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Abstract 

 
In the last decade, molecular nanoelectronics gained a growing attention in the field of 

electronic devices because of the need to have new devices with characteristics that overlap 

the limitations and disadvantages of the existed devices fabricated with common methods. In 

order to achieve building electronic devices using biological molecules it will be necessary to 

measure, control and understand the electron transport through these molecules.  The purpose 

of this research was to study the morphological characteristics of a ring shaped like protein 

named stable protein 1 (SP1), and a building block that consists of gold nanoparticles (GNP) 

embedded in the central cavity of the SP1 protein. The morphological characteristics was 

studied on different four substrates which are mica, silicon, gold, and HOPG using Atomic 

Force Microscopy with its two modes; tapping and contact. Another aim of this research was 

to study the electrical characteristics of the SP1 and the building block (SP1-GNP) by 

performing direct electrical measurements for these molecules on HOPG substrate using 

conductive Atomic Force Microscopy measurement technique. 

 

AFM results revealed that the average heights of SP1 molecules on mica and silicon were 2.4 

± 0.3 and 2.2 ± 0.2 nm respectively, while on gold and silicon SP1 monolayer was formed 

with  average height equal to 2 ± 0.1 nm. For SP1-GNP molecules their average heights were 

found to be 3.7 ± 0.4 nm and 3.3 ± 0.1 nm on mica and silicon respectively, but on gold and 

HOPG substrates a monolayer of SP1-GNP molecules was formed with average height of 4 ± 

0.2 nm above both substrates. The results of the direct electrical measurements showed an 

insulating current-voltage curves with different voltage ranges for both SP1 and SP1-GNP 

molecules when force-distance mode was performed with small load (Normal Force). The 

current-voltage curves performed with high load (N.F) showed a semiconductor behavior for 

SP1 molecules and an ohmic behavior for SP1-GNP molecules. 
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Chapter ONE 

Introduction and Motivation   

 
The technological development came as a result of  human efforts and his way of thinking 

in using information, skills, experiences, and elements in any area to discover and develop 

heuristics that can solve his problems, satisfy his needs, and increase his abilities. 

 
One of the most important fields which has witnessed the technological evolution is the 

field of electronic devices. The history of electronics began when the vacuum tube was 

invented by Dr Lee Deforest in 1907 (McChesney 1994), which was developed to a device 

that can amplify electrical signals. In 1947 Bell laboratory researchers invented the first 

solid state device which is the transistor. The idea of the transistor based on controlling the 

flow of the electrons through a material like silicon by designing some areas as conductors 

and others as insulators (Rosenbloom and Spencer 1996). After eleven years Jack Kilby 

invented the integrated circuit which composed of a number of transistors integrated in the 

body of the semiconductor material (Dummer 1997).  

 

Through years of hard work and effort to develop new methods to fabricate electronic 

devices, planar process was innovated and the history of the exponential growth in the field 

of electronics began. In 1959 this process enabled Fairchild physicist Jean Hoerni to 

produce the first planar transistor and to make the electrical connections by depositing and 

evaporating metal film on preferable parts of the semiconductor wafer instead of using 

hands (Hoerni 1961). By the year 1961 the first planar integrated circuit was produced by 

Fairchild. Then the number of transistors in the integrated circuits began to increase each 

year. In 1965 the co-founder Intel Corporation Gordon E. Moore noticed that the number of 

transistors which can be placed in an integrated circuit has increased exponentially, 

doubling approximately every two years according to the relation:  

 

(Circuit per chip)= 2 ( year – 1975 ) / 1.5 
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which is a log-linear relationship between the device complexity and time: “The complexity 

for minimum component costs has increased at a rate of roughly a factor of two per year. 

Certainly over the short term this rate can be expected to continue, if not to increase. Over 

the longer term, the rate of increase is a bit more uncertain, although there is no reason to 

believe it will remain nearly constant for at least 10 years." (Moore 1965). Thus Moore’s 

law is considered as a description of the technological development in the field of the 

electronics in the last 20th and early 21 centuries, Fig. 1.1. 

 

 
 

Fig. 1.1: Plot of CPU transistor counts against dates of introduction, adapted from 

www.wikipedia.org. 

 

With the passage of years, the integrated circuit or the chip has entered the industry field, 

and was used in most of the electronic equipments such as computers. After that, the 

http://www.wikipedia.org
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scientists did not stop at this limit. They went farther and started thinking how to improve 

the quality of these electronic devices like increasing the speed of computer calculations. 

The answer was reducing the electron flight time through the chip by reducing the chip size, 

which was the reason in the birth of lithographic technologies that lead to downsized the 

electronic devices from 2 um to 0.18 µm (Geppert 1999). Through this revolution in the 

world of electronic devices, some scientists were busy in studying the physical prosperities 

of systems. They noticed the change in some physical properties of materials and systems 

when going to a new scale called nano. 

 

 In 1959 the first concepts of nano was presented by Richard Feynman in his lecture 

“There’s Plenty of Rooms at the Bottom”  at the annual meeting of the American Physical 

Society at the California Institute of Technology (Feynman 1960). Thus a new era of 

technology appeared, the era of nanotechnology, which was defined by Tokyo Science 

University Professor Norio Taniguchi in 1974 as: ” Nano-technology mainly consists of the 

processing of separation, consolidation, and deformation of materials by one atom or by one 

molecule” (Taniguchi 1974). According to NASA Ames Research Center, nanotechnology is 

defined as the creation of functional materials, devices and systems through control of matter 

in the range of one-tenth to one-hundred nanometer (0.1-100 nm) and the exploitation of 

novel phenomena and properties in this scale, while the prefix nano represents 10-9, i.e., one 

billionth of a unit (NOVA Workforce Board 2003). 

 

The start of the nanotechnology and nanoscience began with the invention of Scanning 

Tunneling Microscopy (STM) by Gerd Binnig and Heinrich Rohrer, and the invention of 

Atomic Force Microscopy (AFM) after six years (Binnig 1986). In the 1980s the dream of 

molecular technology was introduced by Dr. K. Eric Drexler in his book “Engines of 

Creation”. The dream was about the ability to achieve the control in operation, perfection in 

construction, and variety in design, by assembling biological systems and devices at the 

molecular levels (Drexler 1986). Thus molecular electronics came with its three features; 

recognition, structuring, and electrical functionality (Fabio 2004); that is biology molecules 

recognize each other, have the ability to bind to one another, assemble into larger structures 

and transport efficiency carriers from one point to another. These three features allow the 
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molecular electronics to overlap the limitations of e-beam lithography in fabricating 

electronic devices which are the huge cost of starting up such technique, the physical 

limitations of the raw materials which is silicon, and the diffraction limitation (Iwai and 

Ohmi 2002). 

 

Following the invention of Scanning Probe Microscopes (SPM), there were many published 

works about the deoxyribonucleic acid (DNA) and proteins assembly of nanometer and 

micrometer scale structures that can have a profound impact in the fields of nanoelectronics 

and nanotechnology and the potential to continue the scaling of Moore’s law beyond the 50 

nm node (Bashir 2001). In the year 1999 the controlled conjugation of Au nanoparticles 

single-stranded DNA was achieved by Maeda et al. The AFM was used to confirm the one-

to-one binding of Au nanoprticles to plasmid DNA (Maeda 1999). The measurements of the 

electrical conductivity of metallic nanowires fabricated by chemical deposition of a thin 

continuous palladium film onto single DNA molecules confirmed that DNA is an ideal 

template for the production of electric wires, which can be utilized for the bottom-up 

construction of miniaturized electrical circuits (Richter 2001). In 2002, McMillan et al 

presented the fabrication of nanoscale ordered arrays of metal and semiconductor quantum 

dots, by binding preformed nanoparticles onto crystalline protein templates made from 

genetically engineered hollow double-ring structures called chaperonins, which demonstrated 

that quantum dots can be manipulated using modified chaperonins and organized into arrays 

for use in next-generation electronic and photonic devices (McMillan 2002). Macrocycles, 

DNA quadrilateral, DNA knots, Holliday junctions, and other structures were designed by 

Seeman using branched DNA and choosing the sequence of the complementary strands 

(Seeman 2003). 

