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Abstract 

Multivariate time series data in practical applications, such as health care, geosciences, 

engineering, and biology. This thesis introduces a survey study of time series analysis to 

recurrent neural networks research, an analytic domain that has been essential for 

understanding and predicting the behavior of variables across many diverse fields, in this 

research the following were investigated. 

First, the characteristics and preliminaries of time series data are investigated and discussed, 

including various time series models, specially, Autoregressive Models such as, AR, MA, 

ARMA, and ARIMA. Frequently one wishes to fit a parametric model to time-series data and 

determine accurate values of the parameters and reliable estimates for the uncertainties in 

those parameters. It is important to gain a thorough understanding of the noise and develop 

appropriate methods for parameter estimation, so that various approaches of parameter 

estimates will be considered in this thesis, such as, yules walker method, least square method, 

method of moments and maximum likelihood approach. 

Second, different time series modeling techniques are surveyed that can address various topics 

of interest to artificial neural networks researchers, including describing the pattern of change 

in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a 

salient event, and forecasting future values. The structure of the artificial neural networks 

especially the recurrent neural networks were discussed in details in this research, concerning 

on GRUs and LSTMs, and their properties, also some difficulties that arises in recurrent 

neural networks such as vanished gradient and the overfitting were discussed. 

To illustrate these approaches, an illustrative application based on Monte Carlo and 

bootstrapping methods is used throughout the research, constructing a one layer hidden 

recurrent neural networks and applied back-propagation, for the purpose of comparison, the 

variance of error in each method was estimated. 
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Chapter 1

Introduction

One of the most beautiful data analysis performed in many fields is:

The time series. We fed you with a brief introduction to the time series

analysis, in the field of data science; to have a good taste of the time

series. Time series analysis is increasingly very important because it’s

needed for a large number of applications with both statistical and

machine learning techniques.

There are many things in our life that completely stopped when their

sequence is stopped such as language and to use them with a reason-

able output, we need a network that use the previous knowledge about

the data to understand them completely. For this reason; the recurrent

neural networks are invented.

The recurrent neural networks are feedback artificial neural networks,

that are a branch of the nonlinear time series. They have an internal

memory, hence they are used for machine learning problems that have
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sequential data, and are used also widely in advances of network ar-

chitectures, optimization techniques, and parallel computation.

The contents of the thesis are five chapters as follow: In the next

chapter, we gave the characteristics of time series, how to change a

non-stationary time series to a stationary one by using differencing

method. Then discussed the characteristics of the ARIMA models

and gave examples of AR(1) and MA(1) and sketched them and their

autocorrelation function and analyzed their graphs.

In the third chapter, we estimated the parameters of the ARIMA mod-

els by many methods such as the Yule Walker equations that esti-

mate the AR(p) parametres, the method of moments, the least square

method and the maximum likelihood estimation. And discussed the

procedure of the Box Jenkins method, the Monte Carlo method and

the bootstrapping method.

Chapter 4 is about the structure of the recurrent neural networks, how

they work and their activation functions, then discussed the learn-

ing procedure, the algorithm of the backpropagation, and the learning

methods. We explain how to solve some problems that the recurrent

neural network process faced such that the vanishing gradient problem

and the overfitting. Then showed the structure of the long short term

memory and the gated recurrent neural networks, and what are the

differences between them.
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Finally in chapter 5, we made an example for the recurrent neural net-

work with one hidden layer, and we updated the weights by the back-

propagation algorithm and then applied the bootstrapping method and

the Monte Carlo method on it to estimate the predictive value of the

output, sketched the estimated predictive values and compared the

results in the two methods.

3



Chapter 2

Time Series

2.1 Preliminaries of Time series

Definition 1. Time series (Xt)
∞
t=1 is a set of observations that occurred

sequentially over time. [29]

Time series data most often gathered in regular intervals, it isn’t only

about the observations that happened in chronological order but the

Time series analysis can be applied to any variable that changes over

time. The serial dependence happened when the value of a data point

at one time is statistically dependent on another data point in another

time and the ordering of the time points is important hence it often

shows serial dependence and makes the time series analysis unique.

Trends are a simple and effective means for incorporating a steady

upward or downward movement over time into the behavior of a time

4



series.[2]

Seasonability happened when short term movements occurred in the

data because of seasonal factors.

Definition 2. A multivariate stochastic process {Xt; t ∈ T} is a col-

lection of vector-valued random variables

Xt =



Xt1

Xt2

.

.

.

Xtm


(2.1)

Where T is an index set for which the random variables {Xt; t ∈ T}

are defined on the same sample space. When T represents time, then

{Xt; t ∈ T} is a multivariate time series. [32]

Definition 3. The multivariate time series {Xt} is a linear process if

it has the representation

Xt =
∞∑

j=−∞
CjZt−j, Zt ∼ WN (0, σ2).

Where {Ct} is a sequence of m × m matrices whose components are

absolutely summable. [4]

Stationarity: A time series (Xt)
∞
t=1 is stationary if it has statistical

5



properties similar to those time shifted series (Xt+h)
∞
t=1,∀h ∈ Z [4]

Definition 4. A time series (Xt)
∞
t=1 is strict stationary if the joint

distribution of any collection of k values is time invariant, that means

∀k > 1 and ∀s > 0, k, s ∈ Z

p(Xt1, ..., Xtk) = p(Xt1+s, ..., Xtk+s) that’s the mean and the variance of

the time series are constants over time and the cov(Xt, Xt−k) doesn’t

depend on the value of t and depend only on k. [25]

Definition 5. A time series (Xt)
∞
t=1 is weakly stationary or second

order stationary if the mean, variance and covariances are time in-

variant. That’s for the integers t > 0 and s < t,

E(Xt) = µ.

var(Xt) = σ2 that′s
∑∞

t=0 | Xt |<∞.

cov([Xt−s, Xs]) = γs so cov([Xt−s, Xs]) depends on s only. [25]

The sample autocovariance function (ACVF), γk, for some lag k can

be given as [15]

γk =
1

n

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄) (2.2)

We substitute n-k by n since the time series here is stationary, see [15]

that’s

γk = cov(Xt, Xt−k) = E((Xt − µ)(Xt−k − µ)). (2.3)

6



Note that the sample autocovariance of Xt at lag 0, γ0, is the sample

variance of Xt that’s

γ0 = cov(Xt, Xt) = E((Xt − µ)2) = σ2 (2.4)

The autocorrelation shows the relation between the time series values

in different time, the coefficient of correlation between two values in

the time series is called the autocorrelation function (ACF). The ACF

describes the autocorrelation between an observation and another ob-

servation at a previous time step that includes direct and indirect

dependence information.

Let (Xt)
∞
t=1 be a stationary time series, then the sample autocorrelation

function (ACF) is

ρk = Corr(Xt, Xt+k) =
cov(Xt, Xt+k)√

σxtσxt−k
=
cov(Xt, Xt+k)

σxt

=
γk
γ0

[4]

(2.5)

Where k ∈ N.

σXt
= σXt+k

; when the process is stationary (the variance is time in-

variant in the stationary process).

This value of k shows the amount of the time passing previously that’s

called the lag.

For a stationary time series, the ACF drops to zero quickly. While the

7



ACF of nonstationary data decreases slowly. As a result, the autocor-

relation ρk = γk
γ0

is also independent of t.

example 2.1.1. White noise [29] (Xt)
∞
t=1 is a sequence of indepen-

dent and identically distributed random variables with finite mean and

variance, all the ACFs for white noise are zero. That’s

Corr[εt, εt−j] = 0,∀j, j 6= 0. (2.6)

If (Xt)
∞
t=1 is normally distributed with mean zero and finite variance,

then it’s called Gaussian white noise, and we can then denote it as (if

mean and var is known) εt ∼ WN (0, σ2).

remark 2.1.1. The white noise process is stationary.

Proof. Let εt be a white noise series,that’s εt consists of iid serially

uncorrelated random variables with E(εt) = 0, var(εt) = σ2, both con-

stants are free of t.

cov(εt, εt) = E((εt − µ)2) = σ2.

γk = cov(εt, εt−k) =

 σ2 k = 0

0 k 6= 0

which is free of time (i.e. depends only on k).

So the white noise process is stationary [29].

remark 2.1.2. The random walk process is nonstationary.

Proof. Let yt be a random walk series, that’s yt = yt−1 + εt,

8



where εt is white noise series, with E(εt) = 0, var(εt) = σ2,

so yt−1 = yt−2 + εt−1.

Similarly yt−2 = yt−3 + εt−2,

so by recursive substitutions, we get

yt = y(0) + εt + εt−1 + εt−2 + εt−3 + ...+ ε1,

so E(yt) = E(y(0)) + E(εt + εt−1 + εt−2 + εt−3 + ...+ ε1),

but E(εj) = 0, for any j ∈ N,

so E(yt) = y(0),

so E(yt) is constant, ∀t, which is free of t,

that’s the mean of the random walk series is time invariant,

also cov(yt, yt−k) = cov(εt+ εt−1 + ...+ ε1, εt−k + εt−k−1 + ...+ ε1), k ∈ N.

cov(yt, yt−k) = cov(εt + εt−1 + ...+ ε1, εt + εt−1 + ...+ ε1) + cov(εt+

εt−1 + εt−2 + εt−3 + ...+ ε1, εt−1 + εt−2 + ...+ εt−k).

=
t−k∑
i=1

cov(εi, εi) +
∑
1≤i

∑
6=j≤t−k

cov(εi, εj).

=
t−k∑
i=1

var(εi).

= (t− k)σ2.

We see that cov(yt, yt−k) depends on time t.

Thus the random walk process is nonstationary [29].

remark 2.1.3. The deterministic trend process is nonstationary.

9



Proof. Let yt be a deterministic trend series where deterministic trend

is nonrandom function of t, that’s yt = f(t) + ct.

Where ct is a stationary ARMA(p,q) process and f(t) is function of

time.

But ct is stationary so E(ct) = u, where u is a constant. So

E(yt) = E(f(t)) + E(ct).

= E(f(t)) + ut.

We see that E(yt) changes with time and it’s not constant so the

deterministic trend process isn’t stationary.

remark 2.1.4. The deterministic linear trend process is nonstation-

ary.

Proof. Let yt be a deterministic linear trend series where deterministic

trend is nonrandom function of t, that’s yt = at+ ε.

where, a is a constant and ε is a white noise series, with E(εt) =

0, var(εt) = σ2, so E(yt) = E(at) + E(εt), but E(εt) = 0.

so E(yt) = at which changes with time and not constant so the deter-

ministic trend process is not stationary.

Differencing method

Differencing [25] is computing differences between consecutive obser-

vations, differencing stabilizes the mean and the variance of the time

10



series by removing changes in the level of the time series and also elim-

inating trend and seasonability.

A time series (xt)
∞
t=1 has a constant drift in trend that may be trans-

formed to a stationary time series (no mean drift) by taking first dif-

ferences wt = xt−xt−1 that’s wt = (1−B)xt, where B is the back shift

operator.

Higher order differencings are computed to remove polynomial trends,

e.g. The 2nd order differencing wt = (1−B)2xt removes a constant

growing drift in trend.

For any time series (Xt)
n
t=0, the first difference process ∇Xt of (Xt)

n
t=0

is ∇Xt = Xt −Xt−1 for all t =1, 2, ..., n.

In many situations, a nonstationary process can be transformed into

a stationary process by taking first difference.

The first difference Xt −Xt−1 = εt is white noise which is stationary.

The second difference process ∇2Xt is

∇2Xt = ∇Xt −∇Xt−1.

= Xt −Xt−1 − (Xt−1 −Xt−2).

= Xt − 2Xt−1 +Xt−2.

11



So the dth difference process ∇dXt is

∇dXt = ∇(∇d−1Xt).

= ∇d−1Xt −∇d−1Xt−1.

=
d∑
j=0

(−1)d
(
n

d

)
Xt−d.

Where d ∈ N, we have Xt−1 = BXt, where B is shift back operator

when it’s applied to the time series, it shifts the time by one unit,

that’s

Xt−d = BdXt. (2.7)

also ∇Xt = Xt −Xt−1 = Xt −BXt = (1−B)Xt,

so ∇dXt = (1−B)dXt.

2.2 Autoregressive Model AR(p)

The autoregressive model AR(p) [25] is a linear invertible time se-

ries model that’s written as a function of previous values of the series

(yt)
∞
t=0, where AR(p) is of order p, p positive integer number.

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt (2.8)

Where φi’s are regression parameters, ∀i ∈ N, εt is a white noise that’s

independent of all previous values yt−1, yt−2, ..., yt−p.

12



The order of an autoregression p is the number of immediately preced-

ing values in the series that is used to predict the value at the present

time. More generally, a kth order autoregression, it’s written as AR(k),

it is a multiple linear regression in which the value of the series at any

time t is a (linear) function of the values at times t-1, t-2, . . . , t-k.

Substitute yt=yt − µ in (2.8) then

yt − µ = φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) + εt.

yt = µ+ φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) + εt.

= µ+ φ1yt−1 − φ1µ+ φ2yt−2 − φ2µ+ ...+ φpyt−p − φpµ+ εt.

= µ(1− φ1 − φ2 − ...− φp) + φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt.

= α + φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt.

(2.9)

Where α = µ(1− φ1 − φ2 − ...− φp).

(2.9) is similar to the regression model so we can use regression pa-

rameter estimation methods to estimate φ′is , i=1, 2, ..., p.

Let B be a shift operater that’s

(yt)B = yt−1. (2.10)

Substitute (2.10) in (2.8), we get

yt = φ1Byt + φ2B
2yt + ...+ φpB

pyt + εt. (2.11)

13



Substitute yt − µ instead of yt in (2.10) results

(1− φ1B − φ2B
2 − ...− φpBP )(yt − µ) = εt. (2.12)

or

φ(B)(yt − µ) = εt. (2.13)

Where

φ(B) = 1− φ1B − φ2B
2 − ...− φpBp (2.14)

is the nonseasonal AR operator of order p.

The equation

φ(B) = 0 (2.15)

is the characteristic equation for the autoregressive process.

remark 2.2.1. For p=1, AR(1) is written as

yt = φyt−1 + εt. (2.16)

Assume that AR(1) is stationary, then the ACF for AR(1) decays ex-

ponentially as k increases. [4]

Proof. Let yt be a stationary time series, so AR(1) is written as

yt = φyt−1 + εt.

var(yt) = var(φyt−1 + εt) = φ2var(yt−1) + var(εt) + 2φcov(yt−1, εt),

but yt−1 and εt are independent so cov(yt−1, εt) = 0.

