Deanship of Graduate Studies
Al-Quds University

Performance Comparison for High Availability
Solutions of MySQL Database

Alaa Yaser Fayez Mohsen

MSc Thesis

Jerusalem-Palestine

1441-2020

Performance Comparison for High Availability Solutions
of MySQL Database

Prepared By:

Alaa Yaser Fayez Mohsen

B.Sc.: Information Technology, Al-Quds University, Palestine

Supervisor: Dr. Nidal Kafri

A thesis submitted in partial fulfilment of the requirements for
the degree of Master of Computer Science/ Department of
Computer Science & IT/Faculty of Science &
Technology/Graduate Studies.

1441-2020

Al-Quds University
Deanship of Graduate Studies
Master of Computer Science

Thesis Approval

Performance Comparison for High Availability Solutions of MySQL
Database

Prepared By: Alaa Yaser Fayez Mohsen
Registration No: 21610049

Supervisor: Dr. Nidal Kafri

Master thesis submitted and accepted, Date: 10 June, 2020
The name and signatures of examining committee members are as follows:

1- Head of committee Dr. Nidal Kaffri Signature: /Mé%w
2- Internal Examiner Dr. Rashid Jayousi Signature:?ﬁ?ﬁ;ﬂw'

3- External Examiner Dr. lyad Tumar Signature: %’

Jerusalem-Palestine

1441-2020

Dedication

| dedicate my thesis to my dearest parents who are always supporting
me without stop, and to my precious homeland Palestine.

Alaa Yaser Fayz Mohsen

Declaration

I certify that this thesis submitted for the degree of Master, is the result of my own research,
except where otherwise acknowledged, and that this study (or any part of the same) has not been

submitted for a higher degree to any other university or institution.

Alaa Mohsen

Date: 10 June, 2020

Acknowledgments

Firstly, I thank God for everything, and | would like to thank my supervisor, Dr. Nidal Kafri
and teachers in the program. Without their meticulous effort and support, this thesis would not
have been the same.

In addition, | would like to dedicate special and great thanks to my family especially my parents,
sisters, grandfather and brothers for their love and encouragement. Also, to my colleagues and

friends.

Abstract

MySQL is one of the most common relational database management system that is used around
the world and keeping it high available is important for most of its users. This research
concentrates on MySQL database high availability solutions, where the database performance
is evaluated and compared between two different high availability solutions. Noting that there
are multiple choices for high availability solutions of MySQL such as master-slave replication
with manual or automatic failover, MySQL NDB cluster, Galera Cluster for MySQL, MySQL
with Solaris Cluster, Oracle MySQL Cloud Service. In this research the chosen solutions are
InnoDB cluster (MySQL replication) and DRBD (Distributed Replicated Block Device) that
depends on replicated disk architecture. InnoDB cluster is provided officially by MySQL. Up
to our knowledge, there are no researches found related to performance comparison between
these two solutions, and both are considered an effective solution for high availability with
automatic failover. Each solution is evaluated using different replication modes of single
primary topology. Two modes of DRBD cluster is evaluated, which are Protocol A and Protocol
C. Also, two consistency levels are evaluated for InnoDB cluster, which are eventual and
before_and_after levels. The results are analyzed and compared, so that would be helpful for
decision makers in picking an appropriate high availability database solution for a given

application taking into account its cost.

The clusters are configured as recommended (best practice) for best performance and some
variables are changed with multiple values to have the best case. For faire comparison purpose
a benchmark tool is used as workload testing tool. The clusters are tested using read and write
quires. As a result, we found that InnoDB outperforms the performance of DRBD for write
tests. It shows higher performance in terms of throughput and total time. On the other hand, for
read test it outperforms DRBD when the number of concurrent users is high. This is because
InnoDB cluster has two nodes for read queries, and the received requests will be routed on two

nodes. But when the number of concurrent users is low the DRBD shows better performance.

Table of Contents

LIST OF TABIES <.t sttt e s b e s st e b s r e e r e s ree s Vi
[o B Y= U TP PPPRPNS Vii
[T o) VoY T<T o Yo 1ol YU UURRRS viii
List Of ADDIEVIATIONS ..eouiiiiiiiiiie ettt et s b e b e st e e b e s be e sbeeebeeenee s iX
(01 0T o1 T o PSPPI 1
1.1 Background and MOTIVATION.........c..eoiiriiririeieerese ettt 1
1.2 ProbIem STAEMENT. ..ottt st b e st 3
1.3 CONTIIDULION ..ttt ettt bbbt sb e 4
I B LT R @ o F=T T V4= L ([0 LSRR 5

(0 0T o1 T PP PUUPRN 6
2.1 INTFOTUCTION ..ottt st b et b e s bt et e b nbesb e et e b e nbeebe e e e s e nnes 6
A\ V1@ I =T o] [o= o] o OSSR 8
2.2.1. RePlICALION FOIMALS:ccveiiuieitieiieecie et ere ettt et e st e s teeste e st e st e e e e beesseesseenseesseessesssesreens 8
2.2.2. RePliCAtioN PrOtOCOIS:ccuveivieieeitieie ettt ettt teeteebeenseenseensesnnesrnens 9

2.3 MYSQL INNODB CHUSTETeeotiieiiecie ettt et e st e et e s tae e sta e e ba e eba e etaeebaesneeeraeenens 15
2.3. 1. MY SQL ROULET: ...ttt ettt et ettt e st e st e e sateesabeesabeesateesabeenas 16

B B |V YA @ T I o= | T 16
2.3.3. INNODB CONSISENCY LEVEL:ccciieiieiieieeieee ettt et 17

2.4 DRBD System Replicated Disk ArChiteCturecccoeveiieiierieieeeeeee e 18
R N o = o] 1o U o] g 10\ oo [U 19
2.4.2. DRBD TOPOIOGIES: . uveevreeereeiieestte ettt e ste e sttt estteessteesteeessteesstesssseessseesntesssseessseesnsessnseessenans 19
SINGIE-PrIMAIY IMOGE ...ttt sttt st b et sae et 19
DUAI-PIIMAIY IMIOUE. ...ttt ettt sttt sttt sb e bttt sbesae et e nbe st e sse e e ennens 20
2.4.3. PaCEMAKET / COMOSYNC: ...vviiveeitieeieeiteesteesteeteeteeteeteeetesaaesssessaesreesseesseesseesseeseeseenseensesnsennes 20

2.5 SYSBENCN TOOL......iiiieieciece ettt et be et e et e enbeeateeabeenseeabesanennnas 21

(0 0T o1 =T e TSR 23
3.1 Performance Evaluation TEChNIQUEScoiviiiiiiiiiiceeeeee s 23
3.2 MySQL High Availability EVAIUATION..........ccooiiiiiiriiieerieseeeese e 24
3.3 Standalone Database COMPATISONcccuevieriieiiierieieere et e et teeste e e reeaesraessnesnnas 26

L Y 11 1 g 0o [o] oo YR 28
4.2 EXPEIIMENT DESION ..c.vveiiiieeiie ettt eite et e etee et e e e e e te e s teesteeebeesstaeentaeesseesnseesnsesentessnsessnsessnsensns 30
4.2.1. Data and Workload CharaCterization:............ccecererieienienineeieseseee e 31

4.3 EXPEriment ENVIFONIMENTccuiiiiiiieieiteiteet ettt st sttt n e 33
4.3.1. PRYSICAl PIAtFOIMIS: ..ottt sttt 33
4.3.2. SOTIWAIE PIAtFOIMS: ...ttt 35
4.3.3. EXPEIIMENT SELHINGS: ooveeveeiieiieieeie ettt sttt e teete e teeate e ateeabesaaesraesreesbeesseesseenseenseenns 35

(0 0= o1 =T ot YU 39
5.1 INNODB CIUSTET ..ottt ettt sb ettt ae e nesbeeseeanenes 39
5.1.1. Eventual CONSISTENCY LEVEL ..ot 40
5.1.2. Before_and_After CoNSIStENCY LEVELcvi e 42

LA B ad = B) Y1 (=] o PSSR 45
5.2.1. PrOTOCOI Al ...ttt b ettt eae e 45
5.2.2. PrOOCOI € ..ottt st b e b e e 46

5.3 Comparison Between TWO CIUSTEISc..cciririiieierieeeeieseieeese et 49
TR 00 O I] (0 o | o] o | SR 49
5.3.2. TOTAI THME. ..ttt b bbbt sbesn e eae e 51
TR R T 0 L1 OSSPSR PSPPI 53

5.4 LIMITATIONS ...ttt b e bbbt bt b e st e bt aeen e neebeeanennes 54
5.5 Verification and Validation of the experimental Modelccccoooeiiiieniene e, 54
5.6 SUMMANY OF The FESUITSoeeeieeeceece ettt ettt e e beeseesraeeneas 56

(0 0T o1 T ol TSR 57
8.1 CONCIUSION. ...ttt sttt b e s bt sn e besbe e bt sbe e enne s 57
8.2 FULUIE WOTK ...ttt b et e e b sb e e e snesneeanennen 58
REFEIEINCES .ttt ettt e st e st esa bt e sa bt e s ab e e sabeesabeesabeesateesmbeesabeesabeennbeesanean 59
JAY] o 1=Y g Vo ol T PSSP 63
APPENTIX A ottt ettt bt h e bbbt b e bt h et h e h e bbb b e et enes 63

F Y] o 1=T 0o Dl = SRR 69
ADSTIACt IN AFQDIC .ot ettt e s et e s e et e s e e b e e r et e e e n e ene e 71

List of Tables

Table 5.1: SysBench results of throughput for write test of eventual InnoDB consistency level........... 40
Table 5.2: SysBench results of throughput for read test for eventual InnoDB consistency level 41
Table 5.3:SysBench result of throughput for write test of before_and_after InnoDB consistency level

.. 42
Table 5.4: SysBench result of throughput for read test of before_and_after InnoDB consistency level

.. 43
Table 5.5: SysBench results of throughput for write test of DRBD-Protocol A.........cccccvvviivivveeeeeeeeeenn. 46
Table 5.6:SysBench results of throughput for write test of DRBD-Protocol C.........ccccceeevevvieeeeeeecnnnneen. 47
Table 5.7: SysBench results of throughput for read test of DRBD-Protocol C.........cccceeevevvieeeeeeecennneen. 48
Table 5.8: SysBench results of throughput for write test for all clusters with all types..........ueeeeeeeeee.n. 49
Table 5.9: SysBench results of throughput for read test for all clusters with all types..........cccceennneeen. 50
Table 5.10: SysBench results of total time for write test for all clusters with all typesccccoeuuneeen. 52
Table 5.11::SysBench results of total time for read test for all clusters with all types.........ccccceeunneen. 53

Table 5.12: Summary of the results as the best high availability solution in terms of performance (low
L I o 1T={ o T A RS UR U PUPRRPP 56

Table A.1: coefficient of variation for results of InnoDB eventual level throughput of 30 trials of

EXPEIMENTS FOr WILE TEST coiiiiiiiieee et e e e et e e e e e et e e e e e esaaareeeeeesataaeeeeesansrraeeeenan 66
Table A.2:coefficient of variation for results of InnoDB before_and_after level throughput of 30 trials
Of EXPEIMENTS FOr WITE TS ..ttt e e e e eeeeeeaeeeeeeeeeeeesssssessssasssrranes 66
Table A.3: coefficient of variation for results of DRBD Protocol A throughput of 30 trials of
EXPEMMENTS FOr WL TEST oottt e e s et e e e s e sab e e e e e s ssstaeeeeessanasreaeeesenn 66

Table A. 4: coefficient of variation for results of DRBD Protocol C throughput of 30 trials of
EXPEIIMENTS FOr WITLE TEST .oiiiiiiiieee et e e et e e e e et e e e e e e saataeeeeeesaeaaeeeeeesnssaaeeaeaan 67
Table A.5: coefficient of variation for results of InnoDB eventual level throughput of 30 trials of
EXPEFIMENTS FOr AU TEST ..iiiiiiiiiiie et e e e e st e e e e s saabreeeesesnsaaeeeeeesanssaaeaeeans 67
Table A.6: coefficient of variation for results of InnoDB before_and_after level throughput of 30 trials
Of eXPeriments fOr rEA tEST e e e e e e e e e e e e e e e e e s e e nnnraaeraees 67
Table A.7: coefficient of variation for results of DRBD Protocol A throughput of 30 trials of
EXPEMMENTS FOr AU TEST ..ottt e e e et e e e e e e ettt e e e e e e s s aaaaeeeeeeansaseeeeesanssaaneaeaan 68
Table A.8: coefficient of variation for results of DRBD Protocol C throughput of 30 trials of
EXPEFIMENTS FOr AU TEST .oiiiiiiiiiiee e e et e e e e e st e e e e e esaabaeeeeeesasaaeeeeeessnssaaeeaeaan 68

Table B.1: sample of the data that is generated into database by SysBench tool and used in the
L) q o =T 10 =T o | S PP PP PP PP TP ORROPPORE 69

vi

List of Figures

Figure 2.1::Asynchronous replication [11]] ..c.ueeiiii it ee e e e s esbare e e e e s s sabraeeeesesnnes 10
Figure 2.2:Synchronous replication [11]ccciiiiiiiiiiiieeee et e e e esbre e e e s s s abraeee e e e enees 11
Figure 2.3: Transaction commit with semi synchronous replication [1].......cccccceeiiiiiiiiiiei e 12
Figure 2.4:Active replication - Atomic broadcast [13] . .cciiiiiciiiiieiiiciieee e e e e e e e 13
Figure 2.5: MySQL Group Replication Protocol [15]......ceiiiiiciiiiieeeiiiiiieee e eeciiteee e e esiieee e e e e esvraeee e e e eenes 14
Figure 2.6:InN0ODB cluster archit@Cture [22]oceiiccciiieee ettt e e et e e e e eeatee e e e e s esabraeeeeeeeanes 16
Figure 2.7:DRBD arChit@CtUIE.....uuiiieiiiiieiiieee et e seses s nnnnnnssnnnnnes 18
Figure 2.8:DRBD with MySQL Architecture [29]ccuiiiiieiieciieeee et e e e e rvrae e e e e e 21
Figure 4.1:InnoDB cluster architecture of single primary topology [38].......cccoveieiieiciiiiee e 34
Figure 4.2:DRBD architecture of single primary topology [39]cccviiiiiiiiiiiiieiee e 34
Figure 5.1:Throughput for write test for eventual InnoDB consistency level.........cccoovveeeiiiiciieeeeeennns 41
Figure 5.2: Throughput for read test for InnoDB eventual consistency levelcccovveeeiiniiiiieneiinins 42
Figure 5.3:Throughput for write test for InnoDB before_and_after consistency level............ccccc........ 43
Figure 5.4: Throughput of read test for before_and_after InnoDB consistency levelcccceeeennnes 44
Figure 5.5 : Throughput of InnoDB cluster for read and write tests for both levels..........ccoccvveeeiinnnns 45
Figure 5.6:Throughput of write test for DRBD-ProtoCOl A.........cooiiiiiiiiiieiiieiiieeee et eecee e 46
Figure 5.7:Throughput for write test for DRBD-Protocol C.........cccccoevveiiiiiiiecee e 47
Figure 5.8 :Throughput of read test for DRBD-Protocol C.........ccccuuiiiiiiiiiiiiieeiieeeeeee e eeceecccceeevennnnens 48
Figure 5.9 : SysBench result of throughput for best cases of write/read tests of two modes of DRBD