 

The construction of two-dimensional and periodical gold nanoparticle arrays using a new 

DNA-NP conjugate system that allows Au NPs to be readily assembled onto a DNA tiling 

system was developed by Sharma et al, the thing that paved the way for the assembly of 

more complex nanoparticle arrays on DNA nanoscaffolds for future device applications 

(Sharma 2006). Nanoelectronic concept based on protein-nanoparticle hybrids was 

implemented by Medalsy et al (Medalsy 2008). He was able to develop a building block for 



 6 

Lego like fabrication of nanoelectronic devices, in which gold Nanoparticles (GNP) are 

embedded in the central cavity of a ring shaped like protein that is named stable protein 1 

(SP1). The Electrostatic Force Microscopy (EFM) studies showed that the bare SP1 is 

electrically silent while the SP1 gold hybrid is polarized. Tapping mode AFM topographic 

characterization was also performed by Medalsy et al on 6His-SP1 and on GNP-bound 6His-

SP1 deposited on freshly cleaved mica surfaces. The results showed an average heights of 

2.3 ± 0.2 nm and 3.3 ± 0.2 nm for the 6His-SP1 and for the GNP-bound 6His-SP1, 

respectively. Moreover he used 6HisSP1 GNP hybrids to form protein-GNP chains with 

different GNP separations. Also a highly ordered and continuous array of Wild type SP1 

(W.T. SP1) was formed too (Medalsy 2008). 

 

In order to achieve building an electronic device using individual molecules such as SP1 

and SP1-GNP hybrid it will be necessary to measure, control and understand the electron 

transport through these molecules. My work in this research includes two parts. The first 

part is studying the morphological characteristics of 73Cys-SP1 and 6His-SP1-GNP hybrids 

on mica, silicon, HOPG, and gold substrates, where Cys and His are mutants added to the 

SP1 molecule by genetic engineering. The second part is studying the electrical properties 

of both 73Cys-SP1 and 6His-SP1-GNP on HOPG substrate by direct electrical 

measurements. The main tool that I have used through my research is the AFM instrument, 

with two kinds of AFM conductive tips. Tapping and Contact are the main AFM modes 

which were used for morphological characterization of SP1 and SP1-GNP molecules, while 

the direct electrical measurements were performed using the combined force-distance/ 

current- voltage mode.. 

 

This thesis includes four chapters; Chapter one is a general introduction and Motivation. 

Chapter two includes methods and materials used throughout this work. An introduction to 

the atomic force microscopy; the main instrument and technique used in this study available 

in our laboratory, and its different modes of operation are outlined as well as in chapter two. 

Measurements collected throughout the research phases are reported and discussed with 

details in chapter three. Finally, conclusion, suggested future work are registered in chapter 

four.  
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Chapter Two 

Methods and Materials 
 

2.1 Atomic force microscopy (AFM) 

 

Microscopes have historically been tools of great importance in research. The Atomic Force 

Microscopy (AFM) is one of a family of Scanning Probe Microscopes (SPM) which has 

grown steadily since the invention of the Scanning Tunneling Microscope (STM) by 

Binning and Rohrer in the early eighties for which they received the Nobel Prize in Physics 

in 1986 (Binnig 1986). Later it has become the most popular scanning probe technique since 

it enables us to have a look on surfaces on a molecular level in several modes. Moreover, it 

overcomes the limitation of STM in imaging thin samples on electrically conductive 

materials. In addition to the high resolution, AFM offers the possibility to map electronic, 

mechanical, and optical properties.  

 

All the microscopes from the SPM family, including AFM, work on the same principle; a 

probe is scanned above the surface at a distance where a specific interaction is present 

between them and monitored by a feedback loop. The interactions in AFM are usually based 

on the forces acting between a probe and a sample, Fig. 2.1. 

 

 
 

Fig. 2.1: Forces between the AFM tip and the sample as a function of the tip-sample distance, 

adapted from http://www.e13.physik.tu-muenchen.de. 

http://www.e13.physik.tu-muenchen.de
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2.1.1 The operation principle of AFM 

  

The tip/probe placed on a cantilever. The laser and the position sensitive detector (PSD) 

which follows the deflection of the cantilever, a piezoelectric scanner which holds the 

sample and AFM electronics for operating all components together are the main components 

of the AFM, Fig. 2.2. 

 

 
 

Fig. 2.2: A schematic representation of AFM main components of the system. 

 

The tip is placed at a working distance above the surface and an image is acquired by 

moving the sample relative to the tip by means of piezo tube which changes its length 

(distortion in XY or Z axis with sub Angstrom resolution) upon voltage application. The 

forces acting between the tip and the sample lead to a cantilever deflection, depending on 

the tip-sample attractive or repulsive interactions that includes changes in the working 

distance. To keep the working distance constant, the relative tip-sample position is adjusted 

by the feedback loop. The topography of the scanned surface is reconstructed, e.g., by 

analyzing the deflection of the cantilever through measuring the position of the reflected 

laser beam on the PSD.  

 

AFM electronics– a control workstation- have the digital signal processing (DSP) card 

which holds the information for the X-Y-Z scan, and bias voltage between tip and sample. 
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These signals are low-voltage signals and are converted to high-voltage (HV) signals in the 

HV box. DSP also receives the signals of the normal, lateral forces and the sum of the 

photodiode intensities coming from the head and through the HV box.  

 

2.1.2 AFM tips 

 

The tips used in this research are of two categories; (OMLC-ACTM, Olympus) and 

(ElectriMulti75-GTM, Budget-Sensor). The first one is a rectangular Si cantilever (30 x 240 

µm), coated with Pt conductive layer, with spring constant of 2 N/m. The tip has a 

sharpened tetrahedral shape with apex of 15 nm. The other one is a rectangular Si cantilever 

(28 x 225 µm), coated with Cr-Pt conductive layer, with spring constant of 1.9 N/m. The tip 

has a three-pyramidal shape with apex of 15 nm. Both tips were used for morphological 

characterization, while the direct electrical measurements (I-V) were performed using 

ElectriMulti75-G, Fig. 2.3 shows SEM images of the different tips that were used. 

 

 
 

Fig. 2.3: SEM images of AFM tips; (a) Side view SEM image of OMLC-AC Si tip, adapted from 
probe.olympus-global.com. (b) SEM image of ElectriMulti75-G tip, adapted from sigmaaldrich. 
com.  
 

2.1.3 Imaging modes 

 

The purpose of this subsection is to describe the operation principles of the main modes of 

the AFM. as shown in Fig. 2.1. The main ranges of operation in AFM are determined 

according to the distance between the tip and the sample: contact, non-contact, and tapping 

modes.  
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a- Contact and non- contact modes 

 

In contact mode, physical contact between the tip and the sample is established. The 

working point of the scanning is the point of constant tip deflection, meaning constant force 

applied between the tip and the sample. The changes in topography during the scanning, 

cause bending of the cantilever which is recorded by PSD and corrected by the feedback to 

keep a constant deflection. At the same time, the deviations in the cantilever deflection are 

analyzed to produce an image of the topography of the surface. Contact mode has the 

disadvantage of damaging soft samples, the so called "disadvantage" of the contact mode 

was used for estimating the height of samples layers created above the modified surfaces. 

