Chapter One

Scalar Conservation Laws

This chapter introduces the basic concepts of the present thesis. We review the
general theory of linear and nonlinear scalar conservation laws and introduce the
fundamental notations of weak solutions and Rankinganiot jump conditions.

Then, we introduce the entropy condition to pick out the physically relevant solution
of equation (1.1.1) below.

Finally, we introduce an application (traffic flow) on a réfd problem relevant to

the scalar conservation law.

1.1 Overview

We overview the basic details concerning the simplified model of scalar conservation

laws. This means that we are looking for the solutifxt) of the Cauchy problem

for a single hyperbolic partial differential equation of thestyp
Ko+ sw=o xi R t>0 (1.1.1)
ML X

u(x,0) =u,(X) xi R (1.1.2)
The solutionu(x,t) is sought for all nonnegativene values, as a function of the
space variablgi R. The function f(u)is assumed to be smooth (namely,

continuously differentiable at least as many time as needed in the analysis).



1.2 Conservation Law

The term conserviain law stems from the following argument: Integrating

equation (1.1.1) over the rectan@& t ¢ T, x, ¢ x ¢ x, one gets,

(1.2.1)

X2

XﬁJ(X,T)dX- i

X

o (X)dx = - Tﬁf (U(x,1))dt + Tr”]f (u(x,1))dt

Proof:
Integrating eq. (1.1.1) over the region R as in the Fig.11
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By Green theorem, we get
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Hence,

0= L+ f(Widxdt= f fF 7 f

L L Ly L

XﬁJ(x,T)dx- XﬁJO(X)dX = Tﬁf (u(x,,t))dt + Tﬁf (u(x,t))dt.

Thinking of u(x,t) in eq. (1.2.1) as mass density per unit length the integral

X

~

rlzu(x,t)dx expresses the total mass[i,x,] at time t, while'r‘i f (u(x,t))dt for

anyfixed x, can be interpreted as mass flux to the right, at the point x, over the time
interval [0, T]. Thus, eq. (1.2.1) may be viewed as a balance equation stating that the
gain in total mass ifix, x,] equals the net flux into the intety&hrough its boundary

(end points)x, and X, .

Example (1.2.1):

The simplest conservation law (or nonlinear hyperbolic differential equation) is the

Burgersdé equation

H nou?. . N
—u(x,t)+—(—) =0 in RE R 1.2.2
o (%,t) “X(Z) ( )

1.3 Discontinuous Solution

We begin with the simplest example which leads to discontinuous solution. Consider

the single equation (1.2.2) Burgersd equat

2

u
U +(—-),=0
t (2)x

Which can ke written in the form

u +uuy, =0 (1.3.1)



This equation has the rather remarkable property that the @tflynctions which

satisfy this equation fot > 0, are those which are monotonically non decreasing in
X, for each fixedt > 0.

Suppose (1.3.1) has a smooth solution | G'(Rx [0, T]), considerthe solution
x(t)I C*0,T)1 CY0,T]of the initial value problem for the following ordinary

differential equation:
) dx .
xi(t) = pm =u(x(t),t), In(0,T), x(0)=a (1.3.2)

For a given constarai R then we have

d St o
SO e

For all ti (0,T). this means that(x(t),t)is constant for allti [0,T], or u is

=u, +uu, =0.

constant along the curves{(x(t),t):ti [0,T]}. these curves are called
characteristics. From (1.3.%e also get that

Xi(t) =u(x(t),t) = constant (1.3.3)
For all ti (0,T). this means that the characteristics are straight lines. Altogether we

have shown thathe solution u is constant along straight lines. The slopes of these

lines are given by (1.3.2):
Xi(t) = u(x(t),t) = u(x(0),0),
(i.e. by the initial values fou). Consider now the initial value problem
u+( ) =0 in R3R",
u(x,O) =Uy(X) InR

Whereu, is given as in figure (1.3.1)
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Figure 1.3.1

Then we obtain thatl is constant along the characteristic curve (x (t), t), with

N ) _ &l if x©0)¢-1
X,(t)_u(x(O),O)—uo(X(O)))—%O if x(0)2 1

UX(D.H) = UX(0),0) = gy = 5 T O

{0 if x(0)21
This means, if T is sufficiently large and finite, that the characteristics can meet each
other (see figure 1.3.2and therefore u cannot be a classical solution up to this time.
Then a new definition of solutions for conservation laws of type (1.3.1) will be

introduced, namely (weak solutions). This new type of solution can have

discontinuities, as we shall see in ttmgning section.
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More generally, consider the initial value problem for the scalar u,
u+f),=0 t>0

u(x0) =u,(x), xI R (1.3.4)

We can write the equation as+ fj(u)u, =0, and consider the characteristics

dt dx
— =1, — = fi(u
ds ds iw

Along such a curve,

ﬁzutﬂ+ux%:ut + fi(uu, =0
ds ds ds

Thus, again u(x, t) is constant alotige characteristics. Since the slope of the

- . ds 1 ,
characteristics is — = (u is constant séij(u) =constant), so the

dx  fiu)’

characteristics are straight lines, having slope determined by their valtesQOat
i.e., byu,(x). so, if there are pointg, < x, with

rT!L = 1 < 1 =
Filu(0)  Filuo(%)

rnQa

Then the characteristics starting(at,0) and (x,,0) will cross int >0;
(seefig 1.3.3). Along [;, u(xt) =u,(x),i =12. thus at p the solution must be

discontinuous and a shock occurs. Note that this conclusion is independent of the

smoothness properties df and u,; they can each be analytiand still we cannot

obtain a globally defined solution. The phenomenon is a purely nonlinear one.
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We can be a bit more explicit and see analytically tlistontinuities must form if
ujis negative at some point. Thus, consider (1.3.4), and assumé jthed. since
the characteristics are straight lines(¥t) is any point witht >0 we let (x',0)
denote the unigue point on theaxis which lies on the characteristic through (X, t)
since u is constant along characteristics, @hifx ) = x- X, we see thati must
implicitly be givenby

u(x,t) = uy(x- tfiu(x.t))

Now if u,is a differentiable function, then we can invoke the implicit function
theorem and solve this last equation for u , provided that t is sufficiently small. We
find

~ Fiu)ug _ Uj
1+uj fiu)t 1+ ficu)t

U, =
now if uj(x) 2 Ofor all x, then these formulas show thgtu, stays bounded for all
t >0, and the solution u exist for all time. On the other handj(X) <0 at some

point , bothu,,u, becomes unbounded whénr uj fii(u)t tends to zero.

Thus, if we adhere to the notion that a solution must be smooth, then we must

content ourselves with solutions which exist for only adinime.



1.4 The Mathematical Model, Euler Equations of Gas Dynamics
To see how the following conservation laws arise from physical principles

(i) r,+(ru),=0, wherer, = E. (conservatin of mas$

(i) (ru), +(ru*+p), =0, (conservatin of momentumn (1.4.1)

(i) [r (u—22 +e)], +[ ru(u—22 +i)], =0, (conservatin of energy

Equation (1.4.1) is known as the Euler equationsléod dynamics. Where is the
density of the fluid, uthe velocity, p the pressure, e the internal energy, and

Y

i =e+—.
r

We will begin by deriving the equation for conservation of mass in a one
dimensional gas dynamics problem, for example flow in a tube where properties of
the gas such as density and velocity are assumed to be constant across each cross
section of the tube. Let x represent the distance along the tube ang,i9t be the
density of the gas at point x and t this density is defined in such a way that the total
mass of gas in any given section fromtx x,, say, is given by the integral of the
density:
mass in[x,x,] at time t:ﬁxj r(x,t)dx

If we assume that the walls of the tube are impermeable and that mass is neither
created nor destroyed, then the mass in this one section can change only because of
gas flowing across the endpoirtor x,.

Now let n(x,t) be the velocity of the gas at the point x at time t. then the rate of

flow, or flux of gas past this point is given by

Mass flux at(x, t) = (x,t)rn(xt).



By our comments above, the rate of change of masgxix,]is given by the
difference in fluxes ak;, and x, :

%ﬁxf r(xtdx=r(x,0104,8) - 706,H70%,1).

This is one integral form of the conservation law. Another form is obtained by
integrating this in time fron, to t,, giving an expreson for the mass ifix,x,] at

time t, >t, in terms of the mass at timg and the total (integrated) flux at each
boundary during this time period:

)3

~

f’l r(xt,)dx = ﬁ r(xt,)dx+ rj r (%, Hn(x,t)dt- nlz r (%, (%, t)dt (1.4.2)

to derive tle differential form of the conservation law, we must now assume that

r (x,t)and n(x,t) are differentiable functions. Then using

~2 K
t, t)=f — 7 (xt)dt 1.4.3
r(xt)- r(xt) r;mf(X) ( )
and
r(X,,0n(X,,t) - r(x,tn(x,t) = f~] ((r(x tn(x,t))dx (1.4.4)

in (1.4.2) gives

~~

N A

_‘_('D

6 u (
Erxt) + 2 (r (x (b)) idxdt= 0 1.4.5
utf(X )+IJX(f(X n(x ))i,/dx ( )

since this must hold for any sectidm,x,] and over any time intervdl,,t,], we
conclude that in fact the integrand in (1.4.5) must be identically zero, i.e.,

ro+(r p=0 Conservation of mass (1.4.6)
the conservation law (1.4.6) can be solved ataison only if the velocity 77(x,t) is

known as a function of (x,t).if itis, then r 7is a function ofr alone, say



r = f(r),and the conservation of mass equati(in4.6) becomes a scalar
conservation law forr,
ro+f(r),=0 (1.4.7)
Moreover, if the velocity is constant, v(x, t) =a, thé{r) =ar and (1.4.6) reduces
to
r.tar, =0 (1.4.8)
this equation is known as the linear advection equation or sometimes theyne
wave equation . if this equation is solved fér 0 with the initial data
r(x,0) = ry(x) -a<x<g (1.4.9)
Then it easy to check (assumingis differentiable) that the solution is simply
r(xt) =rq(x- at) (1.4.10)
We can also define flux function in a way such that
f(r,r)=ar-Dr, D>0 (1.4.11)
and the conservation law from (1.4.7) becomes
re+(ar- Dr,), =0 (1.4.12)
or assuming D is constant,
retar, =Dr, (1.4.13)
Equation (1.4.13) is called the advectdiffusion equation and(- Dr,) is called

diffusive flux. This flux isde er mi ned by HAFourierds | aw of
diffuses in much the same way as the chemical concentration). The advection
diffusion equation (1.4.13) is a parabolic equation while (1.4.7) is hyperbolic. One

major difference is that (1.4.13) alwayashsmooth solutions for t >0 even if the



initial data r,(x)is discontinuous. We can view (1.4.7) as an approximation to

(1.4.13) valid for D very small, but we may need to consider the effect of D in order

to properly interpret discontirous solution to (1.4.7).

1.5 The Linear Advection Equation

We first consider the linear advection equation, derived before, which we now write

as
u +au, =0 | (1.5.1)

The Cauchy problem is defined by this equation on the domaig <x<wo,t2 0
together with the initial condition

u(x,0) = uy(x) (1.5.2)
As noted previously, the solution is simply

u(x,t) = u,(x- at) (1.5.3)
for t 2 0. as time evolves , the initial data $in propagates unchanged to the right
(if a>0) or left (if a<0) with velocity a. The solution u(x, t) constant along each
ray x- at = x,, which are known as the characteristics of theation. (see fig.1.5.1

for the casea > 0)



u(x ,t)

Uy (X)

Figure 1.5.1 characteristics and solution for the advection equation.

Note that the characteristics are curves in thepkane satisfying the ordinary
differential equations xi(t) = a, x(0) = x,. if we differentiate u(x, t) along one of
these curves to find the rate of change of u along the characteristic, we find that

Eu(x(t)i) = wg +E2(
dt Ut dt px dt

= u +au, (1.5.4)
=0

Confirming that u is constant along these characteristics.
More generally, we might consider a variable coefficient advection iequet the
form

u, +(a(x)u), =0, (1.5.5)
Where a(x) is smooth function. Recalling the derivation of the advection equation
before, this mdels the evolution of a chemical concentration u(x, t) in a stream with
variable velocitya(x).
We can write (1.5.5) as

U, +a(x)u, = - ai(x)u (1.5.6)
M+ a9 Byuxt) = - aiu(x t). (1.5.7)
Mt X

It follows that the evolution of u along any curve x(t) satisfying



xi(t) = a(x(t))

(1.5.8)
X(0) = %,
satisfies a simple ordinary differential equation (ODE):
%u(x(t),t) = - ai(x(t)u(x(t),t) (1.5.9)

The curves determined by (1.5.8) are again called chastic®r In this case the

solution u(x, t) is not constant along these curves, but can be easily determined by

solving two sets of ODE%d—t :L% = a(x)8.
¢ds ds +

Thus, if u,(x)is a smooth function, say, i C“(- ga),then the solutin u(x, t) is

equally smooth in space and timel, C*((- ga)3 (0,2)).

Remark: Domain of dependence
Note that solution to the linear advections (1.5.1) and (1.5.5) have the following

property: the solution u(x, t) at any poi(X,t) depends on the initial data wnly at

a single point, namely the poit such that(x,t) lies on the characteristic through
X,. We could change the initial data at any points other #aith out effecting the
solution u(x,t). The setD(x,f) ={% }is called the domain of dependence of the
point (X,t). Here this domain consists of a single point. Conversely, initial data at
any given point x,can influence the solution only within some cone
{x:|x- x0| ¢ amaxt}of the xt plane. This region is called the range of influence of the

point x,. See Figure 1.5.2 for an illustration.
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D(X,f)

Figure 1.5.2: Domain of dependence and range of influence.

Remarks: Non-Smooth Data

In the manipulations performed above, we have assumed differentiability of u(x, t).
however, from our observation that the solution along a charaderistirve

depends only on the one valug(x,), it is clear that spatial smoothness is not
required for this construction of u(x, t) from(x).we can thus define a solution to
the PDE even ilu,(x) is nota smooth function. Note that if,(x) has a singularity at

some pointx, (a discontinuity inu, or some derivative), then the resulting u(x, t)

will have a singularity of the same order along thracteristic curve through

X,, but will remain smooth along characteristics through smooth portions of the data.

This is a fundamental property of linear hyperbolic equations: singularities propagate

only along characteristics.



1. 6 Burgersd Equation

Again consider the nonlinear scalar equation

U+ (W), =0

(1.6.])

