used

metrics in previous work for researches related to database performance evaluation. It should

be noted that most of these researches do comparison between two or more DBMS (relational

or non-relational database) for standalone database.

28

Chapter 4

 Research Approach and Methodology

This chapter describes the experiment design used in this research to achieve the goal of

performance evaluation, and the comparison between the two high availability solutions for

MySQL. It describes the methodology and stages that are followed to answer the question of

this research, and how the experiments are implemented.

4.1 Methodology

Recall that the aim of this research is to evaluate the database performance of two high

availability solutions of MySQL and to make a quantitative comparison between them. The

experiment design is determined after studying the factors that could affects the performance

for each cluster, which aims to compare the best case for InnoDB cluster and DRBD in two

different replication modes. The experiments are carried out to choose the best configuration,

that gives best performance of InnoDB cluster and the best one for DRBD. Then to compare

between these best cases as clarified in the experimental design section.

The comparisons occurred between best cases to give more accurate results where changes of

some variables value can affect the performance, it could make it better or worse. Therefore, in

this research we try to change all the variables that could affects database performance to

recommended values. The purpose of these trials is to achieve fairness in performance

comparisons between the best case of each solution.

29

After studying and determining the experiment design for this research, we followed the

following steps:

 Preparing the servers needed for implementing the experiments, taking into consideration

the experiment design, where InnoDB cluster needs at least three servers to be configured

and DRBD needs two servers. These servers have the same specifications (Unix servers) for

both clusters.

 Prepare SysBench tool, which is the benchmarking tool that used in this research to evaluate

the performance of MySQL database. It automatically generates the data into database and

allow the use of transactional queries for testing. It is installed on a server on the same virtual

machine of the database servers used for high availably. This is to mitigate the network

latency, that could occur between the SysBench (which is considered as the client) and the

database server.

 Installation and configuration of first cluster InnoDB cluster, where it is installed on three

Unix servers as database servers, and one server for MySQL router which is installed on

separate one on the same VM. Where it is configured on bases of what is recommended to

have the best performance from MySQL [37].

 MySQL database is tuned also to have better performance by modifying the database

configuration file.

 SysBench tool is used to test the database performance for two types of tests (write only and

read only test). The experiment is repeated 30 times (replicas) for each case. Which is the

reasonable number of replicas by which we obtained means of results with relatively low

variance.

 Throughput and total time are saved in excel files from SysBench results for each run and

the average of the 30 times is calculated for each case, where the experiment is repeated for

two consistency levels of InnoDB cluster.

 The results are analysed and best case for InnoDB cluster is determined, for two of

consistency levels.

 Installation of DRBD cluster (second cluster) on two Unix servers, where one node is active

and the other is passive. It is also configured with settings recommended by LINBIT to have

best configuration for performance and throughput [24].

30

 Same database settings are added into MySQL configuration file in both clusters.

 The same generated database is taken from first cluster as backup and restored to the DRBD

cluster to have the same data on both clusters. SysBench tool is utilized by applying the

same way and the same commands that are used for InnoDB cluster for read and write tests.

 Experiment is repeated 30 times too,for each of two replication modes of DRBD cluster,

and the average of the result is taken for each case.

 Results are analysed for DRBD, and the best case is determined for two of replication modes.

 The best cases of the two replication modes of InnoDB cluster and DRBD are compared,

and results are analysed.

4.2 Experiment Design

The experiment design laying out a detailed experimental plan for doing this quantitative

experiment. It aims to describe and explain the variation of information under conditions that

are hypothesized to reflect the variation. Next section shows the details of the plan for this

research.

Service and Topology: This experiment aims to evaluate the performance of MySQL database

service with high availability (HA), where high availability aims to keep the database up for

longer time and do automatic failover. InnoDB cluster (MySQL Group Replication) and DRBD

(Replicated Disk Architecture) are the high availability solutions that are chosen to be evaluated.

This evaluation achieved by analysing the results of experiments and comparison between them.

Where the used topology is Single-Primary Mode for each cluster, recall this topology was

discussed in chapter 2.

Replication Mode: The replication mode used in this experiment for DRBD cluster is protocol

A (asynchronous replication) and protocol C (synchronous replication). In contrast the used

consistency levels for InnoDB cluster are the eventual level (the default) and before_and_after

level, which represent simplest and most complex level, respectively, in InnoDB. These

configurations are discussed in section 2.3.3.

31

Dependent Variables: Represent the output or outcome of the experiment, which are the

metrics used to evaluate the performance of MySQL database of the two clusters. They are

throughput (number of transactions per second) and response time (the total time needed for

the CRUD transactions to be completed).

Independent Variables: The independent variables are controlled inputs. It should be noted

that the variation in the value of the dependent variable (i.e., output) is due to the different

inputs. In this experiment, independent variables refer to the factors that could be manipulated

to take the best performance for each MySQL cluster. Where there are multiple factors that

affect the performance for each cluster including network latency, hardware specifications, and

the configurations of each cluster itself. For this experiment, the goal is to compare between

two MySQL clusters. Thus, the used hardware specifications and network bandwidth between

servers are identical. Where they are installed on same virtual machine to mitigate the network

latency. The variables that could be changed for each cluster configuration is taken into

consideration separately to have the best performance for each one. Then do comparison

between the best cases for each cluster. Some variables value depends on the hardware

specifications other variables don’t have optimal values. Therefore, multiple input values are

tried for each cluster and the best one is taken. For InnoDB cluster a variable

group_replication_poll_spin_loops value is tried with different three values through the

configuration (see section 2.2.2). Also, for DRBD the value of variable is called I/O unplug

watermark is also tried with three different values in the DRBD configuration file.

 4.2.1. Data and Workload Characterization:

The data used is auto generated from workload testing tool (SysBench), that auto generates the

data into database based on the command line option you specified. In this experiment the

following command is used to generate the data, using ‘prepare’ command.

 SysBench --MySQL-host=database-IP --MySQL-port=port# --db-driver=MySQL --MySQL-

user=db_user --MySQL-password=*** --MySQL-db=test cluster --tables=5 --table_size=2000000 --

percentile=99 --rand-type=uniform test_scripts.lua prepare

https://en.wiktionary.org/wiki/Special:Search/output

32

Where the “MySQL-db” is the created database into which the generated data to be saved,

“tables” determine the number of tables for the specified database, “table_size” specifies the

number of rows for each table, “rand-type” is the random numbers distribution.

 In this experiment rand-type specified with uniform value which will equally stress the dataset

and will have more chances to read/write all over the place, and the percentile option allows to

specify a percentile rank of query execution times to count which is specified to be 99 % . Note

that, the data generated contains (integer and character) data types and with specific template

(groups) generated from SysBench as shown in Appendix B. Furthermore, the size of the

generated database is around 2 Gigabyte as a result of five tables and 2000000 rows for each

table.

Workload: SysBench provides OLTP workloads to be executed, where the read only and write

only workloads are executed on the two clusters. Hence, read-only script consists of different

types of select queries and write-only script has a mix of delete, insert and update quires.

SysBench works with three commands (prepare, run and cleanup), with multiple options. The

following are the steps that followed in this experiment with SysBench:

 Preparing the database by generating the data using prepare command

(SysBench), which generate the data and has option to determine the number of

tables and rows for each table.

 After the data is prepared (loaded), write and read workloads are executed using

run command in SysBench, which executes transactional queries on the database

node as shown in the following command used for testing (read_only.lua script):

 SysBench --MySQL-host=DB-server-IP --MySQL-port=port# --db-driver=MySQL --

MySQL-user=db_user --MySQL-password=*** --MySQL-db=test_cluster --

table_size=2000000 --tables=5 --percentile=99 --rand-type=uniform --events=1000 -

-threads=1 /usr/share/SysBench/oltp_read_only.lua run

Where “threads” option in the command determines the number of concurrent

users in the experiment, and it is tried with these (1, 4, 8, 16 and 32) concurrent

33

users, “events” option determines the maximum number of transactions to be

executed through time period (default is used 10 seconds), and the database

server IP is the router IP in InnoDB cluster and the virtual IP (VIP) in DRBD

system.

 Each test is repeated 30 times (using for loop) for each thread number (number

of concurrent users) to have more accurate results and saved in excel sheets, then

the average of results is calculated, where the concurrent users are changed to

check how the cluster performs with increasing number of concurrent users.

4.3 Experiment Environment

This section discusses the hardware and software platforms used and how they are used in this

experiment.

4.3.1. Physical Platforms:

The specification of the VM (VMware virtual machine) used in this experiment for both clusters

InnoDB and DRBD are the same for each server:

CPU: 2 processor cores, 2593.906 MHz, Intel.

Memory: 8 Gigabyte (GB).

Hard disk: 50 Gigabyte.