14



So var(yt) = φ2var(yt−1) + σ2. (Since var(εt) = σ2).

But var(yt) = var(yt−1) = γ0. (Since yt is a stationary time series).

So γ0 = σ2

1−φ2 .

But γ0 > 0 so 0 < φ2 < 1 that′s − 1 < φ < 1.

T o find γk, multiply both sides of (2.16) by yt−k to get

ytyt−k = φyt−1yt−k + εtyt−k.

Take expectation of both sides of the last equation, we get

E(ytyt−k) = φE(yt−1yt−k) + E(εtyt−k).

But yt−1 and εt are independent since AR(1) is stationary.

So E(εtyt−k) = E(εt)E(yt−k) = 0. (Since E(εt) = 0).

But E(yt) = 0, ∀t since AR(1) is stationary, hence we have

γk = cov(yt, yt−k) = E(ytyt−k)− E(yt)E(yt−k) = E(ytyt−k).

γk−1 = cov(yt−1, yt−k) = E(yt−1yt−k)− E(yt−1)E(yt−k) = E(yt−1yt−k).

We let γk = φγk−1.

When k=1, γ1 = φγ0 = φ σ2

1−φ2 .

When k=2, γ2 = φγ1 = φ2 σ2

1−φ2 .

For k > 2, γk = φγk−1 = φk σ2

1−φ2 , for k = 1, 2, ... .

ρk =
γk
γ0

=

φkσ2

1−φ2
σ2

1−φ2
= φk, for k = 1, 2, .... (2.17)

The ACF for AR(1) decays exponentially as k increases since

−1 < φ < 1.
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So the ACF → 0 fast enough (like a geometric series) as k→ ∞ (but

never be truncated). [5]

example 2.2.1. We draw some different AR(1) processes: yt = φyt−1+

εt

with n= 15, and notice that:

• φ = 0.9 in figure 2.1, AR(1) process is stationary.

• φ = 1.5 n figure 2.2, AR(1) process isn’t stationary, it’s trend.

• φ = −0.2 in figure 2.3, AR(1) process is stationary.

• φ = 0 in figure 2.4, AR(1) process is yt = εt is a white noise.

• φ = 1 in figure 2.5, AR(1) process is yt = εt is a random walk.

remark 2.2.2. AR(1) process is stationary iff | φ |< 1.

For bigger values and with more values, when φ > 0, then the ACF

simulation is smooth, and the adjacent values of yt are positively cor-

related, but when φ < 0, then the ACF simulation is violent and rapid

oscillations, and the adjacent values of yt are negatively correlated.
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Figure 2.1: AR(1) process when φ = 0.9
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Figure 2.2: AR(1) process when φ = 1.5
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Figure 2.3: AR(1) process when φ = −0.2
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Figure 2.4: AR(1) process when φ = 0
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Figure 2.5:AR(1) process when φ = 1

We draw the ACFs for some different AR(1) processes, and notice

that:

• φ = 0.2 in figure 2.6, ACF decays rapidly, all ρk > 0.

• φ = −0.2 in figure 2.7, ACF decays rapidly but all ρk is alternat-

ing.

• φ = 0.9 in figure 2.8, ACF decays slowly, all ρk > 0.

remark 2.2.3. When φ < 0, the autocorrelations tends to oscillate

between positive(k is even) and negative values(k is odd).

When φ > 0, the autocorrelations will be positive, decays exponentially

to zero.

If φ is close to ±1, then the decay of ACF will be more slowly.

If φ isn’t close to ±1, then the decay of ACF will decrease rapidly.
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Figure 2.6:ACF of AR(1) model when φ = 0.2
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Figure 2.7: ACF of AR(1) model when φ = −0.2
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Figure 2.8: ACF of AR(1) model when φ = .9

remark 2.2.4. The AR(1) is stationary when | φ |< 1. [10]

Proof. The AR(1) process is written as yt = φyt−1 + εt or substitute

k=1 in (2.12) to get (1− φB)yt = ε.

Where B is shift back operator that’s ytB = yt−1.

The characteristic polynomial for AR(1) is

1− φB = 0 (2.18)

So the root of (2.18) is φ = 1
B .

But AR(1) is stationary so | 1
φ |> 1.

So AR(1) is stationary when | φ |< 1. [10]

remark 2.2.5. The AR(2) is stationary if and if | φ2 |< 1, φ1+φ2 < 1,

φ2 − φ1 < 1. [5]
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Proof. The AR(2) process is written as yt = φ1yt−1 + φ2yt−2 + εt,

or substitute k=2 in (2.12) to get (1− φ1B − φ2B
2)yt = ε.

Where B is shift operator that’s ytB = yt−1.

The characteristic polynomial for AR(2) is φ(y) = 1− φ1y− φ2y
2 = 0.

So y−2 − φ1y
−1 − φ2 = 0.

AR(2) is stationary when the roots of the characteristic equation lies

outside the unit circle, that’s | y |> 1, that’s when the modulus of the

roots of the characteristic equation greater than 1.

Let λ = y−1. So

λ2 − φ1λ− φ2 = 0. (2.19)

When | y |> 1, then | λ |=| y−1 |< 1.

So the root of (2.19) is λ1,2 =
φ1±
√
φ21+4φ2
2 .

When AR(2) is stationary and λ1 and λ2 are real then

| φ1±
√
φ21+4φ2
2 |< 1.

⇒ −1 <
φ1±
√
φ21+4φ2
2 < 1.

⇒ −2 < φ1 ±
√
φ2

1 + 4φ2 < 2.

So the larger bound of the roots is bounded by φ1 +
√
φ2

1 + 4φ2 < 2.

⇒
√
φ2

1 + 4φ2 < 2− φ1.

⇒ φ2
1 + 4φ2 < 2− φ1

2.

⇒ φ2
1 + 4φ2 < 4− 4φ1 + φ2

1.

⇒ φ2 < 1− φ1 that’s φ2 + φ1 < 1.
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When λ1 and λ2 are complex, then
√
φ2

1 + 4φ2 < 0 and

λ1,2 =
φ1

2
± i
√
−φ2

1 − 4φ2

2

λ2
1,2 =

φ1

2

2

± i
√
−φ2

1 − 4φ2

2

2

.

=
φ1

2 − φ1
2 − 4φ2

4
= −φ2.

But AR(2) is stationary, so | λ |< 1 that’s −φ2 < 1, hence φ2 > −1.

We have also φ2 < 1− φ1 and φ2 < 1 + φ1, so φ2
2 < 1, so φ2 < 1, also

φ2 > −1, so | φ2 |< 1.

The smaller bound of the roots is bounded by φ1 −
√
φ2

1 + 4φ2 > −2.

⇒ −
√
φ2

1 + 4φ2 > −2− φ1.

⇒
√
φ2

1 + 4φ2 < 2 + φ1.

⇒ φ2
1 + 4φ2 < 2 + φ1

2.

⇒ φ2
1 + 4φ2 < 4 + 4φ1 + φ2

1.

⇒ φ2 < 1 + φ1 that’s φ2 − φ1 < 1.

So AR(1) is stationary if and if | φ2 |< 1, φ1 + φ2 < 1,

φ2 − φ1 < 1. [5]

remark 2.2.6. The AR process is stationary when the roots of the

characteristic equation fall outside the unit circle.[3]

Proof. The AR equation written as

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt.
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That’s

yt =

p∑
j=1

φjyt−j + εt.

Or

φ(B)(yt − µ) = εt.

When µ = 0 then yt = φ−1(B)εt ≡ ψ(B).εt =
∞∑
j=0

ψjεt−j, for some

function ψ given the right side is convergent,

Let φ−1(B) =

p∏
i=1

(1−GiB).

Where G−1
1 , G−1

2 , ..., G−1
p are the roots of φ(B) = 0.

Expanding φ−1(B) in partial fractions results

yt = φ−1(B)εt =

p∑
i=0

Kiεt
1−GiB

, where Ki is a constant ∀i ∈ N.

When AR(p) is stationary,

then ψ(B) = φ−1(B) is convergent series for | B |< 1.

That’s ψj =

p∑
i=1

KiG
j
i are absolutely summable,

So | Gi |< 1 , for i=1, 2, ..., p.

Hence the roots of φ(B) = 0 must lie outside the unit circle.

So AR(p) is stationary when the roots of the characteristic equation

fall outside the unit circle.[3]

The autocorrelation of AR(p) at k=0:

Consider the AR(p) process:

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt.

But the autocorrelation of AR(p) at k=0 is γ0 = var(Yt), and var(εt) =
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σε
2, when k=0, γ0 = φ1γ−1 + φ2γ−2 + ...+ φpγ−p + σε

2

substituting γ−k = γk for k=1, 2, ..., p,γk = γ0ρk, we get

γ0 = ρ1φ1γ0 + φ2ρ2γ0 + ...+ φpρpγ0 + σε
2 , so

γ0 = γ0(φ1ρ1 + φ2ρ2 + ...+ φpρp) + σε
2.

So γ0((1− φ1ρ1 − φ2ρ2 − ...− φpρp) = σε
2. So

γ0 =
σε

2

(1− φ1ρ1 − φ2ρ2 − ...− φpρp)
. (2.20)

remark 2.2.7. The ACF for the AR(p) process forms damped expo-

nential decays to 0 as k increases. [3]

Proof. Multiply (2.8) by yt−k − µ to get (yt−k − µ)(yt − µ) =

(yt−k−µ)φ1(yt−1−µ)+(yt−k−µ)φ2(yt−2−µ)+...+(yt−k−µ)φp(yt−p−µ)+(yt−k−µ)εt.

(2.21)

By taking expected values for (2.21), we get the difference equation

for the autocovariance function the AR(p) process is given by

γk = φ1γk−1 + φ2γk−2 + ...+ φpγk−p, ∀k > 0. (2.22)

Divide (2.22) by γ0 to get the ACF for the AR(p) process is given by

ρk = φ1ρk−1 + φ2ρk−2 + ...+ φpρk−p, ∀k > 0. (2.23)

Let B be a shift operater that’s given by

ρtB = ρt−1. (2.24)
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So

(1− φ1B − φ2B
2 − ...− φpBP )ρk = φ(B)ρk = 0, ∀k > 0. (2.25)

The general solution for the difference equation is given by [15]

ρk = A1G1
k + A2G2

k + ...+ ApGp
k, ∀k > 0. (2.26)

Where G1
−1, G2

−1, ..., Gp
−1 are distinct roots of the characteristic equa-

tion φ(B) = 0, and Ai’s are constants.

If a root Gi
−1’s is real then | Gi

−1 |> 1 due to the stationary condi-

tions.

So | Gi |< 1 and AiGi
k forms a damped exponential which geometri-

cally decays to 0 as k increases.

Complex roots forms a damped sine wave to ACF.

So ACF for a stationary AR process will consists of a combination of

damped exponential and damped sine waves.[3]

2.3 Moving average Model

The Moving average model MA(q) [25] is a linear stationary time

series model that’s written as a function of previous values of the white

noise and the mean of the previous values of the series (yt)
∞
t=0, where
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MA(q) is of order q ( q positive integer number) is given by

yt − µ = εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q. (2.27)

where θi’s are regression parameter ∀i ∈ N, ε is a white noise.

Remember that the moving average process is an autoregression model

of the time series of residual errors from prior predictions. Also the

moving average model corrects future forecasts based on errors made

on recent forecasts.

Let B be a shift operator that’s given by

(εt)B = εt−1. (2.28)

Substitute (2.28) into (2.27), we get

yt − µ = εt − θ1Bεt − θ2B
2εt−2 − ...− θqBqεt−q.

= (1− θ1B − θ2B
2 − ...− θqBq)εt.

(2.29)

Or

θ(B)εt = yt − µ. (2.30)

Where

θ(B) = 1− θ1B − θ2B
2 − ...− θqBq. (2.31)

is the nonseasonal MA operator of order q.
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remark 2.3.1. For q =1, MA(1) is written as yt − µ = εt − θ1εt−1,

then the ACF is given by

ρk =


1 k = 0

−θ1
1+θ1

2 k = 1

0 k > 1

(2.32)

Proof. So E(yt) = E(εt − θ1εt−1) + µ = µ, since εt is white noise i.e.

E(εt) = 0,∀t.

var(yt) = γ0 = var(εt − θ1εt−1).

= var(εt)− var(θ1εt−1).

= σ2 + θ1
2var(εt−1)− 2θ1cov(εt, εt−1).

= σ2 + θ1
2σ2.

= σ2(1 + θ1
2).

The autocovariance at k=1 is given by

γ1 = cov(yt, yt−1).

= cov(εt − θ1εt−1, εt−1 − θ1εt−2).

= cov(εt, εt−1)− θ1cov(εt, εt−2)− θ1cov(εt−1, εt−1) + θ1
2cov(εt−1, εt−2).

But cov(εt, εt−k) = 0.

So γ1 = −θ1var(εt−1) = −θ1σ
2.

for k > 1, γk = cov(yt, yt−k) = 0.
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So γk =


σ2(1 + θ1

2) k = 0

−θ1σ
2 k = 1

0 k > 1

The ACF is ρk = γk
γ0


1 k = 0

−θ1
1+θ1

2 k = 1

0 k > 1

Theorem 2.3.1. The MA process is stationary .

Proof. The yt’s are finite linear combination of the previous values of

the white noise, and the white noise process is stationary.

So the MA process is stationary whatever were the values of the MA

parameters.

example 2.3.1. We draw some different MA(1) processes,

yt = θεt−1 + εt, with n= 15 and five different values for θ and notice

that:

MA(1) is stationary for all values of θ.

remark 2.3.2. When θ1 = 0, MA(1) is white noise.
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Figure 2.9: MA(1) process when θ = 0.8
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Figure 2.10: MA(1) process when θ = 1.6
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Figure 2.11: MA(1) process when θ = −0.3
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Figure 2.12: MA(1) process when θ = 0
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Figure 2.13: MA(1) process when θ = 1

Definition 6. The equation

θ(B) = 0 (2.33)

is the characteristic equation for the MA process.

remark 2.3.3. The MA process is invertible when the roots of the

characteristic equation fall outside the unit circle. [3]

Proof. The MA equation written as

yt − µ = εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q,

that’s

yt = µ+ εt −
q∑
j=1

θjεt−j.
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or

θ(B)εt = (yt − µ).