Where f (u) is a nonlinear function of We will assume for the most patat f(u) is

a convexfunction, fijiu) >0 for all u. The convexity assumption corresponds to a

Agenuine nonlinearityo
important cases, such as Euler equation

By far t he most f amous

which f (u) = %uz, so (1.6.1) becomes

u +uu, =0
Actually this should be
studied by Burgers also includes a viscous term:

u, +uu, =eu,
Example 1.6.1

We want to solvéehe following problem
u +uu, =0

With the initial condition

el Xx¢O0
u(x,0) = uy(x) :‘:1- X, 0¢Cx¢1
to x>1

By using the method of characteristics, we can solve this problem up tonthe t

when the characteristic intersect. We already know that the characteristic passing

through the point (x,,0) is given by

model

c al

ed

assumpti on

probl em

(1.6.2)

t he

(1.6.3)

~ i

i n

nvi s



X-% _ dx =u(x,t) =Uy (%) Y  X=X(X,t) =X +tuy(x,)

t  dt
so that
éx, +1, X ¢0
x=1x% +t(l- ), 0¢x ¢1
%, %21

Fort <1, the characteristic do not intersect (see figure 1.6.1). hence , given a point
(x, t) with t < 1 , we draw the (backward) characteristic passing through this point

and we determine the corresponding point

A

{2

v

0 1 X
Figure 1.6.1
éx-t if x¢t<1l
X, =L(x-iA-1) if texel
bx if x21t<1

We obtain the following continuous solutitor t < 1

él, XxCt
u(x,t) =uy (%) =1 (@- X)/A-1), tExel
to, x2 1

Sincein general we can only prove local existence , we have to generalize the

definition of soluton of conservation laws.



Remark: Shock formulation
We consi der agai n u+u FQ e rwithd theeigtialadata o n (
u(x,0) = u,(X) . 't 6s easuxt)ta(xsuyow ®Bhatger sé6 equat i

u(x,t) =u(x,0) =u,(x) = % = constant, wherex = x- ut.

For each (x, t), the characteristic line passes thrgug) satisfies

dx  x-x
— = —— =U,(x
P b (X)
or
X=X +u(x)t (1.6.9

For large t the equation 1.6.4 may not have a unique solution. This happens when

the characteristic cross, as will eventually happer (k,0) is negative at any point.
At the time T, where the characteristic first cross, the function u(x, t) has infinite

sl ope the wave fibreaksodo and a shock for ms
where the initial data is piecewise linear and many characteristiessctogether at

once. More generally an infinite slope in the solution may appear first at just one

point X, corresponding via (1.6.4) to the paintwhere the slope of the initial data is

most negative. At this point the waveissai®@ fAbr eako by anal ogy w
beach. Mathematically speaking, where a shock wave occurs, the solution u(x, t) has

a jump discontinuity. This usually occurs along a curve in thplane.



_— u(x,T,)

u(x,0)

Figure1.6.2 shock formationin Burgerseqg

| f we sol ve Bwth grotts iditial edataugx) for avhich uj(x) is
somewhere negative, then the wave will break at time

T=_ Lt (1.6.5

" minuj(x)

1.7 Weak Solution

A Natural way to define a generalized solution of the inviscid equation

(u, +uu, =0) that does not require differentiability is to go back to the integral form

of the conservation law , and say that ujxis a generalized solution if (1.4.5) is

satisfied for all x,x,,t,,t,.

There is another approach that results in a different integral formulation that is more
convenient to work with. This is a mathematical technique that can be appred m

generally to write a differential equation in a form where less smoothness is required

to define a Asoluti ono. milipybylma simo oit dhe dit ies

functiono, integrate one or mor eonhy mes oVe



part to move derivatives off the function u and onto the smooth test function. The
result is an equation involving fewer derivatives on u, and hence requiring less

smoothness.
In our case we will use test functidh i C}(R3 R). Here C} is the space of

function that are continuously differenti

requirement means th&t(x,t) is identically zero outside of bounded set, and so the
support of the function lies in@mpact set.
If we multiply u, + f, =0by F(xt) and then integrate over space and time, we

obtain

o o

AfiF u +F f (u),ldxdt=0. (1.7.9
0-o

Now integrate by parts, yielding

AALF U+ F, f(u)ldxdt=- i (x,0)u(x,0)dx. (1.7.2

0-o -a

Note that nearly all the boundary terms which normally arise through integration by
parts drop out due to the requirement tht have compact support, and ken

vanishes at infinity. The remaining boundary term brings in the initial condition of

the PDE, which must still play a role in our weak formulation.

Definition 1.7.1

The function u(x, t) is called a weak solution of the conservation law if (1.71@3 ho

for all functionF I C}(R® R).



The advantage of this formulation over the original integral form (1.4.2) is that the

integration in (1.7.2) is over a fixed domain, all &3 R" the integral form (1.4.2)
is over an arbitny rectangle, and to check that u(x, t) is a solution we must verify

that this holds for all choices of,x,,t, andt,. Of course, our new form (1.7.2) has

a similar feature, we must check that it holds forrall CZ, but this turns out to be

an easier task.

Mathematically the two integral forms are equivalent and we should rightly
expect a more direct connection between the two that does not involve the
differential equation.

This can be achieed by considering special test functiof$x,t) with the property

that

gl for(xt) 1 [%,%]3 [t,t,]

F(x :\:'0 for ()T [x+1,%+1 13 [t,+1,t,+1] (.73

proof

Equation 1.7.1 can be written

o o o o o o

0=ffFu +Ff(u),Jdxdt= {ff udxdt+ {ff f (u),dxdt (%)
O-o

0-m 0-o

o o e} o} o o

AFT wdtdx = f{ f{F udtldx= F{(F ul})dx- F(fF udtdx
-o 0 -0 0 - o -o 0

o o o

= ff F(x0)u(x,0)- fjff udtdx since F(xa)=0 (1)

a0



also

:ﬁnﬁF f dxdt= - ﬁﬁ: F(u)dxdt, sinceF (° gt) =0 (2)

0-o 0-o
Substitute (1) and?j in (*) we obtain eq. (1.7.2)
Unfortunately, weak solution is often not unique, and so an additional problem is
often to identify which weak solution is the physically correct solution. There are
other conditions one can impose on weak solutions teatasier to check and will
also pick out the correct solution. These are usually called entropy conditions by

analogy with the gas dynamics case. The solution is also called the entropy solution.

1.8 TheRiemann Problem
The conservation law together tvitpiecewise constant data having a single
discontinuity is known as the Riemann problem. Axcaamplec onsi der Bur ge:

equationu, +uu, =0 with piecewise constant data

eu, x<0
u(x,0) =j (1.8.1)
iy, x>0
The form of the solution depends on the relation betweesnd u, .
Casel uy >u,.
In this case there is a unique wesaution,
éu X <st
u(x,t) =y (1.8.2)
iu X > st
where
+
S (1.8.3)



is the shock speed, the speed at which the disaotytitnavels. A general expression
for the shock speed will be derived below. Note that characteristics in each of the
regions where u is constant go into the shock (see fig.1.8.1) as time advances.

X=st .

U,

Figurel.8.1. shockwave

Case lly, <u,

In this case there are infinitely many weak solutions. One of these is again, (1.8.2)
(1.8.3) in which the discontinuity propagates wsgheeds. Note that characteristics
now go out of the shock (fig.1.§.2and that this solution is not stable to
perturbations. If the data is smeared out slightly, the solution changes completely.

Another weak solution is the rarefaction wave

r— Uy X= u,t

u=u
U

0 0
Fig. 1.8.2 Rarefactionvave



eu, x<ut

—

u(x,t) =3 ut¢ xc¢ut (1.8.4)

X
t
u,

—_—) —) —

X>ut

This solution is &ble to perturbations. There are infinitely many other weak

solutions of equation, +uu, =0 whenuy, <u,.for example,

ey, x<st
I
u t¢xeut
U(X’t):{ m Sm m
P x/t ut¢xeut
fu, X > ut

is a weak solution for any with uy, ¢u_ ¢u ands, =u +u,/2.
Another example is the general convex problem

u +f(u), =0 (1.8.5)
with the data (1.8.1) and, <u,, since fij2 O,thenfijis an increasing function

fi(u) < fi(u) the rarefaction wave solution is given by

&y, X< fi(u)t
u(x,t) = l. v(x/t) fiu)t ¢ x¢ fiu)t (1.8.6)
ty, x> fi(u,)t

wherev(x)is the solubn to fi(v(x)) = x.

1.9 ShockSpeed
The propagating shock solution (1.8.2)
if the speed of propagation is given by (1.8.3). the same discontinuity propagating at

a different speed wouldot be a weak solution.



A gain, the form (1.8.5) is the differential form of the conservation laws, which holds

in the usual sense only where u is smooth. More generally, the integral form for a

system of equations says that

%ﬁxf u(x,t)dx = f(u(x,1)- fux1) (1.9.1)

for all x,x,,t.

The speed of propagation can be determined by conservation. If M is large

comparedo (st) then by(1.9.1), ﬁMM u(x,t)dxmust increase at the rate

d m — -
anMU(X,t)dX—f(ul) f(ur)

. (1.9.2)
:E(Ulz'urz)
for Burgerso equation. On the other
A, u(xt)dx = fj udx+ 7} u,dx= (M +su +(M - sy,
so that
d dx = 1.9.3
anMu(x,t) X=s(U - u) (2.9.3)

comparing (1.9.2) and (1.9.3) gives (1.8.3)

hand,

More generally, for arbitrary flux function f(x) this same argument gives the

following relationbetween the shoclpseed s and the states and u,,called the

RankineHugoniot jump condition:

fu)- flu)=sy-u) (1.9.4)



For scalar problems this gives simply

o fW)- fw) _[f]

e n (1.9.5)

where [.] indicates the jump in some quantity across the discontinuity. Note that any
jump is allowed, provided the speed is related via (1.9.5).
the Rankne-Hugoniot (RH) conditions (1.9.5) hold more generally across any

propagating shock, where now andu, denote the values immediately to the left
and right of the discontinuity and s is the corresponding instantaneous speed, which
varies dong with u, and u,. to verify that the RH condition must be instantaneously
satisfied whenu, andu, vary, we apply the same conservation argument as before
but now to a small rectangle as shown in figure (1.9.1), with
x, =X +Dxandt, =t +Dt.assuming that u is smoothly varying on each side of the
shock, and that the shock speed s(t) is consequently also smoothly varying, we have
the following relation betweedx and [t :

Dx = s(t,) Dt + o(Dt?) (1.9.6)

From the integral form of the conservation law, we have

ﬁX1+mU(X1H +Dtydx = ﬁxl+mu(x,tl)dx+ r~j”“ f (u(x,1))dt - ﬁ“*D‘ f (u(x +Dx,t))dt (1.9.7)

In the triangular portion of the infinitesimal rectangle that lies to the left of theksho
u(x,t) =u, (t,) + o(Dt) , while in the complementary trianglgx,t) = u, (t,) + o(Dx) .
Using this in (1.9.7) gives

Dxy =Dxu, +Dif (u) - Dif (u,) +o(Dt?)

Using the relation (1.9.6) in the above equation and then dividifig bives



s(u - u) = F(u)- f(u)+o(Dx)
where sy, andu, are all evaluated ag.tLetting Dt - O gives the RH condition

(1.9.4)

shock path

{1+ e /

t; /

|

! 1

X X, +Dx
Figure 1.9.1 region of integration for shock speed calculation.

1.10  Entropy Condition

As demonstrated above, there are situations in which the weak solution is not unique
and an additional condition is required to pick ¢ physically relevant solution.

For scalar equations there is an obvious condition suggested by figures (1.8.1) and
(1.8.2). A shock should have characteristics going into the shock, as time advance. A
propagating discontinuity with characteristics comiagt of it is unstable to
perturbations. Ether smearing out the initial profiles a little will cause this to be
replaced by a rarefaction fan of characteristics. This gives our first version of the
entropy condition:

ENTROPY CONDITION (VERSION I):

A discantinuity propagating with speed s given by (1.9.4) satisfies the entropy

condition if

fi(u)>s> fiu,) . (1.10.1)



Note that f j(u) is the chaacteristic speed. For convex f, the-Hspeed s from (1.9.5)
must lie betweenfi(u) and fi(u,)so (1.10.1) reduces to simply the requirement
thatfi(y) > fi(u,), which again by convexity requiras > u,.

ENTROPY CONDITION (VER$ON lI):

u(x, t) is the entropy solution if all discontinuities have the property that

fW- fu, ¢, fW- f) (1.10.2)
u-u u-u, o

for all u betweery, andu,.

For convex f, this reqrement reduces to (1.10.1).

Another form of entropy condition is based on the spreading of characteristics in a
rarefaction fan. If u(x,t) is an increasing function of x in some region, then
characteristics spread out ifj>0. the rate 6 spreading can be quantified, and
gives the following condition.

ENTROPY CONDITION YERSION III):

u(x, t) is the entropy solution if there is a const&rnt O such that for alla > 0,t >0

andxi R,

u(x+a,t) - u(xt) < E

(1.10.3)
a t

Note that for a discontinuity propagating with constant left and right states

u, andu,,this can be satisfied only i, - u ¢ 0,so this agrees with (1.10.1). The

form of (1.10.3) has advantages in studying numerical methods.



1.11 ENTROPY FUNCTIONS

Yet another approach to the entropy condition is to define an entropy function

A(u)for which an addibnal conservation law holds for smooth solution that
becomes an inequality for discontinuous solutions. In gas dynamics, there exists a
physical quantity called entropy that is known to be constant along particle paths in
smooth flow and to jump to a highvalue as the gas crosses a shock. It can never
jump to a lower value, and this gives the physical entropy condition that picks out the
correct weak solution in gas dynamics.
Suppose some functiof(u) satisfies a conservation law thie form
A(u), +Y (u), =0 (2.11.2)

for some entropy fluxY (u). Then we can obtain from this, for smooth u ,

Ai(uy, +Yi(u)u, =0. (1.11.2)
Recall that the conservation law (1.1.1) can be written, asf j(u)u, = 0. multiply
this by
Ai(u) and compare with (1.11.2) to obtain

Y i(u) = Ai(u) f i(u) (1.11.3)

For a scalar conservation law this equation admits many solutimsY (u). an
additional condition we place on the emyofunction is that it be convex,

hii(u) > 0O, for reasons that will be seen below.
The entropy/(u) is conserved for smooth flows by its definition. For discontinuous

solutions, however, the manipulations performed above drgatid. Since we are

particularly interested in how the entropy behaves for the vanishing viscosity weak



solution, we look at the related viscous problem and will then let the viscosity tends

to zero. The viscous equation is

u + f(u), = fu,. (1.11.4)
Since solution to this problem is always smooth, we can derive the corresponding
evolution equation for the entropy following the same manipulations we osed f

smooth solutions of the inviscid equation, multiplying (1.11.4){y) to obtain

h(u), +Y (u), = TAi(uu,,. (1.11.5)
We can now rewrite the right hand sitb obtain

h(u), +Y (u), = [(Aiuu,),- T Aiu)u? . (1.11.6)
Integrating this equation over the rectangtg X, ] [t,,t,] gives

rjj ﬁxjh(u)t +Y (u), dxdt= 'ﬁ (AU, DU, (%,1) - AU, (%, )]dt

i ﬁ f'fhii(u)ufdxdt

As | - 0, the first term on the right hand side vanishes. (This is clearly true if u is
smooth atx, and x,. the other term, involves integrating oube[ x,, X,]3 [t;,t,] . If

the limiting weak solution is discontinuous along a curve is téctangle, then this
term will not vanish in the limit. However, sinde>0, u> >0and#/i>0 (by our
convexity assumption), we can conclude that the right hand side ipasiive in

the limit and hence the vanishing viscosity weak solution sedisfi

A 777(U), +Y (u),dxdte 0 (1.11.7)

for all x,x,,t;, andt,.Alternatively, in integral form,



A AU D) + ﬁ Y (u(x )di ¢ 0 (1.11.8)
i.e.