(00] = PP 49
Figure 5.10 : Throughput of write test for two clusters with all modes............ccccooeverenieieninenecene, 50
Figure 5.11:Throughput of read test for two clusters with all modescccocveeeeiievieceecieceeee 51
Figure 5.12: Total time for write test for two cluster with all modes..........ccccoeveeeviievcieecceeeecee e, 52
Figure 5.13 : Total time for two clusters for read test of all typesccvecvveveieciiiciiecerereeeee e 53

vii

file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007884
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007885
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007886
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007887
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007888
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007889
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007890
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007891
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007892
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007893
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007894
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007896
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007897
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007899
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007900
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007901
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007902
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007902
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007903
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007904
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007905
file:///C:/Users/amohsen/Desktop/thesis/thesis%20last%20copy/master%20thesis_alaa%20mohsen_25July.docx%23_Toc47007906

List of Appendices

A PPN X A o 63
RN . . i e 63
Variance and Standard Deviation............ooveiiriiiiiii e 63
Standard deVIatioN.oiii 64
Coefficient of Variation (C.O.V) ..o, 64
Mean abSoIULE DeVIation...........o.uinin ittt 64
Confidence Interval (CI) forthe Mean..............oooiiiiiiiii e 65

APPENAIX B ot e 69

viii

List of Abbreviations

Abbreviation

M.Sc.
HA
CRUD
DRBD
OLTP
VIP
VM
MHz
NoSQL
Mbps
CRM
HADBMSs
DBMSs
TCP

SMEs

Full word

Master’s degree

High Availability

Create, Read, Update, Delete
Distributed Replicated Block Device
Online Transaction Processing
Virtual IP Address

Virtual Machine

Mega Hertz

Not Only SQL

Megabit Per Second

Cluster Resource Manager

High Availability Database Management Systems
Database Management Systems
Transmission Control Protocol

Subject-Matter Experts

Chapter 1

Introduction

1.1 Background and Motivation

MySQL database is most popular open source relational database management system that used
by many of companies and organizations to organize their data, and for different range of
purposes such as data warehousing, logging application, ecommerce purposes etc.,[1]. Also, it
is used to store anything from a single record of information to large number of records. High
availability is one of the highest priorities for companies/organizations who are caring about
their end user satisfaction for the services they provide, where high availability indicates
minimal downtime, it is important to ensure data is readily available in situations like server
crash, failover, or other data disaster and no organization can afford downtime, even it is merely
for a few seconds. Consequently, if their services are not available like an application or site
fails to load because of problems with their databases, will result in losing their customers and
so decreasing their revenues. Therefore, thinking of high available solution is important for
their database, and the database that this research talks about is MySQL DBMS.

Different database high availability solutions may have different effects on database
performance. Therefore, the database administrator who is responsible for optimizing the
database performance, must decide which appropriate high availability solution for used
application. In this case, he must choose a trade-off between (high availability) and the cost [2].
Therefore, this research will be helpful for the decision maker in picking the suitable high
availability solution for their requirements, since it compares two different well-known and
popular high availability MySQL databases regard database performance (i.e. , how they differ

in affecting the database performance), it also clarify the resources needed for each solution

1

which is important for cost calculate, and it discuss the most suitable solution for the business
size based on the experiments result, noting these points are important for them when they pick

their decision.

There is more than one solution for MySQL database high availability, and organization choose
the one that is suitable for its requirements and resources. Furthermore, the DB performance
will be taken into consideration to help them in choosing a good and appropriate one according
to their requirements (i.e., a feasible solution). In this work a comparison of database
performance will be carried out between two databases high availability solutions, which are
InnoDB cluster technology and DRBD system (distributed replicated storage system) for Linux
platform with MySQL service. They are chosen because both provide an effective high
availability with automatic failover (not manual) and can be built over Unix system, also there
are no researches did any comparison between them, where this comparison considers

throughput and response time in order to maximize customer satisfaction.

Moreover, from my experience as a database administrator in a company, | have been asked
about which high availability solution between DRBD and InnoDB cluster has better
performance and consider the best for company’s requirements, where they often use DRBD
solution, but the client asked for an official solution from MySQL. Therefore, to answer this
question we felt there is a need for a scientific approach that could help and be needed for other

companies and organizations.

Researches about the performance of MySQL high availability solutions are rarely found. Most
of previous works talked about database performance evaluations as standalone databases with
another, where they focused on doing a comparison between standalone database management
systems either relational or non-relational DBMS. One of those researches that is related is
carried out by Raju Shrestha [3] where he did a performance comparison between MySQL HA
solutions. In [3] they studied and evaluated master-slave and cluster-based high availability
database solutions, qualitatively as well as quantitatively. This paper investigated effectiveness
of the two major solutions to high availability database: traditional master-slave replication and
modern cluster-based techniques (Galera cluster). Authors used SysBench tool to execute tests
(read-only and read-write quires) over both solutions, where it is implemented using MariaDB
10.1 with Galera cluster. Results shown that traditional master-slave replication solution

2

performs equal or better in terms of throughput and response time. Despite some performance
lag, author summarized that the Galera cluster is an effective solution for applications and

services where data consistency and high availability is critical.

Also, in Adfinis SyGroup [4] a comparison for MySQL/MariaDB high availability was done
between Galera Cluster vs. DRBD replication, it compares two different High-Availability
solutions for MySQL databases, one is a block-device based replication solution, the other
extends MariaDB internals to provide synchronous replication. This comparison focused more

on network traffic, commit latency, replication, load balancing, failover and resynchronization.

1.2 Problem Statement

Database (MySQL) high availability may affect its’ performance. So, achieving extreme high
availability, will need extreme cost. A trade-off between availability, performance, cost, locking
and complexity can occur comparing to standalone DB , where the data will be replicated on
more than one node continuously and this may cause replication latency between nodes which
affects badly on DB performance [5]. So, companies/organizations who care about keeping their
MySQL database up for long time, will choose one of MySQL high availability solutions, where
these solutions could have different effects on performance of database. So, a comparison for
DB performance will be carried out for two of these high availability solutions which are,
InnoDB cluster and DRBD system with MySQL service.

This research evaluates the performance of the two clusters under different replication types
which includes synchronous and asynchronous modes. This will help them to choose the
suitable and appropriate solution for their application and satisfies their requirements. It should
be noted that the evaluation is done in terms of throughput (i.e., transaction per unit time) and

total response time.

Thus, the main question of this work is which of the above mentioned high available MySQL

solution (i.e., InnoDB cluster and DRBD) performs better than the other and in which cases?

1.3 Contribution

This research aims to evaluate and compare MySQL database performance for two of high
availability solutions for MySQL. These solutions are InnoDB cluster and DRBD system
(distributed replicated block device) with MySQL service. The evaluation considers the
database transactions throughput and the total/elapsed time needed. Where the testing is carried
out with different replications modes and using different read and write queries to evaluate the

performance of these clusters/solutions.

The results show that InnoDB cluster outperforms the performance of DRBD for write tests, it
shows higher performance in terms of throughput and total time. On the other hand, for read test
it outperforms DRBD when the number of concurrent users is high, , but when the number of

concurrent users is low the DRBD shows better performance.

The results of this evaluation can have significant help for decision makers in companies or who
are caring about having their MySQL database up for long time (high available). In other word,
this comparison can help them in choosing a suitable solution that fits their requirements and

resources.

Unfortunately, up to our knowledge the absence of recorded data from real-life systems or
previous research results on evaluation of these particular solution, makes the validation of our
results based on real-life systems difficult. Thus, we faced a limitation problem in validation of
the outcomes of our results with either historical real data or other previously obtained results.
Therefore, we carried out validation of our results based on subjective approach i.e., subject-
matter experts (SMESs) opinions validation approach technique to evaluate the significance
differences in performance of the two alternative solutions, and according to the SMEs the

results are valid and can be accredited.

1.4 Thesis Organization

This thesis is organized as follows: in next chapter a background introduces definition, notions
and theory relevant to this work such as high availability and MySQL replications. Chapter 3
presents literature reviews and background of MySQL performance comparison and evaluation.
Chapter 4 introduces the research design and methodology used. In chapter 5 we present the
experiments, results, and discussion of the results. Finally, chapter 6 presents the conclusion and

future work.

Chapter 2

Background

In this chapter, the main concepts of high availability and replication are discussed in general,
then focusing on MySQL database group replication and DRBD (distributed replicated block

device).

In computing, high availability refers to systems that are durable and likely to operate
continuously without failure for a long time. As databases are increasingly deployed in
environments, the need to have them highly available has increased also, where it can be trusted

to work properly in cases of hardware or software failures.

2.1 Introduction

The meaning of High Availability varies depending on the requirements of your application and
business, where it is measured as a percentage, For instance, 99% availability (two nines) in a
period of one year means the system can have up to 3.65 days of down time, 99.99% or (four
nines) as is considered excellent uptime , 100% availability indicates that the system is always

up and will never come down (zero downtime).

There are basically three component that can help achieving high availability, which are: first is
elimination of single point of failure (SPOF), which is causing the system failure if any
component of the system failed. This failure can be avoided by adding redundancy in
infrastructure and data, which acts as a standby service ready to take over in case the primary

failed. Second component is a reliable crossover from a failed to a standby component. The third

component is detection of failures, as this will enable the framework to either take corrective

actions on the same primary system, or failover the services to a standby system.

Duplication entire MySQL servers could be done by different redundancy options. Shared
storage architecture, replicated disk architecture and MySQL replication are some ways that can
be followed as redundancy options. Considering that the standby servers have access to the
primary server’s data. These options are discussed in the following sections and some are used

in this research [6].

e Shared Storage Architecture:

Is a way to remove some single points of failure. It requires specialist hardware usually with a
SAN (storage area networks), where if an active server dies, the standby server can mount the
same filesystem, perform any necessary recovery operations and start MySQL on the failed
server’s files. Considering that, it is Complex to operate (specially for DBAS) [6].

e Replicated disk architecture:

Redundancy through disk replication (RAID over ethernet) is another way to keep the data safe
in case of failure on a master server. DRBD (Distributed Replicated Block Device) is an example
of this option, which is commonly used for MySQL in combination with tools from the Linux-
HA. In this research a comparison between this option and another redundancy option (MySQL

replication) is carried out regard the database performance.
e MySQL Replication:

Redundancy through MySQL replication is at the relational database management system layer,
it is a process that enables data from one MySQL database server (the master) to be copied
automatically to one or more other nodes of MySQL database servers (the slaves), which has
potential for scaling out. Replication works because events written to the binary log are read
from the master and then processed on the slave in different format, that is clarified in following

sections.

This study presents two different ways of the redundancy options mentioned before. This aims

to have a duplicate for MySQL database server for different purposes as automatic failover,

scalability, and could be used for analyzing data on the slave in order not to overload the master.
These are InnoDB cluster that depends on MySQL group replication technology [7], and a
DRBD (distributed replicated block device) with MySQL service, which depends on a replicated
device architecture. A comparison between these solutions is carried out based-on the
performance of the database, and how the end user will be affected of these clusters regards the
response time and throughput.

2.2 MySQL Replication
The MySQL database management system provides mechanism to configure master-slave
replication. That allows configuring one or more servers as slaves (replicas) of another server,

or even to behave as master for local updates. This mechanism of MySQL replication works in

a simple three-part process:

» Firstly, the master records changes/updates on its data from application or client in its binary

log (these records are called binary log events).
* Then, the slave nodes copy the master’s binary log events to its relay log.
« Finally, slave replays the events in the relay log, applying the changes to its own data [8].

The events are written to binary logs in different replication format according to the type of

events, which is discussed in the following.

2.2.1. Replication Formats:

MySQL uses the primary copy replication method, and supports three kinds of replication,

statement-based, row-based formats and can use a mixed format logging [8].

e Statement-Based Replication

In this approach, every SQL statement that could modify the data is logged on the master
server [8], where statements are logged to the binary log exactly as they were executed.
Then those SQL statements are replayed on the slaves against the same dataset and in
the same context. The binary logs do not grow as fast with statement-based replication

8

https://mariadb.com/kb/en/binary-log/

as they do in row-based replication. It generally requires less data to be transferred
between the master and the slave, as well as taking up less space in the update logs.
MySQL originally were based on this approach that depends on propagation of SQL
statements from master to slave. It has been around from the beginning of MySQL
version 3.23 [9].

¢ Row Based Replication

The master writes events to the binary log that indicate how individual table rows are
changed, where every row modification gets logged on the master and then applied on
the slave. Instead of replicating the statement that performs the changes, the row-based
approach replicates each row being inserted, deleted, or updated separately with values
that were used for the operation [1], which is logged to the binary log separately, noting

that statements are not logged.

¢ Mixed Mode Replication

Server uses a combination of statement-based logging and row-based logging, where it
can change the binary logging format in real time according to the type of event.
Statement-based logging is used by default, but automatically switches to row-based
logging in particular case. This is recommended for MySQL version 5.1, to avoid
problems for users who upgrade from version 5.0 or earlies because those versions had
no row-based replication and users have had to use statement-based replication, where

MySQL developers did not want server to make a sudden switch [1].

2.2.2. Replication Protocols:

Classification of replication protocols can be done according to where and when updates and
changes happens on master database, can be performed on the replicas database servers [8]. And

regarding to when updates can be propagated, different main replication options could be used

with MySQL workloads, which are MySQL Asynchronous, Semi-Synchronous Replication and
MySQL Group Replication [10].

e Asynchronous Replication:

MySQL replication by default is asynchronous, this type of replication particularly suitable for
modern application such as website. It is considered asynchronous because the master does not
wait for the slaves to apply the changes. But instead just dispatches each change request to the
slaves and assumes they will catch up eventually and replicate all changes [1] as shown in Figure
2.1. With asynchronous replication, if the master crashes, transactions that it has committed

might not have been transmitted to any slave, which may have a missing transaction [11].

S S
Update—————p
Commit————p|

l4—Commit OK

Replicate——p

Figure 2.1::Asynchronous replication [11]]

e Synchronous Replication:

In contrast, synchronous replication keeps the master and slaves in sync and does not allow a
transaction to be committed on the master unless the slave agrees to commit it as well. The
synchronous replication makes the master wait for all the slaves to keep up with the writes [1].
Where a request is sent to all storage nodes being involved in the transaction, and the transaction
is not committed till all nodes indicate that they are ready, then it becomes committed and the

application/client get informed of the success of the transaction [12] as shown in Figure 2.2.

10

WL’
///"r’

Update————p
Commit—————>
Update———p}
Commit———p]
<4+——Commit OK
[4——Commit OK

Figure 2.2:Synchronous replication [11]

Asynchronous replication is faster than synchronous for reasons, relates to that it requires extra
synchronizations to guarantee consistency, which is usually implemented through protocol
called two-phase commit. This guarantee consistency between the master and slaves, which

requires extra messages to ping-pong between master and slave [1].

e Semi-synchronous Replication:

Semi-synchronous replication falls between asynchronous and fully synchronous replication.
The idea about it is to ensure the changes are written to disk on at least one slave before allowing
execution to continue. This action avoids sending a reply to the client until the transaction has
been written to the relay log of at least one slave. This means it does not wait for all slaves to

acknowledge receipt, it just requires only one receipt [13] as shown in Figure 2.3.

