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Chapter One  

                                                                                                                                         . 

 

Introduction 

 

1.1 Introduction 

 

MnF2 is a well-known Antiferromagnet with Neel temperature TN=67.3 K as reported by 

Heller and Benedek (1962), Ferguson, Guggenheim, and Tanabe (1966). Antiferromagnetism 

means spins are ordered in an anti parallel arrangement with zero moment at temperatures 

below Neel temperature (Kittle, 1996). 

 

Experimental investigation for manganese compounds revealed several optical absorption 

bands in the visible and near ultraviolet regions due to partially allowed electric dipole 

transitions which are attributable to d
5
-d

5
 transitions of Mn

+2
.  These bands labeled as A, B, 

C, D, E... corresponding to the transitions from 
6
A1g(

4
S) to 

4
T1g(

4
G), 

4
T2g(

4
G), 

4
Eg(

4
G),      

4
A1g (

4
G), 

4
T2g (

4
D), and 

4
Eg (

4
D)… respectively.  

 

These electric dipole transitions are forbidden by parity and spin selection rules. Several 

mechanisms which break down the selection rules must be considered.  The parity selection 

rule can be broken down by phonon perturbation (vibronic interaction) which causes the 

mixing of odd-parity wave function into the even-parity electronic wave function. The spin 

selection rule can be broken down by the exchange interaction resulting from the spin-spin 

interaction between neighboring ions in magnetic crystal.  Detailed discussions of these 

mechanisms will be presented in latter chapters. 

 

Recently the study of optical properties of magnetic compounds has developed rapidly from 

both the theoretical and the experimental sides.  Most of the experimental works have 

concentrated on the temperature dependence of these optical transitions.  It is important to 

understand the nature of these transitions labeled as magnon sidebands (exciton-magnon 

band).   
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1.2 Review of optical transitions studies in manganese compounds. 

 

The electronic absorption spectrum of Mn
+2

 has been the subject of many studies for a long 

time.  In this section, I will briefly present some of these studies and their major results of 

interest:  Ferguson (1968) reported the electronic absorption spectra of KMnF3, RbMnF3 and 

MnF2.  Tsujikawa and Kanda (1963), Lawson (1966), and Goode (1965) investigated the 

optical transitions for different manganese compounds, particularly in relation to the effects 

of exchange interaction.  

 

The first observation of magnon sidebands in MnF2 was made by Green, Sell, Yen, and 

Schawlow (1965).  The more detailed results of this transition have been reported by Sell 

(1968).  These studies showed that the magnon sideband arises from the creation of an 

exciton and the simultaneous creation or annihilation of magnons. Absorption spectra of 

CsMnF3 in the 3900 Å region were investigated by Saito (1970), where he classified 

hyperfine structures into three categories: Exciton lines, Magnon-sidebands and Phonon-

sidebands 

 

Several studies (for example Sell, Green, and White, 1967; Sell, 1968; Moriya and Inoue, 

1968; and Eremenko, 1977) indicated that the magnon sideband involved one or more 

magnons in different manganese compound. Motizuki and Harada (1970) explained the 

temperature dependence of the optical absorption in MnO and MnS in the range of transitions 
6
A1g→

4
T1g and 

6
A1g→

4
T2g of Mn

+2
 ion in terms of sidebands associated with magnons.  

Tanaka (1971) obtained the thermal behavior of the magnon sidebands for MnF2 in the whole 

temperature region using the Green's function method. 

 

The study of Harada and Motizuki (1972) showed that there are two kinds of magnon 

sidebands: one is labeled as cold sideband, and the other is hot sideband depending on their 

energy and intensity relative to the original line. The cold band appears when the absorption 

corresponding to the creation of magnons and that corresponding to the annihilation of 

magnons is the hot band.  Tanabe and his collaborators (Fujiwara, Gebhardt, Petanides, and 

Tanabe, 1972, Shinagawa and Tanabe, 1971, and Fujiwara and Tanabe, 1971) have derived 

the general theoretical formula for the temperature dependences of the intensity, peak 

position, and half-width of the magnon sidebands in MnF2 and RbMnF3. 

 

Yen, Imbusch, and Huber (1967) reported the temperature dependence of the peak position 

and half-width of the cold sideband observed in MnF2 and compared their results with 

magnetic energy.  Seehra and Abumansoor (1985) discussed the effect of antiferromagnetic 

ordering on the two optical absorption bands (C and F) in MnF2, where they found that there 

is a blue-shift noticeable of these bands agrees with the change of the sublattice 

magnetization below TN.  

 

Tsuboi and Ahmet (1992) studied the temperature dependence of the exciton and magnon 

sideband absorption in MnF2 crystal, and they found a good agreement of their experimental 

data with the Shinagawa and Tanabe's theoretical calculation for each intensity of the cold 

and hot magnon sidebands.   
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Few papers discussed the fine structure of some bands in different manganese compounds.  

Yokogawa, Taniguchi, and Hamaguchi (1977) observed the fine structure of A, C, and D 

bands interpretated in MnO bellow 10 K, based on the combination of the three kinds of 

excitation (exciton-exciton, exciton-magnon, and exciton-magnon-phonon). Also Moncorge 

and Jacquier (1981) observed the fine structure of pure exciton and magnon side band in 
4
T1g 

(
4
G) excited state of Mn

+2
 ions in antiferromagnet BaMnF4. 

 

Raman spectroscopy was employed to study the spin-spin interaction in MnF2 and FeF2 by 

many groups (for example: Suzuki and Kamimura, 1973; Lockwood, Katiyar, and V. C. Y. 

So, 1983; Lockwood and Cottam, 1988).  These studies showed that the Raman frequencies, 

line width, and integrated intensity of magnetic compounds are affected by the exchange 

coupling between magnetic ions.  

 

The shape of the spectra of different antiferromagnetic manganese compounds in the 

different ranges of transitions had been studied by Malakhovskii, Filimonov, and Goncharov 

(1989), Eremenko and Shapiro (1990), and Eremenko, Kachur, Piryatinskaya, Shapiro 

(1994).  Such studies showed the optical transitions in antiferromagnetic crystal involving the 

spin-wave subsystem (exciton-magnon transitions).  

 

The temperature dependence of both bands C-band (
6
A1g→

4
A1g,

 4
Eg (

4
G)) and E-band 

(
6
A1g→

4
Eg (

4
D)) in RbMnF3 absorption spectra above TN have been studied by Malakhovskii, 

Vasilev, and Morozova (1986).  They found that the spectra of both transitions are caused by 

excitation of a number of quanta of odd vibrations.  

 

The temperature dependence of oscillator strength and the line position E from 10 K to 300 K 

of the two exciton bands α (A+A) and β (A+B) in MnF2 and RbMnF3 were discussed by 

Darwish, Abumansoor, and Seehra (1986).  The thermal behavior of the two exciton bands α 

(A+A) and γ (A+C) and the vibronically induced bands in KMnF3 and RbMnF3 were 

presented by Darwish and Seehra (1988).   

 

Hoekstra and Hass (1985) reported the optical absorption of MnCl2 in the spectral region 

16000-30000 cm
-1

 at temperatures between 2.7 and 250 K.  In this study it is found that the 

exchange interaction mechanism plays an important role to overcome the parity and the spin 

selection rules to allow the d-d transitions.  

 

Popov and Edelman (2003) studied the external magnetic field, the temperature and the 

uniaxial pressure effects on the fine structure of the transition 
6
A1g→

4
T2g (

4
D) (D-band) in 

RbMnCl4.  This study indicated that there are exciton-magnon, exciton-phonon, and other 

multi particle excitations in this optical spectrum.   

 

Popov and Ovchinnikov (2003) investigated the magnon satellite bands in the optical 

absorption spectrum in antiferromagnetic Rb2MnCl4 in the range of transition 
6
A1g(

4
S) → 

4
A1g, 

4
Eg (

4
G).  This study revealed that there are two magnon satellites (hot and cold) of the 

exciton-magnon bands in this absorption.  
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The focus of my work is to explain the fine structure of the pure exciton-magnon sideband in 

the optical spectrum for MnF2 compound in the range of transition 
6
A1g(

6
S) → 

4
A1g, 

4
Eg(

4
G) 

correspond to the C-band at low temperature.  To achieve my objectives, the subsequent 

chapters of the thesis are arranged as follows:  In chapter II a theoretical background and 

brief discussion of the crystal structure of MnF2, crystal field theory, octahedral field, 

electromagnetic radiation, selection rules, vibronic interaction and exchange interaction.  

Chapter three presents a review of experimental data.  Chapter four contains analysis and 

discussion of the experimental data.  Chapter five is a summary of the major results in my 

work. 
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Chapter Two    

                                                                                                                                              . 

  

Theoretical Considerations 

 

The crystal structure of MnF2 compound is shown in figure 2.1, with Mn
+2

 ion considered as 

the central ion of the system surrounded by several equivalent electrons.  This structure 

presents a theoretical challenge to solve for the possible energy levels for Mn
+2

.  The energy 

levels of Mn
+2

 in MnF2 crystal depends on several factors, we need to know how the central 

ion is affected by crystalline field.  In addition, we need to review several important topics, 

which are briefly presented in this chapter and divided into nine sections.  Starting with 

crystal structure to MnF2, crystal field theory, a review of the five d-orbitals and how these 

orbitals affected by octahedral field, the energy level of Mn
+2

, the interaction of radiation 

with matter, and the selection rules.  In the final two sections, a discussion of the vibronic 

interaction and exchange interaction will be presented. 

