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Abstract

In this thesis, we studied the Pythagorean Triples, primitive Pythagorean Triples, Almost
Pythagorean Triples, Nearly Pythagorean Triples and Almost — isosceles Pythagorean
Triple. Also we do a program in Java Language to generate infinitely many Pythagorean
Triples and Almost Pythagorean Triples by depending on the procedures and theorems that

generate these triples, which will be explained in detail in this research.
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Introduction

Around 600 BC Pythagoras and his disciples made rather through studies of the integers in
various ways:

Even numbers, Odd numbers, Prime numbers, and composite numbers, where the prime
number is a number greater than 1 whose only divisions are 1 and the number itself.
Numbers that are not prime are called composite except that the number 1 is considered

neither prime nor composite.

The Pythagoreans also linked numbers with geometry, they introduced the idea of
polygonal numbers, triangular number, square numbers, pentagonal numbers, etc.
The reason for this geometrical nomenclature is clear when the numbers are represented by

dots arranged in the form of triangles, squares, pentagonal, etc.

Another link with geometry came from the famous theorem of Pythagoras which states that
in any right triangle the square of the length of the hypotenuse is the sum of the squares of
the lengths of the two legs.

Such triangles are now called Pythagorean triangles. The corresponding triple of numbers

ofudt representing the lengths of the sides is called a Pythagorean triple




A Babylonian tablet has been found, dating from about 1700 BC, which contain an
extensive list of a Pythagorean triples, some of the numbers being quite large. Pythagoras

was the first to give a method for determining infinity many triples, see [4].
Now, we will give a brief summary about chapter one, two and three.

In chapter one we introduce the definition of Pythagorean triple, Primitive Pythagorean
triple and study some lemmas and theorems about Pythagorean triples and primitive
Pythagorean triples. Also identify on the formula that produce all primitive Pythagorean
triples, and study some applications about Pythagorean triple and primitive Pythagorean
triple. In [9], they stated and proved the fundamental theorem of arithmetic to prove
Lemma 1.1.10. which states that every integer € p can be represented as a product of

prime factors in only one way, apart from the order of the factors.

Addition to that in [2], they stated and proved the This lemma to prove Theorem 1.2.8
which states that if 1) is prime and ¢ is an integer not divisible by njhthen there exist
integers wal Absuch that

Wk O GED xE@Ews 1/ AT A w3 N
And also in ¢ O E Askd some theorems and lemmas that are using also in the proof of

Theorem 1.2.8 as the following:

Let & and & be integers such that &  Trand C A & p, we say that a is quadratic
residue modulo & if the congruence
okd 1A
is solvable.
Ifn cisaprimeand C AT  p, we introduce the Legendre symbol - by
@ p MEANOAA ORDEM OA
N o W OBAE® A

In [ 2] they proved that if ] is an odd prime, then

— p ,
also, in chapter one we studied the Pell equation

W Cw ph



and the relation between Pell equation and primitive Pythagorean triples (PPTs), moreover
we studied the relation between Pythagorean triples and reducible quadratic polynomials.

In chapter two we studied the definition of almost Pythagorean triple (APT), nearly
Pythagorean triples (NPT) and almost isosceles Pythagorean triples(Al-PT) . Also, studied
some lemmas and theorems to identify the properties of them and knowing the relation
between APT and NPT. At the end of this chapter we generated infinitely many APTs and
NPTs and applied the results in order to develop algorithm for constructing infinitely many

Al-PT.

Finally, in chapter three we studied an algorithm for generating Pythagorean triples
(PTs) by deal with two equation whichare & @ &andd @ @and getting on some
results that are using for generating Pythagorean triples. Also, we generate almost
Pythagorean triples (APT) by depending on two theorems we proved its. However, in the
end of this chapter gave a program by using Java language to generate infinity many (PTs)
and (APTSs).



Chapter One

Pythagorean Triples

The Greek mathematician Pythagoras theorem says the area of the square upon the
hypotenuse of the right triangle is equal to the sum of the area of the squares upon the other
sides. Conversely, any triangle for which the sum of the squares of the length of two

shortest sides equals to the square of the third side is a right triangle.

Consequently, to find all right triangle with integral side lengths, we need to find all triples
of positive integers chubA 1 éhsatisfying the equation. For more details, see [9].

O o a (1.1)

1.1 Primitive Pythagorean Triples.

In this section we want to define the primitive Pythagorean triples and identify on the

formula that produces all the primitive Pythagorean triples under certain conditions.

Definition 1.1.1:

Triples of positive integers satisfying the equation (1.1) are called Pythagorean triples.

Example 1.1.2:

The triples (3,4,5), (6,8,10) and (5,12,13) are Pythagorean triples because

o 1 v,p Y pmandv pg poO
Some Pythagorean triples are scalar multiple of other triples such that (6,8,10) is twice
(3,4,5).



In the next definition we define the primitive Pythagorean triple which has no common
factor.

Definition 1.1.3:

A Pythagorean triple ¢huhd is called primitive if C A &cfr  p, we will use PPT to
stand for a Primitive Pythagorean Triple.

Example 1.1.4:

A Pythagorean triples (3,4,5) and (5,12,13) are primitive whereas the Pythagorean triple
(6,8,10) is not.

Theorem 1.1.5:

Any integral multiple of primitive Pythagorean triple is a Pythagorean triple.

Proof:

Let ofudtr be a primitive Pythagorean triple and ‘Qbe any positive integer, then
(Qw Qw Qw Qw
Q0 o
but ®W W= a,then
Qo Qw=04a (Qah
therefore ,('Q 6K €1 & E APythagorean triple.

Hence, all Pythagorean triples can be found by forming an integral multiple of a Primitive
Pythagorean triple (PPT).¢

Now, to find all primitive Pythagorean triples we need some lemmas and theorems. The

first one tells us that any two integers of a primitive Pythagorean triple are relatively prime.

Lemma 1.1.6:

If ofudd is primitive Pythagorean triple, then CAdto CAdd CAMG  p8



Proof:

Suppose that ofud is a primitive Pythagorean triple and CAdtw Q p, then
mOD OEN @1 Afdslch that AC A &d, so that e and B which implies that
nsw o &, but p is prime and g, then we conclude that n&Therefore,
NG A diuhd |, which is a contradiction, since C A dfudty  p, therefore C A dfto p8

To prove that C Adhx  p, by contrary, suppose CAdx  'Q p>. By the same steps
as in above there exists a prime number 1} such that nC A d¥tx hso that o and 7Y,
thusnsa W, SO N but ) is prime number, we conclude i Which is a
contradiction since C A it p, therefore CAddtr  p.

Similarly, we can show that C A dhx  p.&

The second lemma, helps us to determine the formula for PPT as the follows: see [6],

Lemmal.1.7:

For a Pythagorean triple afuhi |, the following properties are equivalent:
(1) ofhA T dihave no common factor, i.e. the triple is primitive,
(2) arubA T dRare pair wise relatively prime,
(3) two of GhuhA T dhare relatively prime.

Proof:

In Lemma 1.1.6 we proved that (1) implies (2). Also, it is obvious that (2) implies (3). To
prove that (3) implies (1), assume that (3) is true withC Adfto  p and suppose that
CAduit  p, then m a prime number fy such that fiy fiw and Ay, but x and y are
relatively prime, a contradiction.

Before we introduce the third lemma we present the following theorem, in order to prove

the next lemma. see [1].¢

Theorem 1.1.8:

If & isaninteger,thend k m & € @ ifmisevenand & k p & € Q2 ifa isodd.



Proof:

Let & N ¢ Then either & is even or & is odd.

If & is even, then MO ¢, such that & ¢ Q Then &  1Q, so T and hence

G kmaé¢f.

If & isodd, then M &, suchthatd ¢ Q p.Thend 1TQ 1Q p,soa p
TQ ™ hencetsa  p handhence @ k p & £ ©.Therefore, if & is an integer,

thend kmadéQora kp ae@.¢

Now, we present the third lemma which tells us that one of the PT is odd and the other is

even or vice versa. For more details, see [9].

Lemma 1.1.9:

If ofudtr is PPT, then one of x and y is odd and the other is even.

Proof:

To show that one of x and y is odd and the other is even. Suppose that x and y are both odd,
then by Theorem 1.1.8, 0w k p d € Qandw k p a € 1.

So, 8 w wkcgacé@).

This is impossible because the square of any integer must be congruent either to 0 or 1
modulo 4, as in Theorem 1.1.8. Thus, x and y are not both odd. Also x and y are not both
even, since if both x and y are even, then ¢ and ¢y and so C Ad¥to  p, which

contradicts Lemma 1.1.6. Hence one of x and y must be odd and the other is even.#

The fourth Lemma that we need is a consequence of the fundamental theorem of arithmetic
it tells that if the multiple of two relatively prime integers is a square, then each of them

must both be square.



Lemma 1.1.10:

Let i i and o are positive integers such that CA¥i  pandid o then m Crisuch
thati Qandi .

Proof:

Ifi d p,thenclearlyi pandi p.Also,ifi pl © pOEAT 6T O o,
and clearly Lemma is true. So we may suppose thati pandi p. Then the prime —

power factorizations of i i and oare

C

i v 8880
i/ 1 8880
and
0O n n 8881
since, CAWi  p, then the primes occurring in the factorizations of i A 1 iAare distinct.
Sincei i 0O ,wehave
0 0 880 n n 880 n n 888n
From the fundamental theorem of arithmetic, the prime-powers occurring on the two sides
of the above equation are the same. Hence each ) must be equal to ; for some "Qwith

matching exponents, so that & @ .

Consequently, every exponent ¢ is even and therefore ¢ is an integer. Now, let
Q0 "0 T8880 7
and
an ' 78880 7
Clearly
i Qandi a.v

Now, we introduce a desired theorem which describes all primitive Pythagorean triples.