11

X

Client | Master | |StorageEngine| I Slave 1 | I Slave 2 |

- o

Commit

Commit

\ 4

Send

v

v

Figure 2.3: Transaction commit with semi synchronous replication [1]

e MYSQL Group Replication:

Database replication is traditionally handled in two ways, either with synchronous (eager)
replication or with asynchronous (lazy) replication. But they have problems one can consider
such as synchronous replication which is slow and deadlock prone, and asynchronous
replication does not enforce consistency between the replicas even though it is efficient.
Therefore, to address this problem, replicated databases based on group communication have

been proposed for some time [14].
Atomic Broadcast

Techniques based on group communication typically rely on a primitive called total order
broadcast or atomic broadcast, it ensures that messages are delivered reliably and in the same
order on all replicas [14]. Where a client sends the transaction to the primary and it processes
the transaction to all participants using an atomic broadcast, then replicas apply the writes
according to delivery order of the atomic broadcast as shown in Figure 2.4. Consequently,

conflicts are detected and if a transaction needs to be aborted, it is aborted on all servers [15].

12

ELLH s

Server Sd

Forward I Processing
\ o v
— — - server 99
-9 2 |Processlng| o
Y 2w
0 3 P - Server 93
a

Figure 2.4:Active replication - Atomic broadcast [13]

Group Replication Technique

Group Replication is the latest evolution of MySQL Replication. It is a technique that can be
used to implement fault-tolerant systems. Group replication is designed to make data replication
more robust and reliable. It consists of set of servers that each have their own entire copy of the

data and interact with each other through message passing.

MySQL Group Replication provides distributed state machine replication with strong
coordination between servers. In this technique (state machine replication) the whole transaction
IS put into a message, and the message is broadcast (total order broadcast) to the servers as
shown in Figure 2.5. That is provided by the communication layer that apply a set of guarantees

such as atomic message and total order message delivery [16].

Group Communication System (GCS) protocols provide a failure detection mechanism, a group
membership service, safe and completely ordered message delivery. These key properties
ensure that data is consistently replicated across the group of servers. Furthermore, at the very
core of this technology lies an implementation of the Paxos algorithm [16], that acts as the group
communication engine. Where it is an efficient and highly fault-tolerant algorithm, for

reaching consensus in a distributed system [17].

13

execute

Master 1

Master 2 certify | relay log apply binlog commit

Master 3 certify relay log apply binlog commit

Consensus

Figure 2.5: MySQL Group Replication Protocol [15]

Performance Tuning:

Group communication is a plugin, and one of the key components of a group replication plugin
is a group communication thread (GCT), which runs in loop when the plugin is loaded [18].
This threads’ wait value is determined by this variable A group_replication_poll_spin_loops.
where this variable represents in InnoDB cluster, the number of times the group communication
thread waits for the communication engine mutex. Since group communication thread (GCT),
receives messages from the group and from the plugin, handles quorum and failure detection
related tasks, sends out some keep alive messages and handles the incoming and outgoing
transactions from/to the server/group, and waits for incoming messages in a queue. So, when
there are no messages, the GCT waits, and by configuring this wait to be a little longer (doing

an active wait) before going to sleep, can prove to be beneficial in some cases [19].

Thus, different values are tried for this variable in the configuration of MySQL cluster in the
experiment of this research. That is to check the case that the performance of MySQL can be
improved and take it for comparison with the other cluster.

MySQL Group Replication Topologies

It is possible to setup MySQL group replication with different topologies of masters and slaves,
which are single primary mode (the simplest topology), and multi primary mode.

e Single-Primary Mode

In this topology, the group has a single primary server that is set to read-write mode. Thus, only
a single server writes to the group and all other members in the group are set to read-only mode.
In this case they don’t interact with each other at all, they all connect only to the master. Also,
the server which join the group will learn about the primary server and is automatically set to

read-only mode. This configuration is useful for a system that has many reads and few writes

[8].

e Multi-Primary Mode

In multi-primary mode, any member joins the group and compatible with the group members is
set to read-write mode, where there are no special roles for any member, even if they are issued

concurrently. Consequently, writing simultaneously is possible in this mode [20].

2.3 MySQL InnoDB Cluster

MySQL InnoDB Cluster is a collection of products that work together to provide a complete
high availability solution for MySQL. It is composed of three main parts: Group Replication
(GR), MySQL Shell and MySQL Router. Three servers are needed at least to configure InnoDB

cluster, either in a single primary, or multiple primary mode with InnoDB engine.

InnoDB cluster depends on group replication technology, that is clarified in preceding sections.
In this cluster each MySQL server instance runs MySQL group replication that provides the

mechanism to replicate data within the cluster with built-in failover [21].

15

2.3.1. MYSQL Router:

MySQL router is lightweight middleware that is used to route connections between the
application and back-end MySQL servers, and handle the failover and load balancing. Where it
acts as a proxy to hide the multiple MySQL instances on the network and map the data requests
to one of the cluster instances. Thus, it stands between application servers and the GR setup, as
shown in Figure 2.6. It makes the cluster transparent for the application, that is why application
believes that it is talking to a single MySQL server. But in fact, there is a cluster consists of
multiple servers there. Furthermore, MySQL router selects a new MySQL server if there any
connection fails between the already connected MySQL server and application. In this case,

applications will be designed to retry the connection.

33

App Servers with

MySQL Router
MySQL Shell !
Setup, Manage,
Orchestrate

MySQL Group Replication

Figure 2.6:InnoDB cluster architecture [22]

2.3.2. MySQL Shell:

MySQL shell is used for configuring InnoDB Cluster. It is an advanced command-line client
and code editor for the MySQL Server, which supports development and administration for the
MySQL server. Also, it provides the developer and DBA with a single intuitive, flexible, and
powerful interface for all MySQL related task. Moreover, it supports different languages such
as (JavaScript, python and SQL)).

16

2.3.3. InnoDB Consistency Level:

The configuration of a group’s consistency can be guaranteed based on the point at which the
transaction is wanted to be synchronized across the group. The points of synchronizing
transactions across a group could be at the time of a read operation or at the time of a write
operation. The consistency level can have a different impact on read-only (RO) and read-write
(RW) transactions processed by the group. Thus, one can determine the consistency level
according to his situation with MySQL group replication as following [23]:

e Eventual Level: It is the GR default consistency level, where read only and read-write
transactions do not wait for preceding transactions to be applied before executing. It
could result in outdated values of RO transaction, and RW transactions could result in a
rollback when a primary failover happens.

e Before_ On_Primary_Failover: In this level, the new RO or RW transactions with a
newly elected primary that is applying backlog from the old primary are held (not
applied), until any backlog has been applied.

e Before: A RW transaction waits for all preceding transactions to complete before being
applied and A RO transaction waits for all preceding transactions to complete before
being executed, that will cause a long wait time.

e After: A RW transaction waits until its changes have been applied to all other members.
This can be considered as synchronous writes as the return from commit happens only
when all members have applied it. This value has no effect on RO transactions, and it
has impact on network latency.

e Before_and_After: In this level a RW transaction waits for all preceding transactions
to complete before being applied and until its changes have been applied on other
members. Also, a RO transaction waits for all preceding transactions to complete before
execution takes place. That is why this level considered as the highest level that

guarantee the transaction consistency.

17

In this research the experiments are carried out using two of these consistency levels, which
guarantee the lowest and the highest transaction consistency (i.e., eventual and

before_and_after).

2.4 DRBD System Replicated Disk Architecture

DRBD (device replicated block device) is designed for high availability clusters and software
defined storage. Where it is a software-based, shared-nothing, replicated storage solution, and
mirroring the content of block devices (hard disks, partitions, logical volumes etc.) between
hosts. It is developed by LINBIT, which provides networked RAID 1 functionality for
GNU/Linux [24]. Since It implements mirroring across two disks as shown in Figure 2.7. Thus,
two copies of information exist, and when a disk fail, the information can still be acquired
through the other copy [25]. Each peer of a DRBD resource acts in one of two roles, it may be
either secondary or primary node. This is controlled by a cluster manager software called
heartbeat, that initiates the failover process in case the primary node (active) leaves the cluster
unexpectedly (crashes) [26]. Consequently, all the modifications that happened to data must be
initiated on the primary node and reflected on the secondary node. The secondary node can’t be

used for neither read nor write access, where it is passive node.

Users

| Clustening solution

Server Server
: DRBD | : DRBD :
I = 22— i [_— [
| - I I . I
: : Synchonization : :
| - — — — — | I o e e o o o — — — — - |
Primary Seondary

Figure 2.7:DRBD architecture

18

2.4.1. Replication Mode:

DRBD mirrors the data in real time and transparently. Thus, the applications are not aware of
multiple nodes. DRBD replication can be either synchronously or asynchronously replicated

modes and there are three degrees of replication synchronicity as the following :
Protocol A

It is asynchronous replication protocol, which means that local write operations are considered
achieved on the primary node when local disk write are finished, and the replication packet has
been placed in the local TCP send buffer. However, if there is a host forced failover, then some
data loss can occur. This setup is more common in replicating stacked resources in a wide area
network [24].

Protocol B

This protocol is memory synchronous (semi-synchronous) replication protocol. The local write
operations are considered achieved, once it is occurred on primary and replicated data has

reached the peer node. In this mode no writes are lost in case of forced fail-over.
Protocol C

Synchronous replication protocol, which is the most commonly used protocol and the default
one. Using this mode means that the Local write operations on the primary node are considered
completed only after both the local and the remote disk writes have been confirmed, where it

guarantees the prevention of any data loss in failover.

2.4.2. DRBD Topologies:

Single-Primary Mode

Primary role in this mode is on one of cluster member, where the application can only write to

it, and the secondary node is simply a real time replica of the primary. It is guaranteed that only

one cluster node manipulates the data at any moment.

19

Dual-Primary Mode
In this mode the DRBD resource has primary role on both cluster nodes at the same time, where

the application can freely write to both DRBD resources simultaneously, and DRBD kernel
driver allows write attempts to happen to DRBD resource on both nodes sharing the resource.
By design, a DRBD resource is supposed to have the same contents on both nodes of a cluster.
However, it is a bit dangerous, where application can have some form of locking logic. But it is

the preferred approach for load-balancing clusters [24].
Optimizing DRBD Performance

There are number of configuration options for tuning the throughput of DRBD. One of
the recommendations for tuning DRBD to optimize its performance is tweaking the 1/0
unplug watermark. The I/O unplug watermark affects how often the 1/O subsystem's
controller is forced to process pending I/O requests during normal operation. Some
storage controllers deliver better performance with small values. However, others
perform better when left alone, and others setting as high as max-buffers is advisable.
On the other hand, in some cases there is no significant effects of this setting [27]. Where
there is no universally recommended setting for this option, since it is hardware
dependent. Thus, in this research three values are experimented for this variable. Thus,

the best case could be taken for performance evaluation.

2.4.3. Pacemaker / Corosync:

DRBD uses Pacemaker and Corosync tools for communication and managing cluster as
illustrated in Figure 2.8. Pacemaker is an open source cluster resource manager (CRM) that
performs tasks to control how the cluster behaves as to start, stop, monitor, recover or move
around a resource. The resource in high availability configuration can be something as simple
as an IP address that floats between cluster nodes or something as complex as a database instance

with complex configuration [28].

Corosync is an open source program that provides cluster membership and messaging

capabilities referred to as the messaging layer (cluster communication layer), where it serves

20

three primary purposes; it provides reliable message passing between cluster nodes, establishes
the cluster membership, and determines quorum. Corosync is the default cluster

communications layer in the Linux HA stack [28].

Pacemaker and Corosync also used to manage the failover when a resource becomes
unavailable, that is by using a virtual IP method for redirecting clients to the active node as

shown in Figure 2.8.

Services [y |
| DRBD | sync

custer s |

Active Standby

Hosts

Figure 2.8:DRBD with MySQL Architecture [29]

2.5 SysBench Tool

SysBench is a benchmark suite, open source benchmarking tool, that allows one to quickly get
an impression of system performance. It provides benchmarking capabilities for Linux, supports
testing CPU, memory, file 1/0, mutex performance, and database performance as MySQL

benchmarking.

SysBench is used to evaluate MySQL clusters performance in this research. It is simple to use,

open source, provide scripts for load testing, and it automatically generates a data into the
database.

21

http://sysbench.sourceforge.net/

It includes an Online Transaction Processing (OLTP) test profile, where it is a true database-
backed benchmark that conducts transactional queries to an instance of MySQL in a CentOS
environment. A LUA [30] scripts can be used to execute benchmarks by this tool, where those
scripts, handle input from command line parameters, that define the modes of benchmark that
IS supposed to use which are: prepare, run and cleanup. The prepare command should be
executed before run command, that is to generate a data into database by defining the number
of tables and number of rows for each one. Moreover, these scripts define how the benchmark

will be executed [31].

22

Chapter 3

Literature Review and Related Work

While using the database high availability HA, the performance also should be taken into
consideration. High availability database may affect its’ performance. There is a trade-off
between performance, cost, locking and complexity comparing to standalone DB [1].
Companies and organizations who care about keeping their MySQL database up for long time,
will choose one of MySQL high availability solutions, recall that these solutions have different

effects on performance of the database.

While there has been much research on evaluating the performance of database as standalone
server, and there are researches for comparison between standalone servers for relational and
non-relational database management systems, few researchers have taken clusters or high
availability solutions into consideration. So, a comparison for DB performance is carried out in
this research for two of high availability solutions, which are InnoDB cluster and DRBD system
with MySQL service. This comparison aims to evaluate the performance of two clusters under
different replication types, taking into account the throughput and response time, which are the

most common metrics used in previous works.

3.1 Performance Evaluation Techniques

Paul, Subharthi [32] in his survey tried to emphasize the importance of database systems in
enterprise setups and looked at the methods and metrics that are used to evaluate the
performance of database systems. In [32] he discussed some of the analytical modeling methods
for evaluating systems that are applicable for database systems, which are: queuing models, cost

models, simulation modeling and benchmarking (which is used in this research). Where

23

benchmarking method is considered the best, when multiple database systems need to be
evaluated against each other. But it suffers from the inherent setback, that it assumes all systems
to be fully installed and operational. It relies on the effectiveness of the synthetic workloads as

real workloads are non-repeatable and hence not good for effective benchmarking.

Also, he classified the Database Performance Evaluation Techniques for specialized Databases
as Web-Database Systems, which serves the back-ends of Web-Servers, Real-time Database
Systems, Enterprise Data Mining System. These DBs are huge database often called (data
mining systems) that stores historical and redundant data, and Object-Oriented Systems
performance Evaluation. Moreover, they listed different benchmarks that could be used for
evaluating different performance aspects of such systems [32].

3.2 MySQL High Availability Evaluation

A performance comparison between MySQL high availability solutions had been made by Raju
Shrestha [3], where he studied and evaluated master-slave and cluster-based high availability
database solutions, qualitatively as well as quantitatively. He investigated effectiveness of the
two major solutions to high availability database which are: traditional master-slave replication,
and modern cluster-based techniques (Galera cluster). Author used SysBench tool to do the
experiment of executing tests (read-only and read-write quires) over both solutions, where it is
implemented using MariaDB 10.1 with Galera cluster. Results show that traditional master-
slave replication solution performs equal or better in terms of throughput and response time.
This is because of simpler setup and better performance. However, cluster-based solution is
superior when it comes to high availability, data consistency and scalability as it offers
instantaneous failover, no data inconsistency and loss of data. Also, at the same time providing
both read and write scalability. Therefore, despite some performance lag, author summarized
that the Galera cluster is an effective solution for applications and services where data

consistency and high availability is critical.