When µ = 0 then εt = θ−1(B)yt ≡ π(B)yt, for some function π.

Let θ(B) =

q∏
i=1

(1−HiB).

Where H−1
1 , H−1

2 , ..., H−1
q are the roots of θ(B) = 0,

expanding θ−1(B) in partial fractions results,

π(B) = θ−1(B) =

q∑
i=1

Mi

1−HiB
.

When MA(q) is stationary,

then π(B) = θ−1(B) is convergent series,

that’s πj = −
q∑
i=1

MiH
j
i are absolutely summable,

so | Hi |< 1 , for i=1, 2, ..., q.

Hence the roots of θ(B) = 0 must lie outside the unit circle.

So MA(q) is stationary when the roots of the characteristic equation

fall outside the unit circle.[3]

remark 2.3.4. MA(∞) = AR(1).

Proof. The AR(1) process is given by

yt = φ1yt−1 + εt. (2.34)

Similarly

yt−1 = φ1yt−2 + εt−1. (2.35)

Then we substitute yt−1 from (2.35) into (2.34) to get
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yt = φ1(φ1yt−2 + εt−1) + εt.

= φ1
2yt−2 + εt−1φ1 + εt.

(2.36)

Similarly substitute yt−2 = φ1yt−3 + εt−2 into (2.36) to get

yt = φ1
2(φ1yt−3 + εt−2) + εt−1φ1 + εt.

= φ1
3yt−3 + φ1

2εt−2 + εt−1φ1 + εt.

Continuing this type of substitution indefinitely, we get

yt = εt + εt−1φ1 + φ1
2εt−2 + φ1

3εt−3 + ... .

Let θi = φ1
i, ∀i ∈ N, we get

yt = εt + θ1εt−1 + θ2εt−2 + θ3εt−3 + ... .

Which is an equation for MA(∞) so AR(1) = MA(∞).

remark 2.3.5. The AR(∞) = MA(1).

Proof. The MA(1) process is given by

yt = εt − θ1εt−1, (2.37)

that’s

εt = yt + θ1εt−1. (2.38)

Similarly

εt−1 = yt−1 + θ1εt−2. (2.39)
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Then we substitute εt−1 from (2.39) into (2.38) to get

εt = yt + θ1(yt−1 + θ1εt−2).

= yt + θ1yt−1 + θ1
2εt−2.

(2.40)

Similarly substitute εt−2 = yt−2 + θ1εt−3 into (2.40) to get

εt = yt + θ1yt−1 + θ1
2(yt−2 + θ1εt−3).

= yt + θ1yt−1 + θ1
2yt−2 + θ1

3εt−3.

Continuing this type of substitution indefinitely, we get

εt = yt + θ1yt−1 + θ1
2yt−2 + θ1

3yt−3 + ... .

Let φi = −θ1
i, ∀i ∈ N, we get

yt = εt + φ1yt−1 + φ2yt−2 + ... .

which is an equation forAR(∞) so MA(1) = AR(∞).

The difference equation for the autocovariance function for the MA(q)

process is given by

γk = E[(yt−k − µ)(yt − µ)]. (2.41)

By using (2.27), we get

γk = E[(εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q)(εt−k − θ1εt−k−1 − θ2εt−k−2 −

...− θqεt−k−q)].
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After multiplication and taking expected values for the last equation,

the autocovariance function is given by

γk =


(−θk + θ1θk+1 + θ2θk+2 + ...+ θq−kθq)σε

2 k = 1, 2, ..., q − 1

(−θq)σε2 k = q

0 k > q

(2.42)

Where θ0 = 1 and θ−k = 0, ∀k > 0. When k= 0 in (2.41) then the

variance is given by

γ0 = (1 + θ1
2 + θ2

2 + ...+ θk
2)σε

2. (2.43)

By dividing the autocovariance function by the variance, we get ACF

for MA(q) process is given by

ρk =



1 k = 0

−θk+θ1θk+1+θ2θk+2+...+θq−kθq
1+θ1

2+θ2
2+...+θk

2 k = 1, 2, ..., q − 1

−θq
1+θ1

2+θ2
2+...+θk

2 k = q

0 k > q

(2.44)

We see that the ACF of MA(q) cuts off after lag q.

example 2.3.2. We draw the the ACF of different MA(1) processes

and notice that: ACF of MA(1) process cuts off after lag 1 in all values

of θ.
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remark 2.3.6. When k=1,

ρ1 =


1 k = 0

−θ1
1+θ1

2 k = 1

0 k > 1

(2.45)

when θ1 = 0, MA(1) process became a white noise.

As θ1 ranges from -1 to 1, the population lag 1 autocorrelation ρ1 ranges

from the largest ρ1 = 0.5 to the smallest ρ1 = −0.5.
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Figure 2.14: ACF of MA(1) model when θ = .3
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Figure 2.15: ACF of MA(1) model when θ = −.3
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Figure 2.16: ACF of MA(1) model when θ = .8
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2.4 Autoregressive Moving average Model

It consists of both of AR(p) and MA(q) parameters, p, q positive

integer numbers. It’s given by [25]

yt − µ− φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) =

εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q. (2.46)

where θi are regression parameter for MA process, Where φi are re-

gression parameter for MA process, ∀i ∈ N, εt is a white noise.

yt = α+ εt+ θ1εt−1 + θ2εt−2 + ...+ θqεt−q +φ1yt−1 +φ2yt−2 + ...+φpyt−p.

(2.47)

Where α = µ(1− φ1 − φ2 − ...− φp).

Let B be a shift operater that’s given by

ytB = yt−1. (2.48)

And

(εt)B = εt−1. (2.49)

Then

(1−θ1B−θ2B
2− ...−θqBq)εt = (yt−µ)(1−φ1B−φ2B

2− ...−φpBP ).

(2.50)
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Or

φ(B)(yt − µ) = θ(B)εt. (2.51)

Where

θ(B) = 1− θ1B − θ2B
2 − ...− θqBq. (2.52)

is the nonseasonal MA operator of order q. Where

φ(B) = 1− φ1B − φ2B
2 − ...− φpBp. (2.53)

is the nonseasonal AR operator of order p.

ARMA(p,q) can be written as a pth order AR process is given by

φ(B)(yt − µ) = et, (2.54)

where et follows the qth order MA process

et = θ(B)εt. (2.55)

Also ARMA(p,q) can be written as a qth order MA process is given by

(yt − µ) = θ(B)bt.

Where bt follows the pth order AR process.

btφ(B) = εt.
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By substitute et from (2.55) into equation(2.54) results

φ(B)(yt − µ) = θ(B)εt. (2.56)

The ARMA(p,q) process contains both the pure AR and MA processes

as subsets,

So AR(p)=ARMA(p,0), Ma(q)=ARMA(0,q) and ARMA(0,0) is the

white noise εt.

The ARMA(1, 1) process

Substitute p=q=1, yt − µ = yt in (2.47) results

yt = φyt−1 + εt − θεt−1 (2.57)

is called ARMA(1, 1) process can be written as

(1− φB)yt = (1− θB)εt

Where B be a shift operator that’s εtB = εt−1,

but var(yt) = γ0 and var(εt) = var(εt−1) = σε
2,

take variances of both sides of (2.57) results

γ0 = φγ−1 + σε
2 + θ2σε

2 − φθσε2

but γ−1 = γ1 = γ0φ− θσε2,

so γ0 = φ2γ0 − 2φθσε
2 + σε

2 + θ2σε
2, so

γ0 = σε
2

(
1− 2φθ + θ2

1− φ2

)
(2.58)
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but γk = φγk−1 , and by dividing on γ0, we get

ρk = φρk−1, then ρk = φk−1ρ1

but ρ1 = γ1
γ0

= γ0φ−θσε2
γ0

, so

ρ1 =
σε

2
(

1−2φθ+θ2

1−φ2

)
φ− θσε2

σε2
(

1−2φθ+θ2

1−φ2

)
=

(1− φ2)(
(

1−2φθ+θ2

1−φ2

)
φ− θ)

1− 2φθ + θ2

=
(1− 2φθ + θ2)φ− θ(1− φ2))

1− 2φθ + θ2

=
(1− φθ)(φ− θ)

1− 2φθ + θ2

so

ρk = φk−1ρ1 =
(1− φθ)(φ− θ)

1− 2φθ + θ2
φk−1[4] (2.59)

remark 2.4.1. ACF for AR(p) is the same as ACF for ARMA(p,q)

for k > q − p.[3]

Proof. Multiply both sides of (2.46) by yt−k and take the expected

value of the result to get

γk − φ1γk−1 − φ2γk−2 − ...− φpγk−p =

γ2ε(k) − θ1γ2ε(k−1) − θ2γ2ε(k−2) − ...− θqγ2ε(k−q) (2.60)

γ2ε(k) = E[(yt−k − µ)] is the cross autocovariance function between

yt−k and εt.

Since yt−k is dependent only upon the shocks occurred up to time t-k
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so

γ2ε(k) =

 0 k < t

nonzero k ≥ t
(2.61)

multiply both sides of(2.47) by εt−k and take the expected value of the

result to get

γ2ε(−k)−φ1γ2ε(−k+1)−φ2γ2ε(−k+2)− ...−φpγ2ε(−k+p) = −[θk]σε
2.

(2.62)

where

[θk] =


θk k = 1, 2, .., q

−1 k = 0

0 otherwise

(2.63)

solving (2.60) and (2.62) for γk, we get

γk − φ1γk−1 − φ2γk−2 − ...− φpγk−p = 0 (2.64)

or

φ(B)γk = 0, (2.65)

dividing (2.65) by γ0 we get

(1− φ1B − φ2B
2 − ...− .φpBP )ρk = φ(B)γk = 0 k > q. (2.66)

(2.66) is identical to (2.25).

That’s ACF for AR(p) is the same as ACF for ARMA(p,q) for k >

43



q − p.[3]

If k ≤ q then ρk is a function of both of the AR(p) and MA(q)parameters.

φ(B)(yt − µ) = θ(B)εt. (2.67)

so

θ(B)−1φ(B)(yt − µ) = εt, (2.68)

where θ(B)−1 is infinite series in B.

2.5 ARIMA model(p,q,d)

Many time series are non stationary, so we use differencing to make

them stationary.

The original undifferenced series is called integrated. That’s ARIMA

model [25] is the integrated time series that we make differences for it

to become stationary time series.

Autoregressive Integrated Moving-Average model is a generalization

of ARMA model, called ARIMA(p, q, d), where d is the order of

differencing (the number of times needed to change the ARIMA(p, q,

d) to stationary time series), it’s a non-stationary linear time series
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model that’s written by

(1−φ1B−φ2B
2−...−φpBp)(1−B)dyt = (1−θ1B−θ2B

2−...−θqBq)εt.

(2.69)

So

φ(B)(1−B)dyt = θ(B)εt. (2.70)

Where

θ(B) = 1− θ1B − θ2B
2 − ...− θqBq

is the nonseasonal MA operator of order q. Where

φ(B) = 1− φ1B − φ2B
2 − ...− φpBp

is the nonseasonal AR operator of order p.

where B be a shift operater such that ytB = yt−1 and εtB = εt−1.

Where θi are regression parameter for MA(q) process, where φi are

regression parameter fo AR(p) process, ∀i ∈ N , εt is a white noise.

When d > 0, the ACF of ARIMA process decays slowly since ARIMA

is nonstationary.

ARIMA(p,q,0)=ARMA(p,q), ARIMA(0,1,0) is a random walk pro-

cess. ARIMA(0,0,d) is the white noise εt, ARIMA(p,0,0)=AR(p),

ARIMA(0,q,0)=MA(q).
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Chapter 3

Parameter Estimation Approaches

in Time Series Models

Frequently one wishes to fit a parametric model to time-series data and

determine accurate values of the parameters and reliable estimates for

the uncertainties in those parameters. It is important to gain a thor-

ough understanding of the noise and develop appropriate methods for

parameter estimation, where the most interesting effects are often on

the edge of detectability. Underestimating the errors leads to unjus-

tified confidence in new results, or confusion over apparent contradic-

tions between different data sets. Overestimating the errors inhibits

potentially important discoveries. In this chapter different approaches

of parameter estimation for time series models will be presented.
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3.1 Yule Walker equations

Substitute k=1, 2, ..., p into (2.22), parameters φ′is can be estimated

by the theoretical values of the ACF, results the linear equations that

are called the Yule Walker equations [32] are given by

ρ1 = φ1 + φ2ρ1 + ... + φpρp−1

ρ2 = φ1ρk−1 + φ2 + ... + φpρp−2

. . . ... .

. . . ... .

ρp = φ1ρp−1 + φ2ρp−2 + ... + φp

(3.1)

Write the Yule Walker equations in the matrix form, we get

φ = Pp
−1ρ (3.2)

where

φ =



φ1

φ2

.

.

.

φp


, ρ =



ρ1

ρ2

.

.

.

ρp


, Pp =



1 ρ1 ρ2 ... ρp−1

ρ1 1 ρ1 ... ρp−2

. . . ... .

. . . ... .

ρp−1 ρp−2 ρp−3 ... 1


(3.3)
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Where Pp is an invertible matrix .

To find Yule Walker estimates for the AR parameters, replace the ρ′ks

in (3.3) by their estimates ρk, k = 1, 2, ..., p in (3.1).

For AR(1), substitute p=1 in (3.1), we get

ρ1 = φ1

ρ2 = φ1ρ1 = φ1
2

ρ3 = φ1ρ2 = φ1
3

In general

ρk = φ1
k (3.4)

For AR(2), substitute p=2 in (3.1), we get

ρ1 = φ1 + φ2ρ1

ρ2 = φ1ρ1 + φ2

(3.5)

Where ρ0 = 1, ρk = ρ−k, k=1, 2, ..., p.

In general

ρk = φ1ρk−1 + φ2ρk−2 (3.6)

Solve the system in (3.5) for ρ1, ρ2, we get

ρ1 = φ1
1−φ2

ρ2 = φ1
2+φ2−φ22

1−φ2

(3.7)
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We can find higher lag autocorrelation by using the recursive relation

(3.6).

