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Abstract 

 

In this thesis, we studied the Pythagorean Triples, primitive Pythagorean Triples, Almost 

Pythagorean Triples, Nearly Pythagorean Triples and Almost – isosceles Pythagorean 

Triple. Also we do a program in Java Language to generate infinitely many Pythagorean 

Triples and Almost Pythagorean Triples by depending on the procedures and theorems that 

generate these triples, which will be explained in detail in this research. 
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Introduction 

 

 

Around 600 BC Pythagoras and his disciples made rather through studies of the integers in 

various ways: 

Even numbers, Odd numbers, Prime numbers, and composite numbers, where the prime 

number is a number greater than 1 whose only divisions are 1 and the number itself. 

Numbers that are not prime are called composite except that the number 1 is considered 

neither prime nor composite. 

 

The Pythagoreans also linked numbers with geometry, they introduced the idea of 

polygonal numbers, triangular number, square numbers, pentagonal numbers, etc. 

The reason for this geometrical nomenclature is clear when the numbers are represented by 

dots arranged in the form of triangles, squares, pentagonal, etc. 

 

Another link with geometry came from the famous theorem of Pythagoras which states that 

in any right triangle the square of the length of the hypotenuse is the sum of the squares of 

the lengths of the two legs. 

 

Such triangles are now called Pythagorean triangles. The corresponding triple of numbers 

ὼȟώȟᾀ representing the lengths of the sides is called a Pythagorean triple 

 

                                                                                          ὼ ώ ᾀ 

 

 

 

z 

x 

y 
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A Babylonian tablet has been found, dating from about 1700 BC, which contain an 

extensive list of a Pythagorean triples, some of the numbers being quite large. Pythagoras 

was the first to give a method for determining infinity many triples, see [4]. 

 

Now, we will give a brief summary about chapter one, two and three. 

 

In chapter one we introduce the definition of Pythagorean triple, Primitive Pythagorean 

triple and study some lemmas and theorems about Pythagorean triples and primitive 

Pythagorean triples. Also identify on the formula that produce all primitive Pythagorean 

triples, and study some applications about Pythagorean triple and primitive Pythagorean 

triple. In [9], they stated and proved the fundamental theorem of arithmetic to prove 

Lemma 1.1.10. which states that every integer ὲ ρ can be represented as a product of 

prime factors in only one way, apart from the order of the factors. 

 

Addition to that in [2], they stated and proved the This lemma to prove Theorem 1.2.8  

which states that if  ὴ is prime and ὥ is an integer not divisible by ὴȟ then there exist 

integers ὼ aÎÄ ώ such that 

ὥὼḳώ  άέὨ  ὴ  ×ÉÔÈ π ȿὼȿ ὴ    ÁÎÄ  π ȿώȿ ὴ                                                   

And also in ς ÔÈÅÙ used some theorems and lemmas that are using also in the proof of 

Theorem 1.2.8 as the following: 

 

Let ά and ὥ be integers such that ά π and ÇÃÄὥȟά ρ, we say that a is quadratic 

residue modulo ά if the congruence 

ὼ ḳὥ    ÍÏÄά  

is solvable. 

 If ὴ ς is a prime and ÇÃÄὥȟὴ ρ, we introduce the Legendre symbol  by 

ὥ

ὴ

ρ ȟὥ ÉÓ Á ÑÕÁÄÒÁÔÉÃ ÒÅÓÉÄÕÅ
ρ ȟÏÔÈÅÒ ×ÉÓÅȢ

 

 

In [ 2 ] they proved that if ὴ is an odd prime, then  

ρ , 

also, in chapter one we studied the Pell equation 

ὼ ςώ ρȟ 
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and the relation between Pell equation and primitive Pythagorean triples (PPTs), moreover 

we studied the relation between Pythagorean triples and reducible quadratic polynomials. 

 

In chapter two we studied the definition of almost Pythagorean triple (APT), nearly 

Pythagorean triples (NPT) and almost isosceles Pythagorean triples(AI-PT) . Also, studied 

some lemmas and theorems to identify the properties of them and knowing the relation 

between APT and NPT. At the end of this chapter we generated infinitely many APTs and 

NPTs and applied the results in order to develop algorithm for constructing infinitely many 

AI-PT. 

 

Finally, in chapter three we studied an  algorithm for generating Pythagorean triples 

(PTs) by deal with two equation which are ώ ὼ ὥ and ᾀ ώ ὦ and getting on some 

results that are using for generating Pythagorean triples. Also, we generate almost 

Pythagorean triples (APT) by depending on two theorems we proved its. However, in the 

end of this chapter gave a program by using Java language to generate infinity many (PTs) 

and (APTs). 
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Chapter One 

 

Pythagorean Triples 

 

The Greek mathematician Pythagoras theorem says the area of the square upon the 

hypotenuse of the right triangle is equal to the sum of the area of the squares upon the other 

sides. Conversely, any triangle for which the sum of the squares of the length of two 

shortest sides equals to the square of the third side is a right triangle. 

 

Consequently, to find all right triangle with integral side lengths, we need to find all triples 

of positive integers ὼȟώȟÁÎÄ ᾀ satisfying the equation. For more details, see [9]. 

     ὼ ώ ᾀ                                                      (1.1) 

 

1.1  Primitive Pythagorean Triples. 

 

In this section we want to define the primitive Pythagorean triples and identify on the 

formula that produces all the primitive Pythagorean triples under certain conditions. 

 

Definition 1.1.1: 

 

Triples of positive integers satisfying the equation (1.1) are called Pythagorean triples. 

 

Example 1.1.2: 

 

The triples (3,4,5), (6,8,10) and (5,12,13) are Pythagorean triples because 

σ τ υ , φ ψ ρπ and υ ρς ρσ 

Some Pythagorean triples are scalar multiple of other triples such that (6,8,10) is twice 

(3,4,5).  
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In the next definition we define the primitive Pythagorean triple which has no common 

factor. 

 

Definition 1.1.3: 

 

A Pythagorean triple ὼȟώȟᾀ is called primitive if ÇÃÄὼȟώȟᾀ ρ, we will use PPT to 

stand for a Primitive Pythagorean Triple. 

 

Example 1.1.4: 

 

A Pythagorean triples (3,4,5) and (5,12,13) are primitive whereas the Pythagorean triple 

(6,8,10) is not. 

 

Theorem 1.1.5: 

 

Any integral multiple of primitive Pythagorean triple is a Pythagorean triple. 

 

Proof: 

 

Let  ὼȟώȟᾀ be a primitive Pythagorean triple and Ὠ be any positive integer, then 

( Ὠὼ Ὠώ Ὠὼ Ὠώ 

                        =Ὠ ὼ ώ  

but        ὼ ώ=  ᾀ, then 

                                              (Ὠὼ Ὠώ = Ὠᾀ  (Ὠᾀȟ 

therefore ,( ὨὼȟὨώȟὨᾀ ÉÓ Á Pythagorean triple. 

 

Hence, all Pythagorean triples can be found by forming an integral multiple of a Primitive 

Pythagorean triple (PPT).  ʉ

 

Now, to find all primitive Pythagorean triples we need some lemmas and theorems. The 

first one tells us that any two integers of a primitive Pythagorean triple are relatively prime.    

 

Lemma 1.1.6: 

 

If ὼȟώȟᾀ is primitive Pythagorean triple, then ÇÃÄὼȟώ ÇÃÄὼȟᾀ ÇÃÄώȟᾀ ρȢ 
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Proof: 

 

Suppose that ὼȟώȟᾀ is a primitive Pythagorean triple and ÇÃÄὼȟώ Ὠ ρ, then 

 ɱὥ ÐÒÉÍÅ ÎÕÍÂÅÒ ὴ such that ὴȿÇÃÄὼȟώ, so that ὴ|ὼ and ὴȿώ which implies that 

ὴȿὼ ώ ᾀ, but p is prime and ὴȿᾀ, then we conclude that ὴȿᾀȢ Therefore, 

ὴȿÇÃÄὼȟώȟᾀ, which is a contradiction, since ÇÃÄὼȟώȟᾀ ρ, therefore ÇÃÄὼȟώ ρȢ 

 

To prove that ÇÃÄὼȟᾀ ρ , by contrary, suppose ÇÃÄὼȟᾀ Ὠ ρ>. By the same steps 

as in above there exists a prime number ὴ such that ὴȿÇÃÄὼȟᾀȟ so that ὴȿὼ and ὴȿᾀ, 

thus ὴȿᾀ ὼ  ώ, so ὴȿώ  but ὴ is prime number, we conclude ὴȿώ. Which is a 

contradiction since ÇÃÄὼȟώȟᾀ ρ, therefore ÇÃÄὼȟᾀ ρ. 

 

 Similarly, we can show that ÇÃÄώȟᾀ ρ.  ʉ

 

The second lemma, helps us to determine the formula for PPT as the follows: see [6], 

 

Lemma 1.1.7: 

 

For a Pythagorean triple ὼȟώȟᾀ, the following properties are equivalent: 

(1) ὼȟώȟÁÎÄ ᾀ have no common factor, i.e. the triple is primitive, 

(2) ὼȟώȟÁÎÄ ᾀ are pair wise relatively prime, 

(3) two of ὼȟώȟÁÎÄ ᾀ are relatively prime. 

 

Proof: 

 

In Lemma 1.1.6 we proved that (1) implies (2). Also, it is obvious that (2) implies (3). To 

prove that (3) implies (1), assume that (3) is true with ÇÃÄὼȟώ ρ and suppose that  

ÇÃÄὼȟώȟᾀ ρ, then  ɱ a prime number ὴ such that ὴȿὼ, ὴȿώ and ὴȿᾀ, but x and y are 

relatively prime, a contradiction. 

Before we introduce the third lemma we present the following theorem, in order to prove 

the next lemma. see [1].  ʉ

 

Theorem 1.1.8: 

 

If ά is an integer, then ά ḳπ άέὨ τ if m is even and  ά ḳράέὨτ if ά is odd. 
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Proof: 

 

Let άᶰὤ. Then either ά is even or ά is odd. 

 

If ά is even, then Ὧɱɴ ὤ , such that ά ςὯ. Then ά τὯ, so τȿά  and  hence 

ά ḳπάέὨτ. 

 

If ά is odd, then Ὧɱᶰὤ , such that ά ςὯ ρ. Then ά τὯ τὯ ρ,  so ά ρ

τὯ Ὧ  henceτȿά ρȟ and hence ά ḳράέὨτ.Therefore, if  ά is an integer, 

then ά ḳπάέὨτ or ά ḳρ άέὨ τ. ʉ  

 

Now, we present the third lemma which tells us that one of the PT is odd and the other is 

even or vice versa. For more details, see [9].  

 

Lemma 1.1.9: 

 

If ὼȟώȟᾀ is PPT, then one of x and y is odd and the other is even. 

 

Proof: 

 

To show that one of x and y is odd and the other is even. Suppose that x and y are both odd, 

then by Theorem 1.1.8, ὼ ḳράέὨτ and ώ ḳράέὨτ. 

So, ᾀ ὼ ώ ḳςάέὨ τ). 

This is impossible because the square of any integer must be congruent either to 0 or 1 

modulo 4, as in Theorem 1.1.8. Thus, x and y are not both odd. Also x and y are not both 

even, since if both x and y are even, then ςȿὼ and ςȿώ, and so ÇÃÄ ὼȟώ ρ, which 

contradicts Lemma 1.1.6. Hence one of x and y must be odd and the other is even.  ʉ

 

The fourth Lemma that we need is a consequence of the fundamental theorem of arithmetic 

it tells that if the multiple of two relatively prime integers is a square, then each of them 

must both be square. 
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Lemma 1.1.10: 

 

Let ὶȟί and ὸ are positive integers such that ÇÃÄὶȟί ρ and ὶȢί ὸ then  ɱὯȟὰ such 

that ὶ Ὧ and  ί ὰ . 

 

Proof:  

 

If  ὶ Ȣί ρ , then clearly ὶ ρ and  ί ρ. Also, if ὶ ρ ÏÒ ί ρȟÔÈÅÎ ὶ ὸ ÏÒ ί ὸ, 

and clearly Lemma is true. So we may suppose that ὶ ρ and ί ρ. Then the prime – 

power factorizations of ὶȟί and ὸ are  

ὶ ὖ ὖ ȣȣȣὖ  

ί ὴ ὴ ȣȣȣὖ  

and      

ὸ ή ή ȣȣȣή  

since, ÇÃÄὶȟί ρ , then the primes occurring in the factorizations of ὶ ÁÎÄ ί are distinct. 

Since ὶίὸ , we have 

ὖ ὖ ȣȣὖ ὴ ὴ ȣȣὖ ή ή ȣȣȣή . 

From the fundamental theorem of arithmetic, the prime-powers occurring on the two sides 

of the above equation are the same. Hence each ὴ must be equal to ή for some Ὦ with 

matching exponents, so that ὥ ςὦ .  

 

Consequently, every exponent ὥ is even and therefore ὥȾς is an integer. Now, let 

Ὧ ὖ Ⱦὖ Ⱦȣȣȣὖ Ⱦ  

and 

ὰ ὴ
Ⱦ
ὴ

Ⱦ
ȣȣȣὖ Ⱦ  

Clearly                         

ὶ Ὧ and  ί ὰ .   ʉ                                               

 

 

Now, we introduce a desired theorem which describes all primitive Pythagorean triples.  

 

Theorem 1.1.11: 

 

The positive integers ὼȟώ ÁÎÄ ᾀ form a primitive Pythagorean triples, with y even if and 

only if there are relatively prime positive integers Ὧ ÁÎÄ ὰȟὯ ὰ , and ὯḴὰάέὨςȟ with 

Ὧ odd and ὰ even or vice versa, such that  
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ὼ Ὧ ὰ   ,      ώ ςὯὰ      and ᾀ Ὧ  ὰ                      (1.2) 

 

Proof: 

ᵼ Let ὼȟώȟᾀ be PPT with ώ is even , then by Lemma 1.1.9, ὼ is odd and so ὼ is odd. 

But ώ is even then ὼ ώ is odd so ᾀ is odd which implies ᾀ is odd. 

Hence ὼ ᾀ ȟὼ ᾀ are both even. 

 

Define ὶ ÁÎÄ ί by  

                                           ὶ ,  ί  

Since 

                                          ὼ ώ ᾀ  

we have  

                                           ώ ᾀ ὼ 

                      ώ ᾀ ὼ ᾀ ὼ                                         (1.3) 

dividing equation (1.3) by 4, we have 

                                        ὶίȢ 

 

Now, we want to show that ÇÃÄὶȟί ρȟ so let ÇÃÄὶȟί Ὠ, since Ὠȿὶ ÁÎÄ Ὠȿί , then 

Ὠȿὶ ί ᾀ and Ὠȿὶ ί ὼȟ thus ὨȿÇÃÄὼȟᾀ. But ÇÃÄὼȟᾀ ρ, ÔÈÅÎ Ὠ ρȢ Since 

ὶί and ÇÃÄὶȟί ρ, then  by Lemma 1.1.10 there exist, Ὧȟὰɴ ὤ such that  

ὶ Ὧ ÁÎÄ ί  ὰ. Writing ὼȟώ ÁÎÄ ᾀ in terms of Ὧ ÁÎÄ ὰ we have 

ὼ ὶ ί   Ὧ ὰ,  

ώ Ѝτὶί     ЍτὯὰ ςὯὰȟ 

And hence  

ᾀ ὶ ί   Ὧ ὰ. 

 

Also we must show that ÇÃÄὯȟὰ ρ. So If ÇÃÄὯȟὰ Ὠ, then ὨȿὯ ὰ, 

ὨȿςὯὰ   ÁÎÄ  ὨȿὯ ὰ, that is ὨȿὼȟὨȿώ ÁÎÄ Ὠȿᾀ. hence ὨȿÇÃÄ ὼȟώȟᾀ, but we know that 

ÇÃÄὼȟώȟᾀ ρ , then Ὠ ρ. Since  ὶ ί, then Ὧ ὰ.  
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Finally, we must show that ὯḴὰάέὨς. To show that suppose  ὯḳὰάέὨς , then   

Ὧ ὰ is divisible by 2. We have the following cases: 

(1) If both Ὧ ÁÎÄ ὰ are even, then ςȿὯ and ςȿὰ and so ÇÃÄ Ὧȟὰ ρ , a contradiction.  

