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Abstract 

Many of the concepts of mathematics can be generalized. In this thesis we introduce the 
generalized classical Lebesgue spaces, these generalized spaces are called Variable 
Exponent Lebesgue Spaces, denoted by L . .  Other generalized spaces of Lebesgue spaces 
are called Weighted Variable Exponent Lebesgue Spaces, denoted by   L . . 

A noneffective weights in Variable Lebesgue Spaces for any weight function (positive 
locally integrable) is the subject of this thesis. Here the definition will depend on exponent 
function . ,  and weight function  . . This definition used for equivalent of two 
Banach spaces without calculating their norms. The result we have obtained through a 
theorem that gives us the conditions of weight function to be noneffective.  We proved that 

the weight function is noneffective (i.e.  L . L .  ) if and only if   is constant  
almost everywhere in the set where  .  ∞, and   is constant  almost everywhere in 
the set where . ∞ . This theorem is used as another definition of noneffective 
weights in Variable Lebesgue Spaces. 
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  الأوزان غير المؤثرة في فضاءات لبج ذو القوة المتغيرة

  

  ولاء محمد عبد الرحمن جوابرة:  إعداد

  

  جميل جمال. د :إشراف 

  

  :ملخص

  

في هذه الرسالة نقدم فضاء لبج المعمم، ويسمى هذا . العديد من مفاهيم الرياضيات يمكن تعميمها
.  بفضاء لبج ذو القوة المتغيرة ويرمز له بالرمزالفضاء المعمم  L  جلفضاء لب آخرم يوهناك تعم·

L . فضاء لبج الموزون ذو القوة المتغيرة ويرمز له بالرمز  يسمى هو  موضوع هذه الأطروحة ·
L الأوزان غير المؤثرة  في فضاء لبج هذا .لاي اقتران وزن موجب قابل للتكامل محليا  ·

  . وزنال قترانوا · يسالأ قترانالاعتمد على ي  الموضوع · غير  الأوزان تعريف يتطلب  
L لبج المعممة  أن يكون  فضاءاتالمؤثرة في  . L و  الأطروحةلقد حصلنا في هذه  . متكافئين.

أثبتنا أن اقتران الوزن هو غير  حيث, نتيجة تعطينا شروط اقتران الوزن ليكون غير مؤثرعلى 

L أن  أي( مؤثر  .=  L . ثابت في كل مكان تقريبا     كان الاقتران   إذا وفقط إذا)   
 حيث  ما في مجموعة .  ما ثابت في كل مكان تقريبا في مجموعة اقتران هو  (.) ω، و∞>

.  ثحي . .ي المؤثرة ف آخر للأوزان غيريتم استخدام هذه النظرية بمثابة تعريف  ∞ =  L . 
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Introduction    

The concept of equivalent of two Banach spaces depends on their norms . In this thesis we 
focus our eyes on equivalent of  two specific Banach spaces  L .   L .  without finding 
their norms but by knowing if the weight function .  power of   is constant  almost 

everywhere in the set where .   is finite measurable function or if weight function .  
is constant  almost everywhere in the set where .  is infinity measurable function .  If  
this equivalent  holds then  we call the weight  function .   is noneffective in Variable 
Lebesgue Spaces . 

In chapter one , we described the basic ideas of  Lebesgue measure  and the Lebesgue 
integral .After we have given  measure  space ,measurable space, measurable functions , 
and Lebesgue integral concepts ,we moved in sect. 1.5 to convergence  in measure and 
gave  important theorems like Fatou's Lemma , Monotone Convergence Theorem, and 
Lebesgue Convergence  Theorem .All these theorems  talk about how  the integral of  
sequence of real –valued functions can be convergent. 

In chapter two , we displayed some  basic function spaces .For the investigation of 
(weighted)(variable ) Lebesgue  spaces  it is  enough to stay in the framework of  Banach  
spaces  which we  reviewed in sect. 2.1 .In  sect. 2.2 a space  defined  called  
(semi)modular  spaces  which then induces a norm and so is   normed space .  We  defined  
the  appropriate   to  Φ-function  for variable  exponent  spaces  in sect. 2.3 and studies  its 
properties. Sect 2.4 deals with modular space which corresponding Φ-function called 
Musielak–Orlicz space.    

In chapter three , we defined (weighted) variable exponent Lebesgue spaces ( L .  ) L .  
which generalize the classical Lebesgue spaces L , where the constant exponent  is 
replaced by a function  .  .They fall within the scope of Musielak-Orlicz spaces hence 
the general theory implies their basic properties .We are in a position to apply the results of 
general Musielak–Orlicz spaces to our case in sect 3.1 .Finally , we have collected all what 
we learn in previous chapters and in sect 3.1 to realize the main theorem that contains the 
conditions of weight function to be noneffective  in sect 3.2.   
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Chapter One 

Measure and Lebesgue Integration 

 
In the history ,people where engaged in the problem of measuring length ,areas and 
volumes .In mathematical formulation the task was, for given set  how to determine its 
size("measure") µ   .It was required that the length of interval on  or the volume of  a 
cube  in  showed  to  agree with well-known formulae .It was also that this measure 
showed to be nonnegative and additive for  disjoint  collection of sets . 
 
Through this chapter, we describe the basic ideas of Lebesgue measure µ and the Lebesgue 
integral; also we give some of their main properties. The full details and proofs can be 
found in 2 . 
 

Section 1.1 -  

Definition 1.1.1 - ) 

A  -   on a set  is a collection F   of subset of  such that 

(1)    F 
(2) If A  F   then   F 
(3) , If  F   then  ∞  F           

 
We will give  some examples of  . 
Example 1.1.1: Let  be a nonempty set .Then the collection { , } and                       
P (X)= :  are trivial  examples of -      . 
 
Example 1.1.2: Let  be any uncountable set and  let  S= |        countable    
then S is  -  of subset of . 
 
From De Morgan's laws we have ∞  F  whenever  F   . also F   is  closed 
under finite union and intersection. 
 
Section 1.2  Measure Space                                                                                                   
 
Definition 1.2.1:(Measurable Space)  
A non-empty set   together with  σ- algebra  F defined over it is called  measurable space, 
denoted by ( , F  ). 
 
Definition 1.2.2:(Measure) 
A  measure  of a measurable space ( , F ) is a set function  µ :  F → [0,∞]  such that 

(1) µ( )=0 
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(2)  (countable additively)  µ A∞ ∑ µ∞  for  pairwise disjoint sets     F 

Note that  for any sequence ∞ of measurable  sets we have  

µ E∞ ∑ µ∞  

Definition 1.2.3:(Measure Space ) 
 A measurable space ( , F  ) together with a measure µ  is called a measure space, denoted 
by ( , F , µ). 
There  are  some properties of measure space .We will give them as in following   theorem.  
 