For example

ρ3 = φ1ρ2 + φ2ρ1 (3.8)

Substitute ρ1, ρ2 from (3.7) into (3.8) results

ρ3 = φ1
φ1

2 + φ2 − φ2
2

1− φ2
+ φ2

φ1

1− φ2

=
φ1

3 + 2φ1φ2 − φ1φ2
2

1− φ2

(3.9)

3.2 Method of moments

The method of moments (MOM)[5] is equating sample moments to

the corresponding population moments expressed in the parameter of

interest and solving the resulting system of equations for the model

parameters.

The method of moments is the easiest but not the most efficient for

parameter estimation.

Method of moments for the AR(p) models

AR(1) formula that’s given by yt = φyt−1 + εt.

In AR(1), we want to estimate the parameter φ, the population lag

one correlation ρ1= the sample lag 1 autocorelation that’s given by
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r1 =

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄)

n−k∑
t=1

(Xt − X̄)2

.

Let k=1 in (2.17), then we have the MOM estimator of φ is φ̂ = r1.

AR(2) formula that’s given by yt = φ1yt−1 + φ2εt−2 + εt, we want to

estimate the parameters φ1, and φ2, recall the Yule Walker equations

in (3.5), let ρ1 = r1, and ρ2 = r2, so we get

r1 = φ1 + φ2ρ1

r2 = φ1ρ1 + φ2

(3.10)

Solving the system (3.10) for φ1 and φ2, we get the MOM estimators

φ̂1 = r1(1−r2)
1−r22

φ̂2 = r2−r12
1−r22

(3.11)

AR(p) formula that’s given by yt = φ1yt−1 +φ2yt−2 + ...+φpyt−p+εt we

recall the Yule Walker equations in (3.1), let ρ1 = r1, ρ2 = r2, ..., ρp =
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rp, so we get

r1 = φ1 + φ2ρ1 + ... + φpρp−1

r2 = φ1ρk−1 + φ2 + ... + φpρp−2

. . . ... .

. . . ... .

rp = φ1ρp−1 + φ2ρp−2 + ... + φp

(3.12)

Solving the system (3.12) using software, gives us the MOM estimators

for φ1, φ2, ..., φp.

Method of moments for the MA(q) models

MA(1) formula that’s given by: yt = εt − θ1εt−1.

In MA(1), we want to estimate the parameter θ.

But in (2.32), ρ1 = −θ1
1+θ1

2 .

Let ρ1 = r1, we get r1 = −θ1
1+θ1

2 , so

r1θ
2 + θ + r1 = 0 (3.13)

Solve (3.13) for θ, we get

θ = −1±
√

1−4r12

2r1
.

Real solutions for θ exist when 1− 4r1
2 ≥ 0 that’s | r1 |≤ 0.5.

• If | r1 |> 0.5, there’s no real solution for θ.

• If | r1 |= 0.5, then θ = ±1, that’s | θ |= 1, so MA(1) model
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invertible.

• If | r1 |< 0.5, the real solution for which MA(1) is invertible, so

the MOM estimator for θ is θ̂ = −1±
√

1−4r12

2r1
.

MA(q) formula that’s given by: yt−µ = εt−θ1εt−1−θ2εt−2−...−θqεt−q.

But in (2.44),

ρk =



1 k = 0

−θk+θ1θk+1+θ2θk+2+...+θq−kθq
1+θ1

2+θ2
2+...+θk

2 k = 1, 2, ..., q − 1

−θq
1+θ1

2+θ2
2+...+θk

2 k = q

0 k > q

Let ρk = rk, for k=1, 2, ..., q, we get

rk =



1 k = 0

−θk+θ1θk+1+θ2θk+2+...+θq−kθq
1+θ1

2+θ2
2+...+θk

2 k = 1, 2, ..., q − 1

−θq
1+θ1

2+θ2
2+...+θk

2 k = q

0 k > q

(3.14)

Then the MOM estimators for θ are the solutions of (3.14) that can

be solved by software.

Method of moments for the ARMA(1, 1) models

ARIMA(1, 1) formula is given by yt = φyt−1 + εt − θεt−1, we want to
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estimate the parameters φ, and θ, but in (2.59),

ρk =
(1− φθ)(φ− θ)

1− 2φθ + θ2
φk−1

It follows that ρ2
ρ1

= φ.

Let ρ1 = r1, ρ2 = r2, then the MOM estimator of φ is φ̂ = r2
r1

.

r1 = (1−φ̂θ)(φ̂−θ)
1−2φ̂θ+θ2

have two solutions, the solution when the ARIMA is

invertible that is the MOM estimator of θ is θ̂ = 1− θ̂x has root x such

that | x |> 1.

Method of moments for white noise variance(MOM)

For any stationary ARMA model, the process variance γ0 = var(yt)

can be estimated by the sample variance that’s given by

S2 =
1

n− 1

n∑
t=1

(Yt − Ȳ )2 (3.15)

For AR(q): Recall γ0 for AR(p) in (2.20) that’s given by

γ0 = σε
2

(1−φ1ρ1−φ2ρ2−...−φpρp) . Then

σε
2 = γ0(1− φ1ρ1 − φ2ρ2 − ...− φpρp). (3.16)

Then the MOM estimator of the σε
2 is obtained by substituting in φ̂

for φ, rk for ρk and S2 for γ0. So the MOM estimator of the σε
2 is

given by

σ̂ε
2 = S2(1− φ̂1r1 − φ̂2r2 − ...− φ̂prp). (3.17)
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For MA(q): Recall γ0 for MA(q) in (2.43) that’s

γ0 = (1 + θ1
2 + θ2

2 + ...+ θq
2)σε

2. Then

σε
2 =

γ0

(1 + θ1
2 + θ2

2 + ...+ θq
2)
. (3.18)

Then the MOM estimator of the σε
2 is obtained by substituting in θ̂

for θ and S2 for γ0. So the MOM estimator of the σε
2 is given by

σ̂ε
2 =

S2

(1 + θ̂2
1 + θ̂2

2 + ...+ θ̂2
q)
. (3.19)

For ARMA(1, 1): Recall γ0 for ARMA(1, 1) in (2.58) that’s

γ0 = σε
2
(

1−2φθ+θ2

1−φ2

)
. Then

σε
2 = γ0

1− φ2

1− 2φθ + θ2
(3.20)

Then the MOM estimator of the σε
2 is obtained by substituting in θ̂

for θ , φ̂ for φ and S2 for γ0. So the MOM estimator of the σε
2 is given

by

σ̂ε
2 = S2 1− φ̂2

1− 2φ̂θ̂ + θ̂2
(3.21)
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3.3 The Least square method(LSE)

The Least square method [5] based on minimizing the sum of the

squared residuals(errors).

Autoregressive models

AR(1) formula that’s given by yt−µ = φ(yt−1−µ)+ εt this is a regres-

sive model with predictable variable yt−1 and response variable yt, we

estimate φ and µ by the values that minimize the sum of the square

of the differences

SC(φ, µ) =
n∑
t=2

[(yt − µ)− φ(yt−1 − µ)]2, called the conditional sum of

squares function, given the observed values y1, y2, ..., yn, and minimiz-

ing SC(φ, µ) with respect to µ results

∂SC
∂µ =

n∑
t=2

2[(yt − µ)− φ(yt−1 − µ)](−1 + φ)=0. So

(φ− 1)[
n∑
t=2

yt − (n− 1)µ− φ
n∑
t=2

yt−1 + φµ(n− 1)] = 0

So µ((n− 1)(1− φ)(1− φ) = (1− φ)[
n∑
t=2

yt − φ
n∑
t=2

yt−1], then

µ =
1

(n− 1)(1− φ)

[
n∑
t=2

yt − φ
n∑
t=2

yt−1

]
(3.22)

For large n, 1
n−1

n∑
t=2

yt ≈
1

n

n∑
t=2

yt−1 ≈ ȳ.

So regardless of φ, (3.22) reduces to µ̂ ≈ 1
1−φ(ȳ − φȳ) = ȳ

minimizing SC(φ, µ) with respect to φ results
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∂Sc(φ,ȳ)
∂φ =

n∑
t=2

2[(yt − ȳ)− φ(yt−1 − ȳ)](yt−1 − ȳ) = 0.

So
n∑
t=2

(yt − ȳ)(yt−1 − ȳ)−
n∑
t=2

φ(yt−1 − ȳ)(yt−1 − ȳ) = 0

So φ̂ =

n∑
t=2

(yt − ȳ)(yt−1 − ȳ)

n∑
t=2

(yt−1 − ȳ)2

.

For AR(p), by using the same methods that can be extended to get µ̂ =

ȳ, to generalize the estimation of φ, we consider AR(2) and substitute

µ = ȳ in the conditional sum of squares function,

So Sc(φ1, φ2, ȳ) =
n∑
t=3

[(yt − ȳ)− φ1(yt−1 − ȳ)− φ2(yt−2 − ȳ)]2

∂Sc
∂φ1
− 2

n∑
t=3

[(yt − ȳ)− φ1(yt−1 − ȳ)− φ2(yt−2 − ȳ)](yt−1 − ȳ) = 0, then

n∑
t=3

[(yt − ȳ)(yt−1 − ȳ) = φ1

n∑
t=3

[(yt−1 − ȳ)]2+φ2

n∑
t=3

(yt−1 − ȳ)(yt−2 − ȳ).

(3.23)

Dividing the both sides of (3.23) over
n∑
t=3

[(yt − ȳ)]2 results

r1 = φ1 + φ2r1

r2 = φ1r1 + φ2

(3.24)
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(3.24) are the Yule Walker equations and solved previously in (3.11)

and it is written as

φ̂1 = r1(1−r2)
1−r22

φ̂2 = r2−r12
1−r22

(3.25)

In general for AR(p): The conditional least square estimates of φ′s are

the solutions of the sample Yule Walker equations in (3.15).

Moving Average models

Consider MA(1) formula that’s given by yt = εt − θεt−1.

To use least square method, we convert it to AR model, but MA(1) =

AR(∞)

That’s MA(1) is given by yt = εt − θyt−1 − θ2yt−2 − θ3yt−3 + ... ,

and Sc(θ) =
∑

εt
2 =

∑
yt + θyt−1 + θ2yt−2 + θ3yt−3 + ... .

We can’t use the least square method by calculating ∂Sc
∂θ = 0 , it isn’t

practical method here.

So we’ll use techniques of numerical optimization by calculating Sc for

a given value of θ.

Rewrite MA(1) as εt = yt + θεt−1.

Let ε0 = 0, then conditional on ε0 = 0, given the observed values
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y1, y2, ..., yn. We get

ε1 = y1

ε2 = y2 + θε1

ε3 = y3 + θε2

. = .

. = .

. = .

εn = yn + θεn−1

(3.26)

and thus find Sc(θ) =
n∑
t=1

εt
2 conditional on ε0 = 0 for a single given

value of θ.

We should do a grid search over the range (-1, 1) for θ to find the

minimum sum of squares when MA(1) is invertible. For more general

MA(q), a numerical optimization algorithm are used.

For higher order moving average models, we compute εt = εt(θ1, θ2, ..., θq)

recursively from

εt = yt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q, with ε0 = ε−1 = ... = ε−q = 0.

and Sc(θ1, θ2, ..., θq) =
n∑
t=1

εt
2 =

n∑
t=1

yt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q

The sum of squares is minimized jointly in θ1, θ2, ..., θq by using a

multivariate numerical method, searching over all possible values of

θ1, θ2, ..., θq that give an solution for which MA(1) is invertible.
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Autoregressive Moving Average models

Consider the ARMA(1, 1) that’s given by yt = φyt−1 + εt − θεt−1,

rewrite it εt = −φyt−1 + yt + θεt−1

Sc(φ, θ) =
n∑
t=1

εt
2,

set ε1 = 0 and minimize Sc(φ, θ) =
n∑
t=2

εt
2 with respect to φ and θ

For general ARMA(p, q), we compute εt = εt(φ1, φ2, ..., φp, θ1, θ2, ..., θq)

recursively from

εt = yt − φ1yt−1 − φ2yt−2 − ...− φpyt−p + θ1εt−1 + θ2εt−2 + ...+ θqεt−q,

with εp = εp−1 = ... = εp+1−q = 0.

Then minimizing Sc(φ1, φ2, ..., φp, θ1, θ2, ..., θq) =
n∑
t=2

εt
2 numerically to

get the conditional least square estimates of all parameters.

The least square estimation is nearly identical to the method moments

for large samples. The least square estimation is consistent that’s for

large samples, the parameter estimate is close to the parameter being

estimated.

3.4 The Maximum Likelihood estimation

The maximum likelihood estimation (MLE) [5] is a method of esti-

mating unknown parameters in time series models. The MLE selects

the sets of the values of the model parameters which maximizes the

likelihood function.

The likelihood function is the function that describes the joint distri-
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bution of X1, X2, ..., Xn, it’s a function of the model parameters with

the observed data being fixed.

The Likelihood Function is defined to be :

LN : Θ× RN −→ R+

(θ;x1, ..., xn) 7−→ LN(θ;x1, ..., xn) =
N∏
i=1

fX(xi; θ)

Autoregressive models

AR(1) formula that’s given by Yt − µ = φ(Yt−1 − µ) + εt.

In AR(1), we want to estimate the parameters φ, µ and σε
2,

The probability density function of εt ∼ N (0, σε
2) is given by

f(εt) = 1√
2πσε

exp
(
−εt2
2σε2

)
, for all −∞ < εt <∞.

But ε1, ε2, ..., εn are independent, so the joint pdf of ε1, ε2, ..., εn is given

by

f(ε1, ε2, ..., εn) =
n∏
t=2

f(εt).

=
n∏
t=2

1√
2πσε

exp

(
−εt2

2σε2

)
.

= (2πσε
2)

1−n
2 exp

(
−1

2σε2

n∑
t=2

εt
2

)
.

(3.27)
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We perform the multivariate transforming

Y2 = µ + φ(Y1 − µ) + ε2.

Y3 = µ + φ(Y2 − µ) + ε3.

. . . .

. . . .

Yn = µ + φ(Yn−1 − µ) + εn.

