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Abstract

Fractional Calculus has become used in many applications in various types of science and it
has many important applications.

In this thesis, we referred to the most important definitions of the subject of fractional calculus
and studied some of important applications of it.

In economic sciences in particular, many countries have become using fractional calculus in
their economic calculations, such as calculating the gross domestic product and demand
elasticity and supply elasticity.

In this thesis, we focused on the uses of fractional calculus in economic and financial sciences,
and we studied the application of fractional calculus in calculating the gross domestic product
of Spain as a case study, and analyzed and compared the results.

At the end of this thesis, we applied fractional calculus in calculating the gross domestic
product of Palestine using fractional calculus.

The fractional calculus, as we have shown in this thesis, can provide results characterized by
high quality and accuracy if it used in many different scientific and research fields.



0.Introduction:

Fractional calculus is a science with many applications in a wide variety of fields of
engineering and sciences such as electromagnetism, viscoelasticity, fluid mechanics,
electrochemistry, models of biological assembly, optics, and signal processing. It has been
used to model physical and engineering processes which found to be best described by partial
differential equations. Partial derivative models are used for accurate modeling of those
systems where accurate damping modeling is required. In these areas, various analytical and
numerical methods including their applications to new problems have been proposed in recent
years.

Fractional calculus has other applications in economics such as GDP modeling and in demand

elasticity, elasticity presentation, and more other topics in economics. We are now going to
study some applications of fractional integrals and partial derivatives in some sciences and
discuss fractional calculus in economics in chapter four and chapter five.

The outline of the thesis is as follows:

In the first chapter, some definitions of the work of fractional calculus were presented and we
presented some of the basic functions used in fractional calculus such as gamma and beta
functions, and we also presented some definitions of fractional calculus such as fractional
differentiation and fractional integration. In addition to that we referred to the most important
scientists who were concerned this science and its applications.

In the second chapter, we presented a number of the most important applications in which
fractional calculus was used in various sciences such as engineering, biology and applied
mathematics.

In the third chapter of this thesis, we pointed out that the science of fractional calculus has
wide and many applications in the field of financial and economic sciences. Emphasis was
placed on the use of fractional calculus in the field of calculating price elasticity of demand
and price elasticity of supply and the characteristics that characterize the use of fractional
calculus in this field. We also presented a number of important economic concepts in which
fractional calculus is used.

In the fourth chapter, we presented the use of fractional calculus in analyzing economic
growth, and the Spanish case was presented and how fractional calculus was used in
calculating GDP and comparing the results obtained using fractional calculus with the results
obtained by the traditional method in calculating GDP.

Finally, in the fifth chapter, we tried to apply fractional calculus in calculating the gross
domestic product in Palestine and comparing the results we obtained with calculating the gross
domestic product in the traditional way.



At the end of the thesis, we presented the most important results and recommendations that
we were able to obtain through our study.

0.1 Problem of Studying

This study attempts to answer the following question: Does the applications of fractional
calculus in economics increase the efficiency and accuracy of results, and thus make important
decisions based on that?

0.2 Objectives of studying

First: Learn about fractional calculus and its definitions.

Second: Identify the applications of fractional calculus in various types of sciences.
Third: Identify the applications of fractional calculus in economics.

Fourth: A study of the use of fractional calculus in calculating the gross domestic product
GDP.

Fifth: Use the fractional calculus in calculating the gross domestic product in Palestine.
0.3 The importance of studying

Fractional calculus becomes used in many applications and scientific, engineering and
industrial fields. Therefore, it is necessary to study this science in order to be able to use its
many applications in areas that serve human life and its development.

This study sheds light on the use of fractional calculus in economics, because economics is
one of the most important sciences through which administrative and economic decisions are
made.

This study indicates the importance of using fractional calculus in calculating the gross
domestic product of many countries and compares the efficiency of the fractional order model
and other models.



Chapter One

1.Fractional Calculus
1.1 Introduction

Fractional Calculus is the field of mathematical study which deals with the investigations and
applications of integrals and derivatives of arbitrary order. The birth of fractional calculus
occurred in a letter from G.F.A de L'Hospital to G.W Leibniz in 1695 posing a possible
question " what if the order of derivative (d"f/dt™) such that n = 1/2 " in his reply he
wrote it will lead to paradox , from which one day useful consequences will be drawn ". [ 7 ]

There are many types of fractional integral and differential operators that are proposed by
Riemann , Liouville , Grunwald , Weyl , Riesz , Caputo and other scientists . Fractional
Calculus has wide applications in applied mathematics and other sciences such as differential
equations, physics, engineering, economics and many other sciences.

1.2 Historical Notes of fractional Calculus

The first mention of fractional calculus apparently by S. E Lacroix around 1819. He started by
stating the common n'* derivative of the power function y = x™ in term of the Gamma
function.

n) — r(m+1) m-n
y r(m-n+1) (1)

wherem >n

He then let n be any real number to arrive at the first definition of the fractional derivative of a
power function. After this period, a list of mathematicians who have provided important
contributions up to the middle of the 20™ century ,included Fourier, N H Abel, J. Liouville,
Riemann, Grunwald, Riesz, W. Feller and others.

In recent years considerable interest in fractional calculus has been stimulated by the
applications that it found in different fields of sciences, including numerical analysis,
economics and finance, engineering, physics and other sciences.

1.3 Special Functions

This section deals with some basic concepts of special functions that were adapted in this
thesis, namely:

1.3.1 Gamma Function

Definition 1.3.1.1 The gamma function is defined as follows



I'(n) = limpy_e fOMx"‘l e *dx n>0, xe€R (2)
Example 1.3.1.2 Find T'(2) .

Solution :

M
['(2) = lim | x?>te*dx
M—-oo 0

M
= lim xe *dx

M—oo

0

. M
j— —-X —-X
—1\1/11330[ xe X —e ]O

= lim (—M /e —i+ 0+e%
M-oo eM
=1
The main rules for gamma function:

'n+1) =nl'(n) vn #0
'n+1) =n! forneN
()-a

1.3.2 Beta Function

Definition1.3.2.1 The beta function is defined as follows

B(m,n) :folxm‘l(l—x)”‘ldx , n>0,m>0 (3)
Example 1.3.2.2 Find 8(2,3)
Solution:

1

p(2,3) = f x?71(1 —x)3tdx

0

= folx (1 — X)de
= folx (1 —2x + x?)dx

= fol(x —2x% + x3)dx



Example 1.3.2.3 Show that g(m,n) = B(n, m).

Solution:
1 1

p(m,n) = f x™ 11 —x)"ldx = f u™ (1 —-uw)™ du
0 0

whereu=1—-—x, du=—dx

p(m,n) = B(n,m)

Theorem 1.3.2.4 The gamma and beta functions are related by the relation

r(m)r(n)

B(m,n) =

r'(m+n)

Example 1.3.2.5 Solve example 1.3.4 in using (4).

KONE)

R

Ve 1% 2
T4l 4x3x2x1

2 1
24 12

Example 1.3.2.6 The following integrals are found by using gamma and beta functions:

a) [2sin®™~1 6 cos®™ 1 6 df = %ﬁ(m, n)

xP~1

b) J, Z—dx = T(p)I(1 - p) =

A

0<p<l1

sinpm

1.4 Preliminaries for fractional calculus

(4)

()

(6)

In this section, we illustrate how fractional calculus can be utilized in understanding the topics

of several sciences and there applications.

To recognize the applications of fractional calculus, traditional integer differentiation is first

examined for a power function:

r(m+1)xm-n
r(m—-n+1)

Examplel.4.1 Let (x) = x™ . Show that f™ (x) =

Solution:



f'(x) = mx @D
£ (%) = m(m = 1)x "

m! xm-m _ 'm+ 1)x™™
(m-n)! T(m-n+1)

G0 = ™

In a likewise manner the nt" repetitive integer integration process can also be examined for a
power function.

Example 1.4.2 Let f(x) = x™ , Show that [ - [ f(x)dx--dx = %
Solution:
n+1
[ rear=2—
n+2
f f@dxdx = F a2
xn+3

ﬂ fO) dxdxdx = Z e T T 3)

n!xn+m - F(n)xm+n

f ff(x) dx - dx = (n+m)! - r(m+n+1) (8)

The equation (7) can be modified to utilize the gamma function:
arf T(m+1)x™™" 9
dx® T(m—-n+1) ©)

The equation (8) can be modified to utilize the gamma function:
f f () do oo = - COF 10
flx) dx x_F(m+n+1) 10

1.5 Fractional integrals

In most calculus books, derivatives are usually explained before integration. But in our study
of fractional calculus, we'll show the fractional integrals before we cover the fractional
derivatives. Because fractional derivatives are defined in terms of fractional integrals.

We will see for a lot of functions the definitions for both will agree and so one formula can be
defined for both fractional integrals and derivatives of these functions. [23]



Definition 1.5.1

a) Riemann Integral

1

CD;vf(x) = F(‘IJ)

[l =t fDde (11)
where f(x) €R

b) Liouville’s Integral:

L
Ir'(v)

—oDrVf(0) = — [7_(x — )V f(Ddt (12)
where f(x) € L

c) Riemann-Liouvill’s Integral:
- 1 _
oD f(0) = s Jy = OV F(B)dt (13)

where f(x) ER Or f(x) € L

d) Weyl’s Integral:

1

xDO_va(x) = F(U)

[t =)t f(Ddt (14)

We note that the only difference between the four integrals is the limit of integration, and the
most used integrals is the Riemann-Liuville’s integral.

There are many examples of fractional integrals, let’s now look at some examples that will
establish fractional integrals of general functions involving exponential, sine, cosine,
logarithmic, and f(t) where f(t) is a function of class C.