Network Speed: 10000 Mbps

Attached Disk: 20 Gigabyte, it is attached just for DRBD cluster for two nodes as it is replicated

hard disk architecture.

34

InnoDB cluster: Installed on three VMs used for database servers and one server (VM) for

MySQL router. The client/ application will connect to the router IP and it will route the received

requests to the read or read/write node of the cluster based on the used TCP port number. The

topology used is single primary topology, Figure 4.1 illustrates this architecture.

DRBD: Installed on two servers (VMs) with identical hardware specifications and with single

primary topology. The disk device is attached to the two nodes with 20 GB, as illustrated in

Figure 4.2.

Figure 4.1:InnoDB cluster architecture of single primary topology [38]

Figure 4.2:DRBD architecture of single primary topology [39]

35

4.3.2. Software Platforms:

The operating system used in this experiment is Linux on all servers. The DRBD doesn’t

configured on other OS and no firewall enabled on any server, where the OS specification for

all servers as following:

Operating System: CentOS Linux 7

Kernel: Linux 3.10.0-957.21.2.el7.x86_64

InnoDB Cluster: Three types of software are needed to be installed for this cluster. Thus, the

InnoDB cluster could be configured as MySQL database server, MySQL shell and MySQL

router and all are of the same version:

MySQL Server, MySQL shell and MySQL Router version is 8.0.18.

DRBD Cluster: More than one software needed to be configured for DRBD cluster with

MySQL service and doing automatic failover. Following is the version for each software:

DRBD version: 8.4.11-1

MySQL version: 8.0.18

Pacemaker version: 1.1.20-5

Corosync version: 2.4.3-6

SysBench: Installed on separate server but on same VMware with same specification, that is to

mitigate the network latency issue between SysBench (which acts as client) and the database

server, where the used SysBench version is 1.0.18-1.

4.3.3. Experiment Settings:

This section discusses the settings used for each cluster, how it is implemented, and the used

commands.

 InnoDB Cluster:

MySQL server and MySQL shell software are installed on three nodes (VMs), which are the

database servers, and MySQL router installed on different node. To achieve good performance,

36

the following two variables are changed in MySQL configuration file (my.cnf), as

recommended from MySQL. The most commonly followed practice is to set this value

InnoDB_buffer_pool_size at 70% – 80% of the system RAM and the InnoDB transaction logs

should be approximately 50-100% of the size of the InnoDB buffer pool.

InnoDB_buffer_pool_size = 6G

InnoDB_log_file_size = 3G

After installing MySQL server on three nodes, MySQL shell is installed and used to configure

the cluster. The next command is executed on three nodes using MySQL shell to prepare the

configuration:

dba.configureLocalInstance('user@server-name1:3306');

After preparing the three nodes, where each node has different ID in my.cnf file, the cluster is

initialized on one node and the rest of nodes are added by executing following commands using

MySQL shell:

var cluster = dba.createCluster('cluster-name');

cluster.addInstance('user@server-name2:3306');

cluster.addInstance('user@server-name3:3306');

Also, the command used to check the status of cluster:

cluster.status()

After ensuring that the status of cluster is successfully configured, MySQL router installed on

different server, and configured to start managing it, where the read/write node (primary node)

is the DB server that is used in next command for this configuration.

MySQLrouter --bootstrap user:password@server-name:3306 --user=MySQLrouter --force

The result of this command is that, router will start routes the transactional requests into the

cluster on two TCP ports, one for the read only node which is 6447, and the other for read/write

node which is 6446.

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html

37

To take the best performance case of MySQL cluster that could be have in this experiment, this

variable group_replication_poll_spin_loops, which is discussed in chapter 2, is changed with

three different values and the best case is taken in the comparison. These values are 0, 1000 and

1500 that are tested using SQL language. For each value, the experiment is repeated 30 times

(i.e., 30 replicas/trials) and the average is taken. Since smaller number of used replicas generates

high variance between the result values. But with 30 replicas the results are closer based on the

calculated standard deviation and the coefficient of variation as shown in Appendix A. Also,

the results fall in the calculated confidence interval.

Regard changing the consistency level of InnoDB cluster, the following are utilized:

set global group_replication_consistency='before_and_after';

set global group_replication_consistency='eventual’;

After the settings of InnoDB cluster and MySQL router are configured successfully, the

SysBench tool is used to generate the database using prepare command, and the generated

database size is around 2 Gigabytes. Then the quires (write and read quires) are executed over

the cluster, and the results are saved to excel sheets.

 DRBD (Distributed Replicated Block Device):

DRBD software is installed on the two nodes, and a file is created for the DRBD configuration

under this path /etc/drbd.d/ for both nodes, where the attached disk on both nodes are prepared

to be used for DRBD configuration.

The configuration file for DRBD is changed with the recommended settings, where this variable

(unplug-watermark) has no recommended value as discussed in chapter 2. Therefore, it is

experimented with three values, which are 16, 32 and 64 to find out the best performance case.

Other variables are assigned values as recommended to have best performance and throughput

[27]. The following are the assigned values:

 max-buffers 8000;

 max-epoch-size 8000;

38

 sndbuf-size 0;

 no-disk-barrier;

 no-disk-flushes;

 al-extents 3389;

The utilized command to initialize DRBD and to create the metadata for the DRBD resource

on both nodes is:

drbdadm create-md resource_name

DRBD replication after that should synced successfully, where the drbdadm status command

used to ensure that DRBD replication is works correctly and the disks are up to date (consistent)

on both nodes.

Then MySQL database server is installed on both nodes, where the MySQL configuration file

for DRBD has the same settings that is used in InnoDB cluster. Then the attached disk drive is

mounted on the MySQL data directory to replicate the MySQL data directory on both nodes

using this command: mount /dev/drbd0 /data , where /data is the MySQL data directory that is

determined in MySQL configuration file (my.cnf) as datadir=/data/MySQL.

After that Pacemaker and Corosync software are installed on both nodes and configured with

three resources which are file system which is the DRBD disk, virtual IP and MySQL service.

pcs status command provided from Pacemaker/Corosync used to check the status of these three

resources i.e., check the status of the cluster and the active node.

After the configuration works successfully for DRBD cluster, the database is cloned from the

first cluster (InnoDB) and restored into the DRBD primary node to have the same database, then

SysBench tool is used for the test using read and write scripts.

39

Chapter 5

 Experiment Results, Discussion and Analysis

This chapter presents the results of the experiments in details, discussion and the analysis of

these results. It should be noted that the experiments followed the methodology mentioned in

chapter 4 to achieve the goal of this research. Recall that the goal is to compare the performance

between two clusters. Two high availability solutions are implemented and tested with two

modes and experimented with multiple values for a variable that affects the performance to get

the best one, then the best cases for each high availability solution are compared as clarified in

the following sections.

5.1 InnoDB Cluster

The experiment is executed for two consistency levels. These levels are eventual and

before_and_after i.e., the simplest and most complex consistency levels of InnoDB cluster as

discussed in chapter 2. Three different values for variable group_replication_poll_spin_loops

are experimented. The value of this variable may affect the performance of throughput as

discussed before. Thus, the best performance could be taken for the comparative analysis. Read

and write test repeated 30 times (i.e., number of replicas or trials) for each of these input values

to obtain results with reasonable low variance. It should be noted that the variance of the results

was relatively high when the number of replicas (trials) were less than 30. Where the calculated

coefficient of variation has low values (i.e., result is more precise) when tried with 30 times,

which is calculated based on the standard deviation of the results, as shown in Appendix A.

Also, with 95% confidence, the means of the results are within the 95% confidence interval.

40

 The throughput and total time represent the average of the obtained results of all trials for each

case i.e., summation of 30 values divided by 30. Furthermore, each experiment is repeated for

different number of concurrent users (threads) to evaluate the behaviour and performance of the

high availability solutions with increasing number of concurrent users.

5.1.1. Eventual Consistency Level:

The read and write tests are executed over the cluster for this type of consistency level

(eventual), which is the default for InnoDB cluster. The averages are calculated for the 30 times

of experiments to have more accurate results as shown in Appendix A.

Write tests are executed over this level with different values of this variable

group_replication_poll_spin_loops, so we can have the best case. Table 5.1 shows and clarifies

the throughput (transactions per second) of the experiment by changing the number of

concurrent users for write test.

Table 5.1: SysBench results of throughput for write test of eventual InnoDB consistency level

 Number of threads

Values of

group_replication_poll_spin_loops
1 4 8 16 32

0 80.94567 218.8977 352.4203 537.8833 817.5393

1000 46.874 123.2027 240.4377 367.0267 790.0937

1500 78.08233 175.0093 283.2623 383.793 873.155

As shown in Figure 5.1, the throughput has higher values (best) when

group_replication_poll_spin_loops variable value equal to 0 in this experiment for write test but

has no significant difference when the concurrent users equal to 32.