Theorem 1.2.1[2]: Given  measure space ( , F, µ).Then we have 
  

(1)  µ ∑ µ  for pairwise  disjoint sets     F 
(2) If ,    F   and        then µ (A) ≤ μ (B).      
(3) If A= ∞ ,    F   and  then lim ∞ μ μ . 
(4) If A= ∞ ,  F and . if µ  ∞   

then lim ∞ µ µ  . 
 
Proof: (1)  By induction , want to show the equation is true  for n=2 . Let    are  pairwise 
disjoint sets   F. 
                   µ μ  μ  μ ∑ μ   
Assume  the equation is true  for n=k then  
                                              µ ∑ μ  
 
for disjoint sets  .Want to proof  that the equation is true  for n= k+1 then  

µ µ  µ µ     

                                                             = µ ∑   
                                                              ∑ µ  
 
(2) Since   then   and since . Therefore by (1) we 
have  µ µ µ  .Since ,    F   then  F   and so  

µ 0 

Hence µ µ  . 
 
 (3)Let  and  for n=2,3,… then for all i 1 we have   is pairwise 
disjoint  measurable set and   Therefore µ µ ∑ µ .                     
Let ∞  so that  

µ µ ∞ ∑ µ∞ lim ∞∑ µ lim µ
∞

  

 (4) Let  A= ∞  and let   .Then for all i 1 we have   is pairwise  
disjoint  measurable set  and ∞  . Now since  and  then 

 and . Hence µ µ µ  and 
µ µ µ . Also since  

µ µ ∞ 
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Thus µ µ µ  and  µ  µ µ  . Therefore  
               μ μ µ  ∑ μ   

                                                                   
                                                                     ∑ μ   

                                                                    
                                                                       lim ∑ μ   

                                                              
                                                                     lim μ μ   
                                                          
                                                            =µ lim

∞
µ  

Since µ ∞ .We have  µ lim
∞

µ . 
 
Example 1.2.1:Let ( , F ) be a measurable space then the simplest measure is zero 
measure which define by µ(A)=0 ,  A  F . 
 
Example 1.2.2: Let X be uncountable set, , F   be a measurable space  then  
  

µ 0          
∞          

 
then  µ  is measure on (X, F  ). 
 
Example 1.2.3: Let P ( ) be the set  all subset of    and  ( , P ( ) ) be a measurable 
space  and define  
 

                                     µ
∞              
                | |                     

then  µ is measure on  P (  ). 
 
We  try now to   construct a measure on X  and on special cases  when  X=  and when  
X=      , which is called the Lebesgue measure. 
 
Definition1.2.4:(Outer  Measure)                                                                                                                 
Let F   be a   σ- algebra of a set  and  µ :F  → [0,∞] be a measure on  F.   For E  we 
define  

                              µ  =   ∑ µ∞
  

  , E ∞

 
 

 
Then the set function µ  is called the outer measure of E. 
      
If    =  ,we will deal with open interval    F   instead  of  such that E ∞  
then µ  where  be the length of interval  therefore the outer measure  of  
E  will be defined as  
 

                                 μ     ∑
  

 , E
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In the same way as for , we introduce the outer measure  on X=     . Recall that by an 
interval in      we understand an arbitrary Cartesian Product of     n-dimensional intervals 
in   . Any interval   of      is of the form  
        =∏ , = , , …… ,     | ,   1  
  
We define its volume as  Vol =∏   which is a  finite non-negative number . 
 
Given  an arbitrary set E     . Then we define the outer measure of E as  

                             μ  =   ∑ Vol∞

  
 , E ∞

 
 

Example 1.2.4 : Let E be a countable subset of   then the outer measure  μ   of E is  
equal to zero . 
 
Definition1.2.5 (Measurable Set) 
A subset  is called (Lebesgue )measurable set if for every , 
              
                                            μ  = μ + μ  
 
Remark 1.2.1:  If ( , F, µ) is measure space then any set in σ-algebra  F  is measurable 
set .  
 
Example 1.2.5 :Any subset E  of outer measure μ 0 is measurable set . 
 
Example 1.2.6: Any open (closed )interval of    is measurable set . 
 
Example 1.2.7: Any Cartesian Product of intervals (a ,b) (c, d) (which is an interval in   
) is measurable set. 
 
Definition1.2.6: (Lebesgue Measure) 
If E is measurable set then we define the Lebesgue measure of E to be the outer measure of 
E that is μ  μ . 
 
Example 1.2.8 : The examples1.2.1, 1.2.2  of measure is also Lebesgue measure. 
 
Note that all properties of  arbitrary measure that we took about it  is also satisfied for 
Lebesgue measure . 
 
Example 1.2.9: Let  be an arbitrary interval in  then the Lebesgue measure of  is the 
length of    . 
 
Example 1.2.10 : Any Cartesian Product of intervals (a,b) (c,d) has Lebesgue measure  
(b-a)(d-c). 
 
Definition1.2.7: (Finite And -    ) 
Let (X, F, µ) be measure space . A measure µ is called finite if µ( )  ∞ and is called  -
inite  if there exist a sequence  of measurable sets in F   such that  

                
                                 = ∞           and       µ( )  ∞ 
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Example 1.2.11 : The Lebesgue measure on 0,1  is finite and the Lebesgue  measure on 
 is - inite measure. 

 
Definition1.2.8: (Complete Measure Space ) 
A measure space ( , F, µ) is said to be complete if the  σ-algebra F  contains all subset of 
sets of measure zero . 
 
Example 1.2.12: Lebesgue measure space ( , P ( ), µ)  is complete measure space. 
 
Definition1.2.9: (Absolutely Continuous Measure ) 
A measure  is called absolutely continuous with respect to  the measure  µ  if (A)=0 
whenever µ(A)=0 for each set A. In this case we write µ . 
 
Section 1.3 Measurable Function                                                        
 
Definition1.3.1 (Measurable Function ) 
Let  :D ∞,∞  where D is measurable set then  is said to be (Lebesgue) measurable 
function  on D if  it satisfies one of the following statements; 
 

(1) For each real number  the set :    is measurable set 
(2) For each real number  the set :    is measurable set 
(3) For each real number  the set :    is measurable set 
(4) For each real number  the set :    is measurable set  

 
These statements imply  
    
  For each extended real number  the set :    is measurable set . 
 
Theorem 1.3.1[2]: Let c be a constant ,  and  are two measurable real valued functions 
define on the same domain .Then the functions  

(1)  
(2)    
(3)    
(4)  
(5)   

are also measurable functions. 
 
Proof:  (1) Let   be any real number .Then the set  
 

:   :    
 
is measurable set since  is measurable function . So that  is measurable function. 
 
 (2)  Let     be any real number .If  c=0 its obvious. Assume   0 then the set 
 

:   :    
 
is measurable set since  is measurable function . So that  is measurable function. 
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 (3) Let    be any real number .If       then 
    and  there exist  a rational number    such  that 

   
Hence  
       :   :   :     
 
Since   and  are two measurable functions and the intersection and union of measurable 
sets is measurable set then :    is measurable set and so   is 
measurable function. 
 

