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ON THE USE OF SAMPLING WEIGHTS AND SAMPLE 
DISTRIBUTION WHEN ESTIMATING REGRESSION 

MODELS UNDER INFORMATIVE SAMPLING 

Adulhakeem A. H. Eideh1 

ABSTRACT 

In this paper we show that the use of sampling weights when estimating 
regression models with survey data discussed by Magee, Robb and Burbidge 
(1998), and the use of sample distribution in fitting regression models with survey 
data proposed by Pfeffermann and Sverchkov (1999) are coincide methods 
dealing with the same statistical problem. 

Key words: sample likelihood, first order inclusion probability, two-step 
maximum likelihood method. 

1. Introduction 

Some recent work has considered the definition of the sample distribution 
under informative sampling. When the sample selection probabilities depend on 
the values of the model response variable, even after conditioning on auxiliary 
variables, the sampling mechanism becomes informative and the selection effects 
need to be accounted for in the inference process. Pfeffermann, Krieger and 
Rinott (1998) propose a general method of inference on the population 
distribution (model) under informative sampling that consists of approximating 
the parametric distribution of the sample measurements. The sample distribution 
is defined as the distribution of the sample measurements given the selected 
sample. Under informative sampling, this distribution is different from the 
corresponding population distribution, although for several examples the two 
distributions are shown to be in the same family and only differ in some or all the 
parameters. The authors discuss and illustrate a general approach of 
approximating the marginal sample distribution for a given population 
distributions and first order sample selection probabilities. For more discussion on 
analysis of complex survey data, see Chambers and Skinner (2003), Skinner, 
Holt, and Smith (1989), Skinner (1994), Magee, Robb and Burbidge (1998), 
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Eideh (2003, 2007, 2008, 2009, 2010, 2011, 2012a, 2012b), Eideh and Nathan 
(2006, 2009), Pfeffermann, Krieger and Rinott (1998), Pfeffermann and 
Sverchkov (1999, 2003), and Sverchkov and Pfeffermann (2004). 

In this paper we will show that the use of sampling weights when estimating 
regression models with survey data discussed by Magee, Robb and Burbidge 
(1998), and the use of sample distribution in estimating regression models with 
survey data discussed by Pfeffermann, Krieger and Rinott (1998) and 
Pfeffermann and Sverchkov (1999) are coincide methods dealing with same 
statistical problem. 

The plan of this paper is as follows. In Section 2 we consider probability 
weighting. In Section 3 we discuss pseudo-likelihood estimation. Section 4 deals 
with the use of sampling weights when estimating regression models with survey 
data. Section 5 introduces the use of sample distribution when estimating 
regression models with survey data. We conclude with a brief discussion in 
Section 6. 

2. Probability weighting 

Let { }NU ,...,1=  denote a finite population consisting of N units. Let y  be 
the target or study variable of interest and let iy  be the value of y  for the thi  

population unit. At this stage the values iy  are assumed to be fixed unknown 
quantities. Suppose that an estimate is needed for the population total of y , 

∑∈
=

Ui iyT . A probability sample s  is drawn from U  according to a specified 

sampling design. The sample size is denoted by n . The sampling design induces 
inclusion probabilities for the different units of U . Let ( )sii ∈= Prπ  be the first 
order inclusion probability of the thi  population unit. The Horvitz-Thompson 
estimator or probability-weighted (PW) estimator of the population total of y , 

∑∈
=

Ui iyT  is given by: 
 

∑∈
=

si ii ywT̂  
 
where iiw π1=  is the sampling weight of unit Ui∈ , that is we weigh each 

sample observation i  by the sampling weight, iw . This estimator is design-

unbiased, that is ( ) TywE
si iiD =∑∈

, where DE  denotes the expectation under 
repeated sampling. For more discussion on probability weighting, see Sarndal, 
Swensson, and Wretman (1992). 
 