 In other words, the best case in this experiment environment, is when number of waiting times

equal to zero for the group communication thread to wait for the communication engine mutex.

41

Moreover, read tests are executed over this level with same environment of write tests and with

different values of this variable group_replication_poll_spin_loops to have the best case. Table

5.2 presents the throughput (transactions per second) of the experiment when changing the

number of concurrent users for read test.

Table 5.2: SysBench results of throughput for read test for eventual InnoDB consistency level

It is noted that results of throughput have no significant difference when changing the value of

this variable group_replication_poll_spin_loops, where results are very close to each other as

shown in Figure 5.2. So, changing this variable has no significant effects to throughput when

read queries are executed.

 Number of threads

Value of

group_replication_poll_spin_loops
1 4 8 16 32

0 72.73133 270.1647 499.506 912.4237 1387.351

1000 74.15733 276.737 531.776 849.8547 1271.261

1500 68.25567 257.227 470.1163 847.091 1290.459

Figure 5.1:Throughput for write test for eventual InnoDB consistency level

42

Figure 5.2: Throughput for read test for InnoDB eventual consistency level

5.1.2. Before_and_After Consistency Level:

This experiment has been done for the second chosen consistency level of InnoDB cluster which

is before_and_after level. Similar to the previous experiments, this experiment was repeated 30

times for read and write tests. As indicated in Table 5.3, the averages of throughput for write

test when the value of this variable group_replication_poll_spin_loops is tested and changed

using three values, and when number of concurrent users are changed to record the behavior of

the performance.

Table 5.3:SysBench result of throughput for write test of before_and_after InnoDB consistency level

 number of threads

Value of

group_replication_poll_spin_loops
1 4 8 16 32

0 45.695 82.78967 91.96033 78.78433 80.06967

1000 60.25433 101.368 109.229 91.65967 85.59733

1500 55.76067 83.677 74.25567 62.4 62.332

43

It is noted that, throughput is increasing till 8 concurrent users (threads), then it has light

decrease (lower values), when concurrent users are getting higher than 8 users. This decrease in

throughput may occur because the waiting time needed for the cluster to commit the transaction

is higher. Since the higher number of concurrent users, the higher the number of transactions.

Consequently, the waiting time for the transaction commitment is longer for this level of

consistency (strict consistency). Since it waits all transactions to be applied i.e., waits the

acknowledgments from all online members [40]. Also, the cause of this decrease can be referred

to large number of threads management overheads. As shown in Figure 5.3, throughput has best

values (higher), when the value of group_replication_poll_spin_loops is equal to 1000.

For read test, the results are so close to each other, which is the same as what obtained from

eventual level, where changing this variable has no effects on the read test (select queries) on

both consistency levels of InnoDB cluster. As shown in Table 5.4 and Figure 5.4 that illustrate

the results.

Table 5.4: SysBench result of throughput for read test of before_and_after InnoDB consistency level

 number of threads

Value of

Group_replication_poll_spin_loops
1 4 8 16 32

0 73.21133 270.5327 484.1593 838.714 1314.211

1000 72.238 262.1983 453.389 814.3987 1150.635

1500 72.099 259.4527 485.5373 799.074 1275.382

Figure 5.3:Throughput for write test for InnoDB before_and_after consistency level

44

The throughput for both consistency levels of InnoDB cluster has approximately same values

for read test. But for write test the eventual consistency level has higher throughput. As shown

in Figure 5.5, where the read operations don’t change the data of MySQL database, but the

write operations can do insert, update and deletion for data, which commits the transaction.

Since the database should be consistent on all cluster nodes (strict consistent), these

modifications and changes should be replicated on all cluster nodes and make it permanent

before commitment of the request. Thus, the overheads variation in assuring the different

consistency levels of the database makes the throughput different for both consistency levels of

InnoDB cluster for both tests.

Since the before_and_after consistency level do wait for all preceding transactions to be applied

i.e. waits the acknowledgments from all online members (strict consistency), and this wait cause

this low throughput. But the transactions in eventual consistency level do not wait for preceding

transactions to be applied before executing.

Figure 5.4: Throughput of read test for before_and_after InnoDB consistency level

45

Figure 5.5 : Throughput of InnoDB cluster for read and write tests for both levels

5.2 DRBD System

The test experiment for this cluster (DRBD) is executed in the same way as in InnoDB cluster.

So, the comparison could be done between them fairly. Where the same commands of SysBench

tool are used for read and write tests and are executed for two types of replication modes i.e.,

protocol A and protocol C, which are (asynchronous and synchronous replication modes).

The value of this variable I/O unplug watermark is changed in DRBD configuration file with

three possible values to take the best case for comparison. Where it can affect the performance

of this cluster as discussed. Moreover, read and write tests were repeated 30 times for each of

these values to take more accurate and closed results based on the calculated coefficient of

variation that has low values as shown in Appendix A. The average of throughput and total time

were calculated for performance evaluation. Also, each test is experimented with different

number of concurrent users to check how this high availability solution behaves when

concurrent users are increasing. Following sections illustrate these behaviours.

5.2.1. Protocol A:

This experiment is executed for protocol A mode (Asynchronies replication) of DRBD system

for read and write tests. It is experimented with three different values of this variable (I/O unplug

46

watermark) that may influence the performance of the cluster. So, the best case can be taken for

the comparison with the other cluster. Table 5.5 shows the throughput (transactions per second)

of the experiment when changing the number of concurrent users for write test.

Table 5.5: SysBench results of throughput for write test of DRBD-Protocol A

 number of threads

Value of I/O

unplug

watermark

1 4 8 16 32

16 41.967 91.09167 161.1593 286.249 506.5947

32 27.75867 78.58433 138.8707 390.686 683.1583

64 39.77367 105.294 180.4633 237.6617 540.912

The results show no significant difference between the three cases when concurrent users are

low, but when they are increasing, the performance of cluster is better when the value of this

variable (i.e., I/O unplug watermark) equals to 32, as shown in Figure 5.6.

5.2.2. Protocol C:

This experiment of DRBD system is executed for the second replication mode, which is protocol

C (synchronize replication). The tests are executed in the same way of previous experiments.

Where write tests are executed over this protocol with different values of this variable (I/O

unplug watermark), so we can have the best case. Table 5.6 shows that the throughput

Figure 5.6:Throughput of write test for DRBD-Protocol A

47

(transactions per second) of this experiment when changing the number of that variable and

changing the number of concurrent users for write test.

Table 5.6:SysBench results of throughput for write test of DRBD-Protocol C

 number of threads

I/O unplug

watermark
1 4 8 16 32

16 43.69 129.8963 224.103 365.5103 597.931

32 45.02467 85.70067 174.449 455.317 678.2077

64 30.17567 106.8957 226.333 332.576 553.201

The throughput gets higher when value of I/O unplug watermark equal to 32 for high number

of concurrent users comparing to others. In contrast there is not big difference between results

when changing this variable value, when concurrent users are low as shown in Figure 5.7, which

is the same result as we obtained in protocol A.

When the read tests are executed over the DRBD cluster for both protocols, the results have no

significant difference when the value of I/O unplug watermark changes too.

Where read tests are executed over both protocols with different values of this variable (I/O

unplug watermark). As indicated in Table 5.7 that clarifies the throughput (transactions per

second) for protocol C when changing the value of this variable and changing the number of

concurrent users for read tests.

Figure 5.7:Throughput for write test for DRBD-Protocol C

48

Table 5.7: SysBench results of throughput for read test of DRBD-Protocol C

 number of threads

I/O unplug watermark 1 4 8 16 32

16 142.1603 489.4743 803.2713 1152.219 1243.397

32 144.301 491.8507 811.3977 1178.851 1197.87

64 145.271 510.7057 793.5857 1149.818 1255.616

As depicted in Figure 5.8, throughput for read test almost have similar results for all three cases,

which indicates that this variable has no effects on performance when the transactions read the

data from database.

Changing the replication mode doesn’t have effects on the throughput for DRBD system, where

the choice of replication protocol influences two factors of deployment: protection and latency.

Throughput, by contrast, is highly independent of the selected replication protocol [24], as

shown in Figure 5.9 in this research for write and read tests. Which illustrates the best cases of

the two replication protocols for read and write tests that has approximately nearly/closed values

for DRBD cluster.

Figure 5.8 :Throughput of read test for DRBD-Protocol C

49

5.3 Comparison Between Two Clusters

The best case that shows best performance for the two clusters is taken for write and read tests

for each replication mode. Then these results are compared based on their throughputs and the

total time taken for write and read operations i.e. the duration from start to finish, which is

clarified in following sections.

