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Abstract

The extent of removing toxic lead ions (Pb**") from aqueous solutions was investigated using pure calcite and natural calcitic
soil, one of the globally available soils, as effective inorganic adsorbents. The rate of adsorption of Pb** ions on pure calcite
is much faster than that on the soil sample due to the presence of other metal ions on its surface, which block the active sites
and retard the adsorption process. The order of adsorption on the soil was a first-order reaction with respect to Pb** ions.
The rate constant was calculated to be 0.1 min~!. The half-life time of the adsorption of Pb>* ions on soil was calculated to
be 6.9 min at 25 °C. The adsorption process on both solids fits well with the Langmuir isotherm but does not fit well with the
Temkin or Freundlich isotherms. Maximum adsorption capacities were calculated from the Langmuir isotherm as 156 mg/g

calcite and 74 mg/g soil at 25 °C.
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Introduction

The Palestinian territory is one of the regions with very
scarce sources of water due to population growth rate and
misuse of the water resources. In West Bank, water pollution
has serious negative impacts on the health of the people, the
economy, and the environment. Water resources are being
threatened by four main sources: domestic wastewater, solid
waste leachate, industrial effluents, and runoff from agricul-
tural activities. Contamination of groundwater aquifers and
springs as a result of wastewater percolation is a serious
problem in several areas of West Bank. Pollution of water
resources, such as springs and wells, has been identified in
all districts.
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One of the main sources of drinking water in the Pal-
estinian authority region is harvested rainwater. Lead was
found in all harvested water samples; its concentration
ranged from 12.9 to 486.4 ppb (Malassa et al. 2014), which
is much higher than the allowed World Health Organization
(WHO) limit (10 ppb). At the same time, the groundwater
had a much lower concentration of lead in most wells in
the same region, except for some wells in dry seasons that
reached a lead concentration of 109.3 ppb (Malassa et al.
2013). According to this data, we believe that lead is the
most serious heavy metal contaminant in our region and
soil is the main risk for it. The sources of lead metal might
be attributed to uncontrolled burning (incineration) of solid
wastes in illegal dumping sites (Malassa et al. 2014).

Lead ions can exchange calcium ions in calcite crystal,
since the ionic radius is similar in both metal ions (1.14 A
for Ca®* compared to 1.33 A for Pb2*) in solution (Shannon
1976). In addition, their charge-to-ionic radius ratios are also
similar (1.79 for Ca®*, 1.55 for Pb*"), and both ions exhibit
a face-centered cubic structure, resulting in the same coor-
dination number (8) (Schwerdtfeger 2002). As a result, Pb>*
ions fit well in calcite crystal. The X-ray analysis done by
Sturchio et al. (1997) showed that most adsorbed Pb>* ions
occupy Ca sites in the calcite lattice. This means that the
adsorption is mainly chemisorption. Recently, Fiorito et al.
(2022) suggested that both heterogeneous nucleation and
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surface co-precipitation of cerussite (PbCO;) occur depend-
ing on the initial concentration of Pb** ions. The sorption
capacity of Pb>* ions on calcite increases linearly with
increasing initial Pb>* concentration up to a value of 1,680
(20) mg/g when the initial Pb**concentration is 80 mM
(Fiorito et al. 2022).