STATISTICS IN TRANSITION new series, Spring 2014 

 

185 

3. Pseudo-likelihood estimation 

We now consider the population values Nyy ,...,1  as random variables, which 
are independent realizations from a distribution with probability density function 
(pdf) ( )θ|ip yf , indexed by a vector of parameters θ . We now consider the 
estimation of the superpopulation parameter, θ , rather than the prediction of the 
(random variable) total T . Let 
 

( ) ( )∑
=

=
N

i
ipN yfyyl

1
1 |log,...,| θθ  

 
be the census log-likelihood. The census maximum likelihood estimator of θ  
solves the population likelihood equations: 
 

( ) ( ){ }
0

|log

1
=

∂
∂

=∑
=

N

i

ip yf
U

θ
θ

θ  

 
Following Binder (1983), the pseudo-maximum likelihood (PML) estimator is 

the solution of: ( ) 0ˆ =θU , where ( )θÛ  is a sample estimator of the function 
( )θU . For example, the probability-weighted estimator of ( )θU  is such an 

estimator: 
 

( ) ( ){ }
∑∈ ∂

∂
=

si
ip

iw

yf
wU

θ
θ

θ
|logˆ ,  where iiw π1= .  

 
That is, when the explicit form of the population likelihood is not available, 

we weight instead the sample likelihood and solve the weighted equations.   
 

4. On the use of sampling weights when estimating regression models 
with survey data 

Magee, Robb and Burbidge (1998), from now on (MRB1998),  argue that 
when the population regression coefficient is of interest, the use of sampling 
weights can be desirable in regression models with complex survey data. A two-
step maximum likelihood estimator is proposed as an alternative to ordinary least 
square and weighted least squares. 

Before dealing with the problem, and defining the sample distribution 
mathematically, let us introduce the following notations: pf  and ( )⋅pE  denote the 
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pdf and the mathematical expectation of the population distribution, respectively, 
and sf  and ( )⋅sE  denote the pdf and the mathematical expectation of the sample 
distribution. 

4.1. Population model  

We now consider the population values ( )ii yx , , Ni ,,1=  as random 
variables, which are independent realizations from a distribution with probability 
density function ( )θ|, yxf p , indexed by a vector parameter θ .  

4.2. Sampling scheme 

We consider a sampling design with selection probabilities )Pr( sii ∈=π , 
and sampling weight iiw π1=  ; Ni ,...,1= . The si ,π  may depend on the 

population values ( )yx,  as well as on other factors unknown to the researches, 

call these factors z . Assume that ( )γππ ,,~ yxhi  where γ  is a parameter 

indexing h . Thus, we now consider the population values ( )iii yx π,,  , 
Ni ,,1= , as random variables, which are independent realizations from 

a distribution with probability density function (pdf): 

( ) ( ) ( )γπθγθπ ppp hyxfyxf ×= ,,,,  

The researcher has a sample of n  observations ( )iii yx π,,  , si∈ . Each  

Ui∈  is included in s  with probability iπ . 
The parameter of interest is the regression coefficient  ( )10 ,ββ=β : 

iii uxy ++= 10 ββ  

where ( ) 0=iip xuE , Ni ,,1= . 

4.3. Two-step maximum likelihood (ml) estimators 

We consider an estimator that uses structure on the population probability 
density function imposed by modelling the process that generates the si ,π . 
Assume that: 

( ) ( ) ( )γπθγθπ ppp hyxfyxf ×= ,,,,  

can be described as: 

uxy ++= 10 ββ                                                  (1) 
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where ( )2,0~ yp
Nu σ , and 

vxyx +++==∗
210ln γγγππ                                      (2) 

where ( )2,0~ ∗π
σNv

p
 . Also, assume that u  and v  are independent of each other 

and of x . 