(2) If both Ὧ ὥὲὨ ὰ are odd, then ὼȟώ ὥὲὨ ᾀ are all even, this contradicts ÇÃÄὼȟώȟᾀ ρ. 

(3) If one of them odd and the other is even, say, Ὧ is odd and l is even. Then Ὧ ὰ is 

odd, but ςȿὯ ὰ, a contradiction.So, ὯḴὰάέὨς, From (1) and (2) above one of k 

and l is odd and the other is even. 

 

 Suppose the triple ὼȟώȟᾀ satisfy 

ὼ Ὧ ὰ , ώ ςὯὰ  and ᾀ Ὧ ὰ, 

where k and l ᶰὤȟὯ ὰȟÇÃÄὯȟὰ ρ and ὯḴὰάέὨς. We must show that 

ὼȟώ ÁÎÄ ᾀ form a primitive Pythagorean triples, with y even. 

 

We first note that ὼȟώȟᾀ is PT 

ὼ ώ  Ὧ ὰ ςὯὰ  

 Ὧ  ςὯὰ ὰ τὯὰ 

Ὧ  ςὯὰ ὰ 

  Ὧ ὰ  

                                                              ᾀ. 

 

Now, we want to show ÇÃÄὼȟώȟᾀ ρ. This follows by Lemma 1.1.7 by showing that 

ὼ ÁÎÄ ᾀ are relatively prime. Suppose  ÇÃÄὼȟᾀ Ὠ ρ. Then  ɱa prime number ὴ ρ 

such that ὴȿὨ and so ὴȿὼ and ὴȿᾀ. Hence ὴȿὼ ᾀ ςὯ and ὴȿᾀ ὼ ςὰ. If  ὴȿς, then 

ὴ ς. But ὯḴὰάέὨς, so Ὧ and l not both odd or not both even, then Ὧ ὰ and 

  Ὧ ὰ are both odd, i.e x and z are both odd. Hence, ὴ ςȟ Suppose ὴ ς, then ὴȿὯ 

and ὴȿὰ, but ὴ is prime, then ὴȿὯ and ὴȿὰ, and so ÇÃÄὯȟὰ ρ, a contradiction. Thus, 

ÇÃÄὼȟᾀ ρ, and so by Lemma 1.1.7. ÇÃÄὼȟώȟᾀ ρ).  ʉ

 

 

Example 1.1.12: 

 

Let Ὧ υ and  ὰ ς , so that ÇÃÄὯȟὰ ρ,  ὯḴὰάέὨς and Ὧ ὰ, hence by theorem 

1.1.9 we have 

ὼ Ὧ ὰ υ ς ςρ  
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ώ ςὯὰςȢυȢς ςπ  

ᾀ Ὧ ὰ υ ς ςω 

 

Table 1.1: The list of the PPT generated by using theorem 1.1.11 with k φ  

 

▓ ■ x y Z 

2 1 3 4 5 

3 2 5 12 13 

4 1 15 8 17 

4 3 7 24 25 

5 2 21 20 29 

5 4 9 40 41 

6 1 35 12 37 

6 5 11 60 61 
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1.2 Applications 

 

For the rest of this section, we are interested in the Diophantine equation ὼ Ὠώ ὲ, 

where Ὠ ÁÎÄ ὲ are integers and Ὠ is a positive integer which is not a perfect square. The 

special case of the Diophantine equation  ὼ Ὠώ ὲ with ὲ ρ is called pell’s 

equation. 

 

The problem of finding the solutions of this equation has a long history. Special cases of 

Pell’s equation are discussed in ancient works by Archimedes and Diophantus. Moreover, 

the twelfth century Indian mathematicians Bhakra described a method for finding the 

solutions of Pell’s equation. A letter written in 1657 Fermat posed to the mathematicians of 

Europe” the problem of showing that there are infinity many integral solutions of the 

equation  ὼ Ὠώ ρ where Ὠ is a  positive integer greater than 1 which is not a perfect 

square. Soon afterwards, the English mathematicians Wails and Brounckes developed a 

method to find these solutions, but did not provide a proof that their methods work. Euler 

provided all the theory needed for a proof in a paper published in 1767 and Lagrange 

published such a proof in 1768. See [9] 

 

An Important results in number theory developed from the study of values of ὼ Ὠώ 

where d is fixed non square integer, the special case of Pell equation  when Ὠ ς shows 

up in the setting of Pythagorean triples, but other values of d are important for other 

problems. See [6]. 

 

If we have a solution of the equation 

ὼ ςώ ρ 

in positive integers ὼ ÁÎÄ ώȟÔÈÅÎ ὼ is odd and ÇÃÄὼȟώ ρ. Let Ὧ ὼ ώ and ὰ ώ.  

then the triple Ὧ ὰȟςὯὰȟὯ ὰ  is a primitive Pythagorean triple with Ὧ ὰ π, 

ÇÃÄὯȟὰ ρ and ὯḴὰ άέὨ ς. 

 

To show this, Since Ὧ ὼ ώ and ὰ ώ, then Ὧ ὼ ώ ώ ὰ π, so Ὧ ὰ π. 

Now, if ὨȿὯ and Ὠȿὰ, then d divides Ὧ ὰ , so Ὠȿὼ and Ὠȿώ ,but ÇÃÄὼȟώ ρ, so Ὠ ρ, 

so that  ÇÃÄὯȟὰ ρ. Since Ὧ ὰ ὼ ώ ώ ὼ and ὼ is odd, then ὼḴπ άέὨ ς, 

and so Ὧ ὰḴπάέὨς, i.e  ὯḴὰ άέὨ ςȢ 
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Now, we claim that Ὧ ὰȟςὯὰȟὯ ὰ  is PPT. Clearly 

Ὧ ὰ ςὯὰ  

Ὧ  ςὯὰ ὰ τὯὰ 

Ὧ  ςὯὰ ὰ 

 Ὧ ὰ Ȣ 

Hence this triple is PT. 

 

Using Lemma 1.1.7, it is sufficient to show that ὫὧὨὯ ὰȟςὯὰ ρ. 

Suppose  ɱ a prime number pȿÇÃÄὯ ὰȟςὯὰ . Then ὴȿὯ ὰ  ςὯὰ and ὴȿὯ

ὰ  ςὯὰ. So, this implies ὴȿὯ ὰ  and  ὴȿὯ ὰ  . But Ὧ ὰ ὼ and ὼ is odd, so 

ὴ ς. Also, since ὴ is prime and ὴȿὯ ὰ ὼ, then ὴȿὼ. But ὴȿὯ ὰ  implies ὴȿὯ ὰ, 

so ὴȿὯ ὰ Ὧ ὰ, i.e. ὴȿςὰ, but ὴ ς , so ὴȿὰ. Hence ὴȿώ and so ὴȿÇÃÄ ὼȟώ, but 

ÇÃÄὼȟώ ρ so ὴ ρ.And so the triple Ὧ ὰȟςὯὰȟὯ ὰ  is a PPT. 

 

The most well-known Pythagorean triples (3,4,5) and (5,12,13) have consecutive terms.  

Clearly 3 and 4 in the first triple, 12 and13 in the others, so by using the parametric 

formula (1.2) for primitive Pythagorean triples, we can address questions concerning relation 

among the sides of primitive right triangle, as the following:  

 

What are all the Pythagorean triples ὥȟὦȟὧ with a pair of consecutive terms either (a and 

b or b and c)? To answer the question, we will consider the following cases: 

 

First Case: 

 

Let us consider the case when ὥ ÁÎÄ ὦ  are consecutive. 

For ὥ ÁÎÄ ὦ to differ by 1 means that ὥ ὦ ρ, but from the discussion we have 

ὥ Ὧ ὰ and ὦ ςὯὰ, so 

                                                           Ὧ ὰ  ςὯὰ ρ           (1.4) 

By adding ςὰ  for both sides we get, 

                                                    Ὧ ὰ  ςὯὰςὰ ρ ςὰ 

which implies to 

Ὧ ςὯὰὰ ρ ςὰ 

By factorizing the left hand side and write it as a complete square we have, 

Ὧ ὰ ρ ςὰ 
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If we subtract ςὰ  form both side we get, 

Ὧ ὰ ςὰ ρ 

Therefore, the relation (1.4) can be written as  

                                                        Ὧ ὰ ςὰ ρ    (1.5) 

where Ὧ ὰ is positive and odd and ὰ  is positive. 

 

That is, finding Pythagorean triples whose legs differ by 1 is the same as finding positive 

integer solution to the Pell equation ὼ ςώ ρ .  

 

Example 1.2.1: 

 

Show that Pell equation is satisfied when ὼ  ρ and ώ ρ , and find the Pythagorean 

triple ὥȟὦȟὧ which satisfies it? 

 

Solution: 

 

Suppose ὼ ρ and ώ ρ, it's clear that the greatest common factor between 

ὼ ὥὲὨ ώ equal one.  Now substitute ὼ ρ and ώ ρ in Pell equation we get 

ρ ςρ ρ 

Thus, ὼ ρ and ώ ρ satisfies the Pell equation. So, let Ὧ ὼ ώ and ὰ ώ, that 

implies  ὰ ρ ÁÎÄ Ὧ ςȢ Therefore, the primitive Pythagorean triple is (3,4,5). since 

        ὥ Ὧ ὰ ς ρ σ 

   ὦ ςὯὰςz ςz ρ τ 

       ὧ Ὧ ὰ ς ρ υ. 

 

Next table shows 5 examples of Pythagorean triples that we can find it in the same 

procedure in the previous example. For more details, See [4] 

Table 1.2: consecutive legs. 

 

x y k l a b c 

1 1 2 1 3 4 5 

3 2 5 2 21 20 29 

7 5 12 5 119 120 169 

17 12 29 12 697 696 925 

41 29 70 29 4059 4060 5741 
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The above Procedure to calculate Pythagorean triples  when the differ between two legs in 

a primitive triple equal 1, but  even if two legs in a primitive triple don’t differ by 1 the 

formula (1.5) is still Ὧ ὰ ςὰ ὲ, for any integer n . 

 

Second case: 

 

For x and y differ by 2, by the same steps when x and y differ by 1, we conclude that 

Ὧ ὰ ςὰ ς 

The equation 

ὼ ςώ ς 

is not solvable, since ὼ ςώ ς, then  ςȿὼ and so ςȿὼ, but ὼ is odd. A contradiction.    

then the triple Ὧ ὰȟςὯὰȟὯ ὰ  is not a primitive, where Ὧ ὼ ώ and ὰ ώȢ 

In generalized if  ὼ ςώ ςὯ where Ὧ   is an integer then the triple is not PPT. 

 

So the possible differences between legs in a primitive triple are precisely the odd values 

of ὼ ςώ for positive integers ὼ ÁÎÄ ώ. 

 

Third case: 

 

When 

                                  ὼ ςώ ὴ                                                         (1.6) 

where p is a prime. 

 

The last case tell us if ὴ is a prime congruent to ράέὨψ, then the general pell equation 

ὼ ςώ ὴ is solvable. Thus to show that we need to prove the next theorem. For more 

details, see [2] 

 

Theorem 1.2.2: 

 

Let ὴ  be an  odd prime number then  ὴ ὥ ςὦ for some integers ὥ ÁÎÄ ὦ if and only 

if  ὴḳ ράέὨψ Ȣ 
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Proof 

Suppose ὴ is an odd prime number such that  ὴ ὥ ςὦ for some integers  ὥ ÁÎÄ ὦ , 

then ὥ ḳςὦ άέὨὴ. Also let ὦᴂ be an integer such that ὦὦǋḳράέὨὴ, thus ὥὦᴂ

ὥ ὦǋ ḳςὦ ὦǋ άέὨὴ and so  ὥὦᴂ ḳςὦὦǋ άέὨὴὴḳςάέὨὴ). 

Now from ς, we used corollary that state if ὴ ς is a prime and ÇÃÄὥȟὴ ρ, then the 

Legendre symbol   is defined by 

 
ὥ

ὴ

ρ        ȟὥ ÉÓ Á ÑÕÁÄÒÁÔÉÃ ÒÅÓÉÄÕÅȟ
ρ ȟÏÔÈÅÒ ×ÉÓÅȟ

 

and so 2 is quadratic residue modulo ὴ and the congruence  ὥὦᴂ ḳςάέὨὴ is solvable, 

thus ρ 

 

Also, from ς we used theorem that states, ρ  ȟ Hence ςὯ, where Ὧ is 

an integer. Thus     ὴ ρḳπ      άέὨψ 

                                                                    ὴ ḳρ       άέὨψ 

                                 ᵼὴḳρ    άέὨψ  or   ὴḳ ρ     άέὨψȢ 

 

 

Suppose p is an odd prime number such that ὴḳ ράέὨψ and let a be an integer such 

that ὥ ḳςάέὨὴ, so there is no positive integers ὼ ὥὲὨ ώ with ὼ ώ ὴ such that 

ὴȿὥὼ ώ, therefore  ὴȿὥ ςὼ ςὼ ώ, so ὴȿςὼ ώ. hence π ςὼ ώ

ςὴ, implies  ὴ ςὼ ώ. 

 

Now, we take some examples on this case, and what are the solutions that satisfies the Pell 

equation (1.3), and what are the PPT that satisfied from this equation. 

 

Example 1.2.3: 

 

The equation 

                                                        ὼ ςώ σ 

has no integral solution because the prime 3 cannot be written as the form ψὯ ρ (by 

theorem 1.2.2) so no PPT has it legs differing by 3. 
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Example 1.2.4: 

 

The equation 

                                                      ὼ ςώ υ 

has no integral solution because the prime 5 cannot be written as the form ψὯ ρ so no 

PPT has it legs differing by 5. 

 

Example 1.2.5: 
 

The equation 

                                               ὼ ςώ χ                 

 has integral solution because, the prime 7 can be written as ψρ ρ χ, Thus, the 

equation 

                                               ὼ ςώ χ 

 has the integral solution ὼ σ and ώ ρ. 

 

To find the PPT, let 

                                        Ὧ ὼ ώ τ and ὰ ώ ρ 

So the PPT is 

Ὧ ὰ  τ ρ ρυ 

ςὯὰςȢτȢρ ψ 

  And   

Ὧ ὰ  τ ρ ρχ , 

therefore, the PPT is (15,8,17). 

 

Hence, from discussion of the cases above we conclude the following for the equation 

                                                       ὼ ςώ ὲ,  

1) If n is even, then there no PPT with consecutive legs. 

2) If ὲ ρ, then there are many PPT as in Table(1.2) 

3) If n is a prime number, then we have PPT triples with consecutive legs if ὲ

ψὯ ρ, for some Ὧᶰὤ. 

4) Not every odd n can derive PPT with consecutive legs. 
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Fourth Case: 

Let us now, turning to a leg and hypotenuse which differ by 1. The story is much simpler if 

the hypotenuse use is odd, so it can only differ by 1 from the even leg, since 

                                ώ ςὯὰ  and  ᾀ Ὧ ὰ 

 as we discussed before, then Ὧ ὰ ςὯὰρ. 

 

But Ὧ ὰ ςὯὰ Ὧ ὰ . i.e Ὧ ὰ ρ, which implies that Ὧ ὰ ρ. So the PPT 

Ὧ ὰȟςὯὰȟὯ ὰ  becomes, 

  

ςὰ ρȟςὰ ςὰȟ ςὰ ςὰ ρȢ 

Since,      

                                Ὧ ὰ   ὰ ρ ὰ ὰ ςὰ ρ ὰ   ςὰ ρ, 

                     

                                                     ςὯὰςὰ ρὰ  ςὰ ςὰ 

and 

                 Ὧ ὰ ὰ ρ ὰ ὰ ςὰ ρ ὰ ςὰ ςὰ ρ. 

 

The next table shows the first four examples can be found by the previous procedure. 

Table1.3: consecutive leg and hypotenuse. 

 

■ ■  ■ ■ ■ ■  

1 3 4 5 

2 5 12 13 

3 7 24 25 

4 9 40 41 

 

From above discussion we studied the PTs when the difference between ὼ ÁÎÄ ώ equal 1 

and the difference between ώ and ᾀ equal 1,but now we introduce a theorem that study the 

PTs when the absolute value of difference between ὼ ÁÎÄ ώ equal ςὯɀ ρ, where Ὧ π. 