 

In non-contact mode, the distance between the tip and the sample is one to several tens of 

nanometers in the van der Waals force range. At relatively large tip-surface separation, the 

detection method is more sensitive to force gradient than to the interaction forces. The force 

applied by the tip on a sample is in the order of pico Newton (10-9 N) which enables 

imaging of soft biological samples, but cause small to no changes in the tip deflection. 

 

In non-contact AFM mode, the tip-sample interactions are measured using a vibrating tip. If 

the tip vibrates at a distance outside the van der Waals interactions, then it has free 

resonance vibration frequency, determined by its force constant (k). When the tip comes 

into interaction with the surface, the attractive interactions lead to changes of the force 

constant, depending on the tip-sample separation, to a shift in the resonance frequency and 

as a consequence to attenuation of the vibration amplitude. Thus, the vibration amplitude is 

a measure of the distance of the tip from the sample surface. The working point of non-

contact mode is the constant amplitude of the tip in a relatively close distance from the 

sample where tip-sample interactions are traceable.  

 

 

b- Tapping mode 
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Tapping mode  is another mode of operation for  AFM, which is a patented technique that 

maps topography by lightly tapping the surface with an oscillating probe tip. In tapping 

mode the cantilever assembly at or near the cantilever's resonant frequency using a 

piezoelectric scanner. The piezo motion causes the cantilever to oscillate with a high 

amplitude when the tip is not in contact with the surface. The oscillating tip is then moved 

toward the surface until it begins to lightly touch, or tap the surface. As the tip is scanned 

over the surface, the cantilever is driven at its resonant frequency (hundreds of kHz). 

Because the contact time is a small fraction of its oscillation period, the lateral forces are 

reduced dramatically.  

 

Tapping Mode has become an important AFM technique, as it overcomes some of the 

limitations of both contact and non-contact AFM modes. By eliminating lateral forces that 

can damage soft samples and reduce image resolution, tapping mode allows routine imaging 

of samples once considered impossible to image with AFM, especially in contact mode. 

Moreover tapping mode is related to limitations that can arise due to the thin layer of liquid 

that forms on most sample surfaces in an ambient imaging environment, i.e., in air or some 

other gas. The amplitude of the cantilever oscillation in tapping mode is typically on the 

order of a few 10’s of nanometers, which ensures that the tip does not get stuck in this liquid 

layer, while the amplitude used in non-contact AFM is much smaller. Thus as a result, the 

non-contact tip often gets stuck in the liquid layer unless the scan is performed at a very 

slow speed. 

 

In general, tapping Mode is much more effective than contact and non-contact modes for 

imaging larger scan sizes that may include large variations in sample topography. All of 

these advantages of tapping mode made it a suitable for morphological characterization of 

my samples through the research. 

 

 

 

2.2 Electrostatic Force Microscopy (EFM) 
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Electrostatic Force Microscopy (EFM) is one of the AFM modes which maps electric 

properties on a sample surface by measuring the electrostatic force between the surface and 

a biased AFM cantilever.  EFM applies a voltage between the tip and the sample while the 

cantilever hovers above the surface, not touching it. The cantilever deflects when it scans 

over static charges, as depicted in Fig. 2.4. 

 

 
 

Fig. 2.4:  A schematic of Electrostatic Force Microscopy operation. 

 

For EFM, the sample surface properties would be electrical properties and the interaction 

force will be the electrostatic force between the biased tip and the sample. However, in 

addition to the electrostatic force, the van der Waals (vdw) forces between the tip and the 

sample surface are present. The magnitude of these vdw forces change according to the tip- 

sample distance, because of that when making topographic image for the surface the only 

force existed is the vdw forces and the obtained signal called (Topo signal). While the 

obtained signal to measure the surface electrical properties called (EFM signal) and 

generated by the electrostatic forces.  

 

2.3 Force vs distance  

 

Force versus distance (F-d), or force spectroscopy, in AFM allows investigating the forces 

acting between the tip and the surface. Additional valuable information can be provided 

from F-d plots, like the local mechanical properties of the surface or the 

hydrophobic/hydrophilic response of the material on the surface. The significance of the 
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force-distance mode in the present work is in controlling the applied force in each point 

above the sample. Applying large forces on a molecule can cause its distortion and, as a 

consequence, changes in the electrical properties of the molecule. 

 

 
 

Fig. 2.5: A force distance plot showing tips deflection in each point above the sample, a 

snap-in and a pull-off point are not in the same distance due to capillary forces acting on 

the tip forcing to apply bigger load to disconnect the tip from the surface. 

 

Fig. 2.5 shows a representative F-d plot measured during force spectroscopy when the tip-

sample distance is reduced and the deflection of the tip is recorded in each point during the 

approach. During the initial approach of the sample to the tip (when the sample is placed on 

the piezoelectric unit), while the tip is in the region of no physical interaction with the 

surface, the tip deflection is constant. When the tip-sample distance is small enough, the tip 

jumps into contact with the surface as a result of the vdw forces acting on the tip (“snap-in” 

or “jump in (to) contact” Fig. 2.5). Further movement of the tip occurs in continuous contact 

with the sample. The value of the deflection in this part of the graph depends on the force 

constant k, of the cantilever. In the retracting curve, the piezoelectric unit withdraws the 

sample from the tip. The forces applied on the sample diminish till the “pull off” contact 

point. This point is different from the jump in contact (JIC) point because of the adhesive 
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and capillary forces acting on the tip in the atmosphere of relative humidity. In the “pull off” 

point the force applied by a piezo for retraction overcomes the capillary and adhesive forces 

of the sample and tip disconnects from the sample. Thus the cantilever returns to the initial 

position when small force (pN) is acting on the tip for topographic scanning. 

 

2.4 Experimental setup 

 

Samples includes 73Cys-SP1 and 6His-SP1-GNP’s complex deposited on HOPG surface. 

Each SP1 molecule has 73 Cys, while in the complex of it with GNP’s it has 6His, which 

enables both the SP1 molecules and their complex to be attached to different substrates like 

the HOPG surface, that is schematically presented in Fig. 2.6. 

 

 
 

Fig. 2.6: A schematic of the experiment setup. 

In the experimental configuration of this work, electrical contact to the SP1, 6His-SP1-

GNP’s was made with a C-AFM tip as one of the electrodes. Current-voltage characteristics 

of the sample were measured by applying voltage between the tip and the HOPG substrate 

which is the second electrode.   

 

2.5 Materials 
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2.5.1 SP1 protein and SP1-GNP complex 

 

Stable protein 1 (SP1) is a 108-amino-acid hydrophilic polypeptide with a molecular mass 

of 148.8 kDa (Wang 2002, 2003), isolated from aspen plants (Populus tremula) (Pelah 1995, 

1997). It is boiling stable, stress-responsive protein with no significant sequence homology 

to other stress-related proteins (Dure 1993, Ingram 1996, Thomashow 1999), which suggest 

that SP1 represents a new class of stress-related proteins. 

 

The SP1 molecule consist of 12 identical protein subunits, Fig. 2.7c, each subunit is called a 

monomer and of 12.4 KDa, Fig. 2.7a. The crystal structure of SP1 indicated strong 

hydrophobic interactions between two monomers that created a very stable dimer, Fig. 2.7b 

which spontaneously assemble into a uniform ring-like shape with diameter of 11 nm, inner 

pore of 2-3 nm and width of 4-5 nm, which is revealed by the X-ray crystallography studies 

(Dgany 2004). 