4.4. Sample model 

The probability density function of y  given ix ,  in the sample is given by: 
 

( ) ( )
( ) ( )
( ) ( )∫ ∈×

∈×
=

∈=

dyyxsixyf
yxsixyf

sixyfxyf

iip

iip

ipis

,Pr
,Pr

              

,

                                         (3) 

 
Under the conditions of equation (1), we have: 
 

( ) ( )( )22
210 ,~, yyii xNsixy σσγββ ++∈                                     (4)  

 
Similarly, the probability density function of ∗π  given ( )ii yx , ,  in the 

sample is given by: 
 

( ) ( )
( ) ( )
( ) ( )∫ ∗∗∗

∗∗

∗∗

∈×

∈×
=

∈=

πππ

ππ

ππ

dyxsiyxh

yxsiyxh

siyxhyxh

iiiip

iiiip

iipiis

,,Pr,

,,Pr,
                     

,,,

                    

(5) 

 
From equation (2), we have: 

( ) ( )∗∗ ==∈ πππ exp,,Pr ii yxsi  
 

Thus, under the conditions of equation (2), we obtain: 

( ) ( )2
210 ,~,, ∗++∈ ∗∗

π
σγγγπ iiiii yxxNsiyx                               (6) 

 
where  2

00 ∗+=∗
π

σγγ . 

The two-step maximum likelihood method can be performed as follows:  
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First step:  

Estimate of 2γ  can be obtained from ordinary least squares (OLS) estimation 
of: 

iiiii erroryxx +++= ∗∗
210 γγγπ , ni ,,1=                              (7) 

 

Second step:  

Estimation of ( )10 ,ββ=β  based on equation (4). A consistent estimator of 
( )10 ,ββ=β  can be obtained from the OLS estimation, (or ML estimation, 

because of normality), of 

iii errorxy ++= ∗
10 ββ , ni ,,1=  

 
where 2

211 ˆ yσγββ +=∗ , which are given by: 
 

xy ∗−= 10
ˆˆ ββ  

( )( )
( )∑

∑
=

=∗

−

−−
= n

i i

n

i ii

xx

yyxx

1
2

1
1β  

Thus, 
2

211 ˆˆˆˆ
yσγββ −= ∗                                                               (8) 

5. The use of sample distribution when estimating regression models 
with survey data 

In recent articles by Krieger and Pfeffermann (1997), Pfeffermann, Krieger, 
and Rinott (1998), from now on (PKR1998) and Pfeffermann and Sverchkov 
(1999), the authors introduced an analytic likelihood-based inference from 
complex survey data under informative sampling. Their basic idea is to derive the 
distribution of the sample data by modelling the population distribution and the 
conditional expectation of the first order sample inclusion probabilities. Once this 
sample distribution is extracted, standard likelihood-based inferential methods can 
be used to obtain estimates of the parameters of the population model under 
consideration. 

The sample distribution refers to the superpopulation distribution of the 
sample measurements, as induced by the population model and the sample 
selection scheme with the selected sample of units held fixed. In order to describe 
the fundamental idea behind this approach, we assume full response. Let 
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( )′= ipii xx ,...,1x , Ui∈  be the values of a vector of auxiliary variables, pxx ,...,1 , 

and { }Nzz ,...,1=z  be the values of known design variables, used for the sample 
selection process not included in the model under consideration. In what follows, 
we consider a sampling design with selection probabilities )Pr( sii ∈=π , and 
sampling weight iiw π1=  ; Ni ,...,1= . In practice, the iπ ’s may depend on the 

population values ( )zyx ,, . We express this dependence by writing: 
  ),,|Pr( zyxsii ∈=π  for all units Ui∈ . Since Nππ ,...,1  are defined by the 

realizations ( ) Niy iii ,...,1 ,,, =zx , therefore, they are random realizations 
defined on the space of possible populations. The sample s  consists of the subset 
of U  selected at random by the sampling scheme with inclusion probabilities

.,...,1 Nππ  Denote by ( )′= NII ,...,1I  the N  by one sample indicator (vector) 

variable, such that 1=iI  if unit Ui∈  is selected to the sample and 0=iI  if 
otherwise. The sample s  is defined accordingly as { }1,| =∈= iIUiis  and its 

complement by { }0,| =∈== iIUiisc . We assume probability sampling, so 
that 0)Pr( >∈= siiπ  for all units .Ui∈  

5.1. Population model 

We now consider the population values Nyy ,...,1  as random variables, which 
are independent realizations from a distribution with probability density function 
(pdf) ( )θ|ip yf , indexed by a vector of parameters θ . Assume that the 

population pdf depends on known values of the auxiliary variables ix , so that 
( )θ,|~ iipi yfy x . 