(3.28)

Let Y is the joint pdf of Y1, Y2, ..., Yn, so the conditional joint distribu-

tion of Y1, Y2, ..., Yn given Y1 = y1.

The likelihood function (i.e. the joint pdf of Y) is given by

L = L(φ, µ, σε
2; y\y1) =

n∏
i=2

fY \Y1(yi\y1;φ, µ, σε) = f(y2, y3, ..., yn\y1)f(y1).

But f(y2, y3, ..., yn\y1) = f(ε1, ε2, ..., εn) = (2πσε
2)

1−n
2 exp

(
−1

2σε2

n∑
t=2

εt
2

)
.

But εt = Yt − µ+ φ(Yt−1 − µ).

So f(y2, y3, ..., yn\y1) = (2πσε
2)

1−n
2 exp

(
−1

2σε2

n∑
t=2

[yt − µ+ φ(yt−1 − µ)]2

)
.

But in (2.3.4), AR(1)=MA(∞) , so AR(1) can be written as

yt = εt + εt−1φ1 + φ1
2εt−2 + φ1

3εt−3 + ... is a normal distribution.

Then var(Y1) =
∞∑
k=0

φ2kσε
2 =

σε
2

1− φ2
.

Then Y1 ∼ N (µ, σε
2

1−φ2 ).

So f(y1) =
(

1−φ2
2πσε2

)0.5

exp
(
−(y1−µ)

2
(1−φ2)

2σε2

)
, then

L = f(y2, y3, ..., yn\y1)f(y1).

L = (2πσε
2)

1−n
2 exp

(
−1
2σε2

n∑
t=2

[yt − µ+ φ(yt−1 − µ)]2

)(
1−φ2
2πσε2

)0.5
exp

(
−(y1−µ)2(1−φ2)

2σε2

)
.
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L = (2πσε
2)

−n
2 (1− φ2)0.5 exp

[
−S(φ,µ)

2σε2

]
.

Where S(φ, µ) = (y1 − µ)2(1− φ2) +
n∑
t=2

[yt − µ+ φ(yt−1 − µ)]2.

The maximum likelihood estimators of φ, µ and σε
2 are the values that

maximize L(φ, µ, σε
2\y).

The function S(φ, µ) is called the unconditional sum of squares func-

tion.

The unconditional least squares function (ULS) estimates of φ and µ

can be found by minimizing S(φ, µ).

When S(φ, µ) is random, then S(φ, µ) = (Y1 − µ)2(1− φ2) + SC(φ, µ),

where SC(φ, µ) =
n∑
t=2

[yt − µ+ φ(yt−1 − µ)]2 is called the conditional

sum of squares function .

The difference between S(φ, µ) and SC(φ, µ) is only (y1 − µ)2(1− φ2).

Since SC(φ, µ) is a sum of n−1 components, we have S(φ, µ) ≈ SC(φ, µ)

for large sample n.

The MLE’s for any stationary ARMA(p, q) can be found in the same

way we did for AR(1), but the likelihood function L becomes more

complex in larger models, the Yule Walker estimators of the coeffi-

cients φ1, φ2, ..., φp of an AR(p) process have approximately the same

distribution for large samples as the corresponding MLE’s, and the

Yule Walker estimators of the coefficients σ1, σ2, ..., σp of an AR(p)

process for large samples and the estimators are close to the true σ.

For stationary autoregressve models, the MOM, LSE, and the MLE
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have the same estimators for large samples.

The advantages of the MLE that it’s used all the data rather than just

the first and second moments as in the least squares , and that many

large samples results are known under general conditions. By the weak

law of large numbers, for large t, the sample average converges to its

population mean.

But the disadvantage is that we must work for the first time with the

joint probability density function of the process.

3.5 Box Jenkins method for ARIMA(p, q, d) mod-

els

The Box Jenkins method consists of four steps [10]:

• Order selection: First if the data isn’t stationary, then we make

differencing for the data until it becomes stationary, then choose

the parameters p, q and d by plot the autocorrelation function

and the partial correlation function and estimate p, q and d.

If the partial autocorrelation function cuts off after a few lags,

then the last lag with a large value would be the estimated value

of p. If the partial autocorrelaton does’t cut off, we have MA(q)

(p=0) or ARIMA model with positive p and q.

If the autocorrelation function cuts off after a few lags, then the

last lag with a large value would be the estimated value of q. If the
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autocorrelaton doesn’t cut off, we have AR(p) (q=0) or ARIMA

model with positive p and q.

When neither the autocorrelatons nor the partial autocorrelations

cuts off, then it’s an ARIMA model, that’s a mixture of exponen-

tial decay and damped sine waves after the first q-p , the partial

correlation function has the same pattern after p-q lags, and we

use error and trail approach until the residuals have small corre-

lations then we estimate values for p and q.

• Estimation of the coefficients: The coefficients of the AR(p) are

φ1, φ2, ..., φp. The coefficients of the MA(q) are θ1, θ2, ..., θq. These

coefficients are estimated by estimators such as MLE.

• Diagnostic check: The fit of the ARIMA(p, q, d) with the esti-

mated coefficients is checked. Check if the empirical autocorrela-

tion function is close to 0. So if all the correlations and partial

correlations of the residuals are small, then the model is adequate

and we find the forecasts. But if there’s a large correlation for the

residuals, we repeat the previous steps again.

• The prediction of the future values of the original process: The

forecasts are done.
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3.6 Monte Carlo methods

Monte Carlo methods are from a class of computational algorithms

can be applied to wide ranges of stochastic system problems.

The Monte Carlo method simulates the behavior of a system by taking

repeated sets of random numbers (huge amount of random variables)

from the probability distribution of the process under investigation, so

the observations are independent in this method.

To perform the Monte Carlo method [6], we follow four steps:

• Define a distribution of possible inputs for each input random

variable: Requires recognition of the probability distribution of

the process.

• Generate inputs randomly from those distributions: Requires the

selection of an appropriate random number generator to model

the observed probability distribution.

• Perform a deterministic computation using that set of inputs:

Computing the desired output variable or variables from the gen-

erated random numbers.

• Aggregate the results of the individual computations into the fi-

nal result: The aggregation process is dependent on the specific

simulation that can be as computing the average of the simulated

results.
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example 3.6.1. Numerical calculation of π [26]

The area of the a unit circle is π. So we can calculate π by numerical

integration by the following algorithm:

• Draw a unit circle arc in the first quadrant, that’s an arc of radius

one circumscribed by a square.

• Choose N points randomly in the first quadrant, for instance N

independent pairs x, y ∈ [0, 1].

• Calculate r2 = x2 + y2.

• Count the number of points within the unit circle and the number

of points in the quarter circle that’s the number of points where

r2 ≤ 1. With a large number of points, these values will approxi-

mate the area of the circle and the area of the square.

The number of points inside circle
The number of points inside square=

0.25πr2

r2 = π
4 .

Then multiply the last value by 4 to get the result is the value of

π.

This example applied the steps of Monte Carlo method mentioned above.

A random number generator selects the coordinates for each dot. The

coordinates were selected from uniform distribution that provided the

probability density function. A sampling rule used the random num-

bers to select values from the uniform distribution, the scoring method
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by the formula in step 4. Finally error estimation is performed by

comparing the computed value of π to the theoretical value for π .

3.7 Bootstrapping in ARIMA models[9]

Let (X1, ..., Xn) be a finite sample of n identical independent obser-

vations obtained from unknown probability distribution F(.) and let

Tn(X) be some static of interest. And F̂ (.) is the empirical distribu-

tion that assigns probability mass n−1 to each sample element.

The bootstrap [18] approximate the sampling distribution of Tn(X) un-

der F(.) by the bootstrap distribution of a Tn(X
∗) under F̂ (.), where

X∗ = (X1
∗, ..., Xn

∗) is a bootstrap sample (called pseudo data) of size

n obtained by randomly sampling with replacement from sample X.

The bootstrap algorithm starts by generating a large number B of in-

dependent bootstrap samples denoted by Xi
∗, i=1, 2, ..., B, each of

size n. These samples are drawn from the empirical distribution F̂ (.).

Corresponding to each bootstrap sample Xi
∗ is a bootstrap replication

of Tn(Xi
∗), the value of the statistic evaluated for Xi

∗.

The set of bootstrap estimates {Tn(Xi
∗), i = 1, 2, ..., B} are an approx-

imation to the true sampling distribution of the statistic Tn(X).

The bootstrap estimate of standard error

The bootstrap is a method for estimating standard errors by repeatedly
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resampling with replacement from the original finite that’s a sample

of identical independent observations from unknown probability dis-

tribution.

Let F̂ be the empirical distribution which assigns probability mass n−1

to each sample element xi, i = 1, ..., n. A bootstrap sample is a random

sample of size n drawn from F̂ , that’s x∗ = (x1
∗, ..., xn

∗) is a bootstrap

sample of size n obtained by randomly sampling with replacement from

sample x. F̂ → (x1
∗, ..., xn

∗)

Corresponding to a bootstrap data set x∗ is a bootstrap replication of

θ̂, and θ̂∗ = s(x∗).

Where s(x∗) is the result of applying the same function s(.) to x∗ as

was applied to x.

If s = σ then σ̂ = σ(F̂ ) = [varF (θ̂)]0.5[8]

The bootstrap estimate of σF (θ̂) is defined by σF̂ (θ̂∗), that’s the stan-

dard error of θ̂ for data sets of size n randomly sampled from F̂ in

place of a unknown function F.
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Chapter 4

Recurrent Neural Networks

4.1 Artificial Neural Networks structure

An artificial neural network is a simulation of the human nervous sys-

tem, in the brain, we have neurons connected by synapses. The human

brain is in high complexity and does nonlinear and parallel computa-

tion, also the artificial neural networks have functions with the same

features to simulate the human brain real activity.

The input\output mapping in human brain that we give input to net-

work and expect the output, so it’s learned to do specific tasks and

developing this feature in supervised (feed inputs and desired network

output) or unsupervised way (feeding only inputs and and let network

do associative procedure), that neural network adjusts its free param-

eter to get the desired output.

The neural network contains of processing elements neurons acting as
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like nodes connected by the interconnections, the neurons of the same

layer aren’t connected but the neurons of the adjacent layers are con-

nected.

The one layer network has one or more neurons, and multiple layered

network containing more than one layer.

In the multiple layered network, the first layer is the input layer, the

last layer is the output layer, and the layers between the input lay-

ers and the output layers are called the hidden layers, each neuron

has output and the inputs of the neuron (after the input layer) is the

outputs of the previous neurons connected to it.

Definition 7. The activation function is a function that limits the

amplitude of the output of the neuron in the neural network, its input

is the sum of the weighted sum of output of the and the bias of the

same neuron.[9]

The input p is transmitted through a connection line multiplies its

strength by a weight w, where each link between two neurons is asso-

ciated with a weight, the weight of the link from the ith neuron to the

jth neuron are called wij.

In the layer with s neurons and r inputs, each input pi, i=1, 2, ..., r, is

connected to the input of each neuron nj with weight wij, j=1, 2, ...,

s, each neuron nj is connected to bias bj, j=1, 2, ..., s, the input to the
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transfer function for nj is
r∑
i=1

wijpi, j=1, 2, ..., s. So we get s outputs.

The bias activated the network when the signal is low, and we adjust

w and b to get the desired output with less error.

4.2 The activation functions

The neurons of the same layer uses the same transfer function most

the time.

Examples of the transfer functions [21] are:

• The hard limit function (the threshold function or called the Heav-

iside step function): Limits the output to 1 when the input to it is

positive or 0, or limits it to 0 when the input to it is negative, this

function can be used in perceptron to take classification decisions,

its formula is given as

f(y) =

 0 y < 0

1 y ≥ 0
(4.1)

It’s differentiable at all points except at 0.

• The linear transfer function: Gives linear output (the output =the

input + the bias), it’s differentiable function used in neurons as

linear approximators .

• The hyperbolic tangent function (f(t)= tanh(t)) [11]. Its range is
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[-1, 1], used for modeling and control, and in the hidden layers of

RNNs and LSTMs to approximate the functions that take nega-

tive real numbers, it’s differentiable where f ′(t) = ∂
∂t(tanh(t)) =

∂
∂t(

sinh(t)
cosh(t)) = (sinh(t))′cosh(t)−sinh(t)(cosh(t))′)

(cosh(t))2 .

so f ′(t) = cosh(t))2−(sinh(t))2

(cosh(t))2 = 1
(cosh(t))2 = (sech(t))2.

• The logistic functions: Its range is (0, 1), it’s used for binary

classifications, its formula is given by

f(t) = A
1+e−k(t−t0)

, where t is the the sum of the outputs of the

previous neurons added the bias to it . And it’s differentiable

that’s

f ′(t) =
−kAe−k(t−t0)

(1 + e−k(t−t0))2
. (4.2)

Where A is the maximum of its curve, t0 is the midpoint of its

curve(sigmoid curve) and k is the logistic growth rate or steepness

of its curve.

The logistic function is a scaled hyperbolic tangent function that’s

given by f(t) = 0.5 + 0.5tanh(0.5x)

When k=A=1 and t0 = 0, then it’s called the sigmoid function

(or standard logistic function), it’s differentiable and it’s used in

propagation networks, its formula is given by f(t) = 1
1+e−t .

So according to (4.2) f ′(t) = −e−(t−t0)

(1+e−(t−t0))2
.

It’s used in the models that predicts the probability as an output,
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and for classification problems and as a function approximater.

• RELU (Rectified Linear Unit) activation function [14]: Its formula

is given by f(x) = max(0, x) that’s

f(x) =

 0 x < 0

x x ≥ 0
(4.3)

f ′(x) =

 0 x < 0

1 x ≥ 0
(4.4)

It’s not differentiable nor bounded.

RELU activates the neoron when the input is above a certain

value and speeds the training time and make the training better

when the neurons are either off or working in a linear system, and

we can use it as a classifier.

• Leaky RELU (parametric rectified linear unit)[22] is given by

f(y) =

 αy y < 0

y y ≥ 0
(4.5)

f ′(y) =

 α y < 0

1 y ≥ 0
(4.6)

Where α is a parameter of order 0.01, it’s chosen small and tested

by the model to find the better one needed.
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• The softmax function [22]: Transforms the k dimensional vector

into another k dimensional vector of real values, each has range

in (0, 1) and sum up to 1, it’s used in the output layer classi-

fier in multiclass classifications. Let y = (y1, ..., yk) be a vector

where yi ∈ R, i = 1, ..., k, then the softmax function S(y) =

(S(y1), ..., S(yk)) is given by

S(yi) = eyi

k∑
r=1

eyr

.