A Aut,)dx ¢ {°Au(xt))dx- (szY(u(xz,t))dt- szY(u(xl,t))dt (1.11.9)

Consequently, the total integral &f is not necessarily conservedut can only

decrease.
(Note that our mathemati cal assumption of
that decreases, whereas the physical entropy in gas dynamics increases.) The fact that

(1.11.7) holds for all x,x,t,andt,is summarized by saying that
A(u), +Y (u), ¢ 0in the weak sense. This gives our final form of the entropy

condition, @lled the entropy inequality.
ENTROPY CONDITION (VERSION IV):
The function u(x, t) is the entropy solution of (1.1.1) if, for all convex entropy
functions and corresponding entropy fluxes, the inequality
A(u), +Y (), ¢0 (1.11.10)

is satisfied in the weak sense.

This formulation is also useful in analyzing numerical methods. If a discrete form
of this entropy inequality is known to hold for some numericahods, then it can
be shown that the method converges to the entropy solution.
Just as for the conservation law, alternative weak form of the entropy condition can
be formulated by integrating against smooth test funckonnow requred to be
nonnegative since the entropy condition involves an inequality. The weak form of the

entropy inequality is



ﬁ“ R, F.(uDAD +F, (DY (xDdxdte - f_F (x0)Aa(x0)dx  (1.11.11)
forall Fi C}(R® R) with F(xt)2 O forallx, t.
Example:
Consider Burg efr(u$:6%u2eaqduaad)(Li)eu‘?. wi t h

Then (1.11.3) givesY j(u) = 2u”and henceY(u)=§u3.then entropy condition

(1.11.10) reads
2 2 3
(u), +(§u ), ¢0 (1.11.12)
For smooth solution of Burgersd equation
discontinuity is present, then integratig), + (g u®) over an infinitesimal rectangle

as in Figure (1.9.1) gives

X

ﬁlzuz(x,t)dx]g + r”f%u%x,t)dt]ﬁf = Dx(u? - u?) +§Dt(ur3 - )

=DH(Y’ - u7)(s - 8) +o(DtY)
= 2@ - u) Do)
for small Dt >0, the o(Dt?) term will not affect the sign of this quality and so the

weak form (1.8.8) is satisfied if and only ifu - u,)* > 0,and the only allowable

discontinuities havey, >u,, as expected.



1.12 Scalar Example (Traffic flow

In this section we will look of example of scalar conservation law with physical
meaning, and apply the theory developed in the previous sections. This application
(traffic flow) should also help develop some physical intuition that applicable to the
more complicated case of gas dynamics, with gas molecules taking the place of cars.

Consider the flow of cars on a highway. Let denote the density of cars (in
vehicles per mile) and u the velocity. In this applicationis restricted to a certain
range,0¢ r ¢ r__ ,where r ., is the value at which cars are bumper to bumper.
Since cars are conserved, the density and velocity must be related by the
continuity equation deriveddfore,
r.+(ru), =0. (2.12.9
in order to obtain a scalar conservation law foralone, we now assume that u is a
given functionof r. This makes sense: on a highway we would optimally like to
drive at some speed,_, (the speed limit perhaps), but in heavy traffic we slow
down, with velocity decreasing as density increases. The simplest imdlellinear
relation
u(r)=u,,,@- rlr.) (2.12.2

At zero density (empty road) the speed us,,,but decreases to zero as
approaches ..using this in (1.12.1) gives

ro+f(r), =0 (2.12.3
where

f(ry=ru @ rir.) (1.12.9



Whitham notes that a good fit to data for Lincoln tunnel was found by Greenberg in

1959 by
f(r)y=arlog(r ../ ),
a function shaped similar to (1.12.4).

The characteristic speeds for (1.12.3) with flux 214) are
Fi(r) =Un@d- 2711 ,,), (1.12.5)
while the shock speed for a jump fromto r, is

1) 1(r)
r-1r,

S U @- (7 + 1) ) (1.126)
The entropy condition {i(u) > s> fi(u,) says that a propagating shock must satisfy

fi(r,) > fi(r,) which requires, < r . Note this is the opposite inequality as in

Bur ger sd e qu &iscacave mthentbaa cohvext e

Example 1.12.1.

Take initial data

er, x<o0
r(x0) =]
ir, x>0

(1.12.9
whereO< r, <r, <r,.,. Then the solution is a shock wave travelinghvepeed s
given by (1.12.6). Note that althougi(s) 2 O the shock speed s can be either
positive or negative dependingan and r,.

Consider the case, =r.,, and r, <r_,. Then s<0and the shock propagates

to the left. This models the situation in which cars moving at spgedO



unexpectedly encounter a bumppedbumper traffic jam and slam on their brakes,

instantaneously reducing their velocity to Bile the density jumps fromr, to 7.

This discontinuity occurs at the shock, and clearly the shock location moves to the
left as more cars join the traffic jam. This is illustrated in Figurel.12.1, where the
vehick trajectories (fAparticle pathso) are

vehicles is inversely proportional to density. In gas dynanii¢g, is called the

specific volume.

The particle paths should not be confused with dharacteristics, which are

shown in Figure 1.12.2 for the case :%rmax (souy, :%umax), as is the case in
figure 1.12.1 also. In this caséj(s) =0. If r, >%rmax then fi(r,) <0 and all the

characteristics go tohé left, while if r<%rmaxthen fi(r)>0 and the

characteristics to the left of the shock are rightward going.

t-

> X

)

Figurel.12.1 Traffic jam shockwave(car patheg

r.=r

max? r max

with data r, = % r



t-

v

b )
Figure 1.12.2 characterstics

Example 1.12.2.

Again consider a Riemann problem witlata of the form (1.12.7) but now take

O<r, <r, <r,, SO thatthe solution is a rarefaction wave. This might model the

start up of cars after a light turns green. The cars to the left are initially stationary but
can begin to accelerate once tters in front of them begin to move. Since the
velocity is related to the density by (1.12.2), each driver can speed up only by
allowing the distance between her and the previous car to increase, and so we see a
gradual acceleration and spreading outaséc

As cars go through the rarefaction wave, the density decreases. Cars spread out or
become firarifiedo in the terminology used
there is another weak solution to (1.12.3), the entrophating shock. This wuld

correspond to drivers accelerating instantaneously fupmO to u >0 as the

preceding car moves out of the way.



Chapter two

Analysis of Numerical Methods
for Scalar Conservation Laws

This chapter induces the basic ideas of discrete approximations, such as accuracy
and convergence. In section (2.1) we introduce an example to show how finite
difference method works. Then we introduce the most important scheme to illustrate
the basic principles of fite-difference method. Finally, we analyze the accuracy and

convergence of these schemes.

2.1 Solution by Finite Difference Method

Any second ordepartial differential equation has the form,
Au, +Bu, +Cu, = F(xt,u,u,,u,). (2.1.)

where A,B and C are constant. There are three types of equations:

if B®- 4AC >0, the equation is called hyperbolic. (2.12.2
If B®- 4AC =0, the equation is callegarabolic. (2.1.3
If B®- 4AC <0, the equation is called elliptic. (2.1.9

As an example of a hyperbolic partial differential equation, we consider the wave

equation

u,(xt) =c’u,(xt), forO<x<a and 0<t<Db, (2.1.9
_ K _ K

(whereu, =— and u, =—



with the boundary and initial conditions
u0ot)=0 and u(at)=0 for O0¢tchb,
u(x,0) = f(x) for 0¢CxC¢a, 2.1.9
U (x,0) = g(x) for 0<x<a,

Thewave equation models the displacemenf a vibrating elastic string with fixed
ends atx = 0 andx = a. although aalytic solution to the wave equation can be
obtained withFourier series;we use the problem as a prototype of a hyperbolic

equation.

Derivation of the difference equation

Partition the rectangle I{(:x,t) :0¢xc¢a OCtch } into a grid consisting
of (p-1) by (m1l) rectangleswith sides Dx=h andDt =k,as shown in Figure
(2.1.1) start at the bottom row, where t = 0 and the solution is known to be
UJ.0 =u(x;,0) = f(x;).we shall use a differenesguation method to compute

{U;1 o T ,p} in successive rows forn =2,, é ém,

The true solution at the grid pointsUg' = u(x;,t,)



Figure 2.1.1The grid for solvingu, = c’u, over R.
The centraldifference formulas for approximating,, and u,, are

u(x,t +Kk) - 2u(xt) +u(xt- k)
k2

u, (xt) = +0(k?) (2.1.7

and

u(x+h,t)- 2u(xt) +u(x- h,t)
h2

u,, (x,t) = +0(h?) (2.1.9
The grid spacing is uniform in every row;,, =X; +h,x; ; =X;- h and it is
uniform in everycolumnt_,, =t +k, t , =t - k, next we drop the term®(h*) and
O(k®) and use the approximatidsh! = u(x;,t,) in equation (2.1.7) and 2.1.8, which
in turn are subgtuted into (2.1.5); this produces the difference equation.

_ 2 j+l

k? h?

urt- 20! +ut Ui, - 207 +U7,
C (2.1.9

Which approximates the solution to (2.1.5.) For convenience, the substitution
r =ck/h is introduced in (2.1.9
Equation (2.1.9) is employed to findow m+1 across the grid, assuming that

approximations ibothn andn-1 are known:



U =(2-2r)ul +r*U}, +Ul)-uit forj=2, 3;1é. , p (2.1.10
The four known values on the right sideequation (2.1.10), which are used are to

create the approximatidn;‘”, are shown in th&igure @.1.2)

n+l
U j

rul, (2- 2r*)Jy ru’

j+1

n-1
UJ

Figure2.1.2: Thewave equation stencil.

Caution must be taken when using formula (2.1.10), if the error made at one stage of
the calculation is dampenedt, the method is dked stable. To guarantee stability in
(2.1.10) it is necessampat r =ck/h ¢ 1. There are other schemes, called implicit
methods, which are more complicated to implement, but do not have stability
restrictions on r.

In order to use formula (2.10) to compute the third row two starting values
corresponding to n = 1 and nZmustbe supplied. Since the second row is not
usually given the boundary function g(x) is used to help prodistarting

approximationsin the second row. Fixx=x;a t the boundary and af
formula of order 1 for expanding(x,t) about(x;,0), the valueu(x;,k) satisfies
u(x;, k) = u(x;,0) +u,(x;,0k + O(k?) (2.1.1)
Then useu(x;,0) = f(x;) = f; and u,(x;,0) = g(x;) = g;in (2.1.11) to produce the
formula for computing the numerical approximations in the second row:

U? = =f +kg, for j=23,.....p-1 (21.12)



We use a very small step size for k so that the valued j’fogiven in (2.1.11) do not

contain a large amount of truncation error.

Often, the boundary functioh has a second derivativgji(x) over the interval.
In this case we have, (x,0) = fii(x)and we use the Taylor formula to help construct
the second row,

f 2f + f

U (%,,0) = €U, (x,,0) = c2f (x ) = c2 1L h; 1+ O(h?) (2.1.13)
Recall the Taylordéds formula of order 2 is
2
u(x, k) = u(x,0) + u (x0)k + % +0O(K) . (2.1.14)

Applying formula (2.1.4) atx = x; , together with (2.12) and (2.1.8), we get

21,2
u(x,.k) = f, +kg +%(fj+l- 2f, + f,)) +O(k*)O(h*) + O(K®) . 2.1.15)

Using r = ck/h, formula (2.15) can be simplifiedd obtain a difference formula for

the improved numerical approximations in the second row:

2

r . p
U?=(@- r2)fj+kgj+z(fj+l+fj_l) forj=2, 3, é1L ., p 2Z1.1)

Remark

Assume that two rows of valués; =u(x;,0) andU? =u(x,,k)f or j = 1,2, é,
the exact solutions to the wave equation (2.1.5.) if the step size k = h/c is chosen
along the {axis, then r = 1 and formula (2.1.10) becomes

urt=un, +Ur, - Ut (2.1.17)



Example 2.1.1
Considerthe equatiorior a vibrating string

u,(xt) =4u,(xt) for O0<x<landO<t<O05 (2.1.18)

with the boundary conditions

u(0,t)=0and u(Lt)=0 for0¢t ¢ 0.5
u(x,0) = f(x) =sin(px) +sin2ox) for0¢ x¢1 (2.1.19)
U (x,0) =g(x) =0 for0¢ x¢1.

Now, for convenience we choose h = 0.1 and k = 0.05. Since ¢ = 2 this yields

r = ck/h =1. Since g(x) =0 and r = 1, formula (2.1.15) for creating the second row is

for j=23...9

(2.120)

Substituting r = 1 into equation (2.1.10) gives the simplified difference equation

urt=u

j+1

n n
+UJ._1

n-1
ur,

(2.1.21)

Applying (2.120) and @.1.21) successively to generate rows will produce the

approximation tou(x,t) given in table (2.1.1) foD < x; <land 0 ¢ t, ¢ 0.50.