5.2. Sample model 

We consider a sampling design with selection probabilities  ( )sii ∈= Prπ  be 
the first order inclusion probability of the thi  population unit, and the sampling 
weights iiw π1=  is the sampling weight of unit Ui∈ . In practice, the iπ ’s 

may depend on the population values ( )zyx ,, . We express this dependence by 
writing:  

  ),,|Pr( zyxsii ∈=π  for all units Ui∈  
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According to Krieger and Pfeffermann (1997), the (marginal) sample pdf of 

iy  is defined as:           

( ) ( )
( ) ( )

( )γθπ
θγπ

γθγθ

,,|
,|,,|

                        

 s,,,|,,|

iip

iipiiip

iipiis

E
yfyE

iyfyf

x
xx

xx
×

=

∈=

                            (9) 

where θ  is the parameter indexing the population distribution,  and γ  is the 
informativeness parameter indexing: 
 

( ) ( ) ( )∫ ×= iiipiiipiip dyyfyEE θγπγθπ ,|,,|,,| xxx  
 

Note that ( ) ( )iiipiip EEE
ii

zyy yz ,|| ππ = , so that iz  is integrated out in 
equation (9). See Eideh and Nathan (2006). 

The question that arises is how we can identify and estimate ( )iiip yE x,|π  

based only on the sample data { }siwy iii ∈  ;,, x . Pfeffermann and Sverchkov 

(1999) proved the following relationships: for vector of random variables ( )iiy x, , 
the following relationships hold: 
 

( ) ( ){ } 1,|,| −= iiipiiis xyExywE π                                 (10a) 
 

( ) ( ){ } ( )iiisiisiip ywEwEyE xxx ||| 1−=                         (10b) 
 

( ) ( ){ } 1−= ipis EwE π                                             (10) 

5.3. Estimation  

Having derived the sample distribution, (PKR1998) proved that if the 
population measurements iy  are independent, then as ∞→N ( )fixed  with  n  
the sample measurements are asymptotically independent, so we can apply 
standard inference procedures to complex survey data by using the marginal 
sample distribution for each unit.  Based on the sample data { }siwy iii ∈  ;,, x ,  
(PKR1998)  proposed a two-step estimation method. 

Step one: 

Estimate the informativeness parameters γ  using equation (10a), using 
regression analysis. Denote the resulting estimate of γ  by γ~ . 
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Step two: 

Substitute γ~  in the sample log-likelihood function, and then maximize the 
resulting sample log-likelihood function with respect to the population 
parameters, θ : 

( ) ( ) ( )

( ) ( )γθθ

γθπθγθ

~,,|log              

~,,|log ~,

1

1

iis

n

i
srs

iip

n

i
srsrs

wEl

Ell

x

x

∑

∑

=

=

+=

−=
                                  (11) 

where ( )γθ ~,rsl  is the sample log-likelihood after substituting γ~  in the sample 
log-likelihood function, and where 

( ) ( ){ }∑
=

=
n

i
iipsrs yfl

1
,|log θθ x  

is the classical log-likelihood obtained by ignoring the sample design. 

5.4. Illustration 

5.4.1. Population model 

Assume the following population model: 

iii uxy ++= 10 ββ                                              (12) 

where ( )2,0~ ypi Nu σ  and ( ) 0=iip xuE ,  so that ( )2
10 ,~ yipi xNy σββ +  , 

Ni ,,1= . 
 

Now assume that: 

( ) ( )iiiiiip yxxyE 210exp,,| γγγγπ ++=x , Ni ,,1=                   (13) 
 

We interpret this exponential inclusion probability model approximation (13) 
in the spirit of probability proportional to size sampling scheme as follows. Let 
the size measure be: 

( )iiiiai vyxxd +++= 210exp γγγ  

where ( ) 0=ip vE  and ( ) 2
∗=

π
σip vV . 