The ways of fault tolerant of MySQL database have been talked about by Ari J. Flinkman [33],

he looked at ways to build a fault-tolerant MySQL installation in his research, by creating an

24

active/passive setup using either MySQL’s standard replication, shared storage or DRBD, he
also talked about MySQL Cluster and NDB Storage Engine, (where this research focused on
InnoDB storage engine). This can be used to create a setup with multiple active server instances
with redundant, distributed storage for data. He summarized that the shared storage is always
problematic when used with databases which are not designed for it, and the replication with
DRBD might be good low-cost alternative to shared storage but it is limited to Linux. He
considered the MySQL cluster is definitely the best bet in such quest, and it might prove

influential for future designs of HADBMS:s if it lives to deliver all the promises made.

Bart Oles [5] looked at the two main high availability solutions for MySQL and MariaDB, and
how they can each be affected by latency issues. He clarified the effects of master/slave
replication for MySQL high availability and multi-master replication. While the term latency
refers to several kinds of delays incurred in the processing of data, but he talked about it as a
definition of how long it takes for a piece of information to move from stage to another. Where
master slave replication for MySQL comes with multiple configuration options to optimize
replication process. He talked about essential replication related parameters, which are: parallel
apply, logical clock algorithm, compression, selective master-slave replication and replication
mode. Moreover, author discussed the multi master replication (MariaDB) and the points that
cause common latency issues. These points are the slowest node in the cluster, horizontal
scaling, write operations, geolocated clusters, high ping and transaction size. Where some of
them are considered of the experiment for this research, for tuning the database to give better

performance.

In [4] (Adfinis SyGroup website) a comparison for MySQL/MariaDB high availability is carried
out between Galera cluster vs. DRBD replication. Where they compared two different high
availability solutions for MySQL databases, one is a block-device based replication solution and
the other extends MariaDB internals to provide synchronous replication. This comparison

focused on some points such as network traffic, commit latency and replication.

DRBD supports synchronize and asynchronies modes. However, the galera cluster can only be
used synchronously. Moreover, load balancing in DRBD is typically used in an Active/Passive
setup, in contrast, Galera cluster is a pure Multi-Master solution. Authors also explained about
the failover. In DRBD environment, if the active node goes down, the Cluster stack (typically

25

Pacemaker with Heartbeat or Corosync) has to detect the problem and switch the services over
to another node. While in Galera Cluster, when a single node goes down, the remaining nodes
in the cluster continue working without interruption and the client currently connected to the

failing node would retry the connection via a load balancer without notice any interruption [4].

Pukdesree et al. [34] had published their research with name of “Performance Evaluation of
Distributed Database on PC Cluster Computers”, which aims to evaluate the distributed database
approach, that can improve the performance of database system. They used an open source
DBMSs and evaluated the distributed database system using SysBench benchmark tool. Where
the test was executed using two types of operations, which are read/write and read only scripts.
It was in term of the number of processed requests in specific time period. Authors configured
the cluster using MySQL Cluster 7.0. On the other hand, some researches articles claimed that
the version of MySQL Cluster 7.0 has greatly higher performance than previous versions, while
they used Red Hat Enterprise Linux 5 operation system. Moreover, the test was over different
number of storage nodes to check the performance when it increased i.e., its scalability. They
summarized that the number of succeeded transactions per second (throughput) improved
significantly, when number of data storage increased, which depends on the results they got.
However, their evaluation was limited by the maximum number of data storage nodes to eight

data storage machines.

3.3 Standalone Database Comparison

Other researches introduce different type of database management systems and compare the
database performance between them as standalone database. Where Shivani [35] evaluated the
performance of different NoSQL databases, where NoSQL refers to non-relational database
management systems. These NoSQL databases are (MongoDB, Couchbase, Cassandra, HBase)
under various parameters like creation, insertion, update, and throughput. YCSB benchmark
(Yahoo Cloud Serving Benchmark) has been used to drive performance tests, which provides
data generator and a set of workloads that are defined as a set of CRUD operations. Also, the

article analyzed the result of running the CRUD operation over each database instance and

26

compared the time needed for insertion, update, creation operations and the throughput for each
one. It concluded that MongoDB performs better than Cassandra for insert operations for
various sizes of data sets, and Couchbase and MongoDB perform better than Cassandra regard
the throughput [35].

Some researches tried to compare between relational and non-relational database system to
prove which outperform other as Lokesh Kumar [36], who attempts to use NoSQL database to
replace the relational database, where he focused on one of NoSQL database (MongoDB) and
made a comparative study with MySQL. Also, a method is suggested to integrate with different
two technologies of these two types of databases by adding a middleware (Metadata) between
application layer and database layer. Where the comparison was based on terms/concepts and
behalf the quires and based on Query Execution speed/performance (for basic and complex
queries) between mongo database and MySQL. Consequently, the result showed that MongoDB
spends less time than MySQL, and it concluded that NoSQL(MongoDB) is better to be used
instead of MySQL because of two factors which are, ease of use and timing performance [36].

Response time, throughput, latency, creation/Insertion time and delay are the most used
metrics in previous work for researches related to database performance evaluation. It should
be noted that most of these researches do comparison between two or more DBMS (relational

or non-relational database) for standalone database.

27

Chapter 4

Research Approach and Methodology

This chapter describes the experiment design used in this research to achieve the goal of
performance evaluation, and the comparison between the two high availability solutions for
MySQL. It describes the methodology and stages that are followed to answer the question of

this research, and how the experiments are implemented.

4.1 Methodology

Recall that the aim of this research is to evaluate the database performance of two high
availability solutions of MySQL and to make a quantitative comparison between them. The
experiment design is determined after studying the factors that could affects the performance
for each cluster, which aims to compare the best case for InnoDB cluster and DRBD in two
different replication modes. The experiments are carried out to choose the best configuration,
that gives best performance of InnoDB cluster and the best one for DRBD. Then to compare

between these best cases as clarified in the experimental design section.

The comparisons occurred between best cases to give more accurate results where changes of
some variables value can affect the performance, it could make it better or worse. Therefore, in
this research we try to change all the variables that could affects database performance to
recommended values. The purpose of these trials is to achieve fairness in performance
comparisons between the best case of each solution.

28

After studying and determining the experiment design for this research, we followed the

following steps:

e Preparing the servers needed for implementing the experiments, taking into consideration
the experiment design, where InnoDB cluster needs at least three servers to be configured
and DRBD needs two servers. These servers have the same specifications (Unix servers) for
both clusters.

e Prepare SysBench tool, which is the benchmarking tool that used in this research to evaluate
the performance of MySQL database. It automatically generates the data into database and
allow the use of transactional queries for testing. It is installed on a server on the same virtual
machine of the database servers used for high availably. This is to mitigate the network
latency, that could occur between the SysBench (which is considered as the client) and the
database server.

¢ Installation and configuration of first cluster InnoDB cluster, where it is installed on three
Unix servers as database servers, and one server for MySQL router which is installed on
separate one on the same VM. Where it is configured on bases of what is recommended to
have the best performance from MySQL [37].

e MySQL database is tuned also to have better performance by modifying the database
configuration file.

e SysBench tool is used to test the database performance for two types of tests (write only and
read only test). The experiment is repeated 30 times (replicas) for each case. Which is the
reasonable number of replicas by which we obtained means of results with relatively low
variance.

e Throughput and total time are saved in excel files from SysBench results for each run and
the average of the 30 times is calculated for each case, where the experiment is repeated for
two consistency levels of InnoDB cluster.

e The results are analysed and best case for InnoDB cluster is determined, for two of
consistency levels.

¢ Installation of DRBD cluster (second cluster) on two Unix servers, where one node is active
and the other is passive. It is also configured with settings recommended by LINBIT to have

best configuration for performance and throughput [24].

29

e Same database settings are added into MySQL configuration file in both clusters.

e The same generated database is taken from first cluster as backup and restored to the DRBD
cluster to have the same data on both clusters. SysBench tool is utilized by applying the
same way and the same commands that are used for InnoDB cluster for read and write tests.

o Experiment is repeated 30 times too,for each of two replication modes of DRBD cluster,
and the average of the result is taken for each case.

e Results are analysed for DRBD, and the best case is determined for two of replication modes.

e The best cases of the two replication modes of InnoDB cluster and DRBD are compared,

and results are analysed.

4.2 Experiment Design

The experiment design laying out a detailed experimental plan for doing this quantitative
experiment. It aims to describe and explain the variation of information under conditions that
are hypothesized to reflect the variation. Next section shows the details of the plan for this

research.

Service and Topology: This experiment aims to evaluate the performance of MySQL database
service with high availability (HA), where high availability aims to keep the database up for
longer time and do automatic failover. InnoDB cluster (MySQL Group Replication) and DRBD
(Replicated Disk Architecture) are the high availability solutions that are chosen to be evaluated.
This evaluation achieved by analysing the results of experiments and comparison between them.
Where the used topology is Single-Primary Mode for each cluster, recall this topology was

discussed in chapter 2.

Replication Mode: The replication mode used in this experiment for DRBD cluster is protocol
A (asynchronous replication) and protocol C (synchronous replication). In contrast the used
consistency levels for InnoDB cluster are the eventual level (the default) and before_and_after
level, which represent simplest and most complex level, respectively, in InnoDB. These

configurations are discussed in section 2.3.3.

30

Dependent Variables: Represent the output or outcome of the experiment, which are the
metrics used to evaluate the performance of MySQL database of the two clusters. They are
throughput (number of transactions per second) and response time (the total time needed for

the CRUD transactions to be completed).

Independent Variables: The independent variables are controlled inputs. It should be noted
that the variation in the value of the dependent variable (i.e., output) is due to the different
inputs. In this experiment, independent variables refer to the factors that could be manipulated
to take the best performance for each MySQL cluster. Where there are multiple factors that
affect the performance for each cluster including network latency, hardware specifications, and
the configurations of each cluster itself. For this experiment, the goal is to compare between
two MySQL clusters. Thus, the used hardware specifications and network bandwidth between
servers are identical. Where they are installed on same virtual machine to mitigate the network
latency. The variables that could be changed for each cluster configuration is taken into
consideration separately to have the best performance for each one. Then do comparison
between the best cases for each cluster. Some variables value depends on the hardware
specifications other variables don’t have optimal values. Therefore, multiple input values are
tried for each cluster and the Dbest one is taken. For InnoDB cluster a variable
group_replication_poll_spin_loops value is tried with different three values through the
configuration (see section 2.2.2). Also, for DRBD the value of variable is called 1/0 unplug

watermark is also tried with three different values in the DRBD configuration file.

4.2.1. Data and Workload Characterization:

The data used is auto generated from workload testing tool (SysBench), that auto generates the
data into database based on the command line option you specified. In this experiment the

following command is used to generate the data, using ‘prepare’ command.

SysBench --MySQL-host=database-IP --MySQL-port=port# --db-driver=MySQL --MySQL-
user=db_user --MySQL-password=*** --MySQL-db=test cluster --tables=5 --table_size=2000000 --

percentile=99 --rand-type=uniform test_scripts.lua prepare

31

https://en.wiktionary.org/wiki/Special:Search/output

Where the “MySQL-db” is the created database into which the generated data to be saved,
“tables” determine the number of tables for the specified database, “table_size” specifies the

number of rows for each table, “rand-type” is the random numbers distribution.

In this experiment rand-type specified with uniform value which will equally stress the dataset
and will have more chances to read/write all over the place, and the percentile option allows to
specify a percentile rank of query execution times to count which is specified to be 99 % . Note
that, the data generated contains (integer and character) data types and with specific template
(groups) generated from SysBench as shown in Appendix B. Furthermore, the size of the
generated database is around 2 Gigabyte as a result of five tables and 2000000 rows for each
table.

Workload: SysBench provides OLTP workloads to be executed, where the read only and write
only workloads are executed on the two clusters. Hence, read-only script consists of different

types of select queries and write-only script has a mix of delete, insert and update quires.

SysBench works with three commands (prepare, run and cleanup), with multiple options. The

following are the steps that followed in this experiment with SysBench:

e Preparing the database by generating the data using prepare command
(SysBench), which generate the data and has option to determine the number of
tables and rows for each table.

o After the data is prepared (loaded), write and read workloads are executed using
run command in SysBench, which executes transactional queries on the database

node as shown in the following command used for testing (read_only.lua script):

SysBench --MySQL-host=DB-server-IP --MySQL-port=port# --db-driver=MySQL --
MySQL-user=db_user --MySQL-password=*** --MySQL-db=test_cluster --
table_size=2000000 --tables=5 --percentile=99 --rand-type=uniform --events=1000 -

-threads=1 /usr/share/SysBench/oltp_read_only.lua run

Where “threads” option in the command determines the number of concurrent

users in the experiment, and it is tried with these (1, 4, 8, 16 and 32) concurrent

32

users, “events” option determines the maximum number of transactions to be
executed through time period (default is used 10 seconds), and the database
server IP is the router IP in InnoDB cluster and the virtual IP (VIP) in DRBD
system.

e Each test is repeated 30 times (using for loop) for each thread number (number
of concurrent users) to have more accurate results and saved in excel sheets, then
the average of results is calculated, where the concurrent users are changed to

check how the cluster performs with increasing number of concurrent users.

4.3 Experiment Environment

This section discusses the hardware and software platforms used and how they are used in this

experiment.

4.3.1. Physical Platforms:
The specification of the VM (VMware virtual machine) used in this experiment for both clusters
InnoDB and DRBD are the same for each server:

CPU: 2 processor cores, 2593.906 MHz, Intel.

Memory: 8 Gigabyte (GB).

Hard disk: 50 Gigabyte.

Network Speed: 10000 Mbps

Attached Disk: 20 Gigabyte, it is attached just for DRBD cluster for two nodes as it is replicated

hard disk architecture.

33

InnoDB cluster: Installed on three VMs used for database servers and one server (VM) for
MySQL router. The client/ application will connect to the router IP and it will route the received
requests to the read or read/write node of the cluster based on the used TCP port number. The

topology used is single primary topology, Figure 4.1 illustrates this architecture.

Application

/

6446 (RW) 6447 (RO)

Router

MySQL (R/W)

= >

MysQL (R/O) MySQL (R/O)

~ - ~ 4

Figure 4.1:InnoDB cluster architecture of single primary topology [38]

DRBD: Installed on two servers (VMs) with identical hardware specifications and with single
primary topology. The disk device is attached to the two nodes with 20 GB, as illustrated in
Figure 4.2.

Primary Secondary
(System Data) (System Data]
(Data filesystem)
(DHBDTDevice —H— Mse;:gr:k —a(DRBD Device)
[Disk [?ewce] (Disk Iievice]

Figure 4.2:DRBD architecture of single primary topology [39]

34

4.3.2. Software Platforms:

The operating system used in this experiment is Linux on all servers. The DRBD doesn’t
configured on other OS and no firewall enabled on any server, where the OS specification for

all servers as following:
Operating System: CentOS Linux 7
Kernel: Linux 3.10.0-957.21.2.el7.x86_64

InnoDB Cluster: Three types of software are needed to be installed for this cluster. Thus, the
InnoDB cluster could be configured as MySQL database server, MySQL shell and MySQL
router and all are of the same version:

MySQL Server, MySQL shell and MySQL Router version is 8.0.18.