Example 1.5.2 Let f(t) = e?* where a is any constant. Since f(t) is continuous on [0, o)
and integrable on any finite subinterval of (0,) , f € C,and v > 0 we have

1 t
D Veat — %J; (t — f)v—l eafdf

_1 ’ (t—x)
— xv—l ea t—x —dx
) )

eat

=i ﬁfot xv_le_ax dx-

Example 1.5.3 Let f(t) = sin(at) where a is any constant. We have f(t) € C and



D7 Vsin(at) = o ).f g tsin(a(t —§))dé =S, (v,a)

Example 1.5.4 Let f(t) = cos?(at) where a is any constant. Using identity
cos(2at) = 2 cos?(at) — 1

We have

D7Y(cos? at) = —(Ct(v 2a) +

v
Ir'(v +1) t)

Similarly using cos(2at) = 1 — 2sin?(at) we have for f(t) = sin?(at)

1
D7V (sin? at) = = (

> m t’ — C¢(v,2a))

1.6 Fractional Derivatives

There are many different definitions of fractional derivatives, the most popular ones are

Riemann-Liouville and Caputo derivative.

Definition 1.6.1 Riemann-Liouville derivative:

1 dr (x o
DE(f(x)) = T o) dn jo (x — )" * 7 f(t)dt

Guy Jamarie proposed a simple alternative definition to Reimann-Liouville derivative

a — 1 d” * n—-a—1 d
D) = frmy g ) (O O — F O

Definition 1.6.2 Caputo derivative:

dTl
CDO((f(x)) — )f ( t)n a-1 dft:flt) dt

where n—1<a<n
Definition 1.6.3 Grunwald-Letnikov two sides derivatives are

a) Leftsided derivative:

Z(— Y IF'a+1)f(x—kh)

Da [f (0] = lim = rk+Dr(a—k+1)

ot h«

‘nmh=x—a

(15)

(16)

(17)

(18)



b) Right sided derivative:

. o1 I'a+ 1)f(x+ kh)
Dp-lf (] = lim 72 kZO D+ Dr@—k+ D

‘mh=b—x

Definition 1.6.4 Riesz derivative:

1

Dg - 2 cog(om) F(oc) dxn {f ( - ";)n “t f(f)df + f (E )n—a—l f(f)df}

There are many examples of fractional derivatives , let’s now look at some example.

f2(x)
Example 1.6.5 Let (x) = x , find iz

r(n+1) n-a

Solution: f%(x) = pr—

i) _ I+

_ x1-1/2
1/2
@ ra -2+ 1)

ST
riz+1 F(i) Tﬂ m

Example 1.6.6 Solve the following differential equation.

% =x*, y(0)=0

Solution:

d1/2 d1/2y d1/2

— 2
dx/Z dx1/2 ~ dxilz ™

dy d1/2

- 42
dx dxl/zx

1/2
d_l//z o2 = F(Z—Jlrl) 27 = LS X312 zgi 2= S an
dx r@2-+1) re) S m 3V
y_ 8 L
dx 3w

(19)

(20)



d 8 Eal
=—Xx2dx
N

fd f8 Ed
= — X 2d4ax
Y 3V

8 2

5

=——=-x2 +c
Y 3Vm5

16 §+
= X C
d 15V

LIS
= X
y 15Vnm

16 s
= X
Y 15V

1.7 Terms and Concepts in Economics
1.7.1 Economics: The science of making decisions in the presence of scarce resources.

1.7.2 Managerial Economics: The study of how to direct scarce resources in the way that
most efficiently achieves a managerial goal.

1.7.3 Elasticity: A measure of responsiveness of one variable to changes in another variable;
the percentage change in one variable that arises due to a given percentage change in another
variable.

1.7.4 Own Price Elasticity: A measure of the responsiveness of the quantity demanded of a
good to a change in the price of that good; the percentage change in quantity demanded
divided by the percentage change in the price of the good.

1.7.5 Economic Growth: Economic growth is the increase in the ability of an economy to
produce goods and services over time, in other word economic growth is the rise in aggregate
productivity of an economy.

10



Chapter two

2.Applications of fractional calculus

The subject of fractional calculus has applications in diverse and widespread fields of
engineering and science, such as electromagnetics, viscoelasticity, fluid mechanics,
electrochemistry, biological population models, optics and signal processing. It has been used
to model physical and engineering processes that are found to be the best described by
fractional differential equations.

The fractional derivative models are used for accurate modeling for those systems that require
accurate modeling of damping. In these fields, various analytical and numerical methods
including their applications to new problems have been proposed in recent years.

Fractional calculus has other applications in economic sciences such as modeling GDP and
elasticity demand and elasticity supply and more other subjects in economic sciences. We now
discuss some of applications for fractional calculus for some sciences and will discuss the
fractional calculus in economics in chapters four and five.

2.1 Tautochronous problem
Mehdi Dalir [15]

It may be important to point out that the first application of fractional calculus was made by
Abel in the solution of an integral equation that arises in the formulation of the tautochronous
problem. The problem deals with the determination of the shape of a frictionless plane curve
through the origin in a vertical plane along which a particle of mass m can fall in a time that is
independent of the starting position.

If the sliding time is constant, then the Abel integral equation is

n
J2gT = f - y) V2 f' () dy @1)
0

Where g is the acceleration due the gravity, (&,n) is the initial position and s = f(y) is the
equation of the sliding curve. It turns out that this equation is equivalent to the fractional
integral equation

1 _1
125 =1 (3) oD, 7F 0D (22)

Indeed, Heaviside [15] gave the interpretation of \/p = D/2 so that oD 1 =1/vmt .

11



2.2 Electric transition lines
Mehdi Dalir [15]

During the last decades of the nineteenth century, Heaviside successfully developed his
operational calculus without rigorous mathematical arguments. In 1892 he introduced the idea
of fractional derivatives in his study of electric transition lines. Based on the symbolic
operator from solution of heat equation due to Gregory, Heaviside introduced the letter p for

the differential operator % and gave the solution of the diffusion equation

0%u "

For the temperature distribution u(x, t) in the symbolic form

u(x,t)y =4 exp(axﬁ) +B exp(—ax\/?) (24)
In which p = d/dx was treated as constant, where a, A, B are also constants.

2.3 Ultrasonic wave propagation in human cancellous bone

Mehdi Dalir [15]

Fractional calculus is used to describe the viscous interactions between fluids and solid
structure. Reflection and transmission scattering operators are derived for a slab of cancellous
bone in the elastic frame using Blot’s theory.

Experimental results are compared with theoretical predictions for slow and fast waves
transmitted through human cancellous bone samples.

2.4 Modelling the cardiac tissue electrode interface using fractional calculus
Mehdi Dalir [15]

The tissue electrode interface is common to all forms of biopotential recording (e.g ECG,
EMG, EEG) and functional electrical stimulation (e.g pacemaker, cochlear implant, deep brain
stimulation). Conventional lumped element circuit models of electrodes can be extended by
generalization of the order of differentiation through modification of the defining current-
voltage relationships.

Such fractional order models provide an improved description of observed bioelectrode
behavior. But recent experimental studies of cardiac tissue suggest that additional
mathematical tools may be needed to describe this complex system.

12



2.5 Application of fractional calculus in the theory of viscoelasticity
Mehdi Dalir [15]

The advantage of the method of fractional derivatives in theory of viscoelasticity is that it
affords possibilities for obtaining constitutive equations for elastic complex modulus of
viscoelastic materials with only few experimentally determined parameters. Also the fractional
derivative method has been used in studies of the complex moduli and impedances for various
models of viscoelastic substances.

2.6 Application of fractional calculus in fluid mechanics
Mehdi Dalir [15]

Applications of fractional calculus to the solution of time-dependent, viscous diffusion fluid
mechanics problems are presented. Together with the Laplace transform method, the
applications of fractional calculus to the classical transient viscous-diffusion equation in a
semi-infinite space is shown to yield explicit analytical (fractional) solutions for the shear-
stress and fluid speed anywhere in the domain.

Comparing the fractional results for boundary shear-stress and fluid speed to the existing
analytical results to the first and second stokes problems, the fractional methodology is
validated and shown to be much simpler and more powerful than existing techniques.

2.7 Discovering Heat Flux at the Boundary of a Semi-Infinite Rod
Adam Loverro [1]
2.7.1 Introduction

Assume you have a semi-infinite bar of unknown radius which extends in length from
x = 0asx - o . The Temperature in the bar, give by the function u(x,t) can be expressed
by the following partial differential equation

ou 0%u — 0o ’c
ot 9x2 (25)
or

U — Uy =0 (26)

For this application, we suppose u(x,0) =0 for 0 < x < oo

x = 0 Corresponds to the boundary across which heat is flowing into/out of the rod.
Furthermore, let us assume that change in temperature with respect to x at the boundary is
given by the heat influx function P(t). We may consider this an extension of fourier’s law

13



LM o = PO 27
1= %ox T ox = W= (27)

Finally, we suppose that the temperature and the change in temperature with respect to x go to
OQatx — oo.

ie. limy_ e Uye(x,t) = limu,(x,t) =0 (28)
X—00
2.7.2 Cosine Transform of Partial Differential Equation

Fractional Calculus is useful in this problem after an appropriate transform is completed on
the differential equation. The effect for this problem is to change the style of the problem from
its initial partial differential equation form to a form resembling that of Abel’s Integral
Equation of the First Kind. Provides a detailed execution of this transformation which will be
briefly related here.