Soil contamination with heavy metals is one of the
most urgent environmental issues. Heavy metals are toxic
inorganic substances, such as lead (Pb), chromium (Cr),
arsenic (As), zinc (Zn), cadmium (Cd), copper (Cu), mer-
cury (Hg), and nickel (Ni) (Wuana and Okieimen 2011).
Heavy metals are harmful to humans and the biosphere
in general. Heavy metal accumulation in the environment
has emerged due to natural and anthropogenic activities
(Weissmannova and Pavlovsky, 2017). These activities
include urban road construction, agriculture waste, sew-
age disposal, gases from automobile exhausts, industrial
discharges, steel plants, oil lubricants, corrosion of build-
ing materials, car batteries, and incinerating solid waste
containing heavy metals (Al-Jumaily 2016; Ubwa et al.
2013). Heavy metal accumulation in the soil will cause
it to lose its function in crop cultivation. The increase in
heavy metal concentration in the soil is due to its interac-
tion with water and the atmosphere. Furthermore, dust
deposition is the main reason for heavy metal accumu-
lation in soil (Adriano 2001; Li et al. 2001; Sutherland
and Tolosa 2000; Ubwa et al. 2013). In a previous study
done by Sandler, he showed that more than 50% of soils
in Palestine are derived from dust particle size, and the
chemical composition of dust has a significant impact
on the ecosystem and public health (Sandler 2013; Mar-
ing et al. 2003). Calcium carbonate (CaCOs;) is one of
the most abundant and reactive minerals in the natural
environment and is a major component of soil. It is a
dominant component of marine sediments (Morse and
Mackenzie 1990). Among all CaCOj; polymorphs, cal-
cite is the most abundant and thermodynamically stable
and the least soluble (Plummer and Busenberg 1982).
The crystalline structure of calcite is hexagonal, its point
group is 3 2/m, and its density is 2.71 g/cm® (Anthony
et al. 2003). Calcium carbonate minerals are not pure (c.f.
Garrels and Christ 1965) and contain a variety of trace
elements, mostly alkaline-earth elements, like magnesium
(Mg), strontium (Sr), and barium (Ba), but also other ele-
ments like lithium (Li), boron (B), cadmium (Cd), ura-
nium (U), thorium (Th), and others (e.g., Ortega et al.
2005). The enrichment of these trace elements in bio-
genic and inorganic CaCOj, relative to Ca, reflects cer-
tain environmental conditions (temperature, growth rate,
pH, salinity, and the composition of seawater) at their
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time of formation (e.g., Morse and Bender 1990). Car-
bonate minerals play a major contribution to the global
carbon budget (Morse and Mackenzie 1990); they play an
important role in adsorption and desorption processes in
environmental systems (e.g., Langmuir 1997). Calcite is a
good adsorbent for heavy metals, such as Cd** and Pb*".
Many studies have been conducted in this regard (Yavuz
et al. 2007; Cave et al. 2005; Chen et al. 2008). This study
compares the ability of calcite and soil from the Al-Quds
University area to remove lead ions from polluted water.

To the best of our knowledge, this is the first report using
calcite and natural calcite for studying Pb>* adsorption
behavior from aqueous solutions in our region, although
many researchers have worked on the adsorption of various
heavy metals using calcite as the adsorbent in Latin Amer-
ica, Asia, and Europe.

In this paper, systematic laboratory investigations on
the capacity and kinetics of Pb>* adsorption from an aque-
ous solution on both calcite and local natural calcite from
the Al-Quds University area have been reported. All of the
experiments were carried out at the Al-Quds University labs
in 2020.

Materials and methods

Chemicals and reagents

Calcite is (Roth, CaCO; > 99%, Art.-Nr.P012.2) of sur-
face area 0.5 mz/g, determined by both BET and SEM,
respectively (Alkhatib and Eisenhauer 2017a, b, II). All the
chemicals are ACS grade of Merck, and all solutions were
prepared using deionized water (18.2 MQ). Nitric acid and
hydrofluoric acids are ultrapure. The soil sample is surface
soil from the field of Al-Quds University.

Preparation of soil sample

The soil sample was dried in an oven at 50 °C for 48 h until
its weight became constant. It was sieved through a 2 mm
sieve. Complete soil analysis was carried out, including: pH,
total organic carbon (TOC), chemical composition and grain
size determination.

Grain size

Organic carbon was removed from 3.0 g soil sample by stir-
ring it with 100 ml of 32% H,0, aqueous solution at 60 °C
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for 30 min, and the suspension then was sonicated for about
10 min. Aqueous solution was decanted and washing with
32% H,0, was repeated three times. The sample then was
wased with pure water and dried.. The sample then was ana-
lyzed by AS-2011 Laser Particle Size Analyzer, with a laser
beam ranging from 100 nm to 2 mm. Based on Fraunhofer
diffraction theory, the particle size of the soild sample is
directly proportional with the extent of light scattered
(Mudroch 1997).

pH and water saturation

The pH of soil sample was measured by mixing equal
masses of soil with pure water. After stirring the suspen-
sion for about 10 minuets, pH was measured using the WTW
2F40110 pH meter at room temperature.

To a 30.0 g of soil sample in a 250 ml conical flask, pure
water was added gradually with stirring until the surface of
the soil became shiny. The surface of the sample was kept
shiny for one hour by adding small amounts of water as if
it was needed. The flask was weighed and water needed eor
saturation was calculated.

Total organic carbon (TOC)

Organic carbon in the soil sample was determined via Walk-
ley—Black chromic acid (K,Cr,0,/H,SO,) oxidation method.
1.00 g soil was oxidized with 75.00 ml (excess amount)
1.00 M chromic acid solution while heating. The excess
(remained un react) chromic acid was titrated with freshly
prepared 0.5 M standardized FeSO, aqueous solution using
diphenylamine as an indicator. Blank titration was carried
out. The %organic C in the soil sample was calculated using
the following equation:

Organic C, % = ((Vblank-Vsample) X M(FeZJ') % 0.003 x
100 x f*mcf)/W.

where:

Vblank = volume of titrant in blank, mL

Vsample = volume of titrant in sample, mL

MFe** = concentration of standardized FeSO, solution, molarity

™M)

0.003 is carbon oxidized as in the following equation,
0.003= 12gC % 1 mole K2Cr207 3 mole C

mole 6 mole FeSO4 2mole K2Cr207
f=correction factor, 1.3

W =weight of soil, g
mcf = Moisture correction factor (ASTM D2974-00 2000).