 

 

 



 17

Fig. 2.7: (a) SP1monomer with N-termini, (b) SP1 dimer composed of two SP1 monomers, (c) 

Crystal structure of SP1 molecule with 12 N-termini, (d) Electron microscopy of SP1 

molecule. 

 

The N-termini of the SP1 are pointing from the central cavity to the opposite planes of the 

ring in a way that 6 N-termini point to one side and the other 6 N-termini point to the opposite 

side as presented in Fig. 2.7, (a) and (c), (N-termini in green). Therefore, the SP1 protein can 

be modified by genetic engineering to enable it to bind in a flat orientation to the substrate 

underneath, and to the gold nanoparticle at the center on top of the SP1 ring. This can be done 

by adding mutants such as cystein group (Cys) that can bind to the SP1 monomer and 

complex, and histidine group (His) that can bind to the 6 N-termini of the SP1 molecule 

which allowing the binding of GNP to it, Fig. 2.8.  
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Fig. 2.8: (a) SP1 monomer with Cys group, (b) Cys groups on SP1 dodecamer, (c) SP1 

monomer with His group on N-termini, (d) His groups on 6 N-termini of SP1 dodecamer, (e) 

GNP bind to the center of SP1 molecule, (f) 3D image of SP1-GNP complex. 

 

The SP1  protein has several properties that made from it a unique protein for many possible 

nanoelectronic devices such as molecular wires and ultra high density memory. These 

properties are the high stability, the resistant to high temperatures, high levels of ionic 

detergent, various proteases, and wide range of pH. Moreover the ring shape of SP1with N-

termini that can be modified by adding functional groups to allow it to bind to GNP and 

substrates (Medalsy 2008).  

 

The SP1 protein solution, that is used in the experiment is prepared from original solution 

purchased from fulcrum SP1 Ltd, with concentration of 12.76 x 10-6 M. A new solution with 

concentration of 50 nM is prepared and used to prepare the samples. The 6His-SP1-GNP’s 

solution that is used to prepare the samples has a concentration of 1.19 mg/ml and the 

GNP’s used in this solution is of 1.8 nm in dimension. This solution was purchased from 

sigma-Aldrich Ltd. 

 
2.5.2 Substrates 

 

a- Mica 

 
Mica is a hydrous silicates of aluminum and potassium, often containing magnesium, 

ferrous iron, ferric iron, sodium, and lithium and more rarely are containing barium, 

chromium, and fluorine. It is most commonly found in the form of sheets and can split into 

very thin elastic laminate. The entire mica surfaces can be easily updated by a simple 

cleaving, by first pressing some adhesive tape against the top mica surface, then peeling off 

the tape. In the experiment the thin mica sheets which were used purchased from SPI 

supplies, USA. 

 
b- Gold  
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A commercial gold substrate (Gold Arrendee/ Au (111)), 200 nm thick, on borosilicate, with 

high rms roughness is annealed by a flame using highly refined butane gas. The substrate 

was cleaned first in acetone and then in ethanol in ultrasonic bath for 10 minutes. After 

drying the gold surface with Nitrogen gas, flame annealing was performed in a dark room 

for observation of the dark red glowing of the gold. 

 
c- Silicon 

 

A commercial Silicon wafer, silicon oxide one side coated and polished was purchased from 

Spi supplies. In order to remove the native oxide layer from the surface of silicon substrate, 

it was cleaned in ethanol in ultrasonic bath for 20 minutes. 

 

 

 

d- HOPG 

 

HOPG, is a Hydrophobic highly oriented pyrolytic graphite surface which is a new form of 

high purity carbon purchased from Spi supplies. In particular HOPG is described as consisting 

of a lamellar structure like mica so the entire surfaces can be easily updated by a simple 

cleaving using adhesive tape.  

 
2.6 Samples preparation 

 

The preparation of each sample includes two stages: the preparation of clean and flat 

substrate, and the deposition of the solution on the surface of the substrate. 

 

2.6.1 SP1 samples preparation 

 

All samples of the SP1 solution on the different four substrates were prepared with the same 

conditions. After preparing a clean and flat surface with the procedures mentioned above for 
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each substrate, 5 µl of SP1 solution with concentration of 50 nM is deposited on the surface 

of the substrate, with incubation time of 15 minutes except for the HOPG surface, the 

incubation time was 5 minutes. After that, the sample washed with T.D.W and dried with 

Nitrogen gas. For the annealed gold substrate the SP1 solution is deposited right after the 

annealing and the sample was put in contact with a large metal block for cooling. 

 

2.6.2 SP1-GNP’s samples preparation 

 

All the samples of the 6His-SP1-GNP’s solution on the different four substrates were 

prepared with the same conditions. After the preparation of clean and flat surface, 5 µl of 

6His-SP1-GNP’s solution with concentration of 1.19 mg/ml is deposited on the surface of 

the substrate, with incubation time of 5 minutes except for the HOPG surface, the incubation 

time was 1 minute. After that the sample was washed with T.D.W and dried with Nitrogen 

gas.  

 

 
 
 
 
 
 
 
 
 

Chapter THREE 
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Results and Discussion 

 
 

 

 

 

 

 

 

 

 

 

 

Chapter THREE 

Results and Discussion 
 

3.1 Annealing of gold substrate 

 

Following the annealing procedure, mentioned in methods and materials in subsection 2.5.2, 

atomically smooth Au (111) terraces were obtained as shown in Fig. 3.1d. During the 

annealing, the microstructure of gold changed, and lead to the formation of large grains, 1 

µm2 to 4 µm2 in size, Fig. 3.1. 
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Fig. 3.1: AFM topography images of (a) gold before annealing process; scanning size 1x1 

μm2, (b) and (c) after annealing; scanning size 4x4 μm2, (d) Au (111) terraces after annealing. 

 

3.2 Morphological characterization of 73Cys-SP1 and 6His-SP1-GNP molecules 

 

AFM tapping and contact modes were used to morphologically characterize the samples. All 

the images were obtained with a commercial AFM (Nanotec Electronica, Madrid) of ambient 

conditions. The OMLC-AC and ElectriMulti75-G tips were used for tapping and contact 

modes images. Scratching in contact mode was performed as one of the tests to verify the 

layers height above a flat gold and HOPG surfaces. In general, the AFM tip was put into 

contact with the surface of the substrate through the SP1 and SP1-GNP layers. During the 

scan, part of the layers was removed away. After the contact mode was completed, 

topography was done above the scratched area. Topography images show, in a profile, the 
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difference in height between the scratched and unscratched areas. The morphological and 

electrical results were collected in tables at the end of the morphological and electrical 

characterization sections.  

 

3.2.1 Morphological characterization of 73Cys-SP1 molecules on mica substrate 

 

The surface morphology on mica substrate was characterized using AFM tapping mode and 

OMLC-AC tip. Fig.3.2 shows different topography images of SP1 molecules on mica 

substrate with height profiles for some molecules. 

 

 
 

Fig. 3.2: AFM topography images of 73Cys-SP1 molecules on mica substrate on different 

areas, acquired in tapping mode: (a) 2x2 µm2 , (b) 1x1 µm2, (c) 1x1 µm2, and (d) height 

profiles of SP1 molecules. 
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From Fig. 3.2, the topographic images on different areas shows the SP1 molecules that bound 

to mica substrate. It is clear that SP1 molecules spread over the surface with different sizes 

and heights. The SP1 molecules on mica were found to have a diameter ranges from 30 nm to 

40 nm, while the heights range from 1 nm to 3.3 nm.   