Definition 2.7.2.1: Fourier Cosine Transform on u(x, t)
uc(s,t) =2/ fooo u(x, t) cos sxdx (29)

of Uye(x,t) IS

Uyr, (5, 1) = =s%uc(s,t) —\/% u,(0,t) (30)

Given these transformations, we can rewrite the partial differential equation for the
temperature in the rod as

ouc(s,t) _ |2, , 31
— = | (t) —s%u.(s,t) G1)

The solution to this first-order non-linear partial differential equation is given by

t
u.(s,t) = — ﬁ ] P(1)e=s’t=Dqz (32)
0

u.(s,t) isinverted back to the x-domain.

u(x,t) =42/ j u. (s, t) cossx ds (33)
0
2 t @ 2
u(x, t) = _Ej P(T)dTJ e t=D cossx ds (34)
0 0

14



By a relation to Green’s Function, the transformed solution becomes [1]

1 (tP(r) =
ulx,t) = —— elst-1] ¢ 35

2.7.3 Implementation of the Fractional Integral Equation

The above equation (35) gives the temperature distribution as a function of time and location
for the semi-infinite bar given a known heat flux at the boundary x = 0 given by P(t).
However, through the introduction of Fractional Calculus, it is possible to obtain, given
temperature measurements at the boundary, to arrive at a solution for an unknown heat influx
(or efflux, as the case may be).

At the boundary x = 0 4+, the temperature can be written as u(0+,t) = @(t). Thus

_ 1 L P(D)
Q(t)_ﬁfo —

This equation corresponds to the form of the Abel Integral Equation of the First Kind, and can

dr (36)

be re-written with / operator as a fractional integral of order%. It can then be solved by
differentiating by order .

P(t) can then be written directly in terms of @(¢t).

JY2P(t) = 8(t) (37)
P(t) = DY2¢(t) (38)
Pe) = 1.d [t o) (39)

—_—— d
\/Edt o Vt—T t

Although the one dimensionality in this particular example makes its usefulness limited, the
fractional-order relationship that appears demonstrates a potential for use of fractional calculus
in similar problems. This example shows that for a conductive bar of a length significantly
greater than its width, it is possible to determine from temperature measurements along its
length to calculate the heat flux at its boundary. By using fractional calculus to express this
relationship, it is possible to actually reduce the complexity of turning these temperature
measurements into usable results. See [1]

2.8 Electrical circuits with fractance

Classical electrical circuits consist of resistors and capacitors and are described by integer-
order models. However, circuits may have the so-called fractance which represents an

15



electrical element with fractional-order impedance as suggested by Le Mehaute and
Crepy.[14]

A fractance is fractional order models , there are two kinds of fractances:

2.8.1 Tree fractance: which consists of a finite self-similar circuit with resistors of resistance
R and capacitors of capacitance C where w is a frequency .

The impedance of the fractance is given by

Z(iw) = \/?w‘lexp (— %) (40)

The associated fractional-order transfer function of this tree fractance is

R _
Z(s)=\];s 1/2 (41)

2.8.2 Chain fractance: which consists of N pairs of resistor-capacitor connected in a chain.
We have shown that the transfer function is approximately given by

R1

It can be shown that this chain fractance behaves as a fractional-order integrator of order 1/2 in

the time domain 6RC < t < (%) N2RC.

Due to microscopic electrochemical processes at the electrode-electrolyte interface, electric
batteries produce a limited amount of current. At metal electrolyte interfaces the impedance
function Z(w) does not show the desired capacitive features for frequencies w. Indeed,
asw — 0,

Z(w) = (iw)™, 0<n< 1. (43)
Or, equivalently, in the Laplace transform space, the impedance function is
Z(s) =s" (44)

This illustrates the fact that the electrode-electrolyte interface is an example of a fractional-
order process. The value of n is closely associated with the smoothness of the interface as the
surface is infinitely smooth asn — 1. Kaplan proposed a physical model by the self-affine
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Cantor block with N-stage electrical circuit of fractance type. Under suitable assumptions,
they found the importance of the fractance circuit in the form

Z(w) = k(iw)™, (45)

where n = 2 —log(N?)/loga, K and a are constants, and N2 > a implies 0 < n < 1.
This shows that the model of Kaplan. Is also an example of the fractional-order electric circuit.
In a resistive-capacitive transmission line model, the inter conductor potential @(x,t) or inter
conductor current i(x, t) satisfies the classical diffusion equation

ou kazu 0<x< t<0 46
— —_— o0

ot “oxz’ XS T ’ (46)
Where the diffusion constant k is replaced by (RC)~1, R and C denote the resistance and
capacitance per unit length of the transmission line, and u(x,t) = @(x,t) or i(x,t).

Using the initial and boundary conditions
@(x,0) = 0Vx € (0,), @(x,t) > 0asx - oo, (47)

It turns out that
1

0,0 = —~L 60,0 = (C)Z DZ6(0,0 48
HOE="Ra PV Y T\R) PP (48)
This confirms that the current field in the transmission line of infinite length is expressed in
terms of the fractional derivative of order 1/2 of the potential @(0, t). This is another example
of the involvement of fractional-order derivative in the electric transmission line.[14]

2.9 Generalized voltage divider

Westerlund observed that both the tree fractance and chain fractance consist not only of
resistors and capacitors properties, but also they exhibit electrical properties with non-integer-
order impedance. He generalized the classical voltage divider in which the fractional order
impedances F; and F, represent impedances not only on Westerlund’s capacitors, classical
resistors, and induction coils, but also impedances of tree fractance and chain fractance. The
transfer function of Westerlund’s voltage divider circuit is given by

k
se+k’

H(s) =

(49)

Where —2 < a < 2 and k is a constant that depends on the elements of the voltage divider.
The negative values of a correspond to a highpass filter, while the positive values of «
correspond to a lowpass filter. Westerlund considered some special cases of the transfer
function (49) for voltage dividers that consist of different combinations of resistors (R),
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capacitors (C), and induction coils (L). If U;,(s) is the Laplace transform of the unit-step
input signal Uy, (t), then the Laplace transform of the output signal U, (s) is given by

ksa—l

sT+k (30)

Uout(s) =
Example 2.9.1: The inverse Laplace transform of (50) is obtained from Laplace transform
L+ (+at®)) = (m!s@F)/(s* F o)™ (51)
To obtain the output signal

Uput(t) = kt*Ey g1 (—kt®) = kEy(t, —k; a,a + 1) (52)

Although the exact solution for the output signal is obtained, this cannot describe physical
properties of the signal. Some physically interesting properties of the output signal can be
described for various values of a by evaluating the inverse Laplace transform in the complex
s-plane. For 1 < |a| < 2, the output signal exhibits oscillations. [14]
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Chapter Three

3.Fractional calculus in economics

Fractional calculus has wide applications in dynamical systems theory since it allows us to
describe systems and media that are characterized by power-law non-locality and long-term
memory. A variety of models, which are based on applications of the fractional order
derivatives and integrals, have been proposed to describe behavior of financial and economical
processes from different points of view.

Mathematical economics is a theoretical and applied science; whose purpose is a
mathematically formalized description of economic objects, processes and phenomena. Most
of the economic theories are presented in terms of economic models. In mathematical
economics, the properties of these models are studied based on formalizations of economics
concepts and notions.

In reality, the most important purpose is to formulate economic notions and concepts in
mathematical forms, which will be mathematically adequate and self- consistent, and then, on
their basis to construct mathematical models of economic processes and phenomena.
Moreover, it is not enough to prove the existence of a solution and find it an analytic or
numerical form, but it is necessary to give an economic interpretation of these obtained
mathematical results.

3.1 History of fractional mathematical economics

Mathematical economics began in the 19™ century with the use of differential (and integral)
calculus to describe and explain economic behavior. The emergence of modern economic
theory occurred almost simultaneously with the appearance of new economic concepts, which
were actively used in various economic models.

In modern mathematics, derivatives and integrals of arbitrary order are well known. The
derivative (or integral) order of which is a real or complex number and not just an integer, is
called fractional derivative and integral.

Fractional mathematical economics is a theory of fractional dynamic models of economic
processes, phenomena and effects. In this framework of mathematical economics, the
fractional calculus methods are being developed for applications to problems of economics
and finance. The field of fractional mathematical economics is the applications of fractional
calculus to solve problems in economics (and finance) and for the development of fractional
calculus for such applications.

Fractional mathematical economics can be considered as a branch of applied mathematics that
deals with economic problems. However, this point of view is obviously a narrowing of the
field of research, goals and objectives of this area. An important part of fractional
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mathematical economics is the use of fractional calculus to formulate new economic concepts,
notions, effects and phenomena.

This is especially important due to the fact that the fractional mathematical economics is now
only being formed as an independent science. Moreover, the development of the fractional
calculus itself and its generalizations will largely be determined precisely by such goals and
objectives in economics, physics and other sciences.

The history of application of fractional calculus in economics can be divided into the
following stages of development:

3.1.1 ARFIMA Stage [22]: This stage is characterized by models with discrete time and
applications of the Grunwald-Letnikov fractional differences. Granger and Joyeux and
Hosking proposed the fractional generalization of ARFIMA models that improved the
statistical methods for researching of processes with memory. As the main mathematical tool
for describing memory, fractional differencing and integrating were proposed for discrete time
case. The suggested generalization of the ARFIMA model is realized be considering non-
integer order d instead of positive integer values of d. The Granger-Joyeux-Hosking operators
were proposed and used without relationship with the fractional calculus.

3.1.2 Fractional Brownian motion Stage [22]: This stage is characterized by financial
models and the applications of stochastic calculus methods and stochastic differential
equations. Andrey N. Kolmogorov, who is one of the founders of modern probability theory,
was the first who considered in 1940 the continuous Gaussian processes with stationary
increments and with the self-similarity property A.N. Kolmogorov called such Gaussian
processes “Wiener Spirals”. Its modern name is the fractional Brownian motion that can be
considered as a continuous self-similar zero-mean Gaussian process and with the stationary
increments.