1000m!

Mineralogy

A homogenized ground soil sample was scanned by a PAN-
ALYTICAL X’Pert® Powder XRD- diffractometer equipped
with a pixel detector. Scanning range: 3—70° 20 with a step
size of 0.013° and 70.1 s per step speed.

Kinetics of adsorption

Two grams of soil sample and separately 2.0 g of calcite
were taken, every 200.0 ml of 48.0 ppm of Pb>* ions was
added. The suspensions were stirred (2,500 rpm) for 15 min
at 25 °C, and 3.0 ml samples were withdrawn at certain
intervals of time after mixing. Each sample was filtered and
diluted 1:1 with ultrapure nitric acid. Then, the concentra-
tion of Pb>* ions was measured by ICP-MS. To validate the
analysis of metal ion concentration for accuracy and preci-
sion, two concentrations of lead ions (125 and 250 ppb),
which were used for the calibration curve, were also meas-
ured five times as samples during the run analysis. The
standard deviation for both concentrations was + 1.45.

Determination of the extent of Pb?* adsorption
on the soil sample and calcite

Different 1.0 g samples of soil and calcite were taken. To
each sample, 100.0 ml of Pb%* ions of different concentra-
tions (between 200 and 2500 ppm) were added and stirred
for 2 h (2500 rpm). A 2 ml sample of each suspension was
withdrawn and filtered with a Millipore filter (0.22 pm). Pre-
cisely 1.0 ml of 2% ultrapure nitric acid was added to every
1.0 ml of filtered solution. The concentration of Pb>* ions
was then measured using ICP-MS.

Elemental analysis

Exactly 1.0 g of the soil sample was dissolved in a Mars5
digester using 60 ml ultrapure nitric acid with 30 ml
ultrapure hydrofluoric acid. After the digestion was com-
pleted, the total volume of solution increased with water
until reaching 100 ml in a volumetric flask. Exactly 0.10 ml
of the solution was then diluted to 100 ml. The solid stock
concentration of the sample to be analyzed was 10 ppm. The
measured element concentrations were calculated relative to
this value. The elemental ratio was measured by inductively
coupled plasma mass spectrometry (ICP-MS-QP Agilent
7500cx), using indium (In) as an internal standard for quality
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control and accuracy, combined with a multi-standard cali-
bration method. The main elements were measured in ppm,
while trace and rare elements were measured in a separated
run in the ppb concentration range. Each sample was ana-
lyzed at least three times. Coral standard JCP-1 was used as
reference material and measured after every fifth sample,
which equated to 10 times during this study (N = 10). The
JCP-1 Sr/Ca and Mg/Ca ratios were calculated to be 8.82
+ 0.03 and 4.22 + 0.04 mmol/mol, respectively, which fall
within the statistical uncertainty of the reported values (8.84
+ 0.09 mmol/mol for Sr/Ca and 4.2 + 0.1 mmol/mol for Mg/
Ca) (Hathorne et al. 2013).

Results and discussion
Soil characteristics

The soil sample is Rendzina, and its color is 7.5YR6/4. Its
pH is 8.11. Water absorption is 0.62 g water per g soil. The
percentage of total organic carbon was 0.5%. The grain size
of the soil sample was composed of the following: 23.2%
clay, 62.4% silt, and 14.4% sand. The mineralogy of the soil
sample is 5% quartz, 15% clay, 80% calcite, and less than
1% dolomite and hematite, indicating the sample is mostly
calcite.

