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Abstract

The p−Laplace equation play an important role of mathematical modeling. In this work

we present the model p−Laplace equation with zero Dirichlet boundary condition of the

form

−∆pu =
1

σ

∂F (x, u)

∂u
+ λa(x) | u |q−2 u, in Ω (1)

u = 0, on ∂Ω

where 4p denotes the p−Laplacian operator defined by ∆pu = div(|∇u|p−2∇u); p > 2,

Ω is abounded domain of Rn, (n ≥ 3), 1 < q < p < σ < p∗, (p∗ = np
n−p if p < n, p∗ = ∞

if p ≥ n), λ ∈ R \ {0}, F ∈ C1(Ω × R,R) is positively homogeneous of degree σ, that

is, F (x, tu) = tσF (x, u) hold for all (x, u) ∈ Ω × R and a(x) : Ω −→ R are smooth

functions which change sign in Ω. In general it is almost impossible to find analytical

solutions of p−Laplace equation. Thus it is necessary to solve this equation in weak

sense. In this Thesis, we derived the variational form of Equation (1) that used to find

the critical points of this problem. We apply a method based on Nehari results on three

submanifolds of the first Sobolev space W 1,p
0 . The Nehari method form contains specific

condition used to find critical points of the equation and to indicate that it is a non-

trivial solution for problem (1). Further in this thesis we apply p−Laplacian equation

in image denoising. In image processing, partial differential equations play an important

role. In Total variational method see, [17], such equations arise from minimizing some

energy functional (like the L1 norm of the gradient). Other methods are designed using

geometrical arguments (like evolution tangent to isophotes, known as Mean Curvature

Motion [8]. In this work, a general parameter-driven framework for both approaches is

given, [24], that have one specific common element, the Gaussian scale space [13]. For

the first set of equation, the Lp norm of the gradient is used with p a free parameter,

thus obtaining so-called p−Laplacians [14]. The evolution equation is a PDE that can

be simplified using (geometrical) gauge coordinates. A numerical experiment related to

image denoising is presented in this thesis.
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Chapter 1

Introduction

The p−Laplacian, or the p−Laplace operator is a quasilinear elliptic partial differential

operator of second order. The p−Laplacian equation is a generalization of the partial

differential equation of Laplace equation. Many nonlinear problem in physics and me-

chanics are formulated in equations that contain the p−Laplacian. The study of these

equations started more than thirty years ago. In the last few years, p−Laplacian equa-

tions have increasing attention, and rapid development has been achieved for the study

of the equations involving operator Delta p. This theory has been developed very quickly

and attracted a considerable interest from researches, since the p−Laplacian operator

a rise from many applied fields such as turbulent filtration in blood flow problems and

material science etc. Several problems involving 4p operator for Dirichlet or Neumann

boundary condition have been studied by many researchers such as, Drabek et al.[19],

Ambrosetti et al.[4], Brezis and Nirenberg [10], Tehrani [12] by using variational methods

and Amman and Lopez-Gomez [11] by using global bifurcation theory. In recent years,

several authors have used the Nehari manifold and fibering maps (i.e.,maps of the form

t −→ Jλ(tu), where Jλ is the Euler functional associated with the equation) to solve

semilinear and quasilinear problems. By the fibering method, Drabek and pohozaev [20],

Bozhkov and Mitidieri [26] studied, respectively, the existence of multiple solution to

a p−Laplacian system. Brown and Zhang [16] have studied the subcritical semilinear

elliptic equation with a sign-changing weight function
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−4 u(x) = λa(x)u+ b(x)|u|γ−2u, in Ω (1.1)

u = 0, on ∂Ω

where γ > 2. Exploiting the relationship between the Nehari manifold and fibering maps,

they gave an interesting explanation of the well known bifurcation result. In fact, the

nature of the Nehari manifold changes as the parameter λ crosses the bifurcation value,

the author considered above problem with 1 < γ < 2. Also, the authors in [26] by the

same arguments they considered the semilinear elliptic problem :

−4 u(x) = λf(x)|u|q−2u(x) + g(x)|u|p−2u, in Ω (1.2)

u = 0, on ∂Ω

where 1 < q < 2 < p. Affected by the work of Brown and Zhang [16] treated the problem:

∆(|∆u|p−2∆u) =
1

p∗
f(x, u) + λ|u|q−2u, in Ω (1.3)

u = ∆u = 0, on ∂Ω

where f is positively homogenous of degree p∗−1. In this thesis, motivated by the above

works, we give a simple variational method which is similar to the fibering method to

prove the existence of at least two positive solutions of problem (1). In fact we use the

decomposition of the Nehari manifold as λ vary to prove the main result. In this work

we consider the model equation so called the p−Laplacian equation

−∆pu =
1

σ

∂F (x, u)

∂u
+ λa(x) | u |q−2 u, in Ω (1.4)

u = 0, on ∂Ω

and its corresponding energy functional

Jλ(u) =
‖u‖p

p
− 1

σ

∫
Ω

F (x, u)dx− λ

q

∫
Ω

a(x)|u|qdx. (1.5)

We consider the problem of finding the solution of Equation (1.4) as a variational problem.

That is we find the minimum of Jλ on the set of functions satisfying the condition u = 0

on the boundary. In many problems of mathematical physics and variational calculus it

2



is not sufficient to deal with the classical solution, of differential equations. It is necessary

to introduce the notion of weak derivatives and to work in the so called Sobolev spaces.

The theory of Sobolev spaces gives the basis for studying the existence of solutions ( in

the weak sense) of partial differential equations. Several problems in analysis can be cast

into the form of functional equations F (u) = 0, the solution u being sought among a class

of admissible functions belonging to some Banach space E. Typically, these equations are

nonlinear, for instance, if the class of admissible functions is restricted by some nonlinear

constraint. A particular class of functional equation is the class of Euler -Lagrange

equationDJ(u) = 0 for a functional J on E, which is Frechet differentiable with derivative

DJ . Variational principles play an important role in mathematical physics, differential

geometry, optimal control and numerical analysis. Suppose J is a Frechet differentiable

functional on a Banach space E with normed dual space E∗ and let DJ : E −→ E∗

denote the Frechet derivative of J . Then the directional (Gateaux) derivative of J at u

in the direction of v is given by

d

dε
E(u+ εv)|ε=0 = 〈DJ(u), v〉 = DJ(u)v (1.6)

For such J , we call a point u ∈ E critical if DJ(u) = 0, otherwise, u is called regular.

A number β ∈ R is a critical value of J if there exists a critical point u of J with J(u) = β,

otherwise, β is called regular. Of particular interest will be relative minima of J , possibly

subject to constraints. We recall that for a set Nλ ⊂ E a point u ∈ N is an absolute

minimizer for Jλ on Nλ if for all v ∈ Nλ there holdes Jλ(v) ≥ Jλ(u). The purpose of this

research is to firstly discuss the problem of existence of positive solutions of Equation

(1.4) from the variational viewpoint and, in particular, from the view point of the Nehari

manifold, Nλ = {u ∈ E \ {0} : 〈DJλ(u), u〉 = 0} and secondly to present an application

of the p−Laplace equation in the field of image Denoising. The thesis is organized as

follows. In Chapter Two, we give basic concepts of functional analysis used through out

the thesis. In Chapter Three, we discuss the Nehari manifold and the variational

framework of Problem (1.4), and show how existence of positive solutions of Equation

(1.4) are linked to properties of the manifold. In Chapter Four, the concepts of gauge

coordinates, variational derivatives, and p−Laplacian are discussed, also it will be shown

3



that the p−Laplace evolution equation can be simplified using gauge coordinates. Further

in this chapter, the properties of p−Laplace evolution equation are discussed in relation

to image filtering and a model is introduced to remove the noise of image denoising. At

the end of the thesis, we present the conclusions.

4



Chapter 2

Mathematical Framework

In this chapter we introduce some basics of functional analysis, we used in this research,

also we present a unified approach to the method of Nehari manifold for functionals that

have a local minimum at 0. This method is used in chapter three to derive positive

solutions to p−Laplacian equation. The details of this chapter are covered mainly in

reference [22],[21],[18].

2.1 Basic Concepts

Differential Equations

A differential equation is an equation whose unknown is a function depending on one or

more variables. We speak of partial differential equation when the function depends on

many variables and the problem involves partial derivatives. The unknown function, real

valued, is denoted by u and depends on the variables x1, x2, ..., xn, that constitute the

point x. We denote the partial derivative by

∂iu(x) = ∂xiu(x) =
∂u(x)

∂xi
, 1 ≤ i ≤ n (2.1)

Further by Dαu(x) we mean Dαu(x) =
∂|α|u(x)

∂xα1
1 ∂x

α2
2 ∂x

α3
3 ...∂x

αn
n

,

where α = (α1, α2, ..αn), |α| = α1 + α2 + ... + αn and αi ∈ R+, i = 1, 2, ...n. such α is

called a multi-index.
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Example 2.1.1:

Let u = u(x, y) be a function of two real variables, let α = (1, 2). Then α is a multi-index

of order 3 and Dαu = ∂x∂
2
yu = uxyy.

More precisely we have the following definition of a partial differential equation:

Definition 2.1.2:

An expression of the form

F (Dku(x), Dk−1u(x), .., Du(x), u(x), x) = 0, x ∈ U, (2.2)

where U is an open subset of Rn, and F : Rnk ×Rnk−1 × ...×Rn×R×U −→ R is given,

u : U −→ R is the unknown, k is a nonnegative integer and Dju(x) = Dβu(x) with

|β| = j is called a partial differential equation.

Definition 2.1.3:

The partial differential equation (2.2) is called linear if it has the form

∑
|α|≤k

aα(x)Dαu = f(x)

for given functions f and it is called homogeneous if f ≡ 0, otherwise it is

nonhomogeneous. If the partial differential equation (2.2) depends nonlinearly upon the

unknown function or any of its derivative, it is called nonlinear.

Example 2.1.4:

(1) ut + ux = 0 is homogeneous linear,

(2) uxx + uyy = x2 + y2 is inhomogeneous linear,

(3) u2
t + u2

x = 0 is not linear.

(3) ut + uxxx + uux = 0 is not linear.
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Definition 2.1.5:

We say a k-th order nonlinear partial differential equation is semilinear if it can be written

in the form ∑
|α|=k

aα(x)Dαu+ a0(Dk−1u, ..., Du, u, x) = 0.

In particular, this means that semilinear equations are ones in which the coefficients of

the terms involving the highest-order derivatives of u depend only on x, not on u or its

derivatives.

Example 2.1.6:

(1) ut + ux + u2 = 0 is semilinear,

(2) uxxx + uux + ut = 0 is semilinear,

(3) ut + uux = 0 is not semilinear.

Definition 2.1.7:

We say a k-th order nonlinear partial differential equation, which is not semilinear, is

quasilinear if it can be written in the form

∑
|α|=k

aα(Dk−1u, ..., Du, u, x)Dαu+ a0(Dk−1u, ..., Du, u, x) = 0

In particular, this means that quasilinear equations are those equations in which the

coefficients of the highest order terms may depend on x, u, ..., Dk−1u, but not on Dku.

Example 2.1.8:

(1) ut + uux = 0 is quasilinear,

(2) u2
x + u2

y = 1 is not quasilinear.

Definition 2.1.9:

A solution to the PDE (2.2) is a function u that satisfies (2.2) and possibly satisfies

certain boundary condition on the boundary of u when it is bounded.

Among the important partial differential equations are the Laplace and the p−Laplace
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(usually called p−laplacian) differential equations. The Laplace operator denoted by ∆

given by ∆u(x) =
n∑
i=1

∂2u(x)

∂x2
i

. We define the potential or Laplace equation as

4u = 0 in Ω ⊆ Rn.

This equation is a second order linear PDE. Laplace equation is the prototype for linear

elliptic equations. It is less well known that it also has a nonlinear counterpart, the

so called p−Laplace equation or (p−harmonic equation), depending on a parameter p

belongs to (1,∞]. If p ∈ (1,∞), then the p−Laplacian equation is given by the divergence

form 4pu := 5.(|∇u|p−2∇u) = 0, when p =∞, the p−Laplacian equation is given as

4∞u :=
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0,

which is the so called ∞−Laplacian equation. The p−Laplacian equation is an elliptic

partial differential equation, which is degenerate if p > 2, and singular at point where

∇u = 0 for 1 < p < 2. If p = 2, then the p−Laplacian equation reduces to the simpler

classical linear Laplace equation 4u := ∇.∇u = 0.

The connection between the p−Laplacian, p ∈ (1,∞), and the ∞−Laplacian equation

rely on the calculation

4pu = ∇.(|∇u|p−2∇u) = |∇u|p−4{|∇u|24u+ (p− 2)
n∑
i,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
} = 0.

Let p −→ ∞ and divide by |∇u|p−4, then we obtain the ∞−Laplacian equation. In the

last few years, p−Laplacian equation have received increasing attention. This theory has

been developed very quickly and attracted a considerable interest from researches, since

the p−Laplacian operator arise from many applied fields.

8



Boundary conditions.

Definition 2.1.10:

A problem is said to be well posed, if exactly one solution exists and it continuously

depends on the given data.

In fact p−Laplacian equation is not well posed since the solution is not unique. Many

PDEs arise from physical problems, where the behaviour of the unknown function can be

imposed or measured on the boundary. The most commonly used boundary conditions

are:

1) Dirichlet (or Essential) Boundary condition, defined as u = g on ∂Ω, in particular, if

g = 0 we speak of homogeneous boundary conditions.

2) Neumann (or Natural) Boundary conditions, defined as
∂u

∂n
= g on ∂Ω, where n is the

outward pointing unit normal vector on ∂Ω.

3) Robin Boundary conditions, defined as γu+ α
∂u

∂n
= g on ∂Ω, where γ and α are real

numbers.

Definition 2.1.11:

A function, which satisfies a PDE as well as the associated boundary conditions is called

a classical solution.

Sobolev space.

A Sobolev space is a vector space of functions equipped with a norm that is a combination

of Lp-norm of the function itself and its derivatives up to given order. The derivatives are

understood in a suitable weak sense to make the space complete, thus a Banach space.

Intuitively, a Sobolev space is a space of functions with sufficiently many

derivatives for some application domain, such as partial differential equations, and equipped

with a norm that measures both the size and regularity of a function. The theory of

Sobolev spaces introduce by Russian mathematician Sergei Sobolev around 1938. Their

9



importance comes from the fact that solutions of partial differential equations are

naturally found in Sobolev spaces, rather than in spaces of continuous functions and with

the derivatives understood in the classical sense.

Definition 2.1.12: (Lebesgue Spaces)

The space of functions that are Lebesgue integrable on Ω, open and bounded in Rn, to

the power of p ∈ [1,∞) is denoted by

Lp(Ω) = {f : Ω −→ R : f is Lebesgue measurable and

∫
Ω

|f |pdx <∞}

which is equipped with the norm

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
) 1

p

.

Definition 2.1.13:

The space C∞0 (Ω) space of infinitely often differentiable real functions with compact

(closed and bounded) support in Ω is denoted by

C∞0 (Ω) = {v : v ∈ C∞(Ω), supp(v) ⊂ Ω},

where supp(v) = {x ∈ Ω : v(x) 6= 0}. In particular, functions from C∞0 (Ω) vanish in a

neighborhood of the boundary.

10



Weak Derivative

Suppose, as usual, that Ω is an open set in Rn.

Definition 2.1.14:

A function f ∈ L1
loc(Ω) is weakly differentiable with respect to xi if there exists a function

gi ∈ L1
loc(Ω) such that ∫

Ω

f∂iφdx = −
∫

Ω

giφdx ∀φ ∈ C∞c (Ω).