3.1.3 Econophysics Stage [22]: This stage is characterized by financial models and the
applications of physical methods and equations. Twenty years ago, a new branch of the
econophysics, which is connected with the application of fractional calculus, has appeared. In
fact, this branch, which can be called fractional econophysics, was porn in 2000 and it can be
primarily associated with the works of Francesco Mainardi, Rudolf Gorenflo, Enrico Scalas,
and Marco Roberto on the continuous-time finance. In fractional econophysics, the fractional
diffusion models are used in finance, where price jumps replace the particle jumps in the
physical diffusion models. The corresponding stochastic models are called continuous time
random walks, which are random walks that also incorporate a random waiting time between
jumps. In finance, the waiting times measure delay between transactions. These two random
variables (price change and waiting time) are used to describe the long-time behavior in
financial markets.
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3.1.4 Deterministic Chaos Stage [22]: This stage is characterized by financial and economic
models and applications of methods of nonlinear dynamics. Strictly speaking, this stage should
be attributed to the econophysics stage. Nonlinear dynamics models are useful to explain
irregular and chaotic behavior of complex economic and financial processes. The complex
behaviors of nonlinear economic processes restrict the use of analytical methods to study
nonlinear economic models. In 2008, for the first time, Wie-Ching Chen proposed in a
fractional generalization of a financial model with deterministic chaos. Chen studied the
fractional-dynamic behaviors and describes fixed points, periodic motions, chaotic motions,
and identified period doubling and intermittency routes to chaos in the financial process that is
described by a system of three equations with the Caputo fractional derivatives. He
demonstrates by numerical simulations that chaos exists when orders of derivatives is less than
three and that the lowest order at which chaos exists was 2.35. The work studied the chaos
control method of such a kind of system by feedback control, respectively.

3.1.5 Mathematical Economics Stage [22]: This stage is characterized by macro- economic
and microeconomic models with continuous time and generalization of basic economic
concepts and notions. The fractional calculus approach has been used to describe the concepts
of memory itself for economic processes. This stage began with a proposal of generalizations
of the basic economic concepts and notions at the beginning of 2016, when the concepts of
elasticity for economic processes with memory was proposed. Then in 2016, the concepts of
the marginal values with memory, the concept of accelerator and multiplier with memory and
others were suggested. These concepts are used in fractional generalizations of some standard
economic models with the continuous times, which were proposed in 2016 and subsequent
years. These dynamic models describe fractional dynamics of economic processes with
memory.

3.2 Some of concepts and definitions of economics

Before we start studying some case studies that use fractional calculus, we must define some
economic concepts, which we will mention in this thesis.

3.2.1 Law of demand: Price and quantity demanded are inversely related. That is, as the price
of a good rises(falls) and all other things remain constant, the quantity demanded of the good
falls(rises).

3.2.2 Law of supply: As the price of a good rises(falls) and other things remain constant, the
quantity supplied of the good rises(falls).

3.2.3 Price elasticity of demand : A measure of how much the quantity demanded of a good
responds to a change in the price of that good, computed as the percentage change in quantity
demanded divided by the percentage change in price.
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3.2.4 Price elasticity of supply: A measure of how much the quantity supplied of a good
responds to a change in the price of that good, computed as the percentage change in quantity
supplied divided by the percentage change in price.

3.2.5 The Coefficient of determination R%: The simplest commonly used measure of fit is
R? or the coefficient of determination. R? is the ratio of the explained sum of squares to the
total sum of squares.

The higher R? is, the closer the estimated regression equation fits the sample data. Measure of
this type are called " goodness of fit " measures.

R?must lie in the interval 0 < R? < 1, a value of R? close to one shows an excellent overall
fit, whereas a value near zero shows a failure of estimated regression equation to explain the
values.

3.2.6 GDP Formula for Calculation: The following formula can be used to calculate GDP.
GDP=C+G+I1+NX (53)

Where

C = consumer spending.

G = Government spending.

I = Investment.

NX = Net Export (Exports — Imports).

3.3 Elasticity for Economic Processes with Memory

One of the most important areas of applications of differential operators is description of
economic dynamics by using the concept of elasticity. Elasticity shows a relative change of an
economic indicator under influence of change of an economic factor on which it depends at
constant remaining factors acting on it. Usually effects of memory are ignored in the concept
of elasticity. For example, the definition of the standard point-price elasticity of demand at
time point ¢, , is expressed by the equation

dQ
PO ar | _ pde,
Q(t)fé_? Q dp’tf

tzto

EQ(®);p();ty) = (54)

Where Q is the quantity demanded and p is the price of a good. Equation (54) assumes that
the elasticity depends only on the current price at t = t, a price at infinitesimal neighborhood
of point ¢, . In general, we should take into account that demand can depend on all changes of
prices during a finite interval of time, since behavior of buyers can be determined by the
presence of a memory of previous price changes.
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3.4 Fractional elasticities of Y with respect to X

The most important area of application of differential calculus is to describe the economics
with the help of the concept of elasticity. The elasticity shows a relative change of an
economic indicator under influence of change of economic factors on which it depends at
constant remaining factors affecting it. In this section, we define generalizations of point
elasticity of Y with respect to X by taking into account a long-term memory and a finite-
interval memory of changes of economic factor X and indicator. We will consider the
following forms of memory. [20]

In the general case, the economic indicator and economic factors can depend on time, i.e. Y

and X are functions of time t € [t;;t; ]. The absence of memory (amnesia) means that the
value of Y (¢) is determined only by the values of X(t) at the pointt = ¢, € [t;;tr] and in
infinitely small neighborhood of this point. The presence of a memory means that the value
of Y (¢) depends on values of X(t) at all points t of the finite interval [t; ; ¢ |.

The presence of a memory can also mean that the values of Y (X,) actually depends not only
on X, but it also depends on X from the intervals [X;; X,) and(XO;Xf ] In general, the time
parameter cannot be excluded to have an explicit dependence of Y on X in the form of a
function. In a rigorous mathematical description of processes with memory, we should apply
integro-differential equations. For simplification, we will assume that we have a solution of
this equation in the form Y = Y(X).

Definition 3.4.1 The fractional T- elasticity E,(Y(t); X(t);[t;,ty]) of order aatt =
toof Y = Y(t) with respectto X = X(t) is defined by the equation

Cha
Dt Y (D)
X(ty) ¢ 10
Ea(Y (0 X(0); [ty t0]): = 5 ¢ (55)
o) "Diy X(®)

Where t € [t;; to].

The fractional T- elasticity E,(Y(t); X(t); [t;,to]) describes an elasticity for the economic
processes with a memory of the changes of economic factors and indicator. This type of
memory describes the dependence of the economic indicator Y not only on X(t,) at the
current time t, but also the economic factor X(t) at all t € [t;;t,]. The order a is the
parameter that characterizes the degree of damping memory over time. In general, we can
consider fractional elasticity with two different parameters a and S to describe fading memory
of Y (t) and X (t) respectively.

Definition 3.4.2 Let Y = Y (X) be an economic indicator where X is a function of economic
factor X € [X;;Xf]. The left-sided and right-sided fractional X-
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elasticities E ; (Y (X); [X;, Xo]) and Eq (Y (X); [Xo, Xf ]) Of order a atX, € [X;;Xf] of Y
with respect to X are defined by the equation

X a
Bal (O X oD = s £DE VOO, (56)
. o— (XO)a Cna
Ea,r(Y(X)' [XO 'Xf]) Y xo D5 [X]Y (X), (57)

Where X; = Xpmin and Xp = Xpq, are initial and final points of the investigated interval of
the economic factor X € [X;; X;]. Here XCiD)‘}‘O is the left-sided Caputo derivative and XﬁD}x is
the right-sided Caputo derivative of order a > 0.

Using that the standard (point) elasticity of Y with respect to X can be represented as a
derivative of f(t) = In(Y(t)) by g(t) = In(X(t)) inthe form

_(df @) _(dIn(Y (D))
E(p, ty) = (m)tzto = <m>t=to' (58)

We can also define the corresponding fractional generalization by using the fractional
derivative of function f(t) = In(Y(t)) by a function g(t) = In(X(¢t)) .

Definition 3.4.3 The fractional Log-elasticity E, ;.4 (Y (£); X(); [t;, to]) Of order a att =
to € [t;;tr ] is defined by the equation

Ea,log Y (©); X(0); [ti ’ to]) =

dg(7) () ( 1 d

1 3 ’
— | dt — | f@®) ,({ >t) (59)
rn—a) ] d _ dg(t) d )
n-—a i T (g -g9®) I T

Wheren—1<a<n,f(t) = ln(Y(t)) and g(t) = ln(X(t)).

Remark 3.4.4 Forthe case @ = 1, equations (55), (56) and (57) take the forms

X(t) dy (t)
ELY @i X @it toD) = 355 < o) ) (60)
t t=to
And
X dy (X
Ena(Y O I XoD) = B (Y 003 [Xo X7]) = 755 ( d;)) (61)

=40
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Where the elasticity does not depend ont # t,and X # X, . This means that the case ¢ =
1 corresponds to the economic processes without memory.

Remark 3.4.5 Using the chain rule

dY (X(t) dY (X) dX(t)
dt ):( dx Xx=X(t) T (62)

We have the equality of the fractional T -elasticity and the fractional X -elasticity for the case
a = 1 of the economic dynamics without memory,

E (Y(£); X(0); [t to]) = Epy (Y (XD; [Xi, Xo]) = Ep(Y(X); [Xo, Xf |) (63)

This case corresponds to economic the case of total amnesia. The standard point elasticity of Y
with respect to X describes economic processes, when market participants have amnesia.

3.5 Properties of fractional elasticities

Let us give main properties of the suggested fractional elasticities. For simplification, we
describe these properties fort; = 0and X; = 0.

The fractional elasticity is a dimensionless quantity,

E.(AY (2); X(); [0, to]) = Eq (Y (£); X(2); [0, to]), (64)
Eq(Y(8); AX(); [0, to]) = Eo (Y (8); X(8); [0, £ D), (65)

These equations mean that its do not depend on units of the economic indicator Y and the
economic factor X .