As seen S(yi) since clearly the denominator is less the nominator,

also
k∑
j=1

S(yj) =
k∑
j=1

eyj

k∑
r=1

eyr

=

k∑
j=1

eyj

k∑
r=1

eyr

= 1

To use the softmax function as a classifier, we should use a layer

with 10 neurons, each of it has output equals zi, and after it let the

last layer(output layer) has 1 neuron with softmax function as an

activation function so its input is 10 outputs that is zj, j = 1, ..., 10

Definition 8. Squashing function is a nonlinear activation function

with bounded range such as standard logistic function and tanh

4.3 The perceptron

The perceptron is a single layered network has many neurons, it is a

linear model binary classifier that uses the heaviside step function as
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an activation function and the output of the heaviside function is the

output of the perceptron. The neural network modeling have i neurons

for any time t is given by [1]

τ dxidt + xi = f(bi +
∑
j

wijxj).

Where i=1, ..., N, the argument to the activation function f is the input

to the ith neuron, wij is the synaptic weight from the jth neuron to the

ith neuron, xj is the input to the neuron j, wijxj is the synaptic input

to the jth neuron, bi is the bias is an input from outside the network

or provided to the neuron to make it active, τ is a time constant show

the rapid of the response of the variable xi to the changes in input.

The feed-forward network contains several simple perceptrons have

wij=0, ∀i ≤ j since the signal move only from input to output that’s

from a neuron with a small index to a neuron with bigger index. The

feed-forward network converges to a unique steady state that’s dxi
dt =0,

so it’s given by

xi = f(bi+
∑
j

wijxj), so the perceptron is a piece-wise function follows

f(x) =

 1 b+ wx > 0

0 otherwise
(4.7)

Where w is the synaptic weight vector and x is the input vector and b

is the bias vector.

The perceptron can be written in vector notation as f(wx+b), and the
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perceptron still changes weights until all inputs are classified properly.

A network with one hidden layer [28] is given by

yi =
n∑
r=1

wirf(
m∑
j=1

vrjxj + br) , i=1, ..., l.

Where xj ∈ Rm is the input and yi ∈ Rl the output of the network

and the activation function f(.), the weight matrices W ∈ Rl×n for the

output layer and vrj ∈ Rn×m for the hidden layer, wir is the weight

from neuron i to the neuron r and br ∈ Rn is the bias vector with n

the number of the hidden neurons

This process of propagation from the input of the network to the out-

put are called forward propagation.

The multiple layer perceptron

The multiple layer perceptron are perceptrons with one or more hid-

den layers between input and output layers, using the sigmoid activa-

tion functions, they’re universal approximators, when adjust weights,

perform linear transformations and the neurons activation use local

nonlinear transformations.

4.4 The learning procedure

The important elements in the design of any application containing

neural networks is the number of layers, the number of neurons in

each layer, and the transfer function of each layer, the power of the

networks is in having many neurons in the hidden layers.
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In learning process [20]; we modify the connections weights to get less

error in the output of the neural network. Some networks are called

fixed since their weights are prior fixed, others are adaptive neural

networks which have changeable weights.

Definition 9. The epoch is the time from entering input until all the

patterns in the training set have been presented once in the neural

network.

The learning methods are applied for adaptive neural networks, the

categories of learning methods are:

• The supervised learning: The training set consists of pairs of input

and their corresponding desired outputs as a training pattern and

learning acts as external teacher, and we still adjust the weights

and biases until minimizing the error between the desired output

and the produced output. For example object recognition.

The reinforcement learning: Is a special case of supervised learn-

ing by adjusting the neural parameters depending on any qualita-

tive or quantitative information obtained through the interaction

of the system, then using the trail and error that’s if the pro-

duced output is satisfactory, we increase the weights and biases

to reinforce this state, it has a scalar performance index called

the enforcement signal to know if the network system’s output

is correct or not, for example chess game, we have two types of
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reinforcement:

– The positive reinforcement: An event happens because of a

behavior that increases strength and the frequency of the be-

haviour that maximizes the performance and keeps the change

for a long period of time.

– The negative reinforcement: Strengthening of a behaviour

since a negative condition is stopped or avoided, it gives chal-

lenge to minimum standard of performance, but it also gives

enough to minimum of bad behaviour.

• The unsupervised learning: The training data is the input train-

ing patterns only without an external teacher and without any

knowledge about the values of the desired output, so neural net-

works adapt weights, learn and respond relying on the inputs,

may be the prior is the maximum or the minimum of the output

before.

• The on line learning: Is changing weights and biases after each

training sample when new input pattern added to the network.

It’s used when the behavior of the system is changing quickly

• The off line learning algorithm (or called batch learning): Is

changing weights and biases after making all the training set, each

adjustment depending on the number of errors that’s occurred.
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The adaptive learning rate

The learning rate [19] is about how much the weights and biases

changes per time through optimization to reduce the neural network’s

error, if it’s very high then the produced output fails to converge to the

desired output,but if it’s very small, the produced output reached the

desired output very slowly. The learning rate η(t) are assumed to be

constant, but really the training starts with big η(t) then it decreases

by time. At t=0, many weights changed, so the number of epochs

decreased, so the learning rate decreases. The equation that describes

the learning rate [19] as a function of time is

η(t) = η(0)e−αt

Where α is the slope of the negative exponential.

The loss function

The loss function [24] computed the error of the network by using the

least squared method after updating the weights and the biases, the

sum of squared errors is given by

E = 1
N

N∑
i=1

(Ydi − Yi)2

Where N is the number of samples (sets of inputs and corresponding

outputs), Ydi is the desired output corresponding to the ith input and

Yi is the real output collected from the neural network.

Backpropagation

The backpropagation [31] is a supervised learning in feed-forward non-
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linear multiple layers neural networks used for function approximation,

pattern association and pattern classification, the backpropagation is

one of the the most popular steepest gradient descent methods.

Let M be a feed forward neural network with k layers called L1, ..., Lk,

where L1 is the input layer, L2, ..., Lk−1 are the hidden layers and Lk

is the output layer and mk is the number of neurons in the output

layer. Let P training patterns (xp, dp) where xp is the input value, dp

is the desired output value, and 1 ≤ p ≤ P , let Q validation patterns

(vq, dq) where vq is the input value in the validation process , dq is the

desired output value in the validation process, and 1 ≤ q ≤ Q,where

yp is the resulted output, the error of each neuron j in the output layer

is ep = yp − dp, then the squared error for pattern p is given by

Ep =
1

mk

P∑
p=1

(ep)
2 =

1

mk

mk∑
j=1

(yj − dj)2 (4.8)

Let Eavg be the average error for all input patterns that’s given by

Eavg = 1
P

P∑
p=1

Ep

Let (i, j) is an interconnected pairs of neurons, where i is a neuron

in layer l, j is a neuron in layer l+1 and wij are the weights on their

connections, where f(tj) is a differentiable activation function.

To adjust wij of the neuron j in the output layer k, we should find

∂Ep
∂wij

=
∂Ep
∂yj

∂yj
∂wij
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by differentiating (4.8) with respect to yi,p, we get

∂Ep

∂yj
= yj − dj, (4.9)

also
∂yj
∂wij

=
∂yj
∂tj

∂tj
∂wij

= f ′(tj)
∂

∂wij

∑
k

wjkyk, so

∂yj
∂wij

= f ′(tj)yi (4.10)

So by (4.10) and (4.9), we get

∂Ep
∂wij

= (yj − dj)f ′(tj)yi.

But the local gradient is given by

δj = (yj − dj)f ′(tj) (4.11)

then

∂Ep

∂wij
= δjyi (4.12)

is the gradient of the error function for each pattern p.

But to adjust wij proportionally to the gradient but in the opposite

direction, we use the learning rate η where η ∈ (0, 1), so

∆wij = −∂Eavg
∂wij

= − 1
ml+1

∂yi
∂wij

ml+1∑
i=1

(yi − di) = −η ∂Ep

∂wij
= −ηδjyi.

The learning rate is multiplied by the error gradient to choose how

much of the gradient to be used.

In (4.11), δ using the output desired but we can’t use (4.11) in hidden
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layers since there’s no output desired in the hidden layers, but we know

that

δ =
∂Ep

∂tj
=
∂Ep

∂yj

∂yj
∂tj

=
∂Ep

∂yj
f ′(tj) (4.13)

For hidden layer l, let i, j ,k neurons each in a different layer, so

∂Ep
∂yj

=

ml+1∑
k=1

∂Ep

∂tk

∂tk
∂yj

=

ml+1∑
k=1

∂Ep

∂tk
wj,k =

ml+1∑
k=1

δkwj,k, so

∂Ep

∂yj
=

ml+1∑
k=1

δkwj,k (4.14)

So by (4.14) and (4.13), we get the local gradient for neuron j in layer

l

δ =

ml+1∑
k=1

δkwj,kf
′(tj) (4.15)

The algorithm of the back-propagation[34]

We want to minimize the the loss function that reduces the error by

taking the derivative of the loss function and calculating the gradient.

• let Eavg =∞

• begin a new epoch

• ∀p ∈ {1, ..., P}, we have the pattern (xp, dp), first set y0 = xp and

mk is the number of neurons in the k layer.

• Forward pass: It starts from the input towards the output units,

the output of the neurons is calculated and stored as follows
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∀j ∈ Ll, where l=1, ..., k, find tj =
∑
i=1

wixi + b and yi = f(t).

• Backward pass: It begins from the output and goes towards the in-

put. Propagate the error that’s calculated at the output layer, and

calculate the δj variables for each layer, then adapt the weights

wij, as follows

– ∀i ∈ Lk−1, j ∈ Lk, calculate δj = (yj − dj)f ′(tj) and ∆wij =

−ηδjyi

– For l=k-1, ..., 1 find ∀i ∈ Ll−1, j ∈ Ll, calculate

δj =

ml+1∑
k=1

δkwj,kf
′(tj) and ∆wij = −ηδjyi

– For l=1, 2, ..., k ∀(i, j) ∈ LL−1 × Ll, adjust ∆wij by ∆wij =

−ηδjyi

– Find the error of the pattern p : Ep = 1
mk

mk∑
j=1

(yj − dj)2

• Let Eprev = Eavg, and find a new Eavg = 1
P

P∑
p=1

Ep for the validation

data set.

• if Eprev > Eavg then repeat the steps beginning from the second

step.

When minimizing the cost function by backpropagation algorithm, we

can use backpropagation as on line or off line learning algorithm.
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4.5 Training

Training is using methods to find the weights that optimize the network

performance.

To check our model with minimum error, we divide our dataset [7]

into:

• Training set: Selected to train the model on it by using inputs

and parameters in an optimizer method such as gradient descent,

and updating weights and biases.

• Validation set: Its error is computed across the training process,

the validation error and the training error decrease when the train-

ing starts, the validation error increase across overfitting the data,

the weights and the biases saved when the validation error reaches

its minimum that gives indication to end the training

• The test set: Compare different models by using the trained model

and then check how it’s working.

4.6 Recurrent Neural Networks

Recurrent means that it creates cycles in the network and models the

time that’s the output of the network became input to the network

and learn from the sequences, so the output at a specific time relies on
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the current input and all inputs at previous time steps. The feedback

neural networks let signals move in two ways, from input to output, and

back to input again. Recurrent neural networks are feedback neural

networks use both parallel and sequential computation with a large

feedback network and do the same type of operation to all terms in

the sequence, and predict the next terms using its internal memory

for the previous terms, changes the weights until it reaches the desired

output.

Definition 10. Let f be a smooth bounded nonlinear function such as

sigmoid or hyperbolic tangent, x ∈ RM is an Upstream layer as vector

of size M, Wxh is a weight matrix of size N×M for link from upstream

layer to hidden layer, bh ∈ RN is bias of size N for the hidden layer

then the hidden layer h ∈ RN is calculated by

h = f(Wxhx + bh),t ∈ N. is the current time step, and Whh ∈ RN×N

is a weight matrix of size N ×N for recurrent link from hidden layer

of previous time step to hidden layer of the next time step, the RNN

hidden layer ht ∈ RN is calculated by

ht = f(Wxhxt +Whhht−1 + bh), t ∈ N.[16]

The vanishing gradient problem

The vanishing gradient [17] occurs when the gradients are very small

and becomes hard to model long range dependencies (10 time steps

or more) in the input dataset. That happens when the output error
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fails to reach the farther neurons through training, that the back-

propagation process propagates the output error backward to the hid-

den layers, the error comes to the first hidden layer hardly, and the

weight can’t adjusted, so the hidden layers after the first one aren’t

trained correctly, so they don’t added and vanished.

The gradients of a hidden layer with respect to a another layer can

be is the product of the gradient of the current hidden layer hi [23]

against the previous one hi−1, then ∂ht
∂hk

=
∏
t≥i>k

∂hi
∂hi−1

If the gradient is smaller than 1, then after many time steps; the prod-

uct of the gradients become more smaller until it vanishes, if it’s larger

than 1, then after many time steps; the product of the gradient become

more larger until it explodes. This may be solved by true initialization

of weights. But LSTM is often used to solve this problem.

The Long Short-Term Memory (LSTM)

LSTM [13] is a recurrent neural network that has four layers (3 gates

and 1 hidden layer), the components of LSTM unit are:

• Three gates, the gates of the LSTM are:

– The sigmoid input gate controls the degree of the data enter-

ing the input of the network.

– The forget gate decides if and how the data stayed through

time states, it’s connected the memory carousel and controls

86



the memory transfer from time step to the next one, it uses

the sigmoid function, if the forget gate is 1, the cell content

stayed, if it’s 0, the cell content is deleted.

– The sigmoid output gate decided the size of data that exists

the network

• block input

• Memory cell (the constant error carousel) has fixed weight of 1,

the contents of the memory cell are feeded by the input gates and

the forget gates, it has a linear activation function, and passes

through squashing function as standard logistic function so that

the backpropagaton be effective.

• Output activation function

• Peephole connections: [16] Point-wise weighted connections from

the memory cell to the gates, to let the memory cell decide if the

data should stayed or overwritten or passed to the next time step,

two peepholes are recurrent to the forget gates and input gates

LSTM has many parameters that slow the training and need more

data and longer training.