The function gi is called the weak ith partial derivative of f and is denoted by ∂if . Thus,

for weak derivatives, the integration by part formula∫
Ω

f∂iφ(x)dx = −
∫

Ω

φ(x)∂ifdx.

holds by definition for all φ ∈ C∞0 . Since C∞c is dense in L1
loc(Ω), the weak derivative of a

function, if it exists, is unique up to pointwise almost everywhere equivalence. Moreover,

the weak derivative of a continuously differentiable function agrees with the pointwise

derivative. The existence of a weak derivative is, however, not equivalent to the existence

of a pointwise derivative almost everywhere. Higher-order weak derivatives are defined

in a similar way.

Definition 2.1.15:

Let f : Ω −→ R be given. Then we say that g : Ω −→ R is the α−weak derivative of f

for some multi-index α, if for each φ ∈ C∞0 (Ω), the following integration by parts formula

holds: ∫
Ω

fDαφ(x)dx = (−1)|α|
∫

Ω

gφ(x)dx,

where |α| = |α1|+ |α2|+ ...+ |αn|.

Remark 2.1.16:

(1) If the α−weak derivative exists, then it is unique.

(2) If u ∈ C |α|, the space of all continueously diffirantiable functions up to order |α|

then the weak and the classical derivative coincide, which is why the same

symbol Dα is used.

11



Remark 2.1.17:

Classical derivatives are defined pointwise, as limits of difference quotients. On the other

hand, weak derivatives are defined only in an integral sense, up to a set of measure zero.

By arbitrarily changing the function f on a set of measure zero we do not affect its weak

derivatives in any way.

Let us consider some examples of weak derivatives that illustrate the definition. We

denote the weak derivative of a function of a single variable by a prime.

Example 2.1.18:

Consider the function f(x) defined by

f(x) =

 x, x ∈ [0, 1],

1, x ∈ [1, 2].

Then, for any function φ : [0, 2] −→ R differentiable with φ(0) = φ(2) = 0, we have that

−
∫ 2

0

f(x)φ
′
(x)dx = −

∫ 1

0

f(x)φ
′
(x)dx−

∫ 2

1

φ
′
(x)dx,

working with the first term in the right-hand side, we use integration by parts to get

−
∫ 1

0

xφ
′
(x)dx = −xφ(x)|10 +

∫ 1

0

φ(x)dx = −φ(1) +

∫ 1

0

xφ(x)dx.

The fundamental theorem of calculus plus the assumption that φ(2) = 0 on the second

term on the right-hand side gives −
∫ 2

1
φ
′
(x)dx = −φ(2) + φ(1) = φ(1). We have that

−
∫ 2

0

f(x)φ
′
(x)dx =

∫ 1

0

φ(x)dx =

∫ 2

0

g(x)φ(x)dx,

where g is given by

g(x) =

 1, x ∈ [0, 1),

0, x ∈ [1, 2].

Hence g = f
′

is a weak derivatives of f .

12



Example 2.1.19:

Consider the function u(x) = |x| defined on (−1, 1). For φ ∈ C∞0 (−1, 1) we have

−
∫ 1

−1

u(x)φ
′
(x)dx = −

∫ 0

−1

(−x)φ
′
(x)dx−

∫ 1

0

xφ
′
(x)dx

= −
∫ 1

0

xφ
′
(x)dx+

∫ 0

−1

xφ
′
(x)dx,

by using integration by parts and the fact φ is zero at end points we obtained

−
∫ 1

0
xφ
′
(x)dx +

∫ 0

−1
xφ
′
(x)dx =

∫ 1

0
φ(x)dx − φ(1).1 + φ(0).0 −

∫ 0

−1
φ(x)dx + φ(0).0 +

φ(−1).1 =
∫ 1

0
xφ(x)dx−

∫ 0

−1
φ(x)dx =

∫ 1

−1
φ(x)v(x)dx,

where

v(x) =

 1, x ∈ (0, 1],

−1, x ∈ [−1, 0).

Thus v = u
′

is the weak derivative of u. Note that it is not defined at x = 0. In fact weak

derivatives are generally only defined a.e (i.e defined except on a set of measure zero),

but this does not matter since we always integrate them against another function.

Example 2.1.20:

Consider the function

f(x) =

 0, x is rational

2 + sin x, x is irrational.

Clearly f is discontinous at every point x. Hence it is not differentiable at any point. On

the other hand, the function g(x) = cos x provides a weak derivative for f , see [1].

Example 2.1.21:

The discontinuous function f : R −→ R

f(x) =

 1, x > 0,

0, x < 0.

is not weakly differentiable. To prove this, note that for any test function φ,∫
Ω

fφ
′
dx =

∫ ∞
0

φ
′
(x)dx = −φ(0).

13



Thus the weak derivative g = f
′

would have to satisfy∫
Ω

gφ(x)dx = φ(0) ∀φ ∈ C∞0 . (2.3)

Assume for contradiction that g ∈ L1
loc(R) satisfy (2.3). By considering test functions

with φ(0) = 0, we see that g is equal to zero pointwise almost everywhere, and then (2.3)

does not hold for test functions with φ(0) 6= 0.

The pointwise derivative of the discontinuous function f in the previous example exists

and is zero except at 0, where the function is discontinuous, but the function is not weakly

differentiable.

Example 2.1.22:

Define f ∈ C(R) by

f(x) =

 x, x > 0,

0, x ≤ 0.

Then f is weakly differentiable, with f
′
= χ[0,∞), where χ[0,∞) is the step function

χ[0,∞)(x) =

 1, x > 0,

0, x ≤ 0.

Definition 2.1.23:

For k = 1, 2, 3....n and p ∈ [1,∞), we define the Sobolev space W k,p(Ω) as

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), 0 ≤ |α| ≤ k}.

Further, we set

W k,p
0 (Ω) = the closure of C∞0 (Ω) in W k,p(Ω).

These spaces are equipped with the following norms

‖u‖Wk,p(Ω) =

 ∑
0≤|α|≤k

‖Dα(u)‖pLp(Ω)

 1
p

if 1 ≤ p ≤ ∞,

and

‖u‖Wk,∞(Ω) = max
0≤|α|≤k

‖Dα(u)‖L∞(Ω).
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Theorem 2.1.24:

The Sobolev space W k,p with the norm ‖‖Wk,p is a complete normed vector space and

thus a Banach space.

Definition 2.1.25:

(A) A function u : Ω −→ R is called Lipschitz continuous if |u(x) − u(y)| ≤ L|x − y|,

where L is a positive real number.

(B) The domain Ω has a Lipschitz boundary (or Ω is a Lipschitz-domain), if for m ∈ N

there exists some open sets U1, U2.., Um ⊂ Rn such that

(1) ∂Ω ⊂ ∪mi=1Ui

(2) ∂Ω ∩ Ui can be described as graph of a Lipschitz continous function for every

1 ≤ i ≤ m.

Theorem 2.1.26: (Trace Theorem )

Let Ω ⊂ Rn be open bounded and ∂Ω is C1. Then there is exactly one linear and con-

tinuous operator T : W 1,p(Ω) −→ Lp(∂Ω), p ∈ [1,∞) which gives for functions

u ∈ W 1,p(Ω) ∩ C(Ω), the classical boundary values Tu(x) = u(x) for all

u ∈ W 1,p(Ω) ∩ C(Ω) i.e Tu(x) = u(x) |x∈∂Ω

Remark 2.1.27:

On the trace

(i) the operator T is called trace or trace operator.

(ii) since a linear and continuous operator is bounded, there is a constant C > 0 with

‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω) for all u ∈ W 1,p

From the Trace Theorem we can derive a very useful definition when dealing with

homogeneous Dirichlet boundary conditions.
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Definition 2.1.28:

We define the Sobolev space with functions vanishing at the boundary as

W k,p
0 = {u ∈ W k,p(Ω) : u|∂Ω = 0}.

In particular, for k = 1 and p = 2 it follows that

W 1,2
0 = H1

0 = {u ∈ H1 : u|∂Ω = 0}.

The difference between W k,p(Ω) and W k,p
0 (Ω) is not merely a technical one. The idea of

the space W k,p
0 (Ω) is that it consists of those functions in W 1,p(Ω) which take the value

zero at the boundary of Ω. Now many boundary value problems are equivalent to

Au = 0 (2.4)

where A : X −→ Y is a mapping between two Banach spaces. When the problem is

variational, there exists a differentiable functional φ : X −→ R such that A = φ′, i.e

〈Au, v〉 = lim
t−→0

φ(u+ tv)− φ(u)

t
. (2.5)

The space Y corresponds then to the topological dual X∗ of X and equation (2.4) is

equivalent to φ′(u) = 0, i.e

〈φ′(u), v〉 = 0, ∀v ∈ X (2.6)

A critical point of φ is a solution u of (2.6) and the value of φ at u is a critical value of

φ. How to find critical values? When φ is bounded from below, the infimum

c = inf
X
φ (2.7)

is a natural candidate. Ekelands variational principle implies the existence of a sequence

(un) such that

φ(un) −→ c, φ′(un) −→ 0, as n←→∞. (2.8)

Such a sequence is called a Palais Smale sequence at level c. The functional φ satisfies

the (PS)c condition if any Palais-Smale sequence at level c has a convergent subsequence.
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If φ is bounded from below and satisfies the (PS)c condition at level c := inf
X
φ, then c is

a critical value of φ.

Definition 2.1.29: ( Gateaux Derivative)

Let φ : U −→ R where U is an open subset of a Banach space E. The functional φ has

a Gateaux derivative φ
′ ∈ E∗ at u ∈ U if, for every h ∈ E,

dhφ = 〈φ′(u), h〉 = lim
t−→0

φ(u+ th)− φ(u)

t

the Gateaux derivative at u is denoted by φ′(u). The functional φ has a Frechet derivative

f ∈ E∗ at u ∈ U if

〈φ′(u), h〉 = lim
h−→0

1

‖h‖
(φ(u+ h)− φ(u))

the functional φ ∈ C1(U,R) if the Frechet derivative of φ exists and is continuous on U .

Example 2.1.30:

Let J : H1(Ω) −→ R be a functional defined by J =

∫
Ω

1

2
u2
x +

1

2
u2dx.

Then the Gateaux derivative

dhJ = lim
ε−→0

∫
Ω

[
1
2
u2
x + 1

2
u2 + εuh+ εuxhx + 1

2
ε2h2

x + 1
2
εh2 − 1

2
u2
x − 1

2
u2
]
dx

ε
.

Therefore dhJ =

∫
Ω

(uh+ uxhx)dx

Definition 2.1.31:

A critical, or stationary point of Jλ : E −→ R is a z ∈ E such that Jλ is differentiable

at z and DJλ(z) = 0. A critical level of Jλ is a number c ∈ R such that there exists a

critical points z ∈ E with Jλ(z) = c.
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2.2 Some Basic Lemmas

This section contains basic lemmas and theorems without proof that are needed later in

the research. For the proof of these theorems and lemmas see [22],[18].

Theorem 2.2.1: (Lebesgue Dominated Convergence)

Suppose fn : R −→ R∗ are lebesgue measurable function such that f(x) = lim
n→∞

fn(x)

exist, assume there exist integrable g : R −→ [0,∞) with |fn(x)| ≤ g(x),∀x ∈ R, then f

is integrable as is fn for each n and

lim
n→∞

∫
R

fndµ =

∫
R

fdµ

Definition 2.2.2: (Holder Inequality)

Let 1
p

+ 1
q

= 1, p, q ∈ [1,∞). If u ∈ Lp(Ω) and v ∈ Lq(Ω), then uv ∈ L1(Ω) and it holdes

that

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Remark 2.2.3:

Let us recall that J ∈ C(E,R) is coercive if lim
‖u‖→∞

J(u) =∞.

Remark 2.2.4:

Jλ is called weakly lower semi continuous if for every sequence un ⇀ u one has that

Jλ(u) ≤ lim inf
n−→∞

Jλ(un).

Lemma 2.2.5:

Let E be a reflexive Banach space and let Jλ : E −→ R be coercive and weakly lower

semi continuous. Then Jλ is bounded from below on E, and there exists c ∈ R such that

Jλ(u) ≥ c for all u ∈ E.
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Theorem 2.2.6:

Every bounded sequence of finite measures on Ω contains a weakly convergent

subsequence. If un −→ u in M(Ω) then un is bounded and

‖u‖ ≤ lim‖un‖

where M(Ω) denote the space of finite measures.

Lemma 2.2.7: (Brezis-Lieb Lemma,1983)

Let Ω be an open subset of RN and let (un) ⊂ Lp(Ω), 1 ≤ p <∞. If

a (un) is bounded in Lp(Ω),

b un −→ u almost everywhere on Ω,then

lim
n−→∞

(|un|pp − |un − u|pp) = |u|pp.

Theorem 2.2.8: (Fatous lemma)

Let A ⊂ Rn be measurable and let fn be a sequence of nonnegative, measurable functions.

Then ∫
A

(
lim
n−→∞

inf fn(x)
)
dx ≤ lim

n−→∞
inf

∫
A

fn(x)dx.

Theorem 2.2.9:

let Ω be an open subset of Rn and 1 ≤ p ≤ ∞, if vn −→ u in Lp, there exists a

subsequence wn of vn and g(x) ∈ Lp such that, wn −→ u a.e on Ω and |u| ≤ g(x),

|wn| ≤ g(x).

Theorem 2.2.10: (Ekelands variational principle)

Let X be a Banach space, φ ∈ C1(X,R) bounded below, v ∈ X and ε, δ > 0. If

φ(v) ≤ inf
X
φ+ε there exists u ∈ X such that φ(u) ≤ inf

X
φ+2ε, ‖φ′(u)‖ < 8ε

δ
, ‖u−v‖ ≤ 2δ.

19



Theorem 2.2.11:

Let φ ∈ C1(X,R) be bounded below. If φ satisfies condition (PS)c with c = infX φ then

every minimizing sequence for φ contains a converging subsequence. In particular, there

exists a minimizer for φ contains a converging subsequence. In particular, there exists a

minimizer for φ.

Theorem 2.2.12: (Rellich-Kondrachov Lemma)

On a bounded open set Ω, the nonendpoint Sobolev Embeddings

W 1,p
0 −→ Lq(Ω),

where q < np
n−p = p∗ is compact.
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2.3 Abstract Setting for Nehari Manifold

In 1960, [2], Nehari has introduced a method which turned out to be very useful in critical

point theory and eventually came to bear his name. He considered a boundary value

problem for a certain nonlinear second order ordinary differential equation in an interval

(a,b) and showed that it has a nontrivial solution which may be obtained by constrained

minimization of the Euler-Lagrange functional corresponding to the problem. In 1961,

he proved the existence of infinitely many solution and, in 1963 he solved the case where

Ω = R3. To describe Neharis method, let E be real Banach space and φ ∈ C1(E,R) a

functional. The Frechet derivative of φ at u, φ′(u) is an element of the dual space E∗,

and we shall denote φ′(u) evaluated at v ∈ E by 〈φ′(u), v〉. Suppose u 6= 0 is a critical

point of φ, i.e. φ′(u) = 0. Then necessarily u is contained in the set

N = {u ∈ E\{0} : 〈φ′(u), u〉 = 0}. (2.9)

So N is a natural constraint for the problem of finding nontrivial (i.e.,6= 0) critical points

of φ. N is called the Nehari manifold though in general it may not be a manifold. Set

c := inf
u∈N

φ(u). (2.10)

Under appropriate conditions on φ one hopes that c is attained at some u0 ∈ N and that

u0 is a critical point. Assume without loss of generality that φ(0) = 0. Assume that for

each w ∈ S1(0) := {w ∈ E : ‖w‖ = 1} the function αw(s) = φ(sw) attains a unique max-

imum sw in (0,∞) such that α
′
w(s) > 0 whenever 0 < s < sw, α

′
w(s) < 0 whenever s > sw

and sw ≥ δ for some δ > 0 independent of w ∈ S1(0). Then α
′
w(sw) = φ

′
(sww)w = 0.