(4)   Since  1    is measurable function when  is measurable function and 
since by (3)  is measurable function then   is measurable function. 

     
       (5)  If   0 .Then the set   

 
:   :   √ :  √  

 
is measurable set since   is measurable function . And if  0 then the set  

 
:    

 
is measurable set ,where  is the domain of   . So that  is measurable function. Now 
since 2  so that 
 

1
2  

is measurable function . 
 
Example1.3.1 : Let A be any set ,we define the characteristic function of the set A to be  

1       
0         

                            
Then  is measurable function if and only if A is measurable set . 
 
Definition1.3.2 : (Simple Function) 
Let  be measurable set .A function  :  is called simple function if there exist  

 and  are measurable subset of  for all  1  such that  

 
 

where   = |  . 
This representation for  is called the canonical representation ,and it is characterized  by 
the fact that the  are disjoint and  are distinct and nonzero . 
 
Remark 1.3. 1: The sum ,the product, and difference of two simple  functions  are  simple. 
 
Example 1.3.2 : The characteristic function of the set of rational number  
 

                     =
1       
0                     ,    is simple function . 
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Section 1.4 Lebesgue Integral 
 
Definition1.4.1 : Let ( , F, µ) be a measure space and : 0,∞  is a simple function . 
We define the integral of   φ by  
                           

      

When  has the canonical  representation , 

 

 
Definition 1.4.2 : (Lebesgue  Integral ) 
Let f :  0,∞  be nonnegative measurable function  on a measure space  ( , F, µ)  .We 
define the Lebesgue integral of   over a measurable set E by  
                       

μ   μ
  

 

For all simple function  
 
Definition1.4.3 :( Almost Everywhere) 
A property is said to hold almost everywhere  (write  .  ,if the set of points where  it 
fails  to hold is a set of measure zero  
 
 Example1.4.1 : We say that   .  if      have the same domain and 
µ | 0 
 
Theorem1.4.1[2]: Let  (X, F, µ) be measure space. If   and  are nonnegative measurable 
functions  on (X, F, µ)  and  be measurable set then  
 

1)          , 0 
 
2)       

 
3) If  µ( ) = 0  then   0 

 
4  If   0  then f = 0  .  on  

 
Proof : 
(1)  Let  be a simple function and  =  |   then for c > 0  we have                    
c  = ∑  =∑  is also simple function thus 
 

 

 
     

 

 
 

It follows that , 
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sup

 
sup

 
sup

   
 

  
(2) Let ,  be two simple functions such that and .Let                       
   | ,  |  ,  | 0  and  

| 0  , then  µ( )  ∞ and  µ( )  ∞. Set  then    is finite 
disjoint measurable sets ,and we may write 
 

    

   and                 

 

 
And so , 

   

 
is a simple function  such that     whence 
  

                          

                        

        

                           

                                                 

 
So that 

   
 

   
     

Taking supremum for both sides  as     then we have , 
                              
      

sup
 

sup
 

   

 
   

Therefore  
                          

 
 

                   1
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(3)Let 

     

be a simple function. Since  µ( ) = 0  then µ( ) = 0  .Now   

     

Then 
 

         0 0 

it follows that 

 
 

sup
 

sup 0 0 

    
(4)  Let   be nonnegative measurable function and 0   . Let  | 0  
and 1/  so that  and    . Since   , then  

 

0
   1

 
1 

1
1

0
 

 

 
 Therefore  µ 0  and by Theorem 1.2.1 (3) we have  
 

µ lim
∞
µ 0 

 
Whence  µ  | 0 µ 0     thus, we conclude that   0  .   on  . 
 
Section 1.5 Convergence  in Measure 
 
Definition 1.5.1 : (Convergence Almost Everywhere)  
Let , F ,µ  be a measure space and let  be a sequence of measurable  functions. We 
say that  converge to measurable  function  almost everywhere if  
µ | 0 . In this case we write   .  
 
Definition 1.5.2 : (Converge in Measure)   
Let , F ,µ  be measure space and let   be a sequence of measurable  functions. We 
say that  converge in measure to measurable  function  if for every 0 we have  
 

lim
∞

: | | 0 
  
That is , for every 0 and  every  ′ 0 there exist integer  such that  for all n    
we have   : | | ′. In this case we write    
 
Example 1.5.1: Let : 0,∞  define by  
 



11 
 

1       
 

                 
 

 
Define : 0,∞  by   then with respect to Lebesgue measure µ,                     
    .   0,∞ . 
 
Theorem 1.5.1[6] :Let , F ,µ  be measure space .If        then there exist a 

subsequence   such that      .  on  . 
 
Proof: Since       then there exist an increasing sequence of integer     such that for 

all  we have  : | | 2 2    .  Now let , 
: | | 2      ∞∞  Thus 

∞∞ : | | 2∞∞  suppose    want to show 
that       and  0 . Since     then there is some 1 such 
that : | | 2∞   so for  large enough we  have 2 . 
Whence  for  ,  we get  | | 2  thus                    
   .Moreover,for each 1 we  have 

 µ µ ∞∞    ∞   ∑ ∑ 2∞∞ 2   
so that 0 2   1 thus 0 .We conclude that    .   on . 
  
 Definition1.5.3 : (Cauchy in Measure) 
 A sequence of measurable functions  is called Cauchy in measure if       
  For every 0 we  have 
 

lim
, ∞

: | | 0 
 
That is,  for every 0 and  every  ′ 0 there exist integer  such that  for all                       
n,     we have   : | | ′. 
  
Example 1.5.2: Show that every sequence  which converge  in measure , is Cauchy in 
measure . 
 
Solution : Let  0 and ′ 0 be given , since   converge  in measure  then there is 
measurable function  and an integer  such that for all  n    we have             
µ : | |

′
, then for all  ,  we have 

: | |   : | |   is subset of : | |  . 
Thus by taking complement,  
 
              : | | : | |   : | |    
      
  so for    ,   we have   µ : | |  
                                          : | | : | |  

                                                
′ ′

′  
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so that  is Cauchy in measure. 
 
Theorem1.5.2[2]: (Fatou's Lemma ) 
If   is a sequence of nonnegative measurable functions and     .  on a set , then 

 
 

 
 

                     
Proof: Without loss of generality we may assume  everywhere , since integral over  
sets of measure zero are zero  .Let  be a bounded measurable function which vanishes 
outside a set  ′,  µ ′ ∞ and  .Define 
 a function  by setting , 

            ,  
 
Then  is bounded by bound for  and  vanishes outside ′ so that 
   ′.Thus by Bounded Convergence Theorem ,we have  
                   

     lim  
 

′

 

′

 
 

 

′

 
 

 
Taking the supremum over , we get  
                                             

                                                      
 

sup
  

 

 
Theorem 1.5.3 [2]:(Monotone Convergence Theorem ) 
Let  be an increasing sequence of nonnegative measurable functions, and let  

  .   .Then  
 

 

 

 
 

Proof : If   is a sequence of nonnegative measurable functions and     .  then by 
Fatou's Lemma(Theorem1.5.2 ) we have 
  

       
 

 
 

 

 
 

But   is an increasing sequence  then for each  we have  , and so                     
 
 

 
  .Taking   for both side  we get 

 

 

 

 
 

Whence 

 
 

 

 

 
 

On other hand we know  that 
                   

 
 

 

 

 
 

Therefore  
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Hence 
                                                         

  
 

 

 

 
 

We see in Theorem 1.4.1 that       .Now by using Monotone 
Convergence Theorem  we will see in following theorem that  both sides are realized . 
 