Elemental analysis of the soil sample
Major elements in the soil sample were measured by ICP-

MS and calculated as metal oxide percentage, as shown in
Table 1. This data also confirms that the major component

Table 1 Calculated metal

Table 3 Kinetic study of Pb>* removal by 2.0 g of soil and calcite
when each solid sample was stirred for 15 min with 200 ml of 48 ppm
Pb?* ions

Time (min) Soil Calcite

[Pb>*] (ppb) ~ +RSD  [Pb>*] (ppb) =+
RSD
47,851 1.65 47,851 1.65
5 22,417 0.50 nd nd
15,012 2.05 nd nd
12 9581 1.84 nd nd
15 7604 1.90 nd nd

n.d.: not detected (below the detection limit of the instrument during
three replications)

of this soil sample is calcite. The concentration of trace ele-
ments (in ppm relative to the mass of the solid samples) is
reported in Table 2. As shown in Table 2, the concentration
of Pb** ions in the solid sample is 4.0 ug/g soil. The concen-
tration of Cr ions is relatively high (102 pg/g soil) due to the
soil contamination by the deposited dust. The concentration
of Sr** ions in the soil is also high (342 pg/g soil); this is
because the major component of the soil is calcite, and Sr**
ions coprecipitate with Ca>* ions during the precipitation of
calcite (Alkhatib and Eisenhauer 2017a, b, I).

Kinetic study for Pb?* ion adsorption by the soil
sample and calcite

As shown in Table 3, the adsorption of Pb** ions by calcite
was too fast for the kinetics of adsorption on calcite to be
explored; however, the adsorption on soil samples (mainly

des in the soil | Metal oxide Mass% calcite) can be studied. This can be explained by the idea that
oxices i Hhe sotl sampre sio 04 the presence of heavy metal ions adsorbed to the soil sample
All é 3'5 retards the adsorption process more than a pure calcite sample.
E 203 1.6 These already existing metal ions present in the soil sample
Té':é) 3 0'2 are blocking the active centers of calcite and slowing down the
1 . . .
c 02 46.0 adsorption of Pb**, as in the study of Cave et al. (2005), where
Ma o 0.6 Mn?* slows down the adsorption Cr**. The variation of Pb**
N go 0'1 ion concentration with time is shown in Fig. 1a, and it fits the
% ) polynomial function:
K,0 0.2
P05 0.3 [Pb**] = 142.15 — 4877.11 + 46,165 (1)
Table 2 Trace element Ba Co Cr Cu Mn Mo Ni Pb Rb Sb S Th U V Zn Zr
concentrations in the soil
sample in ppm 108.0 5.0 102.0 21.0 1340 15 260 40 11.0 04 3420 23 23 470 59.0 21.0

]
* @ Springer



International Journal of Environmental Science and Technology

60000

50000
[Pb] = 142.15 t2 - 4877.1 t + 46165

40000 R? = 0.9811

30000

[Pb] ppb

20000

10000

time/minutes

10.0

9.0

8.0 /‘
7.0 b
6of @
5.0

4.0

3.0

2.0

1.0
(O
9.8 10.3 10.8

In [Pb]

In rate

In R=1.0222 In [Pb]- 2.276
R?=0.84, P =0.028

Fig. 1 The kinetics of adsorption of Pb2 + ions on the soil sample.
a Changes of Pb2 + ion concentration as a function of time. The lat-
ter values fit a quadratic polynomial function. The instantaneous rate
of reaction corresponds to the first derivative of the polynomial equa-
tion. b Plotting In instantaneous rate as a function of In [Pb2 +]. The
slope of this linear relationship is equal to the order of the adsorption
reaction

The concentration of [Pb>*] is in ppb, and the time (¢) is in
minutes. Since the concentration of the solid material is almost
constant during the whole adsorption process, the rate law can
be written as:

Rate (R) = k' [Pb>]” )

where k” is the rate constant and X is the order of reaction
with respect to the adsorbate ([Pb**] ions). By taking the
natural logarithm for both sides of Eq. 2, we get the follow-
ing equation:

InR = XIn [Pb**] + Ink’ 3)

Plotting In R on the y-axis versus In [Pb>*] on the x-axis,
as shown in Fig. 1b, will show a linear relationship; its slope
is the order of reaction, which is 1 (first-order reaction). This
result agrees with the principles of physical chemistry (e.g.,
Atkins and De Paula 2006). The rate constant was calculated
from the slope to 0.1 min ~!. The half-life of the reaction can
be estimated from the following equation:

iy =In2 /K )

Using Eq. 4, the half-life is estimated to be about 6.9 min.
On the other hand, we can estimate it from the data points of
Table 3 to be about 5 min.