For more details, see [5]. 
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Theorem 1.2.6: 

 

For any positive integer Ὧ , there are infinitely many PTs ὼȟώȟᾀ ,satisfying ȿώ ὼȿ 

 ςὯɀ ρȢ 

 

Proof: 

 

We assume ὥ  ρ and ὦ  ὯȢ  4ÈÅ Fibonacci type numbers are  

 ὥȟὦȟὥ  ὦȟὥ ςὦ     ρȟὯȟρ Ὧȟρ ςὯ 

Notice that we depend on the middle two terms of Ὢ  to find the PTs, therefore, 

ὼ  ρ Ὧ  ɀ Ὧ  ςὯ ρ 

ώ  ςὯ ρ Ὧ   ςὯ ς Ὧȟ 

and 

              ᾀ  ρ Ὧ  Ὧ  ςὯ  ςὯ  ρ 

thus the PT Ὕ    ςὯ  ρ ȟςὯ ςὯȟςὯ  ςὯ ρ 

ÓÏ ÔÈÅ ÄÉÆÆÅÒÅÎÃÅ Ὓ   ȿώ ɀὼȿ 

                                             ς Ὧ  ςὯ ɀ ςὯ ρ  

                                          ςὯ ρ. 

 

Secondly if ὥ  ὥ ςὦȟὦ  ὥ  ὦ  then  the Fibonacci type numbers are  

ὥȟὦȟὥ ὦȟὥ  ςὦ  

                                        ὥ   ςὦȟὥ ὦȟςὥ   σὦȟσὥ   τὦ  

                                        ρ ςὯ ȟρ Ὧȟς  σὯȟσ τὯȢ 

By depending on the middle two terms of Fibonacci type numbers we have 

ὼ  ς  σὯ  ɀ ρ Ὧ  

                                                       τ  ρςὯ  ωὯ ɀ ρ ɀ Ὧ ɀ ςὯ 

                                                      ὼ   ψὯ  ρπὯ  σ 

                                                 ώ  ς ρ Ὧ ς σὯ 

                                                     ς ς  σὯ  ςὯ  σὯ  

                                                    ώ  φὯ  ρπὯ  τȟ 

and 
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                                               ᾀ  ς  σὯ  ρ Ὧ  

                                                    τ ρςὯ ωὯ  ρ  Ὧ  ςὯ 

                                                  ᾀ  ρπὯ  ρτὯ  υȟ 

thus the PT Ὕ  is 

ψὯ  ρπὯ σȟφὯ  ρπὯ τȟρπὯ  ρτὯ υ 

 

With Ὓ   ȿώ ɀὼȿ   ȿφὯ  ρπὯ τ ɀ ψὯ ɀ ρπὯ σȿ 

                                      ςὯ ρȢ 

Now, for any ὲ  ρȟ let ὥ  ὥ   ςὦ  and ὦ  ὥ   ὦ   assume that the 

PT Ὕ   ὼȟώȟᾀ  

               ὥ ὥ  ςὦ ȟςὦ ὥ  ὦ ȟὦ   ὥ ὦ , 

generated by Fibonacci type numbers  ὥȟὦȟὥ  ὦȟὥ  ςὦ    

satisfies Ὓ   ȿςὯ ɀ ρȿ, then the next PT  Ὕ  generated by   

 ὥ ȟὦ ȟὥ   ὦ ȟὥ   ςὦ ȟ 

forms 

Ὕ  ὥ  ὥ  ςὦ ȟςὦ  ὥ   ὦ ȟὦ   ὥ  ὦ Ȣ 

 

And also we have, 

                                  Ὓ  ȿώ  ɀ ὼ ȿ                                         

                                              ȿς ὥ  ὦ  ςὥ  σὦ  ɀ  ὥ  ςὦ  σὥ  τὦ ȿ                  

                                          ȿὥ ɀ ςὦȿ                                           

                                           ȿςὦ  ὥ  ὦ  ɀ  ὥ  ὥ  ςὦ ȿ 

                                          Ὓ    ςὯ ɀ ρȢ 

So, we have infinity many PTs ὼȟώȟᾀ , such that, ȿώ ɀ ὼ ȿ  ςὯ ɀ ρ. 

      

Example 1.2.7: 

If ὥ  ρ, ὥ  Ὧ,  ρ  ὑ  τ then  

Ὕ  with Ὓ   ȿςὯ ɀ ρȿ are  σȟτȟυȟυȟρςȟρσȟχȟςτȟςυȟωȟτπȟτρȢ 
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Table 1.4: The PT with Fibonacci numbers and the difference Ὓ   ȿςὯ ɀ ρȿ 

 

▪ █▪▼ 
╣▪ ◌░◄▐ 

 ╢▪  
█▪▼ 

╣▪ ◌░◄▐  

╢▪  
█▪▼ 

╣▪ ◌░◄▐ 

 ╢▪  
█▪▼ 

╣▪ ◌░◄▐  

╢▪  

1 1,1,2,3 3,4,5 1,2,3,5 5,12,13 1,3,4,7 7,24,25 1,4,5,9 9,40,41 

2 3.2.5.7 21.20.29 5,3,8,11 55,48,73 7,4,11,15 105,88,137 9,5,14,19 171,140,221 

3 7,5,12,17 119,120,169 11,8,19,27 297,304,425 15,11,26,37 555,572,797 19,14,33,47 893,924,1285 

 

 

 

1.3 The relation between Pythagorean triples and reducible quadratic 

polynomial  

 

Consider the equation  

ὼ άὼ ὲ = 0                                       (1.7) 

where ά ÁÎÄ ὲ ÁÒÅ ÐÏÓÉÔÉÖÅ ÉÎÔÅÇÅÒÓȢ If the equation (1.7) have integer roots , then  

ά τὲ ÁÒÅ perfect squares. Let  ά τὲ Ὠ and  ά τὲ Ὡ , clearly Ὠ and Ὡ are 

integers. 

 

 Now, 

Ὡ Ὠ ψὲ Ὡ Ὠ Ὡ Ὠȟ 

 

so 2 divides Ὡ Ὠ ÏÒ ς ÄÉÖÉÄÅÓ  Ὡ ὨȟÔÈÁÔ ÉÓ  ὨḳὩ άέὨ ς ,Thus,   ÁÎÄ      

are integers. Also, 

 Ὠ Ὡ ά τὲ  ά τὲ ςά  

 then  ά   Thus    ȟ ȟά  is PT. 

 

 In fact ȟ ȟά   is PPT because if   ɱ a prime p so that ὴȿÇÃÄ ȟ ȟά  then 

ὴȿ , ὴȿ  and ὴȿά, so ὴȿ  i.e.  p| , but Ὡ Ὠ ψὲ So ὴȿςὲ, and 

ὴḴς (from Theorem 1.1.11), so ὴȿὲ. Hence, ὴȿÇÃÄὲȟά ρ, so ὴ ρ. 
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Example 1.2.8: 

 

Show that the polynomial ὼ υ φ corresponds to the Pythagorean triple (3,4,5)? 

 

Solution: 

  

As above discussion, let Ὠ υ τ φ ρ and Ὡ υ τ φ τω 

i.e. Ὠ ρ and Ὡ χ. So the PPT corresponding to this equation is ȟ ȟυ σȟτȟυ. 

 

Next table shows some corresponding Pythagorean triples and reducible ὼ ά ὲ. 

 

Table 1.5: Pythagorean triples and reducible quadratic polynomial  ὼ ά ὲ .  

 

□ ▪ ● □ ▪ ● □ ▪ ╪ȟ╫ȟ╬ 

5 6 ὼ ς ὼ σ ὼ ρ ὼ φ σȟτȟυ 

13 30 ὼ σ ὼ ρπ ὼ ς ὼ ρυ υȟρςȟρσ 

17 60 ὼ υ ὼ ρς ὼ σ ὼ ςπ ψȟρυȟρχ 

29 210 ὼ ρτὼ ρυ ὼ φ ὼ συ ςπȟςρȟςω 
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Chapter Two 

 

Almost and Nearly isosceles Pythagorean triples 

 

A Pythagorean triple (PT) is an integer solution ὥȟὦȟὧ satisfying the polynomial 

ὼ ώ ᾀ 

and it is said to be primitive (PPT) if ÇÃÄὥȟὦȟὧ  ρȢThere have been many ways for 

finding solutions of ὼ ώ ᾀand one of the well-known methods is due to Euclid, BC 

300. The investigation of integer solutions of ὼ ώ ᾀhas been expanded to various 

aspects. One direction is to deal with polynomial ὼ ώ ᾀ  ρ which called Almost 

Pythagorean Triple (APT) or Nearly Pythagorean Triple (NPT) depending on the sign 
. 

 

Another side is to study the integer solution ὥȟὦȟὧ of ὼ ώ ᾀ having some special 

conditions, such that when ὥ  b but in this case, there is no integer solution of ὼ ώ

ᾀ so we can investigate the integer solution ὥȟὦȟὧ with ȿὥ ὦȿ  ρ. We shall call this 

solution ὥȟὦȟὧ is an Almost Isosceles Pythagorean Triple (AI-PT) and typical examples 

are (3,4,5) and (20,21,29). 

 

In this work we generate infinitely many APTs and NPTs and then apply the results in 

order to develop algorithms for constructing infinitely many AI-PT. For more details, see 

[5] 
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2.1 Almost and Nearly Pythagorean Triples 

At the beginning of this section we define an Almost and a Nearly Pythagorean Triples by 

the following definition. 

Definition 2.1.1:  

1. An integer solution ὥȟὦȟὧ of ὼ ώ ᾀ ρ, is called Almost Pythagorean 

Triple (APT). 

2. An integer solution ὥȟὦȟὧ of ὼ ώ ᾀ ρ  is called Nearly Pythagorean 

Triple (NPT). 

 

Example 2.1.2: 

 

The triples (5,5,7), (4,7,8) and (8,9,12) are APT, because 

υ  υ  χ ρ ȟ τ  χ  ψ ρ 

and 

ψ  ω ρς ρ 

and the triples (10,50,51), (20,200,201) and (30,450,451) are NPT, because 

ρπ υπ υρ ρ  ,  ςπ  ςπς  ςπρ ρ 

and 

σπ  τυπ  τυρ ρȢ 

Now, we want to introduce some lemmas and theorems that studying APT and NPT and, 

giving infinitely many APTs and NPTs of many forms. For more details, see [5] 

 

Lemma 2.1.3: 

1. If ὥȟὦȟὧ is an APT then ςὥὧȟςὦὧȟςὧ ρ is a NPT.  

2. If ὥȟὦȟὧ is a NPT then ςὥ ρȟςὥὦȟςὥὧ is an APT.  
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Proof: 

Suppose ὥȟὦȟὧ is an APT. To show that the triple ςὥὧȟςὦὧȟςὧ ρ is a NPT we must 

show that 

                             ςὥὧ ςὦὧ  ςὧ ρ  ρȢ 

The left hand side is 

                               ςὥὧ ςὦὧ  τὥὧ  τὦ ὧ 

                                                 τὧ ὥ  ὦ ,  

but ὥȟὦȟὧ is an APT implies            

ὥ  ὦ  ὧ ρ 

and so 

τὧ ὥ  ὦ τὧ ὧ  ρ 

                            τὧ  τὧ  

                                               τὧ  τὧ  ρɀ ρ   

                                           ςὧ  ρ   ρȟ 

thus ςὥὧȟςὦὧȟςὧ ρ is a NPT. 

Now suppose that ὥȟὦȟὧ is a NPT, by the same way, as above, we prove, 

ςὥ ρ   ςὥὦ  ςὥὧ ρ. 

The left-hand side is                                   

ςὥ ρ   ςὥὦ  τὥ  τὥ ρ  τὥὦ 

                   τὥ  τὥ  τὥὦ  ρ 

              τὥ  ὥ ρ ὦ  ρ 

                τὥ  ὥ  ὦ ρ ρȢ 

But ὥȟὦȟὧ is a NPT so ὥ  ὦ  ὧ ρ, thus       

                           τὥ  ὥ  ὦ ρ ρ  τὥ  ὧ ρ  ρ ρ 
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    τὥὧ ρ 

hence ςὥ ρȟςὥὦȟςὥὧ is an APT.    ʉ

 

 

Theorem 2.1.4: 

 

If a is an even integer, then we have the following:  

(1) ὥȟὦȟὦ ρ is an APT if ὦ ρ  while it is a NPT if ὦ  ὥ Ⱦς. 

(2) ςὥ ρȟὥȟὥὥ ς  is an APT and ὥȟὥ   ρȟ  ρ is a NPT. 

 

Proof:  

 

(1) a) Suppose a is an even integer and ὦ  ρ . To show that ὥȟὦȟὦ ρ is an APT 

we must show that  

ὥ  ὦ  ὦ ρ  ρ  

but ὦ   ρ implies ὥ  ςὦ  ς and so 

ὥ  ὦ  ςὦ  ς  ὦ 

                                                 ὦ  ςὦ ρ ρ 

 ὦ ρ ρȢ 

Therefore, ὥȟὦȟὦ ρ is an APT. 

 

b) Suppose ὦ    then ὥ  ςὦ and so  

                                 ὥ  ὦ  ςὦ  ὦ 

                                   ὦ  ςὦ ρ ρ 

                       ὦ ρ  ρȢ 

Hence ὥȟὦȟὦ ρ is an NPT. 

(2) We want to show that  ςὥ ρȟὥȟὥὥ ς  is an APT and  
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 Áȟὥ ρȟ ρ is an NPT. 

 To show that the triple ςὥ ρȟὥȟὥὥ ς  is an APT , we must show that 

  

ςὥ ρ   ὥ  ὥὥ ς ρȢ 

But 

ςὥ ρ   ὥ  τὥ τὥ ρ ὥ 

                                                     τὥ τὥ ὥ ρ  

                                                     ὥ ὥ τὥ τ ρ 

                                                     ὥ ὥ ς ρ 

                                                     ὥὥ ς ρȟ 

So the triple ςὥ ρȟὥȟὥὥ ς  is an APT. 

 

Now, we want to prove that the triple ὥȟὥ ρȟ ρ is an NPT. We must show 

that 

ὥ ὥ ρ  ρ ρ. 

But 

ὥ ὥ
ὥ

ς
ρ ὥ ὥ

ὥ

τ
ὥ ρ  

                                     Á
ὥ

τ
ὥ ὥ 

                                                                ὥ       

                                                                                  ὥ ρ ρ 

                                                                                               ρ ρȢ 

Thus the triple Áȟὥ ρȟ ρ is a NPT.  ʉ

 

  



28 
 

Table 2.1: Many APTs and NPTs of many forms when a is even. 

 

╪ 
╪ȟ
╪

ȟ
╪

 ╪ȟ
╪ ╪

ȟ
╪

 ╪ȟ
╪
ȟ
╪

 
╪ ȟ╪ȟ╪╪  

2 (2,1,2) (8,4,9) (2,2,3) (9,8,12) 

4 (4,7,8) (64,112,129) (4,8,9) (33,64,72) 

6 (6,17,18) (216,612,649) (6,18,19) (73,216,228) 

8 (8,31,32) (320,1984,2049) (8.32.33) (129,320,528) 

10 (10,49,50) (1000,4900,5001) (10,50,51) (201,1000,1020) 

 

We note that the previous theorem gives infinitely many APTs and NPTs ὥȟὦȟὧ such that 

ὧ ὦ ρȢ 

The following theorem generates APT and NPT ὥȟὦȟὧȟ with ὧ ὦ υȢ 

 

Theorem 2.1.5: 

 

(1) If ὥ ḳ  ς άέὨ ρπ ÁÎÄ ὦ  
 
 ,then ὥȟὦȟὦ υ is a NPT  

(2) If ὥ ḳ  τ άέὨ ρπ ὥὲὨ ὦ    ,then ὥȟὦȟὦ υ is an APT. 

 

Proof:  

 

(1) Suppose ὦ    , then ὥ  ρπὦ  ςτȢ 

Now,                                ὥ  ὦ  ρπὦ  ςτ  ὦ 

                                                          ὦ  ρπὦ  ςυ ρ 

     ὦ υ  ρ 

Hence ὥȟὦȟὦ υ is an NPT.  ʉ

(2)  Suppose ὦ  , then ὥ  ρπὦ  ςφ,  

Now,                            ὥ  ὦ  ρπὦ  ςφ  ὦ 
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                                                      ὦ  ρπὦ  ςυ ρ 

                                                      ὦ υ ρ 

Hence ὥȟὦȟὦ υ is an APT.  ʉ

         Table 2.2: Many APTs and NPTs of the form ὥȟὦȟὦ υ 

Ἡ NPT Ἡȟ
Ἡ

ȟ
Ἡ

 Ἡ APT Ἡȟ
Ἡ

ȟ
Ἡ

 

8 (8,4,9) 14 (14,17,22) 

12 (12,12,17) 16 (16,23,28) 

18 (18,30,35) 24 (24,55,60) 

 

Theorem 2.1.5 together with lemma 2.1.3 yields infinitely many NPTs and APTs (see table 

2) though there are APT and NPT ὥȟὦȟὦ Ὧ with Ὧ  ρ ȟυȢ 

 

 Example:2.1.6 

Show that there is no NPT ὥȟὦȟὦ Ὧ exist if Ὧ  ς ÏÒ σ Ȣ 

Solution: suppose that ὥȟὦȟὦ ς is a NPT, then  

                                          ὥ  ὦ  ὦ ς  ρ 

                                                ὥ  ὦ  ὦ  τὦ  τ ɀ ρ 

                                                           ὥ  τὦ  σȟ 

so  ὥ ḳ σ άέὨτȢ But by Theorem 1.1.8, ὥ ḳ π άέὨ τ or ὥ ḳ ρ άέὨ τ , then 

no solution a exists and therefore if Ὧ  ς then no NPT ὥȟὦȟὦ Ὧ exists. 

 

 Now if Ὧ  σ, suppose that ὥȟὦȟὦ σ is a NPT, then  

ὥ  ὦ  ὦ σ   ρ 

          ὥ  ὦ  ὦ  φὦ  ω  ρ  

ὥ  φὦ  ψȟ 

thus ὥ ḳ ς άέὨ φ. But, in general, if ά is in integer, then ά  have one of the 

following cases: 

ά ḳ π άέὨ φ  έὶ ά ḳ ρ άέὨ φ  

έὶ ά ḳ σ άέὨ φ έὶ ά ḳ τ άέὨ φ  
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ÓÏȟὥ ḳ ς άέὨ φ, has no integer solution. Thus, no NPT of the form ὥȟὦȟὦ σ 

exists. 

 

Example:2.1.7 

Show that there are APTs ὥȟὦȟὦ Ὧ if  Ὧ ς ȟσ Ȣ 

 

Solution: If ὥȟὦȟὦ ς is an APT, then  

ὥ  ὦ  ὦ ς ρ 

           ὥ  ὦ  ὦ  τὦ  τ  ρ 

ὥ  τὦ  υȟ 

and so ὥ ḳ ρ άέὨ τ. But by Theorem 1.1.8, ὥ ḳ ρ άέὨ τ has a solution and so 

there are APTs of the form ὥȟὦȟὦ ς. For example, (5,5,7), (7, 11, 13), … 

 

If ὥȟὦȟὦ σ is an APT, then 

ὥ  ὦ  ὦ σ  ρ 

ὥ  ὦ  ὦ  φὦ  ω  ρ 

ὥ  φὦ ρπȢ 

Thus ὥ ḳ  τ άέὨφ, but  ὥ ḳ  τ άέὨ φ has a solution as in the above discussion.  

For example, (8, 9, 12), (10, 15, 18) are APT. Therefore, we conclude that if Ὧ  ς or 3 

there are APT, but no NPT exists. To generalize this, we give the following theorem. 

 

Theorem 2.1.8: 

 

For any Ὧ  π , the APTs of the form ὥȟὦȟὦ Ὧ always exists. If Ὧ ρ is even and 

square then there exist NPTs of the form ὥȟὦȟὦ Ὧ. 

 

Proof:  

A triple ὥȟὦȟὦ Ὧ is an APT, if 

ὥ  ὦ  ὦ Ὧ    ρ 

                                                 ὥ  ὦ  ὦ  ςὦὯ  Ὧ  ρ  

                                                           ὥ  ςὦὯ  Ὧ  ρ 
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That is, 

ὦ  
ὥ Ὧ ρ

ςὯ
 

Then 

                                        ὥ ḳ Ὧ  ρ ḳ Ὧ  ρ            άέὨ ςὯ  

and so,  

                                       ὥ ḳ Ὧ  ρ             άέὨ ςὯȢ  

Take 

                                                    a  ςάὯ  Ὧ  ρ , for  ά ɴ  ὤ 

then, 

                                                   

ὦ  
ὥ Ὧ ρ

ςὯ
ȟ 

then   

ὦ  
ςάὯ Ὧ  ρ  Ὧ ρ

ςὯ
 

ὦ   
 τά Ὧ  τάὯ Ὧ  ρ Ὧ  ρ Ὧ ρ

ςὯ
 

           
 τά Ὧ  τάὯ τάὯ Ὧ ςὯ ρ Ὧ ρ

ςὯ
 

                                   ςά Ὧ  ςὯά  ςά   ρ 

                                       ςά άὯ  Ὧ  ρ  ρ       Ὢέὶ ά ɴ  ὤȢ 

 

Now we can prove that if  

a  ςάὯ  Ὧ  ρ , for ά ɴ  ὤ 

and 

ὦ  ςά άὯ  Ὧ  ρ  ρȟÆÏÒ ά ɴ  ὤ, 

then the triple ὥȟὦȟὦ Ὧ is an APT. This can be done by showing the left hand side and 

the right hand side of 

ὥ  ὦ  ὦ Ὧ    ρ 

are the same. 

 

The left hand side is 

ὥ  ὦ  ςάὯ  Ὧ  ρ   ςά άὯ  Ὧ ρ  ρ  

 τά Ὧ  τάὯ Ὧ ρ  Ὧ  ρ   
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                τά άὯ  Ὧ  ρ ρ  

 τά Ὧ  τάὯ Ὧ ρ  Ὧ  ρ  

                    τά άὯ ρ  Ὧ  ρ  

           τά Ὧ  τάὯ  τάὯ Ὧ  ςὯ ρ  

 τά άὯ ρ  ςάὯ ρ Ὧ  ρ  Ὧ  ρ  

     τά Ὧ  τάὯ  τάὯ Ὧ  ςὯ ρ  

                                           τά Ὧ ψά Ὧ ψά Ὧ τά Ὧ ψά Ὧ 

                   τά τά Ὧ τάὯ τά ρ 

  τά Ὧ ψά Ὧ ψά Ὧ τά Ὧ ρςά Ὧ 

                              τάὯ ψάὯ τά τά Ὧ ςὯ ςȢ 

 

Now, the right hand side is  

ὦ Ὧ ρ ςάάὯ Ὧ ρ ρ Ὧ ρ 

                          ςά Ὧ ςάὯ ςά ρ Ὧ ρ 

                                τά Ὧ τά Ὧ τά Ὧ ςά Ὧ ςά Ὧ  

                                                      τά Ὧ τά Ὧ τά Ὧ ςάὯ 

                                                  ςάὯ τά Ὧ τά Ὧ τά   

                                          ςά ςάὯ τά Ὧ ςάὯ 

                                                ςά ρ Ὧ ς ά Ὧ ςάὯ 

                       ςάὯ Ὧ Ὧ ρ 

                                                 τά Ὧ ψά Ὧ ψά Ὧ τά Ὧ ρςά Ὧ 

                                                                    τάὯ ψάὯ τά τά Ὧ ςὯ ςȟ 

hence,  ὥ  ὦ  ὦ Ὧ    ρ ÁÎÄ so ὥȟὦȟὦ Ὧ is an APT for all Ὧ  π. 

In particular  Ὧ ρȟρȟὯ ρ is an APT for all Ὧ  π. 

 

(2) If Ὧ ρ is even and square then there exist NPT of the form ὥȟὦȟὦ Ὧ. 

To show that, let Ὧ ρ  ςὺ  όȟ  where όȟὺᶰὔ. 

 

For ὥȟὦȟὦ Ὧ to be a NPT, we must have  ὥ  ὦ  ὦ Ὧ   ρ 

ὥ  ὦ  ὦ  ςὦὯ  Ὧ ɀ ρ 

ὥ  ςὦὯ  Ὧ ɀ ρ , 

that is  
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ὥ ḳ Ὧ ɀ ρ              άέὨ ςὯ 

                                               ὦ  
 
Ȣ 

 

Since Ὧ ρ  ςὺ  ό, then 

                                           ὥ ḳ ςὺ ρ  ɀ ρ            άέὨ ς ςὺ ρ  

                   ḳ τὺ  τὺ  ρ ɀ ρ             άέὨ τὺ ς 

                                                 ḳ τὺ  τὺ                               άέὨ τὺ ς 

                                                 ḳ τὺ  ςὺ  ςὺ                   άέὨ τὺ ς 

                                                ḳ ὺ τὺ  ς  ςὺ                   άέὨ τὺ ς 

                                                ḳ ςὺ  ό                                   άέὨ ςό  ς 

then  

ὥ ḳ ό                      άέὨ ςό  ς 

therefore, 

ὥ  ςό  ςά  όȟ          for  ά ɴ  ὤȟ 

and 

 ὦ  
 ςάό ρ  ό ό ρ ρ

ς ό ρ
 

            
 ςάό ςά ό ό ςό ρ ρ

ς ό ρ
 

                                                 
 ςάό ςά ό ό

ς ό ρ
 

                                                 
 ςάό ρ  ό ό ρ

ς ό ρ
 

                                                  
 ςά ό ρ

ς ό ρ

 ό  ό ρ

ς ό ρ
 

                                                   ά  
ό

ς
ȟ 

also, 

ὦ Ὧ  ά  
ό

ς
  ό  ρ  

 ά  
ό

ς
  ρȢ 

Now we can prove that if  

ὥ  ςὯά  Ὧ ρȟ          for some  ά ɴ  ὤ 

and 
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ὦ  ά ɀ ȟ         ά ɴ  ὤ, 

then the triple ὥȟὦȟὦ Ὧ is an NPT. This can be done by showing the left hand side and 

the right hand side of 

ὥ  ὦ  ὦ Ὧ  ɀ ρȟ 

thus, using Ὧ ρ  ό ×Å ÇÅÔ, 

    ὦ Ὧ  ὦ  ρ  ά ρ   ɀ ά     ρ 

                           ά ρ  ά ρό   ɀ  ά  ɀάό   ɀ ρ  

                                      ά   ςά  ρ  άό  ό   ɀ  ά  άό     ɀ ρ 

                                          ςά  ςάό  ό  

                                           ὥȢ 

So,  ὦ Ὧ  ɀ ὦ ɀ ρ ὥ  and ὥ  ὦ  ὦ Ὧ  ɀ ρ,   so the triple ὥȟὦȟὦ Ὧ is 

an NPT.  ʉ

 

Examples 2.1.9: 

 

(1)  The triples (31,43,53), (51,125,135) are APTs with Ὧ  ρπ. 

(2) Similarly (34, 47, 58), (56, 137, 148) are APTs with Ὧ  ρρȢ 

So, we have infinitely many APTs ὥȟὦȟὧ such that Ὧ is any integer.   

 

On the other hand, let Ὧ  ρȟυȟρχȟσχ . Since Ὧ ɀ ρ even and square then Theorem 2.2.6 

yields NPT ὥȟὦȟὦ Ὧ satisfying  ὥ  ςὯά  Ὧ ɀ ρ and  ὦ  ὥ ɀ Ὧ  ρ Ⱦ ςὯ  

The following table contains some examples on NPT ὥȟὦȟὦ Ὧ, when Ὧ

ρȟυȟρχ ÁÎÄ σχ: 

         Table 2.3:The NPTs ὥȟὦȟὦ Ὧ, when Ὧ ρȟυȟρχ ÁÎÄ σχ. 

▓ ╪ ḳ▓ □▫▀ ▓ ╪ Ὧ ╫ ╪ȟ╫ȟ╫ ▓ NPT 

1 ὥ ḳπ   άέὨς 

2  (2,2,3) 

4  (4,8,9) 

6  (6,18,19) 

5 ὥ ḳτ   άέὨρπ 8 4 (8,4,9) 
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12 12 (12,12,17) 

18 30 (18,30,35) 

17 ὥ ḳρφ   άέὨστ 

30 18 (30,18,35) 

38 34 (38,34,51) 

64 112 (64,112,129) 

37 ὥ ḳσφ    άέὨχτ 

68 44 68,44,81) 

80 68 (80,68,105) 

142 254 (142,254,291) 

 

 

Corollary 2.1.10: 

Let ὲ ḳ π άέὨ ρπ. If ὥ  ὲ  ρπ Ὧ and ὦ    ρπ Ὧ ὲ  υ Ὧ for any Ὧ  π 

then ὥȟὦȟὦ ρ is a NPT. 

 

Proof:  

Suppose ὥ  ὲ  ρπ Ὧ  and ὦ    ρπ Ὧ ὲ  υὯ, then 

ὥ  ὲ  ρπ Ὧ  

Thus,                                             

                                                       ὥ  ὲ  ςπ ὲὯ  ρππ Ὧ 

and, 

  ὦ  
ὲ

τ
  ρππ Ὧ ὲ  υ Ὧ   ρπ ὲ Ὧ ὲ υ Ὧ 

                         ρππ Ὧ ὲ  ρπ ὲὯ  ςυ Ὧ  

                                            ρπ ὲ Ὧ  υπ ὲ Ὧ  

 
ὲ

τ
  ρππ Ὧ ὲ  ρπππ ὲὯ  ςυππ Ὧ  

                                                   ρπ ὲ Ὧ  υπ ὲ ὯȢ 
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Now,             

           ὥ ὦ  ὲ  ςπ ὲὯ  ρππ Ὧ  
ὲ

τ
  

                                                                             ρππ Ὧὲ  ρπππ ὲὯ  ςυππ Ὧ  

                                                                             ρπ ὲ Ὧ  υπ ὲ Ὧ ȟ 

also, ὦ ρ ρ is equal ὦ  ρ  ɀ ρ   ρπ Ὧ ὲ  υ Ὧ  ρ  ɀ ρ 

           ρ  ρππ Ὧ ὲ υὯ  ς   ρ ρπ Ὧ ὲ  υὯ ɀ ρ  

             ὲ  ρ  ρππ Ὧ  ὲ  υὯ    ὲ  ς ρπ Ὧὲ  υπὯ ρ 

   
ὲ

τ
  ὲ  ρππ Ὧ  ὲ  υὯ   ρπ Ὧὲ  υπ ὲ Ὧ  ςπὲὯ  ρππ Ὧ 

               
ὲ

τ
  ὲ  ρππ Ὧ ὲ  ρπ ὲὯ  ςυὯ  ρπ Ὧὲ  υπ ὲὯ  ςπ Ὧὲ 

 ρππ Ὧ  

               
ὲ

τ
  ὲ  ρππ Ὧ ὲ  ρπππ ὲὯ  ςυππ Ὧ  ρπ Ὧὲ  υπ ὲὯ    

 ςπ Ὧὲ  ρππ Ὧ  

Therefore, ὥ ὦ  ὦ ρ  ρ ȢSo ὥȟὦȟὦ ρ is a NPT.  ʉ

 

Examples 2.1.11:  

 

If we let ὲ ρπ,  then ὥ ρπ ρπρ ςπ  ὦ ρπρ ρπυ ςππ and 

 ὧ ςπρ, so the NPT is ςπȟςππȟςπρȢ 

 

The following table contains some examples are applicable on previous theorem: 

Table 2.4: When ὥ  ὲ  ρπ Ὧ and ὦ    ρπ Ὧ ὲ  υ Ὧ,then ὥȟὦȟὦ ρ is a 

NPT. 
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▪ ╪ ▪  
╫
▪

▪  
╪ȟ╫ȟ╫  

10 20 200 ςπȟςππȟςπρ 

20 30 450 (30,450,451) 

30 40 800 (40,800,801) 

40 50 1700 (50,1700,1701) 

50 60 2350 (60,2350,2351) 

 

Now we discuss another way to construct NPTs from PPT as in the following theorem. 

 

Theorem 2.1.12: 

 

Let ὼȟώȟᾀ be a PPT. Then there are many NPT ὥȟὦȟὧ with  ὧ ɀ ὦ  ᾀ. 