 
Let 

d

i
i T

nd
=π , ∑=

=
N

i id dT
1
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Assume N  is large enough so that the difference between dN  and 

( ) dNdNE µ=  can be ignored, so that didii NndTnd µπ ≅= , or ii d∝π . 
Furthermore, since 
 

( )

( )iiii

iiiia
d

d

i

d

i
i

vyxx

vyxx
N

n
N
nd

T
nd

+++=

+++=

≅=

210

210

exp      

exp      

γγγ

γγγ
µ

µ
π

 

 

where 







+=

d
a N

n
µ

γγ ln00 , therefore 

iiiiii vyxx +++==∗
210ln γγγππ                  (14) 

 
where ( ) 0=ip vE  and ( ) 2

∗=
π

σip vV . 
 

Under these assumptions and using Taylor series approximation, we can show 
that: 

( ) ( )iiiiiip yxxyE 210exp,,| γγγπ ++=γx  
 
where ( )210 ,, γγγ=γ . 
 
Comment 1: See the similarity between (14) and (2). 

5.4.2. Sample model 

By substituting (12) and (13) in (9), we have: 
( )( )22

210 ,~ yyisi xNy σσγββ ++                                 (15) 

 
Comment 2: Note that (4) and (15) are similar. 

5.4.3. Two-step estimation 

First step: 

Estimate the informativeness parameter  2γ  using (13) and (10) as follows: 
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( ) ( )( )iiiiiis yxxywE 210exp,,| γγγ ++−=γx                           (16) 

Using Taylor series approximation, we have ( )YEYE lnln ≅ , so that 
( ) ( )

( )iii

iiisiiis

yxx
ywEywE

210                              
,,|ln,,|ln
γγγ ++−=

= γxγx
                        (17) 

 
Hence, 

( )iiiii yxxw 210lnln γγγπ ++−=−=  
or 

iiiii erroryxx +++= 210ln γγγπ , si∈                               (18) 
 

Therefore, estimation of  2γ , denoted by 2
~γ ,  can be obtained from OLS 

estimation of (18), or you can use nonlinear regression model. 

Second step: 

Estimates of ( )10 ,ββ=β  can be obtained by using OLS estimation (or ML 
estimation method, because of linearity) of the following regression model: 

iii errorxy ++= ∗
10 ββ ni ,,1=                                    (19) 

where 2
211

~
yσγββ +=∗ , which are given by: 

xy ∗−= 10
ˆˆ ββ  

 
( )( )

( )∑
∑

=

=∗

−

−−
= n

i i

n

i ii

xx

yyxx

1
2

1
1β  

So that, 
2

211 ˆˆˆˆ
yσγββ −= ∗  

which are similar to (8). 

6. Conclusion 

In this paper we investigated two methods on the use of sampling weights 
when fitting regression model to survey data under informative probability 
sampling design. We showed that the only difference between the method 
proposed by MRB1998 and the method proposed by PKR1998 is in estimating 
the informativeness parameter 2γ . In MRB1998 method the estimator of 2γ  is 
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ML estimator, while in PKR1998 method the estimator of 2γ  is only the OLS. 
The intercepts ∗

0γ   and 0γ  have the same functional form.   
The MRB1998 consider the estimator that uses more structure on the 

population density imposed by modelling the process generating the first order 
inclusion probabilities, and in their paper they consider only one model, see 
equation (2); while PKR1998 incorporate the sampling weights via the 
conditional expectation of first order inclusion probabilities given the response 
variable, and they consider only two models. Subsequently, Eideh (2003) 
proposed logit and probit models. In this paper we justified that the models that 
generate the first order inclusion probabilities are similar, see equations 7, 14 
and 18.  

Furthermore, in the last decade survey statisticians have been using the 
sample distribution  for analysis of survey data under informative probability 
sampling design in several applications, in particular: prediction of finite 
population total under single stage sampling and two-stage sampling; fitting 
multilevel modelling; fitting time series models;  small area estimation; 
estimating generalized linear models.  Also, they have proposed tests of 
informativeness of sampling design and the test of ignorability of nonresponse in 
surveys, which is not the case for MRB1998. Hence, the use of sample 
distribution in analysis of survey data applies. Consequently, it is suggested to use 
the PKR1998. 

We hope that this investigation will encourage further theoretical, empirical 
and practical research in these directions. 
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