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Chapter One 

Scalar Conservation Laws 

 

This chapter introduces the basic concepts of the present thesis. We review the 

general theory of linear and nonlinear scalar conservation laws and introduce the 

fundamental notations of weak solutions and Rankine-Hugoniot jump conditions. 

Then, we introduce the entropy condition to pick out the physically relevant solution 

of equation (1.1.1) below. 

Finally, we introduce an application (traffic flow) on a real-life problem relevant to 

the scalar conservation law.  

 

1.1 Overview  

We overview the basic details concerning the simplified model of scalar conservation 

laws. This means that we are looking for the solution ),( txu  of the Cauchy problem 

for a single hyperbolic partial differential equation of the type 

              0,0)( >Í=
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                                            (1.1.1) 

                 Rxxuxu Í= )()0,( 0                                                 (1.1.2) 

The solution ),( txu  is sought for all nonnegative time values, as a function of the 

space variable RxÍ . The function )(uf is assumed to be smooth (namely, 

continuously differentiable at least as many time as needed in the analysis). 
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1.2 Conservation Law 

The term conservation law stems from the following argument: Integrating  

equation (1.1.1) over the rectangle 21,0 xxxTt ¢¢¢¢   one gets, 
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Proof:  

 Integrating eq. (1.1.1) over the region R as in the Fig. (1.2.1) 
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Figure 1.2.1        

  

By Green theorem, we get 
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Hence, 
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Thinking of ),( txu  in eq. (1.2.1) as mass density per unit length the integral 

ñ
2

1

),(
x

x
dxtxu expresses the total mass in ],[ 21 xx  at time t, while ñ

T

dttxuf
0

)),((  for 

any fixed x, can be interpreted as mass flux to the right, at the point x, over the time 

interval [0, T]. Thus, eq. (1.2.1) may be viewed as a balance equation stating that the 

gain in total mass in ],[ 21 xx  equals the net flux into the interval, through its boundary 

(end points) 21 xandx  . 

 Example (1.2.1):  

The simplest conservation law (or nonlinear hyperbolic differential equation) is the 

Burgersô equation 
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                                          (1.2.2) 

 

1.3 Discontinuous Solution  

 We begin with the simplest example which leads to discontinuous solution. Consider 

the single equation (1.2.2) Burgersô equation, 
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Which  can be written in the form 

       0=+ xt uuu                                                                                                (1.3.1) 
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This equation has the rather remarkable property that the only 1C functions which 

satisfy this equation for ,0>t  are those which are monotonically non decreasing in 

x, for each fixed .0>t   

Suppose (1.3.1) has a smooth solution   u Í 1C (Rx [0, T]), consider the solution 

],0[),0()( 01 TCTCtx 1Í of the initial value problem for the following ordinary 

differential equation:  

                  axTinttxu
dt

dx
tx ===¡ )0(),,0(),),(()(                             (1.3.2) 

For a given constant .RaÍ then we have 
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For all ).,0( TtÍ  this means that )),(( ttxu is constant for all ],,0[ TtÍ  or u is 

constant along the curves ]}.,0[:)),({( Ttttx Í these curves are called 

characteristics. From (1.3.2) we also get that  

               ==¡ )),(()( ttxutx   constant                                                                (1.3.3) 

For all ).,0( TtÍ  this means that the characteristics are straight lines. Altogether we 

have shown that the solution u is constant along straight lines. The slopes of these 

lines are given by (1.3.2): 

           ),0),0(()),(()( xuttxutx ==¡    

(i.e. by the initial values for u ).  Consider now the initial value problem 
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Where 0u   is given as in figure (1.3.1) 
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Then we obtain that u  is constant along the characteristic curve (x (t), t), with  
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This means, if T is sufficiently large and finite, that the characteristics can meet each 

other (see figure 1.3.2), and therefore u cannot be a classical solution up to this time. 

Then a new definition of solutions for conservation laws of type (1.3.1) will be 

introduced, namely (weak solutions). This new type of solution can have 

discontinuities, as we shall see in the coming section. 
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More generally, consider the initial value problem for the scalar u, 

                  0,0)( >=+ tufu xt    

                    Rxxuxu Í= ),()0,( 0                                                               (1.3.4) 

 

We can write the equation as ,0)( =¡+ xt uufu and consider the characteristics 
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Along such a curve, 
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Thus, again u(x, t) is constant along the characteristics. Since the slope of the 

characteristics is  ,
)(

1

ufdx

ds

¡
=  (u is constant so tconsuf tan)( =¡ ), so the 

characteristics are straight lines, having slope determined by their values at 0=t : 

i.e., by ).(0 xu   so, if there are points 21 xx <  with  
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Then the characteristics starting at )0,( 1x  and ( )0,2x  will cross in 0>t ;  

(see fig 1.3.3). Along ,il  .2,1),(),( 0 == ixutxu i  thus at p the solution must be 

discontinuous and a shock occurs. Note that this conclusion is independent of the 

smoothness properties of ;0uandf  they can each be analytic, and still we cannot 

obtain a globally defined solution. The phenomenon is a purely nonlinear one. 
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We can be a bit more explicit and see analytically that discontinuities must form if 

0u¡is negative at some point. Thus, consider (1.3.4), and assume that .0>¡¡f  since 

the characteristics are straight lines, if ),( tx  is any point with 0>t  we let )0,( *x  

denote the unique point on the x-axis which lies on the characteristic through (x, t) 

since  u  is constant along characteristics, and  ,)( ** xxxft -=¡   we see that u  must 

implicitly be given by  

                )),(((),( 0 txuftxutxu ¡-=  

 

Now if 0u is a differentiable function, then we can invoke the implicit function 

theorem and solve this last equation for u , provided that  t  is sufficiently small. We 

find  
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now if 0)(0 ²¡xu for all x, then these formulas show that tx uu ,  stays bounded for all 

 t >0, and the solution  u  exist for all time. On the other hand, if 0)(0 <¡xu  at some 

point , both tx uu ,  becomes unbounded when tufu )(1 0
¡¡¡+  tends to zero. 

  Thus, if we adhere to the notion that a solution must be smooth, then we must 

content ourselves with solutions which exist for only a finite time.  
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 1.4   The Mathematical Model, Euler Equations of Gas Dynamics  

  To see how the following conservation laws arise from physical principles                   
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   (1.4.1) 

Equation (1.4.1) is known as the Euler equations for fluid dynamics. Where r is the 

density of the fluid, u the velocity, p the pressure, e the internal energy, and 

.
r

p
ei +=   

 We will begin by deriving the equation for conservation of mass in a one-

dimensional gas dynamics problem, for example flow in a tube where properties of 

the gas such as density and velocity are assumed to be constant across each cross 

section of the tube. Let x  represent the distance along the tube and let ),( txr  be the 

density of the gas at point x and  t this density is defined in such a way that the total 

mass of gas in any given section from x1 to x2, say, is given by the integral of the 

density: 

            mass in ],[ 21 xx  at time t= dxtx
x

xñ
2

1

),(r  

If we assume that the walls of the tube are impermeable and that mass is neither 

created nor destroyed, then the mass in this one section can change only because of 

gas flowing across the endpoint ., 21 xorx  

    Now let ),( txn be the velocity of the gas at the point x at time t. then the rate of 

flow, or flux of gas past this point is given by 

         Mass flux at(x, t) = ).,(),( txtx nr  
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By our comments above, the rate of change of mass in ],[ 21 xx is given by the 

difference in fluxes at :, 21 xandx  

            ).,(),(),(),(),( 2211

2

1

txtxtxtxdxtx
dt

d x

x
nrnrr -=ñ  

This is one integral form of the conservation law. Another form is obtained by 

integrating this in time from ,21 ttot  giving an expression for the mass in ],[ 21 xx    at 

time 12 tt >  in terms of the mass at time 1t  and the total (integrated) flux at each 

boundary during this time period: 
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to derive the differential form of the conservation law, we must now assume that 

),( txr and ),( txn are differentiable functions. Then using 
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in (1.4.2) gives 

              ññ =
ý
ü
û

í
ì
ë

µ

µ
+

µ

µ2

1

2

1

0)),(),((),(
t

t

x

x
dxdttxtx

x
tx

t
nrr                                  (1.4.5) 

since this must hold for any section ],[ 21 xx and over any time interval ],,[ 21 tt we 

conclude that in fact the integrand in (1.4.5) must be identically zero, i.e., 

                 0)( =+ xt rnr             Conservation of mass                                  (1.4.6) 

the conservation law (1.4.6) can be solved in isolation only if the velocity  ),( txn  is 

known as a function  of ).,( txr if it is, then rn is a function of r alone, say  
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),(rrn f= and the conservation of mass equation (1.4.6) becomes a scalar 

conservation law for ,r 

                   0)( =+ xt f rr                                                                               (1.4.7) 

Moreover, if the velocity is constant, v(x, t) =a, then rr af =)(   and (1.4.6) reduces 

to  

                0=+ xt arr                                                                                      (1.4.8) 

this equation is known as the linear advection equation or sometimes the one-way 

wave equation . if this equation is solved for 0²t    with the initial data 

          ¤<<¤-= xxx )()0,( 0rr                                                    (1.4.9) 

Then it easy to check (assuming 0ris differentiable) that the solution is simply  

          )(),( 0 atxtx -=rr                                                                                (1.4.10) 

We can also define flux function in a way such that 

           0),( , >-= DDaf xx rrrr                                                               (1.4.11) 

and the conservation law from (1.4.7) becomes 

                    0)( =-+ xxt Da rrr                                                                    (1.4.12) 

or assuming D is constant, 

                       xxxt Da rrr =+                                                                          (1.4.13) 

Equation (1.4.13) is called the advection-diffusion equation and  )( xDr-  is called 

diffusive flux. This flux is determined by ñFourierôs law of heat conductionò(heat 

diffuses in much the same  way as the chemical concentration). The advection-

diffusion equation (1.4.13) is a parabolic equation while (1.4.7) is hyperbolic. One 

major difference is that (1.4.13) always has smooth solutions for t >0 even if the 
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initial data )(0 xr is discontinuous. We can view (1.4.7) as an approximation to 

(1.4.13) valid for D  very small, but we may need to consider the effect of D in order 

to properly interpret discontinuous solution to (1.4.7).  

 

1.5    The Linear Advection Equation 

We first consider the linear advection equation, derived before, which we now write 

as 

                  0=+ xt auu                                                                                    (1.5.1) 

The Cauchy problem is defined by this equation on the domain    0, ²¤<<¤- tx  

together with the initial condition  

          )()0,( 0 xuxu =                                                                                         (1.5.2) 

As noted previously, the solution is simply  

         )(),( 0 atxutxu -=                                                                                   (1.5.3) 

for .0²t  as time evolves , the initial data simply propagates unchanged to the right 

(if )0>a  or left (if )0<a  with velocity  .a  The solution u(x, t) constant along each 

ray ,0xatx =- which are known as the characteristics of the equation. (see fig.1.5.1 

for the case )0>a  
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                  Figure 1.5.1 characteristics and solution for the advection equation. 

 

Note that the characteristics are curves in the x-t plane satisfying the ordinary 

differential equations  .)0(,)( .0xxatx ==¡   if we differentiate u(x, t) along one of 

these curves to find the rate of change of u along the characteristic, we find that 
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                                 = xt auu +                                                                         (1.5.4) 

                                 = 0 

Confirming that u is constant along these characteristics.  

More generally, we might consider a variable coefficient advection equation of the 

form  

              ,0))(( =+ xt uxau                                                                                (1.5.5) 

Where )(xa is smooth function. Recalling the derivation of the advection equation 

before, this models the evolution of a chemical concentration u(x, t) in a stream with 

variable velocity ).(xa  

We can write (1.5.5) as  

             uxauxau xt )()( ¡-=+                                                                           (1.5.6) 

             ).,()(),())(( txuxatxu
x

xa
t

¡-=
µ

µ
+

µ

µ
                                                    (1.5.7) 

It follows that the evolution of u along any curve x(t) satisfying 
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=

=¡
                                                                                    (1.5.8) 

satisfies a simple ordinary differential equation (ODE): 

                 )),(())(()),(( ttxutxattxu
dt

d
¡-=                                                       (1.5.9) 

The curves determined by (1.5.8) are again called characteristics. In this case the 

solution u(x, t) is not constant along these curves, but can be easily determined by 

solving two sets of ODEs ö
÷

õ
æ
ç

å
== )(,1 xa

ds

dx

ds

dt
. 

Thus, if )(0 xu is a smooth function, say ),,(0 ¤-¤Í kCu then the solution u(x, t) is 

equally smooth in space and time, )).,0(),(( ¤³¤-¤Í kCu  

 

Remark: Domain of dependence 

 Note that solution to the linear advections (1.5.1) and (1.5.5) have  the following 

property: the solution u(x, t) at any point ),( tx  depends on the initial data u0  only at 

a single point, namely the point 0x  such that ),( tx lies on the characteristic through 

0x . We could change the initial data at any points other than 0x with out effecting the 

solution ),( txu . The set {}0),( xtxD = is called the domain of dependence of the 

point ),( tx . Here this domain consists of a single point. Conversely, initial data at 

any given point 0x can influence the solution only within some cone 

{ }taxxx max0: ¢- of the x-t plane. This region is called the range of influence of the 

point 0x . See Figure 1.5.2 for an illustration. 
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Figure 1.5.2: Domain of dependence and range of influence.  

Remarks: Non-Smooth Data 

In the manipulations performed above, we have assumed differentiability of u(x, t). 

however, from our observation that the solution  along a characteristics curve 

depends only on the one value )( 00 xu , it is clear that spatial smoothness is not 

required for this construction of u(x, t) from ).(0 xu we  can thus define a solution to 

the PDE even if )(0 xu is not a smooth function. Note that if )(0 xu has a singularity at 

some point 0x (a discontinuity in 0u  or some derivative), then the resulting u(x, t) 

will have a singularity of the same order along the characteristic curve through 

,0x but will remain smooth along characteristics through smooth portions of the data. 

This is a fundamental property of linear hyperbolic equations: singularities propagate  

only along characteristics. 
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1.6    Burgersô Equation  

Again consider the nonlinear scalar equation                  

 0)( =+ xt ufu                                                                                           (1.6.1) 

Where f (u) is a nonlinear function of u .We will assume for the most part that f (u) is 

a convex function, 0)( >¡¡uf   for all u. The convexity assumption corresponds to a 

ñgenuine nonlinearityò assumption for system of equations that holds in many 

important cases, such as Euler equations.  