Table 2.1.1 solution of wave equation 2.1.17 with the boundary condition 2.1.18

t; X,=0.1 X3=0.2 X,=0.3 X =0.4 X5 =0.5 X, =0.6 Xg=0.7 Xg=0.8 X,0=0.9

000 | 0.896802 | 1538842 | 1.760074 | 1.538842 | 1.000000 | 0.363271 | -0.142040 | -0.363271 | -0.278768
005 | 0.769421 | 1.328438 | 1.538842 | 1.380037 | 0.951056 | 0.428980 | 0.000000 | -0.210404 | -0.181636
010 | 0431636 | 0.769421 | 0.948401 | 0.951056 | 0809017 | 0.587785 | 0.360616 | 0.181636 | 0.068364
015 | 0.000000 | 0.051599 | 0.181636 | 0.37738L | 0.587785 | 0.740653 | 0.769421 | 0.639384 | 0.363271
020 | -0.380037 | -0.587785 | -0.519421 | -0.181636 | 0.309017 | 0.769421 | 1.019421 | 0.951056 | 0.571020
025 | -0.587785 | -0.951056 | -0.951056 | -0.587785 | 0.000000 | 0.587785 | 0.951056 | 0.951056 | 0.587785
030 |-0.571020 | -0.951056 | -1.019421 | -0.769421 | -0.309017 | 0.181636 | 0.519421 | 0.587785 | 0.380037
035 | -0.363271 | -0.639384 | -0.769421 | -0.740653 | -0.587785 | -0.377381 | -0.181636 | -0.051599 | 0.000000
0.40 | -0.068364 | -0.181636 | -0.360616 | -0.587785 | -0.809017 | -0.951056 | -0.948401 | -0.769421 | -0.431636
045 | 0181636 | 0.21004 | 0.000000 | -0.428980 | -0.951056 | -1.380037 | -1.538842 | -1.328438 | -0.769421
050 | 0.278768 | 0.363271 | 0.142040 | -0.363271 | -1.000000 | -1.538842 | -1.760074 | -1.538842 | -0.896802

The numerical values in Table (2.1.1) agree to more than six decimal places of

accuracy with those obtained with the analytic solution

u(x,t) = %[ f(x+ct)+ f(x- ct)] +2icx+rc~;;(s)ds (2.1.2)

X- ct



Then
u(x,t) = sin(px) cos@ut) + sin(2ox) coséumt) . (2.1.23)
For example, by hand calculations, we can find some/of
* U'=0, for n=123....11 the first column, U, = Othe last column.
*Ui=f(x), j = 2,83,é..,10 the first

UL = f(x,) = f(0.1) = sin(L8) +sin(36) = 0.8968022
Ul= f(x) = f(0.2) = sin(36) +sin(72) =1.5388418

e.g..
UL = F(Xe) = F(0.9) =i, =-0.278768:2
f'—l+ f'+1 . z
* for the second row , we use the formwé:%, j=2,3,¢&.,
e.g forj=2,uz="1tT_TO*+T02 _ 260,50
2 2
Uz = f2; fo - fOD+1(03) _, aogpar
uz=Jotfu  TOB*0_ 416163
2 2
*for the third row we use thiermula (=2, 3,4 € . . , 10, and

U™ =Ul, +Uf, - U
e.g.  UZ=UZ+UZ- Ul =1328438+0- 0.896802= 0.43163¢€
US =UZ+UZ- U] =1.538842+0.76942% 1.538842=0.76942!

Similarly, wecan find the remainingaluesofU’, n =4, 5, é, 11

r

ow

3) .



Algorithm 2.1.1 (inite-difference solution for the wave equation).

To

approximate the solution of u,(xt)=a’u,(xt)

with

uO,t) =u(l,t) =0, 0<t<T, andu(x0)=f(x), u(x0)=g(x) forO¢ x¢I

INPUT endpoint ; maximum time T; constard ; integerm2 2,N 2 2.

OUTPUT approximationsy’ to u(x,t;) for eachi =0,.....mand j =0,

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

seh=I1/m;
k=T/N;
/ =kalh.

For j =1...,N setw) =0;

setf, = f(0);
W = f ().

Fori=1....m-1 (intialize fort =0andt =k.)
setw’ = f (in);
W= (L- /2 f@ih) + L[ +Dh) + f(( - Dh)] +kg(in).

For j =1,...,N-1 (performmatrix multiplication.)
fori=1....m-1

setw/ ™ = 2(1- /2)w! + /2 (W, +wly) +wi

sett = jk;
fori=0,....m
setx =ih

OUTPUT(x,t,w)).

STOP. Proceduras complete.)




2. 2 Numerical Approximation for linear Equations
We review some of the basic theory of numerical methods for the linear equation.
The emphasis will be on concepts that carry over to the nonlinear case.
We consider the timdependent Cauchy problem in one spditnension.

u +au =0 - <x<@m, t20 (2.2.)

u(x,0) = uy(Xx) (2.2.2

To approximate the model problefB.2.]) by finite differences we proceed as in
section (2.1) and divide the closed dom&p [0, T] by a set of lines parallel to the
x- and taxes to form a gridr mesh We shall assumedor simplicity, only that the
sets of lines are equalgpacedand from now on we shall assume that is the
interval [0, 1]. Note that in practice we have to work in a finite time interval [o, T],
but T can be as large as we like
We shall writeDx and Dt for the line spacing. The crossing points

(x, = D%, t, =nDx), ] = 0, 1¢é¢ J, n = 0, 1, é.

where

Dx=1/J 224

are called the grid points or mesh points. We seek approximations of the solution at
these mesh points; these approximate values will be denoted by
n
Ui °u(x,t,) 2.2.5
We shall approximate the derivatives in 2.2.1 by finite differences and then solve the
resulting difference equation in an evolutionary manner starting from n = 0.

It will also be useful to define



X7 = X +DX/2=(] +%)Dx. 2.2.6

For simplicity we take a uniform mesh. Witbx and Dt constant, although nso

of the methods discussed can be extended to variable meshes.

The finite difference methods we witevelop approximationsU}‘I' R™ to the
solutionu(x;,t,) at the discrete grid points.

This is a standard interpretation thfe approximate solution, and will be used at

times here, but in developing methods for conservation it is often preferable to view

U as an approximation to a cell averageu@,t,) defined by

1 rj“”zu(x,tn) ,  whereh = Dx (2.2.7)

j-1/2

~n 4
j

Ratherthan as an approximation to the pointwise valuésthis interpretation is

natural since the integral form die conservation law describes precisely the time

evolution of integrals such as that appearing in (2.2.7).

As initial data for the numerical method we usg,(x) to defineU ° either by point
wise values, U} =u) =u,(x,),j = 1, 2, &Jg=W =0, a=nql2.., or
preferably by cell averages)’ = U7

It is also frequently convenient to define a piecewise congtardtionU, (x,t),
(wherek = Dt) for all x and t from the discrete valuék'.we assign this function

the valueUin the (j,n) grid cell, i.e.,

U (1) =UT for (X1 [X.15,X41,2)3 [t - (2.2.8)



We index this function U, by the time step k, and assume that the mesh

width h and step k are related in some fixed way, so that the choice of k defines a
unique mesh. For timdependent hyperbolic equations one generally assume that the
meshratio kh is a fixed constant as k,-h 0. This assumption will be made from
here on.

From the initial datau,(x) we have defined datd® for our approximation
of the solutim. We now use a timmarching procedure to construct the
approximations
U* from U°, thenU? fromU" (and possibly alst °) and so on.
There are a wide variety of finite differeneethods that can be used. Many of these
are derived simply by replacing the derivatives occurring in (2.2.1) by appropriate

finite difference approximations based at the mesh fwjijtf). For example,
replacingu, by aforward-in-time approximation

U(Xj 1tn+1) - U(Xj ’tn) o] w
- 0 229

andu, by a spatially centered approximation,

U(Xj +1’tn) - u(Xj-l’tn)
2Dx

o ix 1) (2.2.10
X

We obtain the following difference equations 10

n+1 n n n
U= U] Ul UL
2h

)=0 (2.1.11)
This can be solved fdd Jf”l to obtain

n+l __ n k n n
U™ =07 - C-aUl- Uy, (2.2.12)



A far more stable method is obtained by evaluating the centered difference

approximations tau, attimet,,, ratherthan attime, , giving

an+1_U;1+ Un+1'UF_+ll
a

(“12h )=0 (2.2.13)

or
urt=ur K unt-umt 2.2.14
i j-Ea( j+1 =~ Y1/ ( )

The method (2.2.12) allows us to determih&* explicitly, and is called an
explicit method, whereas (2.2.14) is an implicit method. Although the method
(2.2.12) is useless due to stability problehrere are other explicit methods which

work very satisfactorily (sedjA2], (pp. 1060101)).

If we look at which grid points are involved in the computatiohJ@leith a

given method, we can obtain a diagram that is known as the stétocd method.

The stencils for the methods (2.2.12) and (2.2.14) are shown in figure (2.2.1).

n+l

Xia X X1

Figure 2.2.1 stencils for the methods (2.2.12) and (2.2.14).
A wide variety of methods for thénkar problem can be devised by using different
finite difference approximation. Most of these are based directly on finite difference

approximations to the PDE. An exception is ttex-Wendroff method, which is

based on the Taylor series expansion

u(x,t +Kk) = u(x,t) + ky(x.t) +%k2un(x,t)+ ....... (2.2.15)



and the observation that fromu, =-au, we can compute

U, =-au, =-ay, =- a(_ a'ux)x = a'Zuxx (2216)

so that( 22.15) becomes
u(x,t +k) = u(x,t) - kay,(x,t) +%k2a2uxx(x,t) S (2.2.17)

The Lax-Wendroff method then results from retaining only the first three terms of
(2.2.17) and using centered difference approximations for the derivatives appearing

there
1
UX(X,t) :%( j+1 - Y- :L)

n n n
Ur,- 20M+Un,

uxx(X’t) = h2

Ut +k) =UM™ L u(xt) =U7.
We obtainLax-Wendroff scheme

urt=yr a(uﬁl un)+ a(uj+l 20" +U" ) (2.2.18)

j

where (k=Dt,and h=Dx).

Remark:

Lax-Wendroff Method for the scalar conservatiaw (u, + (f (u)), =0).
The scalar conservation law
u +f(u), =0 1)

admits the LaxWendroff Method (scalar)
n+. n ﬂ / n N N n n
Ui ' :Ui (fJ+1 j-1)+ [( f1L1+ le )(f1+1 fJ' )- (fjl + fJ'Ll)(fJ' ) fJ'l)]' @)

Here, f" = f(U}), fi" = fi(U}), fi:ﬂ _



Proof

A Taylor expansion in t gives

k2
U(Xj ,tn+1) = U(XJ— ,tn) + kl.{(Xj ,tn) +EUH(XJ- ,tn) +...... (3)

By (1) u, =-[f(u)],,and sousing a centered-difference,

f (u?+1) - f (u? 1)

o h =Dx (4)

U (X;,t,) © -
Furthermore,u, =[ fi(u)(f (u)),],. Now, the usual centered second difference is the
forward difference of a backward difference; tisat

dF,=(F .- F)- (F,- Foo).

Hence we approximate the insidel@rivative above as

Fui)- fuly)
h

[f(W],°
and represent its multiplier by a mean value:

_ Fiu)) + fiuf.y)
= 5 _

fi(u)

The forward differening corresponding to the outside derivative then gives

(X 0) ® lgfi(u?ﬂh fiu?) ful)- ff)  fiud) + fiuly) f(u))- f(u;‘_l)g
h@ 2 h 2 h N

Substitution of (4) and the last equation in (3), and replacement of u by U, yields (2).

The program of the LaXWendroff method equation (2) is given below.



Example

Use the LaxWendroff method (2) to approximate the solution of

u +(U/2),=0 x>0, t>0
u(x,0) = x x>0
u(o,t) =0 t>0

At t=1, for 0¢ x¢ 1, compare the numerical solution with the exact solution,
u=x/(t+1).

Now by wsing the preceding program we get

H=0.1 K=0.1 /=1 T=1
Numerical Exact
X=0 0. 0.
X=0.1 0.50146 0.0500000
X=0.2 0.100292 0.100000
X=0.3 0.150438 0.150000
X=0.4 0.200585 0.200000
X=0.5 0.250731 0.250000
X=0.6 0.300877 0.300000
X=0.7 0.351023 0.350000
X=0.8 0.401169 0.400000
X=0.9 0.451315 0.450000
X=1.0 0.501461 0.500000

For timedependent conservation laws,-le¥el methods are almost
exclusively used. We will study explicit-l2vel methods almost exclusively, and

introdue some special notation for such methods, writing



Uum™=H,(U" (2.2.19)
hereU"™" represents the vector of approximatiduhS1 attimet,,,.

However, to illustrate the basic principles of the underlying fiditeerence method,

let us first consider the case of the linear equatiochau, =0.

We summarize four different ways in gh {U j””‘}?:_ . can be derived from the

known vaIues{UJT‘}j :

@ The ib a-diflensrece scheme

UPH'U? U?-U?-l
=-a (2.2.20)
Dt Dx

() The nf diffenreace sclbeme

UF”-UJ.” Ui, -Uj
——_a—

= e (2.2.21)
Dt Dx
(c) The LaxFriedrichs scheme
n+1 1 n n
Ui - E[UJ+1+U1-1] ur,-ur,
=-a——1= (2.2.22)
Dt 2Dx
(d) The LaxWendroff scheme
urt-u; _ aUJ."+1- U, +a2UJ.”+1- ZUE +UlL, Dt (2.2.23)
Dt 2Dx Dx 2
First, we setk = Dt and takeDx = % , Where/ >0 is given (and fixed). Thus,

k is the only fAsmall parameter o in

t

h e



Definition 2.2.1

Let u(x, t) be a smooth solutioto the conservation law, + f(u), =0 and let
U™ =H,(U") be an approximating scheme. We say tHatis accurate of order

p2 1 if, with u" ={u(x;,t,)}}-. .,

u™ - H, (u") =0k, k- 0 (2.2.24)

Remark

Observe that the notion of consistency is built into (2.2.24) in the following way:
Define F (u") =u"- H,(u"). Then (2.2.24) can be rewritten as
u™ - u"+F (u") =O(k”*h (2.2.25)
and dividing by k we have

n+1

ut-u
k

n

+%Fk(u”) =0(k"), k- O. (2.2.26)

n+1 n

. . . u™-u .
Sinceu(x,t) is an exact solutlonT approximatesy, (t =t,), and therefore

%Fk(u“) should be an approximation fof (u), (att=t,),ask- 0. This last

conclusion is commonly referred to as
H, (u") =u"- F (u") with the differential equation. Suppose that u(x, t) is a smooth
function satisfying (2.2.24) and assume that

- U+ H, (U") +kau,(x,t,) =O("™")  ask- 0. (2.2.27)

t

h e



Inserting (2.2.25) into (2.2.27) we obtain

n+l

-u"
k

+au,(x;,t,) = O(k") as k- 0, (2.2.28)

so that by lettingk - 0 we getu, +au, =0.

Example 2.2.1.

Let us use the backwadifference scheme for equation (2.2.1):

n+l n n n

k Dx
We replacel | by u(x, t),U ™ by u(x, t+k) andJ} , by uf-h, t). Assumingi to be
a smooth solutionf (eq.2.2.1) and using Taylor expansion we get,
u(xt+k)  =u(xt) +ku(xt) +O(k?)

u(xt) - kay, (x,t) + O(k?)

u(x,t) - %t[u(x,t)- u(x- Dx,t)] + O(k?) + O(Dx?)