 
 

Fig. 3.3: (a) AFM topography image of 73Cys-SP1 molecules on mica substrate, (b) flooding 

image of the topograpgy (a) shows the SP1 molecules with heights range from 2 nm to 3.3 nm, 

(c) height distribution for the SP1 molecules in image (a), and (d) histogram shows height 

distribution of SP1 molecules in the flooding image (b). 

 

The topography image (a) in Fig. 3.3 shows all the SP1 molecules with different heights, 

while (b) is a flooding image∗ of the topoghrapgy (a), which was performed to show only the 

SP1 molecules with minimum heights of 2 nm and more. The results obtained from the 

flooding image in Fig. 3.3b, and height disrtibution of the SP1 molecules in Fig. 3.3c, 

revealed that most of the SP1 molecules on mica surface are of heights less than 2 nm. These 
                                                
∗ Flooding image: height filter image. 
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SP1 molecules with such heights have been neglected since they present SP1 fractions, i.e., 

SP1 molecules that lost some of their subunits. The histogram of heights which was 

performed on the molecules presented in the flooding image Fig. 3.3d, shows that most of SP1 

molecules (5 molecules) are with height equal to 2 nm. It was found from the height profiles 

in Fig. 3.3d (performed on several dozens of SP1 molecules) that SP1 molecules on mica 

substrate are of average height 2.4 ± 0.3 nm. 

 

3.2.2 Morphological characterization of 73Cys-SP1 molecules on silicon substrate 

 

The surface morphology on silicon substrate was characterized using AFM tapping mode and 

OMLC-AC tip. With comparison between the topographic images obtained for SP1 molecules 

on mica and on silicon substrates, it is clear that the silicon substrate is more attractive to SP1 

molecules since the number of SP1 molecules bound to silicon is higher than that bound to 

mica. Although the samples have been prepared under the same conditions as explained in 

chapter two. From the height profiles of some SP1 molecules on silicon, it was found that 

these molecules have a diameter ranges from 30 nm to 40 nm, while the heights range from 1 

nm to 5.3 nm, Fig. 3.4. 
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Fig. 3.4: AFM topography images of 73Cys-SP1 molecules on silicon substrate on different 

areas, acquired in tapping mode: (a) 2x2 µm2 , (b) 1.2x1.2 µm2, (c) 700x700 nm2, and (d) 

height profiles of SP1 molecules. 

 
 

Fig. 3.5: (a) AFM topography image of 73Cys-SP1 molecules on silicon substrate, (b) 

flooding image of the topograpgy (a) shows the SP1 molecules with heights range from 2 nm 

to 2.6 nm, (c) height distribution for the SP1 molecules in image (a), and (d) histogram shows 

height distribution of SP1 molecules in the flooding image (b). 

 

The height distribution and the flooding image in Fig. 3.5, (b) and (c), performed on the 

topography image in Fig. 3.5a, shows that most of the heights are limited in the range (0.6 – 

1.4) nm, and small number of objects with heights (2 – 2.6) nm are presented in the 

distribution tail, which indicates the presence of SP1 molecules in addition to SP1 fractions. 

The heights histogram of the flooding image shows that most of SP1 molecules (40 molecule) 

are of height equal to 2 nm, while the average height was found to be 2.2 ± 0.2 nm. 



 27

 

 

 

 

3.2.3 Morphological characterization of 73Cys-SP1 molecules on gold substrate 

 

The SP1 molecules on the annealed gold substrate were mophologically characterized using 

both dynamic and contact AFM modes. The same type of tip was used in the morphology  

characterizations. It is clear from the topography image Fig. 3.6a that the gold grains are 

completely covered with SP1 molecules. In order to find the height of SP1 layers on the 

annealed gold substrate, the AFM contact mode was  used to scratch small areas (200x200 

nm) on different places of the sample. Figure. 3.6, (b) and (e) show the height profiles which 

were performed between the scratched and unscratched areas. These height profiles show the 

formation of SP1 layers with average heights 2 ± 0.1 nm and 5 ± 0.2 nm above the gold 

surface, Fig. 3.6, (c) and (f). The height of 2 nm indicates the presence of SP1 monolayer, 

while the 5 nm represents the height of two layers of SP1 molecules.  
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Fig. 3.6: AFM topography images of 73Cys-SP1 molecules on annealed gold substrate, on 

different areas, acquired in tapping and contact modes, the scratched regions were done 

using Si OMLC-AC tip, and the cross-section height profiles of the scratched areas: (a) 2x2 

µm2, (b) 3.2x3.25 µm2, (d) and (e) 1.5x1.5 µm2, (g) and (h) 1.2x1.2 µm2. 

3.2.4 Morphological characterization of 73Cys-SP1 molecules on HOPG substrate 

 

The surface morphology of SP1 molecules on HOPG substrate was done using AFM dynamic 

mode, and the ElectriMulti75-G type tip. Figure. 3.7 shows topography images for different 

areas of the sample and the height profile performed between the HOPG surface and the SP1 

molecules.  
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Fig. 3.7: AFM topography images of 73Cys-SP1 molecules on HOPG substrate on different 

areas, acquired in tapping mode: (a) 2x2 µm2, (b) height profile of SP1 monolayer above 

HOPG substrate, (c) 1.1 µm2, and (d) 600x600 nm. 

 

The SP1 molecules spread on the HOPG surface to cover large areas, and leaving small parts 

in the shape of circles. The height profile which was performed between HOPG  surface, i.e., 

the empty circle, and the SP1 molecules revealed that the average height of the SP1 molecules 

is 2 ± 0.1 nm, which is compatible with the height of the SP1 monolayer on the annealed gold 

substrate.   

 

3.3.5 Morphological characterization of 6His-SP1-GNP molecules on mica substrate 

 

AFM tapping mode with OMLC-AC tip were used to obtain the topographic images of SP1-

GNP molecules on mica substrate. Figure. 3.8 shows SP1-GNP molecules on mica substrate, 

and the height profiles of some molecules, which revealed that these molecules have a 

diameter ranges from 21 nm to 23 nm, and heights range from 4.4 nm to 10.7 nm. 
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Fig. 3.8: AFM topography images of 6His-SP1-GNP molecules on mica substrate on different 

areas, acquired in tapping mode: (a) and (b) 1.4x1.4 µm2, (c) 600x600 nm2, and (d) height 

profiles of 6His-SP1-GNP molecules. 
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Fig. 3.9: (a) AFM topography image of 6His-SP1-GNP molecules on mica substrate, (b) 

flooding image of the topograpgy (a) shows the SP1-GNP molecules with heights range from 

2.5 nm to 10.7 nm, (c) height distribution for the SP1-GNP molecules in image (a), and (d) 

histogram shows height distribution of the SP1-GNP molecules in the flooding image (b). 

 

The results obtained from the height distribution and the flooding image Fig. 3.9, (b) and (c), 

shows that most of the heights are limited in the range (2 - 2.5) nm. The heights histogram of 

the flooding image shows that the SP1-GNP molecules spread over the mica with different 

heights starting from 2 nm to 10.7 nm, while the height profiles which were performed on tens 

of molecules lead to average height equal 3.7 ± 0.4 nm.  
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3.2.6 Morphological characterization of 6His-SP1-GNP molecules on silicon substrate 

 

 
 

Fig. 3.10: AFM topography images of 6His-SP1-GNP molecules on silicon substrate on 

different areas, acquired in tapping mode: (a) 2x2 µm2, (b) 1.4x1.4 µm2, (c) 700x700 nm2, and 

(d) height profiles of 6His-SP1-GNP molecules. 