Theorem 1.1.11:

The positive integers ¢ioA T ¢iform a primitive Pythagorean triples, with y even if and
only if there are relatively prime positive integers QA T RQ &, and QK a & ¢ § hwith

"Qodd and &ieven or vice versa, such that



® Q a, o ¢Qad and ¢ Q «& (1.2)

Proof:

t Let cfuhX be PPT with wis even , then by Lemma 1.1.9, tis odd and so & is odd.

But w iseventhen@  isoddso a isodd which implies & is odd.

Hence @ &ho dare both even.

Definei A1 iAby
e
Since
W 0 a
we have
W o
W G o d (1.3)

dividing equation (1.3) by 4, we have
- — — i 8

Now, we wantto show that C A¥i  phsolet CA¥I  Qsince’ 3 AT '@ , then

i i qand 1 i ohthus OCAd .ButCAd p, OE AT psSince
- i landCA®  p,then by Lemma 1.1.10 there exist, N ¢dsuch that

i QATIA . Writing GlioA T éhin terms of QA T diwe have

) [ T a,

W Wl i Qo Qi
And hence

a i T a

Also we must show that CAMA p. So If CAB Q then XQ 4,
QAT BSQ &, that is QuOI0A T '@ hence 'OC A duhd |, but we know that
CAduia p,thenQ p.Sincei — — i,thenQ a



Finally, we must show that QK a & € €. To show that suppose Ok & & € € , then
Q dais divisible by 2. We have the following cases:
(1) If both QA T dare even, then ¢sQand ¢xandso C A @ p, a contradiction.
(2) If both "Qch ¢ &are odd, then oo & &are all even, this contradicts C A dfvdr .
(3) If one of them odd and the other is even, say, "Qis odd and | is even. Then 'Q dis
odd, but ¢cSQ ¢ a contradiction.So, 'OK & & £ €, From (1) and (2) above one of k

and | is odd and the other is even.

Suppose the triple oftdty satisfy
® Q a,0 c¢Qéundd 0 a,
wherekand 1IN ¢h™Q hCAr pand OK & d ¢ €. We must show that
oA T @&form a primitive Pythagorean triples, with y even.

We first note that cftdty is PT

W W M Qo
QN Qa a 1Qa
N Qa «a
T «a
a.

Now, we want to show C A dfuhx  p. This follows by Lemma 1.1.7 by showing that
wA T dare relatively prime. Suppose CA T 'Q p. Thenmaprime numberfy p
such that n$Qand so fwand Y. Hence o & ¢Qandfx @  ¢a. If N, then
N ¢ ButOK ad ¢ €, so Qand | not both odd or not both even, then Q@ & and

"Q & are both odd, i.e x and z are both odd. Hence, |  ¢hSuppose ] ¢, then ASQ
and i), but 1) is prime, then nsQand fgy and so C A @1 p, a contradiction. Thus,
CAdu p,andsobylLemmal.l.7.C Aduhx p)¢

Example 1.1.12:

Llet’@ vand & ¢,sothat CAtr p, QK & &€ © and 'Q & hence by theorem
1.1.9 we have
W Q a v ¢ ¢ p

10



W CQd c®»’ ¢

G Q & v ¢ Cw

Table 1.1: The list of the PPT generated by using theorem 1.1.11 withk @

] X y Z

2 1 3 4 )

3 2 5 12 13
4 1 15 8 17
4 3 7 24 25
5 2 21 20 29
5 4 9 40 41
6 1 35 12 37
6 5 11 60 61

11



1.2 Applications

For the rest of this section, we are interested in the Diophantine equation @ Qw &,
where QA T &\are integers and Qis a positive integer which is not a perfect square. The
special case of the Diophantine equation @ Qw €& with € p is called pell’s

equation.

The problem of finding the solutions of this equation has a long history. Special cases of
Pell’s equation are discussed in ancient works by Archimedes and Diophantus. Moreover,
the twelfth century Indian mathematicians Bhakra described a method for finding the
solutions of Pell’s equation. A letter written in 1657 Fermat posed to the mathematicians of
Europe” the problem of showing that there are infinity many integral solutions of the
equation w Qw p where Qis a positive integer greater than 1 which is not a perfect
square. Soon afterwards, the English mathematicians Wails and Brounckes developed a
method to find these solutions, but did not provide a proof that their methods work. Euler
provided all the theory needed for a proof in a paper published in 1767 and Lagrange
published such a proof in 1768. See [9]

An Important results in number theory developed from the study of values of @ Qw
where d is fixed non square integer, the special case of Pell equation when 'Q ¢ shows
up in the setting of Pythagorean triples, but other values of d are important for other

problems. See [6].

If we have a solution of the equation

W W p
in positive integers A T SO E Aisoddand CA@  p.Let'Q @ wandd @
then the triple Q@ ahQEQ & is a primitive Pythagorean triple with Q & Tt
CAT pand K aaé Q.

To show this, Since Q & wand & G then Q@ ® & ® & WsOQ & T
Now, if QsQand 'Oy then d divides Q & , so Qxwand Qx,but CA &  p,s0Q  p,
sothat CAMtr p.Since™ @ & o & © and ®isodd, then K 1T & € 'Q
andso™Q oK Tmaé Q,ie OKadé @8

12



Now, we claimthat 'Q & hQEQ & isPPT. Clearly
N a cQa
N cQa a 1Qa
Q ¢Qa «
T a 8
Hence this triple is PT.

Using Lemma 1.1.7, it is sufficient to show that Qo @ afcQa p.

Suppose M a prime number pC AR  ahgQda. Then isQ &  ¢Qnd s Q

a  ¢QoSo, this impliessns™@ & and As™@ & .But Q & @ and @is odd, so
A C.Also,sincenisprimeandns™@ & @, then g Buts™Q & impliesnsQ &
SofsQ & Q &,ie AxKo but ) ¢, so A Hence nawand so NG A d¥wo, but
CAdw psof pAndsothetriple Q ahQEQ o isaPPT.

The most well-known Pythagorean triples (3,4,5) and (5,12,13) have consecutive terms.
Clearly 3 and 4 in the first triple, 12 and13 in the others, so by using the parametric
formula (1.2) for primitive Pythagorean triples, we can address questions concerning relation

among the sides of primitive right triangle, as the following:

What are all the Pythagorean triples ¢ with a pair of consecutive terms either (a and

b or band ¢)? To answer the question, we will consider the following cases:

First Case:

Let us consider the case when GA 1 & are consecutive.
For @A 1 d&to differ by 1 means that & @  p, but from the discussion we have
O Q aandd ¢Qso
T a cQa p (1.4)
By adding ¢ for both sides we get,

M a Qb ca p ¢l
which implies to

Q Qo & p ¢l
By factorizing the left hand side and write it as a complete square we have,

T a p ¢l

13



If we subtract ¢ form both side we get,
Q a ca p
Therefore, the relation (1.4) can be written as
N a ca P (1.5)

where 'Q dis positive and odd and & is positive.

That is, finding Pythagorean triples whose legs differ by 1 is the same as finding positive

integer solution to the Pell equation @  ¢w p.

Example 1.2.1:

Show that Pell equation is satisfied when @ pandw p , and find the Pythagorean
triple ¢Yudto which satisfies it?

Solution:

Suppose @ p and @ p, it's clear that the greatest common factor between
W & Qequal one. Now substitute @ pand w p in Pell equation we get
p Cp p

Thus, @ p and & p satisfies the Pell equation. So, let Q @ wand & « that
implies & pAT ™ ¢8Therefore, the primitive Pythagorean triple is (3,4,5). since

® Q & ¢ p o

® ¢Qa gzgzp T

@ Q a ¢ p

Next table shows 5 examples of Pythagorean triples that we can find it in the same
procedure in the previous example. For more details, See [4]

Table 1.2: consecutive legs.

X y k I a b c

1 1 2 1 3 4 5

3 2 5 2 21 20 29
7 5 12 5 119 120 169
17 12 29 12 697 696 925
41 29 70 29 4059 4060 5741

14




The above Procedure to calculate Pythagorean triples when the differ between two legs in
a primitive triple equal 1, but even if two legs in a primitive triple don’t differ by 1 the

formula (1.5)isstill Q@ & ca &, forany integern .

Second case:

For x and y differ by 2, by the same steps when x and y differ by 1, we conclude that
Q a ca C
The equation
W QW C
is not solvable, sincew  ¢w ¢, then ¢ and so ¢ but wis odd. A contradiction.
thenthe triple 'Q &ahQAQ & isnotaprimitive, where Q @ wanda o8

In generalized if @ cw ¢’"Qwhere "Q is an integer then the triple is not PPT.

So the possible differences between legs in a primitive triple are precisely the odd values
of @ ¢ for positive integers WA T &

Third case:

When
W Cw N (1.6)

where p is a prime.

The last case tell us if 1y is a prime congruentto p & € i@, then the general pell equation
@ cw 1 issolvable. Thus to show that we need to prove the next theorem. For more
details, see [2]

Theorem 1.2.2:

Let ) bean odd prime numberthen | & ¢ for some integers GA T dif and only
ifnk pae@a

15



Proof

Suppose 1 is an odd prime number such that A ¢ ¢ for some integers WA T @,
then ® k ¢ @ & ‘QnAlso let Gabe an integer such that o &§ p & € Qpthus O &
W Njkcod M aéQandso de k ¢ ol aé QRk ¢ & ¢ 'Qn

Now from ¢ , we used corollary that state if | ¢ isaprimeand C A1)  p, then the
Legendre symbol - is defined by

& p hOE AN O A A @ARA®ERA O A
N p H O ExAED A

and so 2 is quadratic residue modulo rj and the congruence @& k ¢ & € ‘Qiis solvable,

thus - p

Also, from ¢ we used theorem that states, - p — hHence — ¢ Qwhere Qis
an integer. Thus n pkmT daGEQ@

nkp aéi@

t nkp aé¢@or nk p aéi@s

Suppose p is an odd prime number suchthat 1k p & € i@ and let a be an integer such
that & k ¢ & € 'Qpso there is no positive integers o & Qwith @ @ 1 such that
N w w,therefore NIS® ¢®W O ©®,S0NKW w.hencem CO

cr,implies n o W.