Hence sww is the unique point on the ray s −→ sw, s > 0, which intersects N . Moreover

N is bounded away from 0. It is easy to see that N is closed in E and there exists a radial

bijection between N and S1(0). It is proved that if sw is bounded on compact subsets of

S1(0), then this bijection is in fact a homeomorphism. Clearly, c in (2.10), if attained,

is positive. Further it is shown that u0 ∈ N is a critical point whenever φ(u0) = c.

Note that since s −→ αw(s) is increasing for all w ∈ S1(0) and 0 < s < δ0, is a local

minimum and hence a critical point of φ. Since u0 is a solution to the equation φ
′
(u) = 0

which has minimal energy φ in the set of all nontrivial solutions, we shall call it a ground
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state. Suppose in addition to the assumptions already made that E is a Hilbert space

and φ ∈ C2(E,R). Then

α
′′
w(sw) = φ

′′
(sww)(w,w) = s−2

w φ
′′
(u)(u, u) ≤ 0, where u = sww ∈ N . If φ

′′
(u)(u, u) < 0

for all u ∈ N , then setting G(u) = φ
′
(u)u, then

G
′
(u)u = φ

′′
(u)(u, u) + φ

′
(u)u = φ

′′
(u)(u, u) < 0, u ∈ N

Since N = {u ∈ E \{0} : G(u) = 0}, it follows from the implicit function theorem that N

is a C1−manifold of codimension 1 and E = Tu(N)⊕ Ru for each u ∈ N . Hence in this

case it is easily seen that any u ∈ N with φ(u) = c (i.e., any minimizer of φ|N) satisfes

φ
′
(u) = 0. More generally, a point u ∈ E is a nonzero critical point of φ if and only if

u ∈ N and u is critical for the restriction of φ to N . In view of this property, one may

apply critical point theory on the manifold N in order to find critical points of φ. Our

goal in this research is to present a method of Nehari manifold and to introduce it can

be applied to solve elleptic p-laplacian equation in problem (1). In [2] the researchers

from them A.Ambrosetti, A.Malchiodi, and Nehari introduced several examples where it

can be applied in order to show the existence of solutions to nonlinear boundary value

problems.
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Chapter 3

Positive Solution of p-Laplacian Equation with Dirichlet

Boundary Conditions

Problems involving the p−Laplacian arise from many branches of pure mathematics as in

the theory of quasiregular and quasiconformal mapping as well as from various problems

in mathematical physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids

correspond to p ∈ (1, 2) while dilatant fluids correspond to p > 2. The case p = 2

expresses Newtonian fluids [7]. In this chapter we are concerned with the existence and

multiplicity of positive solutions to the nonlinear elliptic problem:

−∆pu =
1

σ

∂F (x, u)

∂u
+ λa(x) | u |q−2 u, in Ω (3.1)

u = 0, on ∂Ω

where 4p denotes the p−Laplacian operator defined by 4p = div(|∇u|p−2∇u); p > 2, Ω

is abounded domain of Rn, (n ≥ 3), 1 < q < p < σ < p∗, (p∗ = np
n−p if p < n, p∗ = ∞ if

p ≥ n), λ ∈ R \ {0}, F ∈ C1(Ω × R,R) is positively homogeneous of degree σ, that is,

F (x, tu) = tσF (x, u) hold for all (x, u) ∈ Ω×R and a(x) : Ω −→ R are smooth functions

which change sign in Ω. Problem (3.1) is posed in the frame work of the Sobolev space

W 1,p
0 (Ω) accompained with the standard norm ‖u‖ =

(∫
Ω
|∇u|pdx

) 1
p . In this reasearch,

under the following conditions are assumed to be hold, we prove that using Nehari method

equation (3.1) has two positive solutions.

1) a(x) ∈ C(Ω) with ‖a‖∞ = 1, a+ = max(+a, 0) 6∼= 0, a− = max(−a, 0) 6∼= 0.
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2) F : Ω×R→ R is a C1 function such that F (x, tu) = tσF (x, u) (t > 0),∀x ∈ Ω, u ∈ R.

3) F (x, 0) = ∂F (x,0)
∂u

= 0, F+(x, u) = max(+F (x, u), 0) 6≡ 0, and

F−(x, u) = max(−F (x, u), 0) 6≡ 0 ∀u 6= 0.

The details of this chapter are covered mainly in reference [9]. The function F satisfies

the following properties.

Property 1: u ∂F (x,u)
∂u

= σF (x, u).

Proof. By Assumption (2), F (x, tu) = tσF (x, u). Setting z = tu, and applying the

chain rule we get
∂F

∂t
=
∂F

∂z

∂z

∂t
or

∂F (x, tu)

∂t
=
∂F (x, z)

∂z
u. At t = 1, z = u and

∂F (x, tu)

∂t
|t=1=

∂F (x, u)

∂u
u. Since

∂F (x, tu)

∂t
= σ tσ−1F (x, u), we obtain

∂F (x, tu)

∂t
|t=1= σF (x, u). Therefore u

∂F (x, u)

∂u
= σ F (x, u).

Property 2: |F (x, u)| ≤ K|u|σ, for some positive constant K.

Proof. From the first property we have u
∂F (x, u)

∂u
= σF (x, u),

∂F (x, u)

∂u
F (x, u)

=
σ

u
.

If we integrate with respect to u we get

ln|F (x, u)| = σ ln|u|+ k(x)

= ln|u|σ + k(x)

or |F (x, u)| = ek(x)|u|σ. By continuity of ek(x) on Ω then there exist K > 0 such that

ek(x) ≤ K. Hence |F (x, u)| ≤ K|u|σ, K > 0.

In this chapter, firstly we study the existence and multiplicity of nontrivial solutions

of the p−laplacian equation with zero Dirichlet boundary conditions. In Section One we

discuss the relation between the weak solution of equation (3.1) and variational form, we

also present some technical lemmas which are useful in the proof of main result

Theorem (3.2.1). Finally in Section Two we introduce the proof of the Theorem (3.2.1).
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3.1 Variational Form of Differential Equations

The modern study is often based on the weak form of a partial differential equation,

as too are various numerical solution techniques for finding approximate solutions. The

weak form of a partial differential equation is empowering for mathematical analysis as

tools from functional analysis can be leveraged. Weak formulations are often referred to

as variational formulations, but they can still be formulated for problems that cannot be

phrased as a minimization problem. Classical transport equations are a typical example

of a case that cannot be posed as a minimization problem. The derivation of the weak

form of a differential equation follows a standard process:

1. Multiply the differential equation by an arbitrary weight function and integrate over

the domain.

2. Apply integration by parts, if possible, and insert Dirichlet boundary condition.

The weak form of an equation does not generally make an equation easier to solve

analytically (it may make it harder), but is usually a more suitable form for mathematical

analysis (allowing us to say things about the properties of the equation without knowing

the solution) and for numerical solution methods. To derive the weak form of Equation

(3.1), we first multiply both sides of equation (3.1) by a weight function φ and integrate

over the domain Ω∫
Ω

−4pu φdx =
1

σ

∫
Ω

∂F (x, u)

∂u
φdx− λ

∫
Ω

a|u|q−2u φdx, (3.2)

we require that φ = 0 on parts of the boundary. Integrating the left side by parts, we get∫
Ω

|∇u|p−2∇u∇φdx− 1

σ

∫
Ω

∂F (x, u)

∂u
φdx− λ

∫
Ω

a|u|q−2uφdx = 0, ∀φ ∈ E (3.3)

where E = W 1,p
0 , solving equation (3.1) now involves finding u that satisfies the Dirichlet

boundary conditions such that the above equation holds for all functions φ in E. Problem

(3.1) has a variational structure equivalent to the weak form (3.3).

The variational form of a differential equation is an alternative way of expressing the same

problem. The variational view, and the associated machinery of variational methods and

functional analysis are at the heart of the modern study of partial differential equations
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and provide the basis for a variety of numerical solution procedures, like the Finite

Element Method. We will see that classical variational methods involve the minimization

of a functional, although many of the concepts of variational methods extend beyond this

classical perspective, say Jλ that depends on the function u(x). We will usually want

to find the function u that minimizes Jλ (sometimes we will be satisfied with stationary

points). The problem is stated as

min
u∈E

Jλ(u)

The solution u is sometimes referred to as a minimizer of Jλ. In general, some constraints

will be applied to u. To find u that minimizes Jλ, we take the directional derivative of

Jλ and set it equal to zero,

DJλ(u)(φ) =
d

dε
J(u+ εφ)|ε=0 = 0.

Recall that the directional derivative is the change in Jλ if we move a small distance

from u in the direction of φ (hence the name variational methods). For simple problems,

we can apply partial differentiation directly without going through the formalities of the

directional derivative. The precise definition of Jλ depends on the problem considered.

The problem (3.1) has a variational structure. To explain the relation of problem (3.1)

to variational problems we define the functional (energy functional) Jλ : W 1,p
0 −→ R by

Jλ(u) =
‖u‖p

p
− 1

σ

∫
Ω

F (x, u)dx− λ

q

∫
Ω

a(x)|u|qdx (3.4)

Then we consider the following problem. Find u ∈ W 1,p
0 such that

Jλ(u) ≤ Jλ(φ) ∀φ ∈ E. (3.5)

For such problems a necessary condition for optimality is the first variation δJλ(u, φ) must

vanish for arbitrarily admissible functions φ. It is defined by δJλ(u, φ) =
d

dε
Jλ(u+ε φ)|ε=0,

such that δJλ(u, φ) = DJλ(u)φ. For the functional Jλ(u) defined in (3.4) we have

Jλ(u+ εφ) =
‖u+ εφ‖p

p
− 1

σ

∫
Ω

F (x, u+ εφ)dx− λ

q

∫
Ω

a(x)|u+ εφ|qdx

=
1

p

∫
Ω

|∇(u+ εφ)|pdx− 1

σ

∫
Ω

F (x, u+ εφ)dx− λ

q

∫
Ω

a(x)|u+ εφ|qdx.
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Differentiate with respect to ε we end with
d

dε
Jλ(u+ εφ)|ε=0 =

1

p

∫
Ω

p|∇u+ ε∇φ)|p−2∇u∇φdx− 1

σ

∫
Ω

∂F (x, u+ εφ)

∂u
φdx− λ

q

∫
Ω

qa(x)|u+ εφ|q−2uφdx

Hence, the first variation reads

δJλ(u, φ) =
d

dε
Jλ(u+ εφ)|ε=0

=

∫
Ω

|∇u|p−2∇u∇φdx− 1

σ

∫
Ω

∂F (x, u)

∂u
φdx− λ

∫
Ω

a(x)|u|q−2uφdx.

Therefore the condition δJλ(u, φ) = 0 necessary for optimality in (3.5) is equivalent to

the variational form coresponding to Equation (3.1). Hence the nontrivial weak solutions

are equivalent to the nonzero critical (stationary) points of the functional Jλ(u).

In order to prove that the functional Jλ(u) is C1 we need the following lemma.

Lemma 3.1.1:

Assume that F ∈ C1(Ω× R,R) is positively homogenous of degree σ, then

∂F

∂u
∈ C(Ω× R,R) is positively homogenous of degree σ − 1.

Proof. By assumption F (x, tu) = tσF (x, u). If we differentiate with respect to u

we obtain

∂F (x, tu)

∂u
t = tσ

∂F (x, u)

∂u

or

∂F (x, tu)

∂u
= tσ−1∂F (x, u)

∂u
.

Hence
∂F

∂u
is positively homogenous of degree σ − 1. Since F ∈ C1(Ω× R,R), then

∂F

∂u
is a real valued continous function on Ω× R.
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Remark 3.1.2:

There exists a positive constant K such that

∣∣∣∣∂F (x, u)

∂u

∣∣∣∣ ≤ K|u|σ−1.

Proof. Using the result of the last Lemma and differentiating the function
∂F (x, tu)

∂u

with respect to t then setting t = 1 we get

u
∂2F (x, u)

∂u2
= (σ − 1)

∂F (x, u)

∂u

or we write this as
∂2F (x, u)

∂u2

∂F (x, u)

∂u

=
σ − 1

u
.

Integrate with respect to u to get

ln

∣∣∣∣∂F (x, u)

∂u

∣∣∣∣ = (σ − 1) ln|u|+ k(x)

= ln|u|σ−1 + k(x),

taking the exponential to both sides leads to

∣∣∣∣∂F (x, u)

∂u

∣∣∣∣ = ek(x)|u|σ−1, again

by continuity of ek(x) on Ω then there exist K > 0 such that ek(x) ≤ K.

Hence

∣∣∣∣∂F (x, u)

∂u

∣∣∣∣ ≤ K|u|σ−1, K > 0.

Remark 3.1.3:

Let Sl denote the best Sobolev constant for the operators W 1,p
0 (Ω) −→ Ll(Ω), given by

Sl = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|pdx

(
∫

Ω
|u|ldx)

p
l

, where 1 < l ≤ p∗. Then

∫
Ω

|u|ldx ≤ S
−l
p

l ‖u‖
l ∀u ∈ W 1,p

0 (Ω).

Proof. By definition of infimum we have Sl ≤
∫

Ω
|∇u|pdx

(
∫

Ω
|u|ldx)

p
l

or we write

S
l
p

l ≤
(
∫

Ω
|∇u|pdx)

l
p∫

Ω
|u|ldx

. Therefore

∫
Ω

|u|ldx ≤ S
−l
p

l ‖u‖
l, where ‖u‖ = (

∫
Ω

|∇u|pdx)
1
p .

28



Lemma 3.1.4:

Let p, r ∈ [1,∞) and f ∈ C(Ω× R,R) such that

|f(x, u)| ≤ c(1 + |u|
p
r ),∀x ∈ Ω, ∀u ∈ R. (3.6)

Then for every u ∈ Lp(Ω), one has f(., u) ∈ Lr(Ω), and the operator A : Lp(Ω) −→ Lr(Ω)

defined by A(u)(x) = f(x, u(x)) is continuous.

Proof.

1) To prove that f(., u) ∈ Lr(Ω) we need to show that ∀x ∈ Ω,

∫
Ω

|f(x, u)|rdx <∞. Let

u ∈ Lp(Ω). Since |f(x, u)| ≤ c(1 + |u|
p
r ) leads to

|f(x, u)|r ≤ cr(1 + |u|
p
r )r.

It follows from the inequality ‖f + g‖pp ≤ 2p−1(‖f‖pp + ‖g‖pp), where f, g ∈ Lp that∫
Ω

|cr(1 + |u|
p
r )r| = cr

∫
Ω

|1 + |u|
p
r |r

≤ cr2r−1

(∫
Ω

|1|rdx+

∫
Ω

|u|
p
r
rdx

)
= 2r−1cr

(∫
Ω

(1 + |u|p)dx
)
<∞.

Therfore cr(1 + |u|
p
r )r ∈ L1(Ω), thus

∫
Ω
|f(x, u)|rdx <∞ and f(., u) ∈ Lr(Ω).