H, u(x,t) + O(k?)

where
H u(xt) = (- /a)u(xt)+/au(x- Dxt), where/ =§ (2.2.29)

and we have absorbgd(Dx*) into  O(k?) .
We conclude that the scheme is fister accurate (p= 1). We can prove
similarly that both the forwardifference and the Lakriedrichs schemes are of

first-order accuracy, whereas the barndroff scheme is of secomdder accuracy.



2.3 Convergence

The major question that poses itself in connection with discretized schemes is
that of convergence gak- 0) o f the Hdappr o{kJ}i} noaat veeak s o | ut i
solution of the differential equation. To illustrate the situation, we take as before the

linear equation

u, +au, =0, u(x,0) = uy(x). (2.3.1)

Theorem2.3.1

(Non convergence for large/ >0) Assumea >0 and take backwardifference
scheme (2.2.20). Using (2.2.29) we can verify easily that

Ul = a %n%/a)' @- /a)~u?, (2.3.2)

=0

Proof
from 2.2.20U7"- Ul +a/(U]- U] ) =0
This can be written in the form
Ujr1+l =(1- a/ +a/Hk)U;‘,
where we have uséd, (U) =U, ie(HMU] =U7 ).
HenceU[ = (1- a/ +a/H, U™
=(1- a/ +a/H,)- a/ +a/H U2

=(1- a/ +a/H,)......... @- a/ +a/H U7

=(1- a/ +a/H,)"U}

3 é%%a/Hk)'(l- a/)"'u?



fa)' (1 a/)"' HU) = é%]%a/)(l a/)"'u?,

1
Q:
R
-GmOr

0

We can prove by the same way that it trueLf@Tl. ]

The initial vaIues{U ?}]: _.are computed from the given initial functigy(x). A

common choice is to definél?as the average ofi,(x) over the interval of size

Dx centered aK, , that is,

11/2
O_1

"= = A (x)dx, x, = rDx. (2.3.3)

X] 1/2

If we take the initial step function

él, x ¢ 0,
U, (X)j 234
o( ): 0, x>0, ( )
The weak solution of (2.3.42.3.4) is given by
u(x,t) = u,(x- at). (2.3.5)
For the corresponding approximation we get from (2.3.4)
&  j<o
u? :&, j=0, (2.3.6)
72
o, j >0,

and from (2.3.2), along with simple facts abthe binomial coefficients, we get

o ~

AU'=3 4 %%/a)' (- /a)"'u°

i=0 j:OI:O(; -

é(/a) A- /a)" +3 n8(/a)'(1- Jay"!

é a
j=01= j+1£

_PdBQ”

I\)lH

6}

/a)'@- /a)™' :%+/na,

1]
N
+
L Qs
o) o
_SPB%
Iq:lOz



so that

Dxg u" :%+nka (2.3.7)

j=0
In analogy with interpretation olU?, we think of Ulas approximating the mean
value of u(x,nk)in the interval(x;_,,,,X;,,,,) - Thus, the sum in (2.3.7) should be

compared with ta integral

(n+1/ 2)Dx (n+1/2)Dx
FHOsnK)dx = fjo(x- ank)dx
(Dx Dx
2 2

(n+_1/2)Dx- ank

= o (X)dx

—Ez—ank
2

Now fix t >0and takenk=t. As k- O and becausd :% is fixed, we have

Dx - 0Oand the limit of the last integral can be evaluated as

%n(/ﬁ a) T.éat’ /12 g,
()dx- | 2.3.8
DxﬁJ(: T/lt’ [M<a e
2
However, from (2.3.7), ak - 0,
Dxq Ui - at. (2.3.9)
j=0
We conclude that
(n+1/ 2)Dx n
A u(xtdx- bxgUuUjj- 0, as k- 0 (2.3.10)
Dx j=0

2
(with nk=t and / :%) if and only if

/ac¢l (2.3.11)



Clearly, convergence fiin the meano i s
sequene {U J”}]: . should approximate the exact solutia(x,nk). Since the step

function (2.3.4) represents only one possible initial datum, we can only derive a
necessary condition for convergence from the foregoing discussion.

First, we formalize the convergence in the mean as follows.

Definition 2.3.1

o
j:

FixT >0. We say thal{U J”} _, converges to the solution(xt) in Li..(R) at fixed

time t if, for anyja, )i R,

b
[—I
X Xj+1/2), 1 n _
lim an’ U7 - u(xt)|dx=0 (2.3.12)
(nk=t) j =[]
Dx

foranyOC¢tcCT.

Our conclusion (2.3.10) can be restated as follows.

Corollary 2.3.2

Leta>0. Then (2.3.11) is a necessary conditior the backwardlifference scheme

to converge inL;, .(R) to the solution (2.3.1).

Definition 2.3.3

The condition (2.3.11) is called the CFL (Cour&niedrichsLewy)
Condition associated with equation (2.3.1) and scheme (2.2.20)e Sinc%,the

CFL condition can be written as



ke X (2.3.13)
a

It therefore forces a necessary restriction on ibe af the time stefk = Dt ,
relative to the cell sizéx, for convergence to take place. Later in this section we
shall have a geometric interpretation of this condition, in terms of the characteristic
lines of the egation. Note that the condition refers not only to the equation but also
to the particular scheme used to approximate it. Although it plays a fundamental role
in the theory of linear equations, it serves only as a guideline in the nonlinear case
(via lineaization). Because our primary objective here is the treatment of the
nonlinear case, we shall make little use of the general theory related to the CFL

condition.

As we shall see throughout this thesis, the backwdference scheme

(2.2.20) (for a>0)plays a fundamental role in the development of accurate high
resolution schemes. The first step in this development is taken in the following
theorem, proving the sufficiency of the CFL condition for convergentg (R) .

Some knowledge of the binomial distribution is needed in the proof

Theorem 2.3.4

Consider the equatiory, +au, =0, a>0,and assume that the initial function
Uy(X) =u(x,0)is uniformly bounded. Then, under the CFL condition (2.3.1#) th

backwarddifference scheme (2.2.20) convergesLin(R), that is, in the sense of

Definition (2.3.1).



Proof

In view of u(x,t) = u,(x- at) and (2.3.2) ,(2.3.3) we can write, wittk =t

b
b
a ﬁ_”MU}‘- u(x,t)‘dx
2] o
(2] .
.D.( AKX 12 .rJ anqg | n-1 0
= a a /a) (- /)" [U] - uy(x- at)]dx
2y =06t E
Dx
.r.] On~
¢ a%&/a)'a- /a)™' p, (2.3.19
IZOQ -
where
(2] |
p=a f) Ul - u(x- atfdx, (2.3.15
=y

and where we have used the identity

é %S%/a)'(l- /a)"" =1.

1=0

We note thatnDx = =—¢

nTk , So that the numberg,, 0¢ | ¢ n,are uniformly

\|—|

b
/
bounded by

pf ¢ ZﬁED_XDxluo(X)Idx oc¢l¢n.
/

Recall that | arheee Anwambeafs o st ates t hat th

~

an
b, :%%/a)' (1- /a)™" is concentrated arourld= /an, or, more precisely, that for

any e>0



im Qb,p=0. (2.3.19

" san >y

Thus, going back to (2.3.14), (2.3.15), we obtain for larm0

b

=1

Dx
im & U] - uxbldxe im G hb,p. (2.3.17
(nk=t)J=[%] J (nk:t)“-/adwni

Butif || - /an ¢ n,we have‘(j - 1)Dx- (x; - at)‘ ¢ nli¢}I', o)

(2]
Pt a R vl U
12
b
+sup f [u(y+h) - u(y)ldy. (2.3.19
0<h¢—i /
/

Given d >0 we can choose > 0 sufficiently small so thathie second term on the

right-hand side of (2.3.18) is smallethang. This follows from elementary

properties of functions in'(R) ; simply approximatey, in L' by a smooth fuetion.
As for the first term in the rigkthand side of (2.3.18), recall from (2.3.3) tlh}aft_l is
the average value ofu,(x)overx; | ;,,,%X;.1,.]. Thus, if uy(x) is smooth,
UJ.O_I =Uy(Yy,.,) forsomey, , inthe interval and, since

U(Yy1)- ()=} u)dx

POSHET

U2, - U, (] dx ¢ f +|us(y)]dy.,
/

a j-1-1/2



which is smaller thang (for0¢ | ¢ n)if Dxis small. If u,is not smooth, it can be

approximatedi L") by a smooth function, so that the same result holds.

We conclude thatsup_,,,., Pcan be made arbitrarily small by taking

e, Dx sufficiently small. From (2.3.17) we now get

b
(]
. . A2 1 n _
Ik|_rr% a; rlj_m Uj- u(x,t)‘dx-O,
(nk=t) i=[&]
which proves our theorem. []
t
1;
' dx _ ‘
tn+1_ - —4a
dt \
t
| | |

j j+1

Figure 2.3.1 Geometric (characteristic) interpretation.

xv

The backwardlifference schemeds a simple geometric interpretation. Consider the

grid (x;,t,)as in Figure 2.3.1. As mentioned earlier, the approximating v:{llm]?:}s

are associated with thmoints(x;,t,) . If the CFL condition (2.3.11)dids, then the

characteristidine xi(x) = a, issuing from(x;,t,,,), intersects the lingé =t at the

point X = /ax;_, +(1- /a)X i [X,.1,X;]. If we use the linear interpolation



U"(X)=/au],+(@1- /aJ; (2.3.19
then the backwardifference scheme (2.2.20) states simply that
U™ =u"(x),
which just expresses the fact that the corresponding exact solution tantaieng a

characteristic line. We can summarize this discussion as follows.

Summary:

o
J

The vaIues{U ;‘*1}_:_ _as obtained by the scheme (2.2.28)%0), subject to the CFL
condition (2.3.11), are the exact valugs,t ), where U(xt) satisfies the
equatiory, +au, =0, subjectto the initial conditionu(x,t,) =U"(x). The function
U"(x)is the piecewise linear (continuous) function obtained by interpoldkiag

values{Uj”}J:_ _ at the grid pointﬁ(xj,tn)}‘j’:_ .

Definition 2.3.5(Upwinding)

We say that the backwadifferences scheme (2.2.20) witn>0, i's an RAupwi
scheme, 0 meanin &J;‘”}j:_hua are dbtaieed fwom{U]T.}jg_ s by

following the characteristic lines of the equation.
We now suggest yet another interpretation of the backdifierence scheme
(see [BF] (pp. 3335)). This one, as in the preceding discusswill also be based

on an exact solution of the equation, subject to approximate initial data. However,

now we takel "(x)  as the piecewiseonstant function defined by

U"(X) =U], Xy SX<Xy, -B<j<a, (2.3.20



We can make the following claim.

Claim 2.3.6

If we solve the equatioﬁ:I + aﬁx =0, subject to the initial conditioﬁ:(x,tn) =U"(x)

as in (2.3.20). Then the valudti;j“*l, as determined by the backweadidference

scheme (2.2.20), satisfy

L l Xj+1/—2~
U; l_& ﬁ](x,tn+1)dX,

Xj-1/2

Provided the CFL condition (2.3.11) holds.

Proof
The CFL <condition implies
satisfies

0(X,t)=U",  t <t<t,, -‘o<j<o,

It follows from the balance eation (1.2.1) that

(%t )dx=U"Dx- a[u" - Uk,

Xj.1/2

and, byk =/Dx,

1 Xj+1/£

o (.t )dx=(@1- /aul+/au?, =urt. U

Xj-1/2

Observe that although(x,t) in summary (2.3.5) an&(x,t) in claim (2.3.7) satisfy

(2.3.29)

uChta=tu,(xt &g

(2.3.22

(2.3.23

the same differential equation, they are actually different since the initiaUdéi,

i movi

r



used to interpolate the discrete valt{id$} _» are different for the two cases. In the

j:_
case ofu(x,t) the initial function U"(x),and henceu(x,t), are continuous, and

U}‘”is taken as the approximate (pointwise)

of 5(x,t),the initial function U"(x) is piecewise constant, and hence is in general

discontinuous, and the vaILLebJT”1 is taken as the average of the ensuing solution
u(xt,.,) OVer(X;_1/2:Xj41/2)-

Recall that, for the nonlinear comgation law u, + f (u), =0, the solution can

develop discontinuities even when subject to very smooth initial data. In this case,

therefore, the pointwise upwinding approach expresbgd(xt), based on

continuous interpolation, dee n o't seem appropriate. I n ¢
approach, based on the balaecgiation {.2.1) applied to piecewissnstant initial

data, can be readily generalized to the nonlinear case. It is this approach, first
suggested bysodunov, whichwill serve as the basis of the GRP discussed in the

next chapter.

Remark

Note that none of the schemes (2.2-L2.23) (i.e., the forward difference, L-ax
Friedrichs, and LaVendroff schemes) are amenable to an interpretation based on
characteristic values i u p wi as éhdefingian 2.3.6) or averaging in the sense of
Godunov (as in claim 2.3.7). Nonetheless, all these scheme [including (2.2.20) are

conservative in the sense that

o
s

a uit=auj

j=- ®o j=- ®o



(when the values) ! vanish sufficiently fast aj| - = . This is of course consistent

with the conservation property fu(x,t)dx= f,(X)dx, 0¢t ¢ T). However, in

this thesis we shall not make much use of this conservation property.

We will use the Inhorm almost exclusively, and so a norm with no subscript will
generally refer to the-thorm. for the discrete grid functiob) "we use the discrete 1
norm defined by

Jur . (2.3.24)

=n oy

note that this is consistent with the function version in the sense that

Jor

1 = ||U k ( ’tn)”l

24 Local Truncation Error

Thelocal truncation error, (x,t) is a measure of how well the difference equation
models the differential equation locally. It is defined by replacing the approximation
solution U in the difference equations by the true solutigi;,t,). of course this

true solution of the PDE is only an approximate solution of the difference equations,

and how well it satisfies the difference equations givesmdication of how well the

exact solution of the difference equations satisfies the differential equation.



As an example, consider the LBxedrichs method. Thimethod issimilar to
the unstable method (2.2.12) bu¢placed)! by%(u i1-UJ,) and is stable

providedk/h is sufficiently small, as we will see later.

We first write this method in the form
1 n+ 1 n n 1 n n —
E[Uj t- E(Uj-l +Uj+1)] +%3[Uj+1 - Ui-l] =0,

so that it appears to be a direct discretization of the PDE. If we now replace gach
by the exact solution at the corresponding point, we will not get zero exactly. What

we get instead is defined to be the local truncation error,

L (x,t) = %[u(x,t +K) - %(u(x - h,t) +u(x+h,t))] (24.1)

+2_1ha[u(x+ h,t) - u(x- h,t)]

in computing the local truncation error we always assume smooth solutions, and so
we can expand each term on the right hand side of 2.3.1 in a Taylor series about

u(x, t). Doing this and collecting terms gives (with® u(xt) :

L () :%g(u+kq +%k2un +..)- (u+%h2uxx +..)°2

4
1 ¢ 1. 7]
+—az2hu +=hu, +..x
2h 82 ux 3 XXX H

: 2 =
=u, +au, +%%qt - h?uXX§+ O(h?) (24.2)
c -



Sincewe assume thai(x, t) is the exact solutiony, +au, =0 in 2.4.2. Using this

and also (2.16), we find that
— 1 2 h2 2
L O6t) = S k(@® - - 5)u,, (.8 +O(k?)