By far the most famous model problem in this field is Burgersô equation, in 

which 2

2

1
)( uuf = , so (1.6.1) becomes 

                    0=+ xt uuu                                                                                       (1.6.2)  

Actually this should be called the ñinviscid Burgersô equationò, since the equation 

studied by Burgers also includes a viscous term: 

                    xxxt uuuu e=+                                                                             (1.6.3)  

Example 1.6.1  

 We want to solve the following problem  

               0=+ xt uuu  

 With the initial condition  
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xuxu   

By using the method of characteristics, we can solve this problem up to the time 

when the characteristic intersect. We already know that the characteristic passing 

through the point   )0,( 0x  is given by 



 16 

 

                 )(),()(),( 000000
0 xtuxtxxxxutxu

dt

dx

t

xx
+==Ý===

-
 

so that 

                 
î
í

î
ì

ë

²

¢¢-+

¢+

=

1,

10),1(

0,

00

000

00

xx

xxtx

xtx

x  

For 1<t , the characteristic do not intersect (see figure 1.6.1). hence , given a point 

(x, t) with t < 1 , we draw the (backward) characteristic passing through this point 

and we determine the corresponding point .0x     
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We obtain the following continuous solution for t < 1 
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 Since in general we can only prove local existence , we have to generalize the 

definition of solution of conservation laws. 
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Remark:   Shock formulation 

We consider again Burgersô equation ()0=+ xt uuu   with the initial data 

)()0,( 0 xuxu = . Itôs easy to show that )(),( 0 utxutxu -=  to Burgersô equation. Since  

====
dt

dx
uutxu )()0,(),( 0 xx  constant, where utx-=x . 

      For each (x, t), the characteristic line passes through )0,(x  satisfies  

               )(0 x
x

u
t

x

dt

dx
=

-
=  

or 

           tux )(xx+=                                                                                           (1.6.4) 

 For  large t the equation 1.6.4 may not have a unique solution. This happens when 

the characteristic cross, as will eventually happen if )0,(xux   is negative at any point. 

At the time bT   where the characteristic first cross, the function u(x, t) has infinite 

slope the wave ñbreaksò and a shock forms. Figure 1.6.2 shows an extreme example 

where the initial data is piecewise linear and many characteristics comes together at 

once. More generally an infinite slope in the solution may appear first at just one 

point x, corresponding via (1.6.4) to the point x where the slope of the initial data is 

most negative. At this point the wave is said to ñbreakò by analogy with waves on a 

beach. Mathematically speaking, where a shock wave occurs, the solution u(x, t) has 

a jump discontinuity. This usually occurs along a curve in the x-t plane.  
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If we solve Burgersô equation with smooth initial data )(0 xu for which )(0 xu¡ is 

somewhere negative, then the wave will break at time  

                
)(min

1

0 xu
Tb

¡

-
= .                                                                                 (1.6.5) 

 

  1.7   Weak Solution  

    A Natural way to define a generalized solution of the inviscid equation 

( )0=+ xt uuu   that does not require differentiability is to go back to the integral form 

of the conservation law , and say that u(x, t) is a generalized solution if (1.4.5) is 

satisfied  for all  .,,, 2121 ttxx   

There is another approach that results in a different integral formulation that is more 

convenient to work with. This is a mathematical technique that can be applied more 

generally to write a differential equation in a form where less smoothness is required 

to define a ñsolutionò. The basic idea is to take the PDE, multiply by a smooth ñtest 

functionò, integrate one or more times over some domain, and then use integration by 

),( bTxu

)0,(xu

.'2.6.1 eqBurgersinformationshockFigure
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part to move derivatives off the function u and onto the smooth test function. The 

result is an equation involving fewer derivatives on u, and hence requiring less 

smoothness. 

       In our case we will use test function ).(1

0 RRC ³ÍF  Here 1

0C  is the space of 

function that are continuously differentiable with ñcompact supportò. The latter 

requirement means that ),( txF  is identically zero outside of bounded set, and so the 

support of the function lies in a compact set. 

   If we multiply  ),(0 txbyfu xt F=+  and then integrate over space and time, we 

obtain  

           0])([
0

=F+Fññ
¤¤

¤-

dxdtufu xt .                                                                  (1.7.1) 

Now integrate by parts, yielding 

          ññ ñ
¤¤

¤-

¤

¤-

F-=F+F
0

)0,()0,()]([ dxxuxdxdtufu xt .                                      (1.7.2) 

Note that nearly all the boundary terms which normally arise through integration by 

parts drop out due to the requirement that  F  have compact support, and hence 

vanishes at infinity. The remaining boundary term brings in the initial condition of 

the PDE, which must still play a role in our weak formulation. 

 

Definition 1.7.1    

The function u(x, t) is called a weak solution of the conservation law if (1.7.2) holds 

for all function ).(1

0 RRC ³ÍF  
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The advantage of this formulation over the original integral form (1.4.2) is that the 

integration in (1.7.2) is over a fixed domain, all of  +³ .RR  the integral  form (1.4.2) 

is over an arbitrary rectangle, and to check that  u(x, t) is a solution we must verify  

that this holds for all choices of 121 ,, txx   and 2t . Of course, our new form (1.7.2) has 

a similar feature, we must check that it holds for all ,1

0CÍF  but this turns out to be 

an easier task. 

      Mathematically, the two integral forms are equivalent and we should rightly 

expect a more direct connection between the two that does not involve the 

differential equation. 

This can be achieved by considering special test functions ),( txF   with the property 

that  
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proof    

   Equation 1.7.1 can be written  
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also 

             ññ ññ
¤¤

¤-

¤¤

¤-

F-=F
0 0

)( dxdtufdxdtf xx ,               since  0),( =°¤F t                 (2) 

Substitute (1) and (2) in (*) we obtain eq. (1.7.2)  

Unfortunately, weak solution is often not unique, and so an additional problem is 

often to identify which weak solution is the physically correct solution. There are 

other conditions one can impose on weak solutions that are easier to check and will 

also pick out the correct solution. These are usually called entropy conditions by 

analogy with the gas dynamics case. The solution is also called the entropy solution.  

 

1.8 The Riemann Problem  

The conservation law together with piecewise constant data having a single 

discontinuity is known as the Riemann problem. As an example, consider Burgersô 

equation 0=+ xt uuu  with piecewise constant data 
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The form of the solution depends on the relation between .rl uandu  

Case I. .rl uu >  

     In this case there is a unique weak solution, 
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where 

                     
2

rl uu
s

+
=                                                                                  (1.8.3) 
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is the shock speed, the speed at which the discontinuity travels. A general expression 

for the shock speed will be derived below. Note that characteristics in each of the 

regions where u is constant go into the shock (see fig.1.8.1) as time advances. 

                                                                                                                            x= st          

                                                                                                                                             

                                                                                       

lu                                                                                   t 

                                                                                   

                                                                                         ul                                          ur                                                 

                                                         ru            

                                                                                                                                  x 

                             0 

                                          Figure 1.8.1. shockwave 

 

 

 

Case II. rl uu <  

    In this case there are infinitely many weak solutions. One of these is again (1.8.2), 

(1.8.3) in which the discontinuity propagates with speed s. Note that characteristics 

now go out of the shock (fig.1.8.2) and that this solution is not stable to 

perturbations. If the data is smeared out slightly, the solution changes completely. 

Another weak solution is the rarefaction wave 
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                                                       Fig. 1.8.2. Rarefaction wave 
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This solution is stable to perturbations. There are infinitely many other weak 

solutions of equation 0=+ xt uuu  when .rl uu < for example,  
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is a weak solution for any mu with rml uuu ¢¢ and .2/mlm uus +=  

Another example is the general convex problem 

            0)( =+ xt ufu                                                                                        (1.8.5) 

with the data (1.8.1) and rl uu < , since fthenf ¡²¡¡ ,0 is an increasing function 

)()( rl ufuf ¡<¡   the rarefaction wave solution is given by  
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where )(xv is the solution to .))(( xx =¡vf   

 

        1.9 Shock Speed  

   The propagating shock solution (1.8.2) is a weak solution to Burgersô equation only 

if the speed of propagation is given by (1.8.3). the same discontinuity propagating at 

a different speed would not be a weak solution. 
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A gain, the form (1.8.5) is the differential form of the conservation laws, which holds 

in the usual sense only where u  is smooth. More generally, the integral form for a 

system of equations says that  

               ñ -=
2

1

)),(()),((),( 21

x

x
txuftxufdxtxu

dt

d
                                         (1.9.1) 

for all .,, 21 txx  

        The speed of propagation can be determined by conservation. If M is large 

compared to (st) then by (1.9.1), ñ-
M

M
dxtxu ),( must increase at the rate  
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for Burgersô equation. On the other hand, the solution (1.8.2) clearly has 
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l ustMustMdxudxudxtxu )()(),(  

so that 

                ñ- -=
M

M
rl uusdxtxu

dt

d
)(),(                                                                (1.9.3) 

comparing (1.9.2) and (1.9.3) gives (1.8.3) 

        

        More generally, for arbitrary flux function f(x) this same argument gives the 

following relation between the shock speed s and the states ,rl uandu called the 

Rankine-Hugoniot jump condition: 

                       )()()( rlrl uusufuf -=-                                                            (1.9.4) 
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For scalar problems this gives simply 
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=                                                               (1.9.5) 

where [.] indicates the jump in some quantity across the discontinuity. Note that any 

jump is allowed, provided the speed is related via (1.9.5). 

the Rankine-Hugoniot (R-H) conditions (1.9.5) hold more generally across any 

propagating shock, where now rl uandu denote the values immediately to the left 

and right of the discontinuity and s is the corresponding instantaneous speed, which 

varies along with .rl uandu  to verify that the R-H condition must be instantaneously 

satisfied when rl uandu  vary, we apply the same conservation argument as before 

but now to a small rectangle as shown in figure (1.9.1), with 

.1212 tttandxxx D+=D+= assuming that u is smoothly varying on each side of the 

shock, and that the shock speed s(t) is consequently also smoothly varying, we have 

the following relation between :tandx DD    

                         )()( 2

1 tottsx D+D=D                                                                 (1.9.6) 

From the integral form of the conservation law, we have  
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 (1.9.7)  

 

In the triangular portion of the infinitesimal rectangle that lies to the left of the shock   

)()(),( 1 totutxu l D+= , while in the complementary triangle, )()(),( 1 totutxu r D+= . 

Using this in (1.9.7) gives 

              )()()( 2toutfutfxuxu rlrl D+D-D+D=D  

Using the relation (1.9.6) in the above equation and then dividing by tDgives 
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    )()()()( toufufuus rlrl D+-=-  

where s, rl uandu , are all evaluated at t1. Letting 0­Dt  gives the R-H condition 

(1.9.4) 

 

                                                                               pathshock  

t1+ æt 

 

                                      luuº  

                                                    ruuº  

 

  t1 

 

                           1x                                 xx D+1  

          Figure 1.9.1 region of integration for shock speed calculation.  

 

 

 

 1.10      Entropy Condition 

As demonstrated above, there are situations in which the weak solution is not unique 

and an additional condition is required to pick out the physically relevant solution. 

For scalar equations there is an obvious condition suggested by figures (1.8.1) and 

(1.8.2). A shock should have characteristics going into the shock, as time advance. A 

propagating discontinuity with characteristics coming out of it is unstable to 

perturbations. Ether smearing out the initial profiles a little will cause this to be 

replaced by a rarefaction fan of characteristics. This gives our first version of the 

entropy condition: 

ENTROPY CONDITION (VERSION I):  

A discontinuity propagating with speed s given by (1.9.4) satisfies the entropy 

condition if  

              )()( rl ufsuf ¡>>¡  .                                                                             (1.10.1) 
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Note that )(uf¡ is the characteristic speed. For convex f, the R-H speed s from (1.9.5) 

must lie between )()( rl ufanduf ¡¡ so (1.10.1) reduces to simply the requirement 

that ),()( rl ufuf ¡>¡  which again by convexity requires .rl uu >  

ENTROPY CONDITION (VERSION II):  

u(x, t) is the entropy solution if all discontinuities have the property that 
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                                                 (1.10.2) 

for all u between .rl uandu   

For convex f, this requirement reduces to (1.10.1). 

Another form of entropy condition is based on the spreading of characteristics in a 

rarefaction fan. If u(x,t) is an increasing function of x in some region, then 

characteristics spread out if .0>¡¡f  the rate of spreading can be quantified, and 

gives the following condition. 

ENTROPY CONDITION (VERSION III):  

u(x, t) is the entropy solution if there is a constant 0>E  such that for all 0,0 >> ta  

and ,RxÍ  

                    
t

E

a

txutaxu
<

-+ ),(),(
                                                                (1.10.3) 

 

Note that for a discontinuity propagating with constant left and right states 

,rl uandu this can be satisfied only if ,0¢- lr uu so this agrees with (1.10.1). The 

form of (1.10.3) has advantages in studying numerical methods. 
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1.11   ENTROPY   FUNCTIONS  

 Yet another approach to the entropy condition is to define an entropy function 

)(uh for which an additional conservation law holds for smooth solution that 

becomes an inequality for discontinuous solutions. In gas dynamics, there exists a 

physical quantity called entropy that is known to be constant along particle paths in 

smooth flow and to jump to a higher value as the gas crosses a shock. It can never 

jump to a lower value, and this gives the physical entropy condition that picks out the 

correct weak solution in gas dynamics. 

Suppose some function )(uh   satisfies a conservation law of the form  

                          0)()( =Y+ xt uuh                                                                   (1.11.1) 

for some entropy flux )(uY . Then we can obtain from this, for smooth u , 

                        0)()( =Y¡+¡
xt uuuuh  .                                                               (1.11.2) 

Recall that the conservation law (1.1.1) can be written as .0)( =¡+ xt uufu  multiply 

this by 

)(uh¡  and compare with (1.11.2) to obtain  

                         )()()( ufuu ¡¡=Y¡ h                                                                    (1.11.3) 

 

For a scalar conservation law this equation admits many solutions ).(),( uu Yh  an 

additional condition we place on the entropy function is that it be convex, 

,0)( >¡¡uh for reasons that will be seen below. 