2) To show that A(u)(x) = f(x, u(x)) is continuous we need to prove that if un −→ u in

Lp then A(un) −→ A(u) in Lr. Assume that un −→ u in Lp. By Theorem (2.2.9)

there exists a function g(x) in Lp and a subsequence wn of un such that wn −→ u a.e in

Ω and |u| ≤ g(x), |wn| ≤ g(x) on Ω. Then

|f(x,wn)− f(x, u)|r ≤ (|f(x,wn)|+ |f(x, u)|)r

≤
(
c(1 + |wn|

p
r ) + c(1 + |u|

p
r )
)r

≤
(

2c(1 + |g(x)|
p
r )
)r

≤ 2rcr(1 + |g(x)|
p
r )r.

Analogus to the proof of part one we get 2rcr(1 + |g(x)|
p
r )r ∈ L1(Ω). It follows from the

Dominated Convergence Theorem that lim
n→∞

∫
Ω

|f(x,wn) − f(x, u)|rdx = 0 which leads
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to

(
lim
n−→∞

∫
Ω

|f(x,wn)− f(x, u)|rdx
) 1

r

= 0. Hence ‖A(wn) − A(u)‖rL −→ 0 as n −→ ∞

and A(wn) −→ A(u) in Lr. Thus A(u) is continuous.

Remark 3.1.5:

The Gateaux derivative of the functional Jλ(u) is given by

〈J ′λ(u), h〉 = lim
t→0

Jλ(u+ th)− Jλ(u)

t
,

and if Jλ has a continuous Gateaux derivative on E then Jλ ∈ C1(E,R).

Lemma 3.1.6:

Suppose that
∂F (x, u)

∂u
∈ C(Ω × R,R) and

∣∣∣∣∂F (x, u)

∂u

∣∣∣∣ ≤ K|u|σ−1. Then the functional

Jλ ∈ C1(E,R), and

〈J ′λ(u), u〉 = ‖u‖p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x) | u |q dx. (3.7)

Proof. We define three functionals I1, I2 and I3 as follows.

I1(u) =
1

p

∫
Ω

|∇u|pdx, I2(u) =
1

σ

∫
Ω

F (x, u)dx and I3(u) =
λ

q

∫
Ω

a(x)|u|qdx.

Claim 1: I1(u) ∈ C1(E,R) and for any u, v ∈ E, 〈I ′1(u), v〉 =
∫

Ω
|∇u|p−2∇v.∇u. For

a fixed x ∈ Ω let us consider φ : Rn −→ R defined by φ(ξ) =
1

p
|ξ|p. Obviously

φ ∈ C1(Rn,R) and ∇φ(ξ) = |ξ|p−2ξ. Thus, for all ξ, θ ∈ Rn we have

lim
t→0

φ(ξ + tθ)− φ(ξ)

t
= |ξ|p−2ξ.θ.

As a cosequence, for u, v ∈ E we have

lim
t→0

1
p
|∇u+ t∇v|p − 1

p
|∇u|p

t
= |∇u|p−2∇u.∇v (3.8)

By the mean value theorem, there exists k ∈ R with 0 < |k| < |t| such that

for each t ∈ R with 0 < |t| < 1,∣∣∣∣∣
1
p
|∇u+ t∇v|p − 1

p
|∇u|p

t

∣∣∣∣∣ =
∣∣ |∇u+ kt∇v|p−2(∇u+ kt∇v)∇v

∣∣
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≤ (|∇u|+ |∇v|)p−1 |∇v|. (3.9)

By Holder Inequality we have∫
Ω

∣∣(|∇u|+ |∇v|)p−1 |∇v|dx
∣∣ ≤ ∥∥ (|∇u|+ |∇v|)p−1

∥∥
Lp′
‖ |∇v| ‖Lp

≤ ‖v‖
(∫

Ω

(|∇u|+ |∇v|)pdx
) 1

p
′

≤ ‖v‖ 2
p−1

p
′

(∫
Ω

|∇u|p + |∇v|p)dx
) 1

p
′

where p+ p
′
= pp

′
. Hence (|∇u|+ |∇v|)p−1 |∇v| ∈ L1(Ω) due to u, v ∈ E, combining

this with (3.8) and (3.9) and applying the Dominated Convergence Theorem, we obtain

lim
t→0

∫
Ω

1
p
|∇u+ t∇v|p − 1

p
|∇u|p

t
dx =

∫
Ω

|∇u|p−2∇u.∇vdx.

It means that I1 is Gateaux differentiable and for u ∈ E,

〈I ′1(u), u〉 =

∫
Ω

|∇u|p−2∇u.∇udx =

∫
Ω

|∇u|pdx = ‖u‖p.

Next, we prove that I
′

1 : E −→ E∗ is continuous. To get this aim we take a sequence

un ∈ E such that un −→ u in E as n −→∞. We have

lim
n→∞

∫
Ω

|∇un −∇u|pdx = 0.

Thus, up to a subsequence we have

∇un −→ ∇u a.e in Ω as n −→∞ (3.10)

and for some h ∈ L1(Ω).

|∇un −∇u|p ≤ h(x) a.e x ∈ Ω. (3.11)

Since

|∇un|p ≤ (|∇u|+ |∇un −∇u|)p

≤ 2p−1(|∇u|p + |∇un −∇u|p).

It follows from (3.11) that

|∇un|p ≤ 2p−1(|∇u|p + h(x)). (3.12)
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For any u ∈ E with ‖u‖ ≤ 1 and by Holder Inequality we have

|〈I ′1(un)− I ′1(u), u〉| =

∣∣∣∣∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u)∇udx
∣∣∣∣

≤
∥∥ | |∇un|p−2∇un − |∇u|p−2∇u|

∥∥
Lp
′ ‖ |∇u| ‖Lp

≤
∥∥ ∣∣ |∇un|p−2∇un − |∇u|p−2∇u

∣∣ ∥∥
Lp′

.

Hence ∥∥∥I ′1(un)− I ′1(u)
∥∥∥
E∗
≤
∥∥ ∣∣ |∇un|p−2∇un − |∇u|p−2∇u

∣∣ ∥∥
Lp′

. (3.13)

First, we observe that∫
Ω

∣∣ | |∇un|p−2∇un − |∇u|p−2∇u |
∣∣p′ dx =

∫
Ω

∣∣ |∇un|p−2∇un − |∇u|p−2∇u
∣∣p′ dx.

It follows from (3.10) that

∣∣ |∇un|p−2∇un − |∇u|p−2∇u
∣∣p′ −→ 0 a.e x ∈ Ω

and from (3.12) that

∣∣ |∇un|p−2∇un − |∇u|p−2∇u
∣∣p′ ≤ 2p

′−1(|∇un|p + |∇u|p)

≤ 2p
′
+p−1(|∇u|p + h(x)).

Noting that 2p
′
+p−1(|∇u|p + h(x)) ∈ L1(Ω) and applying the Dominated Convergence

Theorem we have∫
Ω

∣∣ | |∇un|p−2∇un − |∇u|p−2∇u |
∣∣p′ dx −→ 0, as n −→∞.

Therefore

‖ | |∇un|p−2∇un − |∇u|p−2∇u | ‖Lp′ −→ 0, as n −→∞. (3.14)

Combining this and (3.13) we have

‖I ′1(un)− I ′1(u)‖E∗ −→ 0, as n −→∞. (3.15)

Thus I
′

1 : E −→ E∗ is continuous and I1 ∈ C1(E,R).

Claim 2: I2 ∈ C1(E,R) and for any u ∈ E , 〈I ′2(u), u〉 =

∫
Ω

F (x, u)dx,
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where F (x, u) =

∫ u

0

f(x, s)ds. Similar to proof I1, let u, h ∈ E. Given x ∈ Ω and

0 < |t| < 1, by the mean value theorem, there exist λ ∈ (0, 1) such that 0 < |λ| < |t| < 1,∣∣∣∣ 1
σ
F (x, u+ th)− 1

σ
F (x, u)

t

∣∣∣∣ =

∣∣∣∣ 1σ ∂F (x, u+ λh)

∂u
h(x)

∣∣∣∣
≤ 1

σ

∣∣∣∣∂F (x, u+ λh)

∂u

∣∣∣∣ |h(x)|.

By Remark (3.1.2) we obtain
| 1
σ
F (x, u+ th)− 1

σ
F (x, u)|

|t|
≤ 1

σ
K(|u|+ |h|)σ−1|h|.

Also by Holder Inequality we have∫
Ω

| (|u|+ |h|)σ−1 |h(x)|dx| ≤ ‖(|u|+ |h|)σ−1‖Lγ‖ |h| ‖Lσ

≤ 2
σ−1
γ

(∫
Ω

(|u|σ + |h|σ)dx

) 1
γ

‖h‖

where γ =
σ

σ − 1
. Hence

1

σ
K(|u|+ |h|)σ−1|h(x)| ∈ L1 since u, h ∈ E. It follows from

the Dominated Convergence Theorem that

lim
t→0

∫
Ω

1
σ
F (x, u+ th)− 1

σ
F (x, u)dx

t
=

∫
Ω

1

σ

∂F (x, u)

∂u
hdx.

Thus 〈I ′2(u), u〉 =

∫
Ω

1

σ

∂F (x, u)

∂u
udx. By applying Property (1) we have

〈I ′2(u), u〉 =

∫
Ω

F (x, u)dx. (3.16)

To prove the Continuity of the Gateax derivative, we assume that un −→ u in E.

By Sobolev Embedding Theorem, un −→ u in Lp. It follows from Lemma (3.1.4) that

f(x, un) −→ f(x, u) in Lr where r =
p

p− 1
. For any u ∈ E with ‖u‖ ≤ 1 and by the

Holder Inequality we get

|〈I ′2(un)− I ′2(u), h〉| =

∣∣∣∣ 1σ
∫

Ω

(f(x, un)− f(x, u))hdx

∣∣∣∣
≤ 1

σ

∫
Ω

|f(x, un)− f(x, u)| |h|dx

≤ 1

σ
‖f(x, un)− f(x, u)‖Lr‖h‖Lp

≤ 1

σ
‖f(x, un)− f(x, u)‖Lr
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and so

‖I ′2(un)− I ′2(u)‖E∗ ≤ ‖f(x, un)− f(x, u)‖rL −→ 0, as n −→∞. (3.17)

Thus I
′

2 : E −→ E∗ is continuous and I2 ∈ C1(E,R).

Claim 3 : I3 ∈ C1(E,R) and for any u ∈ E, 〈I ′3(u), u〉 = λ
∫

Ω
a(x)|u|qdx. Again let

u, h ∈ E then u, h ∈ Lp. Given x ∈ Ω and 0 < |t| < 1 by the mean value theorem, there

exists c ∈ (0, 1) such that 0 < |c| < |t| < 1,

∣∣∣∣∣
λ
q
a(x)|u+ th|q − λ

q
a(x)|u|q

t

∣∣∣∣∣ = λ a(x) |u+ cth|q−1|h(x)|

≤ λa(x)(|u|+ |c||t||h|)q−1|h(x)|

≤ λ‖a(x)‖∞ (|u|+ |h|)q−1 |h(x)|.

= λ (|u|+ |h|)q−1 |h(x)|.

The Holder Inequality implies that λ(|u|+ |h|)q−1|h(x)| ∈ L1(Ω). It follows from

the Dominated Convergence Theorem that

〈I ′3(u), h〉 = λ

∫
Ω

a(x)|u|q−2uhdx.

Thus

〈I ′3(u), u〉 = λ

∫
Ω

a(x)|u|qdx. (3.18)

Now we want to prove that I ′3 is continuous on E. To this end let us define

f(., u) = |u|q−2u. Assume that un −→ u in Lq.
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By Lemma (3.1.4), f(., un) −→ f(., u) in Lr when r = q
q−1

. For any h ∈ E with ‖h‖ ≤ 1

and by Holder Inequality we obtain

|〈I ′3(un)− I ′3(u), h〉| =

∣∣∣∣λ∫
Ω

a(x)(|un|q−2un − |u|q−2u)hdx

∣∣∣∣
≤ |λ|‖a(x)‖∞

∫
Ω

∣∣ |un|q−2un − |u|q−2u
∣∣ |h|dx

≤ |λ|
∥∥ |un|q−2un − |u|q−2u

∥∥
Lr
‖h‖Lq

≤ |λ|
∥∥ |un|q−2un − |u|q−2u

∥∥
Lr
.

Hence ‖I ′3(un) − I ′3(u)‖E∗ ≤ |λ| ‖f(un)− f(u)‖Lr −→ 0, so ‖I ′3(un) − I ′3(u)‖E∗ −→ 0.

Thus I ′3 : E −→ E∗ is continous and I3 ∈ C1(E,R).

So the functional Jλ(u) = I1(u)− I2(u)− I3(u) belongs C1(E,R) . Further we have

〈J ′λ(u), u〉 = 〈I ′1(u), u〉 − 〈I ′2(u), u〉 − 〈I ′3(u), u〉

= ‖u‖p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x)|u|qdx.

Next we prove that the second Gateaux derivative is given by

〈J ′′λ (u)u, u〉 = p

∫
Ω

|∇u|pdx− σ
∫

Ω

F (x, u)dx− λq
∫

Ω

a(x)|u|qdx.

To obtain this formula we define the functionals ψ1(u) =

∫
Ω

|∇u|pdx, ψ2(u) =

∫
Ω

F (x, u)dx

and ψ3(u) = λ

∫
Ω

a(x)|u|qdx. Now

〈ψ′1(u), h〉 =
d

dε
ψ1(u+ εh)|ε=0

=
d

dε

∫
Ω

|∇u+ ε∇h|pdx|ε=0,

=

∫
Ω

p|∇u|p−2∇u.∇hdx.

Thus 〈ψ′1(u), u〉 =
∫

Ω
p|∇u|p. Next

〈ψ′2(u), h〉 =
d

dε
ψ2(u+ εh)|ε=0

=
d

dε

∫
Ω

F (x, u+ εh)dx

=

∫
Ω

∂F

∂u
hdx.
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So 〈ψ′2(u), u〉 =

∫
Ω

∂F

∂u
udx = σ

∫
Ω

F (x, u) by Property (1). Finally

〈ψ′3(u), h〉 =
d

dε
ψ3(u+ εh)|ε=0

=
d

dε
λ

∫
Ω

a(x)|u+ εh|qdx|ε=0,

= λq

∫
Ω

a(x)|u|q−2u.hdx.

Thus 〈ψ′3(u), u〉 = λq

∫
Ω

a(x)|u|qdx. Hence

〈J ′′λ (u)u, u〉 = 〈ψ′1(u), u〉 − 〈ψ′2(u), u〉 − 〈ψ′3(u), u〉

= p‖u‖p − σ
∫

Ω

F (x, u)dx− λq
∫

Ω

a(x)|u|qdx

= p

(∫
Ω

F (x, u)dx+ λ

∫
Ω

a(x)|u|qdx
)
− σ

∫
Ω

F (x, u)dx− λq
∫

Ω

a(x)|u|qdx.

Therfore

〈J ′′λ (u)u, u〉 = λ(p− q)
∫

Ω

a(x)|u|qdx− (σ − p)
∫

Ω

F (x, u)dx (3.19)

also

〈J ′′λ (u)u, u〉 = p‖u‖p − σ
∫

Ω

F (x, u)dx− λq
∫

Ω

a(x)|u|qdx

= p‖u‖p − σ
(
‖u‖p − λ

∫
Ω

a(x)|u|qdx
)
− λq

∫
Ω

a(x)|u|qdx.