=0O(k) as k- O. (24.3)
Recallthat we assumthat a fixed relation between k and h, k/h= constant, so that
h?/k? is constant as the mesh is refined. (This also justifies indexjray k alone

rather than by both k and h.)
by being more careful in this analysj using Taylords theorem
assuming uniform bounds on the appropriate derivatives of u(x, t), we can in fact

show a sharp bound of the form
IL(x.t) | ¢ Ck for all k <k, (2.4.4)
Theconstant C depends only on the initiakau, . If we assume moreover that
u, has compact support, thdg(x,t) will have finite Znorm at each time t and we
can obtain a bound ofehform
IL(xt|¢C k forall k<k, (24.5)
for some constant, again depending on,.

The LaxFriedrichs method is said to be first orderwate since the local error
(2.4.5) depends linearly on k.

We now extend these notions tdeXel methods.



Definition 2.4.1

For a general-Bevel method, we defined the local truncation error by

L (xt) = %[u(x,t +k) - H, (u(.,t);x)]. (24.6)

Definition 2.4.2

The method is consistent if

LGt |- 0 ask- o. (2.4.7)

Definition 2.4.3

The method is of order p fior all sufficiently smooth initial data with compact

support, there is some consta&tsuch that
IL(.)| ¢ CkP forall k<k,te¢T (24.8)

this is the local order of the methdolt it turns out that for smooth solution, the

global error will be of the same order provided the method is stable.

2.5. Stability

Any two level method can be written (by 2.3.19) in the compact form

Um™=H,U" (25.1)

whereU" represents the vector of approximations’{: | i Z} attimet,.



componentwise we have

U}”l =H,U"j) (25.2
For instance, for the forward EULER METHOD
{U”“—U“-/—a(un -un) where/ =X k=Dt h=Dx } the operatorH
i — Y 2 j+1 j-1/1 - h’ - - p k
takes the form
n+l _—_ Nn. 7\ — n /a n n
U™ =H,U"j)=U; -7(Uj+1-uj-1) (25.3

Definition 2.5.1

A method is saido be stableif for each time T there is a consta@f > 0(possibly

depending on T) and a valug > Osuch tha

foreachnk ¢ T and O0<k ¢ g, .here,

Un

_ec|u? (25.4)

Jul, =halu|| (25.5)

j=- &

is an approximation of the norm af(R).

SinceU™ = H, (U™Y) = H H,.......... H (U%)=H U
stability holds if there exist® > 0 such that foeach
O<Di¢qg, and O0<Dx¢ g

MV, ¢ @+ BoM, V.



As a matter of fact

forall k and nsuch thatnk ¢ T,hence (2.4) would follow.

Un

, =[Hew] e

UOHh ¢ (L+ BK)"

U7, e,

Notein particular that the method is stalif |H, | ¢ 1, for then

HHQ ¢|H" ¢1 for all nk. More generally, some growth is allowed. For
example, if

IH ¢1+ak for all k <k, (2.5.6)
Then

[H| ¢ @+ak)" ¢ e* ¢ e

forall k, nwith nk¢T.

2.6 Convergence(definitions & examples)

Definition 2.6.1

A difference scheme is said to be convergent if

oK JUC ) - U7

- 0 askh- 0.

h

We illustrate some results of stability here below.

Example 26.1

Consider the Lax Friedrichs method applied to the scalar advection equation

u, +au, =0. we will show that the method is stable providedtk andh arerelated

in such a way that



¢1 (26.1)

this is the stability restriction for the method. For the discogieratoH, , we will

showthat ‘U ¢

.|| ¢ 1. exactly the same proof carries over to

obtain the same bound for the continuous operator as Wake(he norm and the
triangleinequality)

We have
U= (U +U7,,) - wﬁl ur) (26.2)

and hence

U n+1]

:ha\uj"*1
i

Q

‘(1_ )UJ+1

+a ‘(1+—)U

v
a
but the restriction (8.5) guarantees that
1- ak, 0, 1+a—k
h h

and so these cae pulled out of the absolute values, leaving

U n+1

¢ e(l- —)a Ul

1+ )aw

e C’

Un

HenceHU n+l

. ¢




This shows that (B.1) is sufficient for stability. In fact, it is also necessary.

Example 26.2

Next consider the upwind scheme (for a > 0) which reads

U™ =uj-/aUj- Ul (26.3)
then
\unﬂ h :H(l' /a)u} +/au] | ¢ H(1- raJj|. JrH(/a)U;{l h
. k N K,
¢ hg |1- —a)u]|+hg |-aJ], |
i h i [h
if we now assume that
0¢ 1 (264

then the coefficients df | and U}, are both nonnegative, therefore

Kyl ¢
O

Un+l :Un

T
e HjY =

h

2.7 Conservative Methods for Nonlinear Problems

When weattempt to solve nonlinear conservation laws numerically we run
into additional difficulties not seen in the linear equation. Moreover, the nonlinearity
makes every thing harder to analyze. In spite of this, a great deal of progress has
been made in recepears (seeRA2], (pp. 122-123)).

For smooth solutions to nonlinear problems, the numerical method can often
be linearized and results from the theory of linear finite difference methods applied

to obtain convergence results for nonlinear problems.



We have already seen some of the difficulties caused by discontinuous solutions

even in the linear case. For nonlinear problems there are additional difficulties that

can arise:

@ Themet hod mi ght be Anonlinearly wunstabl
problem even though linearized versions appear to be stable.

(b) The method might converge to a function that is not a weak solution of our

original equation (i.e., does not satisfy the entropy condition).

The fact that we might converge to a function that issnoeak solution at all
is more puzzling, but goes back to the fact that it is possible to derive a variety of
conservation laws that are equivalent for smooth solutions but have different weak

solutions. For example, the PDEs

u, + (%uz)X =0 (2.7.2)

and (u®), + (§u3)x =0 (2.7.2)

have exactly the same smoablutions, but the RankiAgugoniot condition gives
different shock speeds, and hence different weak solutions.

Consider a finite difference method that is consistent with one of these equations,
say (27.1), using the same definition of consistencyfadinear problems (expand
in Taylor series). Then the method is also consistent with2(2since the Taylor
series expansion gives the same result in either case. So the method is consistent with
both (27.1) and (27.2) and while we might then expdabe method to converge to a
function that is a weak solutioaf both, that is impossible when the two weak

solutions differ.



Example 2.7.1

Il f we write Burgerso6 equation (2.6.1) 1in
u +uu, =0 (2.7.3)

Then a natural finite difference method, obtained by a minor modification of the
upwind methodor u, +au, =0(and assumingJ{ 2 Ofor all j, n) is

n+l n k n n n
u! 1—UJ— ) EUj(UJ -Un) (2.7.4)

The method (27.3) is adequate for smooth solutions but will not, in general,
converge to a discontinuous weak solutibnoBur ger s6 equation (2. ¢

refined.Considey for examplethedata whichn discrete form gives

U.O—‘él j<0

'l a0 (2.7.5)
I .

Then it is easyo verify from (2.7.4) and (2.7.5) that; =U?for all j and n = 0. this

happens in every successive step as well andse Uffor all j, regardless of the

step size k and h. as the grid is refined, the numerical solimiendonverges very
nicely to the functionu(x,t) = u,(x).this is not a weak solution of {21) (or of
(2.7.2) either).

In this example the solution is obviously wrong, but similar behavior is seen
with other initial data that may give reasonaldeking results that are incorrect.

Figure (27.1) shows the true and computed solutions at time t=1 with Riemann data
u =1.2and u, =0.4. we get a nice looking solution propagating at entirely the

wrong speed.



0.6 T
02 1
-0.2 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Figure 27.1 true ad comput ed solutions to -burgers
conservative method.



Chapter Three

The Generalized Riemann Problems Method

This chapter introduces the GRP method in the context of the scalar

conservation lawy, + f (u), = 0. We start in section 3.1 with the classical fikstder

(conservative) AGodunov Sc3Be3menatorallywd i ¢ h
its seconebrder GRP extension. Section 3.5 contains a number of numerical (one

dimensional) exaples, for linear and nonlinear equations.

3.1 Godunov® Method

In 1959, Godunov proposed a way to makse of the characteristic
information within the framework of a conservative method. Rather than attempting
to follow characteristics backwards in time, Godunov suggested solving Riemann
problems forward intime. Solution to Riemann problems are relatwedasy to
compute, give substantial information about the characteristic structure, and lead to
conservative methods since they are themselves exact solutions of the conservation
laws and hence conservative. The basic idea of Godunov scheme is to cdmepose t

global solution by the exact solution of the local Riemann problems. For given initial
valuesu, i L'(R)we define
Xj+1/2

U‘Q::E o (X)dx x =rh (3.1.1)

Xj.1/2



Now let us assume that we have already computed the approxirriat;Iqu' N
for the timet,, whereU [ is also constant oix; ,,X;,,) for all j i N.
On each cell(x;_,,%;) for all j [ N we determine the exact solution of the Riemann
problem for

u + f(), =0 on R3[t,t.,] (3.1.2)
with respect to the initial condition

éu; , if Xx<x
u(xt,) 1 "

| :
g if x>x
i I

N

(3.1.3)

N

We denote this solutiomyu(x,t;u; ;,u;). In order to ensure that the neighboring
solution u(x,t;u;_;,u;) and u(xtu;,u;,,) cannot influence each other, we have

to assume that the shocks with
f(u)- f(u f(u .)- f(u
— ( l) ( 171) and S ) - ( J+1) ( ])

o1 .
"3 u-u., i+ Ujy - U

must not intersect. This can be obtained if (see Figurd)

—¢%, where k = Dt, h = Dx.




« Uy qi- « uj - « Uy
'[+u1
t,
uj—l uj l'Ij+1
I I I
Xj—l XJ- Xj—l X

(Figure 3.1.1)

or

Esudf i(u)| ¢ %

ui R

(3.1.4)

The condition (3.1.4) is again the Courant, Friedridbsywy condition or CFL

condition.

If (3.1.4) is satisfied, the solution(x,t;u; ;,u;)

of the local Riemann problem

(3.1.2) (3.1.3) uniquely defines a functionon R3 [t,,t_,,] such that

eu(x,tu;_,u;) if X ; <x<x,t ¢tet,,

1
v(xt) =1 ?

iu(x,t;uj,ujﬂ) if X <x<xj

17"
+=
2

ctet,,



As for the initial values, we have to ensure that the approximekidhat timet, ,, is

constant on(x;_;,,, X;.,,,) forall j i N . Therefore we define

X

(xt,,,)dX. (3.1.5)

T
NIR

a1
uj.l._E

]

Nl

n+l

This meansUJ

is the mean value of on(X; ,,,,X;.;,,) and therefore contains
parts of u(xtu,,,u;) andu(xt;u;,u;,,). since v is an exact solution

ON(X;_1,2:X41/2) » WE get (see 1.2.1)

X

X

j% j% thea o1

AVt . )dx= Aav(xt)dx- Afv(x ,,s)ds+ [f (v(x ,,s))ds.
n n+1 n n n (1 n 1
X 1 Xj,l t, 2 th 2

Using

V(Xj+1/21t) = U(Xj+1/2't;uj ’uj+1) = uj+1
2

V(Xj-llzit) = u(Xj-l/th’uj.lluj) =u

1
2
We obtain
n+} n+£
UJT‘+1=UJ.”- [(f 2-1 2) (3.1.6)
itz i-=
2 2
where /:% and f].Tll,’zz is an approximation for the average flux
tn+1

1o AF UG 2, D)t

n

The scheme (3.1.6) is called the GODUNOV scheme.



3.2 Introduction to Generalized Riemann Problems

The GRP method ia highresolution numerical approximation of the solution to a

conservation law of the form
WiHlsw=0 xiRt>0, (3.2.1
ML X

u(x0) =u,(x)  xI R, (3.2.2
we always assume that(u) is strictly convex, fii(u) 2 77> 0. This method is a
natural extension to the Godunov (upwind) scheme which we studied in section 3.1.

As before,we take a uniform spatial grick = jDx, - = <j <@, and uniformly
spaced time levets,, = (n+)k =nk+k =t, +k, t,=0. We refer to the interval
(X2 X)) @as fnHcelxl,,8a®,i asdiicel |l boundarieso.
Given the approximating futions U*(X),....... ,U"(x),a numerical scheme consists
in constructingd "™(x) , approximatingi(x,t._,,), the functiondU"(x) are piecewise
constant (Godunov). Wher& "(x) are piecewisdinear for the (GRP). Their
averages over cell j are denotedWy.

Our starting point is the balance equation (1.2.1), to be used over the rectangle

[X1/21 %41/ 213 [t toaal- SinceU}‘,U}‘*l are supposed to be the averagei@salof the

approximating function over bottom and top respectively, the discrete version of

(1.2.1) should be

U =g 323



k . : o
where /:& and fj“ﬂl,’z2 is an approximation for the average flux

tn+1

* Nf (U(X;.y,,,t)dt.
tﬂ

Definition 3.2.1:

Thetermf'7?i s call ed the fnumex. cozertheftime x 6 a't
intervallt,t,..] .

Clearly, once the numerical fluxes are known, the numerical scheme is fully

determined.

3.3 Godunov Scheme For Nonlinear Equations

In this thesis we adapt the approach suggested by Godunov as mentioned before. In

the present nonlinear case, it can be diesdras follows:

Take the functior "(x) as a piecewise constant, with
Uu"(x) =Uy Xj 12 < X< X2 (3.3.0
Let U(x,t) be the veak solution 3.2.1 fdr2 t_, subject to the initial datd"(x) at

t =t,.Now evaluate the numerical flux as

NP R .
fjc;'l/zllz :E Af (U(X;..,,, dt, -R<<m (3.3.2

t

n

The numerical flux associated with Godunawethod. The main idea in the

application of (3.2.3) with(f7}'7 = f51/5'?) is that ifk is sufficiently small then

U(X;,y2,t) =constant,  it[t,,t, ] (3.3.3



so that (3.3.2)is easily evaluated. This is in full agreement with the linear case
[ f(u)=au, a>0]

the +1 r
f G,j+1/2 _

1 ~ au ~ n
j+1/2 T, nf(u(xj+1/2=t)dt = r‘P-U ?[tml- t]=au= au;

in order to give a more precise meaning to (3.3v8)set

M, = sup U

n

<o, (3.3.9

-a<j<o

and letk = Dt satisfy the CFL conditior{ f i(u) = a)

k max| f i(u)| < Dx. (3.3.5

Observe that near every eblbundaryx,,,,, the solutiont(x,t) i s a HARi emann

sol u IR(—e—F‘ii]éE U,UJ,,) associated with thiitial dataU},U?,, (SeeFig

3.3.1)

tn+T

oL aet) =ul — Gxt) =ul\W/ dxt,) =Ul,

\ :

X 1/2 X112 X

Figure 3.3.1: Wave pattern for piecewsanstant initial data.