The output of the LSTM block is recurrent connected back to the block

input and all of the gates for LSTM block. The input, forget and out-

put gates have sigmoid activation function for [0, 1]. The LSTM block
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input after forget gate and output activation after output gate uses a

tanh activation function.

The back-propagation through time and the gradient descent optimiza-

tion after time causing vanishing in gradients but LSTM solved that

[12] by separating the memory cells and the output by using the input

gates and the forget gates that are closed then the contents will stay

unmodified between one time step and the next for a long time, so

the information passes through many time steps, then gradients pass

across many time steps if there’s no new input or error signal, so that

the learning in the recurrent network continues over many time steps.

The Gated Recurrent Units(GRU)

The gated recurrent units [13] are simplified LSTMs that combine the

forget gate and the input gate into one update gate that determines

how much previous memory to keep (control the data flows into the

memory), and replaces the output gate by a reset gate controls the

recurrent links to the block input(control the data flow outside the

memory), and merges the memory cell layer and the block output

layer into exposed memory layer, it decided the quantity from the hid-

den state being carried out from the previous time step.

GRUs don’t have the controlled encapsulation of the memory content,

control the data using separate forget and output gates, have no cell

state; exposes the memory content at each time step, and transits be-

88



tween the previous memory content and the new memory content using

leaky integration controlled by update gate, and neither have the in-

dependence between the inclusions of the present and past input, but

it’s simplified in computation and faster to train.

Overfitting

Overfitting [19] happens when the number of free parameters (that’s

the number of weight connections) is very big compared to the size of

the training data, so there’s a big gap between the train and the test

data performance when the model is complex and the data set is small,

that may be the number of training is fewer than the number of the

parameters; so it may be infinite number of solutions with zero error,

it will be poor performance because of the inference of the parameters,

so it’s better that the number of training data points be 2 or 3 times

the number of parameters in the neural network. Also increasing the

number of neurons may cause overfitting [26].

Regularization

Regularization is any modification to a learning algorithm that is used

to reduce its test error but not the training error to get better result

in the test set. One of the efficient methods of the regularization is the

dropout that is used to solve the overfitting problem

Dropout:

The dropout uses node sampling instead of edge sampling, in each
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iteration removes nodes and all incoming and outgoing connections

from these nodes that effect the training [27], then in the LSTMs, the

stronger activations might make the units more independently so the

LSTMs weights become higher, and the error gradient can be propa-

gated to learn long-term dependences.

Dropping nodes is done by sampling it by very small probability (be-

tween 0.2 and 0.5) that determine the retaining of the activation of

the layer and increase the training time [27], multiply that probability

with the weights of the nodes, that’s called the weight scaling infer-

ence rule, so the input of the unit is the same as the expected input

in a sampled network. Dropout in all hidden layers is more effectively

than in only one hidden layer. It added noise to the hidden layer so

minimize the loss function.

Parameter Estimation

We use many methods to estimate error in recurrent neural networks,

some of these methods is bootstrap methods and Monte Carlo meth-

ods.

The bootstrap is done by making many bootstrap samples of the train-

ing set and restimating the parameter on each bootstrap sample

bootstrap pairs sampling algorithm [30]:

• Generate B samples, each one of size n chosen with replacement

from the n training observations (x1, y1), (x2, y2), ..., (xn, yn). The
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bth sample is denoted by (x∗1, y
∗
1), (x

∗
2, y
∗
2), ..., (x

∗
n, y

∗
n).

• For each bootstrap sample b=1, ..., B, minimize
n∑
i=1

[y∗i − y(x∗i, φ)]2

getting the parameter estimation for the parameter φ is φ∗.

• Estimate the standard error of the predicted value by

{
B∑
b=1

[y(xi, φ
∗)− y(xi, .)]

2

B − 1

}0.5

, where y(xi, .) =

B∑
b=1

[y(xi, φ
∗)]2

B .

Bootstrap residual sampling algorithm [30]:

• Estimate the parameter ŵ from the training sample and let ri =

yi − y(xi, ŵ), i = 1, 2, ..., n.

• Generate B samples, each one of size n chosen with replacement

from r1, r2, ..., rn. The bth sample is denoted by r∗1, r
∗
2, ..., r

∗
n and

let y∗i = r∗i + y(xi, ŵ)

• For each bootstrap sample b=1, ..., B, minimize
n∑
i=1

[y∗i − y(x∗i, wi)]
2

getting the parameter estimation for the parameter ŵ is ŵ∗.

• Estimate the standard error of the ith predicted value by

{
B∑
b=1

[y(xi, ŵ
∗)− y(xi, .)]

2

B − 1

}0.5

, where y(xi, .) =

B∑
b=1

[y(xi, ŵ
∗)]2

B .

The bootstrap pairs sampling algorithm is more strong than the boot-

strap residual sampling algorithm since the errors y − ŷi in the boot-

strap residual sampling algorithm represent the true model errors, and
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the model may be misspecified or overfitted. But the bootstrap pairs

in each bootstrap; result in a different set of predictor values that may

be chosen by design and that may be less common in the applications

of the neural networks.

Monte Carlo estimation

The Monte Carlo method is described in section 3.6, but how can we

find the mean and the variance of the estimation.
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Chapter 5

Recurrent Neural Networks

Applications

In this chapter we give examples of recurrent neural networks of one

layer that is used as a classifier, and use methods for estimating the

error of that output of the layer in the recurrent neural networks,

graphing the results and comparing it.

We test with a single layer neural network with 3 inputs that’s 3

nuerons in its input layer, 3 neurons in its hidden layer and one neuron

in its output layer, let f(x)=tanh(x) be the activation function for the

hidden layer, where x is the input of the network, and let the linear

function g(t)=2t+1 is the output layer function , where t is the input

to the hidden layer. We want to estimate the error of the hidden layer

in the recurrent neural network, the output of the neuron j in the hid-

den layer network is given by
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Yj = f(
3∑
i=1

wijxi + bj) = tanh(
3∑
i=1

wijxi + bj),

Where xi is the input of the ith neuron in the hidden layer, wij is the

weight on the link from the ith neuron in the input layer to the jth

neuron in the hidden layer, bj is the bias of the thejth neuron in the

hidden layer.

The observed output of the network is y=1.46.

So the objective is minimizing the error in Yj by bootstrapping and

Monte Carlo methods then graphing the results and comparing it.

We choose a set of training patterns

{(xi, y(xi, ŵ11))} = {(35,−1), (−7,−1), (2, 1.)},

Where xi is the input of the network, yi is the predicted output of the

ith neuron in the hidden layer and the bias on the ith neuron in the

hidden layer is bi = 1,∀i = 1, 2, 3

The resulted output for the ith neuron in the hidden layer is

yi = {−1.3,−1.4, 1.8}

To find the minimum of the error of the output of the ith neuron in

the hidden layer; we use the least square error method.

5.1 Using the Bootstrapping method in minimiz-

ing the error

The bootstrap residual sampling algorithm:
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We want to update w11 to get the minimum error of the output of the

ith neuron in the hidden layer, so we will do these steps: Estimate the

parameter ŵ11 from the training sample and let the error in the output

for the ith neuron in the hidden layer is ri = yi − y(xi, ŵ11), i = 1, 2, 3,

to estimate ŵ11 to get the minimum of the output, we find the deriva-

tive of the output with respect to the weight w11 that’s

∂
∂w11

Yi(x) = ∂
∂w11

tanh(
3∑
i=1

wijxi + bi). = 0.

So x1sech
2(w11x1 + w21x2 + w31x3 + bi) = 0

By graphs, we have the minimum of the output of the of the ith neuron

in the hidden layer is Y1 = tanh(35w11 + .1) when w11 = −0.1 that’s

ŵ11 = −0.1.

Then set the weights from the ith neuron in the input layer to the jth

neuron in the hidden layer are wij and the weights wj on the link con-

nected to the jth neuron the output layer which are in the table below

Table 5.1: Table of weights
Inputs neuron1 neuron2 neuron3 wi
x1 ? -0.6 0.5 0.1
x2 0.1 0.3 -0.1 -0.5
x3 -0.1 0.8 0.2 0.2

The predictive outputs for jth neuron in the hidden layer outputs where

j=1,2,3 are written as

y1(x1, w11) = tanh(w11x1 + w21x2 + w31x3 + 1) = −1.
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y2(x2, w11) = tanh(w12x1 + w22x2 + w32x3 + 1) = −1.

y3(x3, w11) = tanh(w13x1 + w23x2 + w33x3 + 1) = 1.

But the error in the hidden layer output is ri = yi − yi(xi, w11).

So the error in the hidden layer output is {ri, i = 1, 2, 3} = {−.3,−.4, .8},

Then we generate B samples, each one of size 10 are chosen with re-

placement from r1, r2, r3. The bth sample is denoted by r∗1, r
∗
2, r
∗
3 and

let y∗i = r∗i + y(xi, ŵ11), the error samples are {r2, r3, r1}, {r3, r1, r2},

{r2, r2, r1}, {r2, r1, r1}, {r3, r3, r1}, , {r1, r3, r3}, {r1, r1, r3}, {r3, r1, r3},

{r2, r3, r2}, {r1, r2, r1}

So for b=1:

y∗1 = r∗1 + y1(x1, ŵ11) = −.4− 1 = −1.4

y∗2 = r∗2 + y2(x2, ŵ11) = .8 +−1 = −.2

y∗3 = r∗3 + y3(x3, ŵ11) = −.3 + 1 = .7

Similarly the all bootstrap samples in the table below

Table 5.2: Table of bootstrap samples
b y∗1 y∗2 y∗3
1 −1.4± 0.4 −0.2± 0.8 0.7± 0.3
2 −0.2± 0.8 −1.3± 0.3 0.6± 0.4
3 −1.4± 0.4 −0.5± 0.4 0.7± 0.3
4 −1.4± 0.4 −1.3± 0.3 0.7± 0.3
5 −0.2± 0.8 −0.2± 0.8 0.7± 0.3
6 −1.3± 0.3 −0.2± 0.8 1.8± 0.8
7 −1.3± 0.3 −1.3± 0.3 1.8± 0.8
8 −0.2± 0.8 −1.3± 0.3 1.8± 0.8
9 −1.4± 0.4 −0.2± 0.8 0.6± 0.4
10 −1.3± 0.3 −1.4± 0.4 0.7± 0.3
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For each bootstrap sample b=1, ..., 10, minimize
3∑
i=1

[y∗i − y(xi, w11)]
2

getting the parameter estimation for the parameter ŵ11 is ŵ11
∗,

to get the minimum error of the output, we find the derivative of the

error with respect to the weight w11 that’s

∂
∂w11

3∑
i=1

[y∗i − y(xi, w11)]
2 = 0,

so ∂
∂w11

3∑
i=1

[y∗i − tanh(
3∑
i=1

wijxi + bi).]
2 = 0,

so ∂
∂w11

3∑
i=1

[(y∗i )
2 − 2(y∗i tanh(

3∑
i=1

wixi + bi) + (tanh(
3∑
i=1

wixi + bi))
2] =

0,

so −2y∗i x1sech
2(w11x1 +w21x2 +w31x3 + bi) + 2x1tanh(w11x1 +w21x2 +

w31x3 + 1)sech2(w11x1 + w21x2 + w31x3 + 1) = 0, so

2sech2(w11x1+w21x2+w31x3+1)x1[−y∗i +tanh(w11x1+w21x2+w31x3+

1) = 0.

By using graphs, we have the minimum of the least square error of the

output when w=-.01 when y∗1 = −.2, so the parameter estimation for

the parameter ŵ11 is ŵ11
∗ = −.01 and y(xi, ŵ11) = −.245.

But when y∗1 = −1.4 or -1.3, then the minimum of the least square

error of the output when w=-.1, so the parameter estimation for the

parameter ŵ11 is ŵ11
∗ = −.1 and y(xi, ŵ11) = −1.

So for b=1, the minimum of the least square error is
3∑
i=1

[y∗i − y(xi, ŵ11
∗)]2 = (−1.4 + 1)2 + (−.2 + 1)2 + (.7− 1)2 = .89.

Similarly for all of the booststrap samples in the table below
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Table 5.3: Table of the minimum of least square error
b The minimum of least square error
1 0.89
2 0.25
3 0.5
4 0.34
5 0.73
6 1.37
7 0.82
8 0.73
9 0.96
10 0.34

Then estimate the standard error of the ith predicted value by

{
10∑
b=1

[y(xi, ŵ11
∗)− y(xi, .)]

2

9

}0.5

, where y(xi, .) =

10∑
b=1

[y(xi, ŵ11
∗)]

10

y(x1, .) =

10∑
b=1

[y(x1, ŵ11
∗)]

10
=

7(−1) + 3(−.245)

10
= −1.547

That’s the estimated standard error of the ith predicted value is
10∑
b=1

[y(xi, ŵ11
∗)−

∑10
b=1[y(xi,ŵ11

∗)]
10 ]2

9


0.5


10∑
b=1

[y(x1, ŵ11
∗)−

∑10
b=1[y(x1,ŵ11

∗)]
10 ]2

9


0.5

=

{
7((−1 + 1.547)2) + 3((−.245 + 1.547)2)

9

}0.5

= 0.345984

Similarly for all of the ith predictive values are shown in the table be-

low
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Table 5.4: Table of the average and the estimated standard error of the ith predictive
values

The ith predictive values the average the estimated standard error
y(x1, ŵ11

∗) -1.547 0.345984
y(x2, ŵ11

∗) -1 0
y(x3, ŵ11

∗) 1 0

Then we find the skewness and the kurtosis for the 1st predicted value

by using excel.

Skewness for the 1st predicted value is

√
n(n− 1)

n− 2

10∑
b=1

[y(xi, ŵ11
∗)− y(xi, .)]

3

10[
10∑
b=1

[y(xi, ŵ11
∗)− y(xi, .)]

2

10

]1.5 = 1.0351.

Skewness is positive so the tail of the graph of the distribution on the

right as shown below in figure 4.5 and the graph not symmeteric, mean

(the mean=-.20198) is to the right of the median (the median=-.99835)

since skewness is positve

Kurtosis for the 1st predicted value is
10∑
b=1

[y(xi, ŵ11
∗)− y(x1, .)]