Thus

〈J ′′λ (u)u, u〉 = λ(σ − q)
∫

Ω

a(x)|u|qdx− (σ − p)‖u‖p (3.20)

〈J ′′λ (u)u, u〉 = p‖u‖p − σ
∫

Ω

F (x, u)dx− λq
∫

Ω

a(x)|u|qdx

= p‖u‖p − σ
∫

Ω

F (x, u)dx− q
(
‖u‖p −

∫
Ω

F (x, u)dx

)
.

Hence

〈J ′′λ(u)u, u〉 = (p− q)‖u‖p − (σ − q)
∫

Ω

F (x, u)dx (3.21)
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Definition 3.1.7: ( Nehari Manifold )

Assume that Jλ(u) ∈ C1(E,R) such that J
′

λ(0) = 0. A necessary condition for u ∈ E

to be a critical point of Jλ(u) is that 〈J ′λ(u), u〉 = 0. This condition defines the Nehari

mainfold

Nλ = {u ∈ E : 〈J ′λ(u), u〉 = 0, u 6= 0}

where 〈, 〉 denote the usual duality between E and E∗. A critical point u 6= 0 of Jλ is a

ground state or a least energy critical point if Jλ(u) = inf
N
Jλ. As Jλ(u) is not bounded

below on E = W 1,p
0 , it is useful to consider the functional on the Nehari manifold. Thus

u ∈ Nλ if and only if

‖u‖p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x) | u |q dx = 0 (3.22)

Note that Nλ contains every nonzero solution of problem (3.1). Thus it is natural to split

Nλ into three parts corresponding to local minima, local maxima and points of inflection.

For this, we set

N+
λ = {u ∈ Nλ : 〈φ′λ(u), u〉 > 0},

N0
λ = {u ∈ Nλ : 〈φ′λ(u), u〉 = 0},

N−λ = {u ∈ Nλ : 〈φ′λ(u), u〉 < 0},

where φλ(u) = 〈J ′λ(u), u〉. To state our main result, we now present some important

properties of N+
λ , N

0
λ and N−λ . The following lemma shows that the minimizers on Nλ

are usually critical points for Jλ.
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Lemma 3.1.8:

Assume that u0 is a local minimizer for Jλ(u) on Nλ and that u0 is not belonging to N0
λ ,

then J
′

λ(u0) = 0 in E∗ (the dual space of the Sobolev space E).

Proof. Suppose that u0 is a local minimum for Jλ(u) on Nλ, then u0 is a solution

of the optimization problem

minimize Jλ(u) subject to 〈J ′λ(u), u〉 = 0.

Hence by Lagrange multiplier there exist µ ∈ R such that J
′

λ(u0) = µ φ
′

λ(u0) in E∗. Thus,

〈J ′λ(u0), u0〉 = µ〈φ′λ(u0), u0〉.

Since u0 ∈ Nλ we have 0 = 〈J ′λ(u0), u0〉 = µ〈φ′(u0), u0〉. But u0 does not belong to N0
λ ,

then 〈φ′(u0), u0〉 6= 0 therefore µ = 0 and 〈J ′λ(u0), u0〉 = 0. Hence we get J
′

λ(u0) = 0.

Thus u0 is a critical point of Jλ.

Lemma 3.1.9:

One has the following :

(i) if u ∈ N+
λ , then λ

∫
Ω

a(x) | u |q dx > 0;

(ii) if u ∈ N−λ , then

∫
Ω

F (x, u)dx > 0,

(iii) if u ∈ N0
λ , then λ

∫
Ω

a(x) | u |q dx > 0 and

∫
Ω

F (x, u)dx > 0.

Proof.

(i) u ∈ Nλ iff ‖u‖p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x) | u |q dx = 0. Since u ∈ N+
λ ,

then 〈φ′(u), u〉 > 0. Now we consider the following two cases :

Case (1): If

∫
Ω

F (x, u)dx < 0, we have

λ

∫
Ω

a(x) | u |q dx = ‖u‖p −
∫

Ω

F (x, u)dx > 0.

Thus λ

∫
Ω

a(x) | u |q dx > 0.

Case (2): If

∫
Ω

F (x, u)dx > 0. Since u ∈ N+
λ we have
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λ(p− q)
∫

Ω

a(x) | u |q dx− (σ − p)
∫

Ω

F (x, u)dx > 0,

λ(p− q)
∫

Ω

a(x) | u |q dx > (σ − p)
∫

Ω

F (x, u)dx, or

λ

∫
Ω

a(x) | u |q dx > σ − p
p− q

∫
Ω

F (x, u)dx > 0.

Thus λ

∫
Ω

a(x) | u |q dx > 0.

(ii) u ∈ Nλ iff ‖u‖p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x) | u |q dx = 0. If u ∈ N−λ ,

then 〈φ′(u), u〉 < 0. Now we consider the following two cases :

Case (1): If λ

∫
Ω

a(x) | u |q dx = 0. Since u ∈ Nλ we have

‖u‖p =

∫
Ω

F (x, u)dx, but ‖u‖p > 0.

Hence

∫
Ω

F (x, u)dx > 0.

Case (2): If λ

∫
Ω

a(x) | u |q dx 6= 0. Since u ∈ N−λ by (3.21), we have

(p− q)‖u‖p − (σ − q)
∫

Ω

F (x, u)dx < 0, or∫
Ω

F (x, u)dx >
p− q
σ − q

‖u‖p > 0,

which implies

∫
Ω

F (x, u)dx > 0.

(iii) u ∈ Nλ iff ‖u‖p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x) | u |q dx = 0 . Since u ∈ N0
λ ,

then 〈φ′(u), u〉 = 0. Now by (3.20), we have

λ(σ − q)
∫

Ω

a(x) | u |q dx = (σ − p)‖u‖p, or

λ

∫
Ω

a(x) | u |q dx =
σ − p
σ − q

‖u‖p > 0.

Thus λ

∫
Ω

a(x) | u |q dx > 0, and by (3.21), we get

(p− q)‖u‖p − (σ − q)
∫

Ω

F (x, u)dx = 0,
∫

Ω
F (x, u)dx = p−q

σ−q‖u‖
p > 0.

Therefore

∫
Ω

F (x, u)dx > 0.
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Lemma 3.1.10:

If 0 < |λ| < λ0, where λ0 =
q

p

(
σ − p
σ − q

)
S
q
p
q

(
p− q

(σ − q)K
S
σ
p
σ

) p− q
σ − p

then N0
λ = φ

Proof. Suppose otherwise that 0 <| λ |< λ0 such that N0
λ 6= φ. Then for u ∈ N0

λ ,

we have

0 = 〈φ′λ(u), u〉 = λ(σ − q)
∫

Ω

a(x)|u|qdx− (σ − p)‖u‖p (3.23)

= (p− q)‖u‖p − (σ − q)
∫

Ω

F (x, u)dx. (3.24)

Using Property (2) and by Remark (3.1.3), we obtain∫
Ω

F (x, u)dx ≤
∣∣∣∣∫

Ω

F (x, u)dx

∣∣∣∣ ≤ ∫
Ω

|F (x, u)|dx ≤ K

∫
Ω

|u|σdx ≤ KS
−σ
p
σ ‖u‖σ.

Hence, it follows from (3.24) that

‖u‖p =
σ − q
p− q

∫
Ω

F (x, u)dx ≤ σ − q
p− q

KS
−σ
p
σ ‖u‖σ,

then

‖u‖ ≥

(
(p− q)S

σ
p
σ

(σ − q)K

) 1
σ−p

. (3.25)

On the other hand, from Holder Inequality, Condition (1), Equation (3.23) and by Remark

(3.1.3) we have

‖u‖p =
λ(σ − q)
σ − p

∫
Ω

a(x)|u|qdx ≤ |λ| σ − q
σ − p

‖a‖∞
∫

Ω

|u|qdx,

≤ |λ| σ − q
σ − p

S
−q
p
q ‖u‖q.

So

‖u‖ ≤
(
|λ| σ − q

σ − p
S
−q
p
q

) 1
p−q

(3.26)

Combining (3.25) and (3.26), we have |λ| ≥ λ0 a contradiction. Therefore N0
λ = φ for

0 < |λ| < λ0.

We remark that by Lemma (3.1.10), for 0 < |λ| < λ0, Nλ = N+
λ ∪N

−
λ and define

θλ = inf
u∈Nλ

Jλ(u), θ+
λ = inf

u∈N+
λ

Jλ(u), θ−λ = inf
u∈N−λ

Jλ(u). (3.27)
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Then, we have the following.

Lemma 3.1.11:

If 0 < |λ| < λ0, then θλ ≤ θ+
λ < 0, θ−λ > d0 for some d0 > 0 depending on p, q, σ, k, λ, Sq

and Sσ.

Proof. Let u ∈ N+
λ . Then from (3.21) we have

(p− q)‖u‖p − (σ − q)
∫

Ω

F (x, u)dx > 0. Thus

p− q
σ − q

‖u‖p >
∫

Ω

F (x, u)dx. (3.28)

So

Jλ(u) =
1

p
‖u‖p − 1

σ

∫
Ω

F (x, u)dx− λ

q

∫
Ω

a(x)|u|qdx

=
1

p
‖u‖p − 1

σ

∫
Ω

F (x, u)dx− 1

q

(
‖u‖p −

∫
Ω

F (x, u)dx

)

=
q − p
pq
‖u‖p +

σ − q
σq

∫
Ω

F (x, u)dx.

By (3.28) we have

Jλ(u) <
q − p
pq
‖u‖p +

p− q
σq

‖u‖p,

<

(
q − p
pq

+
p− q
σq

)
‖u‖p,

<
−(p− q)(σ − p)

σpq
‖u‖p < 0.

Hence Jλ(u) < 0, since N+
λ ⊂ Nλ, it follows that inf

u∈Nλ
Jλ(u) ≤ inf

u∈N+
λ

Jλ(u), so by the

definition of θλ and θ+
λ we obtain θλ ≤ θ+

λ < 0.

Now, let u ∈ N−λ , then from (3.21) we have

(p− q)‖u‖p − (σ − q)
∫

Ω

F (x, u)dx < 0.
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Using Property (2) and by Remark (3.1.3) we have

p− q
σ − q

‖u‖p <
∣∣∣∣∫

Ω

F (x, u)dx

∣∣∣∣ < ∫
Ω

|F (x, u)|dx < K

∫
Ω

|u|σdx ≤ KS
−σ
p
σ ‖u‖σ. Therefore

‖u‖p < σ − q
p− q

KS
−σ
p
σ ‖u‖σ, or we write

‖u‖ >
(

p− q
(σ − q)K

S
σ
p
σ

) 1
σ−p

∀u ∈ N−λ . (3.29)

Thus

Jλ(u) ≥ σ − p
σp
‖u‖p − |λ|S

−q
p
q
σ − q
σq
‖u‖q = ‖u‖q

(
σ − p
σp
‖u‖p−q − |λ|S

−q
p
q
σ − q
σq

)
. Hence

Jλ(u) >

(
p− q

(σ − q)K
S
σ
p
σ

) q
σ−p

(
σ − p
σp

(
p− q

(σ − q)K
S
σ
p
σ

) p−q
σ−p

− |λ |S
−q
p
q
σ − q
σq

)
.

Therefore Jλ(u) > d0 for some d0 > 0, where

d0 =

(
p− q

(σ − q)K
S
σ
p
σ

) q
σ−p

(
σ − p
σp

(
p− q

(σ − q)K
S
σ
p
σ

) p−q
σ−p

− |λ |S
−q
p
q
σ − q
σq

)
.

In order to prove that the functional Jλ has a minimum, we would need to know that Jλ

is bounded below. Of course, this is necessary but not enough to guarantee the existence

of a minimizer for Jλ. In the next lemma we prove that Jλ is bounded below and grows

rapidly ”coercive” at the ”extremes” of Nλ.
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Lemma 3.1.12:

The energy functional Jλ is coercive and bounded below on Nλ

Proof. If u ∈ Nλ, then ‖u‖p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x)|u|qdx = 0

Jλ(u) =
1

p
‖u‖p − 1

σ

∫
Ω

F (x, u)dx− λ

q

∫
Ω

a(x)|u|qdx

Jλ(u) =
1

p
‖u‖p − 1

σ

(
‖u‖p − λ

∫
Ω

a(x)|u|qdx
)
− λ

q

∫
Ω

a(x)|u|qdx

=
σ − p
σp
‖u‖p − λσ − q

qσ

∫
Ω

a(x) | u |q dx

by Remark (3.1.3) and Condition (1) we obtain

Jλ(u) ≥ σ − p
σp
‖u‖p − (

σ − q
qσ

)‖λa(x)‖∞
∫

Ω

| u |q dx

≥ σ − p
σp
‖u‖p − (

σ − q
qσ

) | λ |
∫

Ω

| u |q dx

≥ σ − p
σp
‖u‖p − (

σ − q
qσ

)(
| λ |

s
q
p
q

)‖u‖q.

Since 1 < q < p, Jλ(u) −→ ∞ as ‖u‖ −→ ∞. Therefore Jλ(u) is coercive and bounded

below on Nλ.

Definition 3.1.13:

For u ∈ E with

∫
Ω

F (x, u) > 0 define T to be

T =

(
(p− q)‖u‖p

(σ − q)
∫

Ω
F (x, u)dx

) 1
σ−p

> 0. Then the following result holds.

Lemma 3.1.14:

For each u ∈ E with

∫
Ω

F (x, u)dx > 0 one has the following:

(i) if λ

∫
Ω

a(x)|u|qdx ≤ 0, then there exists a unique t− > T such that

t−u ∈ N−λ and Jλ(t
−u) = sup

t≥0
Jλ(tu)

(ii) if λ

∫
Ω

a(x)|u|qdx > 0, then there are unique 0 < t+ < T < t− such that

(t−u, t+u) ∈ N−λ ×N
+
λ and Jλ(t

−u) = sup
t≥0

Jλ(tu); Jλ(t
+u) = inf

0≤t≤T
Jλ(tu).
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Proof. We fix u ∈ E with

∫
Ω

F (x, u)dx > 0 and we define the maps

mu(t) : R+
0 −→ R by

mu(t) = tp−q‖u‖p − tσ−q
∫

Ω

F (x, u)dx for t ≥ 0. (3.30)

〈J ′λ(tu), (tu)〉 = ‖tu‖p −
∫

Ω

F (x, tu)dx− λ
∫

Ω

a(x)|tu|qdx

= (t)p‖u‖p − (t)σ
∫

Ω

F (x, u)dx− λ(t)q
∫

Ω

a(x)|u|qdx

= (t)q
(

(t)p−q‖u‖p − (t)σ−q
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x)|u|qdx
)
.

= (t)q
(
mu(t)− λ

∫
Ω

a(x)|u|qdx
)

= 0 iff mu(t) = λ

∫
Ω

a(x)|u|qdx.

Clearly for t > 0, tu ∈ Nλ iff t is a solution of mu(t) = λ

∫
Ω

a(x)|u|qdx. Now

m′u(t) = (p− q)tp−q−1‖u‖p − (σ − q)tσ−q−1

∫
Ω

F (x, u)dx

and m′u(t) = 0 implies that (σ − q)tσ−q−1

∫
Ω

F (x, u)dx

[
(p− q)‖u‖p

(σ − q)tσ−p
∫
Ω F (x,u)dx

− 1

]
= 0

giving t =

(
(p− q)‖u‖p

(σ − q)
∫

Ω
F (x, u)dx

) 1
σ−p

. Hence m′u(t) = 0 for

T =

(
(p− q)‖u‖p

(σ − q)
∫

Ω
F (x, u)dx

) 1
σ−p

, m′u(t) > 0 for t ∈ (0, T ) and m′u(t) < 0 for t ∈ (T,∞).