Now, we take some examples on this case, and what are the solutions that satisfies the Pell
equation (1.3), and what are the PPT that satisfied from this equation.

Example 1.2.3:

The equation
W W o
has no integral solution because the prime 3 cannot be written as the form yQ p (by

theorem 1.2.2) so no PPT has it legs differing by 3.

16



Example 1.2.4:

The equation

W W v
has no integral solution because the prime 5 cannot be written as the form y'Q p so no
PPT has it legs differing by 5.

Example 1.2.5:

The equation

W W X
has integral solution because, the prime 7 can be written as yp p X, Thus, the
equation

W W X

has the integral solutionw ocand w p.

To find the PPT, let
M o @ tandd @ p
So the PPT is

And

therefore, the PPT is (15,8,17).

Hence, from discussion of the cases above we conclude the following for the equation
W W £,
1) If nis even, then there no PPT with consecutive legs.
2) If& p,then there are many PPT as in Table(1.2)
3) If nis a prime number, then we have PPT triples with consecutive legs if €
PQ p, for some '™ @

4) Not every odd n can derive PPT with consecutive legs.

17



Fourth Case:
Let us now, turning to a leg and hypotenuse which differ by 1. The story is much simpler if
the hypotenuse use is odd, so it can only differ by 1 from the even leg, since

W ¢Qenda O &

as we discussed before, then™@ &  ¢Qa p.

But'™Q a c¢Q&a Q a .ie Q &  p,whichimpliesthat Q & p. So the PPT

0 ahQBQ & becomes,

ca phga  gthca ca p 8
Since,
Q «a a p a a ca p a ca p,

CQa ca pa ¢ ca
and
Q «a a p a a ¢cax p a ¢ca ca p.

The next table shows the first four examples can be found by the previous procedure.

Tablel.3: consecutive leg and hypotenuse.

| ] ] ] [ ] |
1 3 4 5

2 5 12 13
3 7 24 25
4 9 40 41

From above discussion we studied the PTs when the difference between wA T dequal 1

and the difference between wand & equal 1,but now we introduce a theorem that study the
PTs when the absolute value of difference between wA T ddequal ¢'Qz p, where Q Tt

For more details, see [5].
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Theorem 1.2.6:

For any positive integer Q, there are infinitely many PTs chuhx satisfying <0 6%
¢'Qz p8

Proof:

Weassume pando ‘B4 E Hibonacci type numbers are
A1 AL AT AY A A phtlp Tp ¢Q
Notice that we depend on the middle two terms of "Q to find the PTs, therefore,
® p QzQ cQop
w ¢Qp 0 ¢Q c¢Qh
and
a p Q 0 o ca p
thus the PT Y ¢cQ phkQ cakQ ¢Q »p
OIOERE £AAVAT ik ws
¢cQ &xcQ p
cQ  p

Secondlyif &> & cofd @ & then the Fibonacci type numbers are
O cohd ohd obhod 1O
p ¢COp B oo 108
By depending on the middle two terms of Fibonacci type numbers we have
w ¢ 0Qzp 0
T p& WQzpzQzcQ

w Yo pM@ o

and

19



thus the PT Y is

gyQ pM ompQ pTQ hpM® pfQ v

With Y WZWS PQ pM 17YQzp M os

¢Q p8
Now, forany ¢  phlet®d & ¢cw andw G  assume that the
PT"Y o o ho

generated by Fibonacci type numbers G o O o

satisfies Y £Q 7z ps then the next PT “Y  generated by

¢

forms

€
(0]

Y 0w W Cw ko ® o &)

And also we have,

Y W O s
LO ® W ow 7 O W oH TOw S
W 2GRS
LO O 070 O s
Y cQzp8

So, we have infinity many PTs @ hohx ,suchthat, o z s ¢Q z p.

Example 1.2.7:
If&d p® Qp 0O 1 then

~ ~

"Y  with"Y £'Q 7 psare oftfv hufp &p ohxhg g v

¢
)
=
e)
(04]

20



Table 1.4: The PT with Fibonacci numbers and the difference Y £Q 7 ps

i Ty ] ]
A A A A
111123 3,45 1,2,3,5 5,12,13 1,3,4,7 7,24,25 1,459 9,40,41
2 | 3.257 21.20.29 5,3,8,11 55,48,73 7,4,11,15 105,88,137 9,5,14,19 171,140,221
3| 75,12,17 | 119,120,169 11,8,19,27 | 297,304,425 | 15,11,26,37 | 555,572,797 | 19,14,33,47 | 893,924,1285

1.3 The relation between Pythagorean triples and reducible quadratic
polynomial

Consider the equation

O G £=0 (1.7)
where & AT #AA OBAI O EEDIE@ARQES At Gquation (1.7) have integer roots , then
G  1& A Qplrfectsquares. Let &  t¢ Qand & 1¢  Q, clearly Qand Qare

integers.

Now,
0 Q Y Q QQ Qh

L~ A

so 2 divides Q Q1 QAEOERQA®OERB OQk Qi ¢ Q@ ,Thus,— AT A—
are integers. Also,
Q Q a TE Q 1€ ¢a

then ¢4 —— — —  Thus —h—hx isPT.
In fact —h—Hha  is PPT because if ™ a prime p so that nSC A A—h—h4  then

ns—, Ns— and N, so ns— — ie. p—— butQ 'Q Y& So NxK&, and
N K ¢ (from Theorem 1.1.11), so ng. Hence, nsC A& p,son p.
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Example 1.2.8:

Show that the polynomial @ v @ corresponds to the Pythagorean triple (3,4,5)?
Solution:

As above discussion,letQ v T @ pandQ LV T @® T W

i.e.’Q pand’Q x.Sothe PPT corresponding to this equation is — h—F ohthv .

Next table shows some corresponding Pythagorean triples and reducible @ & €.

Table 1.5: Pythagorean triples and reducible quadratic polynomial @ @ €.

O . e [ . e [ . =|=F|{+F;I|F
5 6 ® C ® O O p W Y ofth
13 30 W 0 W PT ® C ® pU uip tp o
17 60 ® UL ® P W 0 ® CT Up tp x
29 210 ® pPT® puU ® @ @ ouU ¢ ft i w
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Chapter Two

Almost and Nearly isosceles Pythagorean triples

A Pythagorean triple (PT) is an integer solution ¢fohd satisfying the polynomial

®w W a
and it is said to be primitive (PPT) if C A d&ufto  p&here have been many ways for
finding solutionsof @ @ & and one of the well-known methods is due to Euclid, BC
300. The investigation of integer solutions of @ @ & has been expanded to various

aspects. One direction is to deal with polynomial @ ® &  p which called Almost
Pythagorean Triple (APT) or Nearly Pythagorean Triple (NPT) depending on the sign

Another side is to study the integer solution ¢fudo of @ @ & having some special
conditions, such that when &0 b but in this case, there is no integer solutionof @ @

& so we can investigate the integer solution o with<d s p. We shall call this
solution oo is an Almost Isosceles Pythagorean Triple (Al-PT) and typical examples
are (3,4,5) and (20,21,29).

In this work we generate infinitely many APTs and NPTs and then apply the results in

order to develop algorithms for constructing infinitely many Al-PT. For more details, see

[5]
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2.1 Almost and Nearly Pythagorean Triples

At the beginning of this section we define an Almost and a Nearly Pythagorean Triples by

the following definition.

Definition 2.1.1:

1. An integer solution ¢fuodo of @ @ &  p, is called Almost Pythagorean
Triple (APT).

2. An integer solution ¢fifto of @ @ & p is called Nearly Pythagorean
Triple (NPT).

Example 2.1.2:

The triples (5,5,7), (4,7,8) and (8,9,12) are APT, because

v v X ph T X v p

and

and the triples (10,50,51), (20,200,201) and (30,450,451) are NPT, because
pmt uvm vp p,CM (MG (TP P
and
oTl TUT TUp p8

Now, we want to introduce some lemmas and theorems that studying APT and NPT and,
giving infinitely many APTs and NPTs of many forms. For more details, see [5]

Lemma 2.1.3:

1. If ¢fodoo isan APT then ¢ g By p isaNPT.
2. If ¢fufro isaNPTthen ¢ phed ddd cis an APT.
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Proof:

Suppose i is an APT. To show that the triple ¢ ®d B p isa NPT we must

show that

~

OO O Cw P p8

The left hand side is

~

OO OO TOO® TO®

but ¢hofro is an APT implies

and so

thus coO o bnww p isaNPT.

o™ T

Ccw p COW COW p.

The left-hand side is

Ccw p CO W T TO p TOW

™ T

But ¢fudo isaNPTso®d @ @  p,thus

W O © p p TO O p p P

25



TOW P

hence ¢  phccd dxcd is an APT.

Theorem 2.1.4:

If aiis an even integer, then we have the following:

(1) ofcho p isan APTifd — p whileitisaNPTif®d & 7c.

(2 ¢ phdORd® ¢ isanAPTand OO — ph= p isaNPT.
Proof:

(1) a) Suppose ais an even integerand @ — p.Toshowthat ¢fufto p isan APT

we must show that

butco — pimplies® ¢® ¢andso

e
o
+ 8,
~
e

w p P8
Therefore, ¢fifto p isan APT.
b) Suppose @ — then®  cwand so
» O W

Hence ¢fuhd p isan NPT.

(2) Wewanttoshowthat ¢ phohd®d ¢ isan APT and

26



ARy — p h— p isanNPT.

To show that the triple ¢  plORD® ¢ isan APT, we must show that

Cw p &) DWW ¢ p8
But
Cw p ) O T p ©
T T © P
O W TO T p
w0 ¢ P
DO C ph
Sothetriple ¢c® phORd® ¢ isanAPT.