Theorem 1.5.4 [7]: Let  ( , F, µ) be measure space. If   and  are nonnegative  
measurable functions  on ( , F, µ) then    

 

                                          
 

 

 

 

 

 
 

 
Proof: Let   , ,  and ,  be increasing sequence of nonnegative 
simple functions such that    a .e on   and   a .e    as ∞ .Then    
is increasing  sequence of nonnegative simple function such that                       
     .   on    as  ∞    
because  

|  | |  | |  | | | 0 
as  ∞  . By Monotone Convergence Theorem we have 
 

lim
∞

 

  
 

 

 
 

 
And  

lim
∞

 

  
 

 

 
 

 Hence  

                                lim
∞

   
 

 

 

 
 

 

   lim
∞

   
 

 
 

 

             lim
∞

 
 

 
lim

∞
 

                                         

                                                         
 

 

 

 
 

So that 
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Theorem1.5.5 [2] :(Lebesgue Convergence  Theorem ) 
Let  be integrable over  and let  be a sequence of measurable functions such that 
| |  on  and   .      then  

 

 

 

 
 

 
Proof : Since | |  then 0  and  lim ∞   .      then by 
Fatou's  Lemma (Theorem 1.5.2 ) we have  

  
 

 
 

 

Since | |   lim ∞| | lim ∞   ,and  is integrable  then  is integrable so 
that  

  

 

    

 

 
 

Hence 
 

 

 

 

 
 

 
Similarly, considering  ,we get  
 

 

 
 

 

 
 

Thus we conclude    
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Chapter Two 

Basic Function Spaces  

  
In present Chapter we study many important spaces that help us to achieve  our goal. In 
this thesis  we study modular spaces an  Musielak–Orlicz  spaces which provide the 
framework for different function spaces, including (weighted) Lebesgue spaces , Orlicz 
spaces  and variable exponent Lebesgue spaces. We will study also the relationships 
between these spaces .We  shall review normed space which include  definition  these 
spaces. Many of the results in this chapter will be used in next chapter. In this chapter we 
will consider  Ω     and µ is Lebesgue measure.  
 
There is no big difference in the definition of real valued and complex valued spaces. To 
avoid a double definition we let   be either  or . We will denote the set of all 
measurable functions from Ω     by L Ω  . 
 
Section 2.1 Normed Space 
 
Before we give the definition of normed space we give four definitions that we will  use in 
several sections later. 
 
Definition 2.1.1 :(  Lebesgue Space ) 
Let Ω, F, µ  be Lebesgue measure space and 1 ∞.Then we define Lebesgue Space 
 L Ω,µ  by  

L Ω, μ L Ω   | | µ ∞
 

 

 
To simplify , we write L Ω , or L  when the measure space has been specified . When 

1 the space L Ω  consists of all integrable functions on Ω. 
 
Definition 2.1.2:( Lebesgue Space ,  ∞) 
Let Ω, F,  µ   be Lebesgue measure space .Then we  define L∞ Ω,µ  by 
 

L∞ Ω, μ L Ω  |            Ω   
 
We mean  is essentially bounded on  Ω, If there exist 0 ∞ such that  
                                                           

| |      .    Ω  
 
As in case 1 ∞.We write L∞ Ω  or L∞ 
 
Definition 2.1.3:( locally integrable)                                                                                                              
Let  Ω be open set in  and   : Ω  is a Lebesgue measurable function.   If  the 
Lebesgue integral 

| |  ∞
 

 

for all compact subset    in Ω ,then f is locally integrable. The set of all such  
 functions is denoted by  L Ω   .                                                                    
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Example 2.1.1 : The function =1 is locally integrable  but not integrable on  . 

Definition 2.1.4: (Weight  Function)                                                                                                             
A function  : Ω 0,∞   such that   L Ω   called weight  function . 

Definition 2.1.5:Weighted  Lebesgue Space(  Ω  )                                                                                   
Let Ω, F,  µ  be Lebesgue measure space,  is weight function  and1 ∞ .Then we 
define weighted Lebesgue Space   L Ω,µ  by 

 L Ω, μ L Ω | | µ ∞
 

 

To simplify , we write  L Ω , or  L  when the measure space has been specified. 

Definition 2.1.6: (Norm) 
Let  be a vector space . A norm on  over a filed  is a function . :   0,∞  such 
that for every  ,  and   we have 
 
   N1    0     

   N2   0      0  

   N3   | |  

   N4          (triangle inequality) 

Definition 2.1.7: (Normed Space) 
A normed space is a pair ( , . ) where  is vector space and .  is a norm  defined  on . 
 
Definition 2.1.8:(Complete Space ) 
The normed space  is said to be complete if  every Cauchy sequence  in  converges in . 
 
Definition 2.1.9: (Banach Space)  
A  Banach space is a complete normed space . 
 
We will give now  some examples of Banach space ,in the next section we present other 
main normed spaces  .For all examples we want to show that  .   satisfied all properties 
N1 to N4 of norm .  
 
Example 2.1.2: Euclidian space   is a Banach space with norm defined by                                               

                                  =  ∑       , where   , … ,   

Example 2.1.3: The Lebesgue Space L  Ω  where 1 ∞, is normed space with 
norm defined by 

    | |
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Solution: Let  , L  Ω , . So that 

N1   Since  | | 0   1 ∞,then| | 0 thus  by definition of integral.  
Since again 1 ∞,then  

| |
 

 
0  

  N2   0     | |
 

 
0   | |

 

 
0 

    | | 0    .    Ω      | | 0    .     Ω     0 since   L  Ω  . 

 N3   | |
 

  | | | |
 

                   

                                                                | |   | |
 

 

 Since     . So that    | |  

N4     by Minkowski  inequality . 

Example 2.1.4: The weighted Lebesgue Space  L Ω   where 1 ∞, is normed space 
with norm defined by 

  , | |
 

 

Solution: Let  ,  L Ω , . So that, 

  N1  Since | | 0 , 0,  1 ∞,then | | 0 .Thus 
| | 0    by definition of integral .Since again 1 ∞ then    

, | |
 

0 

  N2   , 0     | |  0   | |  0  

    | | 0  .    Ω  because  0.     | | 0    .    Ω  

     0 since   L Ω . 