Then mu(t) has a maximum at t = T , increasing for t ∈ (0, T ) and decreasing for

t ∈ (T,∞). Moreover mu(T ) =

=

(
(p− q)‖u‖p

(σ − q)
∫

Ω
F (x, u)dx

) p−q
σ−p

‖u‖p −
(

(p− q)‖u‖p

(σ − q)
∫

Ω
F (x, u)dx

) σ−q
σ−p
∫

Ω

F (x, u)dx

=

(
p− q
σ − q

) p−q
σ−p
(

‖u‖p∫
Ω
F (x, u)dx

) p−q
σ−p

‖u‖p−
(
p− q
σ − q

) σ−q
σ−p
(

‖u‖p∫
Ω
F (x, u)dx

) σ−q
σ−p
∫

Ω

F (x, u)dx.
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Since
p− q
σ − p

=
σ − σ + p− q

σ − p
=
σ − q
σ − p

− 1, Then

mu(T ) =

(
p− q
σ − q

) p−q
σ−p
(

‖u‖p∫
Ω
F (x, u)dx

) σ−q
σ−p

∫
Ω
F (x, u)dx

‖u‖p
‖u‖p −

(
p− q
σ − q

) σ−q
σ−p
(

‖u‖p∫
Ω
F (x, u)dx

) σ−q
σ−p
∫

Ω

F (x, u)dx

=

[(
p− q
σ − q

) p−q
σ−p

−
(
p− q
σ − q

) σ−q
σ−p
](

‖u‖p∫
Ω
F (x, u)dx

) σ−q
σ−p
∫

Ω

F (x, u)dx

Or we write

mu(T ) = ‖u‖q
[(

p− q
σ − q

) p−q
σ−p

−
(
p− q
σ − q

) σ−q
σ−p
]
×
(

‖u‖p∫
Ω
F (x, u)dx

) σ−q
σ−p

∫
Ω
F (x, u)dx

‖u‖q
.

Since
σ − q
σ − p

=
p− p+ σ − q

σ − p
=
p− q
σ − p

+ 1

mu(T ) = ‖u‖q
[(

p− q
σ − q

) p−q
σ−p

−
(
p− q
σ − q

) σ−q
σ−p
]
×
(

‖u‖p∫
Ω
F (x, u)dx

) p−q
σ−p

× ‖u‖p∫
Ω
F (x, u)dx

∫
Ω
F (x, u)dx

‖u‖q

= ‖u‖q
[(

p− q
σ − q

) p−q
σ−p

−
(
p− q
σ − q

) σ−q
σ−p
]
×
(

‖u‖p∫
Ω
F (x, u)dx

) p−q
σ−p ‖u‖p

‖u‖q

(
‖u‖p∫

Ω
F (x, u)dx

) p−q
σ−p

‖u‖p−q =

(
‖u‖

p
σ−p‖u‖

)p−q
(∫

Ω
F (x, u)dx

) p−q
σ−p

=

(
‖u‖

p
σ−p+1

)p−q
(∫

Ω
F (x, u)dx

) p−q
σ−p

=

(
‖u‖

σ
σ−p

)p−q
(∫

Ω
F (x, u)dx

) p−q
σ−p

=
(‖u‖σ)

p−q
σ−p(∫

Ω
F (x, u)dx

) p−q
σ−p

=

(
‖u‖σ∫

Ω
F (x, u)dx

) p−q
σ−p

Hence mu(T ) = ‖u‖q
[(

p− q
σ − q

) p−q
σ−p

−
(
p− q
σ − q

) σ−q
σ−p
]
×
(

‖u‖σ∫
Ω
F (x, u)dx

) p−q
σ−p

.
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(i) Suppose that λ

∫
Ω

a(x)|u|qdx ≤ 0, then there is a unique t− > T such that

mu(t
−) = λ

∫
Ω

a(x)|u|qdx. Now by (3.21)

〈φ′λ(t−u), t−u〉 = (p− q)‖t−u‖p − (σ − q)
∫

Ω

F (x, t−u)dx

= (p− q)(t−)p‖u‖p − (σ − q)(t−)σ
∫

Ω

F (x, u)dx

= (t−)1+q

(
(p− q)(t−)p−q−1‖u‖p − (σ − q)(t−)σ−q−1

∫
Ω

F (x, u)dx

)

= (t−)1+q(m′u(t
−)) < 0,

and

〈J ′λ(t−u), (t−u)〉 = ‖t−u‖p −
∫

Ω

F (x, t−u)dx− λ
∫

Ω

a(x)|t−u|qdx

= (t−)p‖u‖p − (t−)σ
∫

Ω

F (x, u)dx− λ(t−)q
∫

Ω

a(x)|u|qdx

= (t−)q
(

(t−)p−q‖u‖p − (t−)σ−q
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x)|u|qdx
)
.

= (t−)q
(
mu(t

−)− λ
∫

Ω

a(x)|u|qdx
)

= 0.

Thus t−u ∈ N−λ , since J ′λ(tu) > 0 for 0 ≤ t ≤ t−u and J ′λ(tu) < 0 for t ≥ t−u.

Then Jλ(t
−u) = sup

t≥0
Jλ(tu).

To prove case (ii) we need the following

mu(T ) = ‖u‖q
(
p− q
σ − q

) p−q
σ−p
[

1−
(
p− q
σ − q

) σ−q
σ−p−

p−q
σ−p
]
×
(

‖u‖σ∫
Ω
F (x, u)dx

) p−q
σ−p

= ‖u‖q
(
σ − p
σ − q

)(
p− q
σ − q

) p−q
σ−p

×
(

‖u‖σ∫
Ω
F (x, u)dx

) p−q
σ−p

.

Since
σ − q
σ − p

− p− q
σ − p

=
σ − p
σ − p

= 1; 1− p− q
σ − q

=
σ − p
σ − q

.
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∫
Ω

F (x, u)dx ≤
∫

Ω

|F (x, u)|dx ≤ K

∫
Ω

|u|σdx ≤ KS
−σ
p
σ ‖u‖σ. Thus

1∫
Ω
F (x, u)dx

≥ S
σ
p
σ

K‖u‖σ
or write

‖u‖σ∫
Ω
F (x, u)dx

≥ S
σ
p
σ

K
,

(
‖u‖σ∫

Ω
F (x, u)dx

) p−q
σ−p

≥

(
S
σ
p
σ

K

) p−q
σ−p

. Hence mu(T ) ≥ ‖u‖q
(
σ − p
σ − q

)(
(p− q)S

σ
p
σ

(σ − q)K

) p−q
σ−p

.

(ii) Suppose that λ

∫
Ω

a(x)|u|qdx > 0, then by Condition (1), Remark (3.1.3) and the

fact that |λ| < λ0, we obtain

mu(0) = 0 < λ

∫
Ω

a(x)|u|qdx ≤ |λ|‖a(x)‖∞
∫

Ω

|u|qdx ≤ |λ|
∫

Ω

|u|qdx < λ0 S
−q
p
q ‖u‖q <

mu(T ). Since mu(T ) > λ

∫
Ω

a(x)|u|qdx, then the equation mu(t) = λ

∫
Ω

a(x)|u|qdx

has exactly two solution t+ and t− such that 0 < t+ < T < t−,

mu(t
+) = λ

∫
Ω
a(x)|u|qdx = mu(t

−) and m′u(t
−) < 0 < m′u(t

+). Using similar argu-

ment to case (i) we get (t−u, t+u) ∈ N−λ × N
+
λ , and Jλ(t

+u) ≤ Jλ(tu) ≤ Jλ(t
−u) for all

t ∈ [t+, t−] and Jλ(t
+u) ≤ Jλ(tu) for all t ∈ [0, t+]. Therefore Jλ(t

−u) = sup
t≥0

Jλ(tu) and

Jλ(t
+u) = inf

0≤t≤T
Jλ(tu).

Definition 3.1.15:

For each u ∈ E with λ

∫
Ω

a(x)|u|qdx > 0 define T̃ > 0

to be T̃ =

(
(σ − q)λ

∫
Ω
a(x)|u|qdx

(σ − p)‖u‖p

) 1
p−q

.

Lemma 3.1.16:

For each u ∈ E with λ

∫
Ω

a(x)|u|qdx > 0, one has the following:

(i) if

∫
Ω

F (x, u)dx ≤ 0, then there exists a unique 0 < t+ < T̃

such that t+u ∈ N+
λ and Jλ(t

+u) = inf
t≥0

Jλ(tu);

(ii) if

∫
Ω

F (x, u)dx > 0, then there are unique 0 < t+ < T̃ < t− such that

(t−u, t+u) ∈ N−λ ×N
+
λ and Jλ(t

−u) = sup
t≥0

Jλ(tu), Jλ(t
+u) = inf

0≤t≤T̃
Jλ(tu).
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Proof. For u ∈ E with λ

∫
Ω

a(x)|u|qdx > 0, we can take m̃u(t) : R+
0 −→ R by

m̃u(t) = tp−σ‖u‖p − λtq−σ
∫

Ω

a(x)|u|qdx. Clearly for t > 0, tu ∈ Nλ iff t is a solution of

m̃u(t) =
∫

Ω
F (x, u)dx. Since

〈J ′λ(tu), (tu)〉 = ‖tu‖p −
∫

Ω

F (x, tu)dx− λ
∫

Ω

a(x)|tu|qdx

= (t)p‖u‖p − (t)σ
∫

Ω

F (x, u)dx− λ(t)q
∫

Ω

a(x)|u|qdx

= (t)σ
(

(t)p−σ‖u‖p −
∫

Ω

F (x, u)dx− λ(t)q−σ
∫

Ω

a(x)|u|qdx
)
.

= (t)σ
(
m̃(t)−

∫
Ω

F (x, u)dx

)
= 0 iff m̃(t) =

∫
Ω

F (x, u)dx.

Now m̃u
′
(t) = (p− σ)tp−σ−1‖u‖p − λ(q − σ)tq−σ−1

∫
Ω

a(x)|u|qdx and m
′
u(t) = 0.

This implies that T̃ =

(
λ(σ − q)

∫
Ω
a(x)|u|qdx

(σ − p)‖u‖p

) 1
p−q

.

Therefore m̃u
′
(t) > 0 for t ∈ [0, T̃ ) and m̃

′
(t) < 0 for t ∈ (T̃ ,∞), then m̃u(t) a chieves its

maximum at T̃ , increasing for t ∈ [0, T̃ ), decreasing for t ∈ (T̃ ,∞), and m̃u(t) −→ −∞

as t −→ 0+. Since

m̃u(t) = tp−σ‖u‖p − λtq−σ
∫

Ω

a(x)|u|qdx

= tq−σ
(
tp−q‖u‖p − λ

∫
Ω

a(x)|u|qdx
)

= −tq−σ
(
λ

∫
Ω

a(x)|u|qdx− tp−q‖u‖p
)

≤ −tq−σλ
∫

Ω

a(x)|u|qdx for small t

=
−λ
∫

Ω
a(x)|u|qdx
tσ−q

−→ −∞ as t −→ 0+.
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For T̃ > 0, m̃u(T̃ ) =

=

(
(σ − q)λ

∫
Ω
a(x)|u|qdx

(σ − p)‖u‖p

) p−σ
p−q

‖u‖p − λ
(

(σ − q)λ
∫

Ω
a(x)|u|qdx

(σ − p)‖u‖p

) q−σ
p−q
∫

Ω

a(x)|u|qdx

=

(
(σ − q)λ

∫
Ω
a(x)|u|qdx

(σ − p)‖u‖p

) q−σ
p−q
[

(σ − q)λ
∫

Ω
a(x)|u|qdx

(σ − p)‖u‖p
‖u‖p − λ

∫
Ω

a(x)|u|qdx
]

=

(
(σ − q)λ

∫
Ω
a(x)|u|qdx

(σ − p)‖u‖p

) q−σ
p−q

λ

(
σ − q
σ − p

− 1

)∫
Ω

a(x)|u|qdx

=
p− q
σ − p

λ

∫
Ω

a(x)|u|qdx
(

(σ − q)λ
∫

Ω
a(x)|u|qdx

(σ − p)‖u‖p

) q−σ
p−q

> 0

(i) Suppose that
∫

Ω
F (x, u)dx ≤ 0 then there is a unique t+ < T̃ such that

m̃u(t
+) =

∫
Ω
F (x, u)dx and m̃u

′
(t+) > 0. Now by (3.20)

〈φ′λ(t+u), t+u〉 = λ(σ − q)
∫

Ω

a(x)|t+u|q − (σ − p)‖t+u‖p

= λ(σ − q)(t+)q
∫

Ω

a(x)|u|q − (σ − p)(t+)p‖u‖p

= (t+)σ+1

(
−λ(q − σ)(t+)q−σ−1

∫
Ω

a(x)|u|q −−(p− σ)(t+)p−σ−1‖u‖p
)

= (t+)σ+1

(
(p− σ)(t+)p−σ−1‖u‖p − λ(q − σ)(t+)q−σ−1

∫
Ω

a(x)|u|q
)

= (t+)σ+1
(
m̃
′

u(t
+)
)
> 0, for t+ > 0
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and

〈J ′λ(t+u), (t+u)〉 = ‖t+u‖p −
∫

Ω

F (x, t+u)dx− λ
∫

Ω

a(x)|t+u|qdx

= (t+)p‖u‖p − (t+)σ
∫

Ω

F (x, u)dx− λ(t+)q
∫

Ω

a(x)|u|qdx

= (t+)σ
(

(t+)p−σ‖u‖p −
∫

Ω

F (x, u)dx− λ(t+)q−σ
∫

Ω

a(x)|u|qdx
)
.

= (t+)σ
(
m̃u(t

+)−
∫

Ω

F (x, u)dx

)

= (t+)σ
(
m̃u(t

+)− m̃u(t
+)
)

= 0.

Hence t+u ∈ N+
λ for all 0 < t+ < T̃ . Further since ∀t : 0 < t < T̃ , J ′λ(tu) > 0, and

∀t : t > T̃ , J ′λ(tu) < 0 then Jλ(t
+u) = inf

t≥0
Jλ(tu).

(ii) Suppose that
∫

Ω
F (x, u)dx > 0, then by Property (2) and Remark (3.1.3),

we obtain

0 <

∫
Ω

F (x, u)dx ≤
∣∣∣∣∫

Ω

F (x, u)dx

∣∣∣∣ ≤ ∫
Ω

|F (x, u)|dx < K

∫
Ω

|u|σ < K S
−σ
p
σ ‖u‖σ <

m̃u(T̃ ). Since m̃u(T̃ ) >

∫
Ω

F (x, u)dx, then the equation m̃u(t) =

∫
Ω

F (x, u)dx has

exactly two solution t+ and t− such that 0 < t+ < T̃ < t−,

m̃u(t
+) =

∫
Ω
F (x, u)dx = m̃u(t

−) and m̃′u(t
−) < 0 < m̃′u(t

+). Thus we get

(t−u, t+u) ∈ N−λ ×N
+
λ , and Jλ(t

+u) ≤ Jλ(tu) ≤ Jλ(t
−u) for all t ∈ [t+, t−] and

Jλ(t
+u) ≤ Jλ(tu) for all t ∈ [0, t+]. Therefore Jλ(t

−u) = sup
t≥0

Jλ(tu) and

Jλ(t
+u) = inf

0≤t≤T̃
Jλ(tu).
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To prove the main result we need the follwing Theorem.