 
The surface morphology on silicon substrate was characterized using AFM tapping mode with 

OMLC-AC tip. Although the samples on both mica and silicon substrates have been prepared 

under the same conditions but the difference between the number of SP1-GNP molecules that 

bound to both substrates is clear from the different topographic images performed on the two 

surfaces. From the height profiles, Fig. 3.10d, of some SP1 molecules on silicon, it was found 

that these molecules have a diameter ranges from 23 nm to 27 nm, while the heights range 

from 1 nm to 5.3 nm. 
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Fig. 3.11: (a) AFM topography image of 6His-SP1-GNP molecules on silicon substrate, (b) 

flooding image of the topograpgy (a) shows the SP1 molecules with heights range from 2.5 

nm to 6.3 nm, (c) height distribution for the SP1-GNP molecules in image (a), and (d) 

histogram shows height distribution of SP1-GNP molecules in the flooding image (b). 

 

 The height distribution of the topography image (a) in Fig. 3.11, shows the heights of the 

SP1-GNP molecules extended from 2 nm to 6 nm, which is identical with the heights 

histogram obtained for the molecules existed in the flooding image. The performance of 

several height profiles on many SP1-GNP molecules lead to average height equal to 3.3 ± 0.1 

nm. 
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3.2.7 Morphological characterization of 6His-SP1-GNP molecules on gold substrate 

 

The SP1-GNP molecules on the annealed gold substrate were mophologically characterized 

using both dynamic and contact AFM modes, and ElectriMulti75-G tip. Fig. 3.12 shows some 

topographic images for the annealed gold grains covered with SP1-GNP molecules. The 

height profile performed between the SP1-GNP’s and the scratched area (200x200 nm) shows 

the average height of 4 ± 0.2 nm which indicates the formation of SP1-GNP monolayer on the 

gold substrate. The comparison between the heights obtained from the SP1 molecules for one 

monolayer on the annealed gold substrate (2 nm) and the height of the SP1-GNP monolayer 

(4 nm) is a proof of the existence of GNP’s in the cavity of the SP1 molecules. 

 

 
 

Fig. 3.12: AFM topography images of 6His-SP1-GNP molecules on annealed gold substrate, 

on different areas, acquired in tapping and contact modes, the scratched region was done 

using Si ElectriMulti75-G tip, and the cross-section height profile of the scratched area: (a) 

4x4 µm2, (b) 3x3 µm2, (d) and (e) 1.5x1.5 µm2. 
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3.2.8 Morphological characterization of 6His-SP1-GNP molecules on HOPG substrate 

 

The surface morphology of SP1-GNP molecules on HOPG substrate was done using tapping 

and contact AFM modes. ElectriMulti75-G tip was used to perform the topography images 

and the scratching. Figure. 3.7 shows topography images for different areas of the sample and 

the height profile performed between the SP1-GNP molecules and the scratched area 

(200x200 nm). 

 

 
 

Fig. 3.13: AFM topography images of 6His-SP1-GNP molecules on HOPG substrate, on 

different areas, acquired in tapping and contact modes, the scratched region was done using 

Si ElectriMulti75-G tip, and the cross-section height profile of the scratched area: (a) 

800x800 nm2, (b) 500x500 nm2, and (c) 1.5x1.5 µm2. 
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The average height of the SP1-GNP layer was found to be 4 ± 0.2 nm above the HOPG 

surface, which is compatible with the height observed from the SP1-GNP molecules on the 

annealed gold substrate. The incubation time for this sample is (1 minute) which is less than 

that prepared on the annealed gold substrate (5 minutes) with the same concentration for both 

samples, which strengthen the assumption that the HOPG substrate is highly attractive to the 

SP1 molecules. 

 

A comparison between the results obtained for SP1 and SP1-GNP dimensions by three 

different methods is illustrated in Table 3.1, While the comparison of the morphological 

results obtained for SP1 and SP1-GNP molecules on the different four substrates through this 

research is presented in Table 3.2.  

 

Table 3.1: The dimensions of SP1 and SP1-GNP molecules obtained by different methods. 

 

Method SP1 diameter 

(nm) 

SP1 height 

(nm) 

SP1-GNP height 

(nm) 

X-ray crystallography 11 4-5 -------- 

AFM tapping mode results on mica 

obtained by Medalsy with tip apex 

~1nm 

 

13 ± 1 

 

2.3 ± 0.2 

 

3.3 ± 0.2 

AFM tapping mode results on mica 

obtained in this study with tip apex 

~15nm 

 

34 ± 0.3 

 

2.4 ± 0.3 

 

3.7 ± 0.4 

  

The difference between the obtained dimensions and heights of the SP1 protein and the X- ray 

crystallography measurements (Dgany 2004) came as a result of surface-protein and tip-

protein interactions. The difference between the dimensions and heights of SP1 and SP1-GNP 

obtained through this study and the dimensions obtained by Medalsy et al (Medalsy 2008) is 

due to: (a) tip-protein interaction, (b) the difference of mutants that attached to the SP1 

molecules, and (c) to the conditions of preparing the samples. 
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Table 3.2: The dimensions of SP1 and SP1-GNP molecules obtained by AFM tapping mode 

on different four substrates. 

 

Substrate SP1 diameter 

(nm) 

SP1 height 

(nm) 

SP1-GNP 

diameter (nm) 

SP1-GNP 

height (nm) 

Mica 34 ± 0.3 2.4 ± 0.3 22 ± 0.2 3.7 ± 0.4 

Silicon 35 ± 0.2 2.2 ± 0.2 24 ± 0.4 3.3 ± 0.1 

Annealed gold -------- Monolayer  

2 ± 0.1 

-------- Monolayer 

2 ± 0.1 

HOPG -------- Monolayer 

4 ± 0.2 

-------- Monolayer 

4 ± 0.2 

 

The difference between the obtained heights and the coverage of the SP1 and SP1-GNP 

absorbed on the different substrates is due to: 

 

1- Surface-protein interaction: 

 

a- Adsorption on hydrophilic surface 

 

The experiments showed that the adsorption of the hydrophobic SP1 protein on mica which 

is negatively charged hydrophilic surface, was less than that on the hydrophobic surfaces 

which are silicon, annealed gold, and HOPG. The interactions between SP1 protein and 

mica surface mainly include electrostatic interactions (Horbett 1997). On mica surface, the 

rearrangement or orientation of the adsorbed SP1 molecules take place whereby the mobile 

regions of positive charge are brought near the hydrophilic mica to enable the molecules to 

bind relatively tightly to the surface.  
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b- Adsorption on hydrophobic surface 

 

The hydrophobic interaction is the major interaction on the hydrophobic surfaces; silicon, 

annealed gold, and HOPG. When SP1 protein arrived at the hydrophobic surface, structure 

rearrangement occur in which the hydrophobic groups of the SP1 are exposed to interact 

with surface. These hydrophobic groups of the SP1 protein have a strong hydrophobic force  

with hydrophobic surface, which explains the coverage of the SP1 and SP1-GNP molecules 

of the hydrophobic surfaces.  

 

2- Tip-protein interaction 

 

The radius of curvature of the two tips that were used for the morphological characterization 

of SP1 and SP1-GNP molecules is 23 nm, which is greater than the size of the SP1 

molecules (11 nm). The difference in dimensions between the tip and the SP1 molecules 

influenced the morphological characteristics. As the tip scans over the SP1, the sides of the 

tip make contact before the apex, and the feedback mechanism begins responding the SP1 

molecule, which lead to broadening of the SP1 molecule. 