5.3.1. Throughput:

InnoDB cluster of eventual consistency level has the best performance for write test with all

used number of concurrent users comparing to all cluster’s cases used in this research as

indicated in Table 5.8. This table shows throughput i.e. transactions per second, for write test

of the used clusters with all four cases (InnoDB eventual , InnoDB before_and_after, DRBD

Protocol A, DRBD Protocol C) with different number of concurrent users.

 Table 5.8: SysBench results of throughput for write test for all clusters with all types

 number of threads

Cluster Type 1 4 8 16 32

DRBD protocol A 27.75867 78.58433 138.8707 390.686 683.1583

DRBD protocol C 45.02467 85.70067 174.449 455.317 678.2077

InnoDB eventual 80.94567 218.8977 352.4203 537.8833 817.5393

InnoDB

before_and_after
60.25433 101.368 109.229 91.65967 72.59733

Figure 5.9 : SysBench result of throughput for best cases of write/read tests of two modes of DRBD cluster

50

However, the InnoDB of before_and_after consistency level has the worst case comparing to

other cluster’s types which is caused by the strict consistency overheads of this level.

According to DRBD system with MySQL service, the two protocols (Protocol A and Protocol

C) have close throughput results. But both have throughput results less than InnoDB eventual

level as illustrates in Figure 5.10 .

In contrast the DRBD system of both protocols performs better (i.e., has better throughput) for

read test when number of concurrent users is low comparing to others as indicated in Table 5.9.

This table shows the obtained throughput i.e. transactions per second, for read test for used

clusters with all four cases with different number of concurrent users.

Table 5.9: SysBench results of throughput for read test for all clusters with all types

 Number of Threads

Cluster Type 1 4 8 16 32 64

DRBD protocol A 138.728 446.506 812.6197 1138.211 1181.895 1200.025

DRBD protocol C 144.301 491.8507 811.3977 1178.851 1197.87 1188.484

InnoDB eventual 74.15733 276.737 531.776 847.091 1290.459 1503.022

InnoDB

before_and_after
73.21133 270.5327 484.1593 838.714 1314.211 1434.031

Figure 5.10 : Throughput of write test for two clusters with all modes

51

But when the number of concurrent users start increasing, throughput for InnoDB cluster with

both levels (eventual and before_and_after) is getting higher than DRBD for read test, and

DRBD of both protocols (Protocol A and Protocol C) become stable as shown in Figure 5.11.

This is because InnoDB cluster has two nodes for read queries, and the received requests will

be routed to both nodes. Consequently, this will balance the loads on two servers, which makes

the throughput for InnoDB cluster better than DRBD cluster in this case.

5.3.2. Total Time:

Total time represents the response time i.e. the time needed for the CRUD transactions to be

completed. Table 5.10 presents the total time for write test of the used clusters with all four

cases (InnoDB eventual, InnoDB before_and_after, DRBD Protocol A, DRBD Protocol C) with

different number of concurrent users. The InnoDB cluster of eventual consistency level

outperforms the others regarding the performance for write test, where the total time needed for

its requests is the least. Note that the lowest the total time needed the better the performance.

As a result, clients will be more satisfied when their request takes less time to be completed.

Figure 5.11:Throughput of read test for two clusters with all modes

52

Table 5.10: SysBench results of total time for write test for all clusters with all types

 Number of Threads

Cluster Type 1 4 8 16 32

DRBD protocol A 10.03234 9.919637 7.382933 2.971787 1.676903

DRBD protocol C 10.03842 9.260047 6.165483 2.496223 1.663133

InnoDB eventual 9.951893 4.88357 3.121573 2.239877 1.236633

InnoDB

before_and_after
10.02834 9.354733 8.66595 9.71932 10.47004

By contrast, as shown in Figure 5.12 the InnoDB of before_and_after consistency level shows

the worst case amongst the other configurations, where requests need more time to be

completed. Also, the time is getting higher when number of concurrent users are increasing.

Moreover, the two protocols of DRBD system has approximately same values of total time and

both perform better than InnoDB before_and_after consistency level.

Table 5.11 presents the obtained total time for read test of the used clusters with all four cases

(InnoDB eventual, InnoDB before_and_after, DRBD Protocol A, DRBD Protocol C) with

different number of concurrent users.

Figure 5.12: Total time for write test for two cluster with all modes

53

Table 5.11::SysBench results of total time for read test for all clusters with all types

 Number of Threads

Cluster Type 1 4 8 16 32 64

DRBD protocol A 7.22165 2.246007 1.232273 0.883133 0.845817 0.832103

DRBD protocol C 6.934123 2.033067 1.23244 0.847787 0.833847 0.840883

InnoDB eventual 10.01867 3.705107 2.002983 1.093983 0.71941 0.667993

InnoDB before_and_after 10.00832 3.69567 2.06427 1.19112 0.762643 0.728457

Both protocols of DRBD system are better (i.e., need less time) than InnoDB both levels

when concurrent users are low. But when number of concurrent users are increasing the total

time is getting closer to each other for all cases and the time is getting lower as shown in

Figure 5.13.

5.3.3. Cost:

Both clusters need different number of servers to be configured, where InnoDB cluster needs at

least three servers to be configured, but DRBD needs at least two servers to be configured. It

should be noted that both of clusters are scalable i.e. can accept more servers to be added to the

cluster if needed which raises the cost. This variation of requirements can affect the decision

makers of companies and organizations. So, when they decide to choose one of both those

Figure 5.13 : Total time for two clusters for read test of all types

54

clusters, they will consider the overheads of the configuration in addition to the performance of

the selected MySQL database solution.

5.4 Limitations

We have faced some difficulties in finding either real recorded historical data from real-life

systems data or previous researches about performance evaluation of InnoDB cluster and DRBD

performance with MySQL service. Up to our knowledge, there is neither recoded historical data

for real-life system that uses InnoDB cluster or DRBD solutions nor previous research that

evaluates MySQL performance of these solutions. Most of previous work focused on evaluating

MySQL performance for standalone servers not as cluster. Consequently, the choice of the

validation approaches and methods of the obtained results are affected and limited to statistical

approach to validate the output data and subjective approach for the models [42].

Moreover, the results are limited for the used server’s hardware specification, and for the

characteristics used in the experiments like the data size and type, where may these

characteristics affect the result of performance evaluation. Noting that all the used servers were

on same VMware to mitigate the network latency issue.

5.5 Verification and Validation of the experimental Model

Verification of the Simulation Tool:

Since we have used a high-level simulation programming software/tool (i.e., SysBench tool) for

carrying out the experiments with recommended parameters, we do not need to verify the

correctness of our simulation model. Thus, we concentrate on parameters settings. Therefore,

we do not need to verify the correctness of the utilize too [41]. Also, validation of the input data

distribution, the dataset, and the transaction for the model were generated by the utilized

software, which is designed for such experiments. Moreover, the number of replicas (i.e., the

experiments and trials) should be sufficient in order to achieve a reasonable low variance in the

means of the results. Therefore, the outputs were tested by incrementing the number of the trials

55

until the variances of the results were relatively small (see Appendix A), which is achieved by

replicating the experiments 30 times.

Validation of the Output Data:

Regarding the validity of the output data (results) and the sufficiency of replication trials (i.e.,

30 replicas) are tested with 95% confidence (see Appendix A). The results in tables of Appendix

A show the means, standard deviations, coefficient of Variance C.O.V and confidence intervals

CI for the obtained results. It is clear that the C.O.V is relatively low, and all of the means are

within their confidence intervals. These statistical measures indicate that the number of

replications (i.e., 30 times of trials) is sufficient and the results (i.e., the means) are valid [42].

For more details on the utilized statistical measures see Appendix A.

Recall that absence of recorded data from a real-life system or results from related researches,

limits the choices of the validation methods. Consequently, it is hard to accomplish statistical

approach for validation of the results based on a comparison with existing data, since it will be

time consuming and the time for this research is limited for recording new data. Therefore, in

addition to the validity testing of the output results using statistical approach, we used subjective

approach i.e., subject-matter experts (SMEs) opinions validation approach and sensitivity

analysis for the validity of the output data using comparison-based approach [42]. Furthermore,

in the sensitivity analysis we changed the affecting factors in the simulation and tested the

resulting performance (i.e., throughput and response time). Thus, from the statistical measures

and according to the SMEs the results are valid and can be accredited [42].