Theorem 3.1.17:

If E is a Banach space and Jλ(u) bounded from below on Nλ then there exist a minimizing

sequences un in Nλ such that Jλ(un) −→ θλ and J ′λ(un) −→ 0 in E∗. Since the functional

bounded from below on N+
λ and N−λ then we have the following

(i) There exist a minimizing sequences u+
n in N+

λ such that

Jλ(u
+
n ) = θ+

λ + o(1), J
′

λ(u
+
n ) = o(1) in E∗

(ii) There exist a minimizing sequences u−n in N−λ such that

Jλ(u
−
n ) = θ−λ + o(1), J

′

λ(u
−
n ) = o(1) in E∗

Proof. For the proof see [23].
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3.2 Existence of Positive Solutions

In this section we introduce a simple proof of the existence of two positive solutions of

Equation (3.1), one in N+
λ and one in N−λ .

Theorem 3.2.1:

Under the assumptions (1),(2) and (3), there exists λ0 > 0 such that for all 0 < |λ| < λ0,

problem (3.1) has at least two nontrivial nonnegative solutions.

The proof of this theorem is a direct result from the following theorems (3.2.2) and (3.2.3)

In the next theorem we establish the existence of a local minimum for Jλ on N+
λ .

Theorem 3.2.2:

If 0 < |λ| < λ0, then problem (3.1) has a positive solution u+
0 in N+

λ such that

Jλ(u
+
0 ) = θ+

λ

Proof. Since Jλ is bounded below on N+
λ , then there exist a minimizing sequence

{u+
n } ⊂ N+

λ such that

lim
n−→∞

Jλ(u
+
n ) = inf

u∈N+
λ

Jλ(u).

Since E is a Banach space, this sequence contains a weakly convergent subsequence un to

u+
0 the weak limit of un. By Theorem (2.2.13), we may assume that un converges strongly

in Lq and in Lσ, un ⇀ u+
0 weakly in E, implies un −→ u+

0 strongly in Lq and in Lσ this

implies that is

∫
Ω

a(x)|un|qdx −→
∫

Ω

a(x)|u+
0 |qdx.

Next we will show that

∫
Ω

F (x, un)dx −→
∫

Ω

F (x, u+
0 )dx as n −→∞. By Lemma (3.1.4),

we have
∂F (x, un)

∂u
∈ Lγ, ∂F (x, un)

∂u
−→ ∂F (x, u+

0 )

∂u
in Lγ, where γ =

σ

σ − 1
.

On the other hand, it follows from the Holder Inequality that
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∫
Ω

∣∣∣∣un∂F (x, un)

∂u
− u+

0

∂F (x, u+
0 )

∂u
dx

∣∣∣∣ =

=

∫
Ω

∣∣∣∣un∂F (x, un)

∂u
− u+

0

∂F (x, un)

∂u
+ u+

0

∂F (x, un)

∂u
− u+

0

∂F (x, u+
0 )

∂u

∣∣∣∣ dx
≤
∫

Ω

∣∣∣∣un∂F (x, un)

∂u
− u+

0

∂F (x, un)

∂u

∣∣∣∣ dx+

∫
Ω

|u+
0 |
∣∣∣∣∂F (x, un)

∂u
− ∂F (x, u+

0 )

∂u

∣∣∣∣ dx
≤
∫

Ω

|un − u+
0 |
∣∣∣∣∂F (x, un)

∂u
dx

∣∣∣∣+

∫
Ω

|u+
0 |
∣∣∣∣∂F (x, un)

∂u
− ∂F (x, u+

0 )

∂u

∣∣∣∣ dx
≤ ‖un − u+

0 ‖σ
∥∥∥∥∂F (x, un)

∂u

∥∥∥∥
γ

+ ‖u+
0 ‖σ

∥∥∥∥∂F (x, un)

∂u
− ∂F (x, u+

0 )

∂u

∥∥∥∥
γ

−→ 0, as n −→∞. Hence

∫
Ω

F (x, un)dx −→
∫

Ω

F (x, u+
0 )dx as n −→∞.

Now we aim to prove that un −→ u+
0 strongly in E and Jλ(u

+
0 ) = θ+

λ .

Suppose otherwise then ‖u+
0 ‖ < lim inf

n−→∞
(‖un‖) and so

〈J ′(u+
0 ), u+

0 〉 = ‖u+
0 ‖p −

∫
Ω

F (x, u+
0 )dx− λ

∫
Ω

a(x)|u+
0 |qdx

< lim inf
n−→∞

(
‖un‖p −

∫
Ω

F (x, un)dx− λ
∫

Ω

a(x)|un|q
)
dx

< lim inf
n−→∞

(0) = 0.

Thus ‖u+
0 ‖p −

∫
Ω

F (x, u+
0 )dx− λ

∫
Ω

a(x)|u+
0 |qdx < 0 but u+

0 ∈ Nλ a contradiction,

therefore un −→ u+
0 strongly. This implies Jλ(un) −→ Jλ(u

+
0 ) as n −→∞.

To show that Jλ(u
+
0 ) = θλ. By Fatous lemma and u+

0 ∈ Nλ(u) we get

θλ ≤ Jλ(u
+
0 ) =

1

p
‖u+

0 ‖p −
1

σ

∫
Ω

F (x, u+
0 )dx− λ

q

∫
Ω

a(x)|u+
0 |qdx

≤ lim inf
n−→∞

(
1

p
‖un‖p −

1

σ

∫
Ω

F (x, un)dx− λ

q

∫
Ω

a(x)|un|qdx)

≤ lim inf
n−→∞

Jλ(un) = θλ

θλ ≤ Jλ(u
+
0 ) and Jλ(u

+
0 ) ≤ θλ this implies Jλ(u

+
0 ) = θλ. Finally we want to prove that

u+
0 is a nontrivial nonnegative solution of Equation (3.1) and u+

0 ∈ N+
λ
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Jλ(un) =
1

p
‖un‖p −

1

σ

∫
Ω

F (x, un)dx− λ

q

∫
Ω

a(x)|u+
n |qdx

=
1

p
‖un‖p −

1

σ

(
‖un‖p − λ

∫
Ω

a(x)|u+
n |qdx

)
− λ

q

∫
Ω

a(x)|u+
n |qdx

=
σ − p
σp
‖un‖p − λ

σ − q
σq

∫
Ω

a(x)|u+
n |qdx

≥ −λσ − q
σq

∫
Ω

a(x)|u+
n |qdx.

By Theorem (3.1.17)(i) and lemma (3.1.11) Jλ(un) −→ θλ < 0 as n −→∞,

we obtain λ

∫
Ω

a(x)|u+
0 |qdx > 0. Thus u+

0 is a nontrivial nonnegative.

Moreover, we have u+
0 ∈ N+

λ . If fact, if u+
0 ∈ N−λ then, there exist t+0 , t

−
0 such that

t−0 u
+
0 ∈ N−λ and t+0 u

+
0 ∈ N+

λ . In particular we have t+0 < t−0 = 1. Since

d2

dt2
Jλ(t

+
0 u

+
0 ) > 0,

d

dt
Jλ(t

+
0 u

+
0 ) = 0,

then there exist t+0 < t̃ < t−0 such that Jλ(t
+
0 u

+
0 ) < Jλ(t̃u

+
0 ). By lemma (3.1.14), we have

Jλ(t
+
0 u

+
0 ) < Jλ(t̃u

+
0 ) ≤ Jλ(t

−
0 u

+
0 ) = Jλ(u

+
0 ) = θλ,

which is contradicts Jλ(u
+
0 ) = θ+

λ . Thus u+
0 ∈ N+

λ

Theorem 3.2.3:

If 0 < |λ| < λ0, then problem (3.1) has a positive solution u−0 in N−λ such that

Jλ(u
−
0 ) = θ−λ .

Proof. Similarly in the previous theorem since Jλ is bounded below on N−λ , then there

exist a minimizing sequence u−n for Jλ on N−λ such that

Jλ(un) = θ−λ + o(1)

J
′

λ(un) = o(1) in E∗
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Again then there exist a subsequence un and u−0 ∈ N−λ is a nonzero solution of equation

(3.1). Assume, without loss of generality, that

un −→ u−0 weakly in E, un −→ u−0 strongly in Lq, Lσ.

Moreover, let un ∈ N−λ , then by (3.21) we get∫
Ω

F (x, un)dx >
p− q
σ − q

‖un‖p, (3.31)

So by (3.29) and (3.31) there exists a positive constant C̃ such that

∫
Ω

F (x, un)dx > C̃.

This implies∫
Ω

F (x, u−0 )dx ≥ C̃, (3.32)

Clearly by Lemma (3.1.12) and Equation (3.32) u−0 is a nonnegative solution of Equation

(3.1). Now, we aim to prove that un −→ u−0 strongly in E, Jλ(u
−
0 ) = θ−λ Supposing

otherwise, then ‖u−0 ‖ < lim inf
n−→∞

‖un‖ and so by Lemma (3.1.14), then there exist a

unique t−0 such that t−0 u
−
0 ∈ N−λ . Since un ∈ N−λ , Jλ(un) ≥ Jλ(tun) ∀ t ≥ 0, we have

Jλ(t
−
0 u
−
0 ) < lim

n−→∞
Jλ(t

−
0 un) ≤ lim

n−→∞
Jλ(un) = θ−λ , which is a contradiction. Hence

un −→ u−0 strongly in E, this imply that Jλ(un) −→ Jλ(u
−
0 ) = θ−λ as n −→∞.

Next we begin to show the proof of Theorem (3.2.1) in the following corollary.

Corollary 3.2.4:

Equation (3.1) has at least two positive solutions whenever 0 < |λ| < λ0.

Proof. BY Theorems (3.2.2) and (3.2.3) there exist u+
0 ∈ N+

λ and u−0 ∈ N−λ such

that Jλ(u
+
0 ) = inf

u∈N+
λ

Jλ(u) and Jλ(u
−
0 ) = inf

u∈N−λ
Jλ(u). since N+

λ ∩ N
−
λ = φ, this implies

that u+
0 and u−0 are distinct positive solution of Equation (3.1).
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Chapter 4

p-Laplace Equation Model for Image Denoising

A well known inverse problem in image processing is image denoising which means the

process with which we reconstruct a signal from a noisy one, by removing unwanted noise

in order to restore the original image, or the method of estimating the unknown signal

from available noisy data. The goal of image denoising is to remove the noise from the

image but to preserve the useful information. Further image denoising is an important

pre-processing step for image analysis. Let u(x, y) denote the desired clean image, so

u0 = u + n, where n is the additive noise, u0 denote the pixel values of a noisy image

for x, y ∈ Ω. Many authors has introduce algorithem to remove noise from images. In

the last decades the energy functional approach together with its corresponding Euler

Lagrange equation has attracted great attention in solving inverse problem applied to

image reconstruction. One important case of Euler Lagrange equations is the one which

involves the p−Laplace operator

∆pu = div(|∇u|p−2∇u); p ≥ 1

associated with the evolution equation of p−Laplacian

∂tu = ∆pu, in Ω

u(0) = u0, in Ω

∂Nu = 0, on ∂Ω

where Ω is abounded domain in R2 and u0 : Ω −→ R is a given degraded image and

∇u is the gradient. It is well known that the case p = 2 gives the linear Gaussian filter,
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which however, impose strong spatial regularity and therefore image details such as lines

and edges are over smoothed. The case p = 1 is often refereed to as the method of total

variation and p = 0 is an instance of the so called balanced forward backward evolution.

A p−Laplace equation model is proposed in this research for image denoising. First, the

p−Dirichlet integral and total variation are combined to create a new energy functional

used to built an image denoising model. This model is the generalization of Rudin-

Osher-Fatemi model and Chambolle-Lions model. Generally, the practical images always

hold the noise that does not only undermine the display but also affect the subsequent

treatment results of the higher-level image. It is a big challenges to remove the noise

of images with the maintainance of geometric characters during the scientific research

and engineering practical activities. Therefore, denoising of image denoising is one of the

important issues in the study of image processing and computer vision. Image denoising

based on nonlinear diffusion equation is an effective method, about which many research

achievements have been obtained and applied in many fields (Chan and Shen, 2005;

Lysaker and Tai, 2006; Perona and Malik, 1990), see the references in [24]. The basic

idea is to use different smooth policies at the target edge, namely at the edge area,

the smooth process will be controlled but accelerated in the other regions. Based on

the nonlinear diffusion equation, the complex filtering process can be divided into two

simple ones: one along the image gradient direction and the other perpendicular to the

image gradient direction. The equations with better denoising results should have various

diffusion rates in both directions, namely, diffusion process is anisotropics. This method

can also retain the image geometry while removing the noise. There are some classic

and anisotropics diffusion models such as Perona-Malik model, mean curvature motion

model, total variation model, among which total variation model (Rudin et al., 1992),

[17], give the following energy functional equation:

E(u) =

∫
Ω

|∇u|dx+
λ

2

∫
Ω

(u− u0)2dx.

In the model, BV energy terms of the image Function model (based on the image gradient

pattern energy term with L1 norm determined) determine the corresponding evolution

equation that has good non linear diffusion properties. In fact, the diffusion is
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unidirectional with non-zero diffusion velocity only in the tangent direction of horizontal

lines of images which determines no demolishment of the important features of image

structure but a certain effect of denoising during the evolution of the equation. However,

in the local area of unimportant characteristics, the unidirectional diffusion speed becomes

too slow and too single so as to affect the denoising effect and efficiency. The material

through this chapter is mainly covered in [24], [6].

4.1 p-Laplacian for Image Denoising

An important feature in any evolution process for image denoising is preservation of

certain geometrical features of the underlying image. In the case of image restoration

these features include edges and corners. It is straight forward to express the p−laplace

operator (1) as

∆pu = |∇u|p−1∆1u+ (p− 1)|∇u|p−2∆∞u

where ∆1u = div(
∇u
|∇u|

), ∆∞u =
∇u
|∇u|

D2u.
∇u
|∇u|

and D2u is the Hessian of u. However,

an intuitive way to represent ∆p, giving direct interpretation of the diffusivity directions

is to express ∆p by using Gauge coordinates (x, y) −→ (T,N):

∆pu = up−2
N (uNN + (p− 1)uTT ).

Gauge coordinates

An image can be thought of as a collection of curves with equal value, the isophotes.

At extrema an isophote reduces to a point, at saddle points the isophote is self-intersectin.

At the non critical points Gauge coordinates (T,N)(or (v, w),or (ξ, η),or...) can

be chosen. Gauge coordinates are locally set such that the T direction is tangent to the

isophote and the N direction points in the direction of the gradient vector. Consequently,

the unit vectors in the gradient and tangential direction are:
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N =
1√

u2
x + u2

y

(
ux
uy

)
, T =

 0 1

−1 0

N
as T perpendicular to N . The directional differential operator in the directions T and N

are defined as

∂T = T.∇ = T.(
∂

∂x
,
∂

∂y
) and ∂N = N.∇ = N.(

∂

∂x
,
∂

∂y
).

Higher order derivatives are constructed through applying multiple first order derivatives,

as many as needed. So uTT , the second order derivative with respect to T is


 0 1

−1 0

 1√
u2
x + u2

y

(
ux
uy

)
.(
∂

∂x
,
∂

∂y
)


2

u(x, y).

This implies that

uT =
∂u

∂T
=
uy∂xu− ux∂yu

|∇u|
= 0 and uN =

∂u

∂N
=
ux∂xu+ uy∂yu

|∇u|
=

u2
x + u2

y√
u2
x + u2

y

= |∇u|.