N3   , | |
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                            | | | |     

                            | |   | |   since     

                            | | ,      

   N4   , , ,   by Minkowski  inequality .  

Example 2.1.5: The Lebesgue Space L Ω  where ∞  L∞ Ω , is normed space with 
norm defined by 

∞   sup| | 

Where   sup | |  : | |      .  on Ω  

    Before we prove that L∞ Ω  is normed space we will give lemma that we use in the 
prove. 

Lemma 2.1.1[2]: If   L∞ Ω   then | | ∞    .   on Ω . 

Proof:   Let  L∞ Ω  then  there exist  0 such that  

| |      .  on Ω 

But  ∞  : | |      .  on Ω  Therefore 

| | ∞    .   on Ω . 

Now we are ready to prove that  L∞ Ω  is normed space. Let , L∞ Ω , 

. So that 

N1  Since ∞  : | |      .  and 0 ∞ then 

 ∞ 0 

N2   ∞ 0    ∞  : | |      . 0 

     µ Ω: | | ∞ 0 0       

µ Ω: | | 0 0           0   a. e  on Ω      0   since L∞ Ω . 

N3   The equality is obvious for 0. Assume 0 then  

 |  |    | |   where  
| |

0 .Whence  

                        : | |      .  

                                   : µ Ω: | | 0  
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                                       : µ Ω: | |
| |

0  

                                   | | : Ω: | | 0  
 
                                   | |  : Ω: | | 0  
 
                                   | |    : | |      .  

                             
            
 

        | |
 

N4   Let ,   L∞ Ω  then by lemma 2.1.1 we have  | | ∞ 
   .     Ω, and  | | ∞    .     Ω . Now 
 

| | | | | | ∞ ∞  
 
.    on Ω . Hence 

 
∞   sup| | ∞ ∞ 

 
Definition 2.1.10: (Converge in Norm) 
A sequence  in a normed space    converges in norm(or strongly) to   in   if  

           lim
∞

0 
In this  case we write  
 
Definition 2.1.11: (Cauchy in Norm)  
A sequence  in a normed space   is Cauchy if for  every 0  there is  an integer  
such that for all ,  we  have 
                                                                                                                    

 
                                                                                                                                         
Example2.1.6. Let X be the set of all continuous real valued function on  0,1  with norm 
defined  

                                                                     | |  

               And                   

0                    , 0

  ,        

1     ,            1

   

Then  x t  is Cauchy sequence . 

Solution : Let 0  take k 
ε
, then   m, n k  we have  

|x t x t |    

which  is the area of the triangle in fig :1   
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1 1 1
2

1
   

1
           

Therefore  x t  is Cauchy sequence. 

 

Fig :1 

 

 

 

 

 

 

 

 

Section 2.2    Modular Function  

It is better to start with the function called modular which then induces a norm that for  
investigation of (weighted)( variable) Lebesgue spaces .In some cases the modular has 
certain advantages compared to the norm, for example in the case of Lebesgue spaces  the 
modular | |    compared to the  norm 

| |
 

 

Definition 2.2.1 : (Convex Function)                                                                                                            
A function defined on  open interval ,  is said to be convex  if for each ,
      , 0, 1 we have 

 

Note that If  is any interval, open, closed, or half-open, we say that  is convex on    if  is 
continuity needed on   and convex in the interior. 

Lemma 2.2.1[2]: If  is a function defined on an open interval ,  which have a second 
derivative at each point of ,  .Then  is convex  on ,  if and only if ′′ 0 for 
each ,  
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Proof : Let ′′  is exist   ,  .If  is convex  on ,  , then its left and  right - 
hand derivatives are exist and are monotone increasing  on  (a, b) so that ′  is monotone  
increasing on , . Hence ′′ 0    , .  Conversely, If ′′ 0                  
  ,  then ′  is exist and also  monotone increasing on , . Since  ′  is 

exist then    is  continuous on ,  .Hence  is convex  on , . 

Example 2.2.1 : Show that the function  is convex  on 0,∞  for 1 ∞ . 

Solution : Let   then  is continuous on  0,∞  for all . We want  only to show 
that   ′′ 0  on 0,∞ . For 1,   so that ′′ 0. And for 1 ∞ 
we have ′′ 1 0  since 0,∞ .Therefore  ′′ 0  for each point 
in 0,∞  .Thus by lemma 2.2.1 we conclude that  is convex  on  0,∞  and so  
convex  on 0,∞  for 1 ∞. 

Definition 2.2.2 :( Semimodular Function)                                                                                                   
Let  be an arbitrary vector space.  A function : X 0,∞   is called a semimodular if for 
arbitrary  ,   in X,  

 S1) 0 0 

 S2       for every   with | |    1 

 S3    is convex 

  S4      0 for all     0 implies    0. 

A semimodular  is called  

Right continuous, if for every       , we have  lim   . 

Left continuous , if for every      , we have lim     . 

Continuous , if it is both right and left continuous. 

Definition  2.2.3:( Modular Function)                                                                                                           
Let  be an arbitrary vector space.  A function : X 0,∞   is called a  modular if for 
arbitrary  ,  in X,  

 M1) 0 if and only if   0 

 M2       for every    with | |    1 

 M3    is convex 

Remark 2.2.1. Note that our semimodular (modular) are always convex, because we will 
deal with convex modular in our thesis ,in contrast to some other sources. 

Now we give examples of modular functions : 
 
Example 2.2.2 :If  1 ∞. then  
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| |
 

 

is a modular function on L Ω  . 
Solution :  Let  be a measurable function on Ω ,So that 

M1)  0    | | 
Ω 0   | | 0   .      | | 0   .   since  

 1 ∞.    0  .       0  since  L Ω . 

M2) L    with | |  1. Then  

  | |
 

| | | |
 

 

Now since | |  1 and 1 ∞ then | | 1 whence 

| |
 

 

M3   Let  be a measurable function on Ω , , 0, 1 .Then   

           | |
 

 

                                  | |
 

 

                                  | |
 

 

Now since  is convex  on 0,∞  for 1 ∞ then if we let    | | we 
have | | | |  is convex on 0,∞  for   1 ∞, therefore  

                         | |   | |   | |   

Imply that,   | | | | | |  So, 

| | | | | |
  

 

                                            | |
 

| |
 

 

                                            | |
 

| |
 

 

                                       

Hence,        for , 0, 1 it follows that  is 
convex and we conclude that  | |   is a modular function on L Ω  . 
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Example 2.2.3 : If  1 ∞, and   is weight function .Then 
                              

   | |
 

 

Is a modular function on L Ω  . 
Solution :  Let  be a measurable function on Ω ,So that 

 M1   0 | |  0   | | 0   .  on Ω  
    | | 0     .    Ω  since  0    | | 0   .  since1 ∞  . 
      0    .       0 since  L Ω .                                                                                                       

M2  L    with | |  1. Then 

  | |
 

| | | |
 

 

 now since | |  1 and 1 ∞ then | | 1 whence 

| |
 

 

M3   Let  be a measurable function on Ω , , 0, 1 .Then   

           | |
 

 

                                  | |
 

 

                                  | |
 

 

As we say in example 2.2.1 ,that  | | | |  is convex  on  0,∞  for 1 ∞ 
therefore  

  | | | | | |  So, 

| | | | | |
  

 

                                                       | | | |
 

 

                                                      | |
 

| |
 

 

                                                      | |
 

| |
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Hence      for , 0, 1, it follows that    
is convex .We conclude that  | |    is a modular function on L Ω . 