56

5.6 Summary of the results

The results are summarized and concluded as in Table 5.12, which will be helpful for decision

makers to choose between these two solutions in terms of performance. Where the table shows

the best cases obtained from the results. The outcome is concluded as following:

Table 5.12: Summary of the results as the best high availability solution in terms of performance (low <25 , high
> 25)

Concurrency Transactions type

Write Read

Low InnoDB cluster DRBD

High InnoDB cluster InnoDB cluster

Where concurrency means the number of concurrent users that need to connect to MySQL

database simultaneously. It should be noted that, the low value indicates that the number of

users is from 1 to 25 user in these experiments. However, the high value represents a number

more than 25 concurrent users. Also, transaction type refers to the type of query that the end

user needs to use, where it can be read or write queries. Since some business needs to read from

database more than to write, and others need the vice versa i.e., need to modify and save the

data more than retrieving it.

Also, Table 5.12 shows that the InnoDB cluster with eventual consistency level with write

queries performs better than before_and_after. But read queries column refers to both InnoDB

consistency levels. However, DRBD system has no difference between its synchronization

types, both have approximately the same values for read and write tests.

57

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The goal of this research is to compare the database performance of two high availability

MySQL solutions. In this work the two MySQL high availability solutions are compared and

evaluated the performance of database, and how the end user will be satisfied when using

MySQL clusters in terms of throughput and response time. There are many high availability

solutions for MySQL. Two of them are chosen in this research, which are InnoDB cluster and

DRBD. Where they are configured based on what is recommended with best practice to have

best performance. They are tested for two of replication modes using benchmark tool

(SysBench). Thereafter, the results are analyzed and compared, so the decision maker who is

concerns of having a high available database can choose the cluster that is suites his resources

and needs.

The results show that for write test, InnoDB eventual consistency level outperforms the

performance of DRBD. However, InnoDB before_and_after consistency level shows worst

performance compared to other cases. Moreover, DRBD both modes have approximately same

throughput values, and its performance getting better when concurrent users increasing.

For read test, when the concurrent users are low, DRBD shows better performance than InnoDB

in term of throughput and total time. But when number of concurrent users starts increasing,

throughput becomes stable in DRBD and InnoDB cluster outperforms it. This is because it has

58

two nodes for read queries. For read test both replication modes of InnoDB cluster have

approximately same throughput, and DRBD both modes also have nearly same throughput.

Choosing a suitable high availability between these two solutions depends on different factors

i.e., resources and business size. The resources that could be available, where InnoDB needs at

least three servers to be configured, but DRBD can be configured by two servers. Moreover, the

size of business that is related to the database, which may limit the number of concurrent users

i.e. the load. Recall that the performance of database has been affected when number of

concurrent users is increased. Where DRBD has just one active node and the another is passive.

While, InnoDB has three active nodes, two for read only queries and one for read/write queries.

Recall that the absence of either recoded historical data of real-life systems that use InnoDB and

DRBD solutions or previous research that evaluate such systems, validation of the obtained

results is limited in selecting the validation approach. Therefore, we use subject-matter experts

(SMEs) approach.

6.2 Future work

This work can be considered as first step towards the study of performance for possible MySQL

high availability database solutions. Future work could be to extend this with an extensive study

of other MySQL high availability solutions, evaluate the database performance for it with multi

primary topology with more testing and failover scenarios.

59

References

[1] Bell C, Kindabl M and Thalmann L, MySQL High Availability: Tools for Building

Robust Data Centers, 1st ed. Sebastopol, CA : O'Reilly, 2010, pp. 598. Accessed on: Jun

19,2020. [online]. Available:

http://docs.linuxtone.org/ebooks/MySQL/MySQL_High_Availability_Tools_for_Buildin

g_Robust_Data.pdf

[2] Książek K, "Designing HA for MySQL", Jul 29, 2015. [slides]. Available:

https://www.slideshare.net/Severalnines/dba-series-ha, Accessed on: Jun 19,2020.

[3] Shrestha R, "High Availability and Performance of Database in the Cloud - Traditional

Master-slave Replication versus Modern Cluster-based Solutions," 7th International

Conference on Cloud Computing and Services Science,Porto,Portugal,2017,pp 413-420.

[4] MySQL/MariaDB HA: Galera Cluster vs. DRBD replication, Adfinis, Aug 20, 2016.

Accessed on: Jun 19, 2020. [online]. Available: https://adfinis.com/en/blog/mysql-

mariadb-ha-galera-cluster-vs-drbd-replication

[5] Oles B, Understanding the Effects of High Latency in High Availability MySQL and

MariaDB Solutions. severalnines, Mar 26, 2019. Accessed on: Jun 19, 2020. [online].

Available: https://severalnines.com/database-blog/understanding-effects-high-latency-

high-availability-mysql-and-mariadb-solutions

[6] Schwartz B, Zaitsev P, Tkachenko V, Zawodny J, Lentz A and Balling D, High

performance MySQL: optimization, backups, and replication, and more, 2nd ed.

Sebastopol, CA : O'Reilly, 2008, pp. 684. Accessed on: Jun 19,2020.[online]. Available:

https://www.it.iitb.ac.in/frg/wiki/images/b/b0/OReilly.High.Performance.MySQL.Optimi

zation.Backups.Replication.And.More.2nd.Edition.Jun.2008.ISBN.0596101716.pdf

[7] Group Replication, MySQL, Jun 12, 2020. Accessed on: Jun 19, 2020. [online].

Available: https://docs.oracle.com/cd/E17952_01/mysql-5.7-en/group-replication-

summary.html

[8] Araújo, M. G. D, "Database replication in large scale systems," M.S. thesis, college of

Eng., do Minho Unv., Jun.2011. Accessed on: Jun. 19,2020. [Online]. Available:

https://repositorium.sdum.uminho.pt/bitstream/1822/28946/1/eeum_di_dissertacao_pg133

67.pdf

[9] Replication Formats ,MySQL, Jun. 18,2020. Accessed on: Jun. 19,2020.

[Online].Available:https://dev.mysql.com/doc/refman/8.0/en/replication-formats.html

60

[10] Vanoverbeke D, Different Types of MySQL Replication Solutions, PERCONA, Feb.

7,2017. Accessed on: Jun. 19,2020. [Online]. Available:

https://www.percona.com/blog/2017/02/07/overview-of-different-MySQL-replication-

solutions/

[11] Mauchle F, "Database Replication with MySQL and PostgreSQL," college of Softw. and

Syst., Applied Sciences Rapperswil Univ., Switzerland, 2008. Accessed on: Jun. 19,2020.

[Online]. Available:

https://wiki.hsr.ch/Datenbanken/files/Mauchle_Replication_MySQL_Postgres_Paper.pdf

[12] MySQL Cluster Architecture Overview, MySQL, Apr 2004.Accessed on: Jun. 19,2020.

[Online]. Available:

https://confluence.oceanobservatories.org/download/attachments/16418744/MySQL-

cluster-technical-whitepaper.pdf

[13] Semisynchronous Replication, MySQL, Jun. 18,2020. Accessed on: Jun. 19,2020.

[Online]. Available: https://dev.MySQL.com/doc/refman/5.5/en/replication-

semisync.html

[14] Wiesmann M and Schiper A, "Comparison of database replication techniques based on

total order broadcast," TKDE, vol.17,no.4,pp.551 - 566,Apr.2005. Accessed on : Jun.

19,2020. [Online].

Available:https://ieeexplore.ieee.org/document/1401893/authors#authors

[15] Malioutina E, "Replication Technology and Failover Solution Development for the

MySQL Open Source Database Management System," M.S. thesis, college of comput.

Sci.,Stockhom Univ,Sweden,2008. Accessed on: Jun. 19,2020. [Online]. Available :

http://kiosk.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2008/rapporter08/malioutin

a_elena_08081.pdf

[16] Group Replication Background, MySQL, Jun. 19,2020. Accessed on: Jun. 20,2020.

[Online]. Available: https://dev.MySQL.com/doc/refman/8.0/en/group-replication-

background.html

[17] De Prisco, R., Lampson, B., & Lynch, N. Revisiting the Paxos algorithm, In International

Workshop on Distributed Algorithms ,Springer, Berlin, Heidelberg,2005, pp 111-125.

[18] Vnier E,Shah B and Malepati T, Advanced MySQL 8: Discover the full potential of

MySQL and ensure high performance of your database,1st ed. Birmingham, UK: Packt

Publishing, 2019, pp. 286. Accessed on: Jun. 20,2020. [Online]. Available:

https://searchworks.stanford.edu/view/13241768

https://www.percona.com/blog/2017/02/07/overview-of-different-MySQL-replication-solutions/
https://www.percona.com/blog/2017/02/07/overview-of-different-MySQL-replication-solutions/

61

[19] Fine Tuning the Group Communication Thread, MySQL, Jun. 19,2020. Accessed on:

Jun. 20,2020.[Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/group-

replication-fine-tuning-the-group-communication-thread.html

[20] Multi-Primary Mode, MySQL, Jun. 19,2020. Accessed on: Jun. 20,2020. [Online].