The entropy )(uh is conserved for smooth flows by its definition. For discontinuous 

solutions, however, the manipulations performed above are not valid. Since we are 

particularly interested in how the entropy behaves for the vanishing viscosity weak 
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solution, we look at the related viscous problem and will then let the viscosity tends 

to zero. The viscous equation is  

                  xxxt uufu =Í+ )( .                                                                            (1.11.4) 

Since solution to this problem is always smooth, we can derive the corresponding 

evolution equation for the entropy following the same manipulations we used for 

smooth solutions of the inviscid equation, multiplying (1.11.4) by )(uh¡  to obtain  

                xxxt uuuu )()()( hh ¡=ÍY+ .                                                                 (1.11.5) 

We can now rewrite the right hand side to obtain 

                2)())(()()( xxxxt uuuuuu hhh ¡¡Í-¡=ÍY+  .                                          (1.11.6) 

Integrating this equation over the rectangle [21,xx ] ],[ 21 tt³   gives 
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As ,0Í­  the first term on the right hand side vanishes. (This is clearly true if u is 

smooth at ., 21 xandx  the other term, involves integrating over the ],[],[ 2121 ttxx ³ . If 

the limiting weak solution is discontinuous along a curve in this rectangle, then this 

term will not vanish in the limit. However, since 00,0 2 >¡¡>Í> handux    (by our 

convexity assumption), we can conclude that the right hand side is non-positive in 

the limit and hence the vanishing viscosity weak solution satisfies  
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xt dxdtuuh                                                                  (1.11.7) 

for all .,,, 2121 tandtxx Alternatively, in integral form , 
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i.e. 
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Consequently, the total integral of h is not necessarily conserved, but can only 

decrease. 

(Note that our mathematical assumption of convexity leads to an ñentropy functionò 

that decreases, whereas the physical entropy in gas dynamics increases.) The fact that 

(1.11.7) holds for all 2121 ,,, tandtxx is summarized by saying that 

0)()( ¢Y+ xt uuh in the weak sense.  This gives our final form of the entropy 

condition, called the entropy inequality. 

ENTROPY CONDITION (VERSION IV):  

The function u(x, t) is the entropy solution of (1.1.1) if, for all convex entropy 

functions and corresponding entropy fluxes, the inequality 

                              0)()( ¢Y+ xt uuh                                                              (1.11.10) 

is satisfied in the weak sense. 

   This formulation is also useful in analyzing numerical methods. If a discrete form 

of this entropy inequality is known to hold for some numerical methods, then it can 

be shown that the method converges to the entropy solution. 

Just as for the conservation law, alternative weak form of the entropy condition can 

be formulated by integrating against smooth test function F, now required to be 

nonnegative since the entropy condition involves an inequality. The weak form of the 

entropy inequality is 
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for all 0),()(1

0 ²F³ÍF txwithRRC  for all x , t. 

Example:  

Consider Burgersô equation with 2

2

1
)( uuf = and take 2)( uu =h . 

Then (1.11.3) gives 22)( uu =Y¡ and hence .
3

2
)( 3uu =Y then entropy condition 

(1.11.10) reads 
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()( 32 ¢+ xt uu                                                                    (1.11.12) 

For smooth solution of Burgersô equation this should hold with equality. If a 

discontinuity is present, then integrating xt uu )
3

2
()( 32 + over an infinitesimal rectangle 

as in Figure (1.9.1) gives 
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for small ,0>Dt  the )( 2toD term will not affect the sign of this quality and so the 

weak form (1.8.8) is satisfied if and only if  ,0)( 3 >- rl uu and the only allowable 

discontinuities have rl uu > , as expected. 
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1.12 Scalar Example (Traffic flow) 

In this section we will look of example of scalar conservation law with physical 

meaning, and apply the theory developed in the previous sections. This application 

(traffic flow) should also help develop some physical intuition that applicable to the 

more complicated case of gas dynamics, with gas molecules taking the place of cars.  

Consider the flow of cars on a highway. Let r   denote the density of cars (in 

vehicles per mile) and u the velocity. In this application r  is restricted to a certain 

range, ,0 maxrr¢¢ where maxr  is the value at which cars are bumper to bumper. 

      Since cars are conserved, the density and velocity must be related by the 

continuity equation derived before, 

                         0)( =+ xt urr .                                                                      (1.12.1) 

in order to obtain a scalar conservation law for r alone, we now assume that u is a 

given function of .r This makes sense: on a highway we would optimally like to 

drive at some speed maxu  (the speed limit perhaps), but in heavy traffic we slow 

down, with velocity decreasing as density increases. The simplest model is the linear 

relation 

                   )/1()( maxmax rrr -=uu                                                        (1.12.2) 

At zero density (empty road) the speed is ,maxu but decreases to zero as r 

approaches .maxr using this in (1.12.1) gives  

                0)( =+ xt f rr                                                                          (1.12.3) 

where  

                 )/1()( maxmax rrrr -= uf                                                        (1.12.4) 



 33 

Whitham notes that a good fit to data for Lincoln tunnel was found by Greenberg in 

1959 by  

               ),/log()( max rrrr af =    

a function shaped similar to (1.12.4). 

   The characteristic speeds for (1.12.3) with flux (1.12.4) are  

                  )/21()( maxmax rrr -=¡ uf ,                                                        (1.12.5) 

while the shock speed for a jump from rl torr  is 

                 )./)(1(
)()(

maxmax rrr
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rr
rl
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rl u
ff

s +-=
-

-
=                             (1.12.6) 

The entropy condition ( )()( rl ufsuf ¡>>¡ says that a propagating shock must satisfy 

)()( rl ff rr ¡>¡  which requires rl rr< . Note this is the opposite inequality as in 

Burgersô equation since here f  is concave rather than convex. 

   

Example 1.12.1.  

Take initial data 
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where .0 maxrrr <<< rl  Then the solution is a shock wave traveling with speed  s 

given by (1.12.6). Note that although 0)( ²ru  the shock speed s can be either 

positive or negative depending on .rl and rr   

   Consider the case maxrr=r   and .maxrr<l  Then 0<s and the shock propagates 

to the left. This models the situation in which cars moving at speed 0>lu  
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unexpectedly encounter a bumper-to-bumper traffic jam and slam on their brakes, 

instantaneously reducing their velocity to 0 while the density jumps from lr to .maxr  

This discontinuity occurs at the shock, and clearly the shock location moves to the 

left as more cars join the traffic jam. This is illustrated in Figure1.12.1, where the 

vehicle trajectories (ñparticle pathsò) are sketched. Note that the distance between 

vehicles is inversely proportional to density. In gas dynamics, r/1  is called the 

specific volume. 

        The particle paths should not be confused with the characteristics, which are 

shown in Figure 1.12.2 for the case ),
2

1
(

2

1
maxmax uuso ll == rr  as is the case in 

figure 1.12.1 also. In this case, .0)( =¡rf   If max
2

1
rr>l  then 0)( <¡

lf r  and all the 

characteristics go to the left, while if max
2

1
rr< then 0)( >¡rf  and the 

characteristics to the left of the shock are rightward going. 
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Example 1.12.2.   

Again consider a Riemann problem with data of the form (1.12.7) but now take 

max0 rrr <<< lr   so that the solution is a rarefaction wave. This might model the 

start up of cars after a light turns green. The cars to the left are initially stationary but 

can begin to accelerate once the cars in front of them begin to move. Since the 

velocity is related to the density by (1.12.2), each driver can speed up only by 

allowing the distance between her and the previous car to increase, and so we see a 

gradual acceleration and spreading out of cars. 

      As cars go through the rarefaction wave, the density decreases. Cars spread out or 

become ñrarifiedò in the terminology used for gas molecules. Of course n this case 

there is another weak solution to (1.12.3), the entropy-violating shock. This would 

correspond to drivers accelerating instantaneously from 0=lu    to 0>ru    as the 

preceding car moves out of the way.   
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Chapter two 

 

Analysis of Numerical Methods  

for Scalar Conservation Laws 
  

 

This chapter introduces the basic ideas of discrete approximations, such as accuracy 

and convergence. In section (2.1) we introduce an example to show how finite 

difference method works. Then we introduce the most important scheme to illustrate 

the basic principles of finite-difference method. Finally, we analyze the accuracy and 

convergence of these schemes.    

 

2.1 Solution  by Finite Difference  Method 
 

Any second order partial differential equation has the form, 

         ),,,,( txttxtxx uuutxFCuBuAu =++ .                                                (2.1.1) 

where A,B and C are constant. There are three types of equations: 

            if ,042 >- ACB  the equation is called  hyperbolic.                    (2.1.2) 

            If ,042 =- ACB  the equation is called parabolic.                       (2.1.3) 

            If ,042 <- ACB  the equation is called elliptic.                           (2.1.4) 

As an example of a hyperbolic partial differential equation, we consider the wave 

equation 

 ),,(),( 2 txuctxu xxtt =      for ,00 btandax <<<<                           (2.1.5) 
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with the boundary and initial conditions 

            ,00),(0),0( btfortauandtu ¢¢==  

            )()0,( xfxu =                           for    ax¢¢0 ,                  (2.1.6) 

           )()0,( xgxut =                           for    ,0 ax<<  

The wave equation models the displacement u of a vibrating elastic string with fixed 

ends at x = 0 and x = a. although analytic solution to the wave equation can be 

obtained with Fourier series; we use the problem as a prototype of a hyperbolic 

equation. 

 

 Derivation of the difference equation   

Partition the rectangle R= }{ btaxtx ¢¢¢¢ 0,0:),(  into a grid consisting 

of (p-1) by (m-1) rectangles with sides ,ktandhx =D=D as shown in Figure 

(2.1.1) start at the bottom row, where t = 0 and the solution is known to be 

).()0,(0

jjj xfxuU == we shall use a difference-equation method to compute  

 { }pjU n

j ,.....,2,1: =  in successive rows for n = 2, 3,éé, m. 

The true solution at the grid points is ),( nj

n

j txuU =  
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            Figure 2.1.1: The grid for solving xxtt ucu 2= over R. 

 

The central-difference formulas for approximating  xxtt uandu  are 
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and 
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The grid spacing is uniform in every row hxxhxx jjjj -=+= -+ 11 ,  and it is 

uniform in every column kttktt nnnn -=+= -+ 11 , , next we drop the terms )( 2hO and 

)( 2kO  and use the approximation ),( nj

n

j txuU =  in equation (2.1.7) and 2.1.8, which 

in turn are substituted into (2.1.5); this produces the difference equation.  
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Which approximates the solution to (2.1.5.) For convenience, the substitution 

hckr /=  is introduced in (2.1.9).  

Equation (2.1.9) is employed to find row n+1 across the grid, assuming that 

approximations in both n and n-1 are known: 
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+ -++-= n

j

n

j

n

j

n

j

n

j UUUrUrU      for j=2,3,é.,p-1                  (2.1.10) 

The four known values on the right side of equation (2.1.10), which are used are to 

create the approximation ,1+n

jU  are shown in the Figure (2.1.2) 

                                                            1+njU  

 

                            n

jUr 1

2

-                    n

jUr )22( 2-         n

jUr 1

2

+                                                           

                                                    

                                                     1-- n

jU  

                                  

                              Figure 2.1.2: The wave equation stencil. 

     

 Caution must be taken when using formula (2.1.10), if the error made at one stage of 

the calculation is dampened out, the method is called stable. To guarantee stability in 

(2.1.10) it is necessary that 1/ ¢= hckr . There are other schemes, called implicit 

methods, which are more complicated to implement, but do not have stability 

restrictions on r. 

In order to use formula (2.1.10) to compute the third row two starting values 

corresponding to n = 1 and n = 2 must be supplied. Since the second row is not 

usually given, the boundary function g(x) is used to help produce starting 

approximations in the second row. Fix jxx= at the boundary and apply Taylorôs 

formula of order 1 for expanding ),( txu  about )0,( jx , the value ),( kxu j  satisfies 

                )()0,()0,(),( 2kOkxuxukxu jtjj ++=                                                (2.1.11) 

Then use jjj fxfxu == )()0,(  and jjjt gxgxu == )()0,( in (2.1.11) to produce the 

formula for computing the numerical approximations in the second row: 

              1,......,3,22 -=+== pjforkgfU jjj                                            (2.1.12) 
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We use a very small step size for k so that the values for 2

jU  given in (2.1.11) do not 

contain a large amount of truncation error. 

      Often, the boundary function f  has a second derivative )(xf ¡¡  over the interval. 

In this case we have )()0,( xfxuxx
¡¡= and we use the Taylor formula to help construct 

the second row,  

  )(
2

)()0,()0,( 2

2

11222 hO
h

fff
cxfcxucxu

jjj

jxxjxxjtt +
+-

===
-+

                    (2.1.13) 

Recall the Taylorôs formula of order 2 is 

        )(
2

)0,(
)0,()0,(),( 3

2

kO
kxu

kxuxukxu tt
t +++= .                                       (2.1.14) 

Applying formula (2.1.14) at jxx= , together with (2.1.12) and (2.1.13), we get  

 )()()()2(
2

),( 322

112

22

kOhOkOfff
h

kc
kgfkxu jjjjjj +++-++= -+ .               (2.1.15) 

Using r = ck/h, formula (2.1.15) can be simplified to obtain a difference formula for 

the improved numerical approximations in the second row: 

    )(
2

)1( 11

2
22

-++++-= jjjjj ff
r

kgfrU        for j = 2,3,é..,p-1                     (2.1.16) 

 

Remark    

 Assume that two rows of values )0,(1

jj xuU =   and ),(2 kxuU jj = for j = 1,2,é,p are 

the exact solutions to the wave equation (2.1.5.) if the step size k = h/c is chosen 

along the t-axis, then r = 1 and formula (2.1.10) becomes 

                
1

11

1 -

-+

+ -+= n

j

n

j

n

j

n

j UUUU                                                                    (2.1.17) 
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Example 2.1.1 

             Consider the equation for a vibrating string  

              5.0010),(4),( <<<<= tandxfortxutxu xxtt                           (2.1.18) 

with the boundary conditions 

             

.100)()0,(

10)2sin()sin()()0,(

,5.000),1(0),0(

¢¢==

¢¢+==

¢¢==

xforxgxu

xforxxxfxu

tfortuandtu

t

pp                            (2.1.19) 

Now,   for convenience we choose h = 0.1 and k = 0.05. Since c = 2 this yields  

r = ck/h =1. Since g(x) =0 and r = 1, formula (2.1.15) for creating the second row is  

              9,....,3,2
2

112 =
+

=
+-

jfor
ff

U
jj

j                                                    (2.1.20) 

Substituting r = 1 into equation (2.1.10) gives the simplified difference equation  

             1

11

1 -

-+

+ -+= n

j

n

j

n

j

n

j UUUU .                                                                     (2.1.21) 

Applying (2.1.20) and (2.1.21) successively to generate rows will produce the 

approximation to ),( txu  given in table (2.1.1) for 50.0010 ¢¢<< nj tandx . 