Example  2.2.4 :Let L∞ Ω  .  is normed space with norm defined by 

∞   sup| | 

Then ∞   ∞ is modular function on L Ω  . 

Solution : Let  be a measurable function on Ω ,So that 

 M1)  ∞ 0    ∞ 0    0  as in example 2.1.4  

M2)  Let   with | |  1.Then   ∞   ∞ | | ∞ .Now since | | 1 thus 
∞ ∞ ∞  . 

M3   Let  be a measurable function on Ω , , 0, 1 .Then by example 2.1.4  
we have,                  

  ∞ ∞ ∞ ∞ since  , L∞ Ω .But  

    , 0   thus    ∞ ∞ | | ∞ | | ∞ 

                                                          ∞ ∞ ∞ ∞  

then ∞ ∞ ∞  and so ∞ is convex .Then we conclude that  
∞   ∞ is modular function on L Ω . 

We will give other two modular functions  in chapter three . 

Let  be  a semimodular(modular) function on .Then by convexity , non-negativity of  
and (0) = 0 we have     is non-decreasing on [0,∞) for every     .  Also, 
 
                         | |    | |            for all | |   1 
                                                                                                                                 2.2.4  
                         |λ|     | |             for all | |   1 
 
Definition 2.2.5 (Modular Space )                                                                                                                  
If    be a semimodular or modular  on  , then                

                                               :   ∞      0    

Is called semimodular space  or modular space  ,respectively. 

Definition 2.2.6: The semimodular( modular) space  can be equipped with a norm called 
the Luxemburg  norm, defined by, 

0:   1  
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In the next theorem ,we  shall prove  that every semimodular (modular) space  is normed 
under Luxemburg  norm. 

Theorem 2.2.1[4]: Let  be  a semimodular( modular) on  .Then    is normed space 
with the Luxemburg  norm , 

0:   1  

Proof: First we will show that    is vector space . Let ,    and \ 0  then we 
want to show 0    ,   , and   .  0      0 for 
some  0 . Since     and  by (2.2.4) we have  =  | | ′ ∞  for 
some  ′ | | 0 so that   .By convexity of   we estimate  

0
1
22

1
22

1
22  

                           
1
2 2

1
2 2   

                                                              ∞ ∞ ∞                                                                          

For some 0 since ,   .Hence    and     is vector space. Now we say 
properties of norm .  

 N1  The set  0:   1  is nonempty for all   thus 0 ∞                                        

for all    .                                                                                                                                                     

N2) Let 0 then 0  1 for all 0 .Hence                        

0:   1 0 thus 0. Conversely ,if 0 then 1 for 

all  0 .Therefore  by (2.2.4)  , ( )   1  for all 0 and 

0 1 .This implies ( 0 for all 0 ,thus  0 .We conclude that            
0    0 . 

N3) Let   and | |   0 then 

 inf 0:   1  

               inf 0:   1         by (2.2.4) 

               inf 0:   | | 1          

               inf | | 0:   1  
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               | |inf 0:   1 | |  

N4) Let ,    and ′     ′′  . Therefore   and     
 =   where  0  ,  0  .Then  

′
  ′

′
 1 , in the same way 1. By convexity of  we have, 

 
 

                                                     

                                    
 

  1 

Thus  inf 0 1   but      and                     
        then     . Since  0  ,  0  arbitrary we 
obtain   for all ,   . 

Example 2.2.5: The Lebesgue Space L Ω  where 1 ∞, is normed space with 
Luxemburg  norm  defined by 

0:   1  

With modular  function  | |   on L Ω  . 

Solution : In example 2.2.2 we prove that  | |   is modular function on 
L Ω  and in theorem 2.2.1 we proved that every modular space is normed space with 

Luxemburg  norm  ,then L Ω  is normed space with   0:   1 . 

Example 2.2.6: The weighted Lebesgue Space  L Ω   where 1 ∞, is normed space 
with Luxemburg  norm  defined by 

0:   1  

With modular  function   | |   on L Ω  . 

Solution : In example 2.2.3 we proved that  | |   is modular 
function on L Ω  and in theorem 2.2.1 we proved that every modular space is normed 
space with Luxemburg norm ,then  L Ω   is normed space  with 

                                                   0:   1  
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Example 2.2.7:  L∞ Ω , is normed space with norm defined by 

∞ 0:   ∞ 1  

 With modular  function   ∞ ∞on L Ω  . 

Solution : In example 2.2.4 we proved that  ∞ ∞ is modular function on L Ω  
and in theorem 2.2.1 we proved that every modular space is normed space with Luxemburg  

norm  then L∞ Ω  is normed space with ∞ 0:   ∞ 1                                                   

 The question! Does , , ,and  ∞  ∞where  

 , ,  ,and ∞ as we defined them in example 2.2.2, example 2.2.3, and example 
2.2.4? The  answer is  yes .We  will prove our claim . Start with  

   0:   1  ,we will try to prove   for all   0 such 

that 1 

1  1 
 

 

 
| |

1 
1

| | 1   
 

 
 

                

            | |     | |  
  

   

 Hence     for all  such that 1 . It follows that  . In the 

same  way we can show that ,  and ∞  ∞  . 

Theorem 2.2.2[4]: Let  be a semimodular(modular) on . Then 

(a)   1    1 are equivalent .  

(b) If  is continuous , then    1 and  1  are equivalent.  

(c) If  is continuous , then   1    1 are equivalent . 

Proof: (a) If 1 then   1  by definition of .   . On the other hand if 

   1 Indeed, let    1 then 1 thus 

  1 

 (b) Let    be continuous .If     1 then there exist 1 with    1 . It follows 

that  by(2.2.4 ) 1.On other hand let 1 and since  
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is continuous then  is Right- continuous so that there exist 1 such that                   
1 1 hence by (a) we have          1 thus   1. 

         (c) The  equivalence of    1    1 follows immediately from (a)and(b) 
. 

Corollary 2.2.1[4]: Let  be a semimodular(modular) on . 

1  If     1,then     
2  If    1, then     

Proof: (1) The claim is obvious for 0. Assume  0   1 then by (a) in Theorem 

2.2.2 and since  
  

 

1 1 we have 
  

1 ,it follows that by (2.2.4)  

     
  

  
  
     

1  .Hence 

      

  (2) If    1 ,then for 1   we get 1   . Since    

      then    where   0 .By (2.2.4),   

    1    thus   and since   0 was arbitrary then       . 