 

 

 

2.1 Crystal structure of MnF2 

 

MnF2 crystal has a rutile-type structure belonging to the space group P42/mnm with lattice 

constants a=4.8734 Å and c=3.3099 Å at room temperature (Wyckoff, 1948, Griffel and 

Stout, 1950).  The manganese ions occupy the corners and the center of the unit cell forming 

a body centered tetragonal lattice as shown in figure 2.1. 

Below TN (=67.3 K), the spins of manganese ions are ordered antiferromagnetically along the 

z-axis, where the body-center ions of the unit cell form the up-spin sublattice, and the corner 

ions form the down spin sublattice (Erickson, 1953).  The manganese ions of the unit cell 

coupled with exchange parameters J, J', and J" shown in figure 2.1 were estimated to be 

respectively 1.225 cm
-1

 (Trapp and Stout, 1963), and -0.22 cm
-1

, and -0.035 cm
-1

 (Okazaki, 

Tuberfield, and Stevenson, 1964). 
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       Figure 2.1:  MnF2 crystal structure.  
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2.2 Crystal field theory 

 

Crystal field is produced when a metal ion is located in a little cavity inside a crystalline 

lattice, and is exposed to the electric field from the surrounding atoms or molecules called 

ligands. Bethe was the first to develop the idea of a ligand field in 1929. 

In the case of MnF2, Mn
+2

 is the central ion surrounded by six negative charges located on 

the vertices of an octahedron as shown in Fig.2.2.  These negative charges induce an effect 

on Mn
+2

 giving the total electrostatic potential which destroys the spherical symmetry of this 

ion. 

 

Several studies for the crystal field theory had been carried through with elaborate details as 

in Ballhausen (1962), Low (1960), Figgis (1966), Sugano, Tanabe, and Kamimura (1970), 

and Figgis and Hitchman (2000). 

 

The Hamiltonian for the central ion includes two terms: Vc due to the ligands and Hf for the 

free ion (Ballhausen, 1962): 

 

cf VHH                                                                                                                              2.1 

 

The total Hamiltonian can be written as: 

  

c

i

iii

ji iji ii

i Vslr
r

e

r

ez

m
H  




.)(

2

1

2

22
2

2

                                2.2 

 

The first four terms make up the Hamiltonian for the free ion, in the following order:  The 

first term is the kinetic energy for the i
th

 electron, the second term is the coulomb potential 

energy of i
th 

electron in the nucleus field, the third term is the electronic repulsion between i
th 

electron and j
th 

electron, and the fourth term is due to the spin-orbit coupling. 

 

Depending on the relative strength of the Vc with respect to the electronic repulsion 

perturbing term there will be three cases (Low, 1960, Henderson and Bartram, 2000): 

 

  

 

  ijc reV /2
          Weak crystal field (high spin arrangement).                                    

  

 ijc reV 2
            Medium crystal field.                                                                 2.3 

                                                 

 ijc reV /2            Strong crystal field (low spin arrangement).                         

 

 

The reason for distinguishing these three cases is to define the dominant perturbation term to 

a first order approximation.  The strong field approximation is appropriate when the crystal 
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field is dominant and causes a splitting larger than the electronic repulsion (Tanabe and 

Sugano, 1954).  In the weak field approximation, the crystal field perturbation is small 

compared to the electronic repulsion effect. The electronic repulsion effect on energy levels 

of the ion comes first, and crystal field effect comes second. In both cases weak and strong 

fields, the spin-orbit coupling is a small term and is treated as a perturbation. The medium 

field case appears when both the crystal field and electronic repulsion are approximately the 

same order of magnitude (Ballhausen, 1962, Griffith 1961, and Figgis and Hitchman (2000). 

 

To determine the ground state for the manganese ion, we apply Hund's rules: The term with 

the highest multiplicity (high spin arrangement) is lowest in energy; If there is more than one 

term with the highest multiplicity, then the term with the highest multiplicity and largest 

value of L lies lowest (Levine, 1983).  In addition we must stay consistent with the Pauli 

exclusion principle (No two electrons in the same atom can have the same values of all four 

quantum numbers n, l, ml, and ms )(Slater, 1960).  Therefore, the ground state for Mn
+2

 of d
5
-

configuration is 
6
S5/2 and the weak field approximation is necessary to set up in our case. 
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           Figure 2.2: Crystal field model of the octahedral complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3:  Low and high spin arrangement of five d-electrons after Huheey, E. Keiter, and 

R. Keiter (1993)   
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2.3 The Five d-orbitals: 

  

The wave function of a single electron is given by (Griffiths, 1995): 

 

    ,,,
l

l

m

llnmln YrR                                                                                               2.4 

 

where  rR  is the radial part, and   ,Y is the spherical harmonics part containing    

and   .  The numbers lmln ,,  are the quantum numbers (n is the principle quantum 

number, l  is an orbital angular momentum number, and lm is the z-component of the orbital 

angular momentum, running from l  to l . 

 

Usually, a single d-electron in a free ion has a wave-function that belongs to a five fold 

degenerate set corresponding to the five values of lm . 

The five d- orbitals are specified by spherical harmonics as follows (Ballhausen, 1962): 

 

      212210

2 2.1cos385


 Y                                                                                    

 

     ieY 


21211

2 2.cossin415                                                                                     2.5 

 

     ieY 2212212

2 2.sin1615 
                                                                                  

 

By making suitable combinations of the above wave functions, which are described in 

appendix A, the five d wave functions in their real forms are: 

 

 

                          

 

 

                         

 

 

                                               2.6 

 

                         

                                              

                          

 

 

 

where (0), (2), (-2)… indicate wave functions corresponding to ml = 0, 2, -2... 
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


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Figure 2.4:  The real angular part of five d-orbitals wave function after Cotton and Wilkinson 

(1980). 
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2.4 Manganese ion energy levels
 

 

Manganese ion (Mn
+2

) has a configuration 562622 333221 dPSPSS .  It is considered as one of 

transition-metal ions that are characterized with open dn  shells, where the principle quantum 

number n equals three.  There are five electrons in d-orbitals corresponding to different 

values of lm  and sm  ( lm  is the z-component of orbital angular momentum l , which has 

several values from ll   , and sm  is the z-component of spin angular momentum s, 

which has several values from ss   ) (Liboff, 1992).  According to Hund’s rules, the 

ground state in Mn
+2

 is 
6
S5/2 where the five electrons in the d-orbital have spins up.           

  

 

 

 

The other possible ways of configuration for these electrons in d-orbital forms are the 

possible excited states 
4
G, 

4
F,

 4
D...etc. These differ for different values of ML and MS, where 

ML is the z-component of the total orbital angular momentum L, and MS (multiplicity of a 

state) is the z-component of the total spin angular momentum S.  

 

The total orbital angular momentum (L) that arises from two electrons runs 

from 2121 llll   , and the total spin angular momentum (S) runs 

from 2121 ssss   . .12  LmM
i

lL i
, and 12  SmM

i
isS  (Eisberg and 

Resnick, 1974). 

   

For the (3d
5
) configuration, the five electrons in d-orbitals have the same quantum numbers 

n, l , and s but different values of lm  and sm . 

 n = 3 

  

254321  lllll   

  

s1 = s2 = s3 = s4 = s5 = 1/2. 

 

The minimum value of L is 2 and the maximum value is 10, so the possible values of L are 2, 

3, 4, 5, 6, 7, 8, 9, and 10.  The possible values of S for the same configuration are 1/2, 3/2, 

and 5/2. 

 

The possible states for d
5
 configurations are expressed in terms of L and S with the following 

nomenclature: 

                                                             
2S+1

 L                                                                           2.7 

 

where L = S P D F..., and (2S+1) is the multiplicity of the term. The degeneracy of any term 

is (2L + 1) (2S + 1).  Each value of ML occurs (2S + 1)-times, and each value of MS occurs 

(2L + 1)-times.  For example a 
3
P state has nine- fold degenerate (Figgis, 1966).  
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By applying, the above rules and the exclusion principle, the possible states for Mn
+2

 are 

(Levine, 1983):  

 

      SPDFGHIPDFGS 222222244446 ,,3,2,2,,,,,,,                                                    

 

Some examples for excited states of the d
5
 configurations 

 

 

 

 

 

 

 

                 

   

                                                                                                              

 

        

                                                                                                           

                                                                  

 

 

 

 

 

 
                                        

   

All of the above terms split by spin-orbit coupling into states which are specified by the total 

angular momentum J, that ranges from | L - S | to | L + S |.  To specify a particular state, the 

value of J is added as a subscript to the term symbol, and then the full symbol for a state is 

given by (Slater, 1960): 

                                         

                                             
2S+1

LJ                                                                                          2.8 

 

The coulomb interaction between electrons in d-orbitals is characterized by the so called 

electron repulsion parameters.  These parameters are classified using two completely 

equivalent ways: either in Racah parameters, A, B, and C (Racah, 1942) or in Condon and 

Shortley parameters F0, F2, and F4 (Condon and Shortley, 1957).  The relations between the 

two sets are: 

 

A = F0 – 49F4.                                                                                                                

B = F2 – 5 F4.                                                                                                                           2.9 

C = 35 F4.                                                                                                                       

 

The values of F2 and F4 are explained in Appendix B. 