 

Proof:  

 

Let ὼȟώȟᾀ be PPT, then by Theorem (1.1.11), we can write ὼ  Ὧ ɀ ὰ  ȟώ ςὯὰ ȟ

ᾀ  Ὧ  ὰȟ where Ὧ  ὰ  π ȟÇÃÄὯ ȟὰ  ρ  ὥὲὨ Ὧ Ḵὰ άέὨ ςȢ Since Ὧ Ḵ

ὰ άέὨ ς, then not both k and l even or not both odd, so suppose k is even and l is odd. 

Let Ὧ  ςὶ  and   ὰ  ςί  ρ such that ὶȟί ɴ  ὔȢ Since ᾀ is a sum of squares then 

 ᾀ  Ὧ  ὰ ḳ ρ άέὨ τ ÁÎÄ ᾀ is odd. The triple ὥȟὦȟὧ is a NPT with ὧ ὦ ᾀ ÉÆ  

ὥ ὦ  ὦ ᾀ  ɀ ρ  

Thus,                                           ὥ ὦ  ὦ  ςὦᾀ  ᾀ ɀ ρ    

                                                            ὥ  ςὦᾀ  ᾀ ɀ ρ  

And                                                     ὦ  
 

 

Since ὥ  ςὦᾀ  ᾀ ɀ ρ, then we have 

ὥ ḳᾀ ρ    ÍÏÄςᾀ 

ὥ ḳᾀ ρ    ÍÏÄς 
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ὥ ḳ ρ       ÍÏÄᾀ 

ὥ ḳπ        ÍÏÄςȢ 

 

Now, to prove that there exist a NPT of the form ὥȟὦȟὦ ᾀ we must prove that ὥ ḳ

ρ άέὨ ᾀ has integer solution, where ᾀ is prime. Now, if ᾀ is a prime then ὥ ḳ

ρ άέὨ ᾀ has integers solutions since ᾀḳρ άέὨ τ. So, with ὦ , there 

exists a NPT of the form ὥȟὦȟὦ ᾀȢ 

On the other hand, if we write z as a product of prime asᾀ ὴȣȣȢὴ, where (ὴodd 

primes and ρ Ὥ Ὦ) , then ᾀḳρ άέὨ τ implies that either every ὴḳράέὨτ or, 

there are even number of ὴ such that  ὴḳ ρ  άέὨτ for ρ Ὥ Ὦ. Thus, in [ 2 ] they 

proved that if ὴ is an odd prime, then the Legendre symbol ρ  So, the 

Legendre symbol ȣȣȣȣ ρ, Thus -1 is a quadratic residue modulo p 

so ὥ ḳ ρ άέὨ ᾀ has integer solution. Hence there is a NPT ὥȟὦȟὦ ᾀȢ  ʉ

 

Example 2.1.13:  

Let (3, 4, 5) be a PPT, what are the NPTs that satisfies with ὧ ὦ υȢ 

Solution: 

Let  ᾀ ὧ ὦ υ , by previous theorem ὥ ḳ ρ ÍÏÄυ has an integer solution. Since 

ὥ ᾀ ςυ, take a ψ , then  ὦ τȟ and ὧ ὦ υ τ υ ω, then the 

triple (8,4,9) is a NPT. 

Also, take ὥ ρς , then ὦ ρς and ὧ ρχȢ Thus the triple (12,12,17) is a NPT. The PPT 

ὼȟώȟᾀ with ᾀ   τπ are (3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (20, 21, 29) and 

(12, 35, 37). 

If ᾀ  υȟρχȟσχ then table 2.3 contains the list of NPTs. When ᾀ  ρσȟςυȟςωȟ NPTs are 

shown in table 2.5: 
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Table 2.5:The NPTs ὥȟὦȟὦ ᾀ when ᾀ  ρσȟςυȟςω. 

◑ ╪ ◑ □▫▀ ◑ ╪□▫▀ ◑ ╪ ᾀ ╫ ╪ȟ╫ȟ╫ ◑ NPT 

13 ὥ ḳρφψḳφτάέὨςφ ψ 

18 6 (18,6,19) 

34 38 (34,38,51) 

44 68 (44,68,81) 

25 ὥ ḳφςτḳσςτάέὨυπ ρψ 

32 8 (32,8,33) 

68 80 (68,80,105) 

82 122 (82,122,147) 

29 ὥ ḳψτπḳρττάέὨυψ ρς 

46 22 (46,22,51) 

70 70 (70,70,99) 

128 268 (128,268,297) 

 

Now we introduce the definition of isosceles APT (iso-APT) and isosceles NPT (iso-NPT) 

For more details see. [5] 

 

Definition 2.1.14: 

 

The almost Pythagorean triple ὥȟὦȟὧ is called iso-APT if ὥ ὦ and also the nearly  

Pythagorean triple ὥȟὦȟὧ is called iso-NPT if ὥ ὦȢ 

 Though there is no isosceles PT, there are many iso-APTs and iso-NPTs. Indeed iso-APT 

and iso-NPT as ὥȟὥȟὧ which satisfy   

ὥ ὥ ὧ ρ, 

so the pair ὥȟὧ is an integer solution of  

ςὼ ɀ ώ   ρȢ 

Which is the pell polynomial.  

Let ὥȟὧ ȟὥȟὧ  be two integers solutions of   

ςὼ ɀ ώ   ρ ÏÒ ςὼ ɀ ώ   ρȟ 

then 
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ρ  ςὥ ɀ ὧ  ςὥ ɀ ὧ  

                                          τὥὥ ςὥὧ ςὥὧ ὧὧȢ 

Add and subtract τὥὥὧὧ    we get 

1 τὥὥ ςὥὧ ςὥὧ ὧὧ τὥὥὧὧ τὥὥὧὧ 

           ςὥὧ ςὥὧ τὥὥὧὧ τὥὥ ὧὧ τὥὥὧὧ 

          ςὥὧ ὥὧ ςὥὥὧὧ τὥὥ ὧὧ τὥὥὧὧ 

          ςὥὧ ὥὧ ςὥὥ ὧὧ  

thus, let ὼ ὥὧ ὥὧ ÁÎÄ ώ ςὥὥ ὧὧ then ὼȟώ satisfies  ςὼ ɀ ώ  ρ. 

Now if we define the product of ὥȟὧ ÁÎÄ ὥȟὧ  as the above discussion, then this 

product satisfied the equation ςὼ ɀ ώ  ρ. 

 

Definition 2.1.15:  

 

Let ὥȟὧ ÁÎÄ ὥȟὧ  be two pairs of integers. then 

ὥȟὧ ὥȟὧ ὥὧ ὥὧȟςὥὥ ὧὧȢ 

 

Example 2.1.16: 

 

Consider the ςὼ ɀ ώ   ρ, clearly, ςȟσ is a root of this equation. By above 

discussion then ςȟσ Ȣςȟσ is also a root of the equation. But (ςȟσ Ȣςȟσ ρςȟρχ ÁÎÄ 

 (5,7) is a root of ςὼ ɀ ώ   ρ , then υȟχȢυȟχ  χπȟωω satisfies ςὼ ɀ ώ   ρ. 

So the first few nonnegative solutions of ςὼ ɀ ώ   ρ are 

 πȟπ   ȟρȟρ  ȟςȟσ  ȟυȟχ  ȟρςȟρχ  ȟ  

ςωȟτρ  ȟχπȟωω  ȟρφωȟςσω ȟȣȣ  ȣȣȣȢȢ 

where the subscripts  ȟ indicate solutions of ςὼ ɀ ώ  ρ and ςὼ ɀ ώ  ρ 

respectively. 
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Theorem 2.1.17: 

Let Ὓ  ὥȟὧ  for Ὓ   ςὛ  Ὓ   with Ὓ  πȟρ ȟὛ  ρȟρ then the 

following hold: 

(1)  ὥ   ὥ ὧ and ὧ  ὥ ὥ   and ςὥὥ ὧὧ   ρ  so 

Ὓ   Ὓ ȟὲ π  is a sequence of solutions ςὼ ɀ ώ  ρ  

(2) Let ὃ   
ρ ς
ρ ρ

  then Ὓ  Ὓ  ὃ  Ὓὃ   by considering Ὓ as a matrix. 

(3) Let Ὓ, Ὓ be subset of Ὓ consisting of Ὓ , Ὓ , respectively. 

If Ὓ  ɴὛ then Ὓ  ɴὛᴜ  and Ὓ  ɴὛ . 

 

 

 

Proof:  

 

Since  Ὓ ςὛ  Ὓ   ,then    

ὥ ȟὧ   ςὥ  ὥ  ȟςὧ  ὧ   

Claim ὧ   ὥ   ὥ ,  by Using mathematical induction, 

if ὲ ρ , then 

ὧ  ὥ  ὥ    ς  ρ  σ  which is the same as ὧ   ςὧ  ὧ. 

Now suppose the claim is true  for ὲ , then  

ὧ  ὥ  ὥ ȟ 

to prove the claim is true for ὲ ρ , let 

ὧ    ςὧ  ὧ  

                                               ςὥ  ὥ   ὥ   ὥ   

                                         ςὥ  ςὥ   ὥ   ὥ  

                            ςὥ  ὥ   ςὥ   ὥ  

      ὥ   ὥȢ 
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By similar way we prove that ὥ   ὥ ὧ. 

1) for ὲ ρ , then 

ὥ  ὥ ὧ   ρ  ρ  ς    which is true 

2) suppose is true for ὲ , i.e  

ὥ  ὥ   ὧ  

3) To prove that for ὲ ρ , such that ὥ  ὥ  ὥ  , then 

 ὥ  ςὥ  ὥ  

                                                     ςὥ  ὧ   ὥ   ὧ  

                                                ςὥ   ςὧ   ὥ   ὧ  

                                  ςὥ   ὥ   ςὧ   ὧ  

                                                            ὥ  ὧȟ 

clearly Ὓ  ὥȟὧ  is a solutions of ςὼ ɀ ώ  ρ . so ςὥ ὧ ρ . 

 

 Want to prove  

                                    ςὥὥ  ɀὧὧ ρ                                         (2.1) 

By induction, (2.1) is true for ὲ ρ ÓÉÎÃÅ ςὥὥ ɀ ὧὧ ρ ρ ȟ  now suppose 

(2.1) is true for ὲ ρ, i.e  ςὥ ὥ  ɀὧ ὧ ρ  is true. 

To prove (2.1) for ὲ, consider 

                                        ςὥ ὧ ςςὥ ὥ ςὧ ὧ  

                                                  ςτὥ τὥὥ ὥ τὧ τὧὧ ὧ  

                                               ψὥ ψὥὥ ςὥ τὧ τὧὧ ὧ  

                                                 τςὥ ὧ ςὥ ὧ τςὥὥ ὧὧ  

                                                 τ ρ ρ τςὥὥ ὧὧ  

Thus     

   ρ ςὥ  ὧ  τ ρ ρ τςὥὥ ὧὧ  

So                      
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                               ρ τ ρ ρ τςὥὥ ὧὧ  

Thus 

τςὥὥ ὧὧ  ρ ρ  ɀτ ρ  

                                                                 τ ρ  

                                ςὥὥ ὧὧ ρ ρ ρ . 

 

Proof: (2) Let ὃ   
ρ ς
ρ ρ

 and  Ὓ πȟρ ȟὛ  ρȟρ ȟ 

Now 

Ὓ ὃ  π  ρ
ρ ς
ρ ρ

   ρ  ρ Ὓ 

and 

Ὓ ὃ  ρ  ρ 
ρ ς
ρ ρ

  ς  σ Ὓ  Ὓ ὃ 

So if assume Ὓ  ὃ  Ὓ  Ὓ ὃ   ,then   

Ὓ ὃ  
= Ὓ ὃ 

 ὥ   ὧ  
ρ ς
ρ ρ

 ὥ  ὧȟςὥ  ὧ  

                           ὥ   ὧ   Ὓ . 

Hence, Ὓ ὃ  
= Ὓ . Moreover for Ὓ  ὥ   ὧ  we have 

Ὓ  ὥ  ὧ   ςὥ  ὧ  

satisfies 

ςὥ  ὧ    ςὥ  ὧ   ςὥ ὧ). 

 

Similarly from  Ὓ  Ὓ  ὃ ὥ  ὧ  ςὥ  ὧ  
ρ ς
ρ ρ

 

   ὥ ὧ  ςὥ ὧ    ςὥ  ὧ ς ὥ  ὧ  

  σὥ  ςὧ ȟτὥ  σὧ  

We have 
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ς σὥ  ςὧ  ɀ τὥ  σὧ  ςὥ ὧ 

thus if  Ὓᶰ Ὓͅ   then Ὓ  ɴὛ   ÁÎÄ Ὓ ᶰὛ . This completes the proof.  ʉ  

 

Next, we introduce the definition of the multiplication of iso-NPT or iso-APT by 

ὥȟὥȟὧ ὥȟὥȟὧ  ὥὧ  ὥὧ ȟὥὧ  ὥὧȟςὥὥ  ὧὧ Ȣ 

 

Theorem 2.2.18: 

 

Let ὢ = ὥȟὥȟὧ  and ὢ = ὥȟὥȟὧ   ȟ  

(1) If 8 and 8 are iso-NPT, then 8Ȣ8 is also an iso-NPT. 

(2) If 8 and 8 are iso-APT, then 8Ȣ8 is an iso-NPT. 

(3) If 8 is an iso-APT (or iso-NPT) and 8 is an iso-NPT (or iso-APT) then  

8Ȣ8 is an iso-APT. 

Proof: 

 

(1)  Since  8and 8 are iso-NPT, then 
ςÁ  Ã ρ     ÁÎÄ       ςÁ  Ã ρ 

Since 

8Ȣ8  ὥὧ  ὥὧ ȟὥὧ  ὥὧȟςὥὥ  ὧὧȢ 

Then to show that 8Ȣ8 is an iso-NPT we must prove that 

ς ÁÃ  ÁÃ   ςÁÁ  ÃÃ  ρ      

The LHS is 

ς ὥὧ  ὥὧ   = ςὥὧ ςὥὧ τὥὥὧὧ 

But 

ςὥ  ὧ ρ   and      ςὥ  ὧ ρ 

Thus   

ςὥὧ ςὥὧ τὥὥὧὧ  ὧ ρ ὧ  ὧ ρ ὧ  τὥὥὧὧ 

                                                           ὧὧ ɀ ὧ ὧὧ ɀ ὧ  τὥὥὧὧ 

                                                          ς ὧὧ ɀ ὧ ɀ ὧ  τὥὥὧὧ 

Also, the RHS is 
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ςÁÁ  ÃÃ  ρ   τὥὥ  ὧὧ  τὥὥὧὧ ρ 

                                                         τ      ὧὧ  τὥὥὧὧ ρ 

                                                              ὧὧ ɀ ὧ ὧ ρ  ὧὧ τὥὥὧὧ ρ 

                                   ὧὧ ɀ ὧ ὧ τὥὥὧὧ 

 So LHS is the same as RHS.  Hence 8Ȣ8is an iso-NPT.  ʉ

 

(2)  If 8 ÁÎÄ 8 are iso-APT then 

ςÁ  Ã ρ          ÁÎÄ              ςÁ  Ã ρ 

Since 

8Ȣ8  ὥὧ  ὥὧ ȟὥὧ  ὥὧȟςὥὥ  ὧὧȢ 

To show that 8Ȣ8is iso-NPT we must prove that 

ς ÁÃ  ÁÃ   ςÁÁ  ÃÃ  ρȢ 

The LHS is    

ς ÁÃ  ÁÃ    2ὥὧ ςὥὧ + τὥὥὧὧȟ 

but we have 

ςὥ  ὧ ρ   and   ςὥ  ὧ ρȟ 

thus 

 2ὥὧ ςὥὧ + τὥὥὧὧ   ὧ ρ ὧ  ὧ ρ ὧ  τὥὥὧὧ  

                                                        ὧ ὧ  ὧ  ὧ ὧ  ὧ  τὥὥὧὧ  

                                                            ς ὧ ὧ   ὧ ὧ  τὥὥὧὧȢ 

 

The RHS is   

ςÁÁ  ÃÃ  ρ  τὥ ὥ  ὧ ὧ   τὥὥὧὧ  ρ 

                                                          τ       ὧ ὧ   τὥὥὧὧ  ρ 

                                                               ὧ ὧ   ὧ ὧ ρ  ὧ ὧ   τὥὥὧὧ ρ 

                        ςὧ ὧ   ὧ ὧ  τὥὥὧὧ, 

so LHS is the same as RHS. Therefore 8Ȣ8 is an iso-NPT.  ʉ

 

(3) Suppose 8 is an iso-APT and  8 is an iso-NPT then         

ςÁ  Ã ρ    and    ςÁ  Ã ρ 
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 Since 

8Ȣ8  ὥὧ  ὥὧ ȟὥὧ  ὥὧȟςὥὥ  ὧὧȢ 

 

To show that 8Ȣ8is iso-APT we must prove that  

ς ÁÃ  ÁÃ   ςÁÁ  ÃÃ ρ  

The LHS is 

ς ÁÃ  ÁÃ ςὥὧ ςὥὧ  τὥὥὧὧ , 

Since 

ςÁ Ã ρ      and          ςÁ Ã ρ  

then, 

ςὥὧ ςὥὧ  τὥὥὧὧ  ὧ ρ ὧ  ὧ ρ ὧ  τὥὥὧὧ  

                                                 ὧ ὧ  ὧ  ὧ ὧ  ὧ  τὥὥὧὧ  

             ςὧ ὧ  ὧ  ὧ  τὥὥὧὧȢ  

 

The RHS is  

 ςÁÁ  ÃÃ ρ  τὥ ὥ  ὧ ὧ   τὥὥὧὧ ρ 

                                      τ     ὧ ὧ   τὥὥὧὧ ρ 

                                      ὧ ὧ   ὧ ὧ ρ  ὧ ὧ   τὥὥὧὧ ρ 

                                     ςὧ ὧ   ὧ ὧ  τὥὥὧὧ 

So LHS is the same as RHS. So 8Ȣ8is an iso-APT.  ʉ

 

2.2  Almost Isosceles Pythagorean Triples 

 

The nonexistence of isosceles integer solution of ὼ ώ ᾀ open the investigations for 

finding solutions that look more and more like isosceles. By an almost isosceles 

Pythagorean triple (AI-PT). For more details, see [5]. 
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We mean an integer solution ὥȟὦȟὧ of ὼ ώ ᾀ 
such that ὥ and ὦ differ by 1. 