Table 2.1.1 solution of wave equation 2.1.17 with the boundary condition 2.1.18 

jt  2x =0.1 3x =0.2 4x =0.3 5x =0.4 6x =0.5 7x =0.6 8x =0.7 9x =0.8 10x =0.9 

0.00 

0.05 

0.10 
0.15 

0.20 

0.25 
0.30 

0.35 

0.40 
0.45 

0.50 

 

 0.896802 

 0.769421 

 0.431636 
 0.000000 

-0.380037 

-0.587785 
-0.571020 

-0.363271 

-0.068364 
 0.181636 

 0.278768 

 1.538842 

 1.328438 

 0.769421 
 0.051599 

-0.587785 

-0.951056 
-0.951056 

-0.639384 

-0.181636 
 0.210404 

 0.363271 

 1.760074 

 1.538842 

 0.948401 
 0.181636 

-0.519421 

-0.951056 
-1.019421 

-0.769421 

-0.360616 
 0.000000 

 0.142040 

 1.538842 

 1.380037 

 0.951056 
 0.377381 

-0.181636 

-0.587785 
-0.769421 

-0.740653 

-0.587785 
-0.428980 

-0.363271 

 1.000000 

 0.951056 

 0.809017 
 0.587785 

 0.309017 

 0.000000 
-0.309017 

-0.587785 

-0.809017 
-0.951056 

-1.000000 

 0.363271 

 0.428980 

 0.587785 
 0.740653 

 0.769421 

 0.587785 
 0.181636 

-0.377381 

-0.951056 
-1.380037 

-1.538842 

-0.142040 

 0.000000 

 0.360616 
 0.769421 

 1.019421 

 0.951056 
 0.519421 

-0.181636 

-0.948401 
-1.538842 

-1.760074 

  

-0.363271 

-0.210404 

 0.181636 
 0.639384 

 0.951056 

 0.951056 
 0.587785 

-0.051599 

-0.769421 
-1.328438 

-1.538842 

-0.278768 

-0.181636 

 0.068364 
 0.363271 

 0.571020 

 0.587785 
 0.380037 

 0.000000 

-0.431636 
-0.769421 

-0.896802 

 

The numerical values in Table (2.1.1) agree to more than six decimal places of   

accuracy with those obtained with the analytic solution 

 

        ñ
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+-++=

ctx
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ctxfctxftxu )(
2

1
)]()([

2

1
),(                                        (2.1.22) 
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Then 

         )4cos()2sin()2cos()sin(),( txtxtxu pppp += .                                           (2.1.23)   

For example, by hand calculations, we can find some of n

jU  

  *  11,....,3,2,1,01 == nforU n  the first column,   011=
nU the last column. 

  *   )(1

jj xfU = , j = 2,3,é..,10  the first row    

 e.g. 

2787682.0...........................)9.0()(

.

.

5388418.1)72sin()36sin()2.0()(

8968022.0)36sin()18sin()1.0()(

10

1

10

3

1

3

2

1

2

-====

=+===

=+===

fxfU

fxfU

fxfU

 

 * for the second row , we use the formula 
2

112 +-+
=

jj

j

ff
U , j=2,3,é.,10 

e.g.  for j = 2,  7694208.0
2

)2.0()0(

2

312

2 =
+

=
+

=
ffff

U  

                      

.

.

328438.1
2

)3.0()1.0(

2

422

3 =
+

=
+

=
ffff

U

  

                     181636.0
2

0)8.0(

2

1192

10 -=
+

=
+

=
fff

U  

*for the third row we use the formula (j=2, 3, 4,é.., 10, and    n=3), 

             1

11

1 -

-+

+ -+= n

j

n

j

n

j

n

j UUUU  

e.g.         431636.0896802.00328438.11

2

2

1

2

3

3

2 =-+=-+= UUUU  

              769421.0538842.1769421.0538842.11

3

2

2

2

4

3

3 =-+=-+= UUUU  

Similarly, we can find the remaining values of ,n

jU  n=4,5,é,11 
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Algorithm 2.1.1 (finite-difference solution for the wave equation). 

To approximate the solution of ),(),( 2 txutxu xxtt a=  with 

,0,0),(),0( Tttlutu <<==    and )()0,( xfxu = , lxforxgxut ¢¢= 0)()0,(  

 

INPUT    endpoint l ; maximum time T; constant a; integer .2,2 ²² Nm  

OUTPUT    approximations j

iw to .,.....,0,......,0),( Njandmieachfortxu ji ==  

Step 1       set mlh /= ; 

                       ;/ NTk=  

                       ./hkal=  

Step 2          ;0,...,1 0 == jwsetNjFor  

                                                    ;0=j

mw  

Step 3           set );0(0

0 fw =  

                            ).(0 lfwm=  

Step 4            

).()])1(())1([)()1(

);(

.)0(int1,....,1

2

21

0

2

ihkghifhifihfw

ihfwset

ktandtforializemiFor

i

i

+-+++-=

=

==-=

ll

   

Step 5            

.)()1(2

1,....,1

.)(1,...,1

1

11

221 -

-+

+ +++-=

-=

-=

j

i

j

i

j

i

j

i

j

i wwwwwset

mifor

tionmultiplicamatrixperformNjFor

ll

    

Step 6            

).,,(

,....,0

;

,........,0

j

iwtxOUTPUT

ihxset

mifor

jktset

NjFor

=

=

=

=

    

Step 7             STOP.       (Procedure is complete.)                       
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2. 2   Numerical Approximation for linear Equations 

We review some of the basic theory of numerical methods for the linear equation. 

The emphasis will be on concepts that carry over to the nonlinear case.  

We consider the time-dependent Cauchy problem in one space dimension.  

          0=+ xt auu                      0, ²¤<<¤- tx                                         (2.2.1) 

                                  )()0,( 0 xuxu =                                                                          (2.2.2) 

To approximate the model problem (2.2.1) by finite differences we proceed as in 

section (2.1) and divide the closed domain ],0[ TR³   by a set of lines parallel to the 

x- and t-axes to form a grid or mesh. We shall assume, for simplicity, only that the 

sets of lines are equally spaced, and from now on we shall assume that R   is the 

interval [0, 1]. Note that in practice we have to work in a finite time interval [o, T], 

but T can be as large as we like. 

We shall write tandx DD  for the line spacing.  The crossing points  

           ),,( tntxjx nj D=D=    j = 0, 1é J, n = 0, 1,é.                                2.2.3 

where 

                                       Jx /1=D                                                                    2.2.4 

 

are called the grid points or mesh points. We seek approximations of the solution at 

these mesh points; these approximate values will be denoted by  

                                ),( nj

n

j txuU º                                                                     2.2.5 

We shall approximate the derivatives in 2.2.1 by finite differences and then solve the 

resulting difference equation in an evolutionary manner starting from n = 0. 

 It will also be useful to define 



 45 

                       xjxxx jj D+=D+=+ )
2

1
(2/2/1 .                                                 2.2.6 

For simplicity we take a uniform mesh. With xD   and  tD   constant, although most 

of the methods discussed can be extended to variable meshes. 

The finite difference methods we will develop approximations mn

j RU Í  to the 

solution ),( nj txu at the discrete grid points.   

This is a standard interpretation of the approximate solution, and will be used at 

times here, but in developing methods for conservation it is often preferable to view 

n

jU as an approximation to a cell average of ),( ntxu defined by  

                     

                       ñ
+

-

¹
2/1

2/1

),(
1~ j

j

x

x
n

n

j txu
h

u ,       xhwhere D=                                      (2.2.7) 

Rather than as an approximation to the pointwise values .n

ju  this interpretation is 

natural since the integral form of the conservation law describes precisely the time 

evolution of integrals such as that appearing in (2.2.7). 

As initial data for the numerical method we use )(0 xu to define 0U either by point- 

wise values, ),(0

00

jjj xuuU == j = 1,2,é, J, and   ...2,1,0,00 === nUU n

J

n  ,  or 

preferably by cell averages, .~00

jj uU =  

It is also frequently convenient to define a piecewise constant function ),( txUk , 

tkwhere D=( ) for all x and t from the discrete values .n

jU we assign this function 

the value 
n

jU in the (j,n) grid cell, i.e., 

                   ),[),[),(),( 12/12/1 ++- ³Í= nnjj

n

jk ttxxtxforUtxU .                      (2.2.8)  
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We index this function kU by the time step k, and assume that the mesh 

width h and step k are related in some fixed way, so that the choice of k defines a 

unique mesh. For time-dependent hyperbolic equations one generally assume that the 

mesh ratio k/h is a fixed constant as k, h ­ 0 . This assumption will be made from 

here on. 

From the initial data )(0 xu  we have defined data 0U  for our approximation 

of the solution. We now use a time-marching procedure to construct the 

approximations 

1U  from 0U , then 12 UfromU  (and possibly also 0U ) and so on. 

There are a wide variety of finite difference methods that can be used. Many of these 

are derived simply by replacing the derivatives occurring in (2.2.1) by appropriate 

finite difference approximations based at the mesh point ),( nj tx . For example, 

replacing tu  by a forward-in-time approximation 

                    ),(
),(),( 1

nj

njnj
tx

t

u

t

txutxu

µ

µ
º

D

-+
                                                    (2.2.9) 

 and xu by a spatially centered approximation, 

                     ),(
2

),(),( 11

nj

njnj
tx

x

u

x

txutxu

µ

µ
º

D

- -+
                                                (2.2.10) 

 We obtain the following difference equations for 1+nU :   

                  0)
2

(
11

1

=
-

+
- -+

+

h

UU
a

k

UU n

j

n

j

n

j

n

j
                                                       (2.1.11) 

This can be solved for 
1+n

jU    to obtain 

                   )(
2

11

1 n

j

n

j

n

j

n

j UUa
h

k
UU -+

+ --= .                                                       (2.2.12) 
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A far more stable method is obtained by evaluating the centered difference 

approximations to xu  at time 1+nt    rather than at time nt ,  giving 

                 0)
2

(

1

1

1

1

1

=
-

+
- +

-

+

+

+

h

UU
a

k

UU n

j

n

j

n

j

n

j
                                                    (2.2.13) 

or 

                  )(
2

1

1

1

1

1 +

-

+

+

+ --= n

j

n

j

n

j

n

j UUa
h

k
UU .                                                   (2.2.14) 

The method (2.2.12) allows us to determine 1+nU  explicitly, and is called an 

explicit method, whereas (2.2.14) is an implicit method. Although the method 

(2.2.12) is useless due to stability problem, there are other explicit methods which 

work very satisfactorily (see [RA2], (pp. 100-101)). 

If we look at which grid points are involved in the computation of 1+njU with a 

given method, we can obtain a diagram that is known as the stencil of the method. 

The stencils for the methods (2.2.12) and (2.2.14) are shown in figure (2.2.1). 

                                                                                                                                                 

   1+nt      

    nt       

                    1-jx      jx       1+jx     

Figure 2.2.1    stencils for the methods (2.2.12) and (2.2.14).  

A wide variety of methods for the linear problem can be devised by using different 

finite difference approximation. Most of these are based directly on finite difference 

approximations to the PDE. An exception is the Lax-Wendroff method, which is 

based on the Taylor series expansion  

              .......),(
2

1
),(),(),( 2 +++=+ txuktxkutxuktxu ttt                                (2.2.15) 
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and the observation that from xt auu -=    we can compute              

xxxxtxxttt uaauaauauu 2)( =--=-=-=                                                            (2.2.16) 

so that( 2.2.15) becomes 

              .......),(
2

1
),(),(),( 22 ++-=+ txuaktxkautxuktxu xxx                         (2.2.17) 

The Lax-Wendroff method then results from retaining only the first three terms of 

(2.2.17) and using centered difference approximations for the derivatives appearing 

there: 

              )(
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),( 11

n

j

n

jx UU
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-+ +-
=     , 1),( +=+ n

jUktxu   , n

jUtxu =),( .   

We obtain Lax-Wendroff scheme  

   )2(
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UUa
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UU -+-+

+ +-+--=                           (2.2.18) 

where  ).,( xhandtk D=D=  

 

Remark: 

Lax-Wendroff Method for the scalar conservation-law ( 0))(( =+ xt ufu ).  

The scalar conservation law  

                  0)( =+ xt ufu                                                                                           (1)  

admits the Lax-Wendroff Method (scalar) 

)].)(())([(
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fUffUff n
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n

j =¡¡=¡= ),(),(  .  
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Proof  

A Taylor expansion in t gives  

          ......),(
2

),(),(),(
2

1 +++=+ njttnjtnjnj txu
k

txkutxutxu                                      (3) 

By (1) ,)]([ xt ufu -= and so, using a centered x-difference, 

                 .,
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ufuf
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njt D=
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                                             (4) 

Furthermore, xxtt ufufu ]))()(([ ¡= . Now, the usual centered second difference is the 

forward difference of a backward difference; that is, 

                 )()( 11

2

-+ F-F-F-F=F nnnnnd .   

Hence we approximate the inside x-derivative above as  
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and represent its multiplier by a mean value: 
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The forward differencing corresponding to the outside derivative then gives 
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Substitution of (4) and the last equation in (3), and replacement of u by U, yields (2).       

The program of the Lax-Wendroff method equation (2) is given below.                
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Example 

Use the Lax-Wendroff method (2) to approximate the solution of  

                            

00),0(

0)0,(

0,00)2/( 2

>=

>=

>>=+

ttu

xxxu

txuu xt

 

At t=1, for 10 ¢¢x , compare the numerical solution with the exact solution, 

)1/( += txu . 

Now by using the preceding program we get 

H=0.1         K=0.1                 1=l           T=1 

                     Numerical                          Exact 

X=0             0.                                           0. 

X=0.1          0.50146                                 0.0500000 

X=0.2          0.100292                               0.100000 

X=0.3          0.150438                               0.150000 

X=0.4          0.200585                               0.200000 

X=0.5          0.250731                               0.250000 

X=0.6          0.300877                               0.300000 

X=0.7          0.351023                               0.350000 

X=0.8          0.401169                               0.400000 

X=0.9          0.451315                               0.450000 

X=1.0          0.501461                               0.500000   . 