Now, we want to prove that the triple @ hd — p h— p isan NPT. We must show
that
w w — p — P p
But
W W © 0 © W
C P - P
A — 0 ©
T
-
— 0w p P
— P P8
Thusthetriple ARO — p h— p isaNPTeH
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Table 2.1: Many APTs and NPTs of many forms when a is even.

i T I I . WA |+ MRk
5 212) 8.4.9) 2.23) 9.8.12)

4 @79 (64,112,129) 489) (33.64.72)

6 (6.17.18) (216.612,649) (6.18.19) (73,216,228)
8 (8,31,32) (320,1984,2049) (8.32.33) (129,320,528)
10 (10,49,50) (1000,4900,5001) (10,50,51) (201,1000,1020)

We note that the previous theorem gives infinitely many APTs and NPTs ¢fufto such that

® O p8

The following theorem generates APT and NPT ¢fofuh withd &  v8

Theorem 2.1.5:

MOk ¢ aé¢@mAl d —— then ¢foftd v isaNPT
@ IfOk T AaE€Q@mOEQ —— then cfudo v isan APT.
Proof:
(1) Suppose @ —— ,then®® p® ¢ B
Now, @ © p®m CT

@ v P
Hence ¢fohd v isan NPT.#

(2) Suppose @ ——then® pm C @

Now, ® @ pm CQ O
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S
io]
8-
N
(e
io]

S
(e
o)

Hence ¢fodhd v isan APT.#

Table 2.2: Many APTs and NPTs of the form ¢fufto v

H | NPT HE—R— H | APT H—R—
8 (8.4.,9) 14 (14,17,22)
12 (12,12,17) 16 (16,23,28)
18 (18,30,35) 24 (24,55,60)

Theorem 2.1.5 together with lemma 2.1.3 yields infinitely many NPTs and APTSs (see table

2) though there are APT and NPT dfudo Q with™Q  p o8

Example:2.1.6

Show that there is no NPT ¢fofo Qexistif Q ¢i ©8

N

Solution: suppose that ¢hudhw ¢ isa NPT, then
N o C P
® O 0 TO TZPp
®» 10 oh
sow k o a¢ NButby Theorem1.18,w k M aé @ or®w k p a ¢ @ ,then
no solution a exists and therefore if ‘Q ¢ then no NPT ¢fohd  "Q exists.

N

Now if 'Q o, suppose that ¢hudwo o isa NPT, then

® O W o p
O O O e W P
6 @b U

thus k ¢ & € '@ . But, ingeneral, if & isininteger, then & have one of the
following cases:
O KkmTMTAaeE@ €ia k p a€Q

£id K OGE@EID KT GE@
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OO k ¢ & € '@, has no integer solution. Thus, no NPT of the form ¢fufo o

exists.
Example:2.1.7
Show that there are APTs ¢fodfdo Qif Q ¢ho8

¢ P

Solution: If ¢fodd ¢ isan APT, then
D TR T

O O

» 1te uh

andso @ k p & ¢ @ .But by Theorem 1.1.8, @ k p & ¢ @ has a solution and so

there are APTs of the form ¢fudto ¢ . For example, (5,5,7), (7, 11, 13), ...

&

If ¢hafo o isan APT, then
SIS ®w o p
DO 0 W P

O en pB
Thusw k T G € @,but @ k 1T & & '@ hasasolution as in the above discussion.
cor3

For example, (8, 9, 12), (10, 15, 18) are APT. Therefore, we conclude that if 'Q
there are APT, but no NPT exists. To generalize this, we give the following theorem.

Theorem 2.1.8:
T, the APTs of the form ¢fohd "Q always exists. If Q p is even and

For any Q
square then there exist NPTs of the form ¢fifo Q.

Proof:
Atriple ¢fifto "Qisan APT, if
» ® Q p
® cwQQ p

O w0 op
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That is,

, W Q
& - P
cQ
Then
Ok Q pk Q p d € QQ
and so,
Gk Q p 4 £ 908
Take
a ¢cdaQ O p,ford N d
then,
, GO Q p.
X = h
&) a
then
., ca’Q O p Q p
¢'Q
, T4 Q 1tdQQ p Q p O »p
w =
cQ
T@Q 10 Q1 ¢cap Q p
¢'Q

cd Q cQa ca 0
Ccdh G Q Q p p QEw@ NGB

Now we can prove that if
a ca’Q Q p ,fora N @
and
® ca aQ O p phEIGON &
then the triple ¢fdfto  "Q is an APT. This can be done by showing the left hand side and
the right hand side of

are the same.

The left hand side is
SIS cda’Q@ Q p ¢k 4 Q Qp p
@ Q 1aQQ p M p
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@ 6Q 0 p p
@ Q 14aQQ p T p
@ aQp T p
@Q 140 1 Q ¢cQ p
@ aQp caQp Q p T p
@Q 140 1 Q ¢Q p
@0 W WwQ1aQ w
@ 14 Q 1dQ 1tad p
A0 W YWt pd Q
TAQ WYt 1td& Q ¢Q ¢8

Now, the right hand side is
® Q p cwaQQp p QO op
Ca QcdaQceca p Q »p
TdQ 14 1dQ cdQ cdQ
T8 Q 1dQ 16 Q ¢cd™Q
caQ 14 Q 14 Q 14
Cd A Q 1d Q ca™@
Ccd p QcaQ caQ
cd’@Q Q p
A0 WO wWwQwWwmQ pa
4 W ta 1t Q ¢Q c¢h

hence, & ® 0 pAT A ¢fdhd Qisan APTforall Q@ T

In particular Q plPAQ p isan APTforall Q@ Tt

(2) If Q piseven and square then there exist NPT of the form (i Q.

Toshowthat, let’ Q@ p ¢0 6 hwheredfON 0.

For ¢fifto  "Q tobea NPT, we must have ¢ @ ® Q P

O O 0 wQ Qzp
® cwQ Qzp,
that is
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SinceQ p

then

therefore,

and

also,

Now we can prove that if

and

cL

®k Qzp G ¢ QQ
&) 8
0 , then
wk ¢ p zp aéQ qu
kK tv T pzpP a € Q0
kK 10 U a €Q1L
k tO cL QU a € Qo
kK 0 10 ¢ cL a € @
k ¢cO O a€'Qo
W k o a € Qo C
() co C a 0 h for @ N dh
~ @6 p 6 o6 p p
B
¢
cad cd 6 O ¢co p p
o p
cao ¢ca o0 o
o p
cd 6 p 6 6 p
¢o p
¢cco p o6 6 p
Go p o p
0 .
a —h
C
® Q a 0 6
c P
a 0 8
c P
® ¢Qa Q ph forsome & N &

33
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w az—h &anv®
then the triple ¢fifto  "Q is an NPT. This can be done by showing the left hand side and
the right hand side of

S ® Q zph
thus,using@ p 6 xACAO

» Q ® p a p — 7z 46 — P
a p G p6 —z & zao — 2P
& cd p ao 6 —z 46 Go —20p

ca ca o o}

w38
So, @ Qzwzp add ® Q zp, sothetriple ¢fohd Qs
an NPT ¢

Examples 2.1.9:
(1) The triples (31,43,53), (51,125,135) are APTswith™Q p m

(2) Similarly (34, 47, 58), (56, 137, 148) are APTswith'Q p @

So, we have infinitely many APTs ¢fodto such that "Cis any integer.

On the other hand, let'Q  phufp %o x Since 'Oz p even and square then Theorem 2.2.6
yields NPT c¢fofto "Qsatisfying @ ¢Qa Qzpando Gz Q p FcQ

The following table contains some examples on NPT cfudo Q, when Q
plip YA T dx

Table 2.3:The NPTs oo Q,whenQ phip YA T dix

Hfthf NPT
(2,2,3)
1 (4,8,9)
(6,18,19)
5 4 (8,4,9)
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12 12 (12,12,17)
18 30 (18,30,35)
30 18 (30,18,35)
17 Okpo ¢ @t 38 34 (38,34,51)
64 112 (64,112,129)
68 44 68,44,81)
37 wkoo aéRr 80 68 (80,68,105)
142 254 (142,254,291)

Corollary 2.1.10:

lete Kk MAE€@QmiIf®d & prmandd — p1QE v QforanyQ m
then ¢fifo p isa NPT.

Proof:
Suppose & ¢ pTQandw — pTQE  UQ,then
&) ¢ pTQ
Thus,
o ¢ CEQ pniR
and,

) ET piR ¢ 0vQ pt Q¢ 0vQ
— pTR ¢ PpTEQ ¢ UQ
pE Q uvmE Q
éT pTIRE PTMTEIR ¢uv
pt Q v 08
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Now,

also, ® p pisequal ® p zp — pTQE VQ p zp

— p pTR & VvVQ ¢— ppmE UVQzp

— ¢ p pmR & UQ ¢ ¢ pmQE v p
— ¢ piR ¢ 0vQ p T} LE Q C¢cH QPR
‘8 1 v \ L i iy T T~
— ¢ PTIR & PTEQ ¢ p T VLTE Q ¢ TiQ¢

p 1

€ . . . . .
T € PTIRE PTMTEM Ccunt pr1 VLTE Q
CTQE pmR

Therefore, @ ® p p&o o p isaNPT.®

Examples 2.1.11:

Ifweleté prithen®d pmpm (MW — PTP pTM U ¢ mmand

@ ¢ mpotheNPTis ¢ fx Mgt @

The following table contains some examples are applicable on previous theorem:

Table2.4:When®d & pmande — p1Qé v Qthen chihd p isa
NPT.
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. =|= . . =|=ﬁH.ﬁH.

.H. — .
10 20 200 ¢ g mhgmp
20 30 450 (30,450,451)
30 40 800 (40,800,801)
40 50 1700 (50,1700,1701)
50 60 2350 (60,2350,2351)

Now we discuss another way to construct NPTs from PPT as in the following theorem.

Theorem 2.1.12:
Let oftdtr be a PPT. Then there are many NPT ofofo with ¢z @ &

Proof:

Let ofuhX be PPT, then by Theorem (1.1.11), we can write & Qz & hd ¢Qd
a Q ahwhere 0Q a TCARH pdéVKadaé QSince QK
a a € 'Q , then not both kand | even or not both odd, so suppose k is even and | is odd.