 

    4            3/2               
4
G                         36 

      6            1/2              
2
I                           26 

      3            3/2              
4
D                         28 

                  d
5 

- configuration                             ML         MS        ground term       degeneracy     

 

 

        lm    =       2       1       0      -1     -2  
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All the energy levels within each d
5
 configuration having the same dependence on A and 

listed in table 2.1.  The values of B and C are known from the fitting of spectroscopic data, 

where B = 960 cm
-1

 and C = 3325 cm
-1

 for Mn
+2

 (Griffith, 1961). 

 

 

 

Table 2.1: Term energies of d
5
-configuration by using Racah parameters and Condon and 

Shortley parameters (Laporte, 1942). 

 

Energy 

in 

Racah parameters Condon and Shortley parameters  

E (
2
S) 10A – 3B + 8C 10F0 – 3F2 – 195F4 

E (
6
S) 10A – 35B 10F0 – 35F2 – 315F4 

E (
2
P) 10A + 20B + 10C 10F0 – 20F2 – 240F4 

E (
4
P) 10A – 28 B + 7C 10F0 – 28F2 – 105F4 

E (
2
D) 10A–3B+11C ± 3 (57B

2
+2BC+C

2
)
1/2 

10F0–3F2–90F4 ± (513F2
2
 - 4500F2F4+20,700F4

2
)
1/2 

E (
2
D

'
) 10A – 4B + 10C 10F0 – 4F2 – 12F4 

E (
4
D) 10A – 18B + 5C 10F0 – 18F2 – 225F4 

E (
2
F) 10A – 9B + 8C 10F0 – 9F2 – 165F4 

E (
2
F

′
) 10A – 25B +10C 10F0 - 25F2 – 15F4 

E (
4
F) 10A – 13B + 7C 10F0 – 13F2 – 180F4 

E (
2
G) 10A – 13B + 8C 10F0 – 3F2 – 155F4 

E (
2
G

'
) 10A + 3B + 10C 10F0 – 13F2 – 1545F4 

E (
4
G) 10A – 25B + 5C 10F0 – 25F2 – 190F4 

E (
2
H) 10A – 22B + 10C  10F0 – 22F2 – 30F4 

E (
2
I) 10A – 24B + 8C 10F0 – 24F2 – 90F4 
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2.5 Octahedral field effect on d-orbitals: 

 

If the distribution of the charge is spherical, then all d-orbitals will be affected in the same 

manner and all of the d-orbitals will increase in the same amount of energy.  In an octahedral 

arrangement, the electrons of the d-orbitals are repelled by an amount depending upon the 

distribution of these orbitals.  The charges approach the metal ion along the Cartesian x, y, 

and z-axes. Thus, the orbitals along these axes (z
2
, x

2
-y

2
) should rise in energy by a greater 

amount compared to the orbitals that do not lay exactly along the x, y, and z axes (xy, yz, xz). 

To illustrate the effect of the octahedral field on the different levels, we apply the matrix 

element for octahedral potential field Voct on the orbital parts of a wave function of the term 

being considered as in the following matrix elements (Sugano, Tanabe, and Kamimura, 

1970): 

 

 LoctL MVM  =  dV
ll mlnoctmln                                                                         2.10 

 

     
ll mmllnmln rR 


    And the unit volume  dddrrd sin2 . 

 

 









 4222

22

5

366
)( rzyxD

a

eZ
V

a

eZ
rV octc                                       2.11 

                                                                 

 

Where the term D is given by: 
5

2

4

35

a

ze
D   and the evaluation of Vc is presented in Appendix 

C. 

 

The first term of the formula 2.11 is spherically symmetric and all the d-orbitals increase to 

the same value of energy without any splitting between them due to its effect. The second 

term splits the five d-orbitals into two levels; the following discussion explains how this 

splitting occurs.  

The d-orbitals splitting are given in appendix D, and the non-vanishing matrix elements are: 

 

qoct

qoct

qoct

qoct

DV

DV

DV

DV

522

600

411

22











                                                                                 2.12 

 

Here lnrq  4

105

2
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 The secular determinant is: 

 

   (2)                 (1)                (0)               (-1)             (-2) 

EDD

ED

ED

ED

DED

qq

q

q

q

qq











0005

04000

00600

00040

000

      = 0                                   2.13

 

 

    

 

This can be reduced to three determinants that are readily solved to yield the energies -4Dq 

for a three fold-degenerate set of levels arising from the atomic orbitals of wave functions xy, 

yz and zx, and 6Dq for a two fold-degenerate set arising from the functions x
2
-y

2
 and z

2
. 

These levels are denoted t2g and eg respectively (Sherman, 1984).  

The energy splitting between them is 10Dq. 

  

    qqqgg DDDtEeEE 10462   

 

The five-fold degeneracy is removed in the presence of the ligand atoms and will split into 

two levels:  A lower level (t2g) by octahedral field, which is triply degenerate and upper level 

(eg) is a doubly degenerate with separation energy of 10Dq as shown in figure 2.5. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2.5: Crystal field splitting in an octahedral field 
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The splitting of D level the same as the splitting of the set of one electron d-orbitals. In a 

similar way S level and s orbital, P level and p orbitals, and so on.  For the S level, it is 

orbitally non-degenerate, and will not be affected by the ligand field potential, and will not 

split (Figgis, 1966). For the P-level, each of the three p-orbitals has its maximum electron 

density directed at two vertices; therefore, all of the matrix elements are zero and the p-

orbitals do not split by Voct (Slater, 1974). The other terms have many splitting, because each 

of them is orbitally degenerate and the matrix element between the states of a certain level 

are non-zero. 

 

For the levels F, G, H, etc, we can apply the same technique used with the S, P, and D levels 

wave functions. As an example, under octahedral field 
4
F term splits to 

4
A2g+

4
T1g+

4
T2g with 

same multiplicity and 
4
G term splits to 

4
A1g+

4
Eg+

4
T1g+

4
T2g (g “gerade” implies the symmetry 

is even) which are listed in table 2.2.  A common way to show these energy levels 

graphically and its behavior with increased Dq (Dq is a measure of crystal field theory) is 

shown in Orgel diagram (Orgel, 1953) in figure 2.6.  Another figure presents the energy level 

diagrams known as Tanabe and Sugano diagram and describes how E/B changes with ratio of 

Dq/B.  Tanabe-Sugano diagrams are more comprehensive than Orgel diagram, because they 

include both weak and strong crystal fields as shown in figure 2.7 for d
5
 system (Yen and 

Selzer, 1981, Henderson and Bartram, 2000).     

 

Table 2.2: Free ion terms in an octahedral field. 

 

Free ion term 

(d
5
 – configuration) 

States in octahedral field 

S A1g 

P T1g 

D Eg + T2g 

F A2g + T1g + T2g 

G A1g + Eg + T1g + T2g 

H Eg + 2T1g + T2g 

I A1g + A2g + T1g + 2T2g 

 

The ground state in Mn
+2

 has only one state S=5/2.  All of the observed main transitions 

occur from the ground state (sextet) to one of the excited states (quartet, singlet…), as shown 

in figure 2.8. 

 

From the Orgel diagram, we noticed that some of the energy levels are shifted to higher or 

lower energies with increasing Dq.  For example 
4
T1g(

4
G), 

4
T2g(

4
G), and 

4
T2g(

4
F).  On the 

other hand, 
4
Eg(

4
D), 

4
A2g(

4
F), and 

4
A1g(

4
G), 

4
Eg(

4
G) are unaffected by the crystal field 

strength, because these levels have the same configurations as the ground state (t2g
3
 eg

2
), 

these levels are negligible phonon effect.  The spectral lines connecting the terms of the same 

configuration are expected to be observed as sharp lines (Tanabe and Sugano, 1954).    The 

excited states 
4
A1g +

 4
Eg (

4
G) are degenerate in the crystal field.  A lifting of the degeneracy 

can be produced by the covalency.   When we consider the distance between the ligands and 

the metal ion is small, the electron clouds of the metal and of the ligands overlap and some of 

the electrons undergo exchange between them.  Therefore the metal and ligand orbitals are 
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admixed, resulting in the change of the electrons energies in the ligands and metal ion 

orbitals (Koide and Pryce, 1958).  The 
4
A1g, 

4
Eg(

4
G) splitting is about 143 cm

-1
 in MnF2 due 

to covalency (Schwartz, Spencer, Yeakel, Schatz, and Maisch, 1974). 

 

 

 

 
 

Figure 2.6: The Orgel diagram for Mn
+2

 presents the behavior of the states resulting from the 

crystal field effect with increasing Dq after Orgel (1953)  
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Figure 2.7: The Tanabe-Sugano energy level diagram for d
5
 configuration in octahedral 

coordination after Henderson and Bartram (2000). 
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Figure 2.8:  The main transition for d
5
-levels 
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2.6 Absorption of Radiation 

 

The change of an electron state in a system comes as a result of absorbing or emitting an 

amount of energy equal to the energy difference between the two states of the electron.  The 

change of energy is a direct result of the interaction with the electromagnetic radiation, which 

includes electric and magnetic field. 

When electromagnetic radiation falls on the central ion of the magnetic crystal, the electric 

field interacts with the electric dipole of the ion.  This interaction is treated as a time 

dependence perturbation term added to the original Hamiltonian of the system (Slater, 1960).  

         

)(int tHHH o                                                                                                                2.14 

 

where oH  is divided into two terms.  The first term, atomH , consists of the kinetic energy of 

the electrons and the coulomb potential energy of the electrons in the nucleus field, while the 

second term, fieldH ,  gives the energy of the radiation field.  tH int  is the important term for 

our discussion in this section because it describes the interaction between the charged 

particles and the electromagnetic field, and gives the emission or absorption of photons 

(Majumdar, 1995): 

 

     ),
2

.,( 2

2

2

int trA
cm

e
PtrA

cm

e
tH i

i

i
ii

N

i i

i 


                                              2.15 

where mi is the mass of the i
th

 particle, ei its charge, iP


 its momentum, and  trA i ,


 is a 

magnetic vector potential at position ri.  

 

The magnetic vector potential is very small, so the 2A term is negligible compared with that in 

A, and may be ignored.  Thus we need to consider only the interaction linear term in A 

(Slater, 1960). 

  

The 


PA.  term gives emission or absorption of a single photon, the probability of a transition 

involving a single photon is proportional to the fine structure constant (e
2
/ħc ≈ 1/137) 

(Majumdar, 1995). 

The vector potential 


A  can be expressed as: 

 

   trki

oi
ieAtrA





 .

,                                                                                   2.16 

 

 

If the wavelength of the incident radiation or emitted radiation is large compared with the 

dimensions of the atom (k.r, which is of order 10
-3 

in the case of visible light) (Henderson 

and Bartram, 2000), so that k.r<<1 and the exponential e
ik.r

 expanded in Taylor series as 

follows: 
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 
 














 



...
2

.
.1,

2

i
i

ti

oi

rki
rkieAtrA




                                                         2.17 

 

The first term in the expansion is: 

  

ti

io

i

i ePA
cm

e 


).(                                                                                                          2.18 

 

If the transition occurs between two states a and b, the contribution of the first term to the 

perturbation Hint (t) in terms of Hint' (t) as follows: 

 

  ti

io

i

i eaPbA
cm

e
tH 














int                                                                                            2.19 

                                                        

where,  i
i

i rH
im

P ,


  , then   

 

      aHrbarHb
c

Aei
aHrrHb

c

Aei
tH ii

oi
ii

oi


int                                2.20 

           

   


 areb
EE

c

Ai
H ii

abo


int                                                                                          2.21   

 

  ti

bao
ba eDA

c

i
tH   ).(int

'
           , where


ab

ba

EE 
  

 

  ti

ba

o eD
c

E
tH 











int                                                                                                2.22 

 

where 00 AiE ba  and  ii reD


  is the electric dipole moment. The above expression is 

labeled as the electric dipole transition. Since r is an odd function, the matrix elements for the 

electric dipole moment baD  have non-zero values only if a and b are two states of opposite 

parity.   

The second term rki


.  of the Taylor series gives two terms, the magnetic dipole moment and 

electric quadrupole moment whose rates are several orders smaller than the electric dipole 

rate.  The second term of the vector potential can be written as: 

 

  ti

oii eArkitrA 


 ).(,                                                                   2.23 
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This term contributes to the perturbation Hint (t) as follows (Blatt and Weisskopf, 1952, 

Powell and Crasemann, 1961): 

 

     ti

ioi

i

i ePArk
cm

ei
tH 


int                                                                                        2.24 

 

 

                 iiiiiiiiii rAPkPArkrAPkPArkPArk


....
2

1
....

2

1
.. 00000 

 

                                      00 .,.
2

.
2

1
AHrrK

mi
PrAk ii

i
ii




                 2.25 

 

The matrix element of the commutators in the last term is given by: 

 

 arrbaHrrb iiabii ,                                                                         2.26 

 

If oo AkiB


  , where Bo is the magnetic flux density of electromagnetic radiation then 

equ. 2.24 can be expressed in the form: 

 

 

  ti

iio
i

i

oi earrbKE
c

ei
L

cm

Be
tH 









 ..

22
int




                                                         2.27 

                               

 

where the first term is due to the magnetic dipole transition and the second term is the electric 

quadrupole transition. 

 

There could be three possible transitions as a result of absorption or emission of 

electromagnetic radiation: 

 

1) Electric dipole transition. 

2) Magnetic dipole transition. 

3) Electric quadrupole transition.  
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2.7 Selection Rules     

 

Transition between any two states for an electric dipole operator occurs only if the following 

matrix element does not vanish. 

 

 kazbjaybiaxbeareb ˆˆˆ 


               2.28 

 

Here a and b are the wave functions of the initial and final states respectively, and re


 is an 

electric dipole moment operator. 

For the spherical harmonics (Majumdar, 1995): 
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









coscos

sinsinsinsin

cossincossin

''

'''

'''

    2.29 

 

From 2.28 and 2.29 we conclude that the dipole moment operator operates only on the 

position coordinates x, y, or z, and cannot affect the spin state of the ion.  It is a general rule 

for electric dipole transition that it has no effect on spin states.  This means for any possible 

transition, the initial and final states must have the same spin quantum number. Therefore, we 

have the general selection rules for the electric dipole transition: 

 

0

1,0

1







s

m

l

l                                                                                                                     2.30 

 

Since the electric dipole operator re


 is an odd operator, transitions occur only between two 

states of opposite parity.  For the d-d transitions they are forbidden because all d-orbitals are 

partially even function (g) then the transition between any two states arising from d
n
- 

configuration is not allowed. This is in agreement with Laporte rule, which states that the 

only allowed electric dipole transitions are those between an even state and an odd state 

(Cotton, 1963). The parity selection rules are relaxed by asymmetry (odd) vibrations of an 

octahedral complex, which can destroy the spherical symmetry of the central ion and allow 

the transition.  

 

The second selection rule, states that any transition for which 0S   is spin forbidden for 

the electric dipole transition.  In the case of manganese ion, it has a ground state (
6
A1g) which 

is a sextet state.  This means for d
5
-configuration, all d-d transition are spin-forbidden too.  

The spin selection rule is overcome by the exchange interaction of the two neighboring ions 

in the magnetic crystal, or by the spin-orbit coupling, which mixes states of different spin 

multiplicity. 
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In both of the magnetic dipole and electric quadrupole transitions, the initial and final states 

of an atom have the same parity, and each of them is allowed between d
5
 levels, although 

these transitions have very low intensities with respect to electric dipole transition. 

The magnetic dipole moment is given by: 

 

  
i

ii sl
m

e
M 2

2

             Even parity.                                                                     2.31 

 

The selection rules for the magnetic dipole transition are (Majumdar 1995): 

 

1,0 j                 (Excluding 0→0).                                                 

                                                                                                                                               2.32 

1,0 l                  (Excluding 0→0).                                                

 

The strength of transition is proportional to the square of the matrix element between the 

initial and final states of the operator of a magnetic dipole moment as follow (Yen and 

Selzer, 1981).  The intensities of these transitions are very small compared to the measured 

intensities in our case. 

   
2

,

 
ba

m aMbf                                                                                                            2.33 

 

The electric quadrupole transition, whose strength is relatively small in comparison to the 

other two kinds of transition, may be written using the electric quadrupole operator as 

(Jackson, 1998): 

 

 

 

                                                                                2.34 

 

The selection rules for this transition are (Henderson and Bartram, 2000): 

 

2,1,0 l                              (Excluding 0→0, 0→1, 1→0).       

                                                                                                 2.35 

                             (Excluding 0→0, 0→1, 1→0).       
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2.8 Vibronic interaction 

 

It has been noted that electric dipole transitions between the various states arising from d
n
-

configuration in an octahedral environment are not allowed, because all these states have 

"gerade" character (even-parity) inherent in the d-orbitals.  These transitions become slightly 

allowed by a mechanism called vibronic coupling that is a coupling of vibrational and 

electronic wave functions.  We assume that vibration of ligands of the octahedral complex 

that takes place, destroys the center of symmetry, and allows the transitions (Van Vleck, 

1939).  

 

The vibronic wave function can be expressed as (Ballhausen, 1962): 

 

evvibronic                                                                                                           2.36 

 

where Ψv is a vibrational wave function and Ψe is an electronic wave function. 

 

From the above expression, any transition occurs between two even electronic states only if 

one of the two states is mixed with the odd-type vibration and the other state with the even-

type vibration. 

 

In the case of octahedral complex depending on octahedral symmetry Oh, there are several 

normal modes A1g, Eg, T2g, 2T1u, and T2u as shown in figure 2.9.  However, not all of them 

preserve the element of symmetry (Herzberg, 1945).  The normal modes can be divided into 

two types.  Firstly, even-parity distortion A1g, Eg, and T2g retain the inversion center of the 

perfect octahedron.  The second type is odd-parity distortion, T1u, and T2u and destroys the 

inversion symmetry (Henderson and Bartram, 2000). 

 

To investigate the effect of asymmetrical ligand vibrations, let us suppose that Q represents 

an asymmetrical vibrational coordinate, and then the crystal field potential can be expanded 

as (Ballhausen, 1962): 

 

   
oo QVQVV                                                                                                     2.37 

 

where V is the totally symmetric representation, Q and QV   an odd vibrational mode. 

Depending on the first order of perturbation theory, we can mix odd into even functions as 

follows: 

 

 

  u

gu

uog

g
EE

dQVQ











                                                                                   2.38 

Ψg presents the unperturbed “crystal field” wave function, ψu an odd parity wave function. 

 

When the two electronic states N and V coupled with the harmonic oscillator (vibrational) 

wave functions χp, and χq respectively, then the vibronic (electronic and vibrational) wave 

functions can be written as: 
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     puguuoggpNp dEEQQ  }{    

                                                                                                                                               2.39 

     quguuoggqVq dEEQQ  }{                                                                                                                                            

 

The probability of electric dipole transition from Np to Vq is given by the formula 

 

2
2

,  VqNpVqNp reR


                                                                                      2.40 

                                                                      

| er | is an odd operator, and N, V are even electronic wave functions, so the transition is 

allowed only if the vibrational states p and q differ by one quantum.  The total intensity of 

these electronically forbidden transition increases with temperature.  At higher temperature, 

the stronger bands appear corresponding to large amplitudes of vibration and greater 

distortions. 

 

The intensity of phonon-assisted transition is proportional to Liehr and Ballhausen (1957) 

and Malakhovskii and Vasilev (1983). 

 

 TKhI 2coth                                                                                                           2.41 

                     

where υ is the frequency of the active odd vibration. 

 

To understand how the forbidden transitions become vibronically allowed we apply the 

multiplication tables in group theory.  As an example let us examine the following electronic 

transition A1g→ T1g (forbidden transition) given by the direct product representation of  

Ψ′e (x, y, z) Ψe.  The coordinates x, y, and z transform as a basic for the T1u representation of 

Oh, so A1g→ T1g can be written as follows: 

 

 Γ [ψe
'
(x, y, z) ψe]   = T1g    T1u    A1g = T1g    T1u = A1u + Eu + T1u + T2u                                2.42 

 

Thus, A1g→ T1g is not allowed because the result of the previous direct product does not 

contain A1g.  But by the simultaneous excitation of a vibration of T1u or T2u symmetry these 

transition becomes allowed. 

 

 T1u    T1u    A1g  =  T1u    T1u  =  A1g  +  Eg  +  T1g +  T2g                                                    2.43 

 

The components of the magnetic dipole and electric quadrupole operators transform as bases 

for the T1g representation of the magnetic dipole operator L and for the Eg and T2g 

representation of the electric quadrupole operators rirj of Oh (Cotton, 1963). 

The two operator’s magnetic dipole and electric quadrupole are even under inversion, and 

they mediate transitions between states of the same parity (Henderson and Bartram, 2000). 
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  Figure 2.9:  The normal modes of distortion of octahedral complex after Henderson 

and Bartram (2000). 
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2.9 Exchange interaction 

 

As a general rule, the optical spectrum of antiferromagnetic ions with an open 3d shell 

are related to transitions which are forbidden with respect to the spin projection in the 

single ion approximation.  Therefore the transition in the range 
6
A1g(

6
S) →4

A1g, 
4
Eg(

4
G) corresponding to C-band is not allowed. 

The electric dipole absorption bands are caused by an exchange interaction that 

involves a transition for a pair of neighboring ions in a magnetic crystal (Popov and 

Ovchinnikov, 2003).  However several research groups have studied in detail the 

theory of exchange interaction induced electric dipole transitions (Tanabe and 

Gondaira, 1967, and Ferguson, Guggenheim, and Tanabe, 1966). 

 

To understand how the exchange interaction relaxes the spin selection rule, let the two 

sublattice models of antiferromagnet MnF2 initially exist in the ground state with 

different spin direction where the center ion (denoted as a) has its spin up and the 

corner ions (denoted as b) have spin down.  When absorption of photons takes place, 

there are three forms of possible interaction between the two ions as shown in the 

figure 2.10.  If the two ions a and b excited to exciton states (exciton is an electronic 

excited state), the interaction between them is labeled exciton-exciton interaction as 

presented in figure 2.10b.  The second form of interaction is exciton-magnon 

interaction shown in 2.10c arises when one of the two ions is excited to an exciton 

state and the other ion is excited to a magnon state (a spin flip) a change in the spin 

state (Macfarlane and Allen, 1971).  On the other hand, figure 2.10d shows the 

magnon-magnon interaction, produced when the two ions a and b end up in the 

magnon states. 

The operator for exchange induced transition in a pair of ions a and b is (Tanabe and 

Gondaira, 1967): 

 

  baba SSba .                                                                                 2.45 

 

where Sa and Sb are spin operators of electrons on ions a and b respectively, and Π is 

the transition dipole moment. 

 

There are three forms of transition that arise from the exchange coupling as discussed 

above: 

1) Double exciton transition. 

2) Exciton-Magnon transition. 

3) Double magnon transition.  

 

In these forms of transition the total spin of the two coupling ions must be conserved 

(∆S = 0) to break down the spin selection rule and allow the transition.   

 

Consider the case where the final states on opposite sublattices are exciton and 

magnon states of Mn
+2

.  By using appropriate exciton and magnon wave functions, 

the transition moment can be written as the following: 

 




210

1

.

2,10210

. 2.10

n

N

n

eff

nn

Ki
ggPmeeM n

                                         2.46 
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10e , g  and m are single ion wave functions, where g01 is the ground state 

of an ion at the o
th

 site on one sublattice, e01 is the excited state at the same site and 

mn2 is spin state of the ground states multiplet (magnon state) for an ion at the n
th

 site 

on the opposite sublattice.  P
eff

 is the effective dipole moment connecting ions 01 and 

n2, δ01, n2 are the vector from 01 to n2, and is a permutation operator with leads to 

both direct and exchange terms (Greene, Sell, and White, 1967).  

  

In our case, for the band C, in the o
th

 sublattice the ground state g01 has ms= 5/2 and 

the excited state e01 (ms= 3/2) on the n
th

 sublattice, the gn2 (ms=-5/2) and mn2  

(ms= -3/2).  By considering just spin parts, the matrix element given by: 

 

 effP  

 

From the above exchange state between opposite sublattice, we can overcome the spin 

selection rule and the transition becomes allowed. 

Depending on the general rule of spin-spin coupling of two ions, we can write an 

expression of the energies Es of the two neighboring manganese ions due to the 

exchange interaction between them in the absence of applied magnetic field as 

follows (Hoekstra, Boudewijn, Groenier, and Hass, 1983 and Van Vleck, 1932): 

 

baS SSKE .2                                                                                                  2.47 

 

      111  bbaaS SSSSSSKE                                               2.48 

. 

where S is the total spin of the two ions S = Sa + Sb, and K is the exchange coupling 

constant. 
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Figure 2.10: Scheme of the exciton-magnon, exciton-exciton, and magnon-magnon 

transitions between the nearest two sublattices I and II after Eremenko, 

Karachevtsev, Kazachkov, Shapiro, and Slavin (1993) 
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Chapter Three 

                                                                                                                                          . 

 

Experimental data 

 

3.1 Introduction 

 

The data used in this work were obtained by Darwish, Abumansoor and their 

colleagues at West Virginia University labs in the USA. 

 

Measurements were carried out using several samples of MnF2, RbMnF3, and KMnF3 

with different thicknesses to get different optical densities for the various bands.  For 

MnF2, two samples were used with thicknesses of 0.0300 cm, and 0.1056 cm.  Three 

samples were used for RbMnF3 with thicknesses of 0.1801 cm, 0.0601 cm, and 

0.0260 cm.  Four samples were used for KMnF3 with thicknesses 0.1199 cm, 0.3025 

cm, 0.0500 cm, and 0.025 cm. 

Each sample was cleaned with acetone and fixed over a small hole in a plate made of 

Oxygen-Free-High-Conductivity (OFHC) copper.  The copper plate is fastened to the 

sample holder by a set of screws and surrounded by special low temperature grease. 

 

All the spectroscopic measurements reported here were carried out on the Cary 14 

spectrophotometer.  The Model 14 spectrophotometer is designed for automatic 

recording of absorption spectra in the wave length 1860 Å - 26000 Å with a good 

resolving power and high photometric accuracy.   

 

The light sources of the instrument are a hydrogen lamp for the ultraviolet region, and 

tungsten lamp for the visible and infrared regions. The energy detectors are a 1p28 

multiplier phototube for the ultraviolet and visible regions, and a lead sulfide cell for 

the infrared. 

 

To obtain the required measurements of this experiment, the sample had to be cooled 

and kept at constant temperature for a reasonable time to perform the necessary 

scanning, and to avoid the formation of frost along the path of light.  All these 

requirements were met by the Air Product Model CSA - 202A Displex Closed Cycle 

Refrigeration system.   
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3.2 Experimental procedure: 

 

After calibration of the system by developing the spectra of a known standard sample 

(Holmium Oxide), the data was recorded for the temperature range between10 K and 

300 K.  When the coldest possible temperature was reached at about 10 K, the 

stabilization was done with the help of the digital temperature controller and the scan 

was made.  The next data set was taken after the temperature increases slowly until 

the desired temperature is reached and stabilized. The scanning procedure was 

repeated several times until reaching room temperature. 

 

3.3 Bands assignments 

 

The observed bands in the 2000 – 6000 Å range were identified with transition from 
6
A1g (

6
S) ground state to various quartet excited states of Mn

+2
, as listed in table 3.1.  

The assignments of these bands are A, B, C, D, E, and F…from the longer to shorter 

wave length in the visible and near ultraviolet regions as shown in figure 3.1.  The 

bands A and B are exciton-magnon-phonon bands, and the remaining bands are 

exciton-magnon bands.  Other bands appear and are labeled as double-exciton bands 

as α and β bands corresponding respectively to (A+A) band and (A+B) band 

(Fujiwara and Tanabe, 1972, Shinagawa and Tanabe, 1971, and Tsuboi and Kleemann, 

1983).  Other double exciton bands as  (A+C) reported later (Darwish and Seehra, 

1988). 

 

Several investigation of these bands were carried out through dealing with 

temperature dependence of line positions, oscillator strength of the transitions and the 

effect of applied magnetic field on the bands (Zabluda, Malakhovskii, and Edelman, 

1985), (Gurylev, Vereshchagin, Dimitriev, and Kurbatov, 1975) and (Darwish, Seehra, 

Abumansoor, 1986).  This work will concentrate on the fine structure of the C-band  

 

Table 3.1: The line position observed for some of the main bands in MnF2 at 300 K 

(Abumansoor, 1985). 

 

Bands Transition Observed Energy 

A 
6
A1g (

6
S) → 

4
T1g (

4
G) 19558 cm

-1
 

B 
6
A1g (

6
S) → 

4
T2g (

4
G) 23524 cm

-1 

C 
6
A1g (

6
S) → 

4
A1g (

4
G), 

4
Eg (

4
G) 25183 cm

-1
 

D 
6
A1g (

6
S) → 

4
T2g (

4
D) 28145 cm

-1
 

E 
6
A1g (

6
S) → 

4
Eg (

4
D) 30206 cm

-1
 

F 
6
A1g (

6
S) → 

4
T1g (

4
P) 33069 cm

-1 
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3.4 The C-band: 

 

In the case of the C-band (
6
A1g(

6
S) → 

4
A1g(

4
G), 

4
Eg(

4
G)) it is noted that two kinds of 

crystal-field transitions are involved in this band to the two levels of 
4
A1g, and 

4
Eg, 

which are degenerate in the crystal field and the spin-orbit coupling does not split 

them to first order (Wong, Scarpace, Pfeifer, and Yen, 1974). 

 

The line position of the C-band decreases with increasing temperature below TN, and 

becomes nearly temperature independent above TN with negligible phonon effects as 

shown in figure 3.2.  In addition to line position studies, integrated intensity of the 

band shows a decrease in the intensity below TN with decreasing temperature and near 

constant values above TN as shown in figure 3.3.  These features of the band made it 

easy to label the C-band as pure exciton-magnon band. 

 

The figure 3.2 also shows the temperature dependence of the line position of the F-

band, where the two bands C and F have approximately similar behavior below and 

above TN.  It should be noted that this result is equivalent to that of other exciton-

magnon bands, where above TN the line position and intensity of all of these bands 

show weak dependence on temperature (Fujiwara, Gebhardt, Petanides, and Tanabe, 

1972). 

 

On the contrary, the line positions of A and B bands increases with increasing 

temperature as shown in figure 3.4.  This is consistent with the physical picture in 

which a phonon is involved and has an effect on the behavior of these bands.  These 

transitions are phonon-assisted transitions and labeled as exciton-magnon-phonon 

bands. (Darwish, Seehra, and Abumansoor, 1986). 

 

Fig.3.5 shows the data obtained for band C at different temperatures from10 K to  

300 K.  At 10 K six peaks appear, a few of them are narrow peaks and the remaining 

peaks are broad.  At 60 K near TN not all of these six bands appear, only four of them 

are prominent and shifted to lower energy.  The best determination of the shifted 

energy of the C-band is about 57 cm
-1

 from 10 K to 60 K by considering the most 

dominant peak of the four prominent peaks.   
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Figure 3.5: Absorption spectrum of the C-band at various temperatures after 

Abumansoor (1985). 
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3.5 Fine structure of the C-band 

 

The major goal of this work is to explain the fine structure of the C-band.  There are 

several peaks that appear in the fine structure of the C-band below TN, as presented in 

the different experimental data. 

 

The unpolarized spectrum in figure 3.5 of the C-band shows six peaks that appear at 

10 K.  Some of them are broad implying several lines in each peak.  The separation 

between these lines was easily produced either by decreasing the temperature to less 

than 10 K or by using  polarized spectra as observed in α, σ, and π-spectrum in figure 

3.6.  In the α-polarized (α-spectrum) the incident light is aligned parallel to the c-axis 

of the crystal and the electric field is perpendicular to c-axis.  In the π-spectrum the 

incident light is perpendicular to c-axis and the electric field parallel to c-axis.  

However in the σ-spectrum the incident light and the electric field are perpendicular 

to c-axis. 

   

From figure 3.6, several peaks appear in the α-spectrum of the C-band at10 K.  There 

is some symmetry noticed in the arrangement of these peaks, which are classified into 

four groups with each group containing three peaks.  Most of these peaks are narrow 

below TN, where the spins are ordered and the exchange interaction is a dominant 

factor at this range of temperature.  As the temperature increases all of the peaks 

become broad and weak.  At TN most of these peaks disappear except for four peaks.  

Above the Neel temperature the spin goes to a disorder phase and the exchange 

interaction vanishes as shown in figure 3.5.  This result agrees well with the 

calculations for the case of MnF2 (Sell, Greene, and White, 1967) which indicates that 

the energy of the magnon has nearly similar behavior as the sub lattice magnetization 

with temperature from 0 K to TN.    
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Figure 3.6: The axial (α), σ, and π spectrum of band C at 10 K after Abumansoor 

(1985). 
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Figure 3.7: The difference between α, σ, and π polarization after Popov (2003) and 

Popov and Ovchinnikov (2003).  
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Chapter Four 

                                                                                                                                         .                                                                                                                                                                                                                                                                                     

 

Theoretical discussion 

 

This chapter is divided into four sections. In the first section a discussion of the 

allowed and forbidden electric dipole transitions is given.  The second section deals 

with the exchange interaction.  The third section discusses the exciton-transitions.  

The fourth section contains interpretation of spin-spin coupling between the different 

spin states. 

 

4.1 Allowed and forbidden electric dipole transitions.  

 

There are several energy levels for a free manganese ion 
6
S, 

4
G, and 

4
D…. .These 

levels split into many states due to the crystal field as shown in figure 2.8.  The C-

band is the absorption transition between 
6
A1g (

6
S) → 

4
A1g (

4
G), 

4
Eg (

4
G).  Each state 

splits into several spin states according to its spin multiplicity.  

 

In the paramagnetic phase where there is no effective exchange field, the C-band 

appears as one sharp peak.  Below TN the spins are ordered and several electric dipole 

sidebands associated with magnons appear as shown in figure 3.7.  To discuss these 

peaks or sidebands, we need to understand the possible transitions for a single 

manganese ion.  The first possible kind of electronic transitions for a single ion that 

occur between the states of the same spin-multiplicity, which are called intrasystem 

combinations.  Four possible transitions satisfy the condition for such an intrasystem 

combinations (ΔS = 0). In the meantime these transitions violate the parity selection 

rule, since the ground and excited states have even parity and the transitions between 

the states with the same parity are not allowed.  The parity forbiddness is removed by 

vibronic interaction due to the perturbation of odd vibration into the excited state 

(Hoekstra and Haas, 1985).  The second possible kind of transitions that occur 

between the states of different spin multiplicity, known as intersystem combinations, 

and satisfy in the conditions ΔS = ±1 that are forbidden for the electric dipole operator 

due to spin-selection rule (Sugano, Tanabe, and Kamimura, 1970).  There are twelve 

possible transitions satisfy the conditions of the two combinations, their observed 

energy presented in table 4.1, where C1, C2, C3, and C4 are the prominent peaks, and 

the subscript C and H indicate the electric-dipole cold sideband and electric-dipole hot 

sideband respectively.  In a single ion approximation the forbidden transitions may be 

allowed by spin-orbit and vibronic interactions.  The break of the spin and parity 

selection rules is also possible by the exchange interaction of two manganese ions 

with opposite sublattices (Hoekstra, Folkersma, and Hass, 1985).   
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Table 4.1: The observed energy lines of the C-band in MnF2 compound at 10 K. 

 

Lines type in the C-band Observed energy lines 

C1C 

C1 

C1H 

 

C2C 

C2 

C2H 

 

C3C 

C3 

C3H 

 

C4C 

C4 

C4H 

25620 cm
-1

 

25449 cm
-1

 

25415 cm
-1

 

 

25914 cm
-1

 

25773 cm
-1

 

25726 cm
-1

 

 

25405 cm
-1

 

----------- 

25315 cm
-1

 

 

25570 cm
-1 

25561 cm
-1

 

25515 cm
-1 
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4.2 The role of the exchange interaction 

 

From the previous section, the transitions in cases where ΔS = ±1 are forbidden.  A 

possible way to overcome the spin selection rule is to consider the involvement of the 

two neighboring ions by coupling in an exchange interaction.  The exchange 

mechanism which leaves the total spin unchanged where the spin flip of the exciton 

(on one sublattice) cancels the spin flip of the magnon (on the other sublattice). Figure 

4.1 shows the interaction between the pair of magnetic ions that leads to electric 

dipole transition.  When electronic absorption takes place, the photon virtually excites 

one ion to an intermediate state of opposite parity (odd state).  The exchange 

interaction between the ions then permits the other ions to be excited to a magnon 

state while the first ion undergoes a transition to its final state (Sell, 1968).   The 

intermediate state of opposite parity produced by some effects strong enough to 

destroy the parity selection rule (Malakhovskii, Filimonov, and Goncharov, 1989).   

  

The creation of sidebands can be understood as follows: In spin ordered phase the 

exchange field develops and lifts the degeneracy of the spin states for the two 

neighboring manganese ions I and II with up and down sublattices respectively as 

shown in figure 4.2.  The energy gap for the ion where the electronic orbital excitation 

takes place is denoted by ∆e.  We assume that the splitting between the different spin 

states in the ground state is different from that in the excited state.  The energy 

associated with only the spin flips (magnon energy) is denoted by ∆es.  The magnon 

energy calculated in different works is very small compared to the energy of the 

transition from one electronic state to a higher electronic excited state (Eremenko, 

Karachevtsev, Kazachkov, Shapiro, and Slavin, 1993 and Sell, 1968). The sidebands 

occur in which the first ion has spin component changed by ∆S = -1 and makes a 

transition to any spin excited state, while a neighboring ion has spin component 

changed by ∆S = +1 and remains in the ground state, and vice versa.  Since the energy 

differences between the spin states are different from each other, there are twelve 

possible peak lines with different energies that appear in the fine structure of the C-

band as shown in figure 4.2, arranged into four categories.  Each category contains 

three lines ended with similar spin excited state.  In each category one of the three 

lines is a spin-allowed transition; these four lines are labeled as pure exciton lines and 

will be discussed latter.  The other two lines are referred to as the sidebands.  These 

sidebands involve the creation of an exciton and creation or annihilation of a magnon 

to preserve the spin selection rule.  Thus they are sometimes referred to magnon 

sidebands.  The creation of a magnon is named cold sideband, and the annihilation of 

a magnon is named hot sideband.  The cold and the hot sidebands refer to higher and 

lower energy with respect to the main line.  

 

The number of the peaks from theoretical interpretations approximately agrees well 

with the experimental data.  The experimental data at 10 K showed clearly eleven 

peaks with the possibility of one of them being resolved into two peaks at a lower 

temperature. 
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Figure 4.1: Schematic representation of the interaction between a pair of magnetic 

ions I and II producing magnon sidebands after Sell (1968). 
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The four categories of the twelve transitions are as follows: 

 

1. The first category is a combination of excitations involving two ions that can takes 

place with wave numbers: 

  

(1a, 4)                                          E = Eo + ∆e11 − ∆e21 + ∆es 

 

(2a)                                              E = Eo + ∆e12 − ∆e21  

 

(3a, 5)                                          E = Eo + ∆e13 − ∆e21 − ∆es 

 

 

2. The second category involves the following transitions with wave numbers: 

 

(1b, 4)                                         E = Eo + ∆e12 − ∆e22 + ∆es 

 

(2b)                                             E = Eo + ∆e13 − ∆e22  

        

(3b, 5)                                         E = Eo − ∆e13 − ∆e22 − ∆es 

 

 

3. The third group involves these transitions with the corresponding wave numbers: 

 

 (1c, 4)                                        E = Eo − ∆e13 + ∆e21 + ∆es 

 

 (2c)                                            E = Eo − ∆e12 + ∆e21  

 

(3c, 5)                                         E = Eo − ∆e11 + ∆e21 − ∆es 

 

 

4. The fourth group contains these transitions with the corresponding wave numbers: 

 

(1d, 4)                                        E = Eo + ∆e13 + ∆e22 + ∆es 

 

(2d)                                            E = Eo − ∆e13 + ∆e22  

 

(3d, 5)                                        E = Eo − ∆e12 + ∆e22 − ∆es 
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4.3 Pure exciton line transitions 

 

There are four transitions that occur between states of the same spin multiplicity.  

These are labeled as pure electronic transitions for a single ion (also labeled as pure 

exciton lines).  These lines do not violate the spin selection rule and remain prominent 

at different temperature ranges as shown in figure 3.5.  Such lines are noticeable at 

temperature close to TN but shift to lower energies according to a change in sublattice 

magnetization below TN. The shifted energies for C1, C2, C3, and C4 (between 10 K 

and TN) are 55, 80, 57, and 64 cm
-1

 respectively. The shifted energies at nearly  

60 cm
-1

 were obtained by Abumansoor and Seehra (1985) except C3, where this peak 

is broad and difficult to determine accurately. The average shifting in their energies 

corresponds to the shifting of the total C-band.  

 

The four exciton lines correspond to the wave numbers: 

           

 E = Eo + ∆e12 − ∆e21  

  

 E = Eo + ∆e13 − ∆e22  

   

 E = Eo − ∆e12 + ∆e21  

 

 E = Eo − ∆e13 + ∆e22  

 

The major point to be remembered that these exciton lines violate the parity selection 

rule, since all the d-states have even parity.  Several studies presented different 

explanation for the relaxation of parity selection rule.  The study of Yokogawa, 

Taniguchi, and Hamaguchi (1977) indicated that the mixing of odd-symmetry phonon 

state into the even-parity state.  Whereas Henderson and Bartram (2000) found that 

the parity selection rule was overcome by admixture of odd-parity wave functions 

which associated with higher lying (4p) orbitals into even-parity wave functions.  

Another explanation presented by Hoekstra, Folkersma, and Haas (1985) indicated 

that the parity selection rule was overcome by exchange interaction between pairs of 

manganese ions.  Similar exciton-magnon bands may have prominent peaks in their 

fine structures such as the D and F bands in manganese compounds.  Pure exciton 

lines showed less sensitivity to spin ordering in the antiferromagnetic phase.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 51 

4.4 Spin-Spin Coupling 

 

The fine structure of the C-band appears in the antiferromagnet phase below TN, 

where most of the peaks become better resolved.  Also the number of peak lines for 

the C-band and the observed energy differences between these lines are 

approximately the same for different manganese compounds that have the same 

structure.  This supports the proposition that the interaction between the magnetic ions 

is a dominant factor in the appearance of the fine structure of the C-band.  In other 

words C-band is ideal for the study of the effect of magnetic ordering (Abumansoor 

and Seehra, 1985). 

 

The electron is a structureless point particle that carries an intrinsic angular 

momentum S in addition to the extrinsic angular momentum L. Since the spin angular 

momentum is similar to the orbital angular momentum, all of the L-L, S-S, L-S, and 

J-J coupling, can be treated in a similar way (Eisberg and Resnick, 1974).  

 

To explain the twelve peaks in the fine structure of the C-band, I follow the same 

approach proposed by (Eisberg and Resnick, 1974) who did calculate the separation 

energy between the states arising from spin-orbit interaction by using the Landē 

interval rule: 

 

      111
2

 SSLLJJE


                                                          4.1 

 

Here λ is the spin-orbit coupling constant.    

 

In the case of the C-band, all possible transitions occur between states arising from 

spin multiplicity.  So the coupling between these states is spin-spin coupling.  By 

using the expression of exchange energy for the two neighboring ions spin states, we 

can find the separation energy between different ion spin states as follows (Van 

Vleck, 1932 and Löwdin, 1962): 

 

21 .2 SSKES                                                                                            4.2 

 

Here K is the exchange coupling factor constant between the spin states, S1 for the 

first spin state and S2 for the second spin state.  The total spin states S1 and S2 is equal 

to S = S1 + S2. 
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The magnitude of energy differences between the levels of the sextet ground states is 

given by: 

 

  KKSSSSSSKES
2

15

4
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35
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

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
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where S1 = 5/2, S2 = 3/2, and S = 4 

 

While for the case S1 = 3/2, S2 = 1/2, and S = 2 
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And for the case S1 = 1/2, S2 = -1/2, and S = 0 

 

KKES
2

1

4

1
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3
0 








 .  Figure 4.3 shows the separation 

energies for the levels due to spin-spin interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.3: The splitting energy of 
6
S due to spin-spin coupling. 
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The ratio for every two successive values of energy difference between the spin 

levels: 
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Table 4.2 shows the experimental data of the ratio for separation energy between the 

main peaks and the associated two sidebands for three of the four groups.  

 

 

Table 4.2: The observed energy of the four groups from experimental data. 

 

The groups. Observed energies of peak 

lines. 

The energies ratios. 

 

 

The first group 

25620 cm
-1

 

 

25449 cm
-1

 

 

25415 cm
-1

 

 

 

 171 ׃ 5  ≈  34 ׃ 1

 

 

The second group. 

25914 cm
-1

 

 

25773 cm
-1

 

 

25726 cm
-1

 

 

 

 141  ׃  3  ≈  47  ׃  1

 

 

The third group. 

 

 

25405 cm
-1

 

 

--------- 

 

25315 cm
-1 

 

 

-------- 

 

 

The fourth group. 

 

25570 cm
-1

 

 

25561 cm
-1

 

 

25515 cm
-1

 

 

 

 9  ׃  1  ≈  46  ׃           5
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The third group contains only two clear lines which leave the possibility that the most 

intense line and the most dominant of the spectra may contain two lines, but could not 

be separated due to limitation of resolution.   

 

We can compare the separation energy calculation by using spin-spin coupling 

between these lines with the ratios which are listed in table 4.2.  The first group in 

figure 4.2 contains three lines: (1a, 4) and (3a, 5) represent sideband transitions, 

where (1a, 4) involves creation of an exciton and creation of magnon and (3a, 5) 

involves creation of an exciton and annihilation of magnon, while (2a) involves 

creation of exciton.  If we neglect the energy associated with magnon transitions in 

(1a, 4) and (3a, 5) because the magnon energy is very small, then the energy 

transitions can be written as follows: 

 

(1a):  E = Eo + ∆e11 − ∆e21  

(2a):  E = Eo + ∆e12 − ∆e21  

(3a):  E = Eo + ∆e13 − ∆e21  

 

These transitions represented by lines from the ground spin states +5/2, +3/2, and 

+1/2 to the excited spin state + 3/2 respectively as shown in figure 4.4.  The 

calculated values of the ratio between energy gaps for the first group (1a, 2a, 3a) with 

corresponding to energies (25620 cm
-1

, 25449 cm
-1

, 25415 cm
-1

) is displayed in figure 

4.4.  Where, line (2a) of energy 25449cm
-1

 is considered the pure exciton line, line 

(1a) is considered the cold sideband and line (3a) is the hot sideband.  In a similar way 

the ratio between the separation energy between the lines of the second and fourth 

groups came up to be close to 3 1 ׃ and 1 5 ׃ respectively.  Strictly speaking, our 

theoretical explanation agrees well with the experimental data except for the third 

group which contains two lines with magnitudes of approximately 25405 cm
-1

and 

25315 cm
-1

, the difference between them ≈ 90 cm
-1

.  The third line was not observed, 

the expectance value of its energy is nearly 25338 to satisfy the third ratio (13 ׃) of the 

spin-spin coupling. 

Table 4.3 presents the summary of the experimental data and the theoretical results 

that have been made for the twelve lines. 
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Figure 4.4: The energy values of exciton line, cold and hot sidebands for the first 

group. 
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Table 4.3: The summary of the experimental and theoretical results. 

 

 

Energy transitions Theoretical energy Observed energy Band type 

(1a, 4) 

 

(2a) 

 

(3a, 5) 

Eo + ∆e11 − ∆e21 + ∆es 

 

Eo + ∆e12 − ∆e21 

 

Eo + ∆e13 − ∆e21 − ∆es 

25620 cm
-1

 

 

25449 cm
-1

 

 

25415 cm
-1

 

Cold sideband 

 

Pure exciton line 

 

Hot sideband 

(1b, 4) 

 

(2b) 

 

(3b, 5) 

Eo + ∆e12 − ∆e22 + ∆es 

 

Eo + ∆e13 − ∆e22 

 

Eo − ∆e13 − ∆e22 − ∆es 

25914 cm
-1

 

 

25773 cm
-1

 

 

25726 cm
-1

 

Cold sideband 

 

Pure exciton line 

 

Hot sideband 

(1c, 4) 

 

(2c) 

 

(3c, 5) 

Eo − ∆e13 + ∆e21 + ∆es 

 

Eo − ∆e12 + ∆e21 

 

Eo − ∆e11 + ∆e21 − ∆es 

 

25405 cm
-1 

 

25338 cm
-1 

 

25315 cm
-1

 

 

Cold sideband 

 

Pure exciton line 

 

Hot sideband 

(1d, 4) 

 

(2d) 

 

(3d, 5) 

Eo + ∆e13 + ∆e22 + ∆es 

 

Eo − ∆e13 + ∆e22 

 

Eo − ∆e12 + ∆e22 − ∆es 

25570 cm
-1 

 

25561 cm
-1

 

 

25515 cm
-1

 

Cold sideband 

 

Pure exciton line 

 

Hot sideband 
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Chapter Five 

                                                                                                                                         .  

 

Summary 

 

The study of the optical spectra in different manganese compounds and the details of 

its fine structure show the role of magnetic interactions and provide a clear picture of 

the energy structure of the antiferromagnetic phase in an organic complex of 

transition elements.  The optical absorption spectra of high-spin 3d
5
 manganese ion in 

MnF2 crystal (TN = 67.3 K) has been studied.  Several absorption bands have been 

observed and attributed to d
5
-d

5
 transitions, and their fine structures appear in the 

antiferromagnetic phase. 

 

The d
5
-d

5
 transitions are both parity and spin forbidden for the electric dipole operator.  

There are four possible mechanisms which may break the parity and spin selection 

rules for electric dipole transitions:  The first possible way is a single-ion mechanism, 

where the parity selection rule is overcome by vibronic interaction and the spin 

selection rule is overcome by spin-orbit interaction.  The other mechanisms (B, C, and 

D) consist of the coupling between a pair of manganese ions. In mechanism B the 

parity selection rule is overcome by vibronic interaction and the spin selection rule by 

the exchange interaction.  In mechanism C the parity selection rule is lifted by the 

exchange interaction and the spin selection rule by the spin-orbit interaction.  In 

mechanism D the parity and spin selection rules are lifted by the exchange interaction. 

 

The investigation of fine structure of pure exciton-magnon bands in the frequency 

range of the C-band 
6
A1g (

6
S) → 

4
A1g, 

4
Eg (

4
G) yielded the following results:  

 

1. At low temperature the most broad and intense bands become better resolved 

exhibiting several peaks associated with exciton-magnon transitions. 

 

2. The exchange interaction produces important modifications into the spectra of 

divalent manganese in MnF2 compounds. 

 

3. Most manganese compounds with similar crystal structures have the same 

number of peaks for each band.  This leads the conclusion that the exchange 

interaction between the neighboring Mn
+2

 ions has a dominant role in the 

absorption process, and mechanism D (full exchange interaction) is 

responsible for lifting spin and parity selection rules of the C-band. 

 

4. There is no noticeable shift of the line position of the C-band in the 

paramagnetic region.  This is consistent with the C-band being a pure exciton-

magnon band.  Thus the C-band is ideal for the study of the effect of magnetic 

ordering. 
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5. Our calculations of the energy separations between the spin states by using 

spin-spin coupling are approximately close to the energy separations between 

the peak lines from the experimental data.  This indicates that the spin-spin 

coupling of a pair of Mn
+2

 ions is the main mechanism responsible for the 

fine structure of the C-band at low temperature. 

 

6. The spectrum of the C-band consists of four peaks, which are dominant at 

different temperature values contrary to the other peaks which lose intensity 

with increasing temperature.  These four peaks are labeled as exciton 

transitions and have a dominant effect on the total band. 

 

7. The sidebands associated with the main exciton transitions result from a pair 

ion interaction.  The cold sideband involves creation of a magnon and refers 

to the higher energy, and the hot sideband involves annihilation of a magnon 

and refers to the lower energy. 
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Appendices 

 

Appendix A 

 

The real Parts of d-orbitals: 

 

The imaginary forms of the five d-orbitals are generated from the following spherical 

harmonic (Griffiths, 1995): 
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By a combination of the imaginary forms of the orbitals to produce the real forms that 

do not contain i and affected by crystal field, we note that (Figgis, 1966): 
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Where m is the same as lm  
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Let us use calculated the combination: 

                         

                         [(+1) + (–1)]                                                                                       A.6 

 

Where +1 and -1 means the wave functions corresponding to m = +1 and -1 

respectively. 

 

    1

22,

1

22, 11   YRYR nn                                                                A.7 

 

       mi

ml

m

l eY 
 2/1

2,                                                                      A.8 

 

 cossin
4

15
1,2                                                                                               A.9 

 

 By substituting these values, A.6 becomes: 
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In the last step all the factors other than function of the Cartesian coordinates are 

omitted. 
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The new wave function (Ψ) in the last equation must be normalized as the following:  
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By making other suitable combinations of the imaginary parts of d-orbitals we can 

obtain the following results: 
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Appendix B 

 

Slater-Condon parameters 

 

FK's are abbreviation of the Slater integral F
K
's (dd) which is given by: 

 

 

                                            B.1 

Where r< is the lesser and r> is the larger of r1 and r2. 

The FK's are given in terms of F
K
's as: 
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Appendix C 

 

Crystal potential field: 

 

Consider the central ion surrounded by six negative point-charges (Ze) with distance a 

as shown in figure C.1.  The potential energy Vc of an electron of the central ion due 

to the field of the point-charges is given by Sugano, Tanabe, and Kamimura (1970): 
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rj is the position vector of the j
th

 point charge, and r is the electron coordinate. 1/rj-r 

can be expanded in spherical harmonics as follows: (Eyring, Walter, and Kimball, 

1944) 
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Where r< is the lesser and r> the greater of a and r. (r, θ, Φ) and (rj, θj, Φj) are the 

spherical coordinates of r and rj respectively.  When a is much larger than the radius 

of the central ion r, then r> and r< respectively are replaced by a and r.  C.1 for the six 

point charges becomes: 
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Then Qlm's are given: 

 

When m = 0 
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When m is even  
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When m is odd 
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By inserting the forms of Өlm (θ) are given in table C.1 into C.7a-c, then Vc can be 

written as: 
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All of the terms with l  > 4 will vanish because they are very small and approach zero. 

Substitute the C's value in C.9: 
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Where: 
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From 11a….c, equation 10 is given as: 
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Table C.1: Explicit Forms of  ml  (Sugano, Tanabe, and Kamimura, 1970). 

Figure C.1: The polar coordinates of an electron of the central ion in 

the field of negative charges 
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The effect of octahedral field on d-orbitals: 
 

To illustrate the effect of octahedral field on d-orbitals, consider crystal potential Vc 

that resulted from appendix C equation 9: 
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The first term is spherically symmetrical: 
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By applying the matrix element of Voct on the orbital parts of the wave functions by 

using the following equation: 
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Note that: 
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In our case for d-wave functions: 
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From the values of a
k
 are given in table D.1 for s, p, and d electrons, when k = 4 and 

m" = m' = 2 then: 
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By substituting D.5 in D.3, the result is: 
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By applying the same technique on the other d-wave functions we obtain the 

following results: 
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Table D.1:  mlmla k  ,  for s, p, d electrons (Slater, 1960). 
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