Lemma2.2.2[4]: Let  be a semimodular(modular) on  and  be a sequence in  
.Then  is converges to 0 in norm as ∞ if and only if   converges to 0 for all 
  0   ∞. 

Proof: Assume  is converges to 0 in norm as ∞ then   0 so that  for 
0  we have   1      1 and large  .Thus by (b)in theorem 2.2.2 we 

have 1      1 and large   .Hence by (2.2.4)   
therefore 0   ∞. Conversely , let  0  for all   0   ∞, 
then 1 for large  k so that by (b)in theorem 2.2.2 we have   1. Hence     

    for large  k .Since 0 was arbitrary ,we  get   0   ∞ and then 
 is converges to 0 in norm as ∞. 

From our modular space ,which was induced by the norm, we can define another type of 
convergence by means of the semimodular as the following definition . 

Definition 2.2.7 : (Converge in Modular)                                                                                                      
Let  be a semimodular(modular) on  and   ,   .Then we say that  is modular 
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convergent ( convergent ) to  if there exist   0 such that 0      

∞  . In this case we write  . 

We say that from Lemma2.2.2 that  modular convergence is weaker than norm 
convergence. In fact, we have lim ∞ 0  for all  0   in norm  
convergence  ,while  .For the modular  convergence  lim ∞ 0 
for some   0 . From this point we can ask our self for what conditions that modular 
convergence and norm convergence are coincide ? This is what the following lemma  
answers it. 

Lemma 2.2.3[4]: Let  be a semimodular (modular) space and    .  Then modular 
convergence and norm convergence are equivalent if and only if 0 implies 
2 0 . 

Proof: Let modular convergence and norm convergence are equivalent and let 0 
with     then want to show that  2 0 .By Lemma 2.2.2 we have   0 
also by the second direction of same lemma we have 0  for all   0, in 
particular take 2 so we have 2 0 . Conversely ,let   with 0. 

To show that modular convergence and norm convergence are equivalent we have to show  
that 0  for all   0. For fixed 0 choose  such that 2 . Since 

0 implies  2 0 ,then  by repeated application of  our assumption we get 
lim ∞ 2 0 . Now  by (2.2.4)and 2  ,we have 2  it 

follows that  0 lim ∞ lim ∞ 2 0 .Thus lim ∞ 0 
and so  0  for all   0.We conclude that modular convergence and norm 
convergence are equivalent. 

Definition 2.2.8: (Monotone  Complete )                                                                                                      
Let   be a modular space .A        is said to be monotone complete if 
                0     and  sup ∞   imply   

    

 In the following theorem , we find the necessary conditions that  modular functions are 
equivalent . 

Theorem 2.2.3[3]: Let  be a modular space  with two modular functions  
   where  is monotone complete .Then there exist , ′, ,  , 0 such that  

(a)                            ′ 
(b)                ′   

Proof:    (a) by contradiction, assume   can't be found ,then there exist a sequence 
0   1,2, …  such that  and  
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. Let     (n=1,2,…) thus 0  therefore 0   ∞   

and                                                        

                            ∑ ∑ 1  

so that  sup , ,… 1 ∞.  
Since  is monotone complete by assumption, there exist  such that ∞ . 
On other hand since  in non-decreasing then for n  we have                        

    1 which contradiction to that    is modular function.  

(b)For any  replace   by  with ′, then by (a) we have    .Now 

since  , then  1  multiply both side by       we have                       

    .Choose     and we conclude that     for 

all  with ′. 

   
Section 2.3       - function                                                                                                     

In this section we start with function that used  in modular function definition also will use   
in L . or L .  definitions  which are modular  spaces  whether  (.) is constant  as in 
section 2.1  or (.) is function as will see in sections 3.1, 3.2.This function is real –valued 
function, if we  take integral of this function we will get the modular that exist in modular 
space definition . The function is called Φ- function. 

The modular space which define  in this way is called Orlicz spaces which will talk about 
it later .  
 
Definition 2.3.1:( - function ) 

 A function : 0,∞ 0,∞  is called Φ- function if for arbitrary t  0,∞ , 

  F1   is convex  

  F2   0 0 

  F3 lim   0     

  F4 lim
  ∞

∞  

A  Φ- function is called  positive  if  0 for all  0.  

 In fact, there is a relationship  between  Φ- functions and semimodular (modular) on . 
We will say that in the following lemma . 



31 
 

Lemma 2.3.1[4]: Let  : 0,∞ 0,∞  and let   be a function such that   | |  
for all . Then  is Φ- function if and only if  semimodular on  with . 
Moreover ,  is positive Φ- function if and only if   modular on  with . 

Proof: Suppose   is Φ- function. Since  lim   0 ,we have  .  Now we 
will check the properties of semimodular :                                         

S1) Since  0 0 then 0 |0| 0                                                                                                 
S2) Let  with | | 1 ,then 

| | | || | | |  since | |  1 .Henc       for   

every  with | |    1.                                                                                  

S3) Since  is convex on 0,∞  so that | |  is convex on  .                        

S4) Assume that 0 for all  0 want to show that   0 , since        
lim  ∞ ∞  then there exist 0 with 0 . Thus  there is no 0 such 
that  which implies that 0. We conclude that   is semimodular. Let  is 
positive and 0 want to show 0, since 0 then 0=  | |  but  is 
positive Φ- function then   | | 0   | | 0    0  and so  modular on .  

Conversely, let  semimodular on  with . Since  then there exist 0 
such that ∞ so for all 0  and from (2.2.4) we have                       

0 ∞ thus   0 such that 0 .Hence 

lim   0 . Since 1 0 and 0 0 then there exist 0 such that   . 1 0 
.In particular there exist 0 with 0 and so  we get 0  
for all  .Since   was arbitrary ,we have lim  ∞ ∞.Since  0 0 then  

 0 |0| 0 0 .And finally since    is convex then  is convex   We proved 
that   is Φ- function. 

Assume that   is modular then want to show that   is positive  Φ- function .Since   is 
modular  then if  | | 0 this imply   0 .Hence for 0  we have               

0.  So that   is positive Φ- function . 

Examples of  Φ- functions :   

Example 2.3.1:Let  1 ∞ . Then | | | |  is positive   Φ- function .   

Solution:  F1   Let | |  then 0 ∞ so   is convex as we say in example  2.2.1. 

                 F2   Let | | 0  then 0 | | | | 0 0 

                   F3 lim
  | |

| | lim
  | |

| | 0                 

                 
 

F4 lim
 | | ∞

| | lim
 | | ∞

| | ∞ ∞ 
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  Moreover for | | 0 we get | | | | 0 since 1 ∞ so that 
   | | | |  is positive Φ- function. 