The speed of all waves emanating from the poiRfs,,, -@<j<®z are

bounded byS, = \E\Tl?,.x| fi(u) (3.3.9



The CFL condition (3.3.5) entails the following important conclusion.

Remark

Under the CFL condition (3.3.5), a wave issuirgf (X,,,,,,t,) does not reach any
other cellboundary(x;,,,,,t) within the time intervalt,,t,.,,].
So the solutioni satisfies, for every- o < j <o,
U(X;,05,1) = ROUMNUT,) t ¢tet,, (3.3.9
and that the numerical flux is given by
3 = FROULUL), (339
and the balareequation (1.2.1) reads
éﬁi(xt) S0P /(2 ) (339
In the linear casef (u)=au, a>0 we get f3))3'> =aU] so that equation
(3.2.3 yields the upwid scheme

UM =U"-a/U"-U")].

Definition 3.3.1 (The Godunovscheme)

The scheme given by

UM =u"- /[f(ROUBUL)) - F(ROUN ;UM
o 1 Xj+1/2

U, :& o (X)dx (3.3.19

Xj.1/2



i s call ed t he fiGodunoyv schemeo for t he

(3.2.1.

The first and most fundamental question to be asked about the Godunov
scheme (as well as any other approximating scheme) concerns its convergence to the
exact weak solution of (3.2.1), (3.2.2). In theorem (2.3.1) and theorem (2.3.4) we

have seen that, itme linear casé (u) = au, the CFL condition (3.3.5) is a necessary
and sufficient condition for convergencelin(R). The idea of convergence in

L...(R) is very reasonable, especially when dealing with diseoaus solutions. It

allows for phenomena common to numerical approximation, such as oscillations or
Aspurious waves, 0 as l ong as they tend

refined(k =Dt - 0), over any fixed finite interval.

Consideringthe convergence properties of the Godunov scheme in the case of a

nonlinear flux functiorf (u) , we can cite the following theorem.

Theorem 3.3.1
Let u,(x)I L'(R) &L (R)and assume further that(x)is a function offinite total
variation. Let u(xt)be the unique entropy solution to (3.2.1), (3.2.2), and let

({U “} g < j<@a,n2 0) be obtained by the Godunov scheme (3.3.10). Then, under

J

the CFL condition (3.3.5){,U ]”} converges tai(x,t)in L .(R) (see definition 2.3.1).

Proof: (see [BF], (pp. 326329))



Clam332( iMaxi mum principle for the Godunov

Given the scheme (3.3.10), and using the notatfgr= sup

-o<j<o

uj

<o, we have

Proof

According to 3.2.3 and 3.3.2 j”” is an average (over cell j ) of the exact solution

u(xt,,,), subject to the initial datai(xt )=U"(x). Thus, by the marum
principle for an exact solution theorem

(supu(x,t) ¢ supuy(x), inf u(x.t) 2 inf uy(x))

xl R X R

M., =sugu]"
]

¢ supli(x.t,,,)| ¢ supl(xt,)| = suqulf‘ =M.. ]
X X i

3.4. SecondOrder Accuracy Methods

The GRP may be introduced as follows: Wensider the balance eq. (1.2.1).

However, we assume that &t t, the initial distribution is linear in each cell j. This

proposed by Van Leer. Retaining the notatldf for the average cell values, we

therefore assume that

U"(x) =U+(x- x,) S X 172 X< X, (3.4.)
where S/ is the slope of the linear segmedt'(x) in cell j . Note that at cell

boundaries x;,,,, we have in general a jump discontinuity in the values of

U"(x) (namely, betweet | +%S}‘ andU,, - %S}“ﬂ), and also in the values of

the slopes¢S',S],,).



Let u(xt), t,¢tet ., be the weak solution to (3.2.1), subject to the initial data
u(xt,) =U"(x)(asin(3.4.1)) . The values U(X,,,,,t)at celtboundaries now
depend on t, even for- t ,small, in contrast to the previous (Godunov) case, as
given (3.3.7). This is of course because rndi\(x) is not constant on either side of
X;.1/2» SO We @annot expect a Riemann solution there. It follows that in the present

case the difference scheme (3.2.3) can only be written with numerical ﬁy’}?g%

n+1

t
which are only approximately equalﬁé FAf (U(X;.y, D) dt.
tﬂ

Specifically, we assuenow that the numerical fluxeﬁﬁfll,’z2 satisfy,

tn+1

n+ n+ 1 ~ ~
fj+11//22 - fj-ll//zz = E ﬁ f(u (Xj+1/2't)) - f(u (Xj-1/21t))dt +0(K®) . (3.4.9
trl

We now define the new averagé$™, - o < j <=z, by
an+l =U}- /(fjrzl//z2 } fjrj+11//22) (343
combining (3.4. 1(3.4. 2) with the balance equation 1.2.1 over

[X.1/2Xj41/2] 3 [to:t,.0] We get from 3.4.13,

. 1 Xj+1/2 thia - —
Up™ = A0t = - T @0 020) - 022 D)t O(C)
Xj-1/2 tn
Unt = L 2t Y+ O(KC o<j<no 3.4
i _&nj-llz ( ’n+1) ( )’ B ] ) ( . LD

Note that for the special initial data 3.&quation (3.4.2), (3.4.4) were satisfied with
no truncation error. In terms of definition (2.2.1) we now conclude that the scheme is

of second order accuracy (p =2).



The foregoing derivation was based on the hypothesis (3.4.2). To study its validity

we prove the following claim.

Claim 3.4.1

Let T(x,t) be smooth in k [X;.1/2:%41/2] @ndt2 t . Then (3.£) is satisfied with

. _ ST
I = F Ot ) 5 F ) (3.49

(Namely, fj’fll,’zz =the linear approximation (in t) of (U(x,,,,,,t)) evaluated at the

midpoint(t,,,,, =t, + g) .

Proof
This is a di ect consequence of Tayl or 6s
/ =k/Dx=congant. To simplify notation, we introduce the functions
9j12(t) = FU(X1001), -a<j<no
Writing

9541/2() = Gjar2(thinr2) + 9juas2 (g ) - Loy 2)

1
+ B a2 (thea/2)(E - this2)° + O(K?) t,¢tet

We obtain by integration,

the1

AY0120 - 951,010t =[0.41,,(t01/2) = 9jo1/2 (g )K
th (3.4.9

1
z[gji+1/2(tn+1/2) - gii—1/2(tn+1/2)]k3 +0O(k")

However, gii+1/2(tn+1/2) - gii—1/2(tn+1/ ,) = O(k) and by (3.4.5)



— £ Nn+1/2 n+l/2
Ojs2(th2) = 95 vo(then2) = Fihs - 02 +

1
g[gii+1/2(tn) - gii-1/2(tn)]k2 +O(k3)
- fn+112 _ f_n+l/2 +O(k3)

j+1/2 j-1/2

Inserting these relations in 3.4.6 yields 3.4.2 [

Remark

It is clear that from the proof that we could replace 3.4.5 by any other expressio

which approximates, up t®(k?) , the valuef (U(X;4q/2:ths1,2)), SUCh as

n+ a- K pu Q
fj+11//22 = fa@'(xjﬂ/z’tn) +__(Xj+1/2’tn)0 (3.4.7
c 2 |t

Although claim 3.4.1is of a formal value (as the solutifx,t) is generally

not smooth), it provides the guideline to the construction of the GRP numerical
fluxes. Because of the fundamental importance of this construction in the present

work, we shall first list the technical stepsid therfollow by a dediled discussion.

Construction 3.41 (GRP Algorithm)

Given the piecewistnear distribution U (x) (3.4.1) andDt = k such that/ = %

satisfies the CFL condition (3.3.5) (with, = sup, /U"(X)|), constructy ™(x)
(which should approximatel(x,t, +k)) as follows.

Step 1. At every celboundaryx;,,,, evaluateU"(x) on the two sides by



U?+1/2,° = Jirr(}U”(me °a)= 1
) lyr+=g"
[~ 2
Then determine the Riemann solution

UT+1/2_R(OUJ+1/2 U )

j+1/2,+7" (348
Note that,
T'e'Uj”ﬂ,zv_ wavemovesight, filU?,,,) >0,
U = TU .. Wwavemovedeft, filU,.,,,.) <0,
j+rr2 ~ | . . . . (3-4- 9
7 Unin if X;,,/, IS @ sonic point,
[l :
i I(UJ+1/2 )¢0¢ fI(Uj+1/2,+)-
Step 2. Determine the instantaneous time derivaﬁ-l\fcje&jﬂ,ztn) by,
e f |(U,+1/2) sf‘ if fI(U]+1/2) >0,
w L Q) =1 iU S 1 FiU]2) <O (3.4.19

1=
Jfo if an+1/2 = Unin -

Then compute the approximate solution and numerical flux (see 3.4.5) at the

mMidpoint (X;,4/5:t.1/2) bY,

n+ n k IJG
l-Jj+1l//22 = Uj+1/2 +EE(Xj+1/2’tn)’

(3.4.1)
f,Tll/lzz =fU J+l/2) + fiU J+l/2) H (XJ+1/27 n)
Step 3. Evaluate the new cell averages as in (3.4.3),
U™ =Up- /(107 - 1797), -e<j<n, (3.4.12

And the new slopely,



U?:f/Z =U.» +k%(xj+1/21tn)1 -a<j<ao, (3.4.13

1
n+l _ n+l n+l
S = &(Ujﬂlz - Uj-l/z)-

The construction of the algorithm is not yet complete. We shall later

suppl ement it (see 3.4.5) chbhensures cegtain t abl e
monotonicity properties of the new profi)é*'(x). However, we shall first make a
few comments concerning this algorithm.

The basic hypothesis underlying the GRP construction is that the wave
pattern associated with tiselution U(x,t) can be fully determined (for sufficiently
small k =Dt) by the Riemann solutions of Step 1 (see (3.4.8). Of course, as has
already been observed, a shock wave issuing from, will not be (in general)
seltsimilar. In other words, its trajectory will not be of constant slope. This is in
contrast to the characteristic lines (comprising a centered rarefaction wave) which in
the SCALAR case are always straight lines. However, the assumigre is that at

each cell boundary;,,,, the solutiont(x,t) consists of a single wave (shock for
Ul... >UlL,. » centered rarefaction otherwise), where instantaneous features
atx = x;,,,, t =t,,(.e.slopes of a shock trajectory or head and tail characteristics of
a rarefaction) are completely determined by the Riemann solution

X- Xj+l/2 1 n Un
t-t Y+ 2,- 1+ 2,+) '
n

R(

Also, the solutionu on the two sides of the shock, or inside and oataidentered

rarefaction wave, is smooth, with a jump discontinuity across a shock trajectory or



jump discontinuities of the derivatives across the head and tail characteristics of a
centered rarefaction wave. As a matter of fact, in the present casealé@ sc
conservation law with a strictly convex flux function) this assumption can be proved
for the unique entropy solution. the CFL condition implies, as in the case of the
Godunov scheme, that a wave issuing from atwalindary x;,,,, is limited (for

ti [t,t +K]) to the neighboring cells j ,j+1, not reaching their opposite boundaries
X;.3121%.1/2- IN particular, the solutionu(x;,,,,,t),t, ¢t ¢t ., is not affected by

the discontinuities atx,,,,, |, j, and is therefore a smooth function of t. Its

5

derivative %(xjﬂ,z,t) should be interpreted as the Ilimiting value of

%(xm,z,t),tﬂn ast- t. if the wave moves to the right, the segment

(Xj41/20t), t, <t <t,,, is contained, along witfx,t,), X; <X< X;,,,,, in the same
domain of smoothness ofi(x,t), hence u(x,t) is a classical solution there,
satisfying u,(x,t) = - fi{U(xt))u,(xt). a similar consideration applies to the case
where the wave moves to left. I,,,,, is a sonicpoint, the line x=x,,,,, is
characteristic, carrying the constant valigx; ,,, ,,t) = u,,,. We obtain therefore all

three cases of Eq (3.4.10)

The evaluation of the numerical fluxes (3.4.11) follows the secader
approximation given by (3.4.5), whetgx,.,,,,t,) =U/,,,, is the limiting valug(as
t- t)of U(X,y,,t),t>t,. The same linear approximation ofx,,,,,,t) serves to

determine the new slopes in (3.4.13)



Remak: (Accuracy of the slope computation)
As in claim (3.4.1), assume thaf(x;,,,,,t) is SMooth iN[X; ;5 X;.1,,]% [ty bl

then
n+l ~ 1 2 3
Uj°1/2 = U(Xj°1/2’tn+1) - Eutt(xj°1/2’tn)'k +O(k )

_ - Dx
=u (Xj ’tn+1) uX(Xj ’tn+1)'7

1. 1.
+§uxx(xj ’tn+1)'DX2 - Eun(xj°1/2’tn)'k2 + O(ks)

Thus

n+ 1 n+ n+ Tt
S "= &(UHilllzz -U '-iL//ZZ) = ux(Xj ’tn+1) +O(k2)’

] ]

which is, naturally, less accurate than the computation of the cell avejéitjes

Remark (zero slopes in GRP computation)

Observe that when the slopss are set to zero for all cells j and at every time level

t.,the GRP computational scheme naturally reduces to Godunov scheme.

Remark (stationary shocks)

X- Xj+1/2

R
(t-t

If the Riemann solution

;U Jrl+1/2,- 'Uj+1/2,+)
n yields a stationary rock

along x=X,,,, it means (by the RankiAgugoniot jump condition) that

fU2.) = T 2.), U >U, .. the shock speed is given by

s(t) = A (x(t).t) - U (x(t).t)
U (x(t),t) - U (x().t)



where x(t) is the shock trajectory(x(t,) = X;,,,, Xi(t) =s(t)) and U (respu”)is
the value behind (resp. ahead of ) the shaegk(x(t,),t,) = Uj/z--- Thus,

- f i(U jn+1/2,+)23?+1 + f i(U j+1/2,- )25?

n n
Uj+1/2,+ - Uj+1/2,-

Si()] e, =

and the value O%J(xj w1/ 2:1,) is determined according to whethes (t,) > 0.