The fractional T -elasticity of inverse function is inverse

1
E (X(t);Y(t);10,¢t,]) = 66
KOO0 0D = x @ 0, 6D, (66)
In general, the fractional X -elasticities of inverse functions are not inverse

Faa (Y (X030, X,]) #

G T B (X(1N); [0, YoD)

1
Eqr (Y(X); [Xo, Xs]) # (67)

Eo(X(V); [Yo, ¥y])
These inequalities become equalities for a = 1.

In general, the fractional elasticity of the product of two functions, which depend on the same
argument, does not equal to the sum of elasticities unlessa = 1
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E,(Y1(t) - Y2(£); X (2); [0, £6])
#* E,(Y1(0); X(£); [0, o)) + Eq (Y2 (£); X(¢); [0, £o]) (68)
Fora + 1.

This inequality becomes an equality for @ = 1. Inequality (68) caused by the violation of the
Liebniz rule

D [1] (M(MY2(0) # (&0 { [7]1 (1)) Y2(1) + Y1 (7) (&D ¢ [7]Y2 (7)) (69)

The fractional elasticity of the sum of two functions, which depend on the same argument, is
given by the equation

E,(Y1(t) + Y, (t); X(); [0, to])
NASA (YL (DEL(Y1(6); X(£); [0, to])
+ Y, (D) E, (Y1 (8); X(); [0, 1)) (70)

The fractional elasticity of the power function is a constant

B
Ed,l(Xﬂ; [01 XO]) = E , (71)
wheref > n—1landn—-1 < a < nforalln € N.
The fractional elasticity of the exponential function is given by the equation
Eayr (677 [Xo;0)) = ()%, (72)
Where 4 > 0
The fractional elasticity of the linear function is given by the equation
1 a X
Eq(ag + a1 X; [0, X0]) (73)

T2 —a) ag + a X

For derivatives of non-integer orders, the standard chain rule cannot be satisfied in general.
For example, the chain rules for fractional derivatives of a composite function have the form
that is similar to the following

Lo YD) O, ke
beY = r(l-a) +K=1 "Tk—a+1)
. RN (29910)
X ) OFYxmxw D | |25 (o) (74)

Where Df = d™/dt™ . Therefore, we have the inequalities
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Eq(Y(); X(0); [ti, to]) # Equ (Y (X); [Xi, Xol, (75)

Eo(Y(); X(©); [t1, to]) # Eqr (YOXO; [Xi Xy, (76)

For non-integer values of the order a. As a result, the fractional X -elasticities and the
fractional T -elasticity should be considered as independent characteristics in the economic
dynamics with memory.

The fractional elasticities of constant demand are equal to zero.

E, (const; X(t); [t;, to]) = 0,
Eq (const; [X;, Xo]) = Ea’r(const; [XO ,Xf]) (77)

That corresponds to perfectly inelastic demand.

These properties can be directly derived from the properties of the Caputo fractional derivative
and the definition of the fractional elasticities.

3.6 Fractional elasticities of demand

In this section, we define generalizations of point-price elasticity of demand to the cases of
memory. In these generalizations we take into account dependence of demand not only from
the current price (price at current time), but also changes of prices in some interval (prices that
were before this current price). For simplification, we will assume that there is one parameter
a, which characterizes a degree of damping memory over time.[20]

Definition 3.6.1 Let demand Q = Q(t) and price p = p(t) be functions of time variable
t € [t;;ty]. the fractional T -elasticity E,(Q(t); p(t);[t;,to]) of order aat t = ¢, of
demand Q(t) with respect to price p(t) is defined by the equation

p(to) £;Pf QW)

Q(to) tCinf) p@)’ (78)

Eq(Q();p(0); [t to]) =
Where t € [t;,to], and t; < t, < tr. The fractional T -elasticity (78) describes an elasticity
of demand for the processes in economic dynamical systems with the memory of price
changes over time. This type of memory describes the dependence of demand Q not only from
the price p = p(t,) at the current time t, but also the prices p(t) that were before this price,
i.e. all prices at t € [t;;ty].- The order a is the parameter that characterizes the degree of
damping memory over time.

Definition 3.6.2 Let us consider a demand Q = Q(p) as a function of price p € [p;; pnl-
the left-sided and right-sided fractional p-elasticities E,;(Q(p);[p:,pro]) and

Eqr(Q(P); [Po,pr]) Of order a at py € [p;; pp] of demand Q = Q(p) is defined by the
equations
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(Po)“

Eq,(Q); [ p1,po)) = 0000 D5 [P1Q (), (79)
) . (Po)® Cra
Eor(Q(0); [ Do, prl) = 0000 po Dy, [P1Q (p), (80)

where p; = Pn is the lowest price and p, = prmqy is the highest price; £ Dg, and XCOD;?f are
the left-sided and right-sided Caputo derivatives of order « > 0.

The fractional p-elasticities (79) and (80) describe an elasticity of demand for the processes in
economic dynamical systems with price memory. The elasticity (79) takes into account a
“memory of low prices”. The “memory of high prices” is taken into account by the elasticity
(80). These types of memory describe a dependence of demand Q not only on the current price
po but also all prices p of the given range (p; < p < pp). The order a characterizes a degree of
damping memory over time.

Analogously to generalization of the price elasticities of demand, we can generalize of other
types of elasticity. For example, we can give definitions of fractional income elasticity of
demand. Using the demand function Q = Q(t) and income function I = I(t) of time
variable t € [t;;t,], the fractional income T -elasticity Ea(Q(t); I(t); [t; ; to]) of order a at
t = t, can be defined by the equation

_ 1(to) £D50®
Q(to) £DEI)’

E,(Q(t); 1(); t; 5 [t; 5 o) - (81)

Remark 3.6.3 In the definition of the fractional elasticities, we use the Caputo fracional
derivatives instead of other types of derivatives. It is caused by that the Caputo fractional
derivatives of a constant is equal to zero. This property leads us to zero values of fractional
elasticities for constant demand. Contrary to it the RiemannLiouville fractional derivatives of
a constant is not equal to zero

—-a

KDy [p'1Q(p") = ﬁ : (82)

Therefore the fractional elasticities, which are defined by this type of derivatives, cannot be
considered as a perfectly inelastic demand for the constant demand functions. For example,
the corresponding left-sided fractional p-elasticity of the constant demand Q(p) = q, =
const is the constant.

B Q) 10,]) = A EDE[H1Q () = ———
AT B ra-a)’

Where %§DZ is the left-sided Riemann-Liouville derivative.

(83)
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It should be noted that the fractional p- elasticities and the fractional T - elasticity should be
considered as independent indicators of the economic dynamics with memory. This fact is
based on the violation of the standard chain rule for derivatives of non-integer orders.

3.7 Examples of calculations

Let us consider simple examples of calculations of fractional elasticities. For simplification,
we will use the demand equation

Q(p) = ag + a;p + ayp? (84)

Where p is the unit price and Q(p) is the quantity demanded when the price is p. Equation
(84) is considered as a demand function for a product. Point-price elasticity is the elasticity of
demand, which is defined by the equation

70 (56) (“&)

To find the point elasticity of demand E (p) for (84), we use

d
% =a, +2a,p, (85)

As a result, the standard (point-price) elasticity of demand is

p dQ(p)  a;p+2a,p?

Ep) = Q(p) dp  ap+ap+azp?’ (86)
Let us consider some examples of fractional elasticity for demand (84).

Example 3.7.1 Let us consider the demand and price functions in the form

Q(t) = qo + qut + qot?, (87)
p(t) = pot, (88)
It is obvious that the substitution of (88) into (87) gives (84) with

ap =qo, a1=z—;, a2=z—§, (89)

Let us consider the fractional T - elasticity (78) with t; = 0 and a« € (0,1) from the
properties of the Caputo fractional derivatives of power functions we are given,

rig+1)
CDEtF = ———— b2 (t>0n—-1< , - 1), 90
oD¢ G —a+D (t>0,n a<n,f>n-1) (90)
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Using (90) we get

r2 rg3+1
sDEQ() = Q(l)ﬁtl_“ + q(Z)%tZ—a’
And
re
SDEp(t) = poﬁtl—a,

Substitution of (91) and (92) into (78) gives the fractional T —elasticity

_p(@® 5DF Q)
Q(t) §DF p(t)

1 1-a
pot hro—ot tThere-o

E.(Q(®);p(); [0, t0]) :

Qo+ qat + qt? ;tl—a

2
1-a 2-a
Dot qqt +q> 2 —a) t

T Qo+ qat + qut? Pt~

2

2 2 2
_6ht+6hmt _@mptazyz—p

Qo+ 1t + qot2  ag+ap+ap?

Where we use I'(z + 1) = zI'(z) and equations (88) , (89).

In the general case, these fractional elasticity can be distinguished not only by a factor.

1
E. (Q(p); [0,p]D) = ) E,(Q();p(®); [0, t]).

(91)

(92)

(93)

(94)

Example 3.7.2 Let us consider the demand and price functions in the following simple form

Q(t) = ath,
p(t) = bt?,

Substitution of (96) into (95) gives

a
—_— By
Q(t) - bﬁ/yp ’

The standard (point-price) elasticity has the form
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(r) 00 dp 7 (98)
The fractional p-elasticity is given by the equation

B
. _(p)aC a — F(;-{-l)
Eqi(Q(p); [0,p]) = oDy Q(p) = ; (99)
Q(p) r (E +1— a)
14
The fractional T -elasticity is written in the form
P(t) SDFQO) T(B+ DI (y—1+

E.(0(): p(©); [0, to]) = () oD@ I'(B+ DIy a) (100)

Q(®) 5DFp(t) Ty + DI (f—1+a)’

Fora = 1, we get

E.(Q(®); p(8); [0, t0]) = Eq1(Q(p); [0,po]) = E(p)

since I'(z+ 1) = zI'(z). Itis easy to see that the expression of the fractional p-elasticity (99)
and the fractional T -elasticity (100) are different for ¢ # 1. It is well-known that the
following conditions, if E(p) < —1, then demand is elastic and a percent increase in price
yields a larger percent decrease in demand.