LletQ «¢i and a i psuchthati i N 08Since disasum of squares then

a Q ak p dé@ ATl disodd. Thetriple ¢fudo isaNPTwithw @ GE £
@ © 0 & zp
Thus, » O 0 cwd azp
d  cod azp

And o —

Since @ COd & z p, then we have
Gka p 1714
Gka p 1T4
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Now, to prove that there exist a NPT of the form ¢fudfcd> & we must prove that & k

P G € 'Q has integer solution, where &is prime. Now, if & is a prime then @ k

p G & '@ has integers solutions sincedk p & &€ @ . So, with @ , there

exists a NPT of the form ¢fohd & 8

On the other hand, if we write z as a product of prime as¢ 1 8 8 &), where (| odd
primesand p  Q "Q, then dk p & £ ® implies that either every  k p & £ R or,
there are even number of 1} suchthat 1 k p G € Q forp “Q "QThus, in [ 2] they

proved that if ] is an odd prime, then the Legendre symbol — p~ So, the

Legendre symbol — — 8888 —  p, Thus -1 is a quadratic residue modulo p

so® k p @& & 'Q hasinteger solution. Hence there isa NPT cfodo & 8

Example 2.1.13:

Let (3, 4, 5) be a PPT, what are the NPTs that satisfieswith & @ v8

Solution:
Llet & & @ uv,byprevioustheorem® k p | T @ has an integer solution. Since
® & ¢uytakea ¢,then @ —— thand®d & v T U thenthe

triple (8,4,9) isa NPT.

Also, take 0 p ¢then® p @nd@ p BThus the triple (12,12,17) is a NPT. The PPT
ofoir withd  t mare (3, 4,5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (20, 21, 29) and
(12, 35, 37).

If & vhp %o xhen table 2.3 contains the list of NPTs. Whend  p & bc @NPTSs are

shown in table 2.5:
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Table 2.5:The NPTs ¢fofdo & whend  p & g

TF s oW s Fo-" T £ 6 [ F e
18 6 (18,6,19)

1B OKkpoWoTdé QO W 34 38 (34,38,51)
44 68 (44.68,81)
2 8 (32,8,33)

5 G KkockocBé@m P 68 80 (68,80, 105)
82 122 (82,122,147)
16 22 (46,22,51)

2 OkytTkpt vé@Qy P C 70 70 (70,70,99)
128 268 (128,268,297)

Now we introduce the definition of isosceles APT (iso-APT) and isosceles NPT (iso-NPT)
For more details see. [5]

Definition 2.1.14:

The almost Pythagorean triple fofo is called iso-APT if & @ and also the nearly
Pythagorean triple ¢fof is called iso-NPT if &0 68

Though there is no isosceles PT, there are many iso-APTs and iso-NPTSs. Indeed iso-APT
and iso-NPT as ¥t which satisfy

W O 0w P
so the pair ¢fwo is an integer solution of
C Z W p8
Which is the pell polynomial.
Let o h D be two integers solutions of
W7 W pl Qo z ph

then
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P IR COZD
TON OO OO Ows
Add and subtract T6) 0 QOGO  we get
1 TOM OO WO 00 TOOMOO TOOOO
COW CRW TONOW THW OO TOOO®
CAD OB OO TON OO TOOO®
CHRO OO CORD OO
thus, let W OOAT B ¢O® o then G satisfies ¢ 7 @ p.

Now if we define the product of &R AT A RO as the above discussion, then this

product satisfied the equation ¢ 7 w p.

Definition 2.1.15:

Let ofo AT A be two pairs of integers. then

Example 2.1.16:

Consider the ¢ 7z @ p, clearly, clo is a root of this equation. By above
discussion then ¢l 8clw is also a root of the equation. But (cfo 8¢l p ¢p xAT A

(5,7)isarootof ¢ 7 @  p,then vlx 8ulx X fw wsatisfies ¢ 7 @ p.
So the first few nonnegative solutions of ¢ Z w p are
mnt  hplp hcelw hulx hpépyx h
ctop hytww hpolmowB8 8888
where the subscripts  h indicate solutions of ¢® 7 ® pand Cw 7 p

respectively.
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Theorem 2.1.17:

Let Y W ko for"y ¢’Y Y withY  mip RY  plip thenthe

following hold:
(1) & @ and® &) ® and ¢ © W 0 p SO
Y "Y F& T is a sequence of solutions & 7 p

(2) Leto S f) then™y Y O YO by considering "Y as a matrix.

(3) Let Y, "Y be subset of “Yconsisting of °Y , Y , respectively.

If°Y N 7Y thenY N~ Y and™Y N 7Y,

Proof:

Since Y ¢Y Y L then

~

~

©  ho ¢ O ko o

Claim @ @ @ , by Using mathematical induction,

if¢ p,then

o whichisthesameas® c® .

W 0 W ¢ p
Now suppose the claim is true for € , then

O O & h

to prove the claimis true for&¢ p, let
@ AR
C W ) () ()
o) &) ) )
&) ) ) »
W w8
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€

By similar way we prove that © @

1) fore p,then
® & ® p p € whichistrue

2) suppose is true for € , i.e

€

3) Toprovethatfor& p, such that & @ Q@ , then
) C
C M ® &) @
I N %) &)
) [ A &)
@ wh
clearlyY & Fo isasolutions of co 7 & P .S0CH W p
Want to prove
COW 7O p (2.1)

By induction, (2.1) istrue foré p OETchd 7 OO P p  hnow suppose

(2.1)istrueforé p,iecdd @O 7O © p  istrue.
To prove (2.1) for £, consider
Q) &) CCO & Cw

CTR TOO ) 0 TO® )
(TSR AR ) W TO® @
TCO O ) &) T CO Y
T p P TCOD W 0

Thus

P Q) &) T p P TCOD Y
So
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P T p P
Thus
TCOO Y p p 2T P
T p
QX YA P P p

Proof: (2) Let 6 S f) and Y 1ip h'Y pip h
Now
YO 1L PG Y
P o o pp
and
Y Pc ¢ YYD
PP p P
Soifassume™Y O Y YO | then
Y O ="YoO
o & P S O Okd O
p P
O ® Y
Hence,"YO ="Y .Moreover for"Y @ & wehave
% O ® D w
satisfies
CH O o O O ).
Similarly from "Y Y 6 & ®ch o g S
O O W O CH O ok

We have
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C o CO 7 T 0w O

thus if "Y'~ Y then"Y ~°Y AT X~ °Y . This completes the proof.

Next, we introduce the definition of the multiplication of iso-NPT or iso-APT by

Theorem 2.2.18:

Letd = whdOhD and®d = G RO h
(1) If8 and 8 are iso-NPT, then 8 &8 is also an iso-NPT.

(2) If8 and 8 are iso-APT, then 8 &8 isan iso-NPT.
(3) If 8 isaniso-APT (or iso-NPT) and 8 is an iso-NPT (or iso-APT) then

8 &8 isaniso-APT.

Proof:

(1) Since 8 and 8 are iso-NPT, then
cA A p ATACA A »p

Since
8 &8 OO OO dokdd oo 8
Then to show that 8 8 is an iso-NPT we must prove that
¢ AA AA cAA AA P
The LHS is
CNO OO =ZCO®O OO TOOO®
But
Cw ® pad ¢ @ p
Thus
TOO OO

OB TAOOOD ®

O ® p O p o
<

Also, the RHS is
44



cA A

P!
P
o)
—
()
()
€
e
—
e
()
€
€
©

OOZHO ® p OO TOOOD
OOZO O TR

So LHS is the same as RHS. Hence 8 88 is an iso-NPT. ¢

(2) 1f8 AT &\ areiso-APT then
cA A p AT A cA A »p
Since
8 &8 OO OOhHd dolkdd b 8

To show that 8 & is iso-NPT we must prove that

¢ AR AA cAA  AA p8
The LHS is
¢ AA AA 200 CHO +TOHOON
but we have
cw @ pand ¢c® @ ph
thus

200 COR+THOOO @ PO ® pO THOOD

The RHS is
cA A

p>]
P!
=]
—
e
e
€
€
—
e
e
€
€
=]

CORO ® © 10

so LHS is the same as RHS. Therefore 8 8 is an iso-NPT. ¢

(3) Suppose 8 isaniso-APT and 8 is an iso-NPT then

cA A p ad cA A p
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Since
8$ (‘bd) (‘b' TG [ S v Y v

¢ AA  AA cAA  AA P
The LHS is
¢ AA AA COD COW TOORM,
Since
cA A p and A A p
then,
COM COO TOMOO G p O PO TOODD
COO ® ® TOOOOS
The RHS is
cAA  AA P TOO OO TR0 p

So LHS is the same as RHS. S0 8 88 is an iso-APT.¢

2.2 Almost Isosceles Pythagorean Triples

The nonexistence of isosceles integer solutionof @ & & open the investigations for
finding solutions that look more and more like isosceles. By an almost isosceles

Pythagorean triple (Al-PT). For more details, see [5].
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We mean an integer solution ¢fudto of @ @ & such that and cdiffer by 1.

The triples (3,4,5), (20,21,29) and (119,120,169) are typical examples of Al-PT.

Now, let ¢Yudfto bean AI-PTwith & ph

ifd @ Qfor'Qn §,then
) ®» p o Q
W W p ® p Q
O O W p O O HADH Qp dQQ 08
So
) cwQca T
thus ®WzCQ@ Q© ¢Q m

the solution A  Q cQQ p isaninteger if CQQ p isa perfect square.