 

For time-dependent conservation laws, 2-level methods are almost 

exclusively used. We will study explicit 2-level methods almost exclusively, and 

introduce some special notation for such methods, writing 
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                      )(1 n

k

n UHU =+                                                                              (2.2.19) 

here 1+nU   represents the vector of approximations 1+njU  at time .1+nt  

However, to illustrate the basic principles of the underlying finite-difference method, 

let us first consider the case of the linear equation 0=+ xt auu . 

We summarize four different ways in which { }¤
-¤=

+

j

n

jU 1̀   can be derived from the 

known values { }
j

n

jU : 

(a) The ñbackwardò-difference scheme 
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                                                         (2.2.20) 

(b) The ñforwardò-difference scheme 
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                                                          (2.2.21) 

(c) The Lax-Friedrichs scheme 
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(d) The Lax-Wendroff scheme 
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First, we set tk D=   and take 
l

t
x
D
=D  , where 0>l   is given (and fixed). Thus, 

k is the only ñsmall parameterò in the scheme.  
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Definiti on 2.2.1  

Let u(x, t) be a smooth solution to the conservation law 0)( =+ xt ufu   and let 

)(1 n

k

n UHU =+   be an approximating scheme. We say that kH  is accurate of order 

1²p   if, with ¤

-¤== jnj

n txuu )},({  ,  

 

                   ),()( 11 ++ =- pn

k

n kOuHu              0­k                                         (2.2.24) 

 

Remark   

 Observe that the notion of consistency is built into (2.2.24) in the following way: 

      Define ).()( n

k

nn

k uHuuF -=  Then (2.2.24) can be rewritten as  

              )()( 11 ++ =+- pn

k

nn kOuFuu                                                                 (2.2.25) 

and dividing by k we have  
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Since ),( txu   is an exact solution, 
k

uu nn -+1
  approximates ),( nt ttu =   and therefore 

)(
1 n

k uF
k

  should be an approximation for 0),()( ­= kasttatuf nx . This last 

conclusion is commonly referred to as the ñconsistencyò of the scheme 

)()( n

k

nn

k uFuuH -=  with the differential equation. Suppose that u(x, t) is a smooth 

function satisfying (2.2.24) and assume that  

     )(),()( 1+=++- p

njx

n

k

n kOtxukauHu          as .0­k                                 (2.2.27) 
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Inserting (2.2.25) into (2.2.27) we obtain:  

          ,0)(),(
1

­=+
-+

kaskOtxau
k

uu p

njx

nn

                                      (2.2.28) 

so that by letting 0­k  we get .0=+ xt auu  

 

Example 2.2.1.  

Let us use the backward-difference scheme for equation (2.2.1): 

               
x
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n

j
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We replace n

jU  by u(x, t), 1+n

jU  by u(x, t+k) and n

jU 1-   by u(x-h, t). Assuming u to be 

a smooth solution of (eq.2.2.1) and using Taylor expansion we get, 

)(),(),(),( 2kOtxkutxuktxu t ++=+  

                        = )(),(),( 2kOtxkautxu x +-  

                        = )()()],(),([),( 22 xOkOtxxutxu
x

ak
txu D++D--
D
-   

                        = )(),( 2kOtxuHk +  

where 

                
x

k
wheretxxautxuatxuHk

D
=D-+-= lll ),,(),()1(),(           (2.2.29)     

and we have absorbed )(int)( 22 kOoxOD  . 

We conclude that the scheme is first-order accurate (p= 1). We can prove 

similarly that both the forward-difference and the Lax-Friedrichs schemes are of 

first-order accuracy, whereas the Lax-wendroff scheme is of second-order accuracy.  
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2.3 Convergence  

     The major question that poses itself in connection with discretized schemes is 

that of convergence (as )0­k  of the ñapproximate solutionò { }njU  to a weak 

solution of the differential equation. To illustrate the situation, we take as before the 

linear equation 

                          ).()0,(,0 0 xuxuauu xt ==+                                     (2.3.1) 

 

Theorem 2.3.1  

(Non convergence for large )0>l  Assume 0>a  and take backward-difference 

scheme (2.2.20). Using (2.2.29) we can verify easily that  
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Proof    

from 2.2.20 0)( 1
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   This can be written in the form 
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 We can prove by the same way that it true for1+njU .  

The initial values { }¤
-¤=jjU 0 are computed from the given initial function )(0 xu . A 

common choice is to define 0

jU as the average of )(0 xu over the interval of size 

xD centered at jx , that is, 

                xrxdxxu
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0 .                                                 (2.3.3) 

If we take the initial step function 
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The weak solution of (2.3.1)-(2.3.4) is given by 

                   ).(),( 0 atxutxu -=                                                                             (2.3.5) 

For the corresponding approximation we get from (2.3.4) 
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and from (2.3.2), along with simple facts about the binomial coefficients, we get 
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so that  

              ä
=

+
D
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n
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j nka
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0 2

                                                                              (2.3.7) 

In analogy with interpretation of 0

jU , we think of n

jU as approximating the mean 

value of ),( nkxu in the interval ),( 2/12/1 +- jj xx . Thus, the sum in (2.3.7) should be 

compared with the integral 

              ññ
D+

D
-

D+

D
-

-=

xn

x

xn

x

dxankxudxnkxu

)2/1(

2

0

)2/1(

2

)(),(     

                                        = ñ
-D+

-
D
-

ankxn

ank
x

dxxu

)2/1_(

2

0 )(   

Now fix 0>t and take tnk= . As 0­k  and because 
x
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=l  is fixed, we have 

0­Dx and the limit of the last integral can be evaluated as  
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However, from (2.3.7), as 0­k , 

                                               ä
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We conclude that  
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(with )
x

k
andtnk

D
== l  if and only if  

                                    1¢al                                                                              (2.3.11) 
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Clearly, convergence ñin the meanò is a very reasonable way of requesting that the 

sequence { }¤
-¤=j

n

jU   should approximate the exact solution ),( nkxu . Since the step 

function (2.3.4) represents only one possible initial datum, we can only derive a 

necessary condition for convergence from the foregoing discussion.  

First, we formalize the convergence in the mean as follows.  

 

Definition 2.3.1  

Fix 0>T . We say that { }¤
-¤=j

n

jU  converges to the solution )(),( 1 RLintxu loc at fixed 

time t if, for any RÍ],[ ba ,  
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                                                 (2.3.12) 

for any Tt¢¢0 .  

Our conclusion (2.3.10) can be restated as follows. 

 

Corollary 2.3.2   

Let 0>a . Then (2.3.11) is a necessary condition for the backward-difference scheme 

to converge in )(1 RLloc  to the solution (2.3.1). 

 

Definition 2.3.3  

The condition (2.3.11) is called the CFL (Courant-Friedrichs-Lewy) 

Condition associated with equation (2.3.1) and scheme (2.2.20).  Since ,
x

k

D
=l the 

CFL condition can be written as  
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                         .
a

x
k
D
¢                                                                                      (2.3.13) 

It therefore forces a necessary restriction on the size of the time step tk D= , 

relative to the cell size xD , for convergence to take place. Later in this section we 

shall have a geometric interpretation of this condition, in terms of the characteristic 

lines of the equation. Note that the condition refers not only to the equation but also 

to the particular scheme used to approximate it. Although it plays a fundamental role 

in the theory of linear equations, it serves only as a guideline in the nonlinear case 

(via linearization). Because our primary objective here is the treatment of the 

nonlinear case, we shall make little use of the general theory related to the CFL 

condition. 

     

As we shall see throughout this thesis, the backward-difference scheme 

(2.2.20) (for )0>a plays a fundamental role in the development of accurate high-

resolution schemes. The first step in this development is taken in the following 

theorem, proving the sufficiency of the CFL condition for convergence in )(1 RLloc . 

Some knowledge of the binomial distribution is needed in the proof. 

  

Theorem 2.3.4  

Consider the equation ,0,0 >=+ aauu xt and assume that the initial function 

)0,()(0 xuxu = is uniformly bounded. Then, under the CFL condition (2.3.11) the 

backward-difference scheme (2.2.20) converges in )(1 RLloc , that is, in the sense of 

Definition (2.3.1). 
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Proof   

In view of )(),( 0 atxutxu -=  and (2.3.2) ,(2.3.3) we can write, with tnk= , 
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where  
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and where we have used the identity  
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We note that ,
lll
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xn ¢==D  so that the numbers ,0, nlpl ¢¢ are uniformly 

bounded by  

                      nldxxup
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Recall that the ñLaw of large numbersò states that the binomial distribution  
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= )1()(, ll  is concentrated around ,anl l=  or, more precisely, that for 

any 0>e  
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Thus, going back to (2.3.14), (2.3.15), we obtain for any 0Í>   

             ääñ
Í

+

- ¢-
=

¤­

D

D
==

­
¢-

nanl

lln

tnk

n

x

x
j

x

x

n

j

tnk

k
pbdxtxuU

j l

b

a
,

)(

][

][)(

0
lim),(lim

2/1

2/1

.                                 (2.3.17) 
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Given 0>d  we can choose 0>e  sufficiently small so that the second term on the 

right-hand side of (2.3.18) is smaller than
2

d
. This follows from elementary 

properties of functions in )(1 RL ; simply approximate 0u  in 1L  by a smooth function. 

As for the first term in the right-hand side of (2.3.18), recall from (2.3.3) that 0

ljU - is 

the average value of )(0 xu over ],[ 2/12/1 ---- ljlj xx . Thus, if )(0 xu  is smooth, 
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ljlj yuU -- =   for some ljy -  in the interval and, since 
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which is smaller than xifnlfor D¢¢ )0(
2

d
is small. If 0u is not smooth, it can be 

approximated (in )1L by a smooth function, so that the same result holds. 

      We conclude that lnanl
p

el <-
sup can be made arbitrarily small by taking 

xD,e sufficiently small. From (2.3.17) we now get 
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which proves our theorem.                  

                                   

.                           Figure 2.3.1 Geometric (characteristic) interpretation.   

The backward-difference scheme has a simple geometric interpretation. Consider the 

grid ),( nj tx as in Figure 2.3.1. As mentioned earlier, the approximating values { }njU  

are associated with the points ),( nj tx . If the CFL condition (2.3.11) holds, then the 

characteristic line axx =¡)( , issuing from ),( 1+nj tx , intersects the line ntt =  at the 

point ],[)1( 11 jjjj xxxaaxx -- Í-+= ll . If we use the linear interpolation 

a
dt

dx
=

1-jx jx 1+jx

nt

1+nt

t

x
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then the backward-difference scheme (2.2.20) states simply that  

                       )(1 xUU nn

j =
+ , 

which just expresses the fact that the corresponding exact solution is constant along a 

characteristic line. We can summarize this discussion as follows. 

 

Summary: 

 The values { }¤
-¤=

+

j

n

jU 1 as obtained by the scheme (2.2.20) (0>a ), subject to the CFL 

condition (2.3.11), are the exact values ),(~
1+nj txu , where ),(~ txu  satisfies the 

equation 0~~ =+ xt uau , subject to the initial condition )(),(~ xUtxu n

n = . The function 

)(xU n is the piecewise linear (continuous) function obtained by interpolating the 

values { }¤
-¤=j

n

jU   at the grid points{ }¤
-¤=jnj tx ),( .  

 

Definition 2.3.5 (Upwinding)    

We say that the backward-differences scheme (2.2.20) with 0>a , is an ñupwind 

scheme,ò meaning that the values { }¤
-¤=

+

j

n

jU 1   are obtained from { }¤
-¤=j

n

jU  by 

following the characteristic lines of the equation.   

     We now suggest yet another interpretation of the backward-difference scheme 

(see [BF], (pp. 33-35)). This one, as in the preceding discussion, will also be based 

on an exact solution of the equation, subject to approximate initial data. However, 

now we take )(xU n      as the piecewise-constant function defined by 

                   ,)( n

j

n UxU =       ,2/12/1 +- << jj xxx       .¤<<¤- j                     (2.3.20) 
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We can make the following claim.  

 