Available: https://dev.mysql.com/doc/refman/8.0/en/group-replication-multi-primary-

mode.html

[21] Introducing InnoDB Cluster, MySQL, Jun. 18,2020. Accessed on: Jun. 19,2020.

[Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/mysql-innodb-cluster-

introduction.html

[22] MySQL InnoDB Cluster – A complete High Availability solution for MySQL,

dinfratechsource, Nov. 10,2018. Accessed on: Jun. 20,2020. [Online]. Available:

https://dinfratechsource.com/2018/11/10/MySQL-InnoDB-cluster-a-complete-high-

availability-solution-for-MySQL/

[23] Configuring Transaction Consistency Guarantees, MySQL, Jun. 18,2020. Accessed on:

Jun. 19,2020. [Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/group-

replication-configuring-consistency-guarantees.html

[24] The DRBD9 User’s Guide, LINBIT. Accessed on: Jun. 20,2020. [Online]. Available:

https://www.linbit.com/drbd-user-guide/drbd-guide-9_0-en/#about

[25] Jones M, High availability with the Distributed Replicated Block Device, IBM

Developer, Aug. 4,2010. Accessed on: Jun. 19,2020. [Online]. Available:

https://developer.ibm.com/tutorials/l-drbd/

[26] Philipp R and Ellenberg L,"Replicated Storage with Shared Disk Semantics," In

Proceedings of the 12th International Linux System Technology

Conference.,Germany,2005,pp 111-119.

[27] Optimizing DRBD performance, LINBIT. Accessed on: Jun. 20,2020. [Online].

Available: https://www.linbit.com/drbd-user-guide/drbd-guide-9_0-en/#p-performance

[28] Haas F, "Ahead of the Pack: The Pacemaker High-Availability Stack," LINUX

JOURNAL, Jun. 18,2012. Accessed on: Jun. 20,2020. [Online]. Available:

https://www.linuxjournal.com/content/ahead-pack-pacemaker-high-availability-

stack#:~:text=And%20to%20ensure%20maximum%20service,communications%2C%20r

esource%20management%20and%20applications.

[29] Mike Z, MySQL now provides support for DRBD, MySQL High Availability, Sep

29,2012. Accessed on: Jun. 20,2020. [Online]. Available:

https://mysqlhighavailability.com/MySQL-now-provides-support-for-drbd/

[30] Lua.(2019). Accessed on: Jun. 20,2020. [Online]. Available:

https://www.lua.org/start.html

[31] Ksiazek K, How to Benchmark Performance of MySQL & MariaDB Using SysBench,

severalnines, Jun. 12,2018. Accessed on: Jun. 20,2020. [Online]. Available:

62

https://severalnines.com/database-blog/how-benchmark-performance-mysql-mariadb-

using-sysbench

[32] Paul S, "Database systems performance evaluation techniques," St. Louis, MI, USA,

2008. Accessed on: Jun. 20,2020. [Online]. Available:

https://www.cs.wustl.edu/~jain/cse567-08/ftp/db.pdf

[33] Flinkman A J, “High-availability mechanisms in MySQL, Helsinki Univ,” 2007.

Accessed on: Jun. 20,2020.[Online]. Available :

https://pdfs.semanticscholar.org/035a/f7a72d61de6021940fc5e971a59cc26826a4.pdf?_ga

=2.47921255.1337970251.1592644642-99908994.1592644642

[34] Pukdesree S, Lacharoj V and Sirisang P, "Performance Evaluation of Distributed

Database on PC Cluster Computers," WSEAS transactions on computers,vol. 10,no. 1,pp.

21-30 , Jan 2011. Accessed on: Jun. 20,2020. [Online]. Available:

https://www.researchgate.net/publication/228749856_Performance_evaluation_of_distrib

uted_database_on_PC_cluster_computers

[35] Shivani, "An Empirical Study on Performance Evaluation of NoSQL Databases,"

International Journal of Electronics Engineering, vol. 10, no. 1, pp. 235-244, Jan. 2018.

[36] Kumar L, Rajawat S and Joshi K, "Comparative analysis of nosql (mongodb) with

MySQL database,". International Journal of Modern Trends in Engineering and Research,

vol. 2, no. 5, pp. 120-127, May. 7,2015. Accessed on: Jun. 20,2020. [Online]. Available:

https://www.semanticscholar.org/paper/Comparative-analysis-of-NoSQL-(MongoDB)-

with-MySQL-Kumar-Rajawat/b84d9920c7a4fe3ae7f625293166183153044618

[37] Group Replication Performance, MySQL, Jun. 19,2020. Accessed on: Jun. 20,2020.

[Online]. Available:https://dev.mysql.com/doc/refman/8.0/en/group-replication-

performance.html

[38] Kojima A, MySQL InnoDB Cluster – A Hands on Tutorial, MySQL Server Blog, Dec.

12,2016. Accessed on: Jun. 20,2020. [Online]. Available:

https://mysqlserverteam.com/MySQL-InnoDB-cluster-a-hands-on-tutorial/

[39] High Availability and Scalability, MySQL, Accessed on: Jun. 20,2020. [Online].

Available: http://www.mysql.ru/docs/mysql-man-5.0-en/ha-overview.html

[40] Gryp K,Araújo M, "MySQL InnoDB Cluster-Tutorial", Sep ,2019. [slides]. Available:

https://static.rainfocus.com/oracle/oow19/sess/1552388032514001eAhU/PF/TUT2070%2

0-%20MySQL%20InnoDB%20Cluster%3A%20High-

Availability%20Tutorial_1568750112091001LM5l.pdf

[41] Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds, Verification and

validation of simulation models, Proceedings of the 2011 Winter Simulation Conference,

2011.

[42] Averill M. Law, Simulation Modeling and Analysis, 2nd ed. Tucson, Arizona, USA,

2013, pp. 800.Accessed on: Jul 14,2020. [online]. Available: www.averill-law.com

63

Appendices

Appendix A

This appendix introduces some basic statistical analysis needed for evaluation the validity of the

output results using central tendency measurement. It presents indices of dispersion measures

(i.e., variance, standard deviation, coefficient of variance C.O.V, and confidence interval). Also,

it shows the details of the obtained results of our experiments [42]. It presents the means,

standard deviation, coefficient of variance and the confidence intervals of the means of

throughputs of the experiment cases through Tables A.1- A.8.

Variability can be specified using one of the following indices dispersion measures such as

Range (minimum and maximum of the data set), variance or standard deviation.

 Range:

Range can be easily calculated by tracking minimum and maximum values,

Range= maximum – minimum. In many cases it is not useful. Since minimum often can be zero,

and maximum might be far from typical value (outlier). With more samples, max may continue

to rise, and min may continue to decrease → no “stable” point. Range is useful if system

performance is limited.

Variance and Standard Deviation:

If there is a sample of n observations {x1, x2, …, xn}, the sample variance is calculated as

follows:

𝑠2 =
1

𝑛
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

64

Where s2 is called sample variance and its square root s is called standard deviation.

Notice that in computing the variance, the sum of squares ∑ (𝑥𝑖 − �̅�)𝑛
𝑖=1 is divided by (n-1) and

not n, because there are n-1 out of n differences are independent. If there is a (n-1) differences,

the nth difference can be calculated, since the sum of all n differences must be zero (Section 12.8

[42]). The number of independent terms is the “degrees of freedom” (df). The main disadvantage

of variance is that it is expressed in square of the units of the observations. Therefore, it is better

to use standard deviation.

Standard deviation:

Standard deviation SD and mean have the same units. Below are two examples with high and

low variabilities:

Example a)

 Mean = 2 seconds, SD = 2 seconds; high variability.

Example b)

 Mean = 2 seconds, SD = 0.2 seconds; Low variability.

Coefficient of Variation (C.O.V):

C.O.V is another widely used measurement. It represents the ration of standard deviation to the

mean (i.e. C.O.V= SD/mean) . This measurement can be considered as a better measurement

than standard deviation, because it ignores the units of measurement in variability consideration.

Thus, a C.O.V of 5 is large, while a C.O.V. of 0.2 (20%) is small variation (regardless of the

units).

It should be noted that the C.O.V in (Example a) is 1 and in (Example b) is 0.1.