DRBD Cluster: More than one software needed to be configured for DRBD cluster with
MySQL service and doing automatic failover. Following is the version for each software:
DRBD version: 8.4.11-1

MySQL version: 8.0.18

Pacemaker version: 1.1.20-5

Corosync version: 2.4.3-6

SysBench: Installed on separate server but on same VMware with same specification, that is to
mitigate the network latency issue between SysBench (which acts as client) and the database

server, where the used SysBench version is 1.0.18-1.

4.3.3. Experiment Settings:
This section discusses the settings used for each cluster, how it is implemented, and the used

commands.

e InnoDB Cluster:

MySQL server and MySQL shell software are installed on three nodes (VMs), which are the
database servers, and MySQL router installed on different node. To achieve good performance,

35

the following two variables are changed in MySQL configuration file (my.cnf), as
recommended from MySQL. The most commonly followed practice is to set this value
InnoDB_buffer_pool_size at 70% — 80% of the system RAM and the InnoDB transaction logs
should be approximately 50-100% of the size of the InnoDB buffer pool.

InnoDB_buffer_pool_size = 6G
InnoDB _log_file_size = 3G

After installing MySQL server on three nodes, MySQL shell is installed and used to configure
the cluster. The next command is executed on three nodes using MySQL shell to prepare the

configuration:

dba.configureLocallnstance(‘user@server-name1:3306");

After preparing the three nodes, where each node has different ID in my.cnf file, the cluster is
initialized on one node and the rest of nodes are added by executing following commands using
MySQL shell:

var cluster = dba.createCluster('cluster-name’);
cluster.addInstance(‘user@server-name2:3306');

cluster.addInstance(‘user@server-name3:3306');

Also, the command used to check the status of cluster:

cluster.status()

After ensuring that the status of cluster is successfully configured, MySQL router installed on
different server, and configured to start managing it, where the read/write node (primary node)

is the DB server that is used in next command for this configuration.

MySQLrouter --bootstrap user:password@server-name:3306 --user=MySQLrouter --force

The result of this command is that, router will start routes the transactional requests into the
cluster on two TCP ports, one for the read only node which is 6447, and the other for read/write
node which is 6446.

36

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html

To take the best performance case of MySQL cluster that could be have in this experiment, this
variable group_replication_poll_spin_loops, which is discussed in chapter 2, is changed with
three different values and the best case is taken in the comparison. These values are 0, 1000 and
1500 that are tested using SQL language. For each value, the experiment is repeated 30 times
(i.e., 30 replicas/trials) and the average is taken. Since smaller number of used replicas generates
high variance between the result values. But with 30 replicas the results are closer based on the
calculated standard deviation and the coefficient of variation as shown in Appendix A. Also,
the results fall in the calculated confidence interval.

Regard changing the consistency level of InnoDB cluster, the following are utilized:

set global group_replication_consistency="before_and_after’;

set global group replication consistency='eventual’;

After the settings of InnoDB cluster and MySQL router are configured successfully, the
SysBench tool is used to generate the database using prepare command, and the generated
database size is around 2 Gigabytes. Then the quires (write and read quires) are executed over

the cluster, and the results are saved to excel sheets.

e DRBD (Distributed Replicated Block Device):

DRBD software is installed on the two nodes, and a file is created for the DRBD configuration
under this path /etc/drbd.d/ for both nodes, where the attached disk on both nodes are prepared
to be used for DRBD configuration.

The configuration file for DRBD is changed with the recommended settings, where this variable
(unplug-watermark) has no recommended value as discussed in chapter 2. Therefore, it is
experimented with three values, which are 16, 32 and 64 to find out the best performance case.
Other variables are assigned values as recommended to have best performance and throughput
[27]. The following are the assigned values:

max-buffers 8000;

max-epoch-size 8000;

37

sndbuf-size 0;

no-disk-barrier;
no-disk-flushes;
al-extents 3389;

The utilized command to initialize DRBD and to create the metadata for the DRBD resource

on both nodes is:

drbdadm create-md resource_name

DRBD replication after that should synced successfully, where the drbdadm status command
used to ensure that DRBD replication is works correctly and the disks are up to date (consistent)
on both nodes.

Then MySQL database server is installed on both nodes, where the MySQL configuration file
for DRBD has the same settings that is used in InnoDB cluster. Then the attached disk drive is
mounted on the MySQL data directory to replicate the MySQL data directory on both nodes
using this command: mount /dev/drbd0 /data , where /data is the MySQL data directory that is
determined in MySQL configuration file (my.cnf) as datadir=/data/MySQL.

After that Pacemaker and Corosync software are installed on both nodes and configured with
three resources which are file system which is the DRBD disk, virtual IP and MySQL service.
pcs status command provided from Pacemaker/Corosync used to check the status of these three
resources i.e., check the status of the cluster and the active node.

After the configuration works successfully for DRBD cluster, the database is cloned from the
first cluster (InnoDB) and restored into the DRBD primary node to have the same database, then

SysBench tool is used for the test using read and write scripts.

38

Chapter 5

Experiment Results, Discussion and Analysis

This chapter presents the results of the experiments in details, discussion and the analysis of
these results. It should be noted that the experiments followed the methodology mentioned in
chapter 4 to achieve the goal of this research. Recall that the goal is to compare the performance
between two clusters. Two high availability solutions are implemented and tested with two
modes and experimented with multiple values for a variable that affects the performance to get
the best one, then the best cases for each high availability solution are compared as clarified in

the following sections.

5.1 InnoDB Cluster

The experiment is executed for two consistency levels. These levels are eventual and
before_and_after i.e., the simplest and most complex consistency levels of InnoDB cluster as
discussed in chapter 2. Three different values for variable group_replication_poll_spin_loops
are experimented. The value of this variable may affect the performance of throughput as
discussed before. Thus, the best performance could be taken for the comparative analysis. Read
and write test repeated 30 times (i.e., number of replicas or trials) for each of these input values
to obtain results with reasonable low variance. It should be noted that the variance of the results
was relatively high when the number of replicas (trials) were less than 30. Where the calculated
coefficient of variation has low values (i.e., result is more precise) when tried with 30 times,
which is calculated based on the standard deviation of the results, as shown in Appendix A.

Also, with 95% confidence, the means of the results are within the 95% confidence interval.

39

The throughput and total time represent the average of the obtained results of all trials for each
case i.e., summation of 30 values divided by 30. Furthermore, each experiment is repeated for
different number of concurrent users (threads) to evaluate the behaviour and performance of the

high availability solutions with increasing number of concurrent users.

5.1.1. Eventual Consistency Level:

The read and write tests are executed over the cluster for this type of consistency level
(eventual), which is the default for InnoDB cluster. The averages are calculated for the 30 times

of experiments to have more accurate results as shown in Appendix A.

Write tests are executed over this level with different values of this variable
group_replication_poll_spin_loops, so we can have the best case. Table 5.1 shows and clarifies
the throughput (transactions per second) of the experiment by changing the number of

concurrent users for write test.

Table 5.1: SysBench results of throughput for write test of eventual InnoDB consistency level

| Number of threads
;ﬁ:ﬂ;il?gplication_poll_spin_loops L . € 48 £2
0 80.94567 218.8977 352.4203 537.8833 817.5393
1000 46.874 123.2027 240.4377 367.0267 790.0937
1500 78.08233 175.0093 283.2623 383.793 873.155

As shown in Figure 5.1, the throughput has higher values (best) when
group_replication_poll_spin_loops variable value equal to 0 in this experiment for write test but

has no significant difference when the concurrent users equal to 32.

In other words, the best case in this experiment environment, is when number of waiting times

equal to zero for the group communication thread to wait for the communication engine mutex.

40

Throughput of Write Test

1000
500
800 /
700
600
500 — 1500
400 1000
300
200
100

Transactions/sec

1 4 8 16 32

Concurrent Users

Figure 5.1:Throughput for write test for eventual InnoDB consistency level

Moreover, read tests are executed over this level with same environment of write tests and with
different values of this variable group_replication_poll_spin_loops to have the best case. Table
5.2 presents the throughput (transactions per second) of the experiment when changing the

number of concurrent users for read test.

Table 5.2: SysBench results of throughput for read test for eventual InnoDB consistency level

[Number of threads
ggﬂs 0:eplication poll spin loops . N & s &
0 72.73133 270.1647 499.506 912.4237 1387.351
1000 74.15733 276.737 531.776 849.8547 1271.261
1500 68.25567 257.227 470.1163 847.091 1290.459

It is noted that results of throughput have no significant difference when changing the value of
this variable group_replication_poll_spin_loops, where results are very close to each other as
shown in Figure 5.2. So, changing this variable has no significant effects to throughput when

read queries are executed.

41

Throughput for read test
1600

1400

1200

1000

800 — 5 ()
600 - y s1000
200 / 51500
200 /

1 4 8 16 32

transaction per seco

number of threads

Figure 5.2: Throughput for read test for InnoDB eventual consistency level

5.1.2. Before_and_After Consistency Level:

This experiment has been done for the second chosen consistency level of InnoDB cluster which
is before_and_after level. Similar to the previous experiments, this experiment was repeated 30
times for read and write tests. As indicated in Table 5.3, the averages of throughput for write
test when the value of this variable group_replication_poll_spin_loops is tested and changed
using three values, and when number of concurrent users are changed to record the behavior of

the performance.

Table 5.3:SysBench result of throughput for write test of before_and_after InnoDB consistency level

| number of threads
g/r%lﬂ;_o:eplication_poll_spin_loops L . E = e
0 45.695 82.78967 91.96033 78.78433 80.06967
1000 60.25433 101.368 109.229 91.65967 85.59733
1500 55.76067 83.677 74.25567 62.4 62.332

42

It is noted that, throughput is increasing till 8 concurrent users (threads), then it has light
decrease (lower values), when concurrent users are getting higher than 8 users. This decrease in
throughput may occur because the waiting time needed for the cluster to commit the transaction
is higher. Since the higher number of concurrent users, the higher the number of transactions.
Consequently, the waiting time for the transaction commitment is longer for this level of
consistency (strict consistency). Since it waits all transactions to be applied i.e., waits the
acknowledgments from all online members [40]. Also, the cause of this decrease can be referred
to large number of threads management overheads. As shown in Figure 5.3, throughput has best

values (higher), when the value of group_replication_poll_spin_loops is equal to 1000.

Throughput for write

120

100

Transactions per second
o
(=]
(=]

1 4 8 16 32
Number of Threads

Figure 5.3:Throughput for write test for InnoDB before_and_after consistency level

For read test, the results are so close to each other, which is the same as what obtained from
eventual level, where changing this variable has no effects on the read test (select queries) on
both consistency levels of InnoDB cluster. As shown in Table 5.4 and Figure 5.4 that illustrate

the results.

Table 5.4: SysBench result of throughput for read test of before_and_after InnoDB consistency level

| number of threads
Value of
Group_replication_poll_spin_loops L & E & &
0 73.21133 270.5327 484.1593 838.714 1314.211
1000 72.238 262.1983 453.389 814.3987 1150.635
1500 72.099 259.4527 485.5373 799.074 1275.382

43

Throughput for read test

1400

[
¥
=]
=]

1000

co
[=]
=]

— ()

@
=]
=]

s1000

£
[=]
=]

51500

transactions per second
L]
[=]
(=]

[=]

1 4 8 16 32

number of threads

Figure 5.4: Throughput of read test for before_and_after InnoDB consistency level

The throughput for both consistency levels of InnoDB cluster has approximately same values
for read test. But for write test the eventual consistency level has higher throughput. As shown
in Figure 5.5, where the read operations don’t change the data of MySQL database, but the
write operations can do insert, update and deletion for data, which commits the transaction.
Since the database should be consistent on all cluster nodes (strict consistent), these
modifications and changes should be replicated on all cluster nodes and make it permanent
before commitment of the request. Thus, the overheads variation in assuring the different
consistency levels of the database makes the throughput different for both consistency levels of

InnoDB cluster for both tests.

Since the before_and_after consistency level do wait for all preceding transactions to be applied
I.e. waits the acknowledgments from all online members (strict consistency), and this wait cause
this low throughput. But the transactions in eventual consistency level do not wait for preceding

transactions to be applied before executing.

44

Throughput for InnoDB

1400
1200 /
1000

400

[+:]
=
o

—InnoDB eventual - read test

InnoDB before_and_after - read test

[=1]
=
o

transaction/sec

InnoDB eventual - write test

InnoDB before_and_after - write test
200

1 4 8 16 32

concurrent users

Figure 5.5 : Throughput of InnoDB cluster for read and write tests for both levels

5.2 DRBD System

The test experiment for this cluster (DRBD) is executed in the same way as in InnoDB cluster.
So, the comparison could be done between them fairly. Where the same commands of SysBench
tool are used for read and write tests and are executed for two types of replication modes i.e.,

protocol A and protocol C, which are (asynchronous and synchronous replication modes).

The value of this variable 1/0 unplug watermark is changed in DRBD configuration file with
three possible values to take the best case for comparison. Where it can affect the performance
of this cluster as discussed. Moreover, read and write tests were repeated 30 times for each of
these values to take more accurate and closed results based on the calculated coefficient of
variation that has low values as shown in Appendix A. The average of throughput and total time
were calculated for performance evaluation. Also, each test is experimented with different
number of concurrent users to check how this high availability solution behaves when

concurrent users are increasing. Following sections illustrate these behaviours.

5.2.1. Protocol A:

This experiment is executed for protocol A mode (Asynchronies replication) of DRBD system

for read and write tests. It is experimented with three different values of this variable (1/0 unplug

45

watermark) that may influence the performance of the cluster. So, the best case can be taken for
the comparison with the other cluster. Table 5.5 shows the throughput (transactions per second)

of the experiment when changing the number of concurrent users for write test.

Table 5.5: SysBench results of throughput for write test of DRBD-Protocol A

| number of threads
Value of 110
unplug 1 4 8 16 32
watermark
16 41967 91.09167 161.1593 286.249 506.5947
32 27.75867 78.58433 138.8707 390.686 683.1583
64 39.77367 105.294 180.4633 237.6617 540.912

The results show no significant difference between the three cases when concurrent users are
low, but when they are increasing, the performance of cluster is better when the value of this

variable (i.e., I/0 unplug watermark) equals to 32, as shown in Figure 5.6.

Throughput for write test

800
700

600

500 /

400 —54
300 / 32
200 16
100 /

1 < 8 16

Transactions,/sec

w
[

Concurrent Users

Figure 5.6:Throughput of write test for DRBD-Protocol A

5.2.2. Protocol C:

This experiment of DRBD system is executed for the second replication mode, which is protocol
C (synchronize replication). The tests are executed in the same way of previous experiments.
Where write tests are executed over this protocol with different values of this variable (1/0

unplug watermark), so we can have the best case. Table 5.6 shows that the throughput

46

(transactions per second) of this experiment when changing the number of that variable and

changing the number of concurrent users for write test.