Claim 2.3.6   

If we solve the equation ,0
~~~~ =+ xt uau  subject to the initial condition )(),(

~~ xUtxu n

n =   

as in (2.3.20). Then the values ,1+n

jU  as determined by the backward-difference 

scheme (2.2.20), satisfy 
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Provided the CFL condition (2.3.11) holds. 

 

Proof    

The CFL condition implies that the ñmoving stepò solution [)](),( 0 atxutxu -=  

satisfies 
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It follows from the balance equation (1.2.1) that  
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Observe that although ),(~ txu  in summary (2.3.5) and ),(
~~ txu  in claim (2.3.7) satisfy 

the same differential equation, they are actually different since the initial data )(xU n , 
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used to interpolate the discrete values { }¤
-¤=j

n

jU , are different for the two cases. In the 

case of ),(~ txu  the initial function ),(xU n and hence ),,(~ txu  are continuous, and 

1+n

jU  is taken as the approximate (pointwise) ñupwindò value. In contrast, in the case 

of ),,(
~~ txu the initial function )(xU n  is piecewise constant, and hence is in general 

discontinuous, and the value 1+n

jU  is taken as the average of the ensuing solution 

).,(),(
~~

2/12/11 +-+ jjn xxovertxu  

      Recall that, for the nonlinear conservation law ,0)( =+ xt ufu the solution can 

develop discontinuities even when subject to very smooth initial data. In this case, 

therefore, the pointwise upwinding approach expressed by ),(~ txu , based on 

continuous interpolation, does not seem appropriate. In contrast, the ñaveragingò 

approach, based on the balance equation (1.2.1) applied to piecewise-constant initial 

data, can be readily generalized to the nonlinear case. It is this approach, first 

suggested by Godunov, which will serve as the basis of the GRP discussed in the 

next chapter. 

 

Remark    

Note that none of the schemes (2.2.21)-(2.2.23) (i.e., the forward difference, Lax-

Friedrichs, and Lax-Wendroff schemes) are amenable to an interpretation based on 

characteristic values (ñupwindingò as in definition 2.3.6) or averaging in the sense of 

Godunov (as in claim 2.3.7). Nonetheless, all these scheme [including (2.2.20) are 

conservative in the sense that  
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(when the values n

jU  vanish sufficiently fast as ¤­j . This is of course consistent 

with the conservation property ( )0,)(),( 0 Ttdxxudxtxu ¢¢=ñ ñ
¤

¤-

¤

¤-

. However, in 

this thesis we shall not make much use of this conservation property.                                                                                                      

We will use the 1-norm almost exclusively, and so a norm with no subscript will 

generally refer to the 1-norm. for the discrete grid function  nU we use the discrete 1-

norm defined by 

 

                    .
1
ä=

j

n

j

n UhU                                                                             (2.3.24) 

note that this is consistent with the function version in the sense that 

 

                    
11

)(., nk

n tUU =   

 

2.4   Local Truncation Error  

 

The local truncation error ),( txLk  is a measure of how well the difference equation 

models the differential equation locally. It is defined by replacing the approximation 

solution 
n

jU  in the difference equations by the true solution ).,( nj txu  of course this 

true solution of the PDE is only an approximate solution of the difference equations, 

and how well it satisfies the difference equations gives an indication of how well the 

exact solution of the difference equations satisfies the differential equation. 
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       As an example, consider the Lax-Friedrichs method. This method is similar to 

the unstable method (2.2.12) but replaces n

j

n

j

n

j UUbyU 11(
2

1
+-- ) and is stable 

provided k/h is sufficiently small, as we will see later. 

We first write this method in the form 
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so that it appears to be a direct discretization of the PDE. If we now replace each n

jU  

by the exact solution at the corresponding point, we will not get zero exactly. What 

we get instead is defined to be the local truncation error, 
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txLk ++--+=                                             (2.4.1) 
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in computing the local truncation error we always assume smooth solutions, and so 

we can expand each term on the right hand side of 2.3.1 in a Taylor series about   

u(x, t). Doing this and collecting terms gives (with :),( txuu¹  
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Since we assume that u(x, t) is the exact solution, 0=+ xt auu  in 2.4.2. Using this 

and also (2.2.16), we find that  

              )(),()(
2

1
),( 2

2

2
2 kOtxu

k

h
aktxL xxk +-=  

                           = .0)( ­kaskO                                                                   (2.4.3) 

Recall that we assume that a fixed relation between k and h, k/h= constant, so that 

22 / kh  is constant as the mesh is refined. (This also justifies indexing kL  by k alone 

rather than by both k and h.) 

by being more careful in this analysis, using Taylorôs theorem with remainder and 

assuming  uniform bounds on the appropriate derivatives of  u(x, t), we can in fact 

show a sharp bound of the form  

              0),( kkallforkCtxLk <¢                                                                 (2.4.4) 

The constant C depends only on the initial data 0u . If we assume moreover that 

0u  has compact support, then ),( txLk will have finite 1-norm at each time t and we 

can obtain a bound of the form  

          0),( kkallforkCtxL Lk <¢                                                                 (2.4.5) 

for some constant LC again depending on 0u . 

   The Lax-Friedrichs method is said to be first order accurate since the local error 

(2.4.5) depends linearly on k. 

    We now extend these notions to 2-level methods. 
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Definition 2.4.1.      

For a general 2-level method, we defined the local truncation error by  

             )].);(.,(),([
1

),( xtuHktxu
k

txL kk -+=                                                 (2.4.6) 

 

Definition    2.4.2   

The method is consistent if  

                  .00)(., ­­ kastLk                                                               (2.4.7) 

 

Definition   2.4.3   

The method is of order p if for all sufficiently smooth initial data with compact 

support, there is some constant LC such that  

 

                 TtkkallforkCtL p

Lk ¢<¢ ,)(., 0                                                (2.4.8) 

 

this is the local order of the method, but it turns out that for smooth solution,  the 

global error will be of the same order provided the method is stable. 

 

2.5.   Stability    

   Any two level method can be written (by 2.3.19) in the compact form  

 

                )(1 n

k

n UHU =+                                                                                      (2.5.1)  

where nU  represents the vector of approximations { }: ZjU n

j Í   at time .nt     
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componentwise we have  

 

                   );(1 jUHU n

k

n

j =
+                                                                              (2.5.2) 

 

For instance, for the forward EULER METHOD 
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 the operator kH   

takes the form 

 

                )(
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j
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j

n

j
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n

j UU
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UjUHU -+

+ --==
l

                                           (2.5.3) 

 

Definition   2.5.1   

A method is said to be stable  if for each time T there is a constant 0>TC (possibly 

depending on T)  and a value 00 >d such that  

                
h

T
h

n UCU 0¢                                                                                    (2.5.4) 

for each Tnk¢  and  .0 .0d¢<k here,  

                ä
¤

-¤=

=
j

jh
UhU :                                                                                    (2.5.5) 

is an approximation of the norm of ).(1 RL  

Since )(..........)( 01 UHHHUHU kkk

n

k

n == - = )( 0UH n

k  

stability holds if there exists 0>b  such that for each 

 00 00 dd ¢D<¢D< xandt  

.)1( VVkVH
hhk "+¢ b  
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As a matter of fact 

                     
h

T

h

n

h

n

k

n

k
h

n UeUkUHUHU 0000 )1()( bb ¢+¢¢=  

for all nandk such that  ,Tnk¢ hence (2.4.4) would follow. 

Note in particular that the method is stable if ,1¢kH for then 

 .,1 knallforHH
n

k

n

k ¢¢  More generally, some growth is allowed. For 

example, if  

              01 kkallforkHk <+¢ a                                                                 (2.5.6) 

Then  

              Tknnn

k eekH aaa ¢¢+¢ )1(    

for all k, n with   .Tnk¢  

 

2.6     Convergence (definitions & examples) 

 

Definition 2.6.1  

A difference scheme is said to be convergent if 

 .0,0)(.,max
/0

­­-
¢¢

hkasUtu
h

n

n
kTn

 

 We illustrate some results of stability here below.   

 

Example 2.6.1     

Consider the Lax- Friedrichs method applied to the scalar advection equation 

.0=+ xt auu   we will show that the method is stable provided that k and h are related 

in such a way that  
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                1¢
h

ak
                                                                                                (2.6.1) 

this is the stability restriction for the method. For the discrete operator kH , we will 

show that  nn UU ¢+1  and hence .1¢kH  exactly the same proof carries over to 

obtain the same bound for the continuous operator as well. (Take the norm and the 

triangle inequality): 

    We have  

                             )(
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+ --+=                                (2.6.2) 

and hence 
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but the restriction  (2.6.5) guarantees that  

                            01,01 ²+²-
h

ak

h
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and so these can be pulled out of the absolute values, leaving  
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                                 = nU  

Hence n

h

n UU ¢+1  as desired.  
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This shows that (2.6.1) is sufficient for stability. In fact, it is also necessary. 

 

Example 2.6.2   

Next consider  the upwind scheme (for a > 0) which reads 

                         )( 1

1 n

j

n

j

n

j

n

j UUaUU -

+ --= l                                                        (2.6.3) 

then 
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if we now assume that  

                                           10 ¢¢
h

ak
                                                               (2.6.4) 

then the coefficients of n

j

n

j UandU 1-  are both nonnegative, therefore 

                            n

h
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n UU
h

ak
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h

ak
U =+-¢+ )()1(1   

 

2.7   Conservative Methods for Nonlinear Problems  

When we attempt to solve nonlinear conservation laws numerically we run 

into additional difficulties not seen in the linear equation. Moreover, the nonlinearity 

makes every thing harder to analyze. In spite of this, a great deal of progress has 

been made in recent years (see [RA2], (pp. 122-123)). 

  For smooth solutions to nonlinear problems, the numerical method can often 

be linearized and results from the theory of linear finite difference methods applied 

to obtain convergence results for nonlinear problems.  
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We have already seen some of the difficulties caused by discontinuous solutions 

even in the linear case. For nonlinear problems there are additional difficulties that 

can arise: 

(a) The method might be ñnonlinearly unstableò, i.e., unstable on the nonlinear 

problem even though linearized versions appear to be stable.  

(b) The method might converge to a function that is not a weak solution of our 

original equation (i.e., does not satisfy the entropy condition). 

 

The fact that we might converge to a function that is not a weak solution at all 

is more puzzling, but goes back to the fact that it is possible to derive a variety of 

conservation laws that are equivalent for smooth solutions but have different weak 

solutions. For example, the PDEs  

                 0)
2

1
( 2 =+ xt uu                                                                                    (2.7.1) 

and            0)
3

2
()( 32 =+ xt uu                                                                               (2.7.2) 

have exactly the same smooth solutions, but the Rankine-Hugoniot condition gives 

different shock speeds, and hence different weak solutions.  

  Consider a finite difference method that is consistent with one of these equations, 

say (2.7.1), using the same definition of consistency as for linear problems (expand 

in Taylor series). Then the method is also consistent with (2.7.2) since the Taylor 

series expansion gives the same result in either case. So the method is consistent with 

both (2.7.1) and (2.7.2) and while we might then expect the method to converge to a 

function that is a weak solution of both, that is impossible when the two weak 

solutions differ. 
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Example 2.7.1.   

 If we write Burgersô equation (2.6.1) in the quasilinear form  

                   

                        0=+ xt uuu                                                                                (2.7.3) 

 

Then a natural finite difference method, obtained by a minor modification of the 

upwind method for 0=+ xt auu (and assuming 0²n

jU for all j , n) is  

                                   )( 1

1 n

j

n

j

n

j

n

j

n

j UUU
h

k
UU -

+ --=                                            (2.7.4) 

The method (2.7.3) is adequate for smooth solutions but will not, in general, 

converge to a discontinuous weak solution of Burgersô equation (2.6.1) as the grid is 

refined. Consider, for example, the data which in discrete form gives  

                          
í
ì
ë

²

<
=

.00

01
0

j

j
U j                                                                      (2.7.5) 

Then it is easy to verify from (2.7.4) and (2.7.5) that 01

jj UU = for all j and n = 0. this 

happens in every successive step as well and so 0

j

n

j UU = for all j, regardless of the 

step size k and h. as the grid is refined, the numerical solution thus converges very 

nicely to the function ).(),( 0 xutxu = this is not a weak solution of (2.7.1) (or of 

(2.7.2) either). 

In this example the solution is obviously wrong, but similar behavior is seen 

with other initial data that may give reasonable looking results that are incorrect. 

Figure (2.7.1) shows the true and computed solutions at time t=1 with Riemann data 

2.1=lu and .4.0=ru  we get a nice looking solution propagating at entirely the 

wrong speed.  
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Figure 2.7.1 true and computed solutions to burgersô equation using a non-

conservative method.        
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Chapter Three 

The Generalized Riemann Problems Method 

 

 

This chapter introduces the GRP method in the context of the scalar 

conservation law .0)( =+ xt ufu  We start in section 3.1 with the classical first- order 

(conservative) ñGodunov Scheme,ò which leads (sections 3.2, 3.3, 3.4) naturally to 

its second-order GRP extension. Section 3.5 contains a number of numerical (one 

dimensional) examples, for linear and nonlinear equations. 

                                                                                                                                                         

3.1 Godunovôs Method 

In 1959, Godunov proposed a way to make use of the characteristic 

information within the framework of a conservative method. Rather than attempting 

to follow characteristics backwards in time, Godunov suggested solving Riemann 

problems forward in time. Solution to Riemann problems are relatively easy to 

compute, give substantial information about the characteristic structure, and lead to 

conservative methods since they are themselves exact solutions of the conservation 

laws and hence conservative. The basic idea of Godunov scheme is to compose the 

global solution by the exact solution of the local Riemann problems. For given initial 

values )(1

0 RLu Í we define 

             ñ
+

-

=

2/1

2/1

)(
1

: 0

0

j

j

x

x

j dxxu
h

U   ,          rhxr =                                                                        (3.1.1)                                               
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Now let us assume that we have already computed the approximation (n

jU ) NnÍ    

for the time ,nt where n

jU is also constant on ),( 11 +- jj xx  for all .NjÍ  

On each cell ),( 1 jj xx -  for all NjÍ  we determine the exact solution of the Riemann 

problem for  