Infact,if'Q pthenc’QQ p 1,500 oAl A Tt yieldsan Al-PT (3,4,5).
IfweletcQQ p 6 forsome 6 N O,then® Q O.Let®@ Q 6,then

©®72¢Q@ Q QO m
Mo z2¢QQ 6770z¢Q ™
N Q6 6 z7¢QzcCO® Q70 ™

6 2¢0zc¢Q ms8
multiplying both sides by 2 and subtract 1 to both sides we get,

6z cQ p P8

Ifo ¢Q pthen
Co z 0 ph

~

so the pairs OhD correspond to the pairs 6 ) N "Y in the Theorem 3.2.13 where

~
g

Q  —— Hencetheset"Y ¢lo hp tp xhyx fwwhB togetherwith® Q@  —

® 06 0,0 & p andoo ®@ Q provides Table 2.6 of AI-PT
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Table 2.6: The AI-PT & RO R where 6 O~ Y

. 0. fo. (+ hf Ak

2 (2,3) 1 (3,4,5)

4 (12,17) 8 (20,21,29)

6 | (70,99) 49 (119,120,169)

8 | (408577) | 288 (696,697,985)
Theorem 2.2.1:
(1))When 6 b N Y ,let®d 6 —,00 6 —and® 6
then & fofo isan AI-PTwith @ z @ —
(2)If 6 W ~ Y, then & Fo R isan AI-PT if

o — ,0 —ad @ 0O

Proof:

(M If 6 ~ Y, thenD isoddsince 0 ¢Q p andd U

in Theorem 2.1.17. Claim® z @  ——HhThen

WZwW ®Z0O

Claim: ¢ f fod is an AI-PT, Clearly

W p O

1o o



To show that ¢ Foo oo is PT, we must prove that ¢~ @ @ ATo do this, consider

CH @ C® W p
CW W Gw p

¢ G cw P

¢Ggo6 — g6 — p
T 0 e T 0 —_— C
10 160 U P 0 p 10 C L P C

10 TO U 10 0 cL p TO cL C
10 T0 U 0 p

co co p TOVU 0

co 0 T0 0 0

=¢o 60 cL

C o )
o8
Since 6 b N Y, satisfiesco z U pflso & fofo isan AI-PT8
(2) Similarly Theorem 2.1.17 saysif 6 b ~ "Y,then 6 D N Y, where
6o m =om @ 9H7?
p P
om P S
P P
6 Ohko U h
thus
0 0 v
0 co L8
Hence
W 0 -0 p
o} L - ¢CO 0 p
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® o)
o)
0
C
And
O 0
%) o)
o)

By part (1) then ¢ Fid hdd is an AI-PT ¢
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Chapter Three

Generating Pythagorean Triples and Almost Pythagorean Triples

In this chapter we will investigate Pythagorean triples ofuftr with equation @ @ p
and led to some interesting relationships which allow Pythagorean triples to be generated
iteratively and obtain these relationships and other algorithms for generating Pythagorean
triples. Also we determine all Almost Pythagorean Triples (APT) by solving the given
Diophantine equation. However, the result does not explicitly and readily give a particular
almost Pythagorean triples. In this note, using basic algebraic operations and Frink’s result
we give an explicit formula that readily gives a particular almost Pythagorean triples. We

also give a certain integer sequence as a result of the generated formula.

3.1 A new algorithm for generating Pythagorean Triples

In this section we depend on two equations whichare @ @ &and & @ and from
these equations we get on some results that are using for generating Pythagorean triples

and accordingly for this we deal with two cases which we will explain in this chapter.[8]

If we have a Pythagorean triple afuhd that satisfies the Diophantine equation @

a andifweletd  then,



Hence

2 2 2

U andad o

therefore, the triple can therefore be expressed as

~ ~

oh h ) (3.1)
Also, let ® @ @then
R O I
®w W .
)
and thus
O O O OO T (3.2)

by using equation (3.2) we may generate infinitely many Pythagorean triples.

Consider the following cases:

Case (1): If ais fixed

In this case if we let ¢)be fixed and change the values of &y for example, if we let & p

andtake @  p then the equation (3.2) becomes

W W o0 W o wp T

Now take & o and substitute in the triple ch h Wwe get the triple

(3,4,5).

In order to generate the next triple where & p, we must know the next value of b, thus

the equation (3.2) when a is fixed and equal 1 becomes

O MWW W (W T (3.3)

and this equation has a solution if & ® TW T W Cw isan integer.
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So, the following table contains some values of b that show when the equation (3.3) is
reducible or not.

Table 3.1: The value of discriminate Tw T w ¢w fromb=2to b =10

L I |

(on

©| o ~N| o g & w| N
S
A
‘_||

-

o
s
<
<

We note that from the above table when & s there is an integer solution of (3.3).
And, when & c¢loftfufx and 7 the equation (3.3) is irreducible.
Now let &  y, so the equation (3.3) becomes

W P YT O MW T T

Take @ ¢ tand substitute in the triple (3.1), we get the triple (20, 21, 29). By depending
on two these triples (3,4,5) and (20, 21, 29) we get the relationship,

O @ a
and thus we can generalize it as
@ © a8
For all € p, which suggested itself as a possibility to be explored for determining

subsequent values of b where ¢ fo f&r represent the n™ Pythagorean triple of a sequence.

In fact, the relation @ ® & isprovedin[7].
The first four triples when &0  p can be generated by using equation (3.3) as follows:

1) When® p, then the equation(3.3) becomes,
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W W o0 W o wp T
So, take @ @, then by (3.1), the PT is (3, 4, 5).
2) When® o U |, then the equation (3.3) becomes,
W pP® YT W ¢mMw T T

So, take @ ¢ Ttthen by (3.1), the PT is (20, 21, 29).
3) When® ¢ Tt ¢ @ T ¢then the equation (3.3) becomes,

W W@ CTWWwWw ppww C¢p T
So, take  p p,dhen by (3.1), the PT is (119, 120, 169).
4) when® p p wp @ w¢ P,ghen the equation (3.3) becomes,

W UXWP YouUCTW QWO PG T T

So, take @ @ w,¢hen by (3.1), the PT is (696, 697, 985).

Case (2): Ifis fixed

By the same way as above,

Ifd pand@ p, we geton the triple (3,4,5) thus let dbe fixed, say @ p and change

the values of a to generate the next triples.
Thus, the equation (3.2) when b is fixed becomes

W W p O T (3.4)

And the equation (3.4) has an integer solution if 0 & T Tp CO WP YPdis

an integer.

So, the following table contains some values of cythat shows when the equation (3.4) is
reducible or not.

54



55



Table 3.2: The value of discriminate Iy > froma=2toa=10

ZBE

e T

Vio ¢

Mt T

Ity

Mo @
Vot y
X G
My Tt
My

O 0o N | O B~ W O ND

[EEN
o

So, we note from the above table when & X there is an integer solution of (3.4). Also,
when @ ¢loftiv and 6 the equation (3.4) is irreducible. So, by depending on &0 X the

equation (3.4) becomes,
W CWw PpL W L W O T
Take & v, and substitute in the triple (3.1) we get the triple vip & o Thus, by

depending on the first two triples oftfv hulp ¢p o, and letting & pand & X, we
get the relationship

and thus we can generalize it as

For all € p, which suggested itself as a possibility to be explored for determining
subsequent values of b where & ftd Fir represent the n' Pythagorean triple of a sequence.

In fact, this relation is proved in [7].

The first four triples when @  p can be generated by using equation (3.4) as follows:
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1) When®  p, then the equation (3.4) becomes,
WZ2CWZo W o wp T

So, take @ @, then by (3.1), the PT is oftfv .

2) Whenw o0 T X thenthe equation (3.4) becomes,
WZCWZPL W UL W O T

So, take & U, then by (3.1), the PT is vip ¢&p o.

3) When @ U p ¢ p X, thenthe equation (3.4) becomes,
WZCWZOUL ® X W L T

So, take &  xhthen by (3.1), the PT is xhg 1 .

4) when® X ¢ 1 0 pthentheequation (3.4) becomes,
WZCWZ OO0 W W W X T

So, take @  then by (3.1), the PT is oft fr p.

At the end of this section, we can use the Java Language to generate infinitely many

Pythagorean triples (PTs) by using the above procedures in case 1 and in case 2 as the

following: -

1. We basically depend on the equation

O OO O COO T

2. The equation (3.2) has a solution only when the discriminate is an integer, i.e.

TWw TW W

is an integer.

3. Now, by using the general formula of the quadratic equation, we can find the values

of x as:

Cw TW TW COW
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and therefore we can compute wand & by

0w — and a —

4. The above values of whoand & are form Pythagorean triples because @ @ &
satisfied.

5. We tried to run the program when ¢ is fixed and change the values of Gor Qis
fixed and change the values of ¢yand enter any value and any range for &or

6. Finally, we have stored the values of cofofocy & &in tables in excel.

All above procedures are written in Java Language which existing in program (1) at page
(74) at the end of the thesis.

Now, we want to give some examples which are applicable on the above program where

the first nine examples when ¢is fixed and the others when is fixed.
Example 3.1.1:

Table 3.3: For dequals 1 and the values of care changed.

b X y z
1 3 5
8 20 21 29
49 119 120 169
288 696 697 985
1681 4059 4060 5741
9800 23660 23661 33461
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Example 3.1.2:

Table 3.4: For ¢yequals 2 and the values of care changed.

Example 3.1.3:

Example 3.1.4:

b X y z
2 6 10
16 40 42 58
98 238 240 338
576 1392 1394 1970
3362 8118 8120 11482
Table 3.5: For aequals 5 and the values of b are changed.
b X y z
5 15 20 25
40 100 105 145
245 595 600 845
1440 3480 3485 4925
8405 20295 20300 28705
Table 3.6: For aequals 11 and the values of b are changed.
b X y z
11 33 44 55
88 220 231 319
539 1309 1320 1859
3168 7656 7667 10835
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Example 3.1.5:

Table 3.7: For dequals 18 and the values of care changed.

Example 3.1.6:

Example 3.1.7:

b X y z
18 54 72 90
144 360 378 522
882 2142 2160 3042
5184 12528 12546 17730
Table 3.8: For equals 36 and the values of Gare changed.
b X y z
36 108 144 180
288 720 756 1044
1764 4284 4320 6084
10368 25056 25092 35460
Table 3.9: For equals 75 and the values of care changed.
b X y z
75 225 300 375
600 1500 1575 2175
3675 8925 9000 12675

Example 3.1.8:

Table 3.10: For cequals 100 and the values of ®are changed.

b X y z
100 300 400 500
800 2000 2100 2900

4900 11900 12000 16900
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Example 3.1.9:

Table 3.11: For cequals 1000 and the values of care changed.