If —1 < E(p) < 0, then demand is inelastic and a percent increase in price yields a
smaller percent decrease in demand. It is evident that taking into account the effect of memory
(0 < a < 1), we can get other inequalities for the price in comparison with the standard
case (¢ = 1).
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Chapter Four

4.Using Fractional Calculus to Calculate GDP

4.1 Economic Meaning of Derivatives

The economic meaning of the derivative of the first order describes an intensity of changes of
an economic indicator regarding the investigated factor by assuming that other factors remain
unchanged. First-order derivative of the function of an indicator defines the marginal value of
this indicator. The marginal values shows the growth of the corresponding indicator per unit
increase of the determining factor. This is analogous to the physical meaning of speed (The
physical meaning of speed is the path length travelled per unit of time). In economic theory,
the main marginal values of indicators are marginal product, marginal utility, marginal cost,
marginal revenue, marginal propensity to save and consume, marginal tax rate, marginal
demand and some others.[4]

In the study of economic processes is usually performed by calculation of the marginal and
average values of indicators that are considered as functions of the determining factors.

In modern mathematics it is known the concept of derivative (integer-differentiation) of non-
integer orders. This concept is used in the natural sciences to describe the processes with
memory. Recently, non-integer order derivatives have been used to describe the financial
processes and the economic processes. There are various types of derivatives of non-integer
orders. In this thesis we will consider the Caputo fractional derivative. One of the
distinguishing features of this derivative is that its action on the constant function gives zero.
The use of the Caputo derivative in the economic analysis produces zero value of marginal
indicator of non-integer order for the function of the corresponding indicator. There are left-
handed and right-handed Caputo derivatives. We will consider only the left-sided derivatives,
since the economic process at time T depends only on state changes of this process in the past,
that is, for t < T, and the right-sided Caputo derivative is determined by integrating the values
of t > T. Left-sided Caputo derivative of order a > 0 is defined by the formula

T f(t)dt
rn—a)l, (T —t)entt’

oDFf(T) = (101)
Where I' (z) is the gamma function, and T > 0,n:= [a] + 1, and f™(t)is standard
derivative of integer order n of the function f(t) at time t. For integer valuesof « = n € N,
the Caputo derivative coincides with standard derivatives of order n, i.e.

d*f(T)
drm

6DFf (1) = oDPf () = £ (D). (102)
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The economic interpretation of non-integer order derivative @ > 0 directly related with the
concept of T-indicator. The fractional derivatives can be interpreted as a growth of indicator Y
per unit increase of the factor X at time t = T in the economic process with memory of power

type.
4.2 Case Study
4.2.1 Applying Fractional Calculus to Analyze Economic Growth Modelling

It is well known that EGM is one of the most important models in studying the dynamics of
finance behaviour. After reviewing the classical EGM in the literature, one can see that the
integer order derivatives and integrals are always used to characterize such procedure in the
development of economics. However, there exist some gaps by using the classical calculus to
simulate the data from the real models. Recently, the basic theory including existence theory,
stability and control theory for all kinds of fractional differential equations and inclusions is
studied extensively. In addition, one can see that fractional calculus is also widely used to
construct economic models involving the memory effect in the evolutionary process. It has
been proved that fractional models are better than integer models and provide an excellent tool
for the description of memory of EGM .

In this thesis we start with study GDP growth for the Spanish and Portuguese cases by
applying Grunwald-Letnnikov fractional EGM via data between 1960 and 2012. By setting the
mean absolute deviation as performance index and using Nelder-Mead’s simplex search
method, the coefficients and orders proposed in the fractional EGM are obtained. By
comparing the coefficients of fractional EGM and integer EGM, a new hybrid model
involving integer calculus and fractional calculus is established to remove low influence
variables in the models. It is shown that fractional models have a better performance than the
classical models. In this thesis, we go on the study of GDP growth for the Spanish case to
improve fractional EGM by using different computational methods. More precisely, we use
four different EGMs, namely Grunwald-Letnnikov integer/fractional type and Caputo
integer/fractional type models. Moreover, Nelder-Mead’s simplex search method is replaced
by genetic algorithm to give orders in the current work. The method of least squares is used to
give the estimation of the coefficients. In spite of software of Matlab, SPSS and R are also
used in linear regression analysis. We note that the Spanish case is used in this thesis only for
possibility to compare our achievement and proposed models with previous ones.[4]

4.2.2 Integer and fractional EGMS

Through out of this thesis, we denote land area by LA (km?), arable land area by AL
(km?), population by P, school attendance by SA, gross capital formation by GCF, exports of
goods and services by EGS, general government final consumption expenditure by GGFCE,
money and quasi money by MQM, number of variables of the model by NVM and number of
parameters of the model by NPM. We remark that all the data used here are taken from 1960
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to 2012. We also denote the mean square error by MSE, the mean absolute deviation by MAD,
the coefficient of determination by R 2 , Akaike Information Criterion by AIC and the weight
of AIC for the i-th model by i .[4]

Consider the following general formulation of EGM: z(t) = f(x;,x;,+) where f is a given
function. For simplify, we introduce the following notations:

xq IS LA, x5, ISAL, x5 ISP, x, is SA, x5 is GCF, x, is EGS, x, is GGFCE, and xg is MQM

Where LA: land area, AL: arable land, P: population, SA: school attendance, GCF: gross
capital formation, EGS: exports of goods and services, GGFCE: general government final
consumption expenditure, MQM: money and quasi money.

And
z iISGDP and t is year.

Where the output model z is the GDP ( in 2012 euros ) and x; are the variables on which the
output depends. The inputs considered are the following:

x1: Land area ((km?);

x: Arable land(km?);

x3: Population;

x4 School attendance (years);

x5 Gross capital formation (GCF) (in 2012 euros);

x¢. Exports of goods and services (in 2012 euros);

x-: General government final consumption expenditure (GGFCE) (in 2012 euros);
xg: Money and quasi money (MQM) (in 2012 euros).

The rationale behind this choice of variables is the following:
Natural resources are represented by x, , and their quality by x,;
Human resources are represented by x5 , and their quality by x,;
Manufactured resources are represented by xs;

External impacts in the economy are represented by xg;

Internal impacts in the economy are represented by x, ( budgetary impacts) , xg ( monetary
impacts ) and also by x5 ( investment ). Rather than having x5 play two roles, we will rather
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use another variable x4 = x5 to represent the impact of investment in the economy, bringing

the number of inputs up to 9.

Define

MSE = Z=ZD”
n

MAD — Z?:llzl_zl ,
n

Yi=1(zi — Z)?

R?=1- —,

Where z is GDP, Z is the mean of GDP ,Z is the expected of the GDP.

Next, we recall the following standard integer order model (I0M)

2= Y cnl® + cs(Ixs)(©)
i=1,2,3,4,6,7

+ Z cix'i(t)
i=8,9
We also need the following modified models:

IOM1 (Grunwald-Letnnikov integer type)

z(t) = Z ci ("D x)() + cs(“F D x5 ) (1)
i=1,2,3,4,6,7

+ z ¢;(°"DE 1x) (0)
i=8,9
IOM2 (Caputo integer type)

2©= D ("D + c5(Iy5)®
i=1,2,3,4,6,7

+ 2 ¢;(“DL cx)()
i=8,9
FOML1 (Grunwald-Letnnikov fractional type)

9

2®) = ) (D x) (0)

=1
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FOM2 (Caputo fractional type)

9

20 = ) a(“Dt, x)(®

i=1

where t, denotes the first year and the fractional calculus is given by

1 ¢t ul)
F(a)J; (1—-1)l@

(Igtu)(t) = dr, O<ac<l,

and the Grunwald-Letnnikov (GL) derivative

[(t-a)/ h]
“pgau(t) = ;LILI(I)jT(_l)j Clu(t —jh),
; —1)TI'(a—j
ng: .( VI ].) ) 0<acgl,
rg+0r(-—a—j+1)
; a+1)
C) = , -l<ac<o,
“TTG+ DI (a—j+ 1) *
cl=1, a=0
and the Caputo derivative
1 (s
‘D& u(t) = ()d&t>m 0<a<l1

rl—-a)l, (t—s)=
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4.2.3 Main Results

4.2.3.1 Economic data for Spanish economy by using the Spanish data from 1960 to 2012, we
apply Matlab to obtain the following figures (4.1),(4.2),(4.3),(4.4),(4.5),(4.6),(4.7),(4.8)
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Figure 4.5: xc = x4 Gross Capital Formation ( GCF ) Curve.
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Figure 4.8: xg Money and Quasi Money ( MQM ) Curve.

4.2.3.2 The coefficients and orders by using genetic algorithm in the Matlab, we obtain the
following data (see Tables:4.2 and 4.3). Here we remark that the coefficients are estimated by
using the method of least squares.
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Table 4.1.a: Spanish economic data for years 1960 —2012. GDP, x5 , x¢ , X7 and , xg in 2012
euros , x, in km? ,x, in % of x; ,x5 in people and , x, in years.