 

The triples (3,4,5), (20,21,29) and (119,120,169) are typical examples of AI-PT. 

 

Now, let ὥȟὦȟὧ be an AI-PT with ὦ  ὥ ρȟ 

if ὧ ὦ Ὧ  for Ὧ  ɴ   ὔ, then  

                                                 ὥ  ὦ  ὧ 

                                      ὥ  ὥ ρ   ὦ Ὧ  

                                      ὥ  ὥ ρ   ὥ ρ Ὧ  

                                 ὥ ὥ ςὥ ρ  ὥ ὥ ὥὯ ὥ Ὧ ρ ὥὯ Ὧ ὯȢ 

 

So 

ὥ  ςὥὯ ςὯ  Ὧ 

thus                                       ὥ ɀ ςὯὥ ɀ Ὧ  ςὯ  π 

the solution Á  Ὧ   ςὯ Ὧ ρ is an integer  if ςὯ Ὧ ρ is a perfect square. 

In fact, if Ὧ ρ then ςὯ Ὧ ρ τ, so ὥ σ  ÁÎÄ   ὦ τ yields an AI-PT (3,4,5). 

If we let ςὯ Ὧ ρ  ό for some  ό ɴ  ὔ, then ὥ  Ὧ ό . Let ὥ Ὧ ό, then 

ὥ ɀ ςὯὥ ɀ Ὧ  ςὯ  π 

                                                  Ὧ ό  ɀ ςὯ Ὧ όɀ Ὧ ɀ ςὯ  π 

       Ὧ  ςὯό  ό ɀ ςὯ ɀ ςὯό ɀ Ὧ ɀ ςὯ  π 

                                                                                 ό ɀ ςὯ ɀ ςὯ π Ȣ 

multiplying both sides by 2 and subtract 1 to both sides we get, 

ς ό ɀ ςὯ ρ   ρȢ 

 

If ὺ  ςὯ ρ then  

ς ό ɀ ὺ  ρȟ 

 so the pairs όȟὺ correspond to the pairs όȟὺ  ɴ  Ὓͅ in the Theorem 3.2.13 where 

 Ὧ  . Hence the set Ὓͅ   ςȟσ ȟρςȟρχ ȟχπȟωω ȟȣ  together with Ὧ  ,  

ὥ  ό Ὧ , ὦ  ὥ ρ      and ὧ  ὦ  Ὧ provides Table 2.6 of AI-PT 

ὥȟὦȟὧ . 
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        Table 2.6: The AI-PT ὥȟὦȟὧ  where όȟὺ  ɴ  Ὓͅ 

▪ ◊▪ȟ○▪  ▓▪ (╪▪ȟ╫▪ȟ╬▪  

2 (2,3) 1 (3,4,5) 

4 (12,17) 8 (20,21,29) 

6 (70,99) 49 (119,120,169) 

8 (408,577) 288 (696,697,985) 

 

Theorem 2.2.1: 

(1)  When όȟὺ  ɴ  Ὓͅ  , let ὥ  ό    , ὦ  ό   and ὧ  ό  ὺ 

then ὥȟὦȟὧ  is an AI-PT with  ὧ ɀ ὦ   

(2) If όȟὺ  ɴ Ὓ, then ὥȟὦȟὧ is an AI-PT if 

ὥ     ,  ὦ     and    ὧ  ό  

 

Proof: 

  

(1) If όȟὺ  ɴ  Ὓͅ, then ὺ is odd since ὺ  ςὯ ρ  and ὺ  ςὺ   ὺ  as 

in Theorem 2.1.17. Claim ὧ ɀ ὦ  ȟ Then 

ὧ ɀ ὦ  ὧ ɀ ό   
ὺ ρ

ς
 

                         ό ὺ ɀ ό  
ὺ ρ

ς
 

   ὺ ɀ  
ὺ ρ

ς
 

      
ὺ ρ

ς
  ὯȢ 

 

Claim: ὥȟὦȟὧ  is an AI-PT, Clearly 

ὥ ρ  ό  
ὺ ρ

ς
ρ 

                                                            ό  ρ 

                                                            ό   

                                                           ὦ Ȣ          
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To show that ὥȟὦȟὧ  is PT, we must prove that ὥ  ὦ  ὧȟ To do this, consider 

           ς ὥ  ὦ  ς ὥ  ὥ ρ  

                            ς ὥ  ὥ  ςὥ  ρ 

                            ς ςὥ   ςὥ  ρ                                   

                            ς ςό     ςό    ρ                              

                            τ  ό     τ ό    ς                                

                           τό  τό ὺ ρ  ὺ ρ  τό ςὺ ρ ς 

                           τό  τόὺ  τό  ὺ ςὺ ρ τ ό ςὺ ς ς 

                            τό  τόὺ  ὺ  ρ 

                           ςό  ςό ρ  τόὺ  ὺ  

                           ςό  ὺ  τόὺ ὺ  

                           = ςό  τόὺ ςὺ  

                            ς ό  ὺ  

                            ςὧȢ 

Since όȟὺ  ɴ  Ὓͅ,  satisfies ςό ɀ ὺ  ρ ȟso ὥȟὦȟὧ is an AI-PTȢʉ  

(2) Similarly Theorem 2.1.17 says if όȟὺ  ɴ  Ὓ, then  ό ȟὺ  ɴ  Ὓͅ, where 

ό ȟὺ = όȟὺ   (
ρ ς
ρ ρ

) 
-1

 

                             όȟὺ  
ρ ς
ρ ρ

 

                                                                  ό  ὺȟςό  ὺ ȟ 

thus 

 ό   ό  ὺ 

ὺ  ςό  ὺȢ 

 

Hence 

   ὥ  ό   ὺ  ρ             

                           ό  ὺ   ςό  ὺ ρ           

                                                             ό  ὺ  ό ɀ   
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ὦ  ό  
ὺ ρ

ς
 

                                                       ό  ὺ   ςό  ὺ ρ 

                                                       ό  ὺ  ό               

   
ὺ

ς
  
ρ

ς
 
ὺ ρ

ς
Ȣ 

And 

                                               ὧ ό  ὺ  

                                               ὧ  ό  ὺȟςό  ὺ 

                                                     ό 

 

 By part (1) then ὥȟὦȟὧ is an AI-PT .  ʉ
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Chapter Three 

 

Generating Pythagorean Triples and Almost Pythagorean Triples 

 

In this chapter we will investigate Pythagorean triples ὼȟώȟᾀ with equation ώ  ὼ ρ 

and led to some interesting relationships which allow Pythagorean triples to be generated 

iteratively and obtain these relationships and other algorithms for generating Pythagorean 

triples. Also we determine all Almost Pythagorean Triples (APT) by solving the given 

Diophantine equation. However, the result does not explicitly and readily give a particular 

almost Pythagorean triples. In this note, using basic algebraic operations and Frink’s result 

we give an explicit formula that readily gives a particular almost Pythagorean triples. We 

also give a certain integer sequence as a result of the generated formula. 

 

3.1 A new algorithm for generating Pythagorean Triples 

 

In this section we depend on two equations which are ώ ὼ ὥ and ᾀ ώ ὦ and from 

these equations we get on some results that are using for generating Pythagorean triples 

and accordingly for this we deal with two cases which we will explain in this chapter.[8] 

 

If we have a Pythagorean triple ὼȟώȟᾀ that satisfies the Diophantine equation ὼ ώ

ᾀ and if we let ᾀ ώ ὦ then, 

ὼ ώ ώ ὦ  

ὼ ώ ώ ςὦώ ὦ 

ὼ ςὦώ ὦ. 
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Hence  

Ù 
2 2

2
   and ᾀ ώ ὦ  

2 2

2
 

therefore, the triple can therefore be expressed as 

                                            ὼȟ  ȟ .     (3.1) 

 

Also,  let  ώ  ὼ ὥ then 

ὼ ὥ
ὼ ὦ

ςὦ
 

and thus 

                          ὼ ςὦὼ ὦ ςὥὦ π  (3.2) 

by using equation (3.2) we may generate infinitely many Pythagorean triples. 

Consider the following cases: 

 

Case (1):  If a is fixed 

In this case if we let ὥ be fixed and change the values of ὦ, for example, if we let ὥ ρ 

and take ὦ ρ then the equation (3.2) becomes 

ὼ ςὼ σ ὼ σ ὼ ρ π 

Now take ὼ σ and substitute in the triple ὼȟ  ȟ   ,we get the triple 

(3,4,5). 

 

In order to generate the next triple where ὥ ρ, we must know the next value of b, thus 

the equation (3.2) when a is fixed and equal 1 becomes  

                                   ὼ ςὦὼ ὦ ςὦ π     (3.3) 

and this equation has a solution if ὃὦ τὦ τὦ ςὦ  is an integer. 
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So, the following table contains some values of b that show when the equation (3.3) is 

reducible or not. 

            Table 3.1: The value of discriminate τὦ τὦ ςὦ from b=2 to b =10 

b ╫ ╫ ╫ 

2 Ѝτψ 

3 Ѝωφ 

4 Ѝρφπ 

5 Ѝςτπ 

6 Ѝσσφ 

7 Ѝττψ 

8 Ѝυχφςτ 

9 Ѝχςπ 

10 Ѝψψπ 

 

We note that from the above table when ὦ ψ  there is an integer solution of (3.3).  

And, when ὦ ςȟσȟτȟυȟχ   and 7 the equation (3.3) is irreducible. 

Now let ὦ ψ , so the equation (3.3) becomes  

ὼ ρφὼ ψπ ὼ ςπὼ τ π 

Take ὼ ςπ and substitute in the triple (3.1), we get the triple (20, 21, 29). By depending 

on two these triples (3,4,5) and (20, 21, 29) we get the relationship, 

ὦ ὼ ᾀ 

and thus we can generalize it as 

ὦ ὼ ᾀȢ 

For all ὲ ρ, which suggested itself as a possibility to be explored for determining 

subsequent values of b where ὼȟὼȟᾀ represent the n
th

 Pythagorean triple of a sequence. 

In fact, the relation ὦ ὼ ᾀ is proved in [7 ]. 

The first four triples when ὥ ρ can be generated by using equation (3.3) as follows: 

1) When ὦ ρ , then the equation(3.3) becomes, 
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ὼ ςὼ σ ὼ σ ὼ ρ π 

So, take ὼ σ, then by (3.1), the PT is (3, 4, 5). 

2) When ὦ σ υ ψ, then the equation (3.3) becomes, 

ὼ ρφὼ ψπ ὼ ςπὼ τ π 

So, take ὼ ςπ, then by (3.1), the PT is (20, 21, 29). 

3) When ὦ ςπ ςω τω, then the equation (3.3) becomes, 

ὼ ωψὼ ςτωωὼ ρρωὼ ςρ π 

So, take ὼ ρρω, then by (3.1), the PT is (119, 120, 169). 

4) when ὦ ρρωρφωςψψ, then the equation (3.3) becomes, 

ὼ υχφὼ ψσυςπὼ φωφὼ ρςπ π 

So, take ὼ φωφ, then by (3.1), the PT is (696, 697, 985). 

 

Case (2):  If ╫ is fixed 

 

By the same way as above,  

If ὥ ρ and ὦ ρ , we get on the triple (3,4,5) thus let ὦ be fixed, say ὦ ρ and change 

the values of a to generate the next triples. 

Thus, the equation (3.2) when b is fixed becomes 

ὼ ςὼ ρ ςὥ π        (3.4) 

And the equation (3.4) has an integer solution if ὃὥ τ τρ ςὥ  Ѝψ ψὥ  is 

an integer. 

 

So, the following table contains some values of ὥ that shows when the equation (3.4) is 

reducible or not. 
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 Table 3.2: The value of discriminate Ѝψ ψὥ   from a = 2 to a = 10 

a Ѝ ╪  

2 Ѝςτ 

3 Ѝσς 

4 Ѝτπ 

5 Ѝτψ 

6 Ѝυφ 

7 Ѝφτ ψ 

8 Ѝχς 

9 Ѝψπ 

10 Ѝψψ 

 

So, we note from the above table when ὥ χ there is an integer solution of (3.4). Also, 

when ὥ ςȟσȟτȟυ and 6 the equation (3.4) is irreducible. So, by depending on ὥ χ  the 

equation (3.4) becomes, 

ὼ ςὼ ρυ ὼ υ ὼ σ π 

Take ὼ υ, and substitute in the triple (3.1) we get the triple υȟρςȟρσ  Thus, by 

depending on the first two triples σȟτȟυ ȟυȟρςȟρσ, and letting ὥ ρ and ὥ χ, we 

get the relationship 

ὥ ὼ ώ 

and thus we can generalize it as 

ὥ ὼ ώȢ 

 

For all ὲ ρ, which suggested itself as a possibility to be explored for determining 

subsequent values of b where ὼȟώȟᾀ represent the n
th

 Pythagorean triple of a sequence. 

In fact, this relation is proved in [7]. 

 

The first four triples when ὦ ρ can be generated by using equation (3.4) as follows: 
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1)  When ὥ  ρ , then the equation (3.4) becomes, 

ὼ ɀ ςὼ ɀ σ  ὼ σ ὼ ρ π 

So, take ὼ σ, then by (3.1), the PT is σȟτȟυ. 

2) When ὥ σ τ  χ then the equation (3.4) becomes, 

ὼ ɀ ςὼ ɀ ρυ  ὼ υ ὼ σ π 

So, take ὼ υ, then by (3.1), the PT is υȟρςȟρσ. 

3) When ὥ  υ ρς ρχ  , then the equation (3.4) becomes, 

ὼ ɀ ςὼ ɀ συ  ὼ χ ὼ υ π 

So, take ὼ χȟ then by (3.1), the PT is χȟςτȟςυ. 

4)  when ὥ χ ςτ σρ, then the equation (3.4) becomes, 

ὼɀ ςὼ ɀ φσ ὼ ω ὼ χ π 

So, take ὼ ω, then by (3.1), the PT is ωȟτπȟτρ. 

 

At the end of this section, we can use the Java Language to generate infinitely many 

Pythagorean triples (PTs) by using the above procedures in case 1 and in case 2 as the 

following: - 

1. We basically depend on the equation (3.2) which is 

                                                     ὼ ςὦὼ ὦ ςὥὦ π 

2. The equation (3.2) has a solution only when the discriminate is an integer, i.e. 

 

τὦ τὦ ςὥὦ  

is an integer. 