4

10[
10∑
b=1

[y(x1, ŵ11
∗)− y(x1, .)]

2

10

]2 − 3 = −1.2245,

Kurtosis is less than 3 so the graph is platykurtic

We draw the y(x1, ŵ11
∗)’s, with the 1st predicted value to compare

them.
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Figure 5.1: Estimation of y1 by the bootstrapping method

the bootstrapping output

the predictive output
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Figure 5.2: Estimation of y1 by the bootstrapping method

the bootstrapping output

the predictive output
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5.2 Using the back-propagation method to update

the weights

We say about the algorithm of the back-propagation method in section

(3.4.2), we want to update the weights which we have in section (4.1),

to update the weights that are on the links to the output layer, first we

should calculate δkj = (yj − dj)f ′(tj) before calculate ∆wij = −ηδkjyi.

Where f is the activation function in the output layer that’s 2tj + 1 ,

f ′(tj) = 2, j = 1, 2, 3 and set η = 0.1.

We have one neuron in the output layer connected to 3 neurons in the

hidden layer so we have

So t1 = w1tanh(w11x1 + w21x2 + w31x3 + 1) = −0.1.

t2 = w2tanh(w12x1 + w22x2 + w32x3 + 1) = 0.5.

t3 = w3tanh(w13x1 +w23x2 +w33x3 + 1) = 0.2. y3 = y2 = y1 = f(t3) =

f(t1) = f(t2) = 2(−.1 + .5 + .2) + 1 = 2.2 = Y

So ∆w1 = ∆w2 = ∆w3 = −ηδk1y1 = −η(Y −y)f ′(t1)y1 = −.1×−.74×

2× 2.2 = 0.3256.

We want to update the weights that are on the links between the input

layer and the hidden layer, first we should calculate δj =

ml+1∑
k=1

δkjwjf
′(tj)

and ∆wij = −ηδjyi, where ml+1 is the number of the neurons in the

l+1 layer which is here the output layer so ml+1 = 1, and i is the

neuron in the l-1 layer and j is the neuron in the l layer.
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Where f is the activation function in the hidden layer that’s tanh(tj) ,

f ′(tj) = sech2(tj) and set η = 0.1.

But t1 = w11x1+w21x2+w31x3+1 = −3.4, so y1 = f(t1) = tanh(−3.4) =

−.9978 and f ′(t1) = sech2(−3.4) = .004452.

We have 3 neurons in the hidden layer connected to 3 neurons in the

input layer so we have

So ∆w11 = −ηδ1y1 = −ηδk1w1f
′(t1)y1 = −0.1×−1.48× .1× .004452×

−.9978 = −.00006574.

Similarly we calculated the weights update on the links between the

inputs xi’s and the neurons nj’s in the hidden layer L and the results

are shown in the table below

Table 5.5: Table of the weights update wij
Inputs neuron1 neuron2 neuron3
x1 -0.00006574 0.00032872 -0.00013149
x2 −3.35664× 10−12 1.67832× 10−11 6.17328× 10−12

x3 9.0872× 10−11 −4.5436× 10−10 1.81744× 10−10

5.3 Using Monte Carlo method in estimating the

error

We want to estimate the error of the recurrent neural networks.

The predictive outputs for the jth neuron in the hidden layer are

102



y1(x1, w11) = tanh(w11x1 + w21x2 + w31x3 + 1) = −1.

y2(x2, w11) = tanh(w12x1 + w22x2 + w32x3 + 1) = −1.

y3(x3, w11) = tanh(w13x1 + w23x2 + w33x3 + 1) = 1.

First we choose the inputs xi’s, i =1, ..., 3 randomly by a random

generator of the calculator; the set of inputs is {xi, i = 1, ..., 3} =

{39.7, 59.4, 76.6}, then we find the set of outputs randomly yi, i = 1, ..., 3,

y1 = tanh(w11x1 + w21x2 + w31x3 + 1) = −.9999.

y2 = tanh(w12x1 + w22x2 + w32x3 + 1) = −1.

y3 = tanh(w13x1 + w23x2 + w33x3 + 1) = 1.

But the error in the jth neuron in hidden layer output is ri = yi −

yi(xi, w11).

So r1 = −.9999 + 1 = 0.0001, r2 = −1 + 1 = 0, r3 = 1− 1 = 0.

We generate another 9 sets of inputs randomly and all the results and

its errors in the tables below (where n is the number of generating

random numbers).

Table 5.6: Table of the Monte Carlo inputs generated randomly
Inputs 1 2 3 4 5 6 7 8 9 10
x1 39.7 31 17.5 29.8 64.3 96.5 3.5 16 52.6 5.6
x2 59.4 13.1 28.3 87.1 10.4 20.5 37.3 74.8 77.8 31.3
x3 76.6 2.3 3 4 77.5 72.3 14.1 12.4 64.6 53
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Table 5.7: Table of the Monte Carlo estimates
n y1 y2 y3
1 −0.9999± 0.0001 −1 1
2 −0.965± 0.035 −1 1
3 0.652± 0.348 −0.9967± 0.0033 0.9999± 0.0001
4 0.9999± 0.0001 0.9999± 1.999 0.9999± 0.0001
5 −1 −1 1
6 −1 −1 1
7 0.96± 1.96 .997± 1.997 .686± .314
8 0.998± 1.998 0.99± 1.99 0.995± 0.005
9 −0.9992± 0.0008 0.99± 1.99 0.995± 0.005
10 −0.992± 0.008 −1 0.9999± 0.0001

Estimate the standard error of the ith predicted value by

{
10∑
t=1

[yi − yi(xi, .)]
9

}0.5

, where yi(xi, .) =

10∑
t=1

[yi]

10 , so

y1(x1, .) =

10∑
t=1

[y1]

10
= −0.235.

10∑
t=1

[y1 −

10∑
t=1

[y1]

10 ]

9



0.5

== 0.933034,

Similarly we calculated the average and the estimated standard error

for all of the yi’s and shown in the table below

Table 5.8: Table of the average and the estimated standard error of the estimated
outputs

The estimated output the average the estimated standard error
y1 -0.235 0.933034
y2 -0.20198 0.976702
y3 0.96757 0.093877
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Then we find the skewness and the kurtosis for the ith resulted value

by using excel

Skewness for y1 is

√
n(n− 1)

n− 2

10∑
b=1

[y1 − y(x1, .)]
3

10[
10∑
b=1

[y1 − y(x1, .)]
2

10

]1.5 = 0.51684.

Kurtosis for y1 is

10∑
b=1

[y1 − y(x1, .)]
4

10[
10∑
b=1

[y1 − y(x1, .)]
2

10

]2 − 3 = −2.17679.

Similarly we calculated the skewness and the kurtosis for all of the yi’s

and shown in the table below

Table 5.9: Table of the skewness and the kurtosis of the estimated outputs
The estimated output the skewness the kurtosis

y1 0.51684 -2.17679
y2 0.484148 -2.27669
y3 -3.15972 9.98804

We draw the y∗i’s, with the ith predicted value to compare
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Figure 5.3: Estimation of y1 by the Monte Carlo method

the estimated output

the predictive output
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Figure 5.4: Estimation of y2 by the Monte Carlo method

the estimated output

the predictive output
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Figure 5.5: Estimation of y3 by the Monte Carlo method

the estimated output

the predictive output

Table 5.10: Table of comparison between the Monte Carlo method and the boot-
strapping

the Monte Carlo method The bootstrapping
The statistical property y1 y2 y3 y(x1, ŵ11

∗) y(x2, ŵ11
∗) y(x31, ŵ11

∗)
The standard error 0.933034 0.976702 .093877 0.345984 0 0

The skewness 0.51684 0.484148 -3.15972 1.0351 - -
The kurtosis -2.17679 -2.27669 9.98804 -1.2245 - -

5.4 Discussion and Conclusion

In this thesis we explained the recurrent neural networks and the

methods used in parameter estimation, then give an example of one

hidden layer neural recurrent network that has three inputs, three neu-

rons in hidden layer with tanh function as an activation function in it,

and one neuron in the layer output with linear activation function and

compared between the Monte Carlo method and between the boot-
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strapping method in estimating the output of the hidden layer and the

estimated standard error of the estimated output, also compute the

skewness and the kurtosis of the estimated outputs.

Skewness for y1 is positive so the tail of the graph of the distribution

on the right and the graph not symmeteric, mean (the mean=-.23462)

is to the right of the median (the median=-.9785) since skewness is

positive.

Kurtosis for y1 is less than 3 so the graph is platykurtic.

Skewness for y2 is positive so the tail of the graph of the distribution

on the right as shown below in figure 4.5 and the graph not symmetric,

mean (the mean=-.20198) is to the right of the median (the median=-

.99835) since skewness is positive.

Kurtosis for y2 is less than 3 so the graph is platykurtic.

Skewness for y3 is negative so the tail of the graph of the distribution

is longer on the left as shown below in figure 4.6 and the graph not

symmetric, mean (the mean=.96757) is left to the median (the me-

dian=.9999) since skewness is negative.

Kurtosis for y3 is higher than 3 so the graph is leptokurtic.

We would say that Bootstrapping is a type of Monte Carlo simula-

tion for a very specific purpose: Estimate some characteristics of the

sampling distribution where you are estimating the distribution of a

sample statistic. Also Monte Carlo and bootstrapping both are based
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on repetitive sampling and direct examination of the results.

From the strategy of bootstrapping and Monte Carlo method, we see

that bootstrapping uses the original initial sample as the population

from which to resample and is used for choosing the best group of in-

puts (by replacement) from the input sample, but Monte Carlo method

is used to choose the best input from random number so it is used in

wider range of applications and complex ones.

The bootstrapping method is simple and straightforward way to esti-

mate the standard error to estimate parameters and standard errors

when there isn’t enough statistical theory and it doesn’t provide more

information about the original data, the bootstrapping method doesn’t

need large sample size. Randomization is where you choose values from

a population of data without replacement. If all the values are chosen,

then the statistical characteristics are the same as those for the original

observations so the output may depend on the representative sample

and the bootstrapping can be time-consuming.

The bootstrapping is non-parametric computer intensive statistical

method that uses a unique finite sample to describe the variability

of a statistic without making any distributional assumptions about

the data.

Monte Carlo Simulation is straightforward way generates large num-

ber of random numbers for inputs so need more time and it’s slow to
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get precision in the output, and that precision doesn’t depend on the

number of inputs, but it’s flexible (we can change inputs to get the

best solution). It is also easy to see which input or the combination of

inputs have the biggest effects on results.

In the Monte Carlo method, we should give all the data about the in-

puts, constrains and conditions for testing it in order to try to reduce

the range of the random variables so we can’t study the behavior of

the output when the initial parameters are changed, we may get unre-

alistic results that can’t be explained.

For large number of generating number for inputs, Monte Carlo is

more accurate than the bootstrapping, the Monte Carlo can use any

statistical distribution so it’s applicable for large and complex systems

without simplifications and also Monte Carlo can do many simulta-

neous simulations on many computers processors, each simulation is

dependent of the other, it has time compression property, the Monte

Carlo method has computational costs depend on the complexity of

the problem and expensive for small applications that can be longer

time to develop
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 ذات المتغيرات المتعددة الزمنية سلاسلتعميم ال

 ةالمتكررالشبكات العصبية  مع تطبيقات 

 .صفاء نادر مصطفى شناعة: اعداد 

 .الدكتور خالد صلاح: اشراف

 الملخص

الرعاية الصحية وعلوم الارض عملية مثل الزمنية ذات المتغيرات المتعددة تدخل في تطبيقات  سلاسلبيانات ال

ية صبالزمنية الى الشبكات الع لسلاسلتحليل ا تطور الاحصاء من عرضهذه الرسالة ت. والاحياء وغيرها والهندسة 

 .المتكررة ، مجال تحليلي ضروري لفهم وتنبؤ سلوك المتغيرات في مختلف المجالات 

 سلاسلمختلفة من ال نماذجالزمنية بما تتضمنه من  سلاسللا بيانات بداية تم البحث والمناقشة في خصائص واساسيات

 ونموذج الانحدار الذاتي المتوسط المتحرك  MA ونموذج المتوسط المتحرك ARنموذج الانحدار الذاتي  الزمنية مثل

ARMA   ونموذج الانحدار الذاتي المتكامل المتوسط المتحرك ARIMA . ناسب نموذج بارامتري يغالبا نتمنى ان نجد

مهم جدا .  هذه المتغيرات عدم اليقين في لأوجهدقيقة للمتغيرات وتقديرات صحيحة  قيمالزمنية ويحدد  لسلاسلبيانات ا

لتقريب المتغيرات لذلك تحدثنا في هذه الرسالة عن طرق  مناسبةالطرق ال نطوران نأخذ فهما عميقا عن الضجيج و

 التقدير حسب م وطريقةالمربعات الصغرى وطريقة العزوكثيرة لتقريب المتغيرات مثل معادلات يول ووكر وطريقة 

        . ظمعالا حتمالالا

ية ين في الشبكات العصبالزمنية لتتناول مواضيع مختلفة تهم الباحث سلاسلتم دراسة مختلف تقنيات النمذجة لل: ثانيا

وتقييم الاثر الفوري وطويل الاجل وصف نمط التغير في المتغيرات ونمذجة الاثار الموسمية  تتضمنناعية طصالا

تركيب الشبكات العصبية الاصطناعية وخاصة الشبكات العصبية المتكررة تم . لحدث بارز وتوقع قيم مستقبلية 

وذاكرات طويلة وقصيرة الامد  GRUsوحدات متكررة بوابية مناقشتها بالتفصيل في هذه الرسالة وما تتضمنه من 

LSTMs  ل التي تواجه الشبكات العصبية المتكررة مثل تدرجات التلاشي والافراط في وخصائصهم وبعض المشاك

 .الملاءمة

 بوتسترابتطبيق توضيحي يستند الى طريقة مونتي كارلو وطريقة الفي هذا البحث عملنا فقد  لتوضيح هذه الطرق

ي وطريقة مونتي كارلو خلفال نتشاربتصميم شبكة عصبية متكررة مكونة من طبقة مخفية واحدة وتطبيق عليها الا

  .امللخطأ في كل من الطريقتين ومقارنته تباينوتقدير ال وطريقة البوتستراب
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