                    ,0)( =+ xt ufu   on  ],[ 1+³ nn ttR                                                       (3.1.2) 

with respect to the initial condition 
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We denote this solution by ),;,( 1 jj uutxu - . In order to ensure that the neighboring 

solution ),;,(),;,( 11 +- jjjj uutxuanduutxu   cannot influence each other, we have 

to assume that the shocks with  
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must not intersect. This can be obtained if (see Figure 3.1.1) 

2

1
,

2

1

2

1

2

1 ¢¢
+- h

k
S

h

k
S

jj
,    where  ., xhtk D=D=  

 

 

 

 

 

 

 

 

 



 78 

            t  

                                                        

                                              ­« -1ju   ­« ju     ­« +1ju  

         

1+nt

                            

 

 

 

             nt  

                                         1-ju                        ju                             1+ju  

 

 

                                         1-jx                        jx                         1-jx            x  

                                                      (Figure 3.1.1) 

 

 

 

 or 

          .
2

1
)(sup ¢¡

ÍRu

uf
h

k
                                                                                       (3.1.4) 

 

The condition (3.1.4) is again the Courant, Friedrichs, Lewy condition or CFL 

condition.  

If (3.1.4) is satisfied, the solution ),;,( 1 jj uutxu -    of the local Riemann problem 

(3.1.2), (3.1.3) uniquely defines a function v on ],[ 1+³ nn ttR  such that  
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As for the initial values, we have to ensure that the approximation 1+nU at time 1+nt  is 

constant on ),( 2/12/1 +- jj xx for all NjÍ . Therefore we define 
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1 .                                                                    (3.1.5) 

This means 1+n

jU  is the mean value of v on ),( 2/12/1 +- jj xx  and therefore contains 

parts of ).,;,(),;,( 11 +- jjjj uutxuanduutxu  since v  is an exact solution 

on ),( 2/12/1 +- jj xx , we get (see 1.2.1)  
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where 
h

k
=l  and 2/1

2/1

+

+

n

jf  is an approximation for the average flux 
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The scheme (3.1.6) is called the GODUNOV scheme. 
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3.2   Introduction to Generalized Riemann Problems 

The GRP method is a high-resolution numerical approximation of the solution to a 

conservation law of the form  

                             0,0)( >Í=
µ

µ
+

µ

µ
tRxuf

xt

u
,                                        (3.2.1) 

                               Rxxuxu Í= )()0,( 0 ,                                                     (3.2.2) 

we always assume that )(uf  is strictly convex, .0)( >²¡¡ muf  This method is a 

natural  extension to the Godunov (upwind)  scheme which we studied in section 3.1. 

As before, we take a uniform spatial grid ,, ¤<<¤-D= jxjxj  and uniformly 

spaced time levels 0,)1( 01 =+=+=+=+ tktknkknt nn . We refer to the interval 

),( 2/12/1 +- jj xx  as ñcell jò, and 2/1°jx  as its ñcell boundariesò. 

Given the approximating functions ),(,),........(1 xUxU n a numerical scheme consists 

in constructing )(1 xU n+ , approximating ),( 1+ntxu , the functions )(xU n  are piecewise-

constant (Godunov). Where )(xU n  are piecewise-linear for the (GRP). Their 

averages over cell j are denoted by .n

jU   

Our starting point is the balance equation (1.2.1), to be used over the rectangle  

].,[],[ 12/12/1 ++- ³ nnjj ttxx  Since 
1, +n

j

n

j UU  are supposed to be the average values of the 

approximating function over bottom and top respectively, the discrete version of 

(1.2.1) should be  
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where 
x

k

D
=l  and 2/1

2/1

+

+

n

jf  is an approximation for the average flux 
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Definition 3.2.1: 

 The term 2/1

2/1

+

-

n

jf  is called the ñnumerical fluxò at the boundary 2/1+jx  over the time 

interval ][ 1, +nn tt . 

Clearly, once the numerical fluxes are known, the numerical scheme is fully 

determined. 

 

3.3   Godunov Scheme For Nonlinear Equations  

In this thesis we adapt the approach suggested by Godunov as mentioned before. In 

the present nonlinear case, it can be described as follows: 

Take the function )(xU n  as a piecewise constant, with  

          n

j

n UxU =)(                        2/12/1 +- << jj xxx                                            (3.3.1) 

Let ),(~ txu  be the weak solution 3.2.1 for ntt ² , subject to the initial data )(xU n  at 

..ntt = Now evaluate the numerical flux as  
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The numerical flux associated with Godunov method. The main idea in the 

application of (3.2.3) with )( 2/1,

2/1
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+
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+

+ = nG

j

n

j ff  is that if k is sufficiently small then  

                 =+ ),(~
2/1 txu j constant,      t ],[ 1+Í nn tt                                                  (3.3.3) 
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so that (3.3.2)is easily evaluated. This is in full agreement with the linear case 
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in order to give a more precise meaning to (3.3.3), we set  
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n UM sup ,                                                                                  (3.3.4) 

and let tk D=   satisfy the CFL condition ))(( auf =¡     

         xufk
NMu

D<¡
¢

)(max .                                                                                    (3.3.5) 

Observe that near every cell-boundary 2/1+jx  the solution ),(~ txu    is a ñRiemann 

solutionò ),;( 1
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   associated with the initial data n

j

n

j UU 1, + (See Fig 

3.3.1) 
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Figure 3.3.1: Wave pattern for piecewise-constant initial data. 

 

The speed of all waves emanating from the points ¤<<¤-+ jxj ,2/1  are 

bounded by )(max ufS
nMu

n
¡=

<
                                                                               (3.3.6) 
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The CFL condition (3.3.5) entails the following important conclusion. 

 

Remark    

Under the CFL condition (3.3.5), a wave issuing from ),( 2/1 nj tx +  does not reach any 

other cell-boundary ),( 2/1 txj+   within the time interval ],[ 1+nn tt . 

  So the solution u~  satisfies, for every  ,¤<<¤- j   
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and that the numerical flux is given by  
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and the balance equation (1.2.1) reads 
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In the linear case ,)( auuf =    0>a     we get n

j

nG

j aUf =+

+

2/1,

2/1  so that equation 

(3.2.3) yields the upwind scheme 
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Definition 3.3.1: (The Godunov Scheme). 

 The scheme given by  
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is called the ñGodunov schemeò for the approximation of the conservation law 

(3.2.1). 

  The first and most fundamental question to be asked about the Godunov 

scheme (as well as any other approximating scheme) concerns its convergence to the 

exact weak solution of (3.2.1), (3.2.2). In theorem (2.3.1) and theorem (2.3.4) we 

have seen that, in the linear case auuf =)( , the CFL condition (3.3.5) is a necessary 

and sufficient condition for convergence in )(1 RLloc . The idea of convergence in 

)(1 RLloc   is very reasonable, especially when dealing with discontinuous solutions. It 

allows for phenomena common to numerical approximation, such as oscillations or 

ñspurious waves,ò as long as they tend to zero in the mean as the grid is 

refined )0( ­D= tk , over any fixed finite interval. 

     Considering the convergence properties of the Godunov scheme in the case of a 

nonlinear flux function )(uf , we can cite the following theorem. 

 

Theorem 3.3.1 

Let )()()( 1

0 RLRLxu ¤ÆÍ and assume further that )(0 xu is a function of finite total 

variation. Let ).( txu be the unique entropy solution to (3.2.1), (3.2.2), and let 

({ } 0,, ²¤<<¤- njU n

j ) be obtained by the Godunov scheme (3.3.10). Then, under 

the CFL condition (3.3.5), { }njU  converges to ),( txu in )(1 RLloc  (see definition 2.3.1). 

 

Proof: (see [BF], (pp. 320-329))      
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Claim 3.3.2 (ñMaximum principle for the Godunov schemeò)  

 Given the scheme (3.3.10), and using the notation ,sup ¤<=
¤<<¤-

n

j
j

n UM  we have  

                         ....... 01 MMM nn ¢¢¢+  

Proof    

According to 3.2.3 and 3.3.2 1+n

jU  is an average (over cell j ) of the exact solution 
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1+ntxu  subject to the initial data ).(),(~ xUtxu n

n =  Thus, by the maximum 

principle for an exact solution theorem 
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3.4. Second-Order Accuracy Methods  

The GRP may be introduced as follows: We consider the balance eq. (1.2.1). 

However, we assume that at ntt = the initial distribution is linear in each cell j. This 

proposed by Van Leer. Retaining the notation n

jU  for the average cell values, we 

therefore assume that  

       2/12/1)()( +- <<-+= jj

n

jj

n

j

n xxxSxxUxU ,                                (3.4.1) 

where 
n

jS  is the slope of the linear segment )(xU n  in cell j . Note that at cell-

boundaries 2/1+jx  we have in general a jump discontinuity in the values of 

)(xU n (namely, between n

j

n

j S
x

U
2

D
+   and )

2
11

n

j

n

j S
x

U ++

D
- , and also in the values of 

the slopes ),( 1

n

j

n

j SS + . 
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Let ,),,(~
1+¢¢ nn ttttxu  be the weak solution to (3.2.1), subject to the initial data 

1.4.3()((),(~ inasxUtxu n

n = )) . The values ),(~
2/1 txu j+ at cell-boundaries now 

depend on t, even for ntt- small, in contrast to the previous (Godunov) case, as 

given (3.3.7). This is of course because now )(xU n  is not constant on either side of 

,2/1+jx  so we cannot expect a Riemann solution there. It follows that in the present 

case the difference scheme (3.2.3) can only be written with numerical fluxes 2/1
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n

jf  

which are only approximately equal to ñ
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Specifically, we assume now that the numerical fluxes 2/1
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We now define the new averages1+n

jU , ,¤<<¤- j  by 
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combining (3.4. 1)-(3.4. 2) with the balance equation 1.2.1 over 

],[][ 12/1,2/1 ++- ³ nnjj ttxx  we get from 3.4.13, 
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+ ,   ¤<<¤- j .                          (3.4.4)          

Note that for the special initial data 3.3.1 equation (3.4.2), (3.4.4) were satisfied with 

no truncation error. In terms of definition (2.2.1) we now conclude that the scheme is 

of second order accuracy (p =2). 
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The foregoing derivation was based on the hypothesis (3.4.2). To study its validity 

we prove the following claim. 

 

Claim 3.4.1  

Let ),(~ txu  be smooth in x ],[ 2/12/1 +-Í jj xx  and ntt ² . Then (3.4.2) is satisfied with                     

)),(~(
2

)),(~( 2/12/1

2/1

2/1 njnj

n

j txuf
t

k
txuff ++

+

+
µ

µ
+=                                                    (3.4.5) 

(Namely, =+

+

2/1

2/1

n

jf the linear approximation (in t) of )),(~( 2/1 txuf j+  evaluated at the 

midpoint )
2

( 2/1

k
tt nn +=+ . 

 

Proof 

This is a direct consequence of Taylorôs theorem and the fact that 

.tan/ tconsxk =D=l  To simplify notation, we introduce the functions:      

¤<<¤-= ++ jtxuftg jj ),,(~()( 2/12/1     

Writing  
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We obtain by integration, 

)(]()([
24

1

)()([)]()([

43

)2/12/12/12/1

2/12/12/12/12/12/1

1

kOktgtg

ktgtgdttgtg

njnj

njnjj

t

t

j

n

n

+¡¡-¡¡

+-=-

+-++

+-++-+ñ
+

                             (3.4.6) 

However, )()()( 2/12/12/12/1 kOtgtg njnj =¡¡-¡¡
+-++  and by (3.4.5) 
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Inserting these relations in 3.4.6 yields 3.4.2           

 

Remark   

   It is clear that from the proof that we could replace 3.4.5 by any other expression 

which approximates, up to )( 2kO  , the value )),,(~( 2/12/1 ++ nj txuf  such as  

                ö
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Although claim 3.4.1is of a formal value (as the solution ),(~ txu  is generally 

not smooth), it provides the guideline to the construction of the GRP numerical 

fluxes. Because of the fundamental importance of this construction in the present 

work, we shall first list the technical steps, and then follow by a detailed discussion.                        

  

Construction 3.4.1 (GRP Algorithm)  

Given the piecewise-linear distribution U
n
 (x) (3.4.1) and Dt = k such that 

x

k

D
=l     

satisfies the CFL condition (3.3.5) (with )(sup xUM n

Rxn Í= ), construct )(1 xU n+    

 (which should approximate )),(~ ktxu n+  as follows. 

Step 1. At every cell-boundary 2/1+jx  evaluate )(xU n  on the two sides by 

 



 89 

    

î
î
í

îî
ì

ë

-
D
+

+
D
-

=°=
++

+
­

°+ +

"",
2

"",
2

)(lim
11

2/1
0

,2/1

n

j

n

j

n

j

n

j

j

nn

j

s
x

U

s
x

U

xUU d
d

 

Then determine the Riemann solution 
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Note that,  
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Step 2. Determine the instantaneous time derivatives )(
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Then compute the approximate solution and numerical flux (see 3.4.5) at the 

midpoint ),( 2/12/1 ++ nj tx   by, 
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Step 3. Evaluate the new cell averages as in (3.4.3), 
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And the new slopes by, 
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 The construction of the algorithm is not yet complete. We shall later 

supplement it (see 3.4.5) by a suitable ñslope limiterò, which ensures certain 

monotonicity properties of the new profile )(1 xU n+ . However, we shall first make a 

few comments concerning this algorithm. 

 The basic hypothesis underlying the GRP construction is that the wave 

pattern associated with the solution ),(~ txu  can be fully determined (for sufficiently 

small tk D= ) by the Riemann solutions of Step 1 (see (3.4.8). Of course, as has 

already been observed, a shock wave issuing from 2/1+jx  will not be (in general) 

self-similar. In other words, its trajectory will not be of constant slope.  This is in 

contrast to the characteristic lines (comprising a centered rarefaction wave) which in 

the SCALAR case are always straight lines.  However, the assumption here is that at 

each cell boundary 2/1+jx  the solution ),(~ txu  consists of a single wave (shock for  

n

j

n

j UU ++-+ > ,2/1,2/1  , centered rarefaction otherwise), where instantaneous features 

at nj ttxx == + ,2/1 , (i.e. slopes of a shock trajectory or head and tail characteristics of 

a rarefaction) are completely determined by the Riemann solution  
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j
UU
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. 

     Also, the solution u~ on the two sides of the shock, or inside and outside a centered 

rarefaction wave, is smooth, with a jump discontinuity across a shock trajectory or 
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jump discontinuities of the derivatives across the head and tail characteristics of a 

centered rarefaction wave. As a matter of fact, in the present case (a scalar 

conservation law with a strictly convex flux function) this assumption can be proved 

for the unique entropy solution.  the CFL condition implies, as in the case of the 

Godunov scheme, that a wave issuing from a cell-boundary 2/1+jx  is limited (for 

],[ kttt nn +Í ) to the neighboring  cells j ,j+1, not reaching their opposite boundaries 

., 2/12/3 -+ jj xx  In particular, the solution 12/1 ),,(~
++ ¢¢ nnj ttttxu ,  is not affected by 

the discontinuities at jlxl ¸+ ,2/1 , and is therefore a smooth function of t. Its 

derivative ),(
~

2/1 tx
t

u
j+

µ

µ
 should be interpreted as the limiting value of 

.),,(
~

2/1 nnj ttastttx
t

u
­>

µ

µ
+  if the wave moves to the right, the segment 

12/1 ),,( ++ << nnj ttttx  is contained, along with 2/1),,( +<< jjn xxxtx , in the same 

domain of smoothness of ),,(~ txu  hence ),(~ txu  is a classical solution there, 

satisfying ).,(~)),(~(),(~ txutxuftxu xt
¡-=  a similar consideration applies to the case 

where the wave moves to left. If 2/1+jx  is a sonic point, the line 2/1+= jxx  is 

characteristic, carrying the constant value min2/1 ),(~ utxu j =+ . We obtain therefore all 

three cases of Eq (3.4.10)  

The evaluation of the numerical fluxes (3.4.11) follows the second- order 

approximation given by (3.4.5), where 
n

jnj Utxu 2/12/1 ),(~
++ =  is the limiting value (as 

)ntt ­ of nj tttxu >+ ),,(~
2/1 . The same linear approximation of ),(~

2/1 txu j+  serves to 

determine the new slopes in (3.4.13)  
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Remark: (Accuracy of the slope computation)                     