Table 4 Data of adsorption on calcite and the soil sample: the initial [Pb>] concentration (C;) in ppm and in mM, the remaining concentration
of [Pb**] in aqueous solution after equilibrium (C,), and moles of Pb?* ions adsorbed per gram of adsorbent (S)

Initial [PV?*] Calcite Soil

Ci(ppm) Ci(mM)  CeCpptn)  Ce(M) In Ce Sx10°  InS Ce(ppm)  Ce(M) hCe Sx10°  InS

1 2 3 4 5 6 7 8 9 10 11 12
217 1.04 6.75 3.26B-05  —1033 1012 —92 475 229E-05 —10.68 1022  -9.19
436 2.11 45 2.17E-05 —10.74 2084  —848 15 7.24E-05  —9.53 2033 -85
663 3.2 425 2.05E-05 —-10.79 3177 —805 735 3.55E-04 —7.94 2843  -8.17
1068 5.15 I8 8.69E-05  —9.35 5068  —7.59 386 1.86E-03  —6.29 3292 -8.02
1565 7.55 14 6.76E-05  —9.6 7486  —72 800 3.86B-03  —5.56 3692 -7.9
2188 10.56 333 1.64E-03  —6.42 8924  -7.02 1383 6.68E-03  —5.01 3885  -7.85
2464 11.89 947 457E-03  —5.39 73.21 -722 1765 8.52E-03  —4.77 3374 -7.99

Columns 1 and 2 are the initial concentration of [Pb2+] ion solutions. Columns 3, 4, 5, 6, and 7 show the data for calcite, and columns 8, 9, 10,
11, and 12 show the data for soil samples. S = (C;-C,) x V, where V is the volume of solution used and it equals 0.1 L (100 ml)
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Fig.2 Adsorption isotherms of Pb2 + ions on calcite (ais Langmuir, b is Temkin, and ¢ is Freundlich) and on the soil sample (d is Langmuir, e
is Temkin, and f is Freundlich). All isotherms are plotted according to Egs. 5, 6, and 7 in the text

Pb 2* adsorption isotherms on calcite and the soil
sample

Data of Pb?* ion adsorption on calcite and the soil sample
at 25 °C is shown in Table 4. It can be seen from Fig. 2a,
d that adsorption of Pb>* ions on calcite and soil fits well
with the Langmuir isotherm (Eq. 5).

C,/S = C,/Se + 1/(KS) Q)

where C, is the remaining concentration of Pb”* ions (in M)
in the aqueous solution after equilibrium, S is moles of Pb**
ions adsorbed per 1.00 g adsorbent (pure calcite or solid
sample), S, is the maximum moles of Pb** ions that can
be adsorbed per 1.00 g adsorbent for complete monolayer
coverage, and K is the thermodynamic equilibrium constant.

From Fig. 2a, the maximum moles of Pb** ions that can
be adsorbed per 1.00 g calcite (S) is 7.53 X 10~ mol or
156 mg. The equilibrium constant (K) is 3.3 x 10 * M~}
which means that Pb?* ion adsorption is much more
favorable than desorption. From Fig. 2d, the maximum
moles of Pb2* ions that can be adsorbed per 1.00 g soil
sample (S_,) is 3.58 x 10~ mol or 74 mg. For this, the
equilibrium constant is = 3.1 X 10 4*M™!, which means that
the surface of the soil sample of the same mass (1.0 gm)
can’t adsorb more than half the quantity of Pb>* ions that

a
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calcite can adsorb. This is due to the blocking of already
existing metal ions on the active sites of the calcite sur-
face. On the other hand, the thermodynamic equilibrium
constant is almost equal for adsorption on calcite. It can be
seen from Fig. 2b, c, e, f that neither Temkin (Eq. 6) nor
Freundlich (Eq. 7) isotherms, respectively, fit the adsorp-
tion process of Pb>* ions on calcite or the soil sample.

S=alnb+alnC, 6)

InS=1Ina+(/b)InC, 7

In Egs. 6 and 7, @ and b are constants.

Conclusion

This study aims to compare the extent of adsorption of
Pb* ions between pure calcite and natural calcitic soil.
Conclusions from the present study are as follows:

1. Calcite is the major mineral component in the soil sam-
ple in this study and is one of the major components in
all other natural soils.

2. Pure calcite has a very high affinity to adsorb heavy met-
als, such as Pb%* ions. Even though calcitic soil has a
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significant relationship for adsorbing heavy metals, it is
less than pure calcite due to the blocking of the active
sites at the soil’s surface and retardation of the already
existing metal ions for the adsorption process.

3. The maximum adsorption capacity of Pb** ions was cal-
culated to be 156 mg/g calcite and 74 mg/g soil at 25 °C.
These values may differ from other literature values due
to the difference in the surface area of the adsorbents.

4. The adsorption process of Pb>* ions on calcite or calcitic
soil is thermodynamically stable since the equilibrium
constant is very high (more than 3.0 x 10* M™").

5. Soil is the major sink for heavy metal contamination
from dust or contaminated water.

6. Environmental scientists have a great responsibility to
devise easy ways to rid the soil of pollutants, especially
heavy metals, to be exploited in agriculture.
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