The last technicaltsp in the description of the GRP algorithm is concerned with a

modification of the slopes;”l. In the language common to numerical schemes, it is a
ipostprocessingo st e{Lp}‘”,a?*b}_gJ@i.ed to the new r

It is a basic rulein all GRP calculations that the new averd@%*é, as

determined by (3.12), are nevemodified. Their values are obtained by the
approximate implementation of the balance equation, which is viewed here as the
basis of ourmethodobgy. On the other hand, the slopes are less accurately
computed, using a discretifferentiation procedure (3.4.13We canillustrate the

need for a "pogrrocessing intervention” in their values by tleowing example

(see Fig. 3.4.1)

A A
y U
| W 1| g o1
31-1
0 v Uy’ R 0 élU
=0 FL 2 x 0 2 x
(a) Initial data (unit step function) (b) Integration by one timetep

Figure 34.1 First GRP timantegration cycle of a moving step



Example 3.4.1

Let the initial data be 0= 1 (resp. iy =0)forjO 0 (resp. j > 0),

f(u = %uz , SO that the solution is a shock wave moving at sp%ed

u(xt) =u,(x- it). If we use atime step kB¢, it is easy to see that

a  jeo
1 .
U:JLZ{E/, J=1,
|
o, j>1

The corresponding computed sIopéssatisfy

€0, j¢o
1
s}:{-&, j=1
|
70, j>1

Thus, if we are to retain all slopes$ the approximating functio'(x) in the cell

=1, should be

X-DX_q, 10X X3 (3.4.14)
2" "> 2 2

1
u(xy==/ -
(x) >

Thus, Ul(ng-):%(/ - 1) , which is negative. This is in contradiction with the
"moving step" character of the exact (weak) solution.

From the mathematical point of view, the modification of the sld®_. . is

needed for the control of thetal varidion of the approxnating solution, in analogy

with the total variation properties of the exact (weak) tamiu

and



The modification of the slopes used in our GRP methodology is mgpited as

follows.

n+l

Construction 3.4.2 (GRP "Slope Limiter). Given the omputed slopes,

(as in (34.13, set the final slopii‘aluessj”+1 to be

—n+l

1 . n+ n+ n+ n+ +
s = min mod[2(U 1 - U™),2U - U ), Dxs™], (3.4.13

i+
where for any three real numbers a,d)

minmod[a,b,cl=; min((a} b}, |c) 'ff =sgn(a) =sgn) =sgn(),
i0, otherwise

Geometrically speaking, our limiteeftects the minimal change (qfrgl) neededo

obtain the following "gpoint monotonicity" (se€ig. 3.42):

form a monotonic sequence, then sdftmfivevalues{U™, U™, U™} If

DX _n+ +l_:|
7Sjn l,an+11U
y

3 Dx
S n+1 n+1 =n+1 n+1 n+1
.Iler_l,Uj "5 U Ui+

If U™ 2 maxU:7)orU™ ¢ minU[']) weset §'™ =0. Thus, atexternalpoints

the slopes arset to zero, whereadsewhere it is ensured that
(in the case o "} ¢UT™ ¢ U}

j+1

an+l 2 maX(U 1n+1l/2 )7 an+l ¢ min(U Jn:11/2 )



A
n+l n+1 n+l
Uj-1/2,- Uj+l/2,- Uj+1
n+l
\ )
n+l
n+l n+l
Uj+1/2,+ Uj-1l2,+
® @ >
1 i 1 X

Figure3.4.2:Thefislopel i miistaB-point rule

Remark (Conwergence of the GRP scheme)

The convergence of the firstder Godunov scheme was stated in theorem 3.3.1. At
the time of writing this work, a similar convergence result has not yet been
established for the GRP scheme. The main obstacle for convegeontdies in the

rather weak slope limiter as given in construction (3.4.2) (open problem).



3.5 1-D Sample problem

In this section we present numerical solution to scalar conservation laws, linear and
nonlinear, in one space dimension. The indi@la considered are sufficiently simple,

so that the exact solution can be computed and compared to thdlififeitence
approximations. Two pairs of schemes were chosen for sample problems, one pair of
first-order schemes and one pair of secorgkr sbhemes. The idea is to demonstrate

the difference between the fistder Godunov scheme and its natural seamder
extensioni GRP scheme (construction 3.4.1). Then, for the sake of comparison, we
use another typical scheme in each class. We selectéiitsherder) LaxFriedrichs

scheme and the (secendler) LaxWendroff scheme.

The Linear Conservation Law

The equation to be considered here is

u, +u, =0, u(x,0) = uy(x). (3.5.)

Theexact solution is given by the traveling wawgx,t) = u,(x- t).

First-Order Schemes

We shall use the following pair of firsrder schemes:

(& The Godunov scheme, which in this case (siace0) is identical to the

backward difference scheme (2.2.20), as explained in clai®\gp.

(b) The LaxFriedrichs (LF) scheme, which in this case is given by (2.2.22).



In all the computations of this section we take constant (fixed) space and
. . . . k i
time steps,Dx and k = D, respectively. Their ratio/ :& satisfies the

CFL condition, namely/ ¢ 1.

Two initial profiles u,(x) are considered, the first having smooth periodic data,

and the second having step funatidata. These problems have been chosen for two
reasons: (i) one of them has smooth data, and the other has discontinuous data (i.e.,
only a weak solution exis)s(ii) Both problems are defined on R, yet can be solved
numerically on some finite interva < x <x,, producing the same finitdifference

solution that would have been obtained on an unbounded interval of x. The smooth

initial data are
Uy (X) = sin*(ox). (3.5.2)

This is a periodic function with a period L=1, so that at time t=x{(x)has
propagated exactly through one period. The numerical solution is performed with
periodic boundary conditions. Figure (3.pshows the results of such computation,
using a coarse grid obx =1/9 and a refined grid withDx =1/17. The constant
ratios are/ =0.7500and / =0.739], respectively (corresponding to integration by

12 and 23 time steps, respeety).
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{a) Ar=1/9. (b)Y Az =1/17.

Figure 3.5.1 Firsorder integration of u +u, =0, with initial data

Uy (X) =sin*(ox) .
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(a) Az =1/25. (b) Az =1/50.

Figure 3.5.2 Firsorder integration ofy, +u, = O, with unit stepfunction initial data.

As is evident from Figure 3.5, both finitedifference approximations are
rather far from the exact solution, with a smaller error in the finer grid computation.
Furthermore, the Godunov scheme clearly produces more accurate results than the

LF scheme. This can be interpreted asadating that although both schemes are



firsttor der accur at e, t he Godunov solution

therefore more accurate.

For the step function case, the functionuigx) =1 for x<x, and u,(x) =0
for x> x,. The numerical integration is performed in the réngx <1 until a time
t =0.4, with / =05. The boundary conditions for the time interval
0<t<04 areu(0)=21u()=0. Two grids were used a coarse grid with

Dx =0.04 (20 time step) andx, =0.22 and a fine grid withDx =0.02 (40 time
steps) andx, = 0.21. Referring to the exact solution, we note that the discontinuity is
positioned at a midell point at thenitial time, as well as at the final time. The
datum in cellx; = x,is U? =0.5, in accordance with definition 3.3.1 of Godunov
scheme. Again, we observe in Figure 3.5.2 that the Godunov scheme produces more
accurate resultthan the LF scheme. It is also noted that both coarse and fine grid

solutions seem to approximate the moving step quite accurately in the mean; i.e., the

numerical values are symmetrically distributed about the step, and, moreover, the

sharp step ogemsabeat 8 cells in the fi

the second. Thespwiedatdhi nagfo talpep efs /&g o be

where N is the number of time integration cycles. This spreading effect is typical of a

linear conservation law.

SecondOrder Schemes

Turning to seconarder schemes, our primary interest is GRP, but for comparison

we also consider the Lawendroff (LW) scheme (2.2.23). It is readily verified from

S

rs

P



equation (2.2.23) that i, (x) is of compact support in R, theR J,Uj“” =a jUjn :

This means that the LW scheme is conservative, although not upwind.

The GRP scheme, by contrast, is both upwind and conservative. It is given by
adapting construction 3.4.1 to the ca$éu) =u. Thus, the Riemann solution is

simply a moving step solution, so that
U Jh+1/2 = R(O!U ?+1/2,- ’U F+1/ 2,+) = U ?+1/2,- ' (353)

It follows from equation (3.4.10) that

n 1 n
%(X]’H/Z’tn) =- Sj =- &(Ujﬂlz,- - Uj+1/2,+); (3-5-4)
Hence as in equation (3.4.11),
n+l/2 _n k n
Uj+1/2 —Uj+1/2' Esj’ (3-5-5)
oz =uns. (35.6)

The resulting GRP scheme is, as in equation (3.4.12)

UM =ug- 17 - Ul (3.5.7)

Finally, the new slopes;‘+l are obtained as follows [see eq. (3.4.13)]:

U, =Ul, - kY, (3.5.8)



n+ 1 n+ n+
S l:&(ujﬂl/z' Uj-lllz)' (3.5.9

The slopes s;”lare further subjected to the monotonicity algorithm given by

construction 3.4.2.
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(¢) Ar=1/9; no monotonization. {d) Ar=1/17, no monotonization.

Figure 3.5.3.Second order integration of, +u, =0, with initial data

Uy (X) =sin*(ox) .



The sample problems considered here are the same two problems previously
used for the firsbrder schemes, including the same grids and time step
specifications. The second order results for the periodic case are given in
Figure3.5.3, whre a comparison between GRP and LW schemes is shown. We
notice a significant improvement relative to the first order results in Figure 3.5.1, and
it is also evident that the convergence with grid refinement is faster in the second
order case than in thedt order one. On the whole, the GRP values are closer to the
exact solution than are the LW values. Furthermore, the LW results have a
significant phaseahift error, whereas the GRP results do not. How does the
monotonization algorithm affect the GRPuks? In Figure 3.5.3(a) and 3.5.3(b) we
show that the GRP results that were subject to the slope limiter given in construction
3.4.2. The LW scheme, however, does not include any monotonization or slope
limiting algorithm. For comparison, we therefore eéafed the GRP computation
without applying the monotonization algorithm, and the results are shown in Figure
3.5.3(c) and 3.5.3(d). Clearly, the GRP points near the peak (where slope limiting is
most effective) are now higher, including that indeed thatihign algorithm is
required to suppress peékming tendencies. We also note on Figures 3.5.3(c) and
3.5.3(d) that some GRP and LW pointshave0. These fAunder shoot o
violation of the maximumminimum principle. Slope linting eliminates such
violation by a second order scheme and is hence mandatory to comply with the
maximumminimum principle. We note that the Godunov scheme is in agreement
with that principle (as stated before), and the results in Figure 3.5.1 are evidenc
that property. We now turn to the stimction problem, identical to that considered

in the first order scheme. In particular, we use the sapig, and final time. As is



clearly visible in Figuxgetdrbdd(aplandol. t
here is similar to that of the first order scheme already discussed (Figure 3.5.2).
However, the discontinuity is more sharply resolved by the second order schemes,

with the sharpest (and most accurate) results obtained by theH&RPthe jump in

U} is spread over about three cells, both in the coarse grid and in thgritine

computations.
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(c) Az =1/25; no monotonization. {d) Az =1/50: no monotonization.

Figure 3.5.4 secondrder integration ofu, +u, = O, with unit stepfunction initial

data.



Again, for comprison we repeated the two cases without the GRP
monotonization constraint, and the results are shown in Figures 3.5.4(c) and 3.5.4(d).
The GRP now produces some fAovershooto and
The indispensability of monotonization hémis been amply demonstrated, and in
subsequent GRP computations we shall no longer consider the honmonotonization

option.

It is also interesting to notice the nature of the LW solution. No monotonization
is applied in this scheme, and indeed thenarical solution develops pronounced
oscillations behind the shock, which is also a typical feature for this scheme when it

is extended to the fluid dynamical equations.
The Burgers Nonlinear Conservation Law

Here we consider the Burgers equation,

2

u, + (%)X =0, U(x,0) = Uy (). (3.5.10

As explained before, in the case of smooth initial data the solution to this equation is

obtained by the invariance ofi(x,t) along characteristic line¥Vhen characteristic

lines intersect, a smooth solution no longer exists, and from that time on only a

(weak) solution, with shocks that obey the jump conditisr [M], is

u, - U

possible. In the case of the Burgers equation the charactepsed ss% =u,and

the speedf a shock wave is given bg = %(uL +Ug), where the left and the right



values at the shock discontinuity, u; must obey the inequality, 2 u.

Two initial value problems are considered. The first has the smooth periodic data
U,(X) = sin(2px), (3.5.1)

and the second is a moving step problem, having the initiata d

U(X) =1 for x¢x, andu,(x)=0 for x>x,. Both problems have exact

solutions, which, for the simple initial data considered here, are readily calculated by
using the previously mentioned characteristic construction. Both problem defined on
R, yet, with appropriate bouady condition, they can be solved numerically on some

bounded intervalx, x,] of R, yielding the same finitdifference solution that would

have been obtained on R.
First-Order Computation

Here we use the same two fimider schemes (Godom and LaxFriedrichs)
previously considered in the context of the linear sample problems. The Godunov
scheme is given by 3.3.10. The LBxdrichs scheme, however, for a general flux

function f (u) is given by

n+ 1 n n / n n
u! 1:§(Uj +U1L)- S(FUL) - TUTL), (3.5.19

where the Burgers equation scheme is obtained by takiﬂg:%uz. In our

computations (both first and second order) we take fixed valuek famd Dx, so



that the ratio/ = % satisfies the CFlcondition (k.m%x| fi(u) <Dx). In fact, we

take k such that the lefhand side in CFL condition is approximately equa%tbx.
In the cae of smooth initial data, the equation is solved in the domalj j@ith
periodic boundary conditions. The computational cell siz&xs 2i2 The result

are displayed as a time sequence in Figure 3.5.5, which compares the finite
differenc solutions with the exact solution obtained by the method of characteristics.

Prior to shock formation, in Figure 3.5.5 (b), the solution is smooth and displays the
expected steepening in the interval whéfﬂeu(x,t) < 0. The smooth solution brka
down at the moment =1/2p, where the slope at =0.5 becomes unbounded, as

readily derived by taking the limit

e . e
=lim =

lim — i
e 0sin2p(0.5- @) eo°2pe 2p

which corresponds to the point where the characteristic line emgniom
(x,t) = (0.5- g0)intersects the linex=0.5. The solution at the breakdown time is
shown in Figure 3.5.5(cBeginningat this time the jump discontinuity at=0.5
gradually increases, reaching a maximalue (between at

[see Figure 3.5.5(d). This is the moment at which the characteristic lines

emanating from thexternalpoints reach the discontinuity
point . We also observe that by jump condition for the Burgers

equation the speed of propagationof a shock discontinuity