Example 3.1.10:

b X y z
1000 3000 4000 5000
8000 20000 21000 29000

Now the following examples when b is fixed.

Table 3.12: For cwequals 1 and the values of care changed.
b X y z
1 3 5
7 5 12 13
17 7 24 25

31 9 40 41

49 11 60 61

71 13 84 85

97 15 112 113

127 17 144 145

161 19 180 181

199 21 220 221

241 23 264 265

287 25 312 313

337 27 364 365

391 29 420 421

449 31 480 481

511 33 544 545

577 35 612 613

647 37 684 685

721 39 760 761

799 41 840 841
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Example 3.1.11:

Table 3.13: For b equals 3 and the values of a are changed.

b X y z

3 9 12 15
21 15 36 39
51 21 72 75

93 27 120 123
147 33 180 183
213 39 252 255
291 45 336 339
381 51 432 435
483 57 540 543
597 63 660 663
723 69 792 795
861 75 936 939
1011 81 1092 1095
1173 87 1260 1263
1347 93 1440 1443
1533 99 1632 1635
1731 105 1836 1839
1941 111 2052 2055
2163 117 2280 2283
2397 123 2520 2523
2643 129 2772 2775
2901 135 3036 3039
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Example 3.1.12:
Table 3.14: For cequals 19 and the values of ¢are changed.

a X y z
19 57 76 95
133 95 228 247
323 133 456 475
589 171 760 779
931 209 1140 1159
1349 247 1596 1615
1843 285 2128 2147
2413 323 2736 2755
3059 361 3420 3439
3781 399 4180 4199
4579 437 5016 5035
5453 475 5928 5947
6403 513 6916 6935
7429 551 7980 7999
8531 589 9120 9139
9709 627 10336 10355
10963 665 11628 11647
12293 703 12996 13015
13699 741 14440 14459
15181 779 15960 15979
16739 817 17556 17575
18373 855 19228 19247
20083 893 20976 20995
21869 931 22800 22819
23731 969 24700 24719
25669 1007 26676 26695
27683 1045 28728 28747
29773 1083 30856 30875
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Example 3.1.13:

Table 3.15: For b equals 55 and the values of a are changed.

b X y z
55 165 220 275
385 275 660 715
935 385 1320 1375
1705 495 2200 2255
2695 605 3300 3355
3905 715 4620 4675
5335 825 6160 6215
6985 935 7920 7975
8855 1045 9900 9955
10945 1155 12100 12155
13255 1265 14520 14575
15785 1375 17160 17215
18535 1485 20020 20075
21505 1595 23100 23155
24695 1705 26400 26455
28105 1815 29920 29975
31735 1925 33660 33715
35585 2035 37620 37675
39655 2145 41800 41855
43945 2255 46200 46255
48455 2365 50820 50875
53185 2475 55660 55715
58135 2585 60720 60775
63305 2695 66000 66055
68695 2805 71500 71555
74305 2915 77220 77275
80135 3025 83160 83215
86185 3135 89320 89375
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Example 3.1.14:

Table 3.16: For b equals 105 and the values of a are changed.

b X y z
105 315 420 525
735 525 1260 1365
1785 735 2520 2625
3255 945 4200 4305
5145 1155 6300 6405
7455 1365 8820 8925
10185 1575 11760 11865
13335 1785 15120 15225
16905 1995 18900 19005
20895 2205 23100 23205
25305 2415 27720 27825
30135 2625 32760 32865
35385 2835 38220 38325
41055 3045 44100 44205
47145 3255 50400 50505
53655 3465 57120 57225
60585 3675 64260 64365
67935 3885 71820 71925
75705 4095 79800 79905
83895 4305 88200 88305
92505 4515 97020 97125
101535 4725 106260 106365
110985 4935 115920 116025
120855 5145 126000 126105
131145 5355 136500 136605
141855 5565 147420 147525
152985 5775 158760 158865
164535 5985 170520 170625
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Example 3.1.15:

Table 3.17: For ®equals 2553 and the values of ¢dare changed.

b X y z
2553 7659 10212 12765
17871 12765 30636 33189
43401 17871 61272 63825
79143 22977 102120 104673

3.2 A Note on generating almost Pythagorean triples

In this section we try to generate almost Pythagorean triples (APT) by depending on two

theorems that we will discuss now. See [3]
Theorem 3.2.1:

If ¢fodco is a primitive Pythagorean triple and if A is an almost Pythagorean triple,
then the triples:
oo WO nffo Ao i
And

ahushgy wo nhdo Ao i’
are almost Pythagorean triples for all positive integers and for unique integers
ARYMAYR & & Qthat depends on the primitive Pythagorean triple ¢fudto satisfying
n n

'

oM 1 oh i oand®dn @n ® i&or more details, see [8].
Proof:

Suppose i isaPPT and nfiA  isan APT and for any positive integer o, let
© OO N and ® ©O Afthen

~ ~

GO chRon o cf don
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O OO conon®on N

W0 CONRON WO p.
Since®® W i, we get
O o Ho chdi ol p
wo i p

thus ifwetake & @O 1 ,then
so ofudi isan APT.

By the same way as above, let
¢ worn oW N and @ 0o WO A
Now

o o WO @ N WO @ N

WO COW NO & N wo CWw o

WO CWO OO ¢gwn
l 00 Cood Cownow Cwn A
O OO0 CO WO ¢chn ®Ro

® & con ®f f A

WO COO CWiId O CWi i p
WO Co® 10 O 1 P
DO 1 P
woi' p8
Let & @O i’,then
® W & P

and hence oshush is an APT.¢

By depending on the previous theorem we conclude that the general solution of @

W

& p does not explicitly and readily give a particular almost Pythagorean triple, also for

PPT cfudto when the components of this triple is large, the process of finding integers

nMMAAR K & Qseems to be not an easy task.
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So, from this note, we can use another formula that generate the almost Pythagorean triples
(APTSs) even if the component of the PPT is large.

Before presenting the theorem that generates APT’s we must recall the theorem 1.1.11
which describes all primitive Pythagorean triples which says that the primitive
Pythagorean triples ofuft taketheformew Q & @ cQWE® 0 a
whereQ & 1,Qo®@n pandOK da € Q.

Now, let ‘A AT DT O EDEMAOAE RC. Take Q@ "QG4nd a  "Q p, then clearly
they are relatively prime for all i and satisfying the incongruence relation QK a & € §
and we get the form ¢'Q pht'Q ¢®&'Q ¢'Q p hwhichisaPPT.

Theorem 3.2.3:

Let cfudto ¢y phQz ¢LQz ¢Q p , then

ahoh ©wo plwd ¢Q phoo ¢Q p

oShushy WO C¢Q ¢ o ¢Qz1Q p MO ¢Qz1TQ ¢

are almost Pythagorean triples forall o N & .

Proof:

To show that cafudm Mo plod ¢Q phdd ¢Q p s an APT. Let us
compute the left hand side (LHS) and the right hand side (RHS) as:
 ® ©op 0o ¢Q p

\

WO COO P WO CQp cngQpo
O Ot ¢Qp p CcH OCQp B
Also,
« p ©O ¢Qp p
W0 CQp cOCQpoO p8

For (LFS) and (RHS) to be equal, we must show that &d ®CQ p  ©CQ p
But® ¢Q phd ¢Q ¢OAT A ¢Q ¢Q p,hence

® ©OCQ p CQp ¢Q ¢QcQop
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CQp ¢Q cQp
¢Q p 68
So afuh WO phbho ¢Q phoodo ¢Q p isan APT®

Also, we must prove that
oshushey WO ¢Q ¢ o ¢Qz1Q p o ¢QztQ ¢ h
is an APT. By the same procedure as above, let us compute the left hand side (LHS) and
the right hand side (RHS) as:
o3 o Mo ¢Q ¢ wd ¢CQ TQ p
MO QP cOCQ PO VO
CQ TQp ¢cOCQ TQ po
» 0o cQc ¢Q 1Q p
COCQ ¢ ®WCQ TQp o
O 0o TQ YQT TQ p@ ¢ i
PQ p ¢cOCQ ¢ ®OCQ tTQ p o
® 0o TQ p@ i p@ vy
COCQ ¢ ®CQ TQp o
WO TQ p@ ¢ p@ v
COCR ¢ OCQ T p 8

Also,
a p w0 ¢Q 1TQ ¢ 1
W0 CQ TQCC CuCQ TQ O p
0o TQ Yo 1Q YQ p@® YQ
TQ YO 1 CcOCQ T ¢ 6 p
®wo TR p@ i p@
L COCQ T1TQ ¢ o8

For (LHS) and (RHS) to be equal, we must show that
NCQ ¢ ®WCQ TQp ®Q TQ Ch
but
N ¢ wCQ 10 p ¢CQ p ¢Q ¢ ¢Q ¢cQc¢cQ 1Q p
TQ 1TQ ¢Q ¢ ¢Q cQc¢Q 1Qp

69



TQ Q¢ 1TQ YQ ¢Q 1Q Yya ¢Q
TQ p&Q pt Q¢
and
O 1Q ¢ ¢Q ¢Qp ¢CQ 1QC
TQ ¢Q 1TQ 1TQ YQ ¢Q 1p ¢
TQ p&Q piQ YQ ¢8
So the two sides are equal and hence
JHINT ©o ¢Q ¢chwo ¢QzTtQ phoo ¢QzT1TQ ¢ isanAPT.

o

Example 3.2.4:

Let ' Q T and 0 wvand 0 @, what are the almost Pythagorean triples (APT) that

generated.
Solution:

By previous theorem we must know that PPT, so

A7) ¢ phQZ C'EXQzCQ p

¢t zphht zgthgt 2T
Xft g v

Now, when Q T and® uhthe (APTSs) are
adud xuv photo Xxhgw X
o cpog
and
GRIEN]  x v ehcTu pAT L Py
Tfpolxt o
When"Q tandd ¢, by the same way, the (APTs)are T & vip v Xt ip QP @ @
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Example 3.2.5:

Let Q pmand 'Q p pand 0 X, what are the almost Pythagorean triples that are

generated?