3. Now, by using the general formula of the quadratic equation, we can find the values 

of x as: 

ὼ
ςὦ τὦ τὦ ςὥὦ

ς
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and therefore we can compute ώ and ᾀ by 

 

ώ              and               ᾀ  

 

4. The above values of ὼ ȟώ and ᾀ are form Pythagorean triples because ὼ ώ ᾀ 

satisfied. 

5. We tried to run the program when ὥ is fixed and change the values of ὦ or ὦ is 

fixed and change the values of ὥ and enter any value and any range for ὥ or ὦ. 

6. Finally, we have stored the values of ὥȟὦȟὼȟώ ὥὲὨ ᾀ in tables in excel. 

 

All above procedures are written in Java Language which existing in program (1) at page 

(74) at the end of the thesis. 

 

Now, we want to give some examples which are applicable on the above program where 

the first nine examples when ὥ is fixed and the others when ὦ is fixed. 

 

Example 3.1.1: 

 

Table 3.3: For ὥ equals 1 and the values of ὦ are changed. 

 

b x y z 

1 3 4 5 

8 20 21 29 

49 119 120 169 

288 696 697 985 

1681 4059 4060 5741 

9800 23660 23661 33461 
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Example 3.1.2: 

 

Table 3.4:  For ὥ equals 2 and the values of ὦ are changed. 

 

b x y z 

2 6 8 10 

16 40 42 58 

98 238 240 338 

576 1392 1394 1970 

3362 8118 8120 11482 

 

Example 3.1.3: 

 
 

Table 3.5:  For a equals 5 and the values of b are changed. 

b x y z 

5 15 20 25 

40 100 105 145 

245 595 600 845 

1440 3480 3485 4925 

8405 20295 20300 28705 

 

Example 3.1.4: 

 

Table 3.6: For a equals 11 and the values of b are changed. 

b x y z 

11 33 44 55 

88 220 231 319 

539 1309 1320 1859 

3168 7656 7667 10835 
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Example 3.1.5:  

 

Table 3.7: For ὥ equals 18 and the values of ὦ are changed. 

b x y z 

18 54 72 90 

144 360 378 522 

882 2142 2160 3042 

5184 12528 12546 17730 

 

 

Example 3.1.6: 

 

Table 3.8: For ὥ equals 36 and the values of ὦ are changed. 

b x y z 

36 108 144 180 

288 720 756 1044 

1764 4284 4320 6084 

10368 25056 25092 35460 

 

Example 3.1.7: 

 

Table 3.9:  For ὥ equals 75 and the values of  ὦ are changed. 

b x y z 

75 225 300 375 

600 1500 1575 2175 

3675 8925 9000 12675 

 

Example 3.1.8: 

 Table 3.10: For ὥ equals 100 and the values of  ὦ are changed. 

b x y z 

100 300 400 500 

800 2000 2100 2900 

4900 11900 12000 16900 
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Example 3.1.9: 

 

Table 3.11:  For ὥ equals 1000 and the values of  ὦ are changed. 

b x y z 

1000 3000 4000 5000 

8000 20000 21000 29000 

 

Now the following examples when b is fixed. 

 

Example 3.1.10: 

Table 3.12: For ὦ equals 1 and the values of ὥ are changed. 

 

b x y z 

1 3 4 5 

7 5 12 13 

17 7 24 25 

31 9 40 41 

49 11 60 61 

71 13 84 85 

97 15 112 113 

127 17 144 145 

161 19 180 181 

199 21 220 221 

241 23 264 265 

287 25 312 313 

337 27 364 365 

391 29 420 421 

449 31 480 481 

511 33 544 545 

577 35 612 613 

647 37 684 685 

721 39 760 761 

799 41 840 841 
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Example 3.1.11: 

 

Table 3.13:  For b equals 3 and the values of a are changed. 

 

b x y z 

3 9 12 15 

21 15 36 39 

51 21 72 75 

93 27 120 123 

147 33 180 183 

213 39 252 255 

291 45 336 339 

381 51 432 435 

483 57 540 543 

597 63 660 663 

723 69 792 795 

861 75 936 939 

1011 81 1092 1095 

1173 87 1260 1263 

1347 93 1440 1443 

1533 99 1632 1635 

1731 105 1836 1839 

1941 111 2052 2055 

2163 117 2280 2283 

2397 123 2520 2523 

2643 129 2772 2775 

2901 135 3036 3039 
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Example 3.1.12: 

Table 3.14: For ὦ equals 19 and the values of ὥ are changed. 

 

a x y z 

19 57 76 95 

133 95 228 247 

323 133 456 475 

589 171 760 779 

931 209 1140 1159 

1349 247 1596 1615 

1843 285 2128 2147 

2413 323 2736 2755 

3059 361 3420 3439 

3781 399 4180 4199 

4579 437 5016 5035 

5453 475 5928 5947 

6403 513 6916 6935 

7429 551 7980 7999 

8531 589 9120 9139 

9709 627 10336 10355 

10963 665 11628 11647 

12293 703 12996 13015 

13699 741 14440 14459 

15181 779 15960 15979 

16739 817 17556 17575 

18373 855 19228 19247 

20083 893 20976 20995 

21869 931 22800 22819 

23731 969 24700 24719 

25669 1007 26676 26695 

27683 1045 28728 28747 

29773 1083 30856 30875 
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Example 3.1.13: 

 

Table 3.15:  For b equals 55 and the values of a are changed. 

 

b x y z 

55 165 220 275 

385 275 660 715 

935 385 1320 1375 

1705 495 2200 2255 

2695 605 3300 3355 

3905 715 4620 4675 

5335 825 6160 6215 

6985 935 7920 7975 

8855 1045 9900 9955 

10945 1155 12100 12155 

13255 1265 14520 14575 

15785 1375 17160 17215 

18535 1485 20020 20075 

21505 1595 23100 23155 

24695 1705 26400 26455 

28105 1815 29920 29975 

31735 1925 33660 33715 

35585 2035 37620 37675 

39655 2145 41800 41855 

43945 2255 46200 46255 

48455 2365 50820 50875 

53185 2475 55660 55715 

58135 2585 60720 60775 

63305 2695 66000 66055 

68695 2805 71500 71555 

74305 2915 77220 77275 

80135 3025 83160 83215 

86185 3135 89320 89375 
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Example 3.1.14: 

 

Table 3.16:  For b equals 105 and the values of a are changed. 

b x y z 

105 315 420 525 

735 525 1260 1365 

1785 735 2520 2625 

3255 945 4200 4305 

5145 1155 6300 6405 

7455 1365 8820 8925 

10185 1575 11760 11865 

13335 1785 15120 15225 

16905 1995 18900 19005 

20895 2205 23100 23205 

25305 2415 27720 27825 

30135 2625 32760 32865 

35385 2835 38220 38325 

41055 3045 44100 44205 

47145 3255 50400 50505 

53655 3465 57120 57225 

60585 3675 64260 64365 

67935 3885 71820 71925 

75705 4095 79800 79905 

83895 4305 88200 88305 

92505 4515 97020 97125 

101535 4725 106260 106365 

110985 4935 115920 116025 

120855 5145 126000 126105 

131145 5355 136500 136605 

141855 5565 147420 147525 

152985 5775 158760 158865 

164535 5985 170520 170625 
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Example 3.1.15: 

 

Table 3.17:  For ὦ equals 2553 and the values of ὥ are changed. 

 

b x y z 

2553 7659 10212 12765 

17871 12765 30636 33189 

43401 17871 61272 63825 

79143 22977 102120 104673 

 

 

3.2 A Note on generating almost Pythagorean triples 

 

In this section we try to generate almost Pythagorean triples (APT) by depending on two 

theorems that we will discuss now. See [3] 

 

Theorem 3.2.1: 

 

If ὥȟὦȟὧ is a primitive Pythagorean triple and if ὴȟήȟὶ is an almost Pythagorean triple, 

then the triples: 

ὼȟώȟᾀ  ὥὸ  ὴȟὦὸ  ήȟὧὸ  ὶ  

And  

Ø ȟώ ȟᾀ   ὥὸ  ὴ ȟὦὸ  ή ȟὧὸ  ὶ   

are almost Pythagorean triples for all positive integers and for unique integers 

ὴȟὴ ȟήȟή ȟὶ ὥὲὨ ὶ  that depends on the primitive Pythagorean triple ὥȟὦȟὧ satisfying 

ὴ  ὴ ὥ ȟή  ή  ὦ ȟὶ  ὶ  ὧ and ὥὴ ὦή ὧὶ ȢFor more details, see [8]. 

 

Proof: 

 

Suppose ὥȟὦȟὧ is a PPT and ὴȟήȟὶ  is an APT and for any positive integer ὸ, let 

ὼ ὥὸὴ and  ώ ὦὸήȟ then 

ὼ ώ ὥὸὴ ὦὸή  

                                              ὥὸ ςὥὴὸὴ ὦὸ ςήὦὸή 
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                                              ὥ ὦ ὸ ςὥὴὸήὦὸὴ ή 

                               ὧὸ ςὥὴὸήὦὸὶ ρ. 

 

Since ὥὦ ὦή ὧὶ , we get 

ὼ ώ  ὧὸ ςὧὶὸ ὶ ρ 

ὧὸὶ ρ 

thus if we take  ᾀ ὧὸὶ , then 

ὼ ώ ᾀ ρ 

so ὼȟώȟᾀ is an APT. 

 

By the same way as above, let  

ὼ ὥὸὴ ὥὸὥ ὴ   and    ώ ὦὸή ὦὸὦ ή 

Now   

  ὼ ώ ὥὸὥ ὴ ὦὸὦ ή  

                      ὥὸ ςὥὥ ὴὸ ὥ ὴ ὦὸ ςὦὦ ήὸ ὦ ή  

                                  ὥὸ ςὥὸ ςὥὴὸὥ ςὥὴ 

               ὴ ὦὸ ςὦὸ ςὦήὸὦ ςὦή ή 

                                       ὥ ὦ ὸ ςὥ ὦ ὸ ςὥὴ ὦήὸ 

                              ὥ ὦ ςὥὴ ὦή  ὴ ή  

                                  ὧὸ ςὧὸ ςὧὶὸ ὧ ςὧὶὶ ρ 

                                      ὧὸ ςὧὧ ὶὸ ὧ ὶ ρ 

                                     ὧὸ ὧ ὶ ρ 

                       ὧὸὶ ρȢ 

Let  ᾀ ὧὸὶ  , then 

 

ὼ ώ ᾀ ρ 

and hence ὼ ȟώ ȟᾀ  is an APT.  ʉ

 

By depending on the previous theorem we conclude that the general solution of ὼ ώ

ᾀ ρ does not explicitly and readily give a particular almost Pythagorean triple, also for 

PPT ὥȟὦȟὧ when the components of this triple is large, the process of finding integers 

ὴȟὴ ȟήȟή ȟὶȟὥὲὨ ὶ  seems to be not an easy task. 
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So, from this note, we can use another formula that generate the almost Pythagorean triples 

(APTs) even if the component of the PPT is large. 

 

Before presenting the theorem that generates APT’s we must recall the theorem 1.1.11 

which describes all primitive Pythagorean triples which says that the primitive 

Pythagorean triples ὼȟώȟᾀ take the form ὼ Ὧ ὰ  ώ ςὯὰ  ὥὲὨ ᾀ  Ὧ ὰ   

where Ὧ ὰ π  , ὫὧὨὯȟὰ ρ and ὯḴὰάέὨς. 

 

Now, let Ὥ ÂÅ ÁÎÙ ÐÏÓÉÔÉÖÅ ÉÎÔÅÇÅÒ ÓÕÃÈ ÔÈÁÔ Ὥ ς. Take Ὧ Ὥ and ὰ Ὥ ρ, then clearly 

they are relatively prime for all i and satisfying the incongruence relation ὯḴὰάέὨς 

and we get the form ςὭ ρȟςὭ ςὭȟςὭ ςὭ ρȟ which is a PPT. 

 

Theorem 3.2.3: 

 

Let ὥȟὦȟὧ  ςὭ ɀ ρ ȟςὭ ɀ ςὭȟςὭ ɀ ςὭ  ρ , then 

                       ὼȟώȟᾀ  ὥὸ  ρȟὦὸ  ςὭ ρȟὧὸ  ςὭ ρ  

and 

                ὼ ȟώ ȟᾀ  ὥὸ  ςὭ ς ȟὦὸ  ςὭ ɀ τὭ  ρ ȟὧὸ  ςὭ ɀ τὭ ς  

are almost Pythagorean triples for all ὸ ɴ ὤ .  

 

Proof: 

 

To show that ὼȟώȟᾀ  ὥὸ  ρȟὦὸ  ςὭ ρȟὧὸ  ςὭ ρ  is an APT. Let us 

compute the left hand side (LHS) and the right hand side (RHS) as: 

                              ὼ ώ ὥὸρ  ὦὸ ςὭ ρ  

                   ὥὸ ςὥὸρ  ὦὸ ςὭ ρ ςὦςὭ ρὸ 

                                             ὥ ὦ t
2 ςὭ ρ ρ ςὥ ὦςὭ ρ ὸȢ              

 

Also,   

                             ᾀ ρ  ὧὸ ςὭ ρ ρ      

                                                ὧὸ ςὭ ρ ςὧςὭ ρὸ ρȢ    

For (LFS) and (RHS) to be equal, we must show that ὥ ὦςὭ ρ ὧςὭ ρ 

But ὥ ςὭ ρ ȟὦ ςὭ ςὭ  ÁÎÄ ὧ ςὭ ςὭ ρ , hence 

                    ὥ ὦςὭ ρ  ςὭ ρ ςὭ ςὭ ςὭ ρ 
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                                                 ςὭ ρ  ςὭ ςὭ ρ 

                                                  ςὭ ρὧȢ 

So  ὼȟώȟᾀ  ὥὸ  ρȟὦὸ  ςὭ ρȟὧὸ  ςὭ ρ  is an APT.  ʉ

 

Also, we must prove that 

ὼ ȟώ ȟᾀ  ὥὸ  ςὭ ς ȟὦὸ  ςὭ ɀ τὭ  ρ ȟὧὸ  ςὭ ɀ τὭ ς ȟ 

is an APT. By the same procedure as above, let us compute the left hand side (LHS) and 

the right hand side (RHS) as: 

                          ὼ ώ ὥὸ ςὭ ς   ὦὸ ςὭ τὭ ρ  

              ὥὸ ςὭ ρ ςὥςὭ ρὸ  ὦὸ 

                                  ςὭ τὭ ρ ςὦςὭ τὭ ρὸ 

                                                   ὥ ὦ ὸ ςὭ ς ςὭ τὭ ρ  

                                                            ςὥςὭ ς ὦςὭ τὭ ρ ὸ        

                         ὥ ὦ ὸ τὭ ψὭ τ τὭ ρφὭ ςπὭ 

                                                                     ψὭ ρ ςὥςὭ ς ὦςὭ τὭ ρ ὸ   

             ὥ ὦ ὸ τὭ ρφὭ ςτὭ ρφὭ υ 

                                                                     ςὥςὭ ς ὦςὭ τὭ ρ ὸ   

 ὧὸ τὭ ρφὭ ςτὭ ρφὭ υ 

                                                                     ςὥςὭ ς ὦςὭ τὭ ρ ὸȢ   

 

Also, 

ᾀ ρ  ὧὸ ςὭ τὭ ς 1 

                                                            ὧὸ ςὭ τὭ ςς ςὧςὭ τὭ ςὸ ρ     

                                        ὧὸ τὭ ψὭ τὭ ψὭ ρφὭ ψὭ 

                                                            τὭ ψὭ τ ςὧςὭ τὭ ς ὸ ρ 

                 ὧὸ τὭ ρφὭ ςτὭ ρφὭ 

                                                                             υ ςὧςὭ τὭ ς ὸȢ   

 

For (LHS) and (RHS) to be equal, we must show that  

 ὥςὭ ς ὦςὭ τὭ ρ  ὧςὭ τὭ ςȟ 

but 

 ὥςὭ ς ὦςὭ τὭ ρ ςὭ ρ ςὭ ς  ςὭ ςὭ ςὭ τὭ ρ 

                                      τὭ τὭ ςὭ ς  ςὭ ςὭ ςὭ τὭ ρ 
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                                         τὭ φὭ ς τὭ ψὭ ςὭ τὭ ψὭ ςὭ 

                                                         τὭ ρςὭ ρτὭ ςὭ ς 

and  

 ὧςὭ τὭ ς  ςὭ ςὭ ρ ςὭ τὭ ς 

                                  τὭ ψὭ τὭ τὭ ψὭ ςὭ τρ ς 

                                  τὭ ρςὭ ρτὭ ψὭ ςȢ 

So the two sides are equal and hence 

ὼǋȟώǋȟᾀǋ  ὥὸ  ςὭ ςȟὦὸ  ςὭ ɀ τὭ  ρȟὧὸ  ςὭ ɀ τὭ ς  is an APT. 