Mean absolute Deviation:

Mean absolute deviation is calculated without multiplication or square root:

65

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
1

𝑛
∑ |𝑋𝑖

𝑛

𝑖=1

− �̅�|

Confidence Interval (CI) for the Mean:

Recall that each sample mean is an estimate of the population mean. If we have k samples, we

have k different estimates [42]. The goal is to obtain a single estimate. Actually, it is not possible

to obtain an accurate estimate of the population mean from any finite number of finite sample

size. However, we can obtain probabilistic bounds. Consequently, we can get two bounds, for

example c1 and c2, such that there is a high probability (1-±) or (1-), the mean is in the interval

(c1, c2). The confidence interval is calculated as follows:

(mean-z1-/2s/sqrt(n), mean+z1-/2s/sqrt(n)), Where

(c1, c2) - is the confidence interval,

±, - is the significance level (e.g., 0.1, 0.05, 0.01…)

100(1-) - confidence level (e.g., 90%, 95%, 99%…),

(1-) - confidence coefficient, and s is the SD of the sample.

Z1-/2 - is the (1- / 2)- quantile of the unit normal variate, which can be obtained from the

table! (see Table A2 in [42]), in our case of 95% confidence and degree of freedom df=29, this

value is 2.042. Thus, in our case the confidence interval (c1, c2) is:

(mean-2.042(s/sqrt(n)), mean+2.042(s/sqrt(30))) .

Thus, we can see in the tables below (Table A.1-Table A.8) that the obtained means of all

throughputs fall within their confidence intervals.

66

Table A.1: coefficient of variation for results of InnoDB eventual level throughput of 30 trials of experiments for
write test

 Number of threads

InnoDB Eventual when value of

group_replication_poll_spin_loo

ps =0

1 4 8 16 32

Standard Deviation
17.1189871

8 54.26450632 98.76165 199.2143 305.5664

Mean
80.9456666

7
218.8976667 352.4203 537.8833 817.5393

Coefficient of Variation
0.21148738

3
0.247898971 0.280238 0.370367 0.373764

Confidence Interval (c1,c2) 74.56,87.32 198.66,239.1

2

315.6,389.2

4

463.61,612.1

5

703.61,931.4

5

Table A.2:coefficient of variation for results of InnoDB before_and_after level throughput of 30 trials of
experiments for write test

 Number of threads

InnoDB before_and_after when

value of

group_replication_poll_spin_loops

=1000

1 4 8 16 32

Standard Deviation 12.26278578 17.35815349 40.21242 26.49273 18.1441

Mean 60.25433333 101.368 109.229 91.65967 72.59733

Coefficient of Variation 0.203517077 0.171238986 0.368148 0.289034 0.249928

Confidence Interval (c1,c2) 55.68,64.82 94.89,107.83 94.23,124.22 81.78,101.53 65.83,79.36

Table A.3: coefficient of variation for results of DRBD Protocol A throughput of 30 trials of experiments for write
test

 Number of threads

DRBD Protocol A when value of

I/O unplug watermark =32
1 4 8 16 32

Standard Deviation 8.279121 20.09607 29.41284 130.2008 213.8107

Mean 27.75867 78.58433 138.8707 390.686 683.1583

Coefficient of Variation 0.298254 0.255726 0.2118 0.333262 0.312974

Confidence Interval (c1,c2) 24.67,30.84 71.09,86.07 127.9,149.83 342.14,439.22 603.44,762.87

67

Table A. 4: coefficient of variation for results of DRBD Protocol C throughput of 30 trials of experiments for write
test

 Number of threads

DRBD Protocol C when value

of I/O unplug watermark

=32

1 4 8 16 32

Standard Deviation 17.9989 44.68397 55.4905 127.2264 232.8679

Mean 45.02467 85.70067 174.449 455.317 678.2077

Coefficient of Variation 0.399756 0.521396 0.31809 0.279424 0.343358

Confidence Interval (c1,c2) 38.31,51.73 69.04,102.35 153.76,195.13 407.88,502.74 591.39,765.02

Table A.5: coefficient of variation for results of InnoDB eventual level throughput of 30 trials of experiments for
read test

 Number of threads

InnoDB Eventual when

value of

group_replication_poll_sp

in_loops =0

1 4 8 16 32 64

Standard Deviation 2.18747 6.977974 17.13637 65.42918 63.61652 122.1812

Mean 74.1573 276.737 531.776 847.091 1290.459 1503.022

Coefficient of Variation 0.02949 0.025215 0.032225 0.07724 0.049298 0.08129

Confidence Interval

(c1,c2)

73.34,74

.97

274.13,27

9.33

525.38,53

8.16

822.69,87

1.48

1266.74,131

4.17

1457.47,154

8.57

Table A.6: coefficient of variation for results of InnoDB before_and_after level throughput of 30 trials of
experiments for read test

 Number of threads

InnoDB before_and_after

when value of

group_replication_poll_spi

n_loops =1000

1 4 8 16 32 64

Standard Deviation 2.744366 7.598095 16.95814 32.91803 82.40658 261.1866

Mean 73.21133 270.5327 484.1593 838.714 1314.211 1434.031

Coefficient of Variation 0.037486 0.028086 0.035026 0.039248 0.062704 0.182135

Confidence Interval

(c1,c2)

72.18,74.

23

267.7,273

.36

477.83,490

.48

826.44,850

.98

1283.48,134

4.93

1336.6,153

1.4

68

Table A.7: coefficient of variation for results of DRBD Protocol A throughput of 30 trials of experiments for read
test

 Number of threads

DRBD Protocol A

when value of I/O

unplug watermark

=32

1 4 8 16 32 64

Standard Deviation 6.5164 28.43437 43.43331 93.34602 50.32001 33.64047

Mean 138.728 446.506 812.6197 1138.211 1181.895 1200.025

Coefficient of

Variation
0.046972 0.063682 0.053449 0.082011 0.042576 0.028033

Confidence Interval

(c1,c2)

136.29,141

.15

435.9,45

7.1

796.42,828

.81

1103.41,117

3.01

1163.13,120

0.65

11787.48,121

2.56

Table A.8: coefficient of variation for results of DRBD Protocol C throughput of 30 trials of experiments for read
test

 Number of threads

DRBD Protocol C

when value of I/O

unplug watermark

=32

1 4 8 16 32 64

Standard Deviation 4.374087 15.00438 30.53194 47.52411 39.71019 54.42307
Mean 144.301 491.8507 811.3977 1178.851 1197.87 1188.484
Coefficient of

Variation
0.030312 0.030506 0.037629 0.040314 0.033151 0.045792

Confidence Interval

(c1,c2)

142.67,145

.93

486.25,497

.44

800.01,822

.78

1161.13,119

6.56

1183.06,121

2.67

1168.19,120

8.77

69

Appendix B

This appendix presents the created data by the SysBench simulation tool for the experiments.

Table B.1: sample of the data that is generated into database by SysBench tool and used in the experiment

id k C pad

1

100
292

3

68487932199-96439406143-93774651418-41631865787-
96406072701-20604855487-25459966574-28203206787-
41238978918-19503783441

22195207048-70116052123-
74140395089-76317954521-
98694025897

2

100
496

0

13241531885-45658403807-79170748828-69419634012-
13605813761-77983377181-01582588137-21344716829-
87370944992-02457486289

28733802923-10548894641-
11867531929-71265603657-
36546888392

3

102
874

5

71749523403-03621984679-84246721148-54647104962-
38952275016-06464896823-14571026186-24257421698-
84141554112-49791540502

41234744688-51641643591-
52697224766-15020694408-
68856618037

4

100
529

1

54133149494-75722987476-23015721680-47254589498-
40242947469-55055884969-23675271222-20181439230-
74473404563-55407972672

88488171626-98596569412-
94026374972-58040528656-
38000028170

5 59

21497257486-14006031362-20954507792-52915987979-
03910680647-21006633133-10715894604-38455907716-
44361535976-97953247731

94919115396-98824649950-
78033843611-50697887870-
70826638081

6

100
411

2

27259561572-06414927280-46715228218-84893654561-
76731023738-20557067759-19583561006-08735004037-
78310463408-71967134144

66200784124-83118543608-
45044785936-98738951684-
25087136427

7

173
181

6

26016962040-84401935623-82022405434-08698958003-
65003728728-28968010755-58339263572-01789602703-
39811082909-08525005410

02358180554-15815773302-
92697093801-06820739293-
88955012668

8

100
050

7

97747537709-99230977413-59153069647-62890934635-
11729491470-07415848518-61416594520-16559727341-
46432156293-62484046618

94633519802-41908941667-
78242579588-16891567524-
49216405523

9
912
351

52787004896-03713561258-89030827639-79870405712-
99021527444-79036649924-19443487452-29368183864-
55806406503-87227017685

82343182218-75122207739-
98082475690-33929140169-
00985969597

10
569
367

00415922346-91627720052-70099716576-52830063896-
15696986113-66985501675-77110646865-39221301044-
85038367777-40632164178

07449874956-85062155369-
35881996476-14158883642-
64897422580

11

100
964

4

68305043604-07392484646-78480928447-88155597080-
08908465928-35357008626-44894171482-13904841657-
13998032237-49278517178

