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Abstract: The standard approaches to the problem of conformable fractional calculus has been studied extensively. Many researchers have shown that 

the obtained conditions for the theorem describing the general solution of; ( ) ( )  y a x y b x


  are generally weaker than those derived by using the 

classical norm-type expansion and compression theorem.  In this paper, we propose conformable method for the fractional differential transform and 
established the prove for basic properties of differintegrals.  Some solved examples have been reported to illustrate the possible application of the 
obtained results. 

 

Index Terms: Conformable Fractional Derivatives, Fractional Calculus, α- differintegrals, the integrating factor, Caputo, Riemann– Liouville, 
positive solution 

———————————————————— 

 

1 INTRODUCTION             
The fractional Calculus (FC) is a branch of mathematics that 

investigate the properties of integrals and derivatives of non-

integer orders called differintegrals which represents either 

fractional (FD) derivatives or fractional integrals (FI). The 

following definitions are very important in this study; 

I. conformable fractional derivative;[1] 
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II. Riemann improper integral;[8] 
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These definitions are a natural extension of the usual 
derivatives and integral, and it achieves the general 
characteristics of the fractional integration. Lately, scholars 
have given new definitions of fractional calculus which is 
conspicuously compatible with the known definitions of 
fractional derivative and integral [1]. Unlike previous 
definitions, this definition gratifies formularies the quotient of 
two functions with application to derivative of product. For 
more results on fractional derivatives and fractional differential 
equations (FDE), see the references therein: [1], [2], [3], [4], 
[5], [6]. 

 
2 PRELIMINARIES 
In this section, we define some preliminary results which 
would help researchers to understand the basic concept 
behind this work. 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Fractional Integral: 
The fractional Integral is an extension of fractional derivatives; 
there are some accepted and common definitions in many 
researches as we stated a number of important ones above. 
The conformable fractional Integral is defined as follows. 
Definition 1.[2] 

Suppose  f  is differentiable on  , , 0a a  . Then,  
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 is the general form of Riemann improper 

integral, and ( 0 , 1)  . 

 
Theorem 1 
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0 ,x  and if f  is differentiable ,then: 

                      
1 -

 ( ( )) ( )
d

D f x x f x

d x




  

Proof: 
By applying the fractional derivative definition we get;                             
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Theorem 2 

Supposse f is continuous on  , , 0a a  . Then  
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Since f  is smooth, by difinition1; and, ( ( ) )
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differentiable. Then, by applying Theorem1, we get; 
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Theorem 3 

Let f  be a differentiable function  on  ,a  , with f (a)=0, then 

              ( ( ( ) ) ) ( ) ,    fo r   0 . 
a

I D f x f x x a
 

    

Proof: 
Let f  be a differentiable function,  then by the definition 1, 

 

1

0

1

-1

( ) ( )
( ( ( ) ) ) ( lim )    

                                               0 , 0 , 1 . 

L e t                    ;  s o  c le a r ly  a s   0 ,

th e n                  0   a n d    .

T h e re

a a
f x x f x

I D f x I

x

h x

h x h



  












 









 


  

 

  

0
1

 fo re ,

( ) ( )
( ( ( ) ) ) ( lim )   

a a

h

f x h f x
I D f x I

x h
   




 




 

 

1 -

0

( ) ( )
 ( ( ( )))  ( lim )  

a a

h

f x h f x
I D f x I x

h



  


 
   

 

1 -

                         ( )  
a

d f
I x

d x




   

 

U sin g   D efin itio n  1     

1 -

1 -

1
         ( ( ( )))  

x
a

a

d f
I D f x t d t

t d t



  
   

         ( ( ( )))  

                               ( ) - ( )  .   

B u t  ( ) 0   th a t  im p lie s ,

             ( ( ( ))) ( )       

x
a

a

a

d f
I D f x d t

d t

f x f a

f a

I D f x f x

 

 











 

 
Hence,      
The relation between fractional derivative and fractional 
integration is satisfies. 
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From the above results, we derived the proposed scheme as 
follows. 

 
3 METHOD FORMULATION 
The derived formula for the solution of FDE with variable 

coefficients is defined as follows. The following Theorem is 

very useful in the derivation process.  

 

Theorem 4 (Variable Coefficients) 

Suppose ( )  y f x  is differentiable and ( )   ( )a x and b x are 

continuous functions, then the FDE,  

                      ( ) ( )  y a x y b x


  . 

 

Has infinitely many solutions given by  
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Remarks: 

 

a. The expression in Eq. (1) is called the solution of 

fractional differential equation. 

b. The function 
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 is called the integrating factor 

of the equation. 

 

Proof: 

Writing the fractional differential equation with y on one side 

only, as 

                        ( ) ( )  y a x y b x
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Then multiply the above by ( )x ,  we need to solve for ( )x  
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then                                          
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Using Theorem 1 to integrating both sides of equation (6), then  
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To find ( )x , we go back to equation (4), then 
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4 RESULTS AND DISCUSSIONS 
In this section, we present the solutions of solved examples to 
support our theoretical analysis. We begin with a given 
remark. 
 

Remark:  The relation between fractional derivatives and 
fractional integral are solved using example 1.  
 

Example 1 

If ( ) s inf x x , then show that  
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Solution: 

Since f (x) is differentiable function, then by applying definition 
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Applying definition 1.1 on , we have  
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Problem 2. 

Consider the following initial fractional equation. 

 

Solution 

Rewrite the equation with y on only one side, 
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Substituting  and solving the equation gives: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3. 

Consider the following initial fractional equation 
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Solution: 

Rewrite the equation with y on only one side, 
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Given the general solution ( ) ( )  y a x y b x

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Theorem 4, we have, 
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  and the integrating factor; 
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5 CONCLUSIONS 
In this study, some properties of fractional derivative and 
integrals were established, and the fractional integral for 
constant function is zero was proved. We also obtained a 
relationship between the fractional calculus and calculus that 
satisfies, and a general solution was obtained to fractional 

differential equations ( ) ( )  y a x y b x


  .  
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