 

The large heights of some SP1 molecules which were found on mica and silicon substrates 

(5.5 nm, Fig. 3.4d) and SP1-GNP molecules (6-10 nm, Fig. 3.10d and Fig. 3.8d) could 

represent SP1 and SP1-GNP standing tubes, i.e., number of molecules bound above each 

other as presented schematically in Fig. 3.14. 

 

 
 

Fig. 3.14: A schematic of SP1 and SP1-GNP standing tubes. 
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3.3 Electrical characterization of 73Cys-SP1 and 6His-SP1-GNP molecules 

 

The electrical characterization of SP1 and SP1-GNP molecules was measured by a C- AFM 

tip (ElectriMulti75-G), using Dulcinea electronics (Nanotec Electronica) as a voltage source 

and Keithley 6517A as an electrometer in the electrical circuit, as shown in the experimental 

setup, (see section 2.4).  

 

Current-voltage measurements were combined with the force-distance mode which was 

described in chapter two. In F-d measurements, the distance between the oscillated tip and the 

sample was reduced in a pre-determined point above the sample while recording the tip 

deflection. The AFM software was modified to control the tip deflection (tip load on the 

sample) by limiting the approach at a fixed distance or when the amplitude reduction of the tip 

oscillations goes below a threshold. In the combined F-d/ I-V mode, the AFM software 

measures I-V curves in the last limited point of F-d (at the end of the approach cycle, before 

the withdrawal of the tip). 

 

Current-voltage characteristics can be measured in different places along the F-d as in Fig. 

3.15, meaning different height/ load (N.F) above the sample. In order to avoid tip-loading 

force on the sample, the approach can be stopped just before the “jump to contact” point of 

the F-d. The establishing of a good physical contact between the tip and the sample during the 

combined F-d/ I-V is proved by the presence of adhesion and capillary forces which can be 

observed on F-d curve, as seen in Fig. 3.15 (red lines). 
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Fig. 3.15: F-d curves (a) with high load (N.F), (b) with small load (N.F) on bare gold; the 

green and red lines represent approach and withdrawal deflection of the oscillated tip 

respectively; in the last point of the approach, the I-V measurements can be performed; the 

slope of the red line in (b) shows the presence of adhesion and capillary forces between the 

tip and the gold 

In the present work, F-d curves with small (Fig. 3.15b), and high load (N.F) (Fig. 3.15a) on 

the sample as in Fig. 3.15 were taken into account when comparing between the 

measurements. Current-voltage measurements on bare gold were done before and after the I-

V measurements of the SP1 and SP1-GNP molecules as a validation of the tip conductivity. 

Fig. 3.16 shows the results of the combined F-d/ I-V mode on bare gold substrate. 

 

 
 

Fig. 3.16: Results of the combined F-d/I-V mode on bare gold, (a) F-d curve on gold with 

small lad (N.F) of the tip on the sample, and (b) I-V curve for gold with voltage sweep from -

1.5v to 1.5v. 
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Following the EFM results obtained by Medalsy, which revealed that the bare SP1 is 

electrically silent, while the SP1 gold hybrid is polarized (Medalsy 2008). Additional 

electrical measurements were done in order to understand the electron transport through these 

molecules, since the polarizability alone does not reflect the nature of these biological 

molecules and their electrical characteristics.  

 

In the present work the I-V measurements of both SP1 and SP1-GNP molecules on HOPG 

substrate were checked several times and in several places with small and high load (N.F) on 

each sample.  

 

Several I-V curves were collected for the SP1 molecules (height equal to 2 nm above the SP1 

monolayer on the HOPG) with F-d curves, Fig. 3.17. Performing such F-d curves with small 

load (N.F) on the SP1 molecules will not affect their shape, and as a result, their electrical 

properities will not be changed.  

 

 
 

Fig. 3.17: Result of the combined F-d/I-V mode on SP1 molecules, (a) SP1 molecules that the 

measurements have been done on, (b) no pressing in F-d curve (green line), and (c) 10 I-V 

curves with zero current and voltage sweep from  -1.5v to 1.5v. 

 
In Fig. 3.17b the green line shows the absence of the “JIC” point, meaning small normal force 

on the SP1 molecules, while the red line in the withdrawal F-d curve indicates that a good 

contact was established between the tip and the SP1 molecules. Zero currents in Fig. 3.17c 
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demonstrate the insulating behavior of SP1 molecules. These graphs are representative of 10 

measurements that were performed on SP1 molecules which are marked with green circles, 

Fig. 3.17a. 

 

The measurements in a combined F-d/ I-V mode were done for SP1-GNP molecules in a 

similar way to the measurements on SP1 molecules. Fig. 3.18b shows an F-d curve, with no 

“JIC” point and with adhesion in the withdrawal. The I-V curves collected for SP1-GNP 

molecules which are marked in green circles are presented in Fig. 3.18c, which revealed an 

insulating behavior of SP1 gold hybrid.   

 

 
 

Fig. 3.18: Result of the combined F-d/I-V mode on SP1-GNP molecules showed, (a) SP1-

GNP molecules that the measurements have been done on, (b) no pressing in F-d curve 

(green line), and (c) 10 I-V curves with zero current and voltage sweep from  -2v to 2v. 

 
Another I-V measurements were performed on both SP1 and SP1-GNP molecules using F-d 

curves with high load (N.F). Fig. 3.19 shows the F-d curve with the “JIC” point and some of 

the corresponding I-V measurements of the SP1 molecules.  

 
Using F-d curves with high load (N.F) on the SP1 molecules caused them to be distorted and 

pressed toward the HOPG substrate making direct contact with it. The response of the SP1 

molecules toward the applied bias lead to I-V curves having S shape or sigmoid shape which 

appeared in different bias ranges. 
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Fig. 3.19: Result of the combined F-d/I-V mode on SP1 molecules, (a) SP1 molecules that the 

measurements have been done on, (b) pressing in F-d curve, the SP1 molecule is pushed to 

direct contact with the HOPG substrate, and (c)-(f) the I-V curves with sweep voltage from -

1.5v to 1.5v and -2v to 2v.  

 

The same I-V measurements were performed for SP1-GNP molecules too with pressed F-d 

curves which result in pushing the GNP particles through the SP1 molecules and establishing 

direct contact with the HOPG substrate. Fig. 3.20 shows the pressed F-d curve and the 

corresponding ohmic I-V curves of the SP1-GNP molecules with voltage sweep from -2v to 

2v. 



 44

 
 

Fig. 3.20: Result of the combined F-d/I-V mode on SP1-GNP molecules, (a) SP1-GNP 

molecules that the measurements have been done on, (b) pressing in F-d curve, the GNP is 

pushed to direct contact with the HOPG substrate, and (c)-(f) the I-V curves with sweep 

voltage from  -2v to 2v.  

 

A comparison between the I-Vs obtained from the SP1 and SP1-GNP molecules is presented 

in Fig. 3.21. The corresponding figures show the sigmoidal signal around the zero bias which 

is typical for organic contamination (ODA 2008), i.e., the SP1 molecule, and the ohmic signal 

which is identical for conductive substance, i.e., the GNP. 
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Fig. 3.21: A comparison between two I-V curves, (a) for SP1 molecule showing sigmoidal 

shape, (b) for SP1-GNP molecule showing an ohmic signal.  