Table 5.6:SysBench results of throughput for write test of DRBD-Protocol C

| number of threads
wateTark ! L N
16 43.69 129.8963 224.103 365.5103 597.931
32 45.02467 85.70067 174.449 455.317 678.2077
64 30.17567 106.8957 226.333 332576 553.201

The throughput gets higher when value of 1/0 unplug watermark equal to 32 for high number
of concurrent users comparing to others. In contrast there is not big difference between results
when changing this variable value, when concurrent users are low as shown in Figure 5.7, which

is the same result as we obtained in protocol A.

Throughput for Write Test

800
700
600

500

Transactions/sec

400 16
300 —)
200 64
100
—
0
1 4 g 16 32

Concurrent Users

Figure 5.7:Throughput for write test for DRBD-Protocol C

When the read tests are executed over the DRBD cluster for both protocols, the results have no

significant difference when the value of 1/0 unplug watermark changes too.

Where read tests are executed over both protocols with different values of this variable (1/0
unplug watermark). As indicated in Table 5.7 that clarifies the throughput (transactions per
second) for protocol C when changing the value of this variable and changing the number of

concurrent users for read tests.

a7

Table 5.7: SysBench results of throughput for read test of DRBD-Protocol C

‘ number of threads
1/0 unplug watermark 1 4 8 16 32
16 142.1603 489.4743 803.2713 1152.219 1243.397
32 144301 491.8507 811.3977 1178.851 1197.87
64 145.271 510.7057 793.5857 1149.818 1255.616

As depicted in Figure 5.8, throughput for read test almost have similar results for all three cases,
which indicates that this variable has no effects on performance when the transactions read the

data from database.

Throughput for read test

1400

1200 =
1000
o
&
2
g 800
= — 1
mw
g 600 32
=
E
400 64
200
0
1 a 8 16 32

Concurrent Users

Figure 5.8 :Throughput of read test for DRBD-Protocol C

Changing the replication mode doesn’t have effects on the throughput for DRBD system, where
the choice of replication protocol influences two factors of deployment: protection and latency.
Throughput, by contrast, is highly independent of the selected replication protocol [24], as
shown in Figure 5.9 in this research for write and read tests. Which illustrates the best cases of
the two replication protocols for read and write tests that has approximately nearly/closed values
for DRBD cluster.

48

1400

1200

1000

[+:]
(=]
o

[=1]
(=]
o

transactions fsec

400

200

Figure 5.9 : SysBench result of throughput for best cases of write/read tests of two modes of DRBD cluster

Throughput of DRBD system

a

4 8

16

number of concurrent users

5.3 Comparison Between Two Clusters

The best case that shows best performance for the two clusters is taken for write and read tests
for each replication mode. Then these results are compared based on their throughputs and the
total time taken for write and read operations i.e. the duration from start to finish, which is

clarified in following sections.

5.3.1. Throughput:

InnoDB cluster of eventual consistency level has the best performance for write test with all
used number of concurrent users comparing to all cluster’s cases used in this research as
indicated in Table 5.8. This table shows throughput i.e. transactions per second, for write test

of the used clusters with all four cases (InnoDB eventual , InnoDB before_and_after, DRBD

32

e DRBD protocol A - read test

DRBD protocol C-read test

DRED protocol A - write test

DRED protocol C - write test

Protocol A, DRBD Protocol C) with different number of concurrent users.

Table 5.8: SysBench results of throughput for write test for all clusters with all types

number of threads

Cluster Type

DRBD protocol A
DRBD protocol C

InnoDB eventual

InnoDB
before_and_after

1

27.75867
45.02467
80.94567

60.25433

4

78.58433
85.70067
218.8977

101.368

8

138.8707
174.449
352.4203

109.229

16

390.686
455.317
537.8833

91.65967

32

683.1583
678.2077
817.5393

72.59733

49

However, the InnoDB of before_and_after consistency level has the worst case comparing to

other cluster’s types which is caused by the strict consistency overheads of this level.

According to DRBD system with MySQL service, the two protocols (Protocol A and Protocol
C) have close throughput results. But both have throughput results less than InnoDB eventual

level as illustrates in Figure 5.10 .

Throughput for write test

= DRED protocold
DRED protocolC
INNODE eventual

Transactions per second

300 INNODB before_and_after

4 8 16 32

Concurrent Users

Figure 5.10 : Throughput of write test for two clusters with all modes

In contrast the DRBD system of both protocols performs better (i.e., has better throughput) for
read test when number of concurrent users is low comparing to others as indicated in Table 5.9.
This table shows the obtained throughput i.e. transactions per second, for read test for used

clusters with all four cases with different number of concurrent users.

Table 5.9: SysBench results of throughput for read test for all clusters with all types

| Number of Threads
Cluster Type 1 4 8 16 32 64
DRBD protocol A 138.728 446.506 812.6197 1138.211 1181.895 1200.025
DRBD protocol C 144301 491.8507 811.3977 1178.851 1197.87 1188.484
InnoDB eventual 7415733 276.737 531.776 847.091 1290.459 1503.022
InnoDB 73.21133 270.5327 484.1593 838.714 1314.211 1434.031
before_and_after

50

But when the number of concurrent users start increasing, throughput for InnoDB cluster with
both levels (eventual and before_and_after) is getting higher than DRBD for read test, and
DRBD of both protocols (Protocol A and Protocol C) become stable as shown in Figure 5.11.
This is because InnoDB cluster has two nodes for read queries, and the received requests will
be routed to both nodes. Consequently, this will balance the loads on two servers, which makes
the throughput for InnoDB cluster better than DRBD cluster in this case.

Throughput for read test
1600

1400

1200 e—

o0 /_'
m——— DRED protocola

800

per second

DREBD protocolC

600 INNODB eventua

transactions

INNODB before_and_after
400

200

4 8 16 32 64

Concurrent Users

Figure 5.11:Throughput of read test for two clusters with all modes

5.3.2. Total Time:

Total time represents the response time i.e. the time needed for the CRUD transactions to be
completed. Table 5.10 presents the total time for write test of the used clusters with all four
cases (InnoDB eventual, InnoDB before_and_after, DRBD Protocol A, DRBD Protocol C) with
different number of concurrent users. The InnoDB cluster of eventual consistency level
outperforms the others regarding the performance for write test, where the total time needed for
its requests is the least. Note that the lowest the total time needed the better the performance.

As aresult, clients will be more satisfied when their request takes less time to be completed.

51

Table 5.10: SysBench results of total time for write test for all clusters with all types

Number of Threads

before_and_after

Cluster Type 1 4 8 16 32
DRBD protocol A 10.03234 9919637 7.382933 2.971787 1.676903
DRBD protocol C 10.03842 9.260047 6.165483 2.496223 1.663133
InnoDB eventual 9.951803 4.88357 3.121573 2.239877 1.236633
g 10.02834 9.354733 8.66595 9.71932 10.47004

By contrast, as shown in Figure 5.12 the InnoDB of before_and_after consistency level shows

the worst case amongst the other configurations, where requests need more time to be

completed. Also, the time is getting higher when number of concurrent users are increasing.

Moreover, the two protocols of DRBD system has approximately same values of total time and

both perform better than InnoDB before_and_after consistency level.

12

Total Time for write test

10 ‘——\

Total time in seconds

== DREBD protocol A
DRBD protocol C
Innodb eventual

Innodb before_and_after

Concurrent Users

Figure 5.12: Total time for write test for two cluster with all modes

Table 5.11 presents the obtained total time for read test of the used clusters with all four cases
(InnoDB eventual, InnoDB before_and_after, DRBD Protocol A, DRBD Protocol C) with

different number of concurrent users.

52

Table 5.11::SysBench results of total time for read test for all clusters with all types

| Number of Threads

Cluster Type 1 4 8 16 32 64
DRBD protocol A 7.22165 2.246007 1.232273 0.883133 0.845817 0.832103
DRBD protocol C 6.934123 2.033067 1.23244 0.847787 0.833847 0.840883
InnoDB eventual 10.01867 3.705107 2.002983 1.093983 0.71941 0.667993
InnoDB before_and_after 10.00832 3.69567 2.06427 1.19112 0.762643 0.728457

Both protocols of DRBD system are better (i.e., need less time) than InnoDB both levels
when concurrent users are low. But when number of concurrent users are increasing the total
time is getting closer to each other for all cases and the time is getting lower as shown in
Figure 5.13.

Total Time for read test

12

10

== DRBD protocol A
DRBD protocol C

Innodb eventual

total time in seconds

Innodb before_and_after

Concurrent Users

Figure 5.13 : Total time for two clusters for read test of all types

5.3.3. Cost:

Both clusters need different number of servers to be configured, where InnoDB cluster needs at
least three servers to be configured, but DRBD needs at least two servers to be configured. It
should be noted that both of clusters are scalable i.e. can accept more servers to be added to the
cluster if needed which raises the cost. This variation of requirements can affect the decision

makers of companies and organizations. So, when they decide to choose one of both those

53

clusters, they will consider the overheads of the configuration in addition to the performance of
the selected MySQL database solution.

5.4 Limitations

We have faced some difficulties in finding either real recorded historical data from real-life
systems data or previous researches about performance evaluation of InnoDB cluster and DRBD
performance with MySQL service. Up to our knowledge, there is neither recoded historical data
for real-life system that uses InnoDB cluster or DRBD solutions nor previous research that
evaluates MySQL performance of these solutions. Most of previous work focused on evaluating
MySQL performance for standalone servers not as cluster. Consequently, the choice of the
validation approaches and methods of the obtained results are affected and limited to statistical

approach to validate the output data and subjective approach for the models [42].

Moreover, the results are limited for the used server’s hardware specification, and for the
characteristics used in the experiments like the data size and type, where may these
characteristics affect the result of performance evaluation. Noting that all the used servers were

on same VMware to mitigate the network latency issue.

5.5 Verification and Validation of the experimental Model

Verification of the Simulation Tool:

Since we have used a high-level simulation programming software/tool (i.e., SysBench tool) for
carrying out the experiments with recommended parameters, we do not need to verify the
correctness of our simulation model. Thus, we concentrate on parameters settings. Therefore,
we do not need to verify the correctness of the utilize too [41]. Also, validation of the input data
distribution, the dataset, and the transaction for the model were generated by the utilized
software, which is designed for such experiments. Moreover, the number of replicas (i.e., the
experiments and trials) should be sufficient in order to achieve a reasonable low variance in the

means of the results. Therefore, the outputs were tested by incrementing the number of the trials

54

until the variances of the results were relatively small (see Appendix A), which is achieved by

replicating the experiments 30 times.
Validation of the Output Data:

Regarding the validity of the output data (results) and the sufficiency of replication trials (i.e.,
30 replicas) are tested with 95% confidence (see Appendix A). The results in tables of Appendix
A show the means, standard deviations, coefficient of Variance C.0.V and confidence intervals
CI for the obtained results. It is clear that the C.O.V is relatively low, and all of the means are
within their confidence intervals. These statistical measures indicate that the number of
replications (i.e., 30 times of trials) is sufficient and the results (i.e., the means) are valid [42].

For more details on the utilized statistical measures see Appendix A.

Recall that absence of recorded data from a real-life system or results from related researches,
limits the choices of the validation methods. Consequently, it is hard to accomplish statistical
approach for validation of the results based on a comparison with existing data, since it will be
time consuming and the time for this research is limited for recording new data. Therefore, in
addition to the validity testing of the output results using statistical approach, we used subjective
approach i.e., subject-matter experts (SMEs) opinions validation approach and sensitivity
analysis for the validity of the output data using comparison-based approach [42]. Furthermore,
in the sensitivity analysis we changed the affecting factors in the simulation and tested the
resulting performance (i.e., throughput and response time). Thus, from the statistical measures

and according to the SMEs the results are valid and can be accredited [42].

55

5.6 Summary of the results

The results are summarized and concluded as in Table 5.12, which will be helpful for decision
makers to choose between these two solutions in terms of performance. Where the table shows
the best cases obtained from the results. The outcome is concluded as following:

Table 5.12: Summary of the results as the best high availability solution in terms of performance (low <25, high
>25)

Concurrency Transactions type
Write Read
Low InnoDB cluster DRBD
High InnoDB cluster InnoDB cluster

Where concurrency means the number of concurrent users that need to connect to MySQL
database simultaneously. It should be noted that, the low value indicates that the number of
users is from 1 to 25 user in these experiments. However, the high value represents a number
more than 25 concurrent users. Also, transaction type refers to the type of query that the end
user needs to use, where it can be read or write queries. Since some business needs to read from
database more than to write, and others need the vice versa i.e., need to modify and save the

data more than retrieving it.

Also, Table 5.12 shows that the InnoDB cluster with eventual consistency level with write
queries performs better than before_and_after. But read queries column refers to both InnoDB
consistency levels. However, DRBD system has no difference between its synchronization

types, both have approximately the same values for read and write tests.

56

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The goal of this research is to compare the database performance of two high availability
MySQL solutions. In this work the two MySQL high availability solutions are compared and
evaluated the performance of database, and how the end user will be satisfied when using
MySQL clusters in terms of throughput and response time. There are many high availability
solutions for MySQL. Two of them are chosen in this research, which are InnoDB cluster and
DRBD. Where they are configured based on what is recommended with best practice to have
best performance. They are tested for two of replication modes using benchmark tool
(SysBench). Thereafter, the results are analyzed and compared, so the decision maker who is
concerns of having a high available database can choose the cluster that is suites his resources
and needs.

The results show that for write test, InnoDB eventual consistency level outperforms the
performance of DRBD. However, InnoDB before_and_after consistency level shows worst
performance compared to other cases. Moreover, DRBD both modes have approximately same

throughput values, and its performance getting better when concurrent users increasing.

For read test, when the concurrent users are low, DRBD shows better performance than InnoDB
in term of throughput and total time. But when number of concurrent users starts increasing,

throughput becomes stable in DRBD and InnoDB cluster outperforms it. This is because it has

57

two nodes for read queries. For read test both replication modes of InnoDB cluster have
approximately same throughput, and DRBD both modes also have nearly same throughput.

Choosing a suitable high availability between these two solutions depends on different factors
i.e., resources and business size. The resources that could be available, where InnoDB needs at
least three servers to be configured, but DRBD can be configured by two servers. Moreover, the
size of business that is related to the database, which may limit the number of concurrent users
i.e. the load. Recall that the performance of database has been affected when number of
concurrent users is increased. Where DRBD has just one active node and the another is passive.

While, InnoDB has three active nodes, two for read only queries and one for read/write queries.

Recall that the absence of either recoded historical data of real-life systems that use InnoDB and
DRBD solutions or previous research that evaluate such systems, validation of the obtained
results is limited in selecting the validation approach. Therefore, we use subject-matter experts
(SMEs) approach.

6.2 Future work

This work can be considered as first step towards the study of performance for possible MySQL
high availability database solutions. Future work could be to extend this with an extensive study
of other MySQL high availability solutions, evaluate the database performance for it with multi

primary topology with more testing and failover scenarios.

58

References

[1] Bell C, Kindabl M and Thalmann L, MySQL High Availability: Tools for Building
Robust Data Centers, 1st ed. Sebastopol, CA : O'Reilly, 2010, pp. 598. Accessed on: Jun
19,2020. [online]. Available:
http://docs.linuxtone.org/ebooks/MySQL/MySQL_High_Availability_Tools_for_Buildin
g_Robust_Data.pdf

[2] Ksigzek K, "Designing HA for MySQL", Jul 29, 2015. [slides]. Available:
https://www.slideshare.net/Severalnines/dba-series-ha, Accessed on: Jun 19,2020.