82525607519-86035420736-
51783285478-30216080554-
19134890096

12
995
201

84225420767-95119807827-48689909948-04145663437-
29723649568-88238910120-61256632514-12324871715-
71270848294-09484980067

91218229232-45669484074-
60159597493-60558506146-
76239412517

13

153
809

8

23701604887-44671845013-88591550229-83592334526-
03371749712-02384181617-26831671666-20188224074-
64547017922-97641736034

18878447083-51518715478-
08505273803-98186184968-
06782243308

70

14

100
047

7

64842668315-60792497498-62750863276-45625090087-
75713057101-27160306431-79536585757-87296141069-
47125388407-35079320070

55933840247-47337803868-
79571705078-03223267064-
04605777986

15

121
635

2

95419146678-14093409261-09962384278-71846018805-
74601632203-97534503889-75491510988-93003967293-
09007318291-32570920479

58506892021-02842031308-
87774929720-59501190013-
74028991815

16

186
437

3

32094662126-89225014700-79152064371-08455689349-
03137928650-55175661781-49326570184-45630878875-
69816385564-33358002874

73609511824-17903462079-
43512858897-43546610069-
94699539415

17

100
681

0

71448009014-71834791236-61164972585-70749298280-
80542194040-57578052588-95202958716-10334483721-
64225565322-50266191520

82792905088-72706133952-
00547821102-64831494800-
59296447588

18

149
203

0

78838609893-46348600857-07072734072-15051355461-
52622106468-04383929752-42738380886-21129359785-
07287880963-16697504004

81103306942-71781756861-
75275133854-25619966886-
10225409478

19

112
198

7

90051425691-25789925225-11346061836-86027481503-
56888390198-29184614639-20597516557-59209249918-
30962581385-32551385958

56649223465-05395201594-
30598644923-67595771828-
36110187986

20

185
958

5

30110320760-92038482878-35745432461-23903545970-
76501097089-02250160299-17775142558-19081672308-
36543406505-99353980746

11308973902-51522513977-
11061491231-08659548052-
02924801260

21
107
524

16690530377-63987168491-72172776123-80117937302-
92509900367-95921774112-79338680468-42947724750-
62405208456-01987401862

65136224409-33706000949-
96439751543-67924295910-
44782822297

22

100
174

4

15263455457-58075632796-44895195635-64246175113-
09306502497-70016121495-35716128361-81345533735-
43361537551-40713590514

80385226158-87059079968-
82865735167-90330450895-
98846983203

23

188
267

1

43578579884-68500126356-36545380402-53520257942-
40842833170-36650534101-80609975436-04837531511-
84168834240-66986216142

93655585782-21092397652-
11370478330-93836554012-
92574026450

24

108
631

1

23092203816-47751292915-52445457243-37532319024-
52754430958-94884358644-92217537524-69630011136-
58075625595-12276707316

16668590421-97960154678-
96679208706-82117037773-
28162486749

25

141
192

2

78839613741-27483355158-07765701483-18206947477-
18511609137-54680149758-12877124569-57138303285-
69932369353-21819235763

49300657906-25122359700-
61884477637-37175101640-
91187374434

26
998
809

94028665321-27368401356-46526587557-73692072145-
37888180908-21695018941-29833499555-88732094221-
81150570616-33523419975

11589584481-27280373851-
09621824390-62557697530-
87005061141

27

100
300

4

76133995643-03630441214-63521419347-94780563180-
43900509498-15133366912-64213550032-42596168518-
60920051261-45367112919

64436625952-42090500434-
15425150061-32331186139-
83808254918

28

100
644

2

57776552922-11880051588-58075076667-23997402256-
69520667378-97791137572-99703195908-45604024869-
11666111212-97020413349

12237021043-92068457966-
22695573331-53702842209-
86646342777

29
998
950

81169731792-73974368494-07505456106-79874259318-
27707978883-25191598376-01617415993-11613717249-
19708218490-51428364177

28886928848-52163576179-
56338762801-66820300137-
36760460345

71

 (MySQL) ول ذات التوافر العالي لقاعدة البياناتحلمقارنة أداء

 عداد: الاء ياسرفايز محسنإ

شراف: د. نضال الكفريإ

 ملخص:

الكثير من الشركات والمؤسسات على مستوى العالم اليوم تهدف الى تنظيم وتخزين بياناتهم لتسهيل الحصول عليها وتسهيل

ادارتها ,وذلك من خلال توفير نظام ادارة لقواعد البيانات, اي مجموعة برامج حاسوبية تتحكم في ذلك. دون شك هذه

ا النظام لزيادة عدد المستخدمين وبالتالي زيادة الارباح , في هذا البحث تم المؤسسات تهدف الى الحصول على اداء عالٍ لهذ

 High Availability.بعد ان تم اعدادها على نوعين من حلول التوافر العالية MySQLالبيانات قاعدة لاداء اجراء مقارنة

التي ستساعد High Availabilityن من حلول ينوعبعد اعدادها على MySQLقاعدة البيانات تم عمل مقارنة لاداء

اصحاب القرار في الشركات والمؤسسات في اختيار الحل الانسب الذي يتوافق مع احتياجاتهم, علماً أن حلول التواجد العالي

 اناتقاعدة البيالى عبارة عن حل تكنولوجي يمكن المستخدم من الوصول Database High Availabilityلقاعدة البيانات

ما كاعطال الشبكة وغيرها من المشاكل مع وجود فشل ة لأطول فترة ممكنة دون الشعور بمشكلة في قاعدة البيانات في حال

هذه على اكثر من خادم من خلال تواجد نسخة متزامنة لقاعدة البيانات وذلك,ضمان عدم حصول اي فقدان لهذه البيانات

 أكثر من طريقة. ب

 لمعدل الأقصىاي ا ;, على أساس الإنتاجيةHardware Specificationلى خوادم بنفس المواصفات تمت هذا المقارنة ع

 حتى يتم تنفيذها. اي الوقت الذي تحتاجه العملية ;تنفيذها خلال وحدة زمن معينة, وزمن الاستجابةيمكن التي من العمليات

,علما أن كل منهما يعتمد على تكنولوجيا مختلفة وبمواصفات DRBDونظام MySQL InnoDBهذان الحلان هما نظام

يعتمد على DRBD, ونظام ال MySQL Group Replicationيعتمد على تكنولوجيا InnoDBمغايرة. حيث ان نظام

, تم اختيارهما لعدم وجود ابحاث سابقة تتحدث عن المقارنة بينهما بخصوص Replicated Disk Architectureنظام

اي انه في حالة وجود فشل او مشكلة automatic failover,كما ان كلاهما يقدمان خدمة MySQLداء قاعدة البيانات ا

باحدى الخوادم سيتم تحويل التطبيق)المستخدم(بشكل اوتماتيكي للخادم الفعال, وايضا يعتبران فعالين في تقديم توافرية عالية

بيانات بينهما سيكون مفيد لاصحاب القرار حتى يتسنى لهم اتخاذ القرار الانسب والاكثر للمستخدم, لذا مقارنة اداء قواعد ال

 دقة لاحتياجاتهم ومتطلباتهم.

يوجد لكل حل من هاذين الحلين أكثر من طريقة لتزامن البيانات ,اي تزامن بيانات الخادم الرئيسي مع الخوادم الاخرى

طرق لكل حل وتقييم اداء قاعدة البيانات بالنسبة لهما. أيضاً تم اجراء التجربة لكل)الثانوية(, تم اختيار نوعين من هذه ال

, التي تعني أن يتواجد جهاز خادم رئيسي واحد, الذي يسُمح بالكتابة عليه وباقي single primary topologyنظام بهيكلية

 ليها.الخوادم يتم تزامن البيانات عليها مع الرئيسي دون السماح بالكتابة ع

72

للحصول على أفضل أداء لقاعدة البيانات, حيث تم من الاعدادات اللازمة تم إعداد هذه الأنظمة بناءً على ما هو موصى به

إجراء نفس الإختبارات)اختبارات القراءة والكتابة(على نفس البيانات مع تغيير عدد المستخدمين المتزامنين لكلا النظامين

 التي تعتمد على معايير معينة, وتقدم قيم الانتاجية وزمن الإستجابة كنتيجة لهذه الاختبارات. SysBenchباستخدام أداة

قد تفوق على الآخر في اختبارات الكتابة بجميع حالات اختلاف عدد المستخدمين InnoDBأظهرت النتيجة أن نظام

, ولكن مرتفععندما كان عدد المستخدمين المتزامنين DRBDالمتزامنين, كما أنها تفوقت أيضا باختبار القراءة على نظام

 أظهر أداءً أفضل بهذا الاختبار)القراءة(. DRBD, نظام نسبيا عندما كان عددهم قليل