As in claim (3.4.1), assume that ),(~
2/1 txu j+  is smooth in ],[],[ 12/12/1 ++- ³ nnjj ttxx , 

then  
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which is, naturally, less accurate than the computation of the cell averages 1+n

jU    

 

Remark   (zero slopes in GRP computation) 

 Observe that when the slopes n

js  are set to zero for all cells j and at every time level 

,nt the GRP computational scheme naturally reduces to Godunov scheme. 

Remark   (stationary shocks)  

 If the Riemann solution 
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 yields a stationary shock 

along ,2/1+= jxx  it means (by the Rankine-Hugoniot jump condition) that 
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where x(t) is the shock trajectory  ))()()(( ,2/1 ttxxtx jn s=¡= +  and )~.(~ +- urespu is 

the value behind (resp. ahead of ) the shock , .)),(( ,2/1 °+

° = jnn Uttxu .  Thus,  
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µ
is determined according to whether .0)( >¡° nts  

    The last technical step in the description of the GRP algorithm is concerned with a 

modification of the slope 1+n

js . In the language common to numerical schemes, it is a 

ñpostprocessingò step applied to the new results { }
¤<<¤-

++

j

n

j

n

j sU 11,  . 

        It is a basic rule in all GRP calculations that the new averages1+njU , as 

determined by (3.4.12), are never modified. Their values are obtained by the 

approximate implementation of the balance equation, which is viewed here as the 

basis of our methodology. On the other hand, the slopes are less accurately 

computed, using a discrete differentiation procedure (3.4.13). We can illustrate the 

need for a "postprocessing intervention" in their values by the following example 

(see Fig. 3.4.1) 

 

 

      U                                                                                               U  

       1       U0
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1                              s1
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0             U2

0                                                                0                                                  U2
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                     j=0               j=1             j=2                x                                   j=0                   j=1            j=2            x 

 (a) Initial data (unit step function)           (b) Integration by one time-step 

Figure 3.4.1: First GRP time-integration cycle of a moving step. 
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Example 3.4.1  

Let the initial data be Uj
0
 = 1 (resp. Uj

0
  = 0) for j Ò 0 (resp. j > 0), and let  

)(uf  = 2

2

1
u  , so that the solution is a shock wave moving at speed 
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The corresponding computed slopes sj
1
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Thus, if we are to retain all slopes 1

js  the approximating function )(1 xU  in the cell j 

= 1, should be 
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Thus, )1(
2

1
)

2

3
(1 -=-D lxU  , which is negative. This is in contradiction with the 

"moving step" character of the exact (weak) solution.  

From the mathematical point of view, the modification of the slopes 
¤

-¤=j

n

js }{   is 

needed for the control of the total variation of the approximating solution, in analogy 

with the total variation properties of the exact (weak) solution.  
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The modification of the slopes used in our GRP methodology is implemented as 

follows. 

Construction 3.4.2 (GRP "Slope Limiterò).  Given the computed slopes 1+n

js                 

  (as in (3.4.13), set the final slope values 1+n

js  to be 
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  where, for any three real numbers a, b, c, 

minmod[a,b,c]= 
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cbaifcba ss
  

Geometrically speaking, our limiter reflects the minimal change (of sj 
n+1

) needed to 

obtain the following "5-point monotonicity" (see Fig. 3.4.2): 
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Figure 3.4.2: The ñslope limiterò is a 5-point rule 

 

Remark  (Convergence of the GRP scheme)    

 The convergence of the first-order Godunov scheme was stated in theorem 3.3.1. At 

the time of writing this work, a similar convergence result has not yet been 

established for the GRP scheme. The main obstacle for convergence proof lies in the 

rather weak slope limiter as given in construction (3.4.2) (open problem).  
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3.5   1-D Sample problem   

In this section we present numerical solution to scalar conservation laws, linear and 

nonlinear, in one space dimension. The initial data considered are sufficiently simple, 

so that the exact solution can be computed and compared to the finite-difference 

approximations. Two pairs of schemes were chosen for sample problems, one pair of 

first-order schemes and one pair of second-order schemes. The idea is to demonstrate 

the difference between the first-order Godunov scheme and its natural second-order 

extension ï GRP scheme (construction 3.4.1). Then, for the sake of comparison, we 

use another typical scheme in each class. We selected the (first-order) Lax-Friedrichs 

scheme and the (second-order) Lax-Wendroff scheme. 

The Linear Conservation Law          

The equation to be considered here is 

          ).()0,(,0 0 xuxuuu xt ==+                                                        (3.5.1) 

The exact solution is given by the traveling wave ).(),( 0 txutxu -=   

First -Order Schemes 

We shall use the following pair of first-order schemes: 

(a) The Godunov scheme, which in this case (since )0>a  is identical to the    

backward- difference scheme (2.2.20), as explained in claim (2.3.6) 

(b) The Lax-Friedrichs (LF) scheme, which in this case is given by (2.2.22). 
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In all the computations of this section we take constant (fixed) space and 

time steps, xD  and ,tk D= respectively. Their ratio 
x

k

D
=l  satisfies the 

CFL condition, namely, .1¢l   

     Two initial profiles )(0 xu are considered, the first having smooth periodic data, 

and the second having step function data. These problems have been chosen for two 

reasons: (i) one of them has smooth data, and the other has discontinuous data (i.e., 

only a weak solution exists). (ii) Both problems are defined on R, yet can be solved 

numerically on some finite interval ,21 xxx <<  producing the same finite-difference 

solution that would have been obtained on an unbounded interval of x. The smooth 

initial data are  

                       ).(sin)( 4

0 xxu p=                                                                           (3.5.2) 

This is a periodic function with a period L=1, so that at time t=1, )(0 xu has 

propagated exactly through one period. The numerical solution is performed with 

periodic boundary conditions. Figure (3.5.1) shows the results of such computation, 

using a coarse grid of 9/1=Dx   and a refined grid with .17/1=Dx  The constant 

ratios are 7391.07500.0 == ll and , respectively (corresponding to integration by 

12 and 23 time steps, respectively). 
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Figure 3.5.1 First-order integration of ,0=+ xt uu  with initial data      

)(sin)( 4

0 xxu p= . 

 

Figure 3.5.2 First-order integration of ,0=+ xt uu with unit step-function initial data.   

 As is evident from Figure 3.5.1, both finite-difference approximations are 

rather far from the exact solution, with a smaller error in the finer grid computation. 

Furthermore, the Godunov scheme clearly produces more accurate results than the 

LF scheme. This can be interpreted as indicating that although both schemes are 
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first-order accurate, the Godunov solution is less ñsmearingò than the LF one and 

therefore more accurate. 

  For the step function case, the function is 00 1)( xxforxu <=  and 0)(0 =xu   

for 0xx> . The numerical integration is performed in the rang 10 <<x  until a time 

t =0.4, with 5.0=l . The boundary conditions for the time interval 

0)1(,1)0(4.00 ==<< uuaret . Two grids were used a coarse grid with 

20(04.0=Dx  time step) and 22.00 =x  and a fine grid with 02.0=Dx  (40 time 

steps) and 21.00 =x . Referring to the exact solution, we note that the discontinuity is 

positioned at a mid-cell point at the initial time, as well as at the final time. The 

datum in cell 0xxj = is 5.00 =jU , in accordance with definition 3.3.1 of Godunov 

scheme. Again, we observe in Figure 3.5.2 that the Godunov scheme produces more 

accurate results than the LF scheme. It is also noted that both coarse and fine grid 

solutions seem to approximate the moving step quite accurately in the mean; i.e., the 

numerical values are symmetrically distributed about the step, and, moreover, the 

sharp step is ñspreadò over about 8 cells in the first grid and over about 12 cells in 

the second. The width of the ñstep-spreadingò appears to be proportional to N , 

where N is the number of time integration cycles. This spreading effect is typical of a 

linear conservation law. 

Second-Order Schemes 

Turning to second-order schemes, our primary interest is GRP, but for comparison 

we also consider the Lax-Wendroff (LW) scheme (2.2.23). It is readily verified from 
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equation (2.2.23) that if )(0 xu  is of compact support in R, then ä ä=+j j

n

j

n

j UU 1 . 

This means that the LW scheme is conservative, although not upwind. 

       The GRP scheme, by contrast, is both upwind and conservative. It is given by 

adapting construction 3.4.1 to the case uuf =)( . Thus, the Riemann solution is 

simply a moving step solution, so that  
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j UUURU -+++-++ ==                                                (3.5.3) 

It follows from equation (3.4.10) that 
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Hence, as in equation (3.4.11), 
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The resulting GRP scheme is, as in equation (3.4.12) 
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Finally, the new slopes 
1+n

js are obtained as follows [see eq. (3.4.13)]: 
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The slopes 1+n

js are further subjected to the monotonicity algorithm given by 

construction 3.4.2. 

 

Figure 3.5.3.Second order integration of ,0=+ xt uu  with initial data 

)(sin)( 4

0 xxu p= .     
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 The sample problems considered here are the same two problems previously 

used for the first-order schemes, including the same grids and time step 

specifications. The second order results for the periodic case are given in 

Figure3.5.3, where a comparison between GRP and LW schemes is shown. We 

notice a significant improvement relative to the first order results in Figure 3.5.1, and 

it is also evident that the convergence with grid refinement is faster in the second 

order case than in the first order one. On the whole, the GRP values are closer to the 

exact solution than are the LW values. Furthermore, the LW results have a 

significant phase-shift error, whereas the GRP results do not. How does the 

monotonization algorithm affect the GRP results? In Figure 3.5.3(a) and 3.5.3(b) we 

show that the GRP results that were subject to the slope limiter given in construction 

3.4.2. The LW scheme, however, does not include any monotonization or slope 

limiting algorithm. For comparison, we therefore repeated the GRP computation 

without applying the monotonization algorithm, and the results are shown in Figure 

3.5.3(c) and 3.5.3(d). Clearly, the GRP points near the peak (where slope limiting is 

most effective) are now higher, including that indeed the limiting algorithm is 

required to suppress peak-forming tendencies. We also note on Figures 3.5.3(c) and 

3.5.3(d) that some GRP and LW points have 0<u . These ñundershootò values are in 

violation of the maximum-minimum principle. Slope limiting eliminates such 

violation by a second order scheme and is hence mandatory to comply with the 

maximum-minimum principle. We note that the Godunov scheme is in agreement 

with that principle (as stated before), and the results in Figure 3.5.1 are evidence to 

that property. We now turn to the step-function problem, identical to that considered 

in the first order scheme. In particular, we use the same ,, xDl and final time. As is 
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clearly visible in Figure 3.5.4(a) and 3.5.4(b), the ñshock-capturedò solution obtained 

here is similar to that of the first order scheme already discussed (Figure 3.5.2). 

However, the discontinuity is more sharply resolved by the second order schemes, 

with the sharpest (and most accurate) results obtained by the GRP. Here the jump in 

n

jU  is spread over about three cells, both in the coarse grid and in the fine-grid 

computations. 

 

Figure 3.5.4 second-order integration of ,0=+ xt uu with unit step-function initial 

data. 
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 Again, for comparison we repeated the two cases without the GRP 

monotonization constraint, and the results are shown in Figures 3.5.4(c) and 3.5.4(d). 

The GRP now produces some ñovershootò and ñundershootò values near the step. 

The indispensability of monotonization has thus been amply demonstrated, and in 

subsequent GRP computations we shall no longer consider the nonmonotonization 

option. 

       It is also interesting to notice the nature of the LW solution. No monotonization 

is applied in this scheme, and indeed the numerical solution develops pronounced 

oscillations behind the shock, which is also a typical feature for this scheme when it 

is extended to the fluid dynamical equations. 

The Burgers Nonlinear Conservation Law  

Here we consider the Burgers equation, 

                       ).()0,(,0)
2

( 0

2

xuxu
u

u xt ==+                                    (3.5.10)  

As explained before, in the case of smooth initial data the solution to this equation is 

obtained by the invariance of  ),( txu  along characteristic lines. When characteristic 

lines intersect, a smooth solution no longer exists, and from that time on only a 

(weak) solution, with shocks that obey the jump condition [
12

12 )()(

uu

ufuf
s

-

-
= ], is 

possible. In the case of the Burgers equation the characteristic speed is ,u
dt

dx
= and 

the speed of a shock wave is given by ),(
2

1
RL uus +=  where the left and the right 
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values at the shock discontinuity RL uu ,  must obey the inequality .RL uu ²   

       Two initial value problems are considered. The first has the smooth periodic data 

                           ),2sin()(0 xxu p=                                                                      (3.5.11) 

and the second is a moving step problem, having the initial data 

.0)(1)( 0000 xxforxuandxxforxu >=¢=  Both problems have exact 

solutions, which, for the simple initial data considered here, are readily calculated by 

using the previously mentioned characteristic construction. Both problem defined on 

R, yet, with appropriate boundary condition, they can be solved numerically on some 

bounded interval ],[ 21 xx of R, yielding the same finite-difference solution that would 

have been obtained on R. 

First -Order Computation 

Here we use the same two first-order schemes (Godunov and Lax-Friedrichs) 

previously considered in the context of the linear sample problems. The Godunov 

scheme is given by 3.3.10. The Lax-Fridrichs scheme, however, for a general flux 

function )(uf is given by  
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where the Burgers equation scheme is obtained by taking .
2

1
)( 2uuf =  In our 

computations (both first and second order) we take fixed values for k  and ,xD  so 



 107 

that the ratio 
x

k

D
=l   satisfies the CFL condition ( ))(max. xufk

nMu
D<¡

¢
. In fact, we 

take k  such that the left-hand side in CFL condition is approximately equal to xD
2

1
.      

In the case of smooth initial data, the equation is solved in the domain [0,1] with 

periodic boundary conditions. The computational cell size is .
22

1
=Dx   The result 

are displayed as a time sequence in Figure 3.5.5, which compares the finite-

difference solutions with the exact solution obtained by the method of characteristics. 

Prior to shock formation, in Figure 3.5.5 (b), the solution is smooth and displays the 

expected steepening in the interval where .0),( <
µ

µ
txu

x
 The smooth solution breaks 

down at the moment p2/1=t , where the slope at 5.0=x  becomes unbounded, as 

readily derived by taking the limit 
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which corresponds to the point where the characteristic line emanating from 

)0,5.0(),( e-=tx intersects the line 5.0=x . The solution at the breakdown time is 

shown in Figure 3.5.5(c). Beginning at this time the jump discontinuity at 5.0=x  

gradually increases, reaching a maximal value (between  at 

  [see Figure 3.5.5(d). This is the moment at which the characteristic lines 

emanating from the external points   reach the discontinuity 

point . We also observe that by jump condition for the Burgers 

equation the speed of propagation of a shock discontinuity 