Year GDP(x10'') x, X, X3 Xy GCF(x101%) x, (x101%) x, (x1010) xg (x1010)
1960 1.69 499780 32.51 30455000 4.70 13.5 1.41 1.52 9.91
1961  1.89 499780 32.51 30739250 4.74  15.2 1.50 1.66 11.33
1962 2.07 499780 32.61 31023366 4.77  1.58 1.72 1.80 12.34
1963  2.27 499780 32.42 31296651 4.79  14.5 1.75 2.04 13.42
1964  2.39 499780 31.85 31609195 4.81  13.7 2.11 2.10 15.28
1965  2.54 499780 31.95 31954292 4.82  13.3 2.08 2.29 16.46
1966 2.73 499780 31.03 32283194 4.83  12.4 2.43 2.55 17.27
1967 2.85 499780 31.49 32682947 4.85 10.8 2.43 2.87 18.34
1968  3.03 499780 31.40 33113134 4.87 10.2 3.21 2.96 20.48
1969  3.30 499780 32.18 33441054 4.91 10.6 3.74 3.24 23.18
1970  3.45 499780 31.39 33814531 4.95  9.51 4.29 3.49 25.37
1971  3.61 499780 32.69 34191678 5.01 9.15 4.81 3.72 29.16
1972 3.90 499780 32.59 34502705 5.07 10.4 5.34 3.98 32.99
1973 4.20 499780 32.12 34817071 5.15 11.7 5.74 4.28 36.82
1974 4.44 499780 31.85 35154338 5.22 13.8 6.01 4.71 38.07
1975 4.47 499780 31.66 35530725 5.3 13.1 5.67 4.50 38.78
1976 4.61 499780 31.34 35939437 537  12.8 5.95 5.58 39.61
1977 4.74 499780 31.29 36370050 5.44  12.2 6.45 5.84 38.18
1978 4.81 499780 31.31 36872506 551  11.3 6.85 6.14 37.81
1979 4.82 499780 31.18 37201123 558  11.0 6.77 6.40 38.33
1980 4.92 499780 31.15 37439035 566  11.7 7.22 6.88 39.55
1981 4.92 499780 31.17 37740556 5.75  10.9 8.21 7.34 41.16
1982 4.98 499780 31.16 37942805 5.85  10.9 8.67 7.52 42.40
1983  5.07 499780 31.22 38122429 595  10.7 9.92 7.89 43.74
1984 5.16 499780 31.34 38278575 6.06  10.3 11.27 7.90 45.36
1985 5.28 499780 31.16 38418817 6.17  10.7 11.29 8.28 47.26
1986 5.45 499780 31.16 38535617 6.28  11.5 10.17 8.38 48.38
1987 5.75 499780 31.20 38630820 6.38  13.0 10.45 9.14 52.48
1988 6.04 499780 31.19 38715849 6.49  14.9 10.72 9.51 56.20
1989  6.33 499780 31.06 38791473 6.61 16.4 10.78 10.30 60.39
1990 6.57 499780 30.70 38850435 6.73  17.2 10.60 10.97 62.88
1991 6.74 499780 30.55 38939049 6.86  17.1 10.89 11.71 65.46
1992 6.80 499780 30.44 39067745 6.7 15.9 11.29 12.44 64.49
1993 6.73 499780 29.99 39189400 7.14  14.1 12.23 12.68 67.90
1994 6.89 499780 29.64 39294967 7.28  14.5 14.36 12.57 69.98
1995  7.08 499780 28.12 39387017 7.42 1.55 15.86 12.81 72.81
1996 7.25 499780 28.93 39478186 7.56 15.7 17.14 13.05 75.56
1997 7.53 499780 28.60 39582413 7.69 16.6 19.82 13.17 77.00
1998 7.87 499780 27.40 39721108 7.83 18.5 20.99 13.63 75.94
1999 8.24 499780 26.96 39926268 7.97  20.7 21.99 14.16 79.58
2000 8.66 499780 26.85 40263216 8.13 22.8 25.17 14.85 84.71
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Table 4.1.b: Spanish economic data for years 1960 —2012. GDP, x5 , x¢ ,x; and , xg in 2012
euros , x, in km? ,x, in % of x; , x5 in people and , x, in years.

Year GDP (x10'1)  «x, X, X3 x, GCF(x101%) x, (x101%) x, (x101%) xg (x1010)
2001 8.98 499780 26.20 40720484 8.29 23.7 25.63 15.29 89.47
2002 9.22 499780 25.87 41313973 8.47  24.6 25.20 15.82 92.14
2003 9.51 499780 26.07 42004522 8.64  26.1 25.02 16.46 100.5
2004 9.82 499780 26.09 42691689 8.81 27.8 25.46 17.44 115.3
2005 10.17 499780 25.87 43398143 897  30.0 26.10 18.27 143.3
2006 10.58 499780 25.49 44116441 9.11  32.7 27.83 19.02 175.1
2007 10.95 499780 25.22 44878945 9.23  33.9 29.46 20.07 202.2
2008 11.05 499780 25.04 45555716 9.32  32.2 29.28 21.54 214.6
2009 10.63 499780 25.05 45908594 9.37 2.55 25.43 22.69 223.2
2010 10.60 499780 25.12 46070971 9.39 2.42 28.82 22.69 224.0
2011 10.65 499780 25.08 46174601 9.47 2.29 32.22 22.30 214.6
2012 10.49 499780 25.04 46217961 9.56  2.06 33.80 21.14 199.5

Table 4.2: The orders of the fractional operators

a IOM1 FOM1 IOM2 FOM2

a, 0 0.31072 0 0.26735
a, 0 -0.75424 0 -0.69281
as 0 -0.73633 0 -0.70304
ay 0 -0.99999 0 -0.67233
as -1 -1 -1 -0.60068
g 0 -0.83616 0 -0.95969
a 0 0.31073 0 0.43180
ag 1 -0.13985 1 0.31072
g 1 -0.34465 1 -0.94727

Table 4.3: The coefficients of the fractional operators

c IoM1 FOM1 IOM?2 FOM?2
c; (X 10°%) 9.903 1.954 10.393 227.211
c,(x 10°9) 7.531 11.371 -0.872 9.732
c3(x 10%%) -1.416 -1.150 -0.851 -1.009
cs(X 1019) -2.455 0.141 -0.207 1.576
cs(x 1071) 2.887 0.296 1.658 1.963
ce(x 1071) -2.123 4.707 -0.269 2.646
c,(Xx 10°9) -3.845 1.513 -1.16 1.072
cg(X 1072) 9.582 4.236 16.556 5.358
Co(X 1072) 1.759 9.542 12.459 -6.060
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Now we are ready to give analysis by virtue of estimated value from Matlab via true value.

4.2.3.3 Fitting results : we are using data in (table 4.1a),(table 4.1b) and (table 4.2),(table 4.3)
to calculate GDP, IOM1,IOM2,FOM1and FOM2. After that we are ready to give the fitting
results for IOM,FOM1 and FOM2

(@) From the figure of data fitting in IOM1 and FOM1, one can see that the simulation result
of FOML1 is better than the simulation result of IOM1.(See figure 4.9)

(b) From the figure of data fitting in IOM2 and FOMZ2, you can see that the simulation results
of IOM2 and FOM2 are very close to original data. However, R? of FOMZ2 is closer to 1 than
R?of IOM2. Thus, FOM2 is better than IOM2.(See figure 4.10)

(c) From the figure of data fitting in IOM1 and IOM2 , one can see that the simulation result
of IOM2 is better than the simulation result of IOM1.(See figure 4.11)

(d) From the figure of data fitting in FOM1 and FOMZ2, one can see that FOM2 is closer to
original data than FOM1 although the value of Rfor both FOM1 and FOM2 tend to 1.(See
figure 4.12)

From above, one can deduce that FOMZ2 is the most suitable model for this case.
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Figure 4.9: Data fitting in IOM1 and FOM1
IOM1(R? = 0.9947)

FOM1(R? = 0.9992)
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Figure 4.10: Data fitting in IOM2 and FOM2
IOM2(R? = 0.9968)

FOM2(R? = 0.9997)
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Figure 4.11: Data fitting in IOM1 and IOM2
IOM1(R? = 0.9947)

IOM2(R? = 0.9968)
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Figure 4.12: Data fitting in FOM1 and FOM2

FOM1(R? = 0.9992)
FOM2(R? = 0.9997)
4.2.4 Conclusions

This thesis studies a class of economic growth modelling for the Spanish case. Based on our
results, four models of fractional calculus (IOM1, IOM2, FOM1 and FOM2) are proposed. It
is shown that the date of GDP raised from the Caputo derivative are better than the Grunwald-
Letnnikov derivative.

There are many study cases similar to the Spanish case that was explained in the previous
pages, and among these study cases is the Portuguese case, which is very similar in its results
with the Spanish case, where the results for this study case indicate that when we use the
integer order model the coefficient of determination is (R? = 0.9931) but when using the
fractional order model, the coefficient of determination is (R? = 0.9985) and this indicates
that fractional models have a better performance than the other alternatives considered and
proposed in the literature.
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Chapter Five
5.Palestinian GDP

For more study cases that show the efficiency of fractional order model, we have studied the
gross domestic product of Palestine from the year 2004 to the year 2018, through the
information available through the Palestinian Statistics Center.

Unfortunately, it was found that the Palestinian Statistics Center does not use the fractional
order model in calculating the GDP.

For this reason, we will present the data obtained through the Palestinian Statistics Center as
contained in the published data, and we recommend the need to use the fractional order model
in calculating the GDP, because it ensures a higher efficiency than the currently used method.

5.1 Terms and Indicators
5.1.1 Gross Domestic Product or GDP (Indicator)

This measures the total value added of all economic activities, which consists of the output of
goods and services for final use produced by both residents and non-residents (local factors of
production), and regardless of the distribution of this production, locally or externally, during
a specific period of time. It does not include deductions for depreciation of fixed capital or
deterioration of natural resources.

5.1.2 Final Consumption

This is the amount of expenditure on consumption of goods and services by households,
government and non-profit institutions serving households (NPISHS).

5.1.3 Household Final Consumption

This consists of the expenditure, including expenditure whose value must be estimated
indirectly, incurred by resident households on the individual consumption of goods and
services, including those sold at prices that are not economically significant and including
consumption goods and services acquired abroad.