 ʉ

 

Example 3.2.4: 

 

Let Ὥ τ and ὸ υ and ὸ φ, what are the almost Pythagorean triples (APT) that 

generated. 

 

Solution: 

 

By previous theorem we must know that PPT, so 

ὥȟὦȟὧ ςὭ ɀ ρ ȟςὭ ɀ ςὭȟςὭ ɀ ςὭ  ρ 

       ςτ ɀ ρ ȟςτ  ɀ ςτȟςτ  ɀ ςτ  ρ 

     χȟςτȟςυ 

 

Now, when Ὥ τ and ὸ υȟ the (APTs) are 

ὼȟώȟᾀ χυ ρ ȟςτυ χ ȟςυυ χ 

    σφȟρςχȟρσς 

and 

ὼǋȟώǋȟᾀǋ χυ φ ȟςτυ ρχ ȟςυυ ρψ 

τρȟρσχȟρτσ 

When Ὥ τ and ὸ φ, by the same way, the (APTs) are τσȟρυρȟρυχτψȟρφρȟρφψȢ 
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Example 3.2.5: 

 

Let Ὥ ρπ and Ὥ ρρ and ὸ χ, what are the almost Pythagorean triples that are 

generated? 

 

When Ὥ ρπ the PPT is (19,180,181)  and when Ὥ ρρ the PPT is ςρȟςςπȟςςρ. 

Now, when Ὥ ρπ and ὸ χ the APTs are  

ρστȟρςχωȟρςψφ 

ρυρȟρτςρȟρτςω 

and, when Ὥ ρρ and ὸ χ the APTs are  

ρτψȟρυφρȟρυφψ 

ρφχȟρχσωȟρχτχȢ 

 

Example 3.2.6: 

 

Let Ὥ  σρςπ and ὸ  ςυ, then the formulas in the above theorem yields the triples 

ρυυωχφȟτψφυχπςσωȟτψφυχπςφτ 

and  

ρφςςρσȟυπφπςπσςρȟυπφπςπστχ 

and they are APT’s which can easily be verified using and computer software. 

 

To generate infinitely many almost Pythagorean triples easily and if Ὥ and ὸ are large, we 

use Java language where the procedures that work the program are taken  as follows: 

1) Define ὥȟὦȟὧȟὼȟώȟᾀȟὼ ȟώ  ὥὲὨ ᾀ   as the following: 

ὥ  ςὭ ρ 

ὦ  ςὭ ςὭ 

ὧ ςὭ ςὭ ρ 

ὼ  ὥὸρ 

ώ  ὦὸ ςὭ ρ 

ᾀ  ὧὸ ςὭ ρ 

ὼ   ὥὸ ςὭ ς 

ώ   ὦὸ ςὭ τὭ ρ 
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ÁÎÄ ᾀ   ὧὸ ςὭ τὭ ς 

where all of them are integers. 

2) Enter the values of Ὥ ς and ὸ ρ and take any range of ὸ. 

3) We have stored the values of Ὥȟὸȟὥȟὦȟὧȟὼȟώȟᾀȟὼ ȟώ  ÁÎÄ ᾀ  in tables in Excel sheet 

where ὥȟὦȟὧ ȟὼȟώȟᾀ and ὼ ȟώ ȟᾀ  written as triples. 

 

And all of this procedures are written in Java Language which existing in program (2) page 

(78) at the end of the thesis.     

The following table generate many PPT ὥȟὦȟὧ and also APT ὼȟώȟᾀȟὼ ȟώ ȟᾀ , where 

Ὥ ς and ὸ ρ. 

 

i t (a,b,c) (x,y,z) (x',y',z') 

2 1 (3,4,5) (4,7,8) (5,5,7) 

2 2 (3,4,5) (7,11,13) (8,9,12) 

2 3 (3,4,5) (10,15,18) (11,13,17) 

2 4 (3,4,5) (13,19,23) (14,17,22) 

2 5 (3,4,5) (16,23,28) (17,21,27) 

2 6 (3,4,5) (19,27,33) (20,25,32) 

2 7 (3,4,5) (22,31,38) (23,29,37) 

2 20 (3,4,5) (61,83,103) (62,81,102) 

44 86 (87,3784,3785) (7483,325511,325597) (7568,329121,329208) 

44 87 (87,3784,3785) (7570,329295,329382) (7655,332905,332993) 

44 88 (87,3784,3785) (7657,333079,333167) (7742,336689,336778) 

97 35 (193,18624,18625) (6756,652033,652068) (6947,670271,670307) 

97 36 (193,18624,18625) (6949,670657,670693) (7140,688895,688932) 

97 37 (193,18624,18625) (7142,689281,689318) (7333,707519,707557) 

97 38 (193,18624,18625) (7335,707905,707943) (7526,726143,726182) 

97 39 (193,18624,18625) (7528,726529,726568) (7719,744767,744807) 

97 40 (193,18624,18625) (7721,745153,745193) (7912,763391,763432) 

97 41 (193,18624,18625) (7914,763777,763818) (8105,782015,782057) 

97 42 (193,18624,18625) (8107,782401,782443) (8298,800639,800682) 

97 43 (193,18624,18625) (8300,801025,801068) (8491,819263,819307) 

97 44 (193,18624,18625) (8493,819649,819693) (8684,837887,837932) 
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At the end of this section, we successfully gave an explicit formula in generating almost 

Pythagorean triples. These formulas were started in theorem 3.2.1 and theorem 3.2.3 in this 

section, but the result in theorem 3.2.3 does not generate all almost Pythagorean triples, 

because we deal with one formula for the PPT which is ςὭ ρȟςὭ ςὭȟςὭ ςὭ ρȢ 
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Appendices: 

 

Program (1) 

/*a 

 * To change this license header, choose License Headers in Project Properties. 

 * To change this template file, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package javaapplication1; 

 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileOutputStream; 

import java.io.PrintStream; 

import java.io.PrintWriter; 

import java.io.UnsupportedEncodingException; 

import java.util.Scanner; 

 

/** 

 *a 

 * @author Fall 

 */ 

public class JavaApplication1 { 

 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String[] args) throws FileNotFoundException, 

UnsupportedEncodingException { 

 

        //  int a = 155975; 

        // for (int j = 1001000; j < 1500000; j+=2) { 

//         XSSFWorkbook workbook = new XSSFWorkbook(); 

//        XSSFSheet sheet = workbook.createSheet("Java Books"); 

//        File f = new File("file.txt"); 

//if(f.exists() && !f.isDirectory()) {  
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//    // do something 

//}else{ 

       PrintWriter writer = new PrintWriter("file.txt", "UTF-8"); 

       PrintWriter wexcel = new PrintWriter("file.csv", "UTF-8"); 

     

//} 

        

         

        Scanner sc = new Scanner(System.in); 

        do{ 

        System.out.println("please choose witch one is constant ,enter a or b "); 

         

         String str = sc.next(); 

         

        if(str.charAt(0)!='a'&&str.charAt(0)!='b'){ 

          //  System.out.println("please choose witch one is constant ,enter a or b "); 

          //  System.err.println(str.charAt(0)!='b'); 

         

        }else{ 

             

          

       if(str.charAt(0)=='a'){ 

         System.out.println("please insert the value of a"); 

             int a = sc.nextInt(); 

              wexcel.println("a,b,x,y,z,next b,old b = b"); 

              

              System.out.println("please enter the maximum range"); 

               

             int max = sc.nextInt(); 

      //  int a = 87; 

       int a2 = 0,b2=0; 

        for (int i = 1; i < max; i++) { 

             

            

            int b = i; 

            int q = (4 * b * b) + 4 * ((b * b) + 2 * a * b); 
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            double c1 = Math.sqrt(q); 

            int c2 = (int) Math.sqrt(q); 

            if (c1 == c2) { 

                 

                int x = (2 * b + c2) / 2; 

                int y = (x * x - b * b) / (2 * b); 

                int z = (x * x + b * b) / (2 * b); 

                boolean flag = (((x * x) + (y * y)) == (z * z)); 

                if (flag && x > 0 && y > 0 && z > 0) { 

                     

                   // if(b2!=0){ 

                     //   System.out.println(b2); 

                        if(b2==b){ 

                          System.out.println("a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z  

); 

                        String str2 ="a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z ; 

                    writer.println(str2); 

                     wexcel.println(a+","+b+","+x+","+y+","+z); 

                        }  else{ 

                            System.out.println("a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z 

); 

                        String str2 ="a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z ; 

                    writer.println(str2); 

                   //  writer2.println("a,b,x,y,z,next b,old b = b"); 

                     wexcel.println(a+","+b+","+x+","+y+","+z); 

                        } 

                 //   } 

                       //if(b2!=0){ 

                        b2 =x+z ; 

                        

                   // } 

                } 

//                else { 

//                    String str2 = "a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z + " no" ; 

//                     writer.println(str2); 
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//                    System.out.println("a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z + " 

no"); 

//                } 

            } 

        } 

    }else if(str.charAt(0)=='b'){ 

         wexcel.println("a,b,x,y,z,next a,old a = a"); 

           System.out.println("please insert the value of b"); 

             int b = sc.nextInt(); 

 System.out.println("please enter the maximum range"); 

                     int a2 = 0,b2=0; 

             int max = sc.nextInt(); 

              

        for (int i = 1; i < max; i++) { 

 

            int a = i; 

            int q = (4 * b * b) + 4 * ((b * b) + 2 * a * b); 

            double c1 = Math.sqrt(q); 

            int c2 = (int) Math.sqrt(q); 

            if (c1 == c2) { 

                int x = (2 * b + c2) / 2; 

                int y = (x * x - b * b) / (2 * b); 

                int z = (x * x + b * b) / (2 * b); 

                boolean flag = (((x * x) + (y * y)) == (z * z)); 

                if (flag && x > 0 && y > 0 && z > 0) { 

                    if(a2==a){ 

                    System.out.println("a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z  ); 

                        String str2 ="a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z     ; 

                    writer.println(str2); 

                    wexcel.println(a+","+b+","+x+","+y+","+z); 

                      

                    } 

                    a2 = x+y; 

                } 

//                else { 

//                     String str2 = "a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z + " no" ; 
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//                     writer.println(str2); 

//                    System.out.println("a = " + a + " b = " + b + " x = " + x + " y = " + y + " z = " + z + " 

no"); 

//                } 

            } 

        } 

    } 

        break; 

        } 

        

        }while(true); 

        writer.close(); 

        wexcel.close(); 

    } 

 

    // } 

} 

 

 

 

Program (2) 

/* 

 * To change this license header, choose License Headers in Project Properties. 

 * To change this template file, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package javaapplication2; 

 

import java.io.FileNotFoundException; 

import java.io.PrintWriter; 

import java.io.UnsupportedEncodingException; 

import java.util.Scanner; 

 

/** 

 * 

 * @author Fall 
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 */ 

public class JavaApplication2 { 

 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String[] args) throws FileNotFoundException, 

UnsupportedEncodingException { 

       

        //System.out.println("please"); 

       // Scanner sc = new Scanner(System.in); 

     

    PrintWriter writer1 = new PrintWriter("abt.txt", "UTF-8"); 

    PrintWriter writer = new PrintWriter("file.csv", "UTF-8"); 

    writer.println("i,t,(a-b-c),(x-y-z),(x'-y'-z')"); 

        for (int i = 2; i < 100; i++) { 

            

            for (int t = 1; t < 100; t++) { 

                

                 

            int a = 2*i-1; 

            int b = 2*i*i -2*i; 

            int c = 2*i*i-2*i+1; 

             

            int x = a*t+1 ; 

            int y = b*t+(2*i-1); 

            int z = c*t +(2*i-1); 

             

            int x1 = a*t+(2*i-2); 

            int y1 = b*t +(2*i*i-4*i+1); 

            int z1 = c*t +(2*i*i - 4*i +2); 

             

            writer1.println( 

                    i+","+ 

                    t+",("+ 

                            a+","+ 
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                            b+","+ 

                            c+"),("+ 

                            x+","+ 

                            y+","+ 

                            z+"),("+ 

                            x1+","+ 

                            y1+","+ 

                            z1+")"); 

             writer.println( 

                    i+","+ 

                    t+",("+ 

                            a+"-"+ 

                            b+"-"+ 

                            c+"),("+ 

                            x+"-"+ 

                            y+"-"+ 

                            z+"),("+ 

                            x1+"-"+ 

                            y1+"-"+ 

                            z1+")"); 

//             

            String str =  

                    " i : "+i+ 

                    " t : "+t+ 

                    " a : "+a+ 

                    " b : "+b+ 

                    " c : "+c+ 

                    " x : "+x+ 

                    " y : "+y+ 

                    " z : "+z+ 

                    " x' : "+x1+ 

                    " y' : "+y1+ 

                    " z' : "+z1 ; 

//             writer.println(str); 

            System.out.println(str); 

             

//        }else{ 
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//            System.out.println("invalid value for i"); 

//        } 

             

            } 

    } 

    } 

     

}  
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ƗǒïāƹƓƛǒƽǃå íåíƵǙå þǒǆƶƙ 

 :íåíƵǗå íǆơǆ ýǒǆƞ çïǒǆáèƓơǚƮ  

 :úåïƬǗåïāƙǂíǃå ðāïƺǃå íāǆơǆ þǒǋåïƕå 

 

òƢǂǄ:  

 

 Ɨƪåïíƕ Ɠǈǆƿ ƗǃƓƪïǃå ǉîǋ ǑƼǒƽǃå íåíƵǙåƛǒƽǃå íåíƵǙåā ƗǒïāƹƓƛ ýǆƓƶǃå ÿāǂǒ ƓǆíǈƵ ƗǒǃāǕå ƗǒïāƹƓ

Ɨƪåïíƕ Ɠǈǆƿ Ɠưǒáā ƠǒơƮǃå íơåāǃå íåíƵǙå ǉîǋ ÿǒƕ üïƙƬǆǃå ÿǆ Ɨƕǒïǀǃå íåíƵǕå ǒƽǃå íåíƵǙåƛ ƗǒïāƹƓ

 ƓǆíǈƵ üǃîāúïõǃ íơåā ëïõǈ āå úǒưǈ  ƗǃíƓƶǆǃåñ2 ó +2 = ÷2  .  Ɨƕǒïǀǃå íåíƵǙå Ɠǈƪïí Ɠưǒáā

 ÿǒƕ ûïƽǃå ÿāǂǒ ƓǆíǈƵ ƗǒïāƹƓƛǒƽǃå íåíƵǙå ÿǆώ ā  ὼ   íåíƵǙå ǉîǋ ƴǒǆƞ óƑƓƮƤ Ɨƪåïíƕ Ɠǈǆƿā

 ā Ăíơ ǏǄƵ çíơåā ýǂǃ èƓƽǒïƶƙǃåā èƓǒïöǈǃå ÿǆ íǒíƶǃå ƓǈƬƿƓǈāƓǈǆíƿ  ƝǆƓǈïƕ ƗǃƓƪïǃå ǉîǋ ƗǒƓǌǈ ǑƼ

 Ɨƞǆïƕǃå èƓƺǃ Ăíơå þåíƤƙƪƓƕ"ƓƼƓƞǃå" ǒƽǃå íåíƵǙå ÿǆ íǒíƶǃå úǒǈƮƙ ƓǈǒǄƵ ýǌƪǒǃƛƗǒïāƹƓ ā  íåíƵǕå

Ɨƕǒïǀǃå ƗǒïāƹƓƛǒƽǃå  ƗǃƓƪïǃå ǉîǋ ǑƼ Ɨơưāǆā Ɨǈǒƕǆ çíǒíƵ èåāõƤ þåíƤƙƪƓƕ. 