 

The great improvement of the SP1 and SP1-GNP molecules conductivity from I-V curve to 

another (in terms of conductance and current magnitude) may be a result of the great force 

applied on the SP1 and SP1-GNP molecules. The difference could also be due to a better 

contact between the tip and the molecules, or some other effect that has to do with the current, 

the temperature or the bias themselves. A comparison between the results obtained by the 

electrostatic force microscopy (Medalsy 2008), and the results obtained from the direct 

electrical measurements of this study is presented in Table 3.3. 

 

Table 3.3: Electrical prosperities of SP1 and SP1-GNP molecules obtained by EFM and I-V. 

 

Method SP1 molecules SP1-GNP molecules 

Electrostatic force microscopy Electrically silent Polarized 

Current-voltage with small load F-d curves Insulator Insulator 

Current-voltage with big load F-d curves Sigmoidal signal Ohmic signal 
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The electrostatic force microscopy results which revealed that the SP1 molecules is not 

polarized have been done under specific condition which is the voltage value (from -5v to 5v). 

The direct electrical measurements shows a semiconductor behavior of the SP1 molecules, 

this behavior can be explained by the metal-protein-metal junction, as presented schematically 

in Fig. 3.22. 

 

 
 

Fig. 3.22: A schematic of metal-protein-metal junction. 

 

The SP1 protein has molecular orbits, which are the Lowest Unoccupied molecular Orbit 

(LUMO) and the Highest Occupied Molecular Orbit (HOMO). When the C-AFM tip is 

connected to the SP1 protein, it’s conduction band has lower energy than the LUMO orbit of 

the SP1 molecule. By applying voltage, the electrons in the tip get an amount of energy that 

enables them to transfer to the SP1 LUMO orbit. After the injection of the charges through the 

SP1 molecule, these charges distributed around the residue parts of the amino-acid. The 

charged amino-acid residues, the hydrogen bond between the amine and the acid, and the 

amide bond that present along the polypeptide chain are considered as excellent candidates for 

hopping sites. So the charges transfer along the SP1 molecule through hopping until they 

reached the HOMO orbit. After that the charges transfer to the conduction band of the HOPG 

substrate. This is one of the possible explanations that I thought about it to explain what could 

happen through the metal-protein-metal junction.  
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The electrical measurements of the SP1-GNP molecules show an ohmic behavior, which is 

identical to conductive substance; the gold nanoparticles. This ohmic behavior came as a 

result of the metal-metal-metal junction, since the tip pressed the GNP and lead to direct 

contact between it and the HOPG substrate. 

 

The results obtained from the direct electrical measurements introduced the SP1-GNP as a 

basic building block for future nanoelectronic devices such as nanowires that can be 

performed by building SP1-GNP tubes as presented in Fig. 3.23. In this building block, the 

SP1 protein is used as incubator for the GNP, while the function of the GNP is electron 

transfer. 

 

 
 

Fig 3.23: A schematic of a nanowire from SP1-GNP molecules. 
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Chapter Four 

Conclusion and Future Work 
 

4.1 Conclusion 

 

In this research, morphological and electrical studies for the stable protein 1 (outer diameter 

10 nm, inner diameter 4 nm and height 2.5 nm) and SP1 gold hybrid (gold nanoparticles are 

of dimensions equal to 1.8 nm) were done using AFM tapping, contact, and the combined F-

d/I-V modes. Tapping mode AFM results for SP1 on mica, and silicon, showed an average 

heights equal to 2.4 ± 0.3 nm and 2.2 ± 0.2 nm respectively, while on gold, and HOPG 

substrates a monolayer of SP1 molecules was formed with average height equal to 2 ± 0.1 nm. 

The morphology of SP1-GNP molecules on the same substrates showed an average heights of 

3.7 ± 0.4 nm and 3.3 ± 0.1 nm on mica and silicon, but on gold and HOPG a monolayer of 

average height equal to 4 ± 0.2 nm was formed.  

 

The direct electrical measurements of SP1 molecules on HOPG substrate showed an 

insulating behavior with small load (N.F) F-d curves, and the same results were obtained for 

SP1-GNP molecules. The I-V measurements which were performed with high load (N.F) F-d 

curves showed a sigmoidal signal for SP1 molecules and an ohmic behavior for SP1-GNP 

molecules.    

 

4.2 Future Work 

 

The promising results in this work enhance the following future work: 

 

- Building nanowires in a Lego like fabrication of nanoelectronic devices from SP1-GNP 

molecules.  

 

- Measure a real conductivity in the constructed nanowires using electrical transport 

measurements. 
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 الملخص

 
و ذلك بسبب  ,خلال العقد الأخیر اكتسبت الجزیئات الحیویة اھتماما كبیرا في مجال تصنیع القطع الالكترونیة

تتغلب و تتفوق على مساوئ الطرق الأخرى المستخدمة في , الحاجة إلى قطع الكترونیة جدیدة بخصائص معینة

. یتطلب دراسة و فھم كیفیة انتقال الإلكترونات خلالھاإن بناء قطع الكترونیة باستخدام جزیئات حیویة . تصنیعھا

یقوم ھذا البحث  على دراسة الخصائص المورفولوجیة  و الخصائص الكھربائیة  لنوع من البروتینات ذو شكل 

. و لوحدات أساسیة مكونة من جزیئات ذھب مزروعة في مركز ھذا البروتین ,1حلقي یسمى البروتین المستقر 

و ذلك , و الجرافایت, الذھب, السیلیكون, المایكا: مورفولوجیة على أربعة أسطح مختلفة ھيتمت الدراسة ال

أما دراسة الخصائص الكھربائیة فقد تمت عن طریق عمل قیاسات مباشرة من . الذریة باستخدام  مجھر القوى

تقنیة  ذلك باستخدام و, على سطح الجرافایتةطبترم  التیار و الجھد على البروتین والوحدات الأساسیة و ھي

                                                                                               .الموصلةمجھر القوى الذریة  قیاسات

                    

 2.4±0.3على سطحي المایكا و السیلیكون ھو  البروتین بأن معدل ارتفاع نتائج مجھر القوى الذریة أظھرت

ي الذھب و حطبینما تكونت طبقة واحدة من ھذا البروتین على س, على التواليرتمونان  2.2±0.2و  رتمونان

أما بالنسبة للوحدات الأساسیة المكونة من البروتین و جزئ . رتمونان 2±0.1وكان ارتفاع ھذه الطبقة , الجرافایت

يحطس ىلع رتمونان  3.3±0.1و  رتمونان 3.7 ±0.4فقد أظھرت الدراسة بأن معدل الارتفاعات  ھو , الذھب 

 4±0.2أما سطحي الذھب و الجرافایت فقد تكونت علیھما طبقة ارتفاعھا . على التوالي, المایكا و السیلیكون

                                                                                                                                  .ر تمونان

                          

بینت  النتائج الناشئة عن دراسة الخصائص الكھربائیة بأن كلا من البروتین و الوحدات الأساسیة لھا سلوك المادة  

قیمة  كانت القوة المستخدمة على البروتین والوحدات الأساسیة خلال إجراء القیاسات قوة عادیة ذاتالعازلة عندما 

كلا من البروتین باستخدام قوة عادیة ذات قیمة كبیرة على أما عندما تم إعادة عمل القیاسات مرة أخرى , قلیلة

بینما الوحدات الأساسیة , یشبھ سلوك المواد شبھ الموصلة أظھرت البروتینات سلوكا كھربائیا, والوحدات الأساسیة

                              .                      كان لھا سلوك الموصلات

 
 

 