When'Q p tthe PPT is (19,180,181) and when"'Q p ghe PPTis ¢ fr ¢hitg p
Now, whenQ p tand 0 x the APTs are

p olp ¢ Ypug Y @

pUPT dppr ¢ w
and, whenQ p mnd 0 X the APTs are

pTiPL dppu @ Y

P Ol X dpox T

Example 3.2.6:

Let'Q o p camd 0 ¢ ythen the formulas in the above theorem yields the triples
P UL XY L X T Qapw X TG @ T
and

POC PO T aIYETC o T X

and they are APT’s which can easily be verified using and computer software.

To generate infinitely many almost Pythagorean triples easily and if “Cand o are large, we

use Java language where the procedures that work the program are taken as follows:

1) Define chohududuiorosius ¢ & @ as the following:

W ¢Qp

® C¢Q ¢Q

® ¢Q cQp

W o p

w 0o ¢Qp

@ ®o ¢Qop

g o ¢Q ¢

G GO CQ TQ p
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ATR o ¢Q 1Q ¢
where all of them are integers.
2) Enter the valuesof Q ¢and 0 p and take any range of o.

~ o~

3) We have stored the values of "‘@ohihuhuhohuhoroshes A T diin tables in Excel sheet

~ o~
o

where ot h afed and asheshy written as triples.

And all of this procedures are written in Java Language which existing in program (2) page
(78) at the end of the thesis.
The following table generate many PPT ¢fudto and also APT  ofufx b asfusher |, where

‘Q ¢ando p.

[ t (a,b,c) (x,y,2) (x,y,z"

2 1 (3,4,5) (4,7,8) (5,5,7)

2 2 (3,4,5) (7,11,13) (8,9,12)

2 3 (3,4,5) (10,15,18) (11,13,17)

2 4 (3,4,5) (13,19,23) (14,17,22)

2 5 (3,4,5) (16,23,28) (17,21,27)

2 6 (3,4,5) (19,27,33) (20,25,32)

2 7 (3,4,5) (22,31,38) (23,29,37)

2 20 (3,4,5) (61,83,103) (62,81,102)

44 86 (87,3784,3785) (7483,325511,325597) (7568,329121,329208)
44 87 (87,3784,3785) (7570,329295,329382) (7655,332905,332993)
44 88 (87,3784,3785) (7657,333079,333167) (7742,336689,336778)
97 35 (193,18624,18625) (6756,652033,652068) (6947,670271,670307)
97 36 (193,18624,18625) (6949,670657,670693) (7140,688895,688932)
97 37 (193,18624,18625) (7142,689281,689318) (7333,707519,707557)
97 38 (193,18624,18625) (7335,707905,707943) (7526,726143,726182)
97 39 | (193,18624,18625) (7528,726529,726568) (7719,744767,744807)
97 40 (193,18624,18625) (7721,745153,745193) (7912,763391,763432)
97 41 (193,18624,18625) (7914,763777,763818) (8105,782015,782057)
97 42 (193,18624,18625) (8107,782401,782443) (8298,800639,800682)
97 43 (193,18624,18625) (8300,801025,801068) (8491,819263,819307)
97 44 (193,18624,18625) (8493,819649,819693) (8684,837887,837932)
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At the end of this section, we successfully gave an explicit formula in generating almost
Pythagorean triples. These formulas were started in theorem 3.2.1 and theorem 3.2.3 in this
section, but the result in theorem 3.2.3 does not generate all almost Pythagorean triples,
because we deal with one formula for the PPT whichis ¢Q pht'Q ¢®&Q ¢Q p 8
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Appendices:

Program (1)

[*a

* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package javaapplicationl;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.PrintStream;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;

import java.util.Scanner;

/**

*a

* @author Fall

*/

public class JavaApplicationl {

/**

* @param args the command line arguments

*/

public static void main(String[] args) throws FileNotFoundException,
UnsupportedEncodingException {

/I int a = 155975;
// for (int j = 1001000; j < 1500000; j+=2) {
1 XSSFWorkbook workbook = new XSSFWorkbook();
1 XSSFSheet sheet = workbook.createSheet("Java Books");
1 File f = new File("file.txt");
Ifif(f.exists() && !f.isDirectory()) {
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/I I do something

M}else{
PrintWriter writer = new PrintWriter("file.txt", "UTF-8");
PrintWriter wexcel = new PrintWriter("file.csv"”, "UTF-8");

I

Scanner sc = new Scanner(System.in);
do{
System.out.printIn(*“please choose witch one is constant ,enter a or b *');

String str = sc.next();

if(str.charAt(0)!="a'&&str.charAt(0)!="b"){
/I System.out.printIn("please choose witch one is constant ,enter a or b ");
/I System.err.printin(str.charAt(0)!="b";

Yelse{

if(str.charAt(0)=="a"){
System.out.printIn("please insert the value of a");
int a = sc.nextInt();

wexcel.printin("a,b,x,y,z,next b,old b = b");

System.out.printIn("please enter the maximum range™);

int max = sc.nextInt();
/I inta=87;
int a2 = 0,b2=0;

for (inti=1; i < max; i++) {

intb=1;
intq=(4*b*b)+4*((b*b)+2*a*h);
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double c1 = Math.sqrt(q);
int c2 = (int) Math.sqrt(q);
if (cl==c2){

intx=(2*b+c2)/2
inty=(x*x-b*b)/(2*b);
intz=(x*x+b*hb)/(2*Dh);

boolean flag = (((x * x) + (y *y)) == (z * 2));
if (flag && x>0&&Yy>0&&2>0){

I1'if(b2!=0){
Il System.out.printin(b2);
if(b2==b){
System.out.printin(fa="+a+"b="+b+"x="+x+"y="+y+"z="+2
);
Stringstr2="a="+a+"b="+b+"x="+x+"y="+y+"z="+7;
writer.printIn(str2);
wexcel.printin(a+","+b+","+x+","+y+","+2);
} else{
System.out.printin(*fa="+a+"b="+b+"x="+x+"y="+y+"z="+2
);
Stringstr2="a="+a+"b="+b+"x="+x+"y="+y+"z="+7;
writer.printin(str2);
I/l writer2.printin("a,b,Xx,y,z,next b,old b = b");
wexcel.printin(a+","+b+","+x+" "+y+" "+2);
}
I}
Iif(b2!1=0){
b2 =x+z ;
I}
}
1 else {
I Stringstr2="a="+a+"b="+b+"x="+x+"y="+y+"z="+z+"no";
1 writer.printIn(str2);
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I System.out.printin(*fa="+a+"b="+b+"x="+x+"y="+y+"z="+z+"
no");

Il }

¥
}else if(str.charAt(0)=="b"){
wexcel.printin("a,b,x,y,z,next a,old a = a");
System.out.printIn("please insert the value of b");
int b = sc.nextlnt();
System.out.printIn("please enter the maximum range");
int a2 = 0,b2=0;

int max = sc.nextInt();

for (inti=1; i< max; i++) {

inta=1;
intq=(@4*b*b)+4*((b*b)+2*a*h);
double c1 = Math.sqgrt(q);
int c2 = (int) Math.sgrt(q);
if(cl==c2){
intx=(2*b+c2)/2;
inty=(x*x-b*b)/(2*b);
intz=(x*x+b*h)/(2*b);
boolean flag = (((x * x) + (y *y)) == (z * 2));
if(flag && x>0&&Yy>0&&2>0){
if(a2==a){
System.out.printin("fa="+a+"b="+b+"x="+x+"y="+y+"z="+2);
Stringstr2="a="+a+"b="+b+"X="+x+"y="+y+"z="+72
writer.printIn(str2);

wexcel.printin(a+","+b+","+x+""+y+" "+2);

}
a2 = x+y;
}
1 else {
1l Stringstr2="a="+a+"b="+b+"Xx="+x+"y="+y+"z="+z+"no";
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I writer.printin(str2);
1 System.out.printin(fa="+a+"b="+b+"x="+x+"y="+y+"z="+z+"
no");

Il }

Twhile(true);
writer.close();

wexcel.close();

I}

Program (2)

/-k

* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package javaapplication2;

import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import java.util.Scanner;

/**

*

* @author Fall
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*/
public class JavaApplication2 {

/**

* @param args the command line arguments

*/

public static void main(String[] args) throws FileNotFoundException,

UnsupportedEncodingException {

/I/System.out.printIn("please™);
/I Scanner sc = new Scanner(System.in);

PrintWriter writerl = new PrintWriter("abt.txt", "UTF-8");
PrintWriter writer = new PrintWriter("file.csv", "UTF-8");
writer.printin("i,t,(a-b-c),(x-y-z),(x"-y'-z")");

for (inti=2;i<100;i++) {

for (intt=1;t<100; t++) {

inta = 2*i-1;
int b = 2*i*i -2*i;

int c = 2*i*i-2*i+1;

int x =a*t+1 ;
inty = b*t+(2*i-1);

int z = c*t +(2*i-1);
int x1 = a*t+(2*i-2);
int yl = b*t +(2*i*i-4*i+1);

int z1 = c*t +(2*i*i - 4*i +2);

writerl.printin(

i+","+
t+", II+
a+ll ||+
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b+" "+
c+),("+
X+" "+
y+" "+
z+),("+
X1+""+
y1+" "+
z1+)");
writer.printin(
i+""+
t+",("+
a+"-"+
b+"-"+
o), (*+
X+"-"+
y+"-"+
7+),("+
X1+"-"+
y1l+"-"+
21+)");
1
String str =
iU+t
B
a:'"+at
"b:"+b+
c:"+c+
X "X+
y Myt
z:"+z+
T+
DUyl+
"z "zl
1 writer.printin(str);

System.out.printIn(str);

I Yelse{



I
I

System.out.printIn("invalid value for i");
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