[3] Shrestha R, "High Availability and Performance of Database in the Cloud - Traditional
Master-slave Replication versus Modern Cluster-based Solutions,” 7th International
Conference on Cloud Computing and Services Science,Porto,Portugal,2017,pp 413-420.

[4] MySQL/MariaDB HA: Galera Cluster vs. DRBD replication, Adfinis, Aug 20, 2016.

Accessed on: Jun 19, 2020. [online]. Available: https://adfinis.com/en/blog/mysql-
mariadb-ha-galera-cluster-vs-drbd-replication

[5] Oles B, Understanding the Effects of High Latency in High Availability MySQL and
MariaDB Solutions. severalnines, Mar 26, 2019. Accessed on: Jun 19, 2020. [online].
Available: https://severalnines.com/database-blog/understanding-effects-high-latency-
high-availability-mysql-and-mariadb-solutions

[6] Schwartz B, Zaitsev P, Tkachenko V, Zawodny J, Lentz A and Balling D, High
performance MySQL.: optimization, backups, and replication, and more, 2nd ed.
Sebastopol, CA : O'Reilly, 2008, pp. 684. Accessed on: Jun 19,2020.[online]. Available:
https://www.it.iith.ac.in/frg/wiki/images/b/b0/OReilly.High.Performance.MySQL.Optimi
zation.Backups.Replication.And.More.2nd.Edition.Jun.2008.1ISBN.0596101716.pdf

[7] Group Replication, MySQL, Jun 12, 2020. Accessed on: Jun 19, 2020. [online].
Available: https://docs.oracle.com/cd/E17952_01/mysql-5.7-en/group-replication-
summary.html

[8] Araljo, M. G. D, "Database replication in large scale systems,” M.S. thesis, college of
Eng., do Minho Unv., Jun.2011. Accessed on: Jun. 19,2020. [Online]. Available:
https://repositorium.sdum.uminho.pt/bitstream/1822/28946/1/eeum_di_dissertacao_pg133
67.pdf

[9] Replication Formats ,MySQL, Jun. 18,2020. Accessed on: Jun. 19,2020.

[Online].Available:https://dev.mysqgl.com/doc/refman/8.0/en/replication-formats.htmi

59

[10] Vanoverbeke D, Different Types of MySQL Replication Solutions, PERCONA, Feb.
7,2017. Accessed on: Jun. 19,2020. [Online]. Available:
https://www.percona.com/blog/2017/02/07/overview-of-different-MySQL-replication-
solutions/

[11] Mauchle F, "Database Replication with MySQL and PostgreSQL," college of Softw. and
Syst., Applied Sciences Rapperswil Univ., Switzerland, 2008. Accessed on: Jun. 19,2020.
[Online]. Available:
https://wiki.hsr.ch/Datenbanken/files/Mauchle_Replication_MySQL_Postgres_Paper.pdf

[12] MySQL Cluster Architecture Overview, MySQL, Apr 2004.Accessed on: Jun. 19,2020.
[Online]. Available:
https://confluence.oceanobservatories.org/download/attachments/16418744/MySQL -
cluster-technical-whitepaper.pdf

[13] Semisynchronous Replication, MySQL, Jun. 18,2020. Accessed on: Jun. 19,2020.
[Online]. Available: https://dev.MySQL.com/doc/refman/5.5/en/replication-
semisync.html

[14] Wiesmann M and Schiper A, "Comparison of database replication techniques based on
total order broadcast,” TKDE, vol.17,n0.4,pp.551 - 566,Apr.2005. Accessed on : Jun.
19,2020. [Online].
Available:https://ieeexplore.ieee.org/document/1401893/authors#authors

[15] Malioutina E, "Replication Technology and Failover Solution Development for the
MySQL Open Source Database Management System,” M.S. thesis, college of comput.
Sci.,Stockhom Univ,Sweden,2008. Accessed on: Jun. 19,2020. [Online]. Available :
http://kiosk.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2008/rapporter08/malioutin
a_elena_08081.pdf

[16] Group Replication Background, MySQL, Jun. 19,2020. Accessed on: Jun. 20,2020.
[Online]. Available: https://dev.MySQL.com/doc/refman/8.0/en/group-replication-
background.html

[17] De Prisco, R., Lampson, B., & Lynch, N. Revisiting the Paxos algorithm, In International

Workshop on Distributed Algorithms ,Springer, Berlin, Heidelberg,2005, pp 111-125.

[18] Vnier E,Shah B and Malepati T, Advanced MySQL 8: Discover the full potential of
MySQL and ensure high performance of your database,1st ed. Birmingham, UK: Packt
Publishing, 2019, pp. 286. Accessed on: Jun. 20,2020. [Online]. Available:
https://searchworks.stanford.edu/view/13241768

60

https://www.percona.com/blog/2017/02/07/overview-of-different-MySQL-replication-solutions/
https://www.percona.com/blog/2017/02/07/overview-of-different-MySQL-replication-solutions/

[19] Fine Tuning the Group Communication Thread, MySQL, Jun. 19,2020. Accessed on:
Jun. 20,2020.[Online]. Available: https://dev.mysgl.com/doc/refman/8.0/en/group-
replication-fine-tuning-the-group-communication-thread.htmi

[20] Multi-Primary Mode, MySQL, Jun. 19,2020. Accessed on: Jun. 20,2020. [Online].
Available: https://dev.mysgl.com/doc/refman/8.0/en/group-replication-multi-primary-
mode.html

[21] Introducing InnoDB Cluster, MySQL, Jun. 18,2020. Accessed on: Jun. 19,2020.
[Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/mysgl-innodb-cluster-
introduction.html

[22] MySQL InnoDB Cluster — A complete High Availability solution for MySQL,
dinfratechsource, Nov. 10,2018. Accessed on: Jun. 20,2020. [Online]. Available:
https://dinfratechsource.com/2018/11/10/MySQL-InnoDB-cluster-a-complete-high-
availability-solution-for-MySQL/

[23] Configuring Transaction Consistency Guarantees, MySQL, Jun. 18,2020. Accessed on:
Jun. 19,2020. [Online]. Available: https://dev.mysqgl.com/doc/refman/8.0/en/group-
replication-configuring-consistency-guarantees.htmi

[24] The DRBDY User’s Guide, LINBIT. Accessed on: Jun. 20,2020. [Online]. Available:

https://www.linbit.com/drbd-user-guide/drbd-guide-9_0-en/#about

[25] Jones M, High availability with the Distributed Replicated Block Device, IBM
Developer, Aug. 4,2010. Accessed on: Jun. 19,2020. [Online]. Available:
https://developer.ibm.com/tutorials/I-drbd/

[26] Philipp R and Ellenberg L,"Replicated Storage with Shared Disk Semantics,” In
Proceedings of the 12th International Linux System Technology
Conference.,Germany,2005,pp 111-119.

[27] Optimizing DRBD performance, LINBIT. Accessed on: Jun. 20,2020. [Online].
Available: https://www.linbit.com/drbd-user-guide/drbd-guide-9_0-en/#p-performance

[28] Haas F, "Ahead of the Pack: The Pacemaker High-Availability Stack,” LINUX
JOURNAL, Jun. 18,2012. Accessed on: Jun. 20,2020. [Online]. Available:
https://www.linuxjournal.com/content/ahead-pack-pacemaker-high-availability-
stack#:~:text=And%20t0%20ensure%20maximum%20service,communications%2C%20r
esource%20management%20and%20applications.

[29] Mike Z, MySQL now provides support for DRBD, MySQL High Availability, Sep
29,2012. Accessed on: Jun. 20,2020. [Online]. Available:
https://mysqlhighavailability.com/MySQL-now-provides-support-for-drbd/

[30] Lua.(2019). Accessed on: Jun. 20,2020. [Online]. Available:
https://www.lua.org/start.html

[31] Ksiazek K, How to Benchmark Performance of MySQL & MariaDB Using SysBench,
severalnines, Jun. 12,2018. Accessed on: Jun. 20,2020. [Online]. Available:

61

https://severalnines.com/database-blog/how-benchmark-performance-mysgl-mariadb-
using-sysbench

[32] Paul S, "Database systems performance evaluation techniques,” St. Louis, MI, USA,
2008. Accessed on: Jun. 20,2020. [Online]. Available:
https://www.cs.wustl.edu/~jain/cse567-08/ftp/db.pdf

[33] Flinkman A J, “High-availability mechanisms in MySQL, Helsinki Univ,” 2007.
Accessed on: Jun. 20,2020.[Online]. Available :
https://pdfs.semanticscholar.org/035a/f7a72d61de6021940fc5e971a59cc26826a4.pdf?_ga
=2.47921255.1337970251.1592644642-99908994.1592644642

[34] Pukdesree S, Lacharoj V and Sirisang P, "Performance Evaluation of Distributed
Database on PC Cluster Computers,” WSEAS transactions on computers,vol. 10,no. 1,pp.
21-30, Jan 2011. Accessed on: Jun. 20,2020. [Online]. Available:
https://www.researchgate.net/publication/228749856_Performance_evaluation_of _distrib
uted_database_on_PC_cluster_computers

[35] Shivani, "An Empirical Study on Performance Evaluation of NoSQL Databases,"

International Journal of Electronics Engineering, vol. 10, no. 1, pp. 235-244, Jan. 2018.

[36] Kumar L, Rajawat S and Joshi K, "Comparative analysis of nosql (mongodb) with
MySQL database,”. International Journal of Modern Trends in Engineering and Research,
vol. 2, no. 5, pp. 120-127, May. 7,2015. Accessed on: Jun. 20,2020. [Online]. Available:
https://www.semanticscholar.org/paper/Comparative-analysis-of-NoSQL-(MongoDB)-
with-MySQL-Kumar-Rajawat/b84d9920c7a4fe3ae7f625293166183153044618

[37] Group Replication Performance, MySQL, Jun. 19,2020. Accessed on: Jun. 20,2020.

[Online]. Available:https://dev.mysqgl.com/doc/refman/8.0/en/group-replication-
performance.html

[38] Kojima A, MySQL InnoDB Cluster — A Hands on Tutorial, MySQL Server Blog, Dec.
12,2016. Accessed on: Jun. 20,2020. [Online]. Available:
https://mysqlserverteam.com/MySQL-InnoDB-cluster-a-hands-on-tutorial/

[39] High Availability and Scalability, MySQL, Accessed on: Jun. 20,2020. [Online].
Available: http://www.mysql.ru/docs/mysgl-man-5.0-en/ha-overview.html

[40] Gryp K,Aradjo M, "MySQL InnoDB Cluster-Tutorial", Sep ,2019. [slides]. Available:
https://static.rainfocus.com/oracle/oow19/sess/1552388032514001e AhU/PF/TUT2070%2
0-%20MySQL%20InnoDB%20Cluster%3A%20High-
Availability%20Tutorial_1568750112091001LM5I.pdf

[41]Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds, Verification and

validation of simulation models, Proceedings of the 2011 Winter Simulation Conference,
2011.

[42] Averill M. Law, Simulation Modeling and Analysis, 2nd ed. Tucson, Arizona, USA,
2013, pp. 800.Accessed on: Jul 14,2020. [online]. Available: www.averill-law.com

62

Appendices

Appendix A

This appendix introduces some basic statistical analysis needed for evaluation the validity of the
output results using central tendency measurement. It presents indices of dispersion measures
(i.e., variance, standard deviation, coefficient of variance C.0.V, and confidence interval). Also,
it shows the details of the obtained results of our experiments [42]. It presents the means,
standard deviation, coefficient of variance and the confidence intervals of the means of
throughputs of the experiment cases through Tables A.1- A.8.

Variability can be specified using one of the following indices dispersion measures such as

Range (minimum and maximum of the data set), variance or standard deviation.

Range:
Range can be easily calculated by tracking minimum and maximum values,

Range= maximum — minimum. In many cases it is not useful. Since minimum often can be zero,
and maximum might be far from typical value (outlier). With more samples, max may continue
to rise, and min may continue to decrease — no ‘“stable” point. Range is useful if system

performance is limited.

Variance and Standard Deviation:

If there is a sample of n observations {x1, X2, ..., xn}, the sample variance is calculated as
follows:

n n
2 _ 1 =2 __1
S =—Z(xi—x) ,Where x=—zxi
n. n.
=1 =1

63

Where s?is called sample variance and its square root s is called standard deviation.

Notice that in computing the variance, the sum of squares /-, (x; — x) is divided by (n-1) and
not n, because there are n-1 out of n differences are independent. If there is a (n-1) differences,
the n difference can be calculated, since the sum of all n differences must be zero (Section 12.8
[42]). The number of independent terms is the “degrees of freedom” (df). The main disadvantage
of variance is that it is expressed in square of the units of the observations. Therefore, it is better
to use standard deviation.

Standard deviation:

Standard deviation SD and mean have the same units. Below are two examples with high and
low variabilities:

Example a)
Mean = 2 seconds, SD = 2 seconds; high variability.
Example b)

Mean = 2 seconds, SD = 0.2 seconds; Low variability.

Coefficient of Variation (C.O.V):

C.0.V is another widely used measurement. It represents the ration of standard deviation to the
mean (i.e. C.0.V= SD/mean) . This measurement can be considered as a better measurement

than standard deviation, because it ignores the units of measurement in variability consideration.

Thus, a C.0.V of 5 is large, while a C.0.V. of 0.2 (20%) is small variation (regardless of the
units).

It should be noted that the C.O.V in (Example a) is 1 and in (Example b) is 0.1.

Mean absolute Deviation:

Mean absolute deviation is calculated without multiplication or square root:

64

n

1 _

mean absolute deviation = ;Z |X; — X|
i=1

Confidence Interval (Cl) for the Mean:

Recall that each sample mean is an estimate of the population mean. If we have k samples, we
have k different estimates [42]. The goal is to obtain a single estimate. Actually, it is not possible
to obtain an accurate estimate of the population mean from any finite number of finite sample
size. However, we can obtain probabilistic bounds. Consequently, we can get two bounds, for
example c1 and c2, such that there is a high probability (1-£) or (1-a.), the mean is in the interval

(c1, c2). The confidence interval is calculated as follows:
(mean-z1-a28/sqrt(n), mean+zi-a28/sqrt(n)), Where

(c1,c2) -isthe confidence interval,

1 a - is the significance level (e.g., 0.1, 0.05, 0.01...)
100(1-a) - confidence level (e.g., 90%, 95%, 99%...),

(1-a) - confidence coefficient, and s is the SD of the sample.

VAR, - is the (1-a. / 2)- quantile of the unit normal variate, which can be obtained from the
table! (see Table A2 in [42]), in our case of 95% confidence and degree of freedom df=29, this

value is 2.042. Thus, in our case the confidence interval (c1, c2) is:
(mean-2.042(s/sqrt(n)), mean+2.042(s/sqrt(30))) .

Thus, we can see in the tables below (Table A.1-Table A.8) that the obtained means of all

throughputs fall within their confidence intervals.

