• English
    • العربية
  • English 
    • English
    • العربية
  • Login
View Item 
  •   DSpace Home
  • AQU Research Network Clusters
  • AQU researchers publications
  • View Item
  •   DSpace Home
  • AQU Research Network Clusters
  • AQU researchers publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computationally Designed Enzyme Models to Replace Natural Enzymes in Prodrug Approaches

Thumbnail
View/Open
RES_27_JOURNAL_paper_8.pdf (1.241Mb)
Date
2012-11-16
Author
Karaman, Rafik
Metadata
Show full item record
Abstract
The striking efficiency of enzyme catalysis has inspired many organic chemists to explore enzyme mechanisms by studying certain intra molecular processes such as enzyme models which proceed faster than their intermolecular counterparts. This research brings about the important question of whether enzyme models will replace natural enzymes in the conversion of prodrugs to their parental drugs. Enzymes are mandatory for the inter conversion of many prodrugs to their parental drugs. Among the most important enzymes in the bioconversion of prodrugs are amides (ex. trypsin, chymotrypsin, elastase, carboxypeptidase, and aminopeptidase) and ester-based prodrugs (ex. paraoxonase, carboxylesterase, acetylcholinesterase and cholinesterase). Most of these enzymes are hydrolytic enzymes, however, non-hydrolytic enzymes, including all cytochrome P450 enzymes, are also capable of catalyzing the bioconversion of ester and amide-based prodrugs [1].
URI
https://dspace.alquds.edu/handle/20.500.12213/1021
Collections
  • AQU researchers publications [767]
  • Drug Design & Development [8]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV