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Abstract

The p—Laplace equation play an important role of mathematical modeling. In this work

we present the model p—Laplace equation with zero Dirichlet boundary condition of the

form
1 OF (z,u) _ :
—Ayu = T ou +Xa(z) | u |72 u, in Q (1)
u = 0, on 0f)

where A\, denotes the p—Laplacian operator defined by A,u = div(|VulP~2Vu); p > 2,
Q2 is abounded domain of R", (n > 3),1 < ¢ <p <o < p*, (p* = % if p<n,p*=o00
if p>n), A € R\ {0}, F € C'(Q x R,R) is positively homogeneous of degree o, that
is, F(z,tu) = t"F(x,u) hold for all (z,u) € © x R and a(z) : @ — R are smooth
functions which change sign in €2. In general it is almost impossible to find analytical
solutions of p—Laplace equation. Thus it is necessary to solve this equation in weak
sense. In this Thesis, we derived the variational form of Equation (1) that used to find
the critical points of this problem. We apply a method based on Nehari results on three
submanifolds of the first Sobolev space VVO1 P The Nehari method form contains specific
condition used to find critical points of the equation and to indicate that it is a non-
trivial solution for problem (1). Further in this thesis we apply p—Laplacian equation
in image denoising. In image processing, partial differential equations play an important
role. In Total variational method see, [17], such equations arise from minimizing some
energy functional (like the L; norm of the gradient). Other methods are designed using
geometrical arguments (like evolution tangent to isophotes, known as Mean Curvature
Motion [8]. In this work, a general parameter-driven framework for both approaches is
given, [24], that have one specific common element, the Gaussian scale space [13]. For
the first set of equation, the L, norm of the gradient is used with p a free parameter,
thus obtaining so-called p—Laplacians [14]. The evolution equation is a PDE that can
be simplified using (geometrical) gauge coordinates. A numerical experiment related to

image denoising is presented in this thesis.
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Chapter 1

Introduction

The p—Laplacian, or the p—Laplace operator is a quasilinear elliptic partial differential
operator of second order. The p—Laplacian equation is a generalization of the partial
differential equation of Laplace equation. Many nonlinear problem in physics and me-
chanics are formulated in equations that contain the p—Laplacian. The study of these
equations started more than thirty years ago. In the last few years, p—Laplacian equa-
tions have increasing attention, and rapid development has been achieved for the study
of the equations involving operator Delta p. This theory has been developed very quickly
and attracted a considerable interest from researches, since the p—Laplacian operator
a rise from many applied fields such as turbulent filtration in blood flow problems and
material science etc. Several problems involving A, operator for Dirichlet or Neumann
boundary condition have been studied by many researchers such as, Drabek et al.[19],
Ambrosetti et al.[4], Brezis and Nirenberg [10], Tehrani [12] by using variational methods
and Amman and Lopez-Gomez [11] by using global bifurcation theory. In recent years,
several authors have used the Nehari manifold and fibering maps (i.e.,maps of the form
t — Jx(tu), where Jy is the Euler functional associated with the equation) to solve
semilinear and quasilinear problems. By the fibering method, Drabek and pohozaev [20],
Bozhkov and Mitidieri [26] studied, respectively, the existence of multiple solution to
a p—Laplacian system. Brown and Zhang [16] have studied the subcritical semilinear

elliptic equation with a sign-changing weight function



—Au(r) = Xa(z)u+b(z)|u]">u, in Q (1.1)

u = 0, on )

where 7 > 2. Exploiting the relationship between the Nehari manifold and fibering maps,
they gave an interesting explanation of the well known bifurcation result. In fact, the
nature of the Nehari manifold changes as the parameter A crosses the bifurcation value,
the author considered above problem with 1 < v < 2. Also, the authors in [26] by the

same arguments they considered the semilinear elliptic problem :

—ANu(z) = M(@)|ul"2u(z) + g(x)|ufP~?u, in Q (1.2)

u = 0, on 0
where 1 < ¢ < 2 < p. Affected by the work of Brown and Zhang [16] treated the problem:

A(|AulP2Au) = l*f(x,u) + Aul|%u, in Q (1.3)
p

u = Au=0, ondf

where f is positively homogenous of degree p* — 1. In this thesis, motivated by the above
works, we give a simple variational method which is similar to the fibering method to
prove the existence of at least two positive solutions of problem (1). In fact we use the
decomposition of the Nehari manifold as A vary to prove the main result. In this work

we consider the model equation so called the p—Laplacian equation

_ 10F(z,u) —2
Apju = T ou + Aa(z) | w9 u, in Q (1.4)
u = 0, on 0f)

and its corresponding energy functional

Jy(uy = el 1 /Q Fla,u)dz — 5/Qa(x)\u|qu. (1.5)

p o q
We consider the problem of finding the solution of Equation (1.4) as a variational problem.
That is we find the minimum of Jy on the set of functions satisfying the condition u = 0

on the boundary. In many problems of mathematical physics and variational calculus it
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is not sufficient to deal with the classical solution, of differential equations. It is necessary
to introduce the notion of weak derivatives and to work in the so called Sobolev spaces.
The theory of Sobolev spaces gives the basis for studying the existence of solutions ( in
the weak sense) of partial differential equations. Several problems in analysis can be cast
into the form of functional equations F'(u) = 0, the solution u being sought among a class
of admissible functions belonging to some Banach space E. Typically, these equations are
nonlinear, for instance, if the class of admissible functions is restricted by some nonlinear
constraint. A particular class of functional equation is the class of Euler -Lagrange
equation DJ(u) = 0 for a functional J on E, which is Frechet differentiable with derivative
DJ. Variational principles play an important role in mathematical physics, differential
geometry, optimal control and numerical analysis. Suppose .J is a Frechet differentiable
functional on a Banach space F with normed dual space E* and let DJ : £ — E*
denote the Frechet derivative of J. Then the directional (Gateaux) derivative of J at u

in the direction of v is given by

%E(u + )] emo = (DJ(u), v) = DJ(u)v (1.6)

For such J, we call a point u € E critical if D.J(u) = 0, otherwise, u is called regular.

A number § € R is a critical value of J if there exists a critical point u of J with J(u) = f,
otherwise, 3 is called regular. Of particular interest will be relative minima of J, possibly
subject to constraints. We recall that for a set Ny C £ a point ©w € N is an absolute
minimizer for Jy on N, if for all v € Ny there holdes Jy(v) > J\(u). The purpose of this
research is to firstly discuss the problem of existence of positive solutions of Equation
(1.4) from the variational viewpoint and, in particular, from the view point of the Nehari
manifold, Ny = {u € E\ {0} : (DJx(u),u) = 0} and secondly to present an application
of the p—Laplace equation in the field of image Denoising. The thesis is organized as
follows. In Chapter Two, we give basic concepts of functional analysis used through out
the thesis. In Chapter Three, we discuss the Nehari manifold and the variational
framework of Problem (1.4), and show how existence of positive solutions of Equation
(1.4) are linked to properties of the manifold. In Chapter Four, the concepts of gauge
coordinates, variational derivatives, and p—Laplacian are discussed, also it will be shown

3



that the p—Laplace evolution equation can be simplified using gauge coordinates. Further
in this chapter, the properties of p—Laplace evolution equation are discussed in relation
to image filtering and a model is introduced to remove the noise of image denoising. At

the end of the thesis, we present the conclusions.



Chapter 2

Mathematical Framework

In this chapter we introduce some basics of functional analysis, we used in this research,
also we present a unified approach to the method of Nehari manifold for functionals that
have a local minimum at 0. This method is used in chapter three to derive positive
solutions to p—Laplacian equation. The details of this chapter are covered mainly in

reference [22],[21],[18].

2.1 Basic Concepts

Differential Equations

A differential equation is an equation whose unknown is a function depending on one or
more variables. We speak of partial differential equation when the function depends on
many variables and the problem involves partial derivatives. The unknown function, real
valued, is denoted by u and depends on the variables i, xo, ..., x,, that constitute the

point x. We denote the partial derivative by

0
Oiu(z) = Oy u(x) = u(x)) 1<i<n (2.1)
Gxi
olel
Further by D®u(z) we mean D%u(x) = T O ;1(';3) Fron’
where o = (g, g, ..ap),|a| = a3 +as + ... + a,, and o; € RT )i = 1,2,...n. such « is

called a multi-index.



Example 2.1.1:
Let u = u(z,y) be a function of two real variables, let a = (1,2). Then « is a multi-index

of order 3 and D%u = 8m8§u = Ugyy-

More precisely we have the following definition of a partial differential equation:
Definition 2.1.2:

An expression of the form
F(D*u(z), D" u(z), .., Du(z),u(z),z) =0, z €U, (2.2)

where U is an open subset of R"”, and F : R™ xR™'x .. xR*"xRxU — Ris given,
uw : U — R is the unknown, k is a nonnegative integer and D’u(x) = DPu(x) with
|B| = 7 is called a partial differential equation.
Definition 2.1.3:
The partial differential equation (2.2) is called linear if it has the form

> aal#) D = f(a)

lo| <k
for given functions f and it is called homogeneous if f = 0, otherwise it is
nonhomogeneous. If the partial differential equation (2.2) depends nonlinearly upon the
unknown function or any of its derivative, it is called nonlinear.

Example 2.1.4:

(1) u¢ + u, = 0 is homogeneous linear,

(2) Uy + uyy = 2> + y? is inhomogeneous linear,
(3) u? +u? =0 is not linear.

(3) uy + gy + uu, = 0 is not linear.



Definition 2.1.5:
We say a k-th order nonlinear partial differential equation is semilinear if it can be written

in the form

Z ao(2)Du + ag(D* ', ..., Du,u, ) = 0.
|a|=k

In particular, this means that semilinear equations are ones in which the coefficients of
the terms involving the highest-order derivatives of u depend only on x, not on u or its
derivatives.

Example 2.1.6:

(1) w + u, +u? = 0 is semilinear,
(2) uppe + vy, + uy = 0 is semilinear,
(3) u¢ + uu, = 0 is not semilinear.

Definition 2.1.7:
We say a k-th order nonlinear partial differential equation, which is not semilinear, is

quasilinear if it can be written in the form

Z ao (D, ..., Du,u, 2) D + ag(D*'u, ..., Du,u, z) = 0

la|=k
In particular, this means that quasilinear equations are those equations in which the

coefficients of the highest order terms may depend on x,u, ..., D*~'u, but not on D*u.

Example 2.1.8:
(1) w¢ + uu, = 0 is quasilinear,
(2) u2 + u; = 1 is not quasilinear.

Definition 2.1.9:
A solution to the PDE (2.2) is a function u that satisfies (2.2) and possibly satisfies

certain boundary condition on the boundary of u when it is bounded.

Among the important partial differential equations are the Laplace and the p—Laplace
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(usually called p—laplacian) differential equations. The Laplace operator denoted by A
" 0%u(x)

2
ox;

given by Au(z) = . We define the potential or Laplace equation as

=1

Au=0 in Q CR".

This equation is a second order linear PDE. Laplace equation is the prototype for linear
elliptic equations. It is less well known that it also has a nonlinear counterpart, the
so called p—Laplace equation or (p—harmonic equation), depending on a parameter p
belongs to (1,00]. If p € (1,00), then the p—Laplacian equation is given by the divergence

form Ayu := 7.(|[Vu[P7>Vu) = 0, when p = oo, the p—Laplacian equation is given as

" Ou du O

ij=1
which is the so called co—Laplacian equation. The p—Laplacian equation is an elliptic
partial differential equation, which is degenerate if p > 2, and singular at point where
Vu =0 for 1 <p< 2 If p=2, then the p—Laplacian equation reduces to the simpler
classical linear Laplace equation Au := V.Vu = 0.

The connection between the p—Laplacian, p € (1,00), and the co—Laplacian equation

rely on the calculation

_ _ " Ju du  O*u
: ) j ULy

1,J

= 0.

Let p — oo and divide by |[Vu[P™*, then we obtain the co—Laplacian equation. In the
last few years, p—Laplacian equation have received increasing attention. This theory has
been developed very quickly and attracted a considerable interest from researches, since

the p—Laplacian operator arise from many applied fields.



Boundary conditions.

Definition 2.1.10:
A problem is said to be well posed, if exactly one solution exists and it continuously

depends on the given data.

In fact p—Laplacian equation is not well posed since the solution is not unique. Many
PDEs arise from physical problems, where the behaviour of the unknown function can be
imposed or measured on the boundary. The most commonly used boundary conditions

are:

1) Dirichlet (or Essential) Boundary condition, defined as v = g on 052, in particular, if

g = 0 we speak of homogeneous boundary conditions.

2) Neumann (or Natural) Boundary conditions, defined as a—u = g on 0F2, where n is the
n

outward pointing unit normal vector on 0f).

0
3) Robin Boundary conditions, defined as yu + a2t = g on 0L), where v and « are real

on
numbers.
Definition 2.1.11:
A function, which satisfies a PDE as well as the associated boundary conditions is called

a classical solution.

Sobolev space.

A Sobolev space is a vector space of functions equipped with a norm that is a combination
of LP-norm of the function itself and its derivatives up to given order. The derivatives are
understood in a suitable weak sense to make the space complete, thus a Banach space.
Intuitively, a Sobolev space is a space of functions with sufficiently many

derivatives for some application domain, such as partial differential equations, and equipped
with a norm that measures both the size and regularity of a function. The theory of

Sobolev spaces introduce by Russian mathematician Sergei Sobolev around 1938. Their



importance comes from the fact that solutions of partial differential equations are
naturally found in Sobolev spaces, rather than in spaces of continuous functions and with

the derivatives understood in the classical sense.

Definition 2.1.12: (Lebesgue Spaces)
The space of functions that are Lebesgue integrable on €2, open and bounded in R", to

the power of p € [1,00) is denoted by
LP(Q) ={f:Q — R: f is Lebesgue measurable and / |fIPdx < oo}
Q

which is equipped with the norm

1) = ([ |f(9:)|”dx>; .

Definition 2.1.13:
The space C§°(€2) space of infinitely often differentiable real functions with compact

(closed and bounded) support in €2 is denoted by

CyP () ={v:v e C®(Q), supp(v) C Q},

where supp(v) = {x € Q:v(z) # 0}. In particular, functions from C§°(2) vanish in a

neighborhood of the boundary.

10



Weak Derivative

Suppose, as usual, that €2 is an open set in R"™.

Definition 2.1.14:
A function f € L} () is weakly differentiable with respect to x; if there exists a function

loc

gi € L}, .(Q) such that

loc

[ 10040 =~ [ giodz o e (@)
Q Q

The function g; is called the weak ith partial derivative of f and is denoted by J; f. Thus,

for weak derivatives, the integration by part formula

/Q foip(x)dr = — /Q o(2)0; fdz.

holds by definition for all ¢ € C§°. Since C2° is dense in L}, (), the weak derivative of a
function, if it exists, is unique up to pointwise almost everywhere equivalence. Moreover,
the weak derivative of a continuously differentiable function agrees with the pointwise
derivative. The existence of a weak derivative is, however, not equivalent to the existence
of a pointwise derivative almost everywhere. Higher-order weak derivatives are defined
in a similar way.

Definition 2.1.15:

Let f: Q — R be given. Then we say that g : {2 — R is the a—weak derivative of f

for some multi-index «, if for each ¢ € C§°(2), the following integration by parts formula

holds:
/Q D% ¢(x)dz = (—1)1 /Q 96(z)dz,

where |a| = || + |ag| + ... + |an].

Remark 2.1.16:
(1) If the a—weak derivative exists, then it is unique.

(2) If u € Cl*l the space of all continueously diffirantiable functions up to order |a/|
then the weak and the classical derivative coincide, which is why the same
symbol D? is used.

11



Remark 2.1.17:

Classical derivatives are defined pointwise, as limits of difference quotients. On the other
hand, weak derivatives are defined only in an integral sense, up to a set of measure zero.
By arbitrarily changing the function f on a set of measure zero we do not affect its weak
derivatives in any way.

Let us consider some examples of weak derivatives that illustrate the definition. We
denote the weak derivative of a function of a single variable by a prime.

Example 2.1.18:

Consider the function f(z) defined by

x, x€|0,1],
f(z) =
1, » (L2

Then, for any function ¢ : [0,2] — R differentiable with ¢(0) = ¢(2) = 0, we have that

—/02f<:v>¢’<a:>da: = —/Olﬂx z)dx —/ ¢ (@

working with the first term in the right-hand side, we use integration by parts to get

- [ b @ar = s+ [ ot =60+ [ ot

The fundamental theorem of calculus plus the assumption that ¢(2) = 0 on the second

term on the right-hand side gives — ff ¢ (x)dr = —(2) + (1) = ¢(1). We have that

- [ s = [ owar= [ gwotwan

where ¢ is given by

Hence g = f' is a weak derivatives of f.

12



Example 2.1.19:

Consider the function u(z) = |z| defined on (—1,1). For ¢ € C§°(—1,1) we have

—/_l u(:v)cﬁl(x)dx = —/0(—x)¢'(x)dx— /01 x¢/(x)dx

1 a1
- /l 26 (z)dz + /0 26 (2)dx,
0 1
by using integration by parts and the fact ¢ is zero at end points we obtained
— Jy xd (@)dz + [ 2¢/(2)dx = [} p(x)dr — ¢(1).1 + $(0).0 — [ ¢(x)dz + $(0).0 +
$(—1).1 = [y wo(x)dz — [, p()de = [1 $(x)v(x)de,
where

1, z€(0,1],
v(z) =
-1, z€[-1,0).

Thus v =« is the weak derivative of u. Note that it is not defined at x = 0. In fact weak

derivatives are generally only defined a.e (i.e defined except on a set of measure zero),

but this does not matter since we always integrate them against another function.

Example 2.1.20:

Consider the function

0, x isrational
flx) =

2+ sinz, x isirrational.

Clearly f is discontinous at every point . Hence it is not differentiable at any point. On
the other hand, the function g(z) = cosx provides a weak derivative for f, see [1].
Example 2.1.21:

The discontinuous function f : R — R

1, >0,
flx) =

0, z<0.

is not weakly differentiable. To prove this, note that for any test function ¢,

[ s6da= [ @e=-ot0)
13



Thus the weak derivative g = f* would have to satisfy

/Q go(x)dz = 3(0) ¥ € CF. (2.3)

Assume for contradiction that g € L (R) satisfy (2.3). By considering test functions
with ¢(0) = 0, we see that g is equal to zero pointwise almost everywhere, and then (2.3)
does not hold for test functions with ¢(0) # 0.

The pointwise derivative of the discontinuous function f in the previous example exists
and is zero except at 0, where the function is discontinuous, but the function is not weakly
differentiable.

Example 2.1.22:

Define f € C'(R) by

z, x>0,
flz) =

0, z<0.

Then f is weakly differentiable, with f = X[0,00)> Where X[o,0) is the step function

1, z>0,
X[O,oo)('r> -
0, z<0.

Definition 2.1.23:
For k= 1,2,3...n and p € [1,00), we define the Sobolev space W*?(Q) as
WhP(Q) = {u € LP(Q) : D*u € LP(Q),0 < |a| < k}.

Further, we set

WEP(Q) = the closure of CS°(Q) in WHP(Q).

These spaces are equipped with the following norms

LA

lullweoy = | D ID* (@, | if1<p< oo,
0<[al<k

and

sy = o [1D%(0)]1

14



Theorem 2.1.24:
The Sobolev space W*? with the norm ||||y+» is a complete normed vector space and

thus a Banach space.

Definition 2.1.25:

(A) A function u :  — R is called Lipschitz continuous if |u(z) — u(y)| < L]z — y|,

where L is a positive real number.

(B) The domain 2 has a Lipschitz boundary (or € is a Lipschitz-domain), if for m € N

there exists some open sets Uy, Us.., U, C R"™ such that
(1) 0Q Cc U, U;

(2) 92N U; can be described as graph of a Lipschitz continous function for every

1< <m.

Theorem 2.1.26: (Trace Theorem )

Let © C R” be open bounded and 0 is C*. Then there is exactly one linear and con-
tinuous operator T': WhP(Q) — LP(9Q), p € [1,00) which gives for functions

u € WIP(Q) N C(Q), the classical boundary values Tu(z) = u(x) for all

u € WH(Q)NC(Q) ie Tu(z) = u() |rcon

Remark 2.1.27:

On the trace
(i) the operator T is called trace or trace operator.

(ii) since a linear and continuous operator is bounded, there is a constant C' > 0 with

ITullzoo) < Cllullwinig) for all u € WHe

From the Trace Theorem we can derive a very useful definition when dealing with

homogeneous Dirichlet boundary conditions.

15



Definition 2.1.28:

We define the Sobolev space with functions vanishing at the boundary as
WP = {u € WEP(Q) @ ulypq = 0}.

In particular, for £ = 1 and p = 2 it follows that
Wy? = H ={ue H' : ulpq = 0}.

The difference between W*?(Q) and W, () is not merely a technical one. The idea of
the space Wy? () is that it consists of those functions in W'P(Q) which take the value

zero at the boundary of €2. Now many boundary value problems are equivalent to
Au=0 (2.4)

where A : X — Y is a mapping between two Banach spaces. When the problem is

variational, there exists a differentiable functional ¢ : X — R such that A = ¢/, i.e

¢(u+ tv) — P(u)
: :

(Au,v) = thi>n0 (2.5)

The space Y corresponds then to the topological dual X* of X and equation (2.4) is
equivalent to ¢'(u) =0, i.e

(¢ (u),v) =0, Vv e X (2.6)

A critical point of ¢ is a solution u of (2.6) and the value of ¢ at u is a critical value of

¢. How to find critical values? When ¢ is bounded from below, the infimum
c= 1g1(f o) (2.7)

is a natural candidate. Ekelands variational principle implies the existence of a sequence
(uy,) such that

&(u,) — ¢, ¢'(u,) — 0, as n «— oo, (2.8)

Such a sequence is called a Palais Smale sequence at level c. The functional ¢ satisfies

the (PS),. condition if any Palais-Smale sequence at level ¢ has a convergent subsequence.

16



If ¢ is bounded from below and satisfies the (PS). condition at level ¢ := i%f ¢, then c is

a critical value of ¢.

Definition 2.1.29: ( Gateaux Derivative)
Let ¢ : U — R where U is an open subset of a Banach space E. The functional ¢ has

a Gateaux derivative ¢’ € E* at u € U if, for every h € E,

dnd = (6 (), by = lim 2L0F ) = 6(w)

t—0 t

the Gateaux derivative at u is denoted by ¢'(u). The functional ¢ has a Frechet derivative

feFE atueUif
(& (u), ) = Tim —(¢(u+ h) — B(u))

the functional ¢ € C*(U, R) if the Frechet derivative of ¢ exists and is continuous on U.

Example 2.1.30:

1 1
Let J : H'(Q) — R be a functional defined by J = / Eui + §u2dx.
Q
Then the Gateaux derivative
Tu? + euh + eughy + 12 + Leh? — Lu2 — Lu?] da

1,2
) = lim o2

e—0 €

Therefore dy,J = /(uh + uzhy)dz
Q

Definition 2.1.31:
A critical, or stationary point of Jy, : E — R is a z € E such that J, is differentiable
at z and DJy(z) = 0. A critical level of J is a number ¢ € R such that there exists a

critical points z € F with Jy(z) = c.
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2.2 Some Basic Lemmas

This section contains basic lemmas and theorems without proof that are needed later in

the research. For the proof of these theorems and lemmas see [22],[18].

Theorem 2.2.1: (Lebesgue Dominated Convergence)

Suppose f, : R — R* are lebesgue measurable function such that f(z) = lim f,(x)
n—o0

exist, assume there exist integrable g : R — [0, 00) with |f,, ()| < g(z),Vx € R, then f

is integrable as is f, for each n and

lim [ fodu = / fdu
R R

n—oo
Definition 2.2.2: (Holder Inequality)
Let % + % =1, p,qg € [1,00). If u e LP(Q2) and v € L), then uv € L'(Q2) and it holdes

that

lwvll L) < llulle@llvllze)-

Remark 2.2.3:
Let us recall that J € C(E,R) is coercive if | l‘i‘m J(u) = oo.
Uul|—o0

Remark 2.2.4:
Jy is called weakly lower semi continuous if for every sequence u, — wu one has that
Ja(u) <lim inf Jy(uy).

n—a~oo
Lemma 2.2.5:
Let E be a reflexive Banach space and let J, : E — R be coercive and weakly lower

semi continuous. Then J, is bounded from below on E, and there exists ¢ € R such that

Jr(u) > cfor all u € E.
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Theorem 2.2.6:
Every bounded sequence of finite measures on {2 contains a weakly convergent

subsequence. If u, — w in M () then w,, is bounded and
lufl < liml|u,||

where M (Q2) denote the space of finite measures.

Lemma 2.2.7: (Brezis-Lieb Lemma,1983)

Let © be an open subset of RY and let (u,) C LP(Q),1 < p < co. If
a (uy,) is bounded in LP(Q),

b u, — w almost everywhere on 2, then

i (o}~ Jun — ulf) = [ul},

Theorem 2.2.8: (Fatous lemma)
Let A C R™ be measurable and let f,, be a sequence of nonnegative, measurable functions.

Then

n—-:aoo n—-ao0

fA< lim inf fn(x)) dr < lim inf / fulx)da.
A

Theorem 2.2.9:
let 2 be an open subset of R™ and 1 < p < oo, if v, —> w in LP, there exists a

subsequence w, of v, and g(x) € LP such that, w, — wu a.e on Q and |u| < g(x),

|wn| < g(x).
Theorem 2.2.10: (Ekelands variational principle)

Let X be a Banach space, ¢ € C(X,R) bounded below, v € X and ¢,6 > 0. If

8
o(v) < igl(f¢+e there exists u € X such that ¢(u) < i§f¢+2e, |6 (u)]| < FE, |lu—wvl|| < 26.
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Theorem 2.2.11:

Let ¢ € C'(X,R) be bounded below. If ¢ satisfies condition (PS)c with ¢ = infx ¢ then
every minimizing sequence for ¢ contains a converging subsequence. In particular, there
exists a minimizer for ¢ contains a converging subsequence. In particular, there exists a
minimizer for ¢.

Theorem 2.2.12: (Rellich-Kondrachov Lemma)

On a bounded open set €2, the nonendpoint Sobolev Embeddings
Wi — 1),

where ¢ < n”—i, = p* is compact.
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2.3 Abstract Setting for Nehari Manifold

In 1960, [2], Nehari has introduced a method which turned out to be very useful in critical
point theory and eventually came to bear his name. He considered a boundary value
problem for a certain nonlinear second order ordinary differential equation in an interval
(a,b) and showed that it has a nontrivial solution which may be obtained by constrained
minimization of the Euler-Lagrange functional corresponding to the problem. In 1961,
he proved the existence of infinitely many solution and, in 1963 he solved the case where
Q) = R3. To describe Neharis method, let E be real Banach space and ¢ € C'(E,R) a
functional. The Frechet derivative of ¢ at u, ¢'(u) is an element of the dual space E*,
and we shall denote ¢'(u) evaluated at v € E by (¢'(u),v). Suppose u # 0 is a critical

point of ¢, i.e. ¢'(u) = 0. Then necessarily u is contained in the set

N = {u e E\{0} : (¢ (u),u) = 0}. (2.9)

So N is a natural constraint for the problem of finding nontrivial (i.e.,# 0) critical points

of ¢. N is called the Nehari manifold though in general it may not be a manifold. Set

¢ := inf ¢(u). (2.10)

ueN
Under appropriate conditions on ¢ one hopes that c is attained at some uy € N and that
ug is a critical point. Assume without loss of generality that ¢(0) = 0. Assume that for
each w € S1(0) :={w € E : ||w|| = 1} the function a,(s) = ¢(sw) attains a unique max-
imum s,, in (0, 00) such that a,,(s) > 0 whenever 0 < s < s, a,,(s) < 0 whenever s > s,
and s, > d for some ¢ > 0 independent of w € S1(0). Then . (s4,) = ¢ (spw)w = 0.
Hence s,,w is the unique point on the ray s — sw, s > 0, which intersects N. Moreover
N is bounded away from 0. It is easy to see that N is closed in E and there exists a radial
bijection between N and S1(0). It is proved that if s,, is bounded on compact subsets of
S1(0), then this bijection is in fact a homeomorphism. Clearly, ¢ in (2.10), if attained,
is positive. Further it is shown that uy € N is a critical point whenever ¢(ug) = c.
Note that since s — () is increasing for all w € 51(0) and 0 < s < dy, is a local
minimum and hence a critical point of ¢. Since u is a solution to the equation ¢ (u) = 0
which has minimal energy ¢ in the set of all nontrivial solutions, we shall call it a ground
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state. Suppose in addition to the assumptions already made that E is a Hilbert space
and ¢ € C*(E,R). Then

a, (50) = ¢ (spw)(w,w) = 5,26 (u)(u,u) <0, where u = s,w € N. If ¢" (u)(u,u) < 0

for all u € N, then setting G(u) = ¢ (u)u, then

G (wu=¢" (u)(u,u) + ¢ (Wu=¢" (u)(u,u) <0,u e N

Since N = {u € E\{0} : G(u) = 0}, it follows from the implicit function theorem that N
is a C'—manifold of codimension 1 and E = T,(N) & Ru for each u € N. Hence in this
case it is easily seen that any v € N with ¢(u) = ¢ (i.e., any minimizer of ¢|y) satisfes
¢ (u) = 0. More generally, a point u € E is a nonzero critical point of ¢ if and only if
u € N and u is critical for the restriction of ¢ to N. In view of this property, one may
apply critical point theory on the manifold N in order to find critical points of ¢. Our
goal in this research is to present a method of Nehari manifold and to introduce it can
be applied to solve elleptic p-laplacian equation in problem (1). In [2] the researchers
from them A.Ambrosetti, A.Malchiodi, and Nehari introduced several examples where it
can be applied in order to show the existence of solutions to nonlinear boundary value

problems.
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Chapter 3

Positive Solution of p-Laplacian Equation with Dirichlet

Boundary Conditions

Problems involving the p—Laplacian arise from many branches of pure mathematics as in
the theory of quasiregular and quasiconformal mapping as well as from various problems
in mathematical physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids
correspond to p € (1,2) while dilatant fluids correspond to p > 2. The case p = 2
expresses Newtonian fluids [7]. In this chapter we are concerned with the existence and

multiplicity of positive solutions to the nonlinear elliptic problem:

_ 10F(z,u) —2
—Ayju = ST u + Xa(z) | w [T u, in ) (3.1)
u = 0, on 0f2

where A, denotes the p—Laplacian operator defined by A, = div(|VulP~2Vu); p > 2, Q
is abounded domain of R",(n > 3),1 < ¢ <p <o < p*, (p* = n”Tpp if p<n,p* = o0 if
p>n), A€ R\ {0}, F € C'Y(Q x R,R) is positively homogeneous of degree o, that is,
F(z,tu) = t°F(z,u) hold for all (z,u) € Q x R and a(x) :  — R are smooth functions
which change sign in Q. Problem (3.1) is posed in the frame work of the Sobolev space
Wy P(€) accompained with the standard norm ||u|| = (f, |Vu]pda:)%. In this reasearch,

under the following conditions are assumed to be hold, we prove that using Nehari method

equation (3.1) has two positive solutions.

1) a(z) € C(Q) with ||a||e = 1,a™ = maz(+a,0) 20, a~ = max(—a,0) ¥ 0.
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2) F: QxR — Risa C' function such that F(z,tu) = t°F(z,u) (t > 0),Vz € Q,u € R.
3) F(z,0) = % =0, F*(z,u) = max(+F(x,u),0) #Z 0, and
F~(z,u) = max(—F(x,u),0) #Z 0 Yu # 0.

The details of this chapter are covered mainly in reference [9]. The function F' satisfies

the following properties.

Property 1: u aFé()z’“) =oF(x,u).

Proof. By Assumption (2), F(x,tu) = t° F(z,u). Setting z = tu, and applying the
OF OF 0z OF(x,tu) O0F(x,z)

cah;in rtule we getag—t 5 o oraF att =7, u. Att =1,z =wu and
OF (x,tu) 1= (z u)u Since OF (z, tu) = o t°"'F(x,u), we obtain

OF (1,1 o i

% li=1= o F'(x,u). Therefore u # =0 F(z,u).

Property 2: |F(z,u)| < K|u|”, for some positive constant K.

OF (x,u)
F
Proof. From the first property we have u (z,u) = oF(z,u), du  _ 7
ou F(z,u) u
If we integrate with respect to u we get
In|F(z,u)] = oln|u|+ k(x)
= Injul” + k(z)

or |F(z,u)| = ¢"™|ul”. By continuity of ¢*® on Q then there exist &K > 0 such that

e"® < K. Hence |F(z,u)| < Ku|”, K > 0.

In this chapter, firstly we study the existence and multiplicity of nontrivial solutions
of the p—laplacian equation with zero Dirichlet boundary conditions. In Section One we
discuss the relation between the weak solution of equation (3.1) and variational form, we
also present some technical lemmas which are useful in the proof of main result

Theorem (3.2.1). Finally in Section Two we introduce the proof of the Theorem (3.2.1).
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3.1 Variational Form of Differential Equations

The modern study is often based on the weak form of a partial differential equation,
as too are various numerical solution techniques for finding approximate solutions. The
weak form of a partial differential equation is empowering for mathematical analysis as
tools from functional analysis can be leveraged. Weak formulations are often referred to
as variational formulations, but they can still be formulated for problems that cannot be
phrased as a minimization problem. Classical transport equations are a typical example
of a case that cannot be posed as a minimization problem. The derivation of the weak

form of a differential equation follows a standard process:

1. Multiply the differential equation by an arbitrary weight function and integrate over

the domain.
2. Apply integration by parts, if possible, and insert Dirichlet boundary condition.

The weak form of an equation does not generally make an equation easier to solve

analytically (it may make it harder), but is usually a more suitable form for mathematical
analysis (allowing us to say things about the properties of the equation without knowing
the solution) and for numerical solution methods. To derive the weak form of Equation
(3.1), we first multiply both sides of equation (3.1) by a weight function ¢ and integrate

over the domain {2

/ —Apyu pdr = / aFéa; ) pdx — /\/ﬂa|u|q_2u ¢dx, (3.2)

we require that ¢ = 0 on parts of the boundary. Integrating the left side by parts, we get
OF
/ V| 2VuVpdr — —/ %qsdx - /a|u\q—2u¢dx —0,V6ecE  (3.3)
0 Ja Q

where E = W, solving equation (3.1) now involves finding u that satisfies the Dirichlet
boundary conditions such that the above equation holds for all functions ¢ in E. Problem
(3.1) has a variational structure equivalent to the weak form (3.3).

The variational form of a differential equation is an alternative way of expressing the same
problem. The variational view, and the associated machinery of variational methods and
functional analysis are at the heart of the modern study of partial differential equations
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and provide the basis for a variety of numerical solution procedures, like the Finite
Element Method. We will see that classical variational methods involve the minimization
of a functional, although many of the concepts of variational methods extend beyond this
classical perspective, say Jy that depends on the function u(z). We will usually want
to find the function u that minimizes .J, (sometimes we will be satisfied with stationary
points). The problem is stated as

min Jx(w)

The solution w is sometimes referred to as a minimizer of Jy. In general, some constraints
will be applied to u. To find u that minimizes J,, we take the directional derivative of

Jy and set it equal to zero,

DIN)(6) = T+ e6)|eco = 0.

Recall that the directional derivative is the change in J, if we move a small distance
from w in the direction of ¢ (hence the name variational methods). For simple problems,
we can apply partial differentiation directly without going through the formalities of the
directional derivative. The precise definition of J) depends on the problem considered.
The problem (3.1) has a variational structure. To explain the relation of problem (3.1)
to variational problems we define the functional (energy functional) .Jy : Wy* — R by
e 1

_/QF(I7u)dx—2/a(I)|u|qu (3.4)

p g Q

J)\(u)

Then we consider the following problem. Find u € W, Psuch that

For such problems a necessary condition for optimality is the first variation ¢.J(u, ¢) must
d

vanish for arbitrarily admissible functions ¢. It is defined by 6Jy(u, ¢) = d—J Aut€ @) e=o,
€

such that 6Jy(u, ®) = DJx(u)¢. For the functional Jy(u) defined in (3.4) we have

I(u+ep) = M—%/QF(x,u—i—ecb)d:c—2/{2a(a:)\u+e¢|qu
= ]%/Q]V(u—l—@)\pdx—%/S]F(x,u—i-égﬁ)dx—g/Qa(x)|u+6¢\qu.
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d
Differentiate with respect to € we end with d_J)‘(u + €0)|e=0 =
€

OF (v,u + €p)

1 1
— / p|Vu + eV)|P2VuVodr — —/
DJa Q ou

g

_é q—2
b - /Q 4a(@) | + gl Pudds

Hence, the first variation reads

d\(u,9) = %JA@L + €0)]e=0

- / VP2V gde — / OF @) / a(@)|u|"2ugdz.
Q Q Q

o ou

Therefore the condition d.J)(u, ¢) = 0 necessary for optimality in (3.5) is equivalent to
the variational form coresponding to Equation (3.1). Hence the nontrivial weak solutions
are equivalent to the nonzero critical (stationary) points of the functional Jy(u).

In order to prove that the functional Jy(u) is C! we need the following lemma.

Lemma 3.1.1:

Assume that F' € C'(Q x R, R) is positively homogenous of degree o, then
oF

Em € C(Q x R, R) is positively homogenous of degree o — 1.
U

Proof. By assumption F(x,tu) = t°F(z,u). If we differentiate with respect to u

we obtain

OF (z, tu)t 4o OF (z,u)

ou ou

or

OF (v,tu) jo-1 OF (x,u)

ou ou
oF . . . 10
Hence e is positively homogenous of degree o — 1. Since F' € C* (€2 x R, R), then
U
F _
—g is a real valued continous function on 2 x R.
U
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Remark 3.1.2:

OF (z,u)
ou

There exists a positive constant K such that < Klul”™",

OF (x,tu)

u

Proof. Using the result of the last Lemma and differentiating the function

with respect to t then setting t = 1 we get

O*F(x,u) OF (x,u)
Yo T (0—1) Ju
or we write this as
O?F(x,u)
o _o-1
OF (z,u)  u
ou
Integrate with respect to u to get
oF
In % = (0 —1) Injul + k(x)

taking the exponential to both sides leads to % = F@|y|771 ) again

by continuity of €*® on  then there exist K > 0 such that ¢*® < K.

Hence % < Klul”, K>0.

Remark 3.1.3:

Let S; denote the best Sobolev constant for the operators Wy () — L'(Q), given by
S = inf M, where 1 < [ < p*. Then

wewdr@\(oy ([, |ulldz)T

/Q ul'dz < 8,7 ||ull' Vu € WEP(Q).

Jo [VulPdz
(Jo ul'dz)t

;l
. Therefore / lu'dr < S;7 ||ul)’, where ||ul| = (/ |Vu|pdx)%.
Q Q

Proof. By definition of infimum we have S; < or we write

|~

S% < (fQ |VulPdr)
L= Jo, ultdx

28



Lemma 3.1.4:
Let p,r € [1,00) and f € C(92 x R, R) such that

|flz,u)] < e(1+ |ul?),Vz € Q,Yu € R. (3.6)

Then for every u € LP(2), one has f(.,u) € L"(€2), and the operator A : LP(2) — L"(Q2)
defined by A(u)(x) = f(z,u(x)) is continuous.

Proof.
1) To prove that f(.,u) € L"(2) we need to show that Va € Q,/ |f(z,u)|["dx < co. Let
Q

u e LP(). Since |f(z,u)| < ¢(1+ |u|7) leads to
[fw)” < (1 Jul )

It follows from the inequality ||f + g|[2 < 2°~'(|| |2 + [|g||2), where f,g € LP that

/|cf<1+\u|‘r’>r| - c"/|1+ru|‘?|r
Q Q
< 2t (/ \1]’”dm+/ |u]1r)’”dx>
(9] 0
= 2t (/(1 + |u|p)dx> < 0.
Q

Therfore ¢ (1 + |u|*)" € L*(), thus Jo If(z,w)|"de < oo and f(.,u) € L"(9).

2) To show that A(u)(z) = f(z,u(zx)) is continuous we need to prove that if u,, — u in
LP then A(u,) — A(u) in L. Assume that u,, — w in LP. By Theorem (2.2.9)
there exists a function g(x) in L? and a subsequence w,, of u, such that w, — wu a.e in

Q and |u| < g(z), |w,| < g(x) on Q. Then

|f(x7wn) - f(l’,u)lr < (|f(x,wn)| + |f<x’u)|)r

< (et wal?) + e+ ufh))
< (21 +l9@IH))
< 2L+ |yl

Analogus to the proof of part one we get 2"¢"(1 + |g(z )|$) € L'(Q). It follows from the

Dominated Convergence Theorem that lim / |f(z,w,) — f(z,u)["dx = 0 which leads

n—oo



T

( lim / |f(z,w,) — f(z u)|”dx) = 0. Hence ||A(w,) — A(u)||;, — 0 as n — o0

and A(w,) — A(u) in L. Thus A(u) is continuous.

Remark 3.1.5:

The Gateaux derivative of the functional Jy(u) is given by

(T (), Y = i 20 ) = Ta(w)

t—0 t

Y

and if J has a continuous Gateaux derivative on E then J) € C'(E,R).

Lemma 3.1.6:

OF (x,u)
ou

Jy € CY(E,R), and

OF (x,u)

5 < Klu|”"'. Then the functional
u

Suppose that € C(Q x R,R) and ‘

(Jy(u), u) = ||ul|P — /QF(x,u)dx — )\/Qa(x) | u |? dx. (3.7)

Proof. We define three functionals I, I, and I3 as follows.

l/QF(JE,u)d:C and I3(u) = 2/§2a(:€)|u!qdﬂi-

g

1
- / Valde, T(u) =

Claim 1: I;(u) € C'(E,R) and for any u,v € E, (I;(u),v) = [, |Vu[f~*Vv.Vu. For
1

a fixed x € Q let us consider ¢ : R" — R defined by ¢(§) = 5]5\3’. Obviously

¢ € CH(R™ R) and V(&) = |£[P72¢. Thus, for all £,6 € R™ we have

D&+ t0) — p(&)

. _ p—2
lim t = lep¢.0.
As a cosequence, for u,v € F we have
LVu + tVolP — L Vulp
lim £ £ = |Vul|~2Vu.Vu (3.8)

t—0 t
By the mean value theorem, there exists k € R with 0 < |k| < |¢| such that
for each t € R with 0 < |t] < 1,

S| Vu+ Vol — | VulP
t

= | [Vu+ ktVolP(Vu + kt Vo)V |
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< (|Vu| + [Vo|)P~ |Vl (3.9)

By Holder Inequality we have

L!<|Vu|+|vU|>p‘1|ledx! < | UVl + Vo) | 1Vl

ol ( / (IVul + |Vv|>pdx>p

< Wl 27 ([ [vur s 1vopya)”
Q

where p+p = pp . Hence (|Vu| + |Vv])’"" Vo] € LY(Q) due to u,v € E, combining

IN

this with (3.8) and (3.9) and applying the Dominated Convergence Theorem, we obtain

1 1
i | Vu+ Vol — [ VulP

t—0 Jq t

dr = / |VulP?Vu.Vodz.
Q
It means that [; is Gateaux differentiable and for u € F,
(I (u),u) :/|Vu|p_2Vu.Vuda::/|Vu|pda:: [|ul]|?.
Q Q

Next, we prove that Ii . E — E™ is continuous. To get this aim we take a sequence

u, € F such that u,, — w in £ as n — co. We have
lim [ |Vu, — VulPdx = 0.
n—o0 Q
Thus, up to a subsequence we have
Vu, — Vua.ein Qasn — 0o (3.10)
and for some h € L'(Q).
|Vu, — Vul’ < h(x)a.ex e (3.11)

Since

Vu,|P < (|Vu| + |Vu, — Vul)?

< 27Y(|Vul + |Vu, — VulP).
It follows from (3.11) that

(Vu, [P < 2071 (|VulP + h(z)). (3.12)
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For any u € E with ||u|| < 1 and by Holder Inequality we have

/

(T () — T(w),u)| = ’ / (V-2 — [VulP~2Ve) Vuda
Q

IN

[ 11V, = Va2Vl ||, [ [Vl |l

IN

|| [VenlP >V, — [VulP~Vul ||, -

Hence

I3(u) = 13 ()

S V2V, = Va2V | ], (3.13)

First, we observe that

/ || VP>V, — [VulP?Vu | |7 do = / | VU, P2V, — [VufP >V |7 de.
Q Q

It follows from (3.10) that

} |V, P2 Vu, — |[Vul[P~?Vu !p — Daex e
and from (3.12) that
| VU P2V, — [VuP*Vu ‘p/ < 27 H|Vu,|P + |[Vul?)
< |Vl + h(z)).

Noting that 2p/+p_1(|Vu|p + h(x)) € L*(Q) and applying the Dominated Convergence

Theorem we have
/ || VPV, — [Vul?Vu | |pl dx — 0, as n — 0.
Q
Therefore
|| |Vun P2V, — [VulP2Vu | ||y — 0, as n — oo. (3.14)

Combining this and (3.13) we have

!

17 () = I3 (u)

g — 0, asn — oo. (3.15)

Thus I, : E — E* is continuous and I, € C'(E,R).

Claim 2: I, € CY(E,R) and for any u € E , (I,(u),u) = / F(x,u)dx,
Q
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where F(z,u) = / f(z,s)ds. Similar to proof Iy, let u,h € E. Given z € Q and
0

0 < |t| < 1, by the mean value theorem, there exist A € (0,1) such that 0 < [A\| < |t] < 1,

LP(v,u+th) — LF(x,u) 1 0F (z,u+ Ah)
: . _|* hx)
t o ou
1|0F(z,u+ Ah)
|h(z
o ou
|§F(z, u+th) — %F(x,u)|

1
By Remark (3.1.2) we obtain =K (|u| + |h))"|A).

]
Also by Holder Inequality we have

/QI(IUIJthI)"_1 (h(@)lda] < Nl + 1RD7Hlzo | 1R] ]z

< fv(lﬂﬂ”HMﬂm)lmH

1
where v = Ll Hence ~K(|u| + |Rr])? ' |h(z)| € L' since u,h € E. Tt follows from
o

the Dominated Convergence Theorem that

hdz.

lim
t—0 Q

2F(z,u+th) — LF(z,u)dz / 1 0F(x,u)
t N Q0 ou

/ 10F
Thus (I5(u), u) = / —%u)udx. By applying Property (1) we have
Q00 Uu

’

(I (), ) = /Q F(z, u)dz. (3.16)

To prove the Continuity of the Gateax derivative, we assume that u,, — u in E.
By Sobolev Embedding Theorem, u,, — w in LP. It follows from Lemma (3.1.4) that

f(x,u,) — f(z,u) in L™ where r = Ll For any v € E with ||u]| < 1 and by the
p JE—
Holder Inequality we get

!

Ty = L@ = | [ (7o) = S w)hda

< /|fxun— (x,u)| |hldz
< —IIf(iv un) = f (@, u)| ([ Al e

< gu@mn—f@mmn
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and so

1 (wa) = ()| 5+ < 1 f (2, un) = fz,u0)|;, — 0, as n — oo (3.17)

Thus I, : E — E* is continuous and I, € C'(E,R).

Claim 3 : I3 € C'(E,R) and for any u € E, (I;(u),u) = X [,a(z)|ul'dz. Again let
u,h € E then u,h € LP. Given x € 2 and 0 < [t| < 1 by the mean value theorem, there

exists ¢ € (0,1) such that 0 < |¢| < |t| < 1,

da()|u + thl? — 2a(a)]ulf

n = Ma(x) |u+ cth|”|h(z)|

IN

Aa(x)([u| + [el[t]|A])*~" A ()]

IN

Ma(@)lloo (lul + A1) [h(x)].

Alul + [R1)* |R(2)].

The Holder Inequality implies that A(|u| 4+ |h|)?|h(z)| € L*(Q). Tt follows from
the Dominated Convergence Theorem that

(I3(u),h) = )\/Qa(x)|u|q_2uhdx.

Thus
(T (), ) = A / o) ul dz. (3.18)

Q

Now we want to prove that I} is continuous on E. To this end let us define

f(,u) = |u|"%u. Assume that u,, — u in LY.
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By Lemma (3.1.4), f(.,u,) — f(,,v) in L" when r = _L;. For any h € E with ||h[| <1

and by Holder Inequality we obtain

) = 0] = |3 [ oo, afu)hde
Q
< |/\|||a(1')||oo/9| [tn] "1t — Jul*u | [R|dz
S Y N T o 0 P 11 P
< A ] TP, — Jul P I

Hence |[I3(un) — Iz(u)lle < (A (un) = f(u)llr — 0, s0 [[I3(un) — Iz(u)||p+ — 0.
Thus I} : E — E* is continous and I3 € C'(E, R).
So the functional Jy(u) = I (u) — Iy(u) — I3(u) belongs C*(E,R) . Further we have

(W), u) = (L(w),uw) = (I(u), u) = (I3(u), )

||u||p—/QF(x,u)dx—/\/Qa(x)|u|qu.

Next we prove that the second Gateaux derivative is given by

(Jy (w)u, u) :p/Q |VulPdx — U/QF(x,u)d:B — /\q/Qa(:v)|u|qu.

To obtain this formula we define the functionals 11 (u) = / |Vul|Pdz, o(u) = / F(x,u)dx
Q Q

and 3(u) = )\/ﬂa(x)|u]qu. Now

, d
(V1(u),h) = &?ﬁl(u—l—eh)]e:o
= i/ |\Vu + eVh|[Pdz|—o,
d€ Q

= /p|Vu|p_2Vu.Vhdx.
Q
Thus (¢ (u),u) = [, p|VulP. Next

Walu)h) = alu+ e

d
= = QF(:E,u+eh)dx

OF
= —hdz.
/Q 90 dx
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/ —udxr = a/ x,u) by Property (1). Finally

(Vy(u),h) = &%&(u—l—eh)]e:o

d
- E)\/Qa(av)m—i-eh|qd£lU!€=0>

= )xq/a(a:)|u|q_2u.hdx.
Q
Thus (¢y(u), u) = )\q/ a(x)|u|?dz. Hence
0

(I (uwyuu) = (W (u),u) = (y(u),u) = (s(u), u)
= pHqu—a/QF(:U,u)dx—)\q/Qa(x)\ulqu

- p</Q F(x,u)dx+A/Qa<x)|u|qczx) —J/QF(JJ,u)dx—)\q/Qa(a:)|u|qdas.

<J§(u)u, u) = Ap—q) /Q a(x)|u|?dx — (o — p) /Q F(z,u)dz (3.19)

Therfore

also
(Rwua) = plull ~o [ Faupds =g [ a@)apids
Q Q

= plluf” ~o (Hul!p— v a(m)\u|qu) ~a [ ala)fuftds

Thus
(J5 (u)u, u) = (o — Q)/Qa(ﬂfﬂulqu — (o = p)l[ull’ (3.20)
) = plul? =0 [ Pleuds =g [ a@lulda
= pllul|f - U/QF(x,u)dx —q (Hqu — /QF(:c,u)da:> :
Hence

(T (wuw) = (p— Qllull — (o — q) / F(z, u)dz (3.21)
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Definition 3.1.7: ( Nehari Manifold )
Assume that Jy(u) € C'(E,R) such that J,(0) = 0. A necessary condition for u € F
to be a critical point of Jy(u) is that (Jy(u),u) = 0. This condition defines the Nehari

mainfold
Ny ={u € E: {J(u),u) =0,u # 0}

where (,) denote the usual duality between E and E*. A critical point u # 0 of J is a
ground state or a least energy critical point if Jy(u) = iI]\llf Jx. As Jy(u) is not bounded
below on E = Wy, it is useful to consider the functional on the Nehari manifold. Thus

u € N, if and only if

|| ul|P — /QF(:)s,u)d:E - )\/Qa(x) |u|?der=0 (3.22)

Note that N, contains every nonzero solution of problem (3.1). Thus it is natural to split
N, into three parts corresponding to local minima, local maxima and points of inflection.

For this, we set
Ny = f{ue Ny:(dy(u),u) >0},
Ny = {u€Ny:(g)(u),u) =0},
Ny = {u€ Ny:{(¢\(u),u) <0},
where ¢x(u) = (Jy(u),u). To state our main result, we now present some important

properties of Ny, NY and N, . The following lemma shows that the minimizers on Ny

are usually critical points for J,.
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Lemma 3.1.8:
Assume that wg is a local minimizer for Jy(u) on Ny and that ug is not belonging to Ny,

then J,(ug) = 0 in E* (the dual space of the Sobolev space E).

Proof. Suppose that ug is a local minimum for Jy(u) on Ny, then ug is a solution

of the optimization problem
minimize Jy(u) subject to (Jy(u),u) = 0.
Hence by Lagrange multiplier there exist € R such that J; (ug) = g ¢y (uo) in E*. Thus,

<J;(u0),uo> = M<¢/A(Uo),uo>-
Since 1y € Ny we have 0 = (J, (ug), o) = p(¢ (ug), uo). But ug does not belong to N?,
then (¢ (ug), uo) # 0 therefore pn = 0 and (J; (u), u) = 0. Hence we get J,(ug) = 0.

Thus uyg is a critical point of Jy.

Lemma 3.1.9:

One has the following :

i) iquN;r,then)\/a(x)|u|qd:1:>0;
Q

(ii) if u € Ny, then / F(z,u)dx > 0,
Q

(iii) if u € N9, then A /

a(z) | u|? dx>0and/F(x,u)dx>0.
Q

Q
Proof.

(i) uw € Ny iff ||ul/P — / F(x,u)dx — )\/ a(x) | w|?dz = 0. Since u € Ny,
Q Q
then (¢ (u),u) > 0. Now we consider the following two cases :

Case (1): If / F(z,u)dx < 0, we have
Q

)\/ a(x) | u|?de = |jul]P — / F(z,u)dz > 0.
Q Q

Thus )\/a(:c) | u |? dz > 0.
Q

Case (2): If / F(z,u)dz > 0. Since u € N\ we have
Q
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/\(p—q)/ﬂa(a:)|u|qdm—(a—p)/ﬂF(m,u)da:>0,
)\(p—q)/Qa(x)|u|q dx > (a—p)/ﬂF(a:,u)dx, or
A x,u)dx .
)\/Qa(x)|u| d >p—q QF(, Ydx >0

Thus )\/a(x) | w|? dx > 0.
0

(i) uw € N, iff Hqu—/F(x,u)dx—)\/a(x)]u\quzo. Ifue N,,
Q Q

then (¢ (u),u) < 0. Now we consider the following two cases :

Case (1): If )\/ a(x) | u |? de = 0. Since u € N, we have
0

lull? = / F(z, u)dz, but [[ul]? > 0.
Q

Hence / F(z,u)dx > 0.
Q

Case (2): If )\/ a(z) | w|? dx # 0. Since u € Ny by (3.21), we have
Q

(p—|lu||P — (¢ — q) /Q F(z,u)dz <0, or

/F(x,u)da: > p_q||u||p > 0,
Q g—q

which implies / F(z,u)dz > 0.
Q

(iii) w € Ny iff |Jul|P — / F(z,u)dx — )\/ a(x) |u|?dr =0 . Since u € NY,
0 0
then (¢ (u),u) = 0. Now by (3.20), we have

Ao — ) / a(z) | u|' dz = (o — p)||ul]”, or

)\/a(x)]u|q dr = J_p||u||p>0.
Q o—4q

Thus )\/ a(x) | uw|? dz > 0, and by (3.21), we get
Q
o=l (o~ ) | Flaulde =0, f, Fau)de = B2l > 0.
Q

Therefore / F(z,u)dx > 0.
Q
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Lemma 3.1.10:
pP—q

IF 0 < [A| < Ao, where Ao = 2 (ﬂ) s (g&i’:)a—p then N? = ¢
p\o—q (0 —q)K

Proof. Suppose otherwise that 0 <| A |< A such that Ny # ¢. Then for u € NY,

we have
0= (G)(u)u) = Ao —q) / a(2)|ul1dz — (o — p)|lul]? (3.23)
= p-qlul - (o —q) / Pz, u)dz. (3.24)

Using Property (2) and by Remark (3.1.3), we obtain

/Q F(z,w)dz < ’ /Q F(z,u)dx

Hence, it follows from (3.24) that

—-—g
P

S/IF(:c,u)\dng/]u\"dwﬁKSg |||
Q Q

0g—4q
p—q

(0 —q)S7 %_,,
|IUIIZ((U_q)K> : (3.25)

On the other hand, from Holder Inequality, Condition (1), Equation (3.23) and by Remark

[ull” =

/F(m,u)dm < 779Ks7 |lule,
Q pP—q

then

(3.1.3) we have

No — _
uj = 22 =9) / a@)ufide < N T2 lafl / e,
o Q Q

-D

oc—q
Al 5" [ull*.

IA

So

1

o—q %q p—q
||u||§(|A| - sq) (3.26)
g—p

Combining (3.25) and (3.26), we have |A| > )¢ a contradiction. Therefore Ny = ¢ for

We remark that by Lemma (3.1.10), for 0 < |A| < Ag, Ny = N U Ny and define

0y = inf Jy(u), 0F = inf Jy(u), 05 = inf Jy(u). (3.27)

u€EN ueN u€Ny
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Then, we have the following.

Lemma 3.1.11:
If 0 < |A| < Ao, then 6y < 6 < 0,6y > dy for some dy > 0 depending on p, ¢, 0, k, \, S,
and S,.

Proof. Let u € Ny. Then from (3.21) we have

(p— )ull” = (o — q) /Q F(z, w)dz > 0. Thus

p_q\|u|yp>/F(x,u>dx. (3.28)
0—4q Q
So
1 1 A
I(u) = - up——/Fx,udx——/ax ul?dx
A(w) H!H 5/, (z,u) . Q()\

1 1 1
= —up——/F:c,udx——(up—/Fx,udx>
pHH - Q( ) . [ g (z,u)

= uHqu—i-g_q/F(x,u)dx.
pq 0q Ja

By (3.28) we have

q—p P—q
A(u) < [[ull” + ]|,
P4 oq

q—2p p—q
< <—+ )nunp,

pq oq

< _(p — Q)<U _p> Hqu <0

opq

Hence Jy(u) < 0, since Nf” C N,, it follows that inf Jy(u) < inf Jy(u), so by the

uENH u€ENY
definition of 6, and 6} we obtain 6, < 6 < 0.

Now, let u € N, , then from (3.21) we have

(p— @)ull” — (o — q) / Flo,u)dz < 0.
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Using Property (2) and by Remark (3.1.3) we have

p_q||u||p < ‘/ F(z,u)dz| < / |F(z,u)|dx < K/ |ul?dx < KS?HuH". Therefore
0—4q Q Q Q

lul? < 22K S, |Jull’, or we write
p—q

1

P=4q4 5\ _
52 Ny 2
Hu|‘><(0—q)KS) Vu € Ny (3.29)

Thus

7= q). Hence
oq

o—p 1o —q o—p _ -

> P _ P q_ q P—q _ »
) 2 TPl = 7 Tt = e (C Pl - Al
p—q 2\ (o-p( p—q 2\ Ho—gq
T(u) > (=L gz SE) = NS .
> (G w ) (op (oiws) s aq>

Therefore Jy(u) > dy for some dy > 0, where

pbp—q

p—aq 2\7F [o-p( p—q 2\ Jo—q
dy = | —=57 Ss — [N ]Sg” :
' ((O—Q)K ) ( op ((U—q)K ) R )

In order to prove that the functional J) has a minimum, we would need to know that J,
is bounded below. Of course, this is necessary but not enough to guarantee the existence
of a minimizer for Jy. In the next lemma we prove that J, is bounded below and grows

rapidly ”coercive” at the ”extremes” of N,.
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Lemma 3.1.12:

The energy functional J is coercive and bounded below on Ny

Proof. If u € N, then ||ul|? — / F(z,u)dx — )\/ a(z)|ulfdz =0
Q Q

1 1 A
B = Sl - / Fou)de - / a(@)|ul'dz

nw) = Sl =2 (e =3 [ a@laptae) =2 [ alulras

o

= TP 2T [ o) |uj? da
ap qo Q

by Remark (3.1.3) and Condition (1) we obtain

I > —<” x>||oo/|u|qu
> m/m\qu
Y
> (T Sl

Since 1 < ¢ < p, Jy(u) — o0 as ||u|| — oo. Therefore Jy(u) is coercive and bounded
below on N,.
Definition 3.1.13:

For uw € E with / F(z,u) > 0 define T to be
Q

J— P o'ifp

= (( (p) fq)ﬁ”(u” ) > > (. Then the following result holds.
0—4q) )t (z,u)dx

Lemma 3.1.14:

For each u € E with / F(z,u)dx > 0 one has the following:
Q

(i) if )\/ a(z)|u|’dz < 0, then there exists a unique ¢~ > T such that
Q

t"u e Ny and Jy(t u) = sup Jy(tu)
>0

(ii) if )\/ a(z)ul?dz > 0, then there are unique 0 < t* < T < ¢t~ such that
Q

(tu,tTu) € Ny x Ny and Jy(t u) = sup Jy(tu); Jy(ttu) = inf J(tu).

t>0 0<t<T
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Proof. We fix u € E with / F(z,u)dz > 0 and we define the maps
Q

my(t) : RS — R by

my(t) = P~ ul]P — t”_q/ F(z,u)dx for t > 0. (3.30)
Q

(J\(tu), (tu)) = Htqu—/QF(:zj,tu)da:—)\/Qa(x)]tulqu

@ lelP = 07 [ Flaude =201 [ alulrda

Q

Q

" <(t)pq||u||p—(t)"q/ﬂF(a:,u)dx—A/a(x)\uPd:c).

Ok <mu(t) —/\/Qa(ac)|u|qu> — 0 m(f) = /\/Qa(x)\u|qu.

Clearly for t > 0,tu € Ny iff ¢ is a solution of m,(t) = )\/ a(x)|u|?dz. Now
Q

wl(8) = (p — Q)1 ullP — (o — g)to—0"! / Pz, u)dz

(p — @)lull?
(O' . q)taipfﬂ F(z,u)dx

and m/,(t) = 0 implies that (o — ¢)t” 97! / -1 =0

| F(awds [

_ P =
giving t = ((a _(Zq)) fq)]*Uz;H u)dm) . Hence m/,(t) = 0 for
Q )

)] T " ! e (T
T_((a—q)fQF(x,u)dx> , ml(t) >0 for ¢t € (0,T) and m/,(t) < 0 for t € (T, 00).

Then m,(t) has a maximum at ¢ = 7', increasing for ¢t € (0,7") and decreasing for

t € (T,00). Moreover m,(T) =

P—gq o—q

() e (Y [ e

p—a\ (P N (pma\ Tl N /
S L — (=== S L F(z,u)da.
<a—q) (fQF(:B,u)dx i o—q Jo F(z,u)dx Q (v, u)dz
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p—q_o—-o+tp—q_0—4g
g=p o—p o—p

w0 = (50) " (e ) -

_ g\ P 724
(p Q> < ] ) /F(x,u)dx
g—q Jo F(z,u)dx Q

—4q

;_<§:$?1<klgidggiém%mm

Since

— 1, Then

Or we write

b—gq o—q

Q

nmuvzump[(iiz)ap_<i:g)

’p HUHP = [ Fz,u)dx
fQ x,u)dx |||

Since

+1

p—q o

- (220 (2 ()

|MP kF@qu
T [l

pP—q o—q p—q
— Juf | (E=4)7 - (2227 ﬂ 7 JJull?
74 g—4q Jo F(z,u)dx e

S s N
(lul|7)== __( | )ap

(Jo F(l‘,u)d:p)% (Jq F(z,u)dz) =

pm\E pe g Jul
H JT) = T = - Joy F(z, u)dz '
ence my,(T) = [Jul| [(a—q) (a—q) ] <fQ F(z,u)dz
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(i) Suppose that /\/ a(x)|u|?dx < 0, then there is a unique ¢t~ > T such that
Q

my(t7) = /\/Qa(x)|u|qu. Now by (3.21)

G(u) ) = (-t ull — (o —q) / Fe,t™u)dz

= - Pl - (0 - ) / Fz, u)dz

Q

()t (<p -l ~ (o - ey [ F u)dw)

and

(J\(tTuw), (tTu) = Htqu—/QF(x,tu)dx—)\/Qa(a:)Hu\qu

=Pl = () /Q Fla, u)dz — A(t)" / o(2)uldz

Q

= () <(t)pq||u|yp— ()7 /Q Fla,u)dz — \ /Q a(m)|u\qd1’).

_ e <mu(t_) —)\/Qa(x)wqu) ~0.

Thus t"u € Ny, since Jy(tu) > 0 for 0 <t <t u and Ji(tu) < 0 for t >t u.
Then Jy(t u) = sup Jy(tu).

>0
To prove case (ii) we need the following

p—q\r p—q\or T [Jull” G
J(T) = ‘ 1— S (N
= e (2207 = (220 (e

() ) ()

0-¢ P=q_0-p_, , P=4d_0=p
o—-p o—-p o—p oc—q o0—¢q

Since
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/F(a:udx</|qu|d:1:<K/]u\"dx<KSp ||lul|?. Thus
Q

Q9

L s NN (1
or write ————— > —
Jo Fz,u)dz = Klull® Jo F(z,u)dz = K’

P—gq pP—q

ul” N (s2)T o-p\ (-0si\"”
_— > | —= . H T) > a .
(fQ F(z,u)dz “\K ence my(T) 2 ul o—q (0 —q)K

(ii) Suppose that )\/ a(x)|ul?dz > 0, then by Condition (1), Remark (3.1.3) and the
0

fact that |\| < A9, we obtain

ma(0) = 0 < )\/Qa(x)|u|qu < |)\|||a(x)\|oo/g|u|qu < |)\|/Q|u\‘1da: < 2o 57 lull? <
m,(T). Since m,(T) > )\/ a(x)|u|?dz, then the equation m,(t) = )\/ a(x)|u|?dx
has exactly two solution t+Qand t~ such that 0 < t* < T <t )

= A [y a(@)|ul%de = m,(t7) and m(t7) < 0 < m}(t"). Using similar argu-
ment to case (i) we get (t7u,t"u) € Ny x Ny, and Jy(tTu) < Jy(tu) < Jy(t"w) for all
t e [tT,t7] and Jy(tTu) < Jy(tu) for all ¢ € [0,¢T]. Therefore Jy(t u) = sup Jy(tu) and

t>0

+ _ .
In(tTu) = o%?ng Jx(tu).

Definition 3.1.15:

For each u € E with )\/ a(z)|ul%dz > 0 define T > 0
0

~ q L
tobeT = ( ( )\‘[Q o)l d$> )

o —p)|ul”

Lemma 3.1.16:

For each u € E with )\/ a(x)|u|?dz > 0, one has the following:
Q

@) if / F(z,u)dr <0, then there exists a unique 0 < t+ < T
Q
such that tTu € Ny and Jy(tTu) = %I>1g Jr(tu);
(ii) if / F(z,u)dz > 0, then there are unique 0 < t* < T < t~ such that
Q
(t"u,t™u) € Ny x Ny and Jy(t"u) = sup Jy(tu), Ja(tTu) = inf Jy(tu).

t>0 0<t<T
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Proof. For u € E with )\/ a(z)|ul?dz > 0, we can take m,(t) : R — R by
Q

my(t) = P77 |ul|P — A7 / a(z)lu|?dz. Clearly for t > 0, tu € Ny iff ¢ is a solution of
Q

fQ x,u)dr. Since

(L), () = [[tull? — /Q Fla, tu)dz — A /Q o) tu|"dz

= @[l - (1)° / F(au)dz — A(1)? / o()|ul'dz

— ((t)p-“nunp - [ P =20 | a<x>|u|qda:) .

= @ (w0~ [ Fade) =0 it 00 = [ e

Now 771, (t) = (p — o)tP =7 |u||P — Mg — 0)t77~ 1/ z)|u|?dz and m,,(t) = 0.
Q

~ Ao — aq
This implies that T' = < o4 fﬂ 2)|ul x)

(0 = p)lull”

Therefore m, (t) > 0 for t € [0,T) and ' (t) < 0 for t € (T, 00), then i, (t) a chieves its
maximum at 7', increasing for ¢t € [0,7T), decreasing for t € (T, 00), and i, (t) — —o0

as t — 0", Since

my(t) = tp”Hqu—)\tq"/Q&(x)]u\qu

= t77° (tququ - /\/ a(:z;)\u]qu>
Q
= —ti7° <)\/ a(z)|ul?dz —tp_qHqu)
Q

—tq_")\/a(x)|u|qu for small ¢
Q

IN

-A )|u|?dx
= th q‘ ’ —» —ocast — 0.
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For T > 0, 1, (T) =

- <(0_?0Af2>||u||iuw> = (T dx) /Q‘“‘”)'“'qdm

- ((a—q AJgale ‘U’qu>qp a {(o—q A Jg a(@)[ul’ d:z:H ||p—)\/ﬂa($)IUqux}

(0 = p)lful? (o —=p)lful/?

q70'

= (TR ) T () [ et

:]“”Aﬁa@mmz< (”& 'M%ﬂ >0

o—p o = p)|ull”

() Suppose that [, F'(z,u)dz < 0 then there is a unique t* < T such that

= [, F(z,u)dz and ni, (") > 0. Now by (3.20)
(By(tHu), tHe) = Ao —q) / o(@)[tult — (o — p)l|ttulP
= Ao — () / a(@)[ul? — (o — p)(t|lul]?
= () (—A<q ~ o)ty [ atallul -~ a><t+>“1||uup)

= 7 (0= eyl = g - )y [ awar)

:(#yﬂ( @ﬂ)>aﬂn#>o
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and

(TLE), () = [l — /Q Fla, t1u)dz — A /Q o(2) [t u|"dz

_ +Pup_ +\o T wdr — +\q CLJZUq:L‘
= ()l @)Am,m A@)/(ﬂld

Q

— (") ((t+)p—<f||u||p— /Q Flz,u)de — M) /Q a(:v)|u|qu).

= @ () - [ Feuas)

= ()7 (1) — mu(th) = 0.

Hence ttu € Ny for all 0 < t© < T. Further since Vt : 0 < t < T, Ji(tu) > 0, and

Vit >T, Jy(tu) < 0 then Jy(tTu) = 11:r>1£ Jy(tu).
(ii) Suppose that [, F'(x,u)dz > 0, then by Property (2) and Remark (3.1.3),
we obtain

0 < /F(x,u)dm < /F(xudx
Q Q

1, (T). Since 1, (T) > / F(z,u)dz, then the equation m,(t) = / F(z,u)dz has
Q Q
exactly two solution ¢t* and ¢~ such that 0 < t* < T <t~

/|Fm Wldz < K/|u|" < K S |ul7 <

= [ F(z,u)dz = m,(t") and m/,(t7) < 0 < m(t*). Thus we get
(t*u,ﬁu) € Ny x N, and Jy(tTu) < Jy(tu) < Jy(t w) for all ¢ € [tT,¢7] and
Jn(tTu) < Jy(tu) for all t € [0,tF]. Therefore Jy (¢t~ u) = sup Jy(tu) and

t>0

In(tTu) = inf Jy(tu).

0<t<T
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To prove the main result we need the follwing Theorem.

Theorem 3.1.17:

If F is a Banach space and Jy(u) bounded from below on Ny then there exist a minimizing
sequences u, in Ny such that Jy(u,) — 6, and J{(u,) — 0 in E*. Since the functional

bounded from below on Ny and N; then we have the following

(i) There exist a minimizing sequences u,” in Ny such that
I(uh) = 0% +o(1), Jy(u)) = o(1) in E*

(ii) There exist a minimizing sequences u,, in N, such that
Ta(uy) = 05 +0(1), J\(uy) = o(1) in E

Proof. For the proof see [23].
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3.2 Existence of Positive Solutions

In this section we introduce a simple proof of the existence of two positive solutions of
Equation (3.1), one in N and one in Nj .

Theorem 3.2.1:

Under the assumptions (1),(2) and (3), there exists A\g > 0 such that for all 0 < |A| < Ao,
problem (3.1) has at least two nontrivial nonnegative solutions.

The proof of this theorem is a direct result from the following theorems (3.2.2) and (3.2.3)

In the next theorem we establish the existence of a local minimum for J, on N ;“ .

Theorem 3.2.2:

If 0 < |A\| < Ao, then problem (3.1) has a positive solution ug in Ny such that

Ta(ug) = 0%

Proof. Since J, is bounded below on Ny, then there exist a minimizing sequence
{u} € Ny such that

lim Jy(uw,}) = inf Jy(u).

n—>—o0 uEN;'

Since F is a Banach space, this sequence contains a weakly convergent subsequence u,, to

ug the weak limit of u,,. By Theorem (2.2.13), we may assume that u,, converges strongly

in L? and in L%, u,, — ug weakly in E, implies u,, — ug strongly in L? and in L7 this

implies that is

/a(x)\un\qu—>/a(x)\ug\qu.
Q Q

Next we will show that /

F(z,u,)dr — / F(z,uf)dr as n — oco. By Lemma (3.1.4),
Q Q

OF (z,uy) c I

OF (z,uy,) OF (z,ud) o
ou T eu | b

in L7, where v =

we have .
o—1

On the other hand, it follows from the Holder Inequality that
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OF (x,uy) LOF(zud) |
/Q Up 5 — Uy M dx| =
B OF (x,uy) LOF (z,up) LOF (x,uy) LOF (z,uf)
B /Q T O ou o ou “o ou d
OF (z,uy,) OF (z,uy,) / OF (z,u,) OF(x,ug)
< ) e ) d + _ » Y0 d
- /Q U S to ou v Q & ou ou v
OF (z,uy,) OF (z,u,) OF(x,uf)
< ot ) + ) . » Y0
< /Q |tun, — ug | o dz| + Q|u0 50 501 dx
OF (x,uy) OF (z,u,) OF(z,ug)
< ot ) + ) o » 20
O e e R e =2

— 0, asn — 0. Hence/
Q

Now we aim to prove that u, — ug strongly in £ and Jy(ug) = 6.

F(z,uy,)dr — / F(z,uf)dr as n — oo.
Q

Suppose otherwise then ||ug || < lim inf(||u,||) and so
n—aoQ

Gy = Il = [ Fleadde =2 [ ato)fug s
Q Q

lim inf (Huan—/F(:c,un)d:z:—)\/a(az‘)]un|q> dx
n—-o0 QO (9}
lim inf (0) = 0.

n—-oo

<

<

Thus ||ug ||P — / F(x,ud)dr — )\/ a(z)|ud |%dz < 0 but ui € Ny a contradiction,
Q

Q
therefore u,, — ug strongly. This implies Jy(u,) — Ji(ug) as n — oo.

To show that Jy(ug) = 0. By Fatous lemma and uj € Ny(u) we get

1 1
“Nug Il = =

A
/F(m,uar)dx——/a(x)\uaﬂqu
g Ja 4 Jo

1 1 A
lim inf(2 [ju, |7 — —/ Fla, uy)dz — —/

Q
liminf Jy(u,) = 0,
n——oo

O < Ja(ug)

IN

a(x)|un|"dz)
<

0y < Ja(ud) and Jy(ug) < 60y this implies Jy(ug) = 0. Finally we want to prove that

+

ug is a nontrivial nonnegative solution of Equation (3.1) and uf € Ny
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1 1 A
) = Shual? = [ Fawio =2 [ ol

1 1 A
= —|lun|P — = unp—)\/aa: uj%lx)——/a:c wl|9dx
Sl U(H | i ()], | ) ()], |

> —)\U_q/a(x)|u:|qu.
99 Ja

By Theorem (3.1.17)(i) and lemma (3.1.11) Jy(u,) — €5 < 0 as n — oo,

we obtain A / a(z)|ug |%dz > 0. Thus ug is a nontrivial nonnegative.
Q

Moreover, we have uj € Ny . If fact, if uf € Ny then, there exist tJ,¢; such that

toug € Ny and tfud € Ny In particular we have t§ < ¢, = 1. Since

d? d

then there exist t§ < t <ty such that Jy(tful) < Ja(tugd). By lemma (3.1.14), we have

I(tgug) < I(tug) < Itgug) = Ja(ug) = 04,

which is contradicts Jy(ug) = 65. Thus uf € Ny
Theorem 3.2.3:

If 0 < |A| < Ao, then problem (3.1) has a positive solution u, in N, such that

Ia(ug) = 05

Proof. Similarly in the previous theorem since Jy is bounded below on N, , then there
exist a minimizing sequence u,, for Jy on N, such that

I(un) = 0y +o(1)

Jy(up) = o(l)in E*
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Again then there exist a subsequence u,, and v, € N, is a nonzero solution of equation

(3.1). Assume, without loss of generality, that
u, — ug weakly in E,u,, — u, strongly in L9, L°.

Moreover, let u, € N, , then by (3.21) we get

/ Fla.un)da > 2= u, P (3.31)
Q

So by (3.29) and (3.31) there exists a positive constant C' such that / F(x,uy)dz > C.
Q0

This implies

/ F(z,uy)ds > C, (3.32)
Q

Clearly by Lemma (3.1.12) and Equation (3.32) u, is a nonnegative solution of Equation
(3.1). Now, we aim to prove that w, — u, strongly in E, Jy(u,) = 6, Supposing
otherwise, then |jug || < limni_n)fooﬂunH and so by Lemma (3.1.14), then there exist a
unique ¢, such that tyu, € N, . Since u, € Ny, Jy(u,) > Jy(tu,) V t > 0, we have
In(tougy ) < nli_r)noo Ia(tgun) < nli_>mw Jx(u,) = 6, which is a contradiction. Hence

uy, — ug strongly in E, this imply that J)(u,) — Jx(uy ) = 6, as n — oo.

Next we begin to show the proof of Theorem (3.2.1) in the following corollary.
Corollary 3.2.4:

Equation (3.1) has at least two positive solutions whenever 0 < |A| < Ao.

Proof. BY Theorems (3.2.2) and (3.2.3) there exist uj € Ny and u; € N, such

that Jy(ug) = inf Ji(u) and Jy(ug) = inf Jy(u). since Ny N Ny = ¢, this implies
ueEN, uEN,

that ug and u, are distinct positive solution of Equation (3.1).
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Chapter 4

p-Laplace Equation Model for Image Denoising

A well known inverse problem in image processing is image denoising which means the
process with which we reconstruct a signal from a noisy one, by removing unwanted noise
in order to restore the original image, or the method of estimating the unknown signal
from available noisy data. The goal of image denoising is to remove the noise from the
image but to preserve the useful information. Further image denoising is an important
pre-processing step for image analysis. Let u(x,y) denote the desired clean image, so
ug = u + n, where n is the additive noise, ug denote the pixel values of a noisy image
for x,y € 2. Many authors has introduce algorithem to remove noise from images. In
the last decades the energy functional approach together with its corresponding Euler
Lagrange equation has attracted great attention in solving inverse problem applied to
image reconstruction. One important case of Euler Lagrange equations is the one which

involves the p—Laplace operator
Ayu = div(|VulP"?Vu);p > 1

associated with the evolution equation of p—Laplacian

Ou = Apu, in Q
u(0) = up, in 2
Oyu = 0, on 02

where  is abounded domain in R? and ug : © — R is a given degraded image and

Vu is the gradient. It is well known that the case p = 2 gives the linear Gaussian filter,
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which however, impose strong spatial regularity and therefore image details such as lines
and edges are over smoothed. The case p = 1 is often refereed to as the method of total
variation and p = 0 is an instance of the so called balanced forward backward evolution.
A p—Laplace equation model is proposed in this research for image denoising. First, the
p—Dirichlet integral and total variation are combined to create a new energy functional
used to built an image denoising model. This model is the generalization of Rudin-
Osher-Fatemi model and Chambolle-Lions model. Generally, the practical images always
hold the noise that does not only undermine the display but also affect the subsequent
treatment results of the higher-level image. It is a big challenges to remove the noise
of images with the maintainance of geometric characters during the scientific research
and engineering practical activities. Therefore, denoising of image denoising is one of the
important issues in the study of image processing and computer vision. Image denoising
based on nonlinear diffusion equation is an effective method, about which many research
achievements have been obtained and applied in many fields (Chan and Shen, 2005;
Lysaker and Tai, 2006; Perona and Malik, 1990), see the references in [24]. The basic
idea is to use different smooth policies at the target edge, namely at the edge area,
the smooth process will be controlled but accelerated in the other regions. Based on
the nonlinear diffusion equation, the complex filtering process can be divided into two
simple ones: one along the image gradient direction and the other perpendicular to the
image gradient direction. The equations with better denoising results should have various
diffusion rates in both directions, namely, diffusion process is anisotropics. This method
can also retain the image geometry while removing the noise. There are some classic
and anisotropics diffusion models such as Perona-Malik model, mean curvature motion
model, total variation model, among which total variation model (Rudin et al., 1992),

[17], give the following energy functional equation:

E(u):/Q|Vu|dx+%/ﬂ(u—uo)2dx.

In the model, BV energy terms of the image Function model (based on the image gradient
pattern energy term with L; norm determined) determine the corresponding evolution
equation that has good non linear diffusion properties. In fact, the diffusion is
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unidirectional with non-zero diffusion velocity only in the tangent direction of horizontal
lines of images which determines no demolishment of the important features of image
structure but a certain effect of denoising during the evolution of the equation. However,
in the local area of unimportant characteristics, the unidirectional diffusion speed becomes
too slow and too single so as to affect the denoising effect and efficiency. The material

through this chapter is mainly covered in [24], [6].

4.1 p-Laplacian for Image Denoising

An important feature in any evolution process for image denoising is preservation of
certain geometrical features of the underlying image. In the case of image restoration
these features include edges and corners. It is straight forward to express the p—laplace
operator (1) as

Aju = [Vul P Ayu+ (p— 1) | VulP 2 Au

Vu Vu Vu
——), Aju = u.

|Vu |Vul |Vu|
an intuitive way to represent A,, giving direct interpretation of the diffusivity directions

D? and D?u is the Hessian of u. However,

where Aju = div(

is to express A, by using Gauge coordinates (z,y) — (T, N):

Apu = B (unn + (p — Duzr).

Gauge coordinates

An image can be thought of as a collection of curves with equal value, the isophotes.

At extrema an isophote reduces to a point, at saddle points the isophote is self-intersectin.
At the non critical points Gauge coordinates (7, N)(or (v, w),or (£,n),0r...) can

be chosen. Gauge coordinates are locally set such that the T direction is tangent to the
isophote and the N direction points in the direction of the gradient vector. Consequently,

the unit vectors in the gradient and tangential direction are:
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1 0 1
NZ—(“"”>, T— N

VU oy \ty -1 0

as T perpendicular to N. The directional differential operator in the directions 7" and N

are defined as

o 0 9 0
Or = T.V =Tz, 5) and Oy = N.V = N5 o).

Higher order derivatives are constructed through applying multiple first order derivatives,

as many as needed. So upr, the second order derivative with respect to T is

2

0 1 1 Uy o 0
T (8_’ 8_> u(w,y).
1 0 | VUuz T uy \Uy T Oy
This implies that
Ou  uyOyu — uyOyu ou  ug0yu + uyOyu _ u? + uf,

=0and uy = = |Vul.

oTr IVl ON [Vl N

ur =

The second order structures are given as

2 2
Uz Uyy + Uy Uz — 2Ug Uy Uy

urr =
2 2
ugy + uy

2 2
Uy Uz + Uy Uy + 20U Uy Uy

UnNN =
2 2
uy + uy,

These Gauge derivatives can be expressed as a product of gradients and the Hessian
matrix H with second order derivatives:

uNNu?V =VuHV"u

uTTu?V = VuH"V'u

with Vu = (ug,u,), H is the Hessian matrix, and H" = detH x H~'. Note that the
expressions are invariant with respect to the spatial coordinates. Furthermore, one gets
Au = uyy + upr. In gauge coordinates the cartesian formula for isophote curvature is

easily derived by applying implicit differentiation twice.
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The definition of an isophote is u(7T, N(T')) = ¢, where ¢ is a constant.

One time implicit differentiation with respect to T' gives:
ur + unN'(T) = 0,
from which follow that N'(T") = 0 because ur = 0 by definition. Using that and second
implicit differentiation gives:
urr + 2upn N'(T) + uyy(N'(T))? +unyN"(T) = 0.

The isophote curvature k is defined as N”(T'), the change of the tangent vector N’'(T) in

the T direction, so

2 2
UL Uyy — 2UgUyUgy + Uy Uy

k=N'(T)= —L —

uy (u2 +u2)?

Minimizing methods
Consider an image v on the domain (2, the first variation of the functional £ at u in the
direction v is defined by

IE(u,v) = %E(u + €v)]e=o-

The variational derivative  E'(u) of the functional E at u in the direction v is defined by

VE(u,v) = / 0E(u).vdx
Q
with v € Cg°(2) a test function that is zero at the boundaries. Minimizing u with
appropriate boundary conditions gives the Euler Lagrange equation ) £ = 0. Adynamical
system is obtained by the steepest decent approach u; = —dFE. So to find the minimum

of E(u) given an image uy is to solve
uw = —0E(u)
u(0) = wup.
For p—Laplacians we consider in general the integral F(u) = 11) /Q |Vul|PdS). Tt is well

known as the p—Dirichlet energy integral with a companying p—Laplacian equation

§E =0, with 6E = —V.(|]Vu[P~?Vu). Using gauge coordinates the energy can be written

1
as E,(u) = - / ub,dx.
D Ja
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Theorem 4.1.1:

The variational derivative  E(u) can be written as

dE(u) = —uﬁfZ(uTT + (p— Dunn).

Proof.
1 d
dE(u,v) = — [ —|V(u+ ev)|Pdr|.—o
P Jao de
= /|Vu]p2Vu.Vvdx
Q
= |Vu|p_2Vu.v|aQ—/V.(|Vu|p_2Vu)vdx,
Q
since v = 0 on the boundary, |Vu[’">Vu.|po = 0 and the Euler Lagrange equation

dE(u) = 0 equals
—(V.(|VulP—>Vu)) = 0.

The left hand side equals the well known variational derivative of the Laplacian.
An explicit expressions is obtained by applying the divergence operator to both terms,

where Gauge coordinates are used:
~V.(|VulP*Vu) = —V(|VulP™?).Vu — |Vu|’"*(V.Vu)
= — (V. ?).Vu —u5 A
For the first part we have

(Vul ). Vu = (p—2)ul *Vuy.Vu

= (p—2)uE }(VuHuy").Vu,
where H is the Hessian matrix. Recall (VuH).Vu = u%uyy as given before. Therefore
(p — 2)ub *uytuduny = (p — 2)ul *uny
and consequently we have
SE(u)=—((p— 2)ub Puny + uly CAu) .
Using the identity Au = uyy + upr this gives

0E(u) = —ul* (urr + (p — Vunn) .
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For p = 2 we have the heat equation:
U?\,TQ(UTT + (2 — 1)UNN) = urrt + UNN = Au

Next, p = 1 gives the Total variation flow:

U}V_Q(UTT + (1 — 1)UNN) = u]_vluTT = K.

In general, it gives a recipe for PDE-driven flow:
we = Wby 2 (urr + (p — Dunw).

The case p — oo is known as the infinite Laplacian, denoted by A, u. This term
is defined as either uyy or u3uny. It can be applied to image inpainting and shape

metamorphism.

4.2 Model of Image Denoising Based on the p-Laplace Equation

Chambolle and Lions use the heat diffusion term to accelerate the total variation model
partially (Chambolle, 1995), [3]. Chen et al. (2006), [25], studied the diffusion behaviours
of variational exponentiate. With the inspiration of these studies,( Wei, Wei and Bin
Zhou,(2012)), [24], proposed the following functional to build a model used in image

denoising
A
E(u) = / F(|Vu]) dzx + —/(u — up)?dx
Q 2 Jo
where, ug refers to the images that is needed to be denoised and the nonnegative function

F(s) is defined by

8P, 0<s < B,

B ts+ (1 — %)6”, s> f.

F(s) =

Let M denote the manifold of smooth images, then the diffusion equations presented
can be interpreted as the gradient decent equations for the minimization of the energy

functional £ : M — R defined by:

E(u) :/QF(|Vu|)dx+g/(u—uo)2dx.

Q
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Then for any function v € C§°(€2) we have

SE(u,v) = %</§2F(|V(u—|—ev)|)dm+%/Q(u—i—ev—uo)?dx) o

d A d
— /QEF(|VU—|—6VU|)dm|€0—|—§/Q£(u+ev—u0)2dx|e0

= /F’(|Vu|)|Vu|_1Vu.Vv+)\/(u—uo)vd:p
Q

Q

= F'(|Vu|)|Vu| ' Vu.v|sq — / V. (F'(|Vu])|Vu| "' Vu) vdz + )\/(u — ug)vdx
0 0

_ _/Q {v. <F’(\Vu\)|§—z|) - )\(u—uo)] wdz.

Hence the Euler Lagrange equation d E'(u) = 0 reads

{V. (F’(|Vu|)‘§—z‘) — AMu — uo)] = 0. Since % = —)FE(u), then the following

evolution equation is obtained

ou , Vu
i V. (F (|VU|)W) — Mu — ) (4.1)
where

) v Y vl s B

V.([VulP~2Vu), 0<|Vu| <3,
7 (P ) (IVul29u), 0< |94l
[Vl
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Theorem 4.2.1:

The Eq (4.1) is equal to the following form:

ou B (urr 4 (p — Dunn) — Au — 1), 0 < uy < B,
ot ) !

urT — )\(U — UO), unN > B
Proof. From Equation (4.1) we have

ou V.(IVulP2Vu) — Mu — ug), 0<|Vu| <3,

ot 1o VU
IV [Vl > 8
when 0 < |Vu| <f
% = V. (|VulP7>Vu) — A (u — u) .

using gauge coordinates we get

V.([VulP2Vu) = V(|VulP?).Vu+ |Vulf*(V.Vu)

= (V% ?).Vu+ vl Au.
For the first part we have

V(s ?).Vu = (p—2)ul *Vuy.Vu

= (p—2)ub*(VuHuy').Vu,

where H is the Hessian matrix. Recall that VuH.Vu = u?VuNN, thus

1

(p — 2)ul Puyt uuny = (p — 2)ul; “unw-

Therefore

ou _ _
i (p — 2)ub *unn + v > Au — AMu — ug).
Using the identity Au = uyy + uprr, we obtain

du
ot

= (p— 2)u5’v_2uNN + u?\,_2(uNN + urr) — AMu — ug)

= W57 ((p — 2)uny + unn + urr) — Mu — ug)
= u]]JV_Q(uTT +(p— Duny) — Mu — o),
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when |Vu| >

ou Vu Vu
= prly. — — V.— =k =ud'urr. Th
s =p vl A(u — up), but Yl k = uy urr. Thus

6u —61” 1@—)\(u—uo)
un

4.3 Numerical Experiment

In this section the numerical experiments with different parameters are implemented by

using the above mentioned model, we propose the preliminary boundary problem:

ou , .

i (F(|V |)|v |) AMu —up), in Q (4.2)
ou
aN(x t) = 0, ondf

u(z,0) = wup(z), in

where, the definition of V. ( "((Vu|) =— ) is similar to that in Equation (4.1). Using

[Vl
the method of [17], both sides of the first formula are multiplied by u — u and integration

ou
over () is performed. Since t — o0, s — 0, then

v (F’(|Vu|)|§u|)(u—uo)dm: [ A= was

Using the Green formula we obtain

F'(]Vu|) ou / F'|Vul - / )
/89 V| aN( ug)ds L vl Vu.V(u —ug)dr = A Q(u up)?d.

F/
Since %bﬁ = 0, then /asz |(|VVUQ|L|) 5]1\67( — ug)ds = 0. Hence

/ F’(!VUDW = w)dz

/Q(u—uo) da

The problem (4.2) is solved Numerically and then it could be used in the field of

A\ =

denoising image. As shown in Fig. 4.1(a) and (b), given original images of phoenix tree
leaves and denoised images, different p values are chosen to perform numerical solution
which produces corresponding results. As a second test, Fig 4.2 (a) and (b) dividedly
the original rice-grains images and denoising images. The result of various p values and
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shown in Fig 4.1 (c-f) and Fig 4.2 ( c¢-f) show the different results in the two experiments
with various p—values. The p—values, iterative numbers n of model solution, the solved

results of Peak-Signal-to-Noise Ratio (PSNR) are indicated in Table 4.1 and 4.2.

Table 4.1: p and n and PSNR data

P n PSNR
1.0 430 24.7805
1.6 90 26.2181
2.0 27  26.0873
2.2 14  25.8030

Table 4.2: Specific data of p, n and PSNR

p n  PSNR
1.0 364 22.5570
1.6 65 22.6794
20 17  22.1307
22 9  21.7861

Given the constant p—value, with the iterative evolution, PSN R is gradually increased

from values of 18.9763 and 18.7481 to the final results. The process is stable.

When, n is decreased by p—value, the PSN R value of final results is changed with a

tiny visual effection. Notice that is defined as follows

o2
PSNR = 10log, (%)

Where M SE=(Mean Squar Error) is given by

> (wij—viy)?

MSE =

MN
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with M, N are the total number of pixels in the horizontal and vertical dimensions of the

image, z; ; and y; ; denote the original and distorted image, respectively.
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Conclusion

In the current work we introduced method to solve elliptic partial differential equation
with homogeneous Dirichlet boundary conditions called Nehari method. We use this
method to prove that the p—Laplace equation with Dirichlet boundary condition has
at least two positive solutions. Further in this study we apply p—Laplace equation in
denoising process of images. The test results show that, according to the reasonably

adjusting parameter p values, the iterative numbers decrease with better denoising effects.
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Figures
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Figure 4.1: (a-f): Results of transaction of phoenix tree leaves with noise; (a) Original image,

(b) Noise image, (c) p = 1.0, (d) p = 1.6, (e) p = 2.0 and (f) p = 2.2 .
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Figure 4.2: (a-f): Results of rice-grains with noise; (a) Original image, (b) noise image, (c)

p=10,(d)p=1.6,(e) p=2.0and (f) p=2.2.
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