65

Table A.1: coefficient of variation for results of InnoDB eventual level throughput of 30 trials of experiments for
write test

| Number of threads

InnoDB Eventual when value of

group_replication_poll_spin_loo 1 4 8 16 32

ps =0

— 17.1189871

Standard Deviation 8 5426450632 9876165 199.2143 305.5664

Mean 80'94756666 218.8976667 3524203 537.8833 817.5393

Coefficient of Variation 0211;‘8738 0247898971 0.280238 0370367 0.373764

Confidence Interval (c1,c2) 7456,87.32 198.66239.1 3156,380.2 463616121 703.619314
2 4 5 5

Table A.2:coefficient of variation for results of InnoDB before_and_after level throughput of 30 trials of
experiments for write test

| Number of threads

InnoDB before_and_after when

e I : 1 4 8 16 32
group_replication_poll_spin_loops

=1000

Standard Deviation 12.26278578 17.35815349 40.21242 26.49273 18.1441
Mean 60.25433333 101.368 109.229 91.65967 72.59733
Coefficient of Variation 0.203517077 0.171238986 0.368148 0.289034 0.249928
Confidence Interval (c1,c2) 55.68,64.82 94.89,107.83 94.23,124.22 81.78,101.53 65.83,79.36

Table A.3: coefficient of variation for results of DRBD Protocol A throughput of 30 trials of experiments for write
test

| Number of threads

e I : s 1 2
Standard Deviation 8.279121 20.09607 29.41284 130.2008 213.8107
Mean 27.75867 78.58433 138.8707 390.686 683.1583
Coefficient of Variation 0.298254 0.255726 0.2118 0.333262 0.312974
Confidence Interval (c1,c2) 24.67,30.84 71.09,86.07 127.9,149.83 342.14,439.22 603.44,762.87

66

Table A. 4: coefficient of variation for results of DRBD Protocol C throughput of 30 trials of experiments for write
test

| Number of threads

DRBD Protocol C when value

of 1/0O unplug watermark 1 4 8 16 32

=32

Standard Deviation 17.9989 44.68397 55.4905 127.2264 232.8679
Mean 45.02467 85.70067 174.449 455,317 678.2077
Coefficient of Variation 0.399756 0.521396 0.31809 0.279424 0.343358
Confidence Interval (c1,c2) 38.31,51.73 69.04,102.35 153.76,195.13 407.88,502.74 591.39,765.02

Table A.5: coefficient of variation for results of InnoDB eventual level throughput of 30 trials of experiments for
read test

| Number of threads

InnoDB Eventual when

T 1 4 8 16 32 64
group_replication_poll_sp

in_loops =0

Standard Deviation 2.18747 6.977974 17.13637 65.42918 63.61652 122.1812
Mean 74.1573 276.737 531.776 847.091 1290.459 1503.022
Coefficient of Variation 0.02949 0.025215 0.032225 0.07724 0.049298 0.08129
Confidence Interval 73.34,74 274.13,27 525.38,53 822.69,87 1266.74,131 1457.47,154
(cl,c2) 97 9.33 8.16 1.48 4.17 8.57

Table A.6: coefficient of variation for results of InnoDB before_and_after level throughput of 30 trials of
experiments for read test

| Number of threads

InnoDB before_and_after
when value of

. . 1 4 8 16 32 64
group_replication_poll_spi
n_loops =1000
Standard Deviation 2.744366 7.598095 16.95814 32.91803 82.40658 261.1866
Mean 73.21133 270.5327 484.1593 838.714 1314.211 1434.031
Coefficient of Variation 0.037486 0.028086 0.035026 0.039248 0.062704 0.182135
Confidence Interval 72.18,74. 267.7,273 477.83,490 826.44,850 1283.48,134 1336.6,153
(cl,c2) 23 .36 48 .98 493 1.4

67

Table A.7: coefficient of variation for results of DRBD Protocol A throughput of 30 trials of experiments for read

test

DRBD Protocol A
when value of 1/0

Number of threads

1 4 8 16 32 64
unplug watermark
=32
Standard Deviation 65164 28.43437 43.43331 93.34602 50.32001 33.64047
Mean 138728 446506 8126197 1138211 1181.895 1200.025
\C/gfgt'lcc:ﬁ“t of 0046972 0.063682 0.053449 0.082011 0.042576 0.028033
Confidence Interval ~ 136.29,141 435945 796.42,828 1103.41,117 1163.13,120 11787.48,121
(c1,c2) 15 71 81 3.01 0.65 256

Table A.8: coefficient of variation for results of DRBD Protocol C throughput of 30 trials of experiments for read

test

DRBD Protocol C
when value of 1/0

Number of threads

1 4 8 16 32 64
unplug watermark
=32
Standard Deviation 4.374087 15.00438 30.53194 47.52411 39.71019 54.42307
Mean 144.301 491.8507 811.3977 1178.851 1197.87 1188.484
\C/gfgt'fo'ﬁ”t o 0030312 0.030506 0.037629 0.040314 0.033151 0.045792
Confidence Interval ~ 142.67,145 486.25,497 800.01,822 1161.13,119 1183.06,121 1168.19,120
(c1,c2) 93 44 78 6.56 267 8.77

68

Appendix B

This appendix presents the created data by the SysBench simulation tool for the experiments.

Table B.1: sample of the data that is generated into database by SysBench tool and used in the experiment

id k C pad

100 | 68487932199-96439406143-93774651418-41631865787- 22195207048-70116052123-
292 | 96406072701-20604855487-25459966574-28203206787- 74140395089-76317954521-

1 3 | 41238978918-19503783441 98694025897
100 | 13241531885-45658403807-79170748828-69419634012- 28733802923-10548894641-
496 | 13605813761-77983377181-01582588137-21344716829- 11867531929-71265603657-

2 0 | 87370944992-02457486289 36546888392
102 | 71749523403-03621984679-84246721148-54647104962- 41234744688-51641643591-
874 | 38952275016-06464896823-14571026186-24257421698- 52697224766-15020694408-

3 5 | 84141554112-49791540502 68856618037
100 | 54133149494-75722987476-23015721680-47254589498- 88488171626-98596569412-
529 | 40242947469-55055884969-23675271222-20181439230- 94026374972-58040528656-

4 1| 74473404563-55407972672 38000028170
21497257486-14006031362-20954507792-52915987979- 94919115396-98824649950-
03910680647-21006633133-10715894604-38455907716- 78033843611-50697887870-

5 59 | 44361535976-97953247731 70826638081
100 | 27259561572-06414927280-46715228218-84893654561- 66200784124-83118543608-
411 | 76731023738-20557067759-19583561006-08735004037- 45044785936-98738951684-

6 2 | 78310463408-71967134144 25087136427
173 | 26016962040-84401935623-82022405434-08698958003- 02358180554-15815773302-
181 | 65003728728-28968010755-58339263572-01789602703- 92697093801-06820739293-

7 6 | 39811082909-08525005410 88955012668
100 | 97747537709-99230977413-59153069647-62890934635- 94633519802-41908941667-
050 | 11729491470-07415848518-61416594520-16559727341- 78242579588-16891567524-

8 7 | 46432156293-62484046618 49216405523
52787004896-03713561258-89030827639-79870405712- 82343182218-75122207739-
912 | 99021527444-79036649924-19443487452-29368183864- 98082475690-33929140169-

9 | 351 | 55806406503-87227017685 00985969597
00415922346-91627720052-70099716576-52830063896- 07449874956-85062155369-
569 | 15696986113-66985501675-77110646865-39221301044- 35881996476-14158883642-

10 | 367 | 85038367777-40632164178 64897422580
100 | 68305043604-07392484646-78480928447-88155597080- 82525607519-86035420736-
964 | 08908465928-35357008626-44894171482-13904841657- 51783285478-30216080554-

11 4 | 13998032237-49278517178 19134890096
84225420767-95119807827-48689909948-04145663437- 91218229232-45669484074-
995 | 29723649568-88238910120-61256632514-12324871715- 60159597493-60558506146-

12 | 201 | 71270848294-09484980067 76239412517
153 | 23701604887-44671845013-88591550229-83592334526- 18878447083-51518715478-
809 | 03371749712-02384181617-26831671666-20188224074- 08505273803-98186184968-

13 8 | 64547017922-97641736034 06782243308

69

100

64842668315-60792497498-62750863276-45625090087-

55933840247-47337803868-

047 | 75713057101-27160306431-79536585757-87296141069- 79571705078-03223267064-

14 7 | 47125388407-35079320070 04605777986
121 | 95419146678-14093409261-09962384278-71846018805- 58506892021-02842031308-
635 | 74601632203-97534503889-75491510988-93003967293- 87774929720-59501190013-

15 2 | 09007318291-32570920479 74028991815
186 | 32094662126-89225014700-79152064371-08455689349- 73609511824-17903462079-
437 | 03137928650-55175661781-49326570184-45630878875- 43512858897-43546610069-

16 3 | 69816385564-33358002874 94699539415
100 | 71448009014-71834791236-61164972585-70749298280- 82792905088-72706133952-
681 | 80542194040-57578052588-95202958716-10334483721- 00547821102-64831494800-

17 0 | 64225565322-50266191520 59296447588
149 | 78838609893-46348600857-07072734072-15051355461- 81103306942-71781756861-
203 | 52622106468-04383929752-42738380886-21129359785- 75275133854-25619966886-

18 0 | 07287880963-16697504004 10225409478
112 | 90051425691-25789925225-11346061836-86027481503- 56649223465-05395201594-
198 | 56888390198-29184614639-20597516557-59209249918- 30598644923-67595771828-

19 7 | 30962581385-32551385958 36110187986
185 | 30110320760-92038482878-35745432461-23903545970- 11308973902-51522513977-
958 | 76501097089-02250160299-17775142558-19081672308- 11061491231-08659548052-

20 5 | 36543406505-99353980746 02924801260
16690530377-63987168491-72172776123-80117937302- 65136224409-33706000949-
107 | 92509900367-95921774112-79338680468-42947724750- 96439751543-67924295910-

21 | 524 | 62405208456-01987401862 44782822297
100 | 15263455457-58075632796-44895195635-64246175113- 80385226158-87059079968-
174 | 09306502497-70016121495-35716128361-81345533735- 82865735167-90330450895-

22 4 | 43361537551-40713590514 98846983203
188 | 43578579884-68500126356-36545380402-53520257942- 93655585782-21092397652-
267 | 40842833170-36650534101-80609975436-04837531511- 11370478330-93836554012-

23 1 | 84168834240-66986216142 92574026450
108 | 23092203816-47751292915-52445457243-37532319024- 16668590421-97960154678-
631 | 52754430958-94884358644-92217537524-69630011136- 96679208706-82117037773-

24 1 | 58075625595-12276707316 28162486749
141 | 78839613741-27483355158-07765701483-18206947477- 49300657906-25122359700-
192 | 18511609137-54680149758-12877124569-57138303285- 61884477637-37175101640-

25 2 | 69932369353-21819235763 91187374434
94028665321-27368401356-46526587557-73692072145- 11589584481-27280373851-
998 | 37888180908-21695018941-29833499555-88732094221- 09621824390-62557697530-

26 | 809 | 81150570616-33523419975 87005061141
100 | 76133995643-03630441214-63521419347-94780563180- 64436625952-42090500434-
300 | 43900509498-15133366912-64213550032-42596168518- 15425150061-32331186139-

27 4 | 60920051261-45367112919 83808254918
100 | 57776552922-11880051588-58075076667-23997402256- 12237021043-92068457966-
644 | 69520667378-97791137572-99703195908-45604024869- 22695573331-53702842209-

28 2 | 11666111212-97020413349 86646342777
81169731792-73974368494-07505456106-79874259318- 28886928848-52163576179-
998 | 27707978883-25191598376-01617415993-11613717249- 56338762801-66820300137-

29 | 950 | 19708218490-51428364177 36760460345

70

(MySQL) clibyd) 3as &l) 8 gill culd Jgla o] 4 e
a3l by oY alae)

&SI Jlal a1l)

ioadle

g5 Lale J saandl Jagul agill (3 383 5 aadaii () Caagd sl alladl (5 s Ao Glssgall g S8l (e
oda eld (en el 3 aSaT A suls el g de gena () ULl 2ol 681 5l aUal pd g JOA (e @lldg) LSl
A a3 8 LY sak) ML 5 Gueadiaall sae 33 3 alaill 13g) Jle 61 e Jpeandl) Cangs il 5l
High Availability il 3l 5l Jsla (e (e 55 e Lalae) &3) 2 MySQL Sllall 3ol oY 45 jlaa o) ja

el Al High Availability Jsls (e Gie 5t (e el 2 MySQL <lilbl) 3228 ¢l 45 jlie Jee o5
Sl ant gl Jola o Lo agilaliind ae 381 b o3 o) Jal) HLaa) il sall g S il 6)8l Claal
bl 3acld) J sem sl (0 podiivadl) (S o o1 635 s (e 3 e Database High Availability <Ulal) saclsl
e JSLaAl (e W e 5 308 JUaelS Lo (b 3 g g Alla 8 byl 3acl8 3 Al) gl () 50 A3Saa 3 58 J5haY
alA e) e oda il sac il A e A da) g A (pe @l bl o3g] (188 (o) Jsas a2e (leua

Ayl e ik

e=8Y) Jaedll) AmliY) Gl e Hardware Specification cilival sall iy adl 2 e 45 ad) 13 cad
Al oy s dleal) aaliag A G gl o) AT (e)y Alime () Baa g JOA ekl S Al Slleal) (e

i) ga 5 Adlide L 5l 535 e ading Legin JS of le| DRBD alais MySQL INNoDB alai Laa oall ol
e iny DRBD Jl alais ,MySQL Group Replication b sl 5S35 e aainy INNODB alai o)) Cus 3 ylae
o sads Laghy ALl e Gt Al dilasl asa 5 a2xl Lea jlid) 3 Replicated Disk Architecture sl
A5 o) J38 3ga s s 8 43l) automatic failover 4wad Gleais LaadS o L& MySQL <libull 3acE ¢l
Ao A 81 55 s 3 llad ol i Lol 5 | Jladll walall Sl o) IS0 (paiesall) el Ji st wians a3l g1} (saaly
Yy ¥ A A g iy sl ClaaY e 0 sSan Legin cililad) ae) B elal & lie 13 ansinall

pelllaie 5 agilaliay 48

G AY) a2 Al ra ot I Al il el 5 g), S el 33 A8k e ST cplall cpdla e da JSE as
IS A aill o sa) i Lol Legd Al clilull 3acl8 olal auiy Ja ISV 3kl 038 (ge cpe 55 L) &5 (4 5)
Bl s 4ale LUSIL e (A aal s i) aald e) 5 o x5 S| single primary topology 4l ol

Lele AUSIG Fland) (50 o) ae Lgale Ul (el 35 o a0l 53l

71

A s i) sacla) elol Juadl e J seaall 4o D0 clalac Yl e 4 (rase 8 Le o 3l ekl oda slac) a3
Onellail) SIS il Fiall (paddiosall dae ik ae Ul (i e (LS g 5e)1 <l Laal) <l LaaY) i ¢))
LAY 03] Aa i€ AatuY) (a5 Al af adiiy dime ulaa o aaiad Sl SysBench 313l alasiuly

Opeadial) 23 (AR GV apean LU @l jlaa) (& AY) e (356 8 |nnoDB sl of dagill < yekil
Sy adi e Gaial Jiall (perdivuall 22e S Leie DRBD alai e 3ol Jall Lialy Lyl < 685 Lol LS| (puial Yiall
(3! AN LAY 13y Juadl 2101 el DRBD aldai | L (il addae GlS Lanie

72