The second order structures are given as

uTT =
u2
xuyy + u2

yuxx − 2uxuyuxy

u2
x + u2

y

uNN =
u2
xuxx + u2

yuyy + 2uxuyuxy

u2
x + u2

y

.

These Gauge derivatives can be expressed as a product of gradients and the Hessian

matrix H with second order derivatives:

uNNu
2
N = ∇uH.∇Tu

uTTu
2
N = ∇uHr.∇Tu

with ∇u = (ux, uy), H is the Hessian matrix, and Hr = detH × H−1. Note that the

expressions are invariant with respect to the spatial coordinates. Furthermore, one gets

∆u = uNN + uTT . In gauge coordinates the cartesian formula for isophote curvature is

easily derived by applying implicit differentiation twice.
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The definition of an isophote is u(T,N(T )) = c, where c is a constant.

One time implicit differentiation with respect to T gives:

uT + uN(T )N
′(T ) = 0,

from which follow that N ′(T ) = 0 because uT = 0 by definition. Using that and second

implicit differentiation gives:

uTT + 2uTNN
′(T ) + uNN(N ′(T ))2 + uNN

′′(T ) = 0.

The isophote curvature k is defined as N ′′(T ), the change of the tangent vector N ′(T ) in

the T direction, so

k = N ′′(T ) =
−uTT
uN

=
u2
xuyy − 2uxuyuxy + u2

yuxx

(u2
x + u2

y)
3
2

.

Minimizing methods

Consider an image u on the domain Ω, the first variation of the functional E at u in the

direction v is defined by

δE(u, v) =
d

dε
E(u+ εv)|ε=0.

The variational derivative δE(u) of the functional E at u in the direction v is defined by

δE(u, v) =

∫
Ω

δE(u).vdx

with v ∈ C∞0 (Ω) a test function that is zero at the boundaries. Minimizing u with

appropriate boundary conditions gives the Euler Lagrange equation δE = 0. Adynamical

system is obtained by the steepest decent approach ut = −δE. So to find the minimum

of E(u) given an image u0 is to solve

ut = −δE(u)

u(0) = u0.

For p−Laplacians we consider in general the integral E(u) =
1

p

∫
Ω

|∇u|pdΩ. It is well

known as the p−Dirichlet energy integral with a companying p−Laplacian equation

δE = 0, with δE = −∇.(|∇u|p−2∇u). Using gauge coordinates the energy can be written

as Ep(u) =
1

p

∫
Ω

upNdx.
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Theorem 4.1.1:

The variational derivative δE(u) can be written as

δE(u) = −up−2
N (uTT + (p− 1)uNN).

Proof.

δE(u, v) =
1

p

∫
Ω

d

dε
|∇(u+ εv)|pdx|ε=0

=

∫
Ω

|∇u|p−2∇u.∇vdx

= |∇u|p−2∇u.v|∂Ω −
∫

Ω

∇.(|∇u|p−2∇u)vdx,

since v = 0 on the boundary, |∇u|p−2∇u.|∂Ω = 0 and the Euler Lagrange equation

δE(u) = 0 equals

−(∇.(|∇u|p−2∇u)) = 0.

The left hand side equals the well known variational derivative of the Laplacian.

An explicit expressions is obtained by applying the divergence operator to both terms,

where Gauge coordinates are used:

−∇.(|∇u|p−2∇u) = −∇(|∇u|p−2).∇u− |∇u|p−2(∇.∇u)

= −(∇.up−2
N ).∇u− up−2

N ∆u.

For the first part we have

(∇.up−2
N ).∇u = (p− 2)up−3

N ∇uN .∇u

= (p− 2)up−3
N (∇uHu−1

N ).∇u,

where H is the Hessian matrix. Recall (∇uH).∇u = u2
NuNN as given before. Therefore

(p− 2)up−3
N u−1

N u2
NuNN = (p− 2)up−2

N uNN

and consequently we have

δE(u) = −
(
(p− 2)up−2

N uNN + up−2
N ∆u

)
.

Using the identity ∆u = uNN + uTT this gives

δE(u) = −up−2
N (uTT + (p− 1)uNN) .
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For p = 2 we have the heat equation:

u2−2
N (uTT + (2− 1)uNN) = uTT + uNN = ∆u.

Next, p = 1 gives the Total variation flow:

u1−2
N (uTT + (1− 1)uNN) = u−1

N uTT = K.

In general, it gives a recipe for PDE-driven flow:

ut = up−2
N (uTT + (p− 1)uNN).

The case p −→ ∞ is known as the infinite Laplacian, denoted by ∆∞u. This term

is defined as either uNN or u2
NuNN . It can be applied to image inpainting and shape

metamorphism.

4.2 Model of Image Denoising Based on the p-Laplace Equation

Chambolle and Lions use the heat diffusion term to accelerate the total variation model

partially (Chambolle, 1995), [3]. Chen et al. (2006), [25], studied the diffusion behaviours

of variational exponentiate. With the inspiration of these studies,( Wei, Wei and Bin

Zhou,(2012)), [24], proposed the following functional to build a model used in image

denoising

E(u) =

∫
Ω

F (|∇u|) dx+
λ

2

∫
Ω

(u− u0)2dx

where, u0 refers to the images that is needed to be denoised and the nonnegative function

F (s) is defined by

F (s) =


1
p
sp, 0 ≤ s ≤ β,

βp−1s+ (1− 1
p
)βp, s > β.

Let M denote the manifold of smooth images, then the diffusion equations presented

can be interpreted as the gradient decent equations for the minimization of the energy

functional E : M −→ R defined by:

E(u) =

∫
Ω

F (|∇u|) dx+
λ

2

∫
Ω

(u− u0)2dx.
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Then for any function v ∈ C∞0 (Ω) we have

δE(u, v) =
d

dε

(∫
Ω

F (|∇(u+ εv)|)dx+
λ

2

∫
Ω

(u+ εv − u0)2dx

)
|ε=0

=

∫
Ω

d

dε
F (|∇u+ ε∇v|)dx|ε=0 +

λ

2

∫
Ω

d

dε
(u+ εv − u0)2dx|ε=0

=

∫
Ω

F ′(|∇u|)|∇u|−1∇u.∇v + λ

∫
Ω

(u− u0)vdx

= F ′(|∇u|)|∇u|−1∇u.v|∂Ω −
∫

Ω

∇.
(
F ′(|∇u|)|∇u|−1∇u

)
vdx+ λ

∫
Ω

(u− u0)vdx

= −
∫

Ω

[
∇.
(
F ′(|∇u|) ∇u

|∇u|

)
− λ(u− u0)

]
.vdx.

Hence the Euler Lagrange equation δE(u) = 0 reads[
∇.
(
F ′(|∇u|) ∇u

|∇u|

)
− λ(u− u0)

]
= 0. Since

∂u

∂t
= −δE(u), then the following

evolution equation is obtained

∂u

∂t
= ∇.

(
F ′(|∇u|) ∇u

|∇u|

)
− λ(u− u0) (4.1)

where

∇.
(
F ′(|∇u|) ∇u

|∇u|

)
=


∇.(|∇u|p−2∇u), 0 ≤ |∇u| ≤ β,

βp−1∇. ∇u
|∇u|

, |∇u| > β.
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Theorem 4.2.1:

The Eq (4.1) is equal to the following form:

∂u

∂t
=


up−2
N (uTT + (p− 1)uNN)− λ(u− u0), 0 < uN ≤ β,

βp−1

uN
uTT − λ(u− u0), uN > β.

Proof. From Equation (4.1) we have

∂u

∂t
=


∇.(|∇u|p−2∇u)− λ(u− u0), 0 ≤ |∇u| ≤ β,

βp−1∇. ∇u
|∇u|

, |∇u| > β,

when 0 ≤ |∇u| ≤ β

∂u

∂t
= ∇.

(
|∇u|p−2∇u

)
− λ (u− u0) .

using gauge coordinates we get

∇.(|∇u|p−2∇u) = ∇(|∇u|p−2).∇u+ |∇u|p−2(∇.∇u)

= (∇.up−2
N ).∇u+ up−2

N ∆u.

For the first part we have

∇(up−2
N ).∇u = (p− 2)up−3

N ∇uN .∇u

= (p− 2)up−3
N (∇uHu−1

N ).∇u,

where H is the Hessian matrix. Recall that ∇uH.∇u = u2
NuNN , thus

(p− 2)up−3
N u−1

N u2
NuNN = (p− 2)up−2

N uNN .

Therefore

∂u

∂t
= (p− 2)up−2

N uNN + up−2
N ∆u− λ(u− u0).

Using the identity ∆u = uNN + uTT , we obtain

∂u

∂t
= (p− 2)up−2

N uNN + up−2
N (uNN + uTT )− λ(u− u0)

= up−2
N ((p− 2)uNN + uNN + uTT )− λ(u− u0)

= up−2
N (uTT + (p− 1)uNN)− λ(u− u0),
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when |∇u| > β

∂u

∂t
= βp−1∇. ∇u

|∇u|
− λ(u− u0), but ∇. ∇u

|∇u|
= k = u−1

N uTT . Thus

∂u

∂t
= βp−1uTT

uN
− λ(u− u0)

4.3 Numerical Experiment

In this section the numerical experiments with different parameters are implemented by

using the above mentioned model, we propose the preliminary boundary problem:

∂u

∂t
= ∇.

(
F ′(|∇u|) ∇u

|∇u|

)
− λ(u− u0), in Ω (4.2)

∂u

∂N
(x, t) = 0, on ∂Ω

u(x, 0) = u0(x), in Ω

where, the definition of ∇.
(
F ′(|(∇u|) ∇u

|∇u|

)
is similar to that in Equation (4.1). Using

the method of [17], both sides of the first formula are multiplied by u−u0 and integration

over Ω is performed. Since t −→∞,
∂u

∂t
−→ 0, then∫

Ω

∇.
(
F ′(|∇u|) ∇u

|∇u|

)
(u− u0)dx =

∫
Ω

λ(u− u0)2dx.

Using the Green formula we obtain∫
∂Ω

F ′(|∇u|)
|∇u|

∂u

∂N
(u− u0)ds−

∫
Ω

F ′|∇u|
|∇u|

∇u.∇(u− u0)dx = λ

∫
Ω

(u− u0)2dx.

Since
∂u

∂N
|∂Ω = 0, then

∫
∂Ω

F ′(|∇u|)
|∇u|

∂u

∂N
(u− u0)ds = 0. Hence

λ =

−
∫

Ω

F ′(|∇u|) ∇u
|∇u|

.∇(u− u0)dx∫
Ω

(u− u0)2dx

.

The problem (4.2) is solved Numerically and then it could be used in the field of

denoising image. As shown in Fig. 4.1(a) and (b), given original images of phoenix tree

leaves and denoised images, different p values are chosen to perform numerical solution

which produces corresponding results. As a second test, Fig 4.2 (a) and (b) dividedly

the original rice-grains images and denoising images. The result of various p values and
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shown in Fig 4.1 (c-f) and Fig 4.2 ( c-f) show the different results in the two experiments

with various p−values. The p−values, iterative numbers n of model solution, the solved

results of Peak-Signal-to-Noise Ratio (PSNR) are indicated in Table 4.1 and 4.2.

Table 4.1: p and n and PSNR data

p n PSNR

1.0 430 24.7805

1.6 90 26.2181

2.0 27 26.0873

2.2 14 25.8030

Table 4.2: Specific data of p, n and PSNR

p n PSNR

1.0 364 22.5570

1.6 65 22.6794

2.0 17 22.1307

2.2 9 21.7861

Given the constant p−value, with the iterative evolution, PSNR is gradually increased

from values of 18.9763 and 18.7481 to the final results. The process is stable.

When, n is decreased by p−value, the PSNR value of final results is changed with a

tiny visual effection. Notice that is defined as follows

PSNR = 10 log10

(
max(xi,j)

2

MSE

)
.

Where MSE=(Mean Squar Error) is given by

MSE =

∑
i,j

(xi,j − yi,j)2

MN
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with M,N are the total number of pixels in the horizontal and vertical dimensions of the

image, xi,j and yi,j denote the original and distorted image, respectively.
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Conclusion

In the current work we introduced method to solve elliptic partial differential equation

with homogeneous Dirichlet boundary conditions called Nehari method. We use this

method to prove that the p−Laplace equation with Dirichlet boundary condition has

at least two positive solutions. Further in this study we apply p−Laplace equation in

denoising process of images. The test results show that, according to the reasonably

adjusting parameter p values, the iterative numbers decrease with better denoising effects.
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Figures

Figure 4.1: (a-f): Results of transaction of phoenix tree leaves with noise; (a) Original image,

(b) Noise image, (c) p = 1.0, (d) p = 1.6, (e) p = 2.0 and (f) p = 2.2 .
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Figure 4.2: (a-f): Results of rice-grains with noise; (a) Original image, (b) noise image, (c)

p = 1.0, (d) p = 1.6, (e) p = 2.0 and (f) p = 2.2 .
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 لابلاس  معادلات  ولحول  حل

 شندي موسى : اسماء محمودإعداد

   الدكتور يوسف زحايقه: إشراف

 :ملخص

. فً هذه الاطروحه الفٌزٌائٌةدورا مهما فً توصٌف العدٌد من الظواهر   لابلاس    تلعب معادلات 

 وفق  ةوالمعطاٌت المحٌطً لابلاس وشرط درٌشل    معادله من  والمكونة المحٌطٌة المشكلةدرسنا 

 :التالٌةالصورة 

    
 

 

  (   )

  
   ( )| |                                  ( )                

                                                                                   

   والمعاملات   ومحدوده  مفتوحو          ىو مجموعو جزئيو من         حيث ان المجال 
ىو عدد حقيقي ماعدا الصفر     و                    تحقق                 

ينتمي الى     بينما   .    يمكن ان يغير من اشارتو في المجال  اممس  اقتران   ( )   والاقتران
̅ )  ي الفضاء الاقتران  .   عبارة عن اقتران متجانس بدرجة وىو   (    

لابلاس امر غير يسير وعميو يتم ايجاد حمول    حمول تحميميو )كلاسيكيو( لمعادلة  إيجاد بشكل عام
لابلاس والشرط    عمى طرق تعرف بطرق التغيرات المكافئو لمعادلةبناء  ليست كلاسيكيو تستنبط
في برىنة نتيجة اساسيو  حو تم الاعتماد عمى طريقة نيياري ىذه الاطرو  في  المحيطي المرادف ليا.

الذي ىو جزء من فضاء  ينتمي الى متعدد طبقات نيياري ( ) وىي وجود اكثر من حل موجب لمنظام
   سوبولوف

لابلاس في مجال تنقية الصور    كذلك في ىذه الاطروحو تم تطبيق معادلة  .     
عن  بعض تمك المعادلات تنشأ  المعادلات التفاضميو الجزئيو  دورا اساسيا.المشوشو حيث تمعب 

 بعض الطرق . [17]، التامهتصغير اقترانات الطاقو والطرق التي تستخدميا تسمى طرق التغيرات 
الاخرى تعتمد معادلات تصمم بتبرير ىندسي كمماسات منحنيات تساوي الصورة وىذه الطرق تعرف 

فً هذه الاطروحه تم اعتماد طرٌقه تمزج بٌن   .  [8]، الانحناء الوسطًبطرق حركة مقٌاس  

. [24]لابلاس اوبرٌتر ,   معادلة انتشار (  تحوي ال  (تقوم على حل معادله تفاضلٌه   الطرٌقتٌن

عددي تم عرضه فً هذه الاطروحه .وقد تم تطبٌق هذه الطرٌقه من خلال مثال    