5.1.4 Government Final Consumption

This consists of expenditure, including expenditure whose value must be estimated indirectly,
incurred by general government for both individual consumption of goods and services and
collective consumption of services.
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5.1.5 Final Consumption Expenditure of Non-profit Institutions Serving Households

This consists of the expenditure, including expenditure whose value must be estimated
indirectly, incurred by resident NPISHs on individual consumption of goods and services, and
possibly on collective consumption services.

5.1.6 Gross Capital Formation

This is the acquisition minus the disposal of produced assets for the purpose of fixed capital
formation, inventories or valuables.

5.1.7 Gross Fixed Capital Formation

Gross fixed capital formation consists of the value of producers’ acquisitions of new and
existing products of produced assets minus the value of the disposal of fixed assets of the same

type.
5.1.8 Change in Inventory

This is measured by the value of entries into inventories minus the value of withdrawals and
less the value of any recurrent losses of goods held in inventories during the accounting
period.

5.1.9 Exports

It refers to whole commaodities (goods and services) that are exported or re-exported outside
the country, conditioned with ownership transcription to another economy or to free customs
regions as a discount from the notional economy which results from transaction with a non-
resident economy.

5.1.10 Imports

It refers to whole commaodities (goods and services) entering the country by air, land and sea
that are used in consumption, for conversion in the manufacturing sector and for re-
exportation.
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5.2 Palestinian GDP Calculations

In order to apply fractional calculus in calculating the gross domestic product for Palestine,
we obtained the following data in (Table 5.1), from the Palestinian Central Bureau of

Statistics.

Table 5.1: Data of Palestinian GDP(2004-2018)

. . Gross Capital Net Exports of
Year() Final Consumption Formation Goods And Services GDP
-2,789.6 4,944.6
2004 6,597.9 1136.3
-3,278.5 5,268.8
2005 7370.5 1176.8
-2,632.2 5,747.0
2006 7384.5 994.7
-3,111.3 6,307.1
2007 8246.1 1172.3
-3,357.7 7,215.3
2008 8843.6 1729.4
-3,894.2 7,899.3
2009 9650.9 2142.6
-3,374.7 8,352.5
2010 9932.1 1795.1
-3,204.3 9,176.6
2011 10501.8 1879.1
-3,945.7 9,699.5
2012 11364.3 2280.9
-3,874.1 10,085.2
2013 11420.3 2539
-3,811.4 10,657.6
2014 11703.2 2765.8
-4,834.3 10,752.3
2015 12538.4 3048.2
-5,755.2 11,221.3
2016 13725.4 3251.1
-5,771.4 11,105.7
2017 13270.5 3606.6
-5,261.6 12,120.3
2018 13538.0 3843.9
x,(t) = Final Consumption = FC
x,(t) = Gross Capital Formation = GCF
x3(t) = Net Exports of Goods and Services = NEGS
GDP = Gross Domestic Product.
GDP = y(t) = FC + GCF + NEGS (116)
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Integer Order Model = IOM

y1(t) = Cix1 (1) + G, ftl; x2(t) + C3x3 (1) (117)
Fractional Order Model = FOM

FOM = y,(t) = C1x,(t) + C,D%2x,(t) + C3x5(t) (118)
To find GDP we use (116).

To find Integer order model we use (117).

To find Fractional order model we use (118).

Where

x,(t) = 202.52t — 404042 (119)
to:the base year.

t : the current year.

We obtained the coefficients of the variables by using the SAS program and they were as
follows:

C, = 0.84301
C, = 79679
C; = 0.38599

The orders of fractional operators can be obtained by using genetic algorithm in the matlab,
but we chose a = 0.5 as an example for the fractional order.
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5.2.1. Calculating GDP.
First we find GDP by using (116)

GDP = y(t) = FC + GCF + NEGS

We using data in (table 5.1) to calculate GDP and the results of our calculation appears in

(Table 5.2) and in (figure 5.1).

Table 5.2: Palestine GDP from ( 2004 — 2018 )

200420052006200720082009201020112012201320142015201620172018

Year X X, X3 GDP
2004 6,597.9 | 1136.3 | -2,789.6 4,944.6
2005 7370.5 | 1176.8 | -3,278.5 5,268.8
2006 7384.5 | 994.7 -2,632.2 5,747.0
2007 8246.1 | 1172.3 | -3,111.3 6,307.1
2008 8843.6 | 1729.4 | -3,357.7 7,215.3
2009 9650.9 | 2142.6 | -3,894.2 7,899.3
2010 9932.1 | 1795.1 | -3,374.7 8,352.5
2011 10501.8 | 1879.1 | -3,204.3 9,176.6
2012 11364.3 | 2280.9 | -3,945.7 9,699.5
2013 11420.3 | 2539 -3,874.1 10,085.2
2014 11703.2 | 2765.8 | -3,811.4 10,657.6
2015 12538.4 | 3048.2 | -4,834.3 10,752.3
2016 13725.4 | 3251.1 | -5,755.2 11,221.3
2017 13270.5 | 3606.6 | -5,771.4 11,105.7
2018 13538.0 | 3843.9 | -5,261.6 12,120.3
== GDP
GDP —— Linear (GDP)
14,000.0
12,000.0 R?=0.978
10,000.0
8,000.0
6,000.0
4,000.0
2,000.0
0.0 . . . . . . . . . . . .

Figure 5.1: R? of Palestine GDP
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After calculating R? we see that the R? of GDP is 0.978
5.2.2. Calculating IOM.

Second we find Integer Order Model by using (117)
t
71 = Coa(©) + €, | 200+ Coxs ()

to

From data in (table 5.1) and by using equation (117) we obtained the results of our calculation
which is appears in (Table 5.3) and in (figure 5.2)

Table 5.3: Palestine GDP with IOM

Yeur X Xz X3 IOM
2004 | 6:597-9 | 11363 | -2.789.6 4558.12
2005 | 7370.5 | 1176.8 | 22789 5672.49
2006 | 73845 | 9947 | 26322 6095.123
2007 | 82461 | 1172.3 | ~3111.3 6797.899
2008 | 88436 | 17294 | 33577 7367.855
2009 | 9650.9 | 21426 | 38942 8002.7

2010 | 99321 | 1795.1 | 38747 8601.642
2011 |10501.8 | 1879.1 | ~3:2043 9309.043
2012 | 113643 | 22809 | 3947 9911.332
2013 | 114203 | 2539 | 38741 10147.54
2014 | 117032 | 2765.8 | ~>81L4 10571.6
2015 | 12538.4 | 30482 | 48343 11142.65
2016 | 13725.4 | 32511 | 7952 122411
2017 | 132705 | 36066 | /714 12127.36
2018 | 13538.0 | 38439 | ~>261.6 12435.46
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Figure 5.2: R? of Palestine GDP with IOM
After calculating R? we see that the R? of IOM is 0.9882

From results we obtained from our calculation above, we see that the integer order model is
better than GDP model since R? of integer order model is 0.9882 while R? of GDP model is
0.978 although the value of R? of both GDP and integer order model tend to 1.
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5.2.3. Calculating FOM.
Third we find the Fractional order model by using (118)
y2(t) = C1x1(t) + C;D%x,(t) + C3x3(t)

From data in (table 5.1) and by using equation (118) we obtained the results of our calculation
which is appears in (Table 5.4) and in (figure 5.3).

Table 5.4: Palestine GDP with FOM

vear | X X2 X3 FOM
2004 | 65979 | 11363 | -2789.6 4485.3
2005 | 73705 | 1176.8 | 32785 5270.67
2006 | 73845 | 9947 | %6322 5665.62
2007 | 82461 |1172.3 | 31113 6309.60
2008 | 8843.6 | 1720.4 | 33577 6804.67
2000 | 9650.9 | 2142.6 | ~3:894.2 7354.33
2010 | 9932.1 | 17951 | 33747 7860.79
2011 | 105018 | 1879.1 | 32043 8241.30
2012 |11364.3 | 2280.9 | 39457 8520.30
2013 | 114203 | 2539 | 38741 9100.26
2014 | 11703.2 | 27658 | ~>8114 9415.32
2015 | 12538.4 | 3048.2 | 48343 9874.82
2016 | 13725.4 | 32511 | 27952 10240.30
2017 | 132705 | 3606.6 | 714 10630.05
2018 | 13538.0 | 38439 | 2016 11220.30
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Figure 5.3: R? of Palestine GDP with FOM
After calculating R? we see that the R? of FOM is 0.9937

From results we obtained from our calculation above, when comparing R? of fractional order
model with R? of integer order model and GDP model, we see that the fractional order model
is better than integer model and GDP model although the value of R? of them tend to 1.
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5.3 Main results for Palestinian GDP

The first result we obtained from the figure of data fitting in GDP model and IOM, we see that
IOM is closer to original data than GDP model although the value of R? for both GDP model
and IOM tend to 1.

The second result we obtained from the figure of data fitting in FOM and IOM, we see that the
simulation result of FOM is better than the simulation result of IOM.

The Third result we obtained from the figure of data fitting in FOM and GDP model, we see
that the simulation result of FOM is better than the simulation result of GDP model.
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6.Results and Recommendations

Through our study of fractional calculus, we see that this science has many important uses in
various types of science, and it has many useful and important applications.

Fractional calculus has many applications in economic sciences, which cannot be ignored
because of its high accuracy in economic results.

Fractional calculus has become widely used in calculating GDP in many European countries
and major industrialized countries because it gives high-quality and accurate results.

In our study of the Palestinian case, we calculated the gross domestic product using the
calculation of the gross domestic product in the traditional way, and then we calculated the
GDP through the Integer order model , and then we calculated it through fractional order
model , and we found that using fractional calculus gives more accurate results than other
methods.

In conclusion, we recommend using fractional calculus, especially in applications that require
very accurate results, because of this science's ability to obtain accurate and high-quality
results that can be relied upon in making important decisions.
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