Example 2.3.2: Let 1 ∞    is weight function. Then                        
| | | |   is positive Φ- function  . 

Solution:   F1   Since | | | |  is convex as in Example 2.3.1 then 

 | |  

| | | |  

                                           | | | |   

| | | |  

So  is convex  . 

F2  Let | | 0 then  0 | | | | 0 0              

F3 lim  | | | | lim
  | |

| | 0                     

F4 lim  | | | | lim
  | |

| | ∞ ∞   since 0 . 

Moreover for | | 0 we get | | | | 0 since  1 ∞ and 
0 so that | | | |   is positive Φ- function . 

Remark 2.3.1:Let    be a Φ- function .Then by convexity of  and    0 0,   is non-
decreasing .Moreover  the following properties  are useful: 

,                                                        (2.3.2) 

, 

for any 0,1  , 1,∞     0. Furthermore inequality (2.3.2) implies                 

 

                                                 2 2                                                           
for all  , 0    0  

Although Φ- function using in many function spaces ,these are not general for what our 
need .In the case of  variable exponent  Lebesgue space  (see CH.3) we need to generalize 
Φ- function that may depend on the space variable. 

Definition 2.3.2: (Generalized - Function)                                                                                                
Let  ( Ω, F ,µ   be - finite ,complete measure space and µ is a Lebesgue measure. A real 
function : Ω 0,∞ 0,∞   is said to be generalized   Φ- function  on  ( Ω, F ,µ   if: 
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(a) ,  is  Φ- function of the variable t 0 for every   Ω . 
(b) ,  is measurable function of   for all  t 0 . 

If  is a generalized Φ- function on  ( Ω, F ,µ   ,we write Φ Ω  and in this case we say 
that  is a generalized Φ- function on  Ω . 

Note that every Φ- function is generalized Φ- function if we  set 

                 ,  for Ω  and  t 0,∞  . 

 In next theorem, we show that every generalized Φ- function (positive) generates a 
semimodular (modular) respectively, on L Ω   

Theorem 2.3.1[4]: If Φ Ω  and L Ω  ,then , | |  is a measurable function 
of    and  

  , | |
 

Ω
   

is a semimodular on  L Ω  .If  is positive ,then  is a modular .We call  the  
semimodular induced by . 

Proof: By splitting the function into its positive and negative part it suffices to consider the 
case  0 . Let  where 0 are simple functions. so   ∑   

where  :  Thus  

                              , | | ∑ , .    

is measurable function of   by definition of simple function  then                     
, | |   , | |  therefore , | |  is a measurable function of    . 

Now will show that  is a semimodular on  L Ω . 

S1) Since  , | |   is Φ-function of | | then   , 0 0 and so 

               

0 , | |
 

Ω
 

      , |0|
 

Ω
   

                           , 0
 

Ω
  0

 

Ω
   0 
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S2) Let  with | |  1 then  

, | |
 

Ω
, | || |

 

Ω
 

But | |  1 then   

, | |
 

Ω
    

3  Let  , 0 and  1. Since  , | |   is convex  of  | | we have  

     , | |
 

   

                                , | |   , | |
 

   

                             , | |
 

  , | |
 

Ω
  

                                             

4  Let        0 for all     0 then  

, | |
 

Ω
0 

thus , | | 0  .  on Ω by theorem1.4.1(5) .But    0 then             
, | |  0  .  on Ω and since lim ∞ , ∞ for all  Ω    then 

| | 0  .  on  Ω thus 0  .    Ω  implies  0. We conclude that  is a 
semimodular on  L Ω  . 

Assume  now  that   is positive and 0 then 

, | |
 

Ω
  0 

Thus , | | 0   .  on Ω.Since  is positive  then   

, | | 0 for all | | 0  implies | | 0   .  on Ω and we have 0.This 
proves that   is a modular on  L Ω  .                             

Section 2.4   Orlicz Spaces 

The aim of this section is  provide to basic results about Orlicz spaces. The Orlicz spaces is 
extending  the usual  L  space with 1 where    function  which enter in definition of 
L  is replaced by a more general function, Φ- function. Also this section will present the 
modular space corresponding  to Φ Ω  with   positive .This modular space is called 
Musielak- Orlicz spaces . 
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Definition 2.4.1 (Orlicz Space) 
Let  ( Ω, F ,µ   be - finite ,complete measure space .Let  be positive  Φ- function and  
be given  by 

                                             | |
 

Ω
   

is modular on L Ω  . Then the modular space 

L Ω, µ L Ω :   ∞         0   

will be called Orlicz space and denoted by  L Ω    L , for short . 

Example 2.4.1: For 1 ∞ ,we saw in Example 2.2.2 that    | |   is a 
modular function on L Ω  and we saw in Example 2.3.1 that  | | | |  is 
positive Φ- function then  
    

L Ω L Ω :   ∞         0   

is Orlicz space . 

Example 2.4.2:  For 1 ∞ and  weight function  , we saw in  
example 2.2.3 that    | | 

Ω  is a modular function on L Ω  and we 
saw in Example 2.3.2 that   | | | |   is positive Φ- function then                                   
 

L Ω L Ω :   ∞         0   

is Orlicz space . 

By theorem 2.2.1,  L Ω  can be equipped  Luxemburg  norm , 

0:   1  

Definition 2.4.2: (Musielak -Orlicz Space) 
Let  ( Ω, F ,µ   be - finite ,complete measure space .Let  Φ Ω  ,  is positive and 

 be given  by 

         , | |
 

Ω
   

is modular  on L Ω  . Then the modular space 

L Ω, µ L Ω :   ∞         0   

will be called Musielak- Orlicz space and denoted by  L Ω    L , for short .The 
Musielak- Orlicz spaces is also called generalized  Orlicz spaces . 
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Example 2.4.3: L Ω  and L Ω  in examples  2.4.1 and examples  2.4.2 are also 
Musielak- Orlicz spaces when define , | | | |   in definition L Ω   
and  , | | | |   in definition L Ω   .  
 
 In general , every  Orlicz space L Ω  is  Musielak- Orlicz spaces when define 

, | | | |   . 
 
Also by theorem 2.2.1, L Ω   can be equipped  Luxemburg norm ,  

0:   1  

Theorem 2.2.1 proved  that  every semimodular (modular) space  is normed space with 
Luxemburg  norm .This is  achieved  for Musielak- Orlicz space L .In fact 
L = L , .   is complete. We need to  prove two lemmas then we can show that  L   
is a Banach space. 
 
Lemma 2.4.1[4]: Let   Φ Ω  and µ Ω ∞ .Then every  . - Cauchy sequence  is 
also a Cauchy sequence with respect to convergence in measure . 
 
Proof: Fixed 0 and let  Ω   , 0  for 0.Since ,  is 
measurable function of  then    is measurable. For all Ω ,   ,   is  Φ- function of 
the variable t then   ,  is non-decreasing with respect to t and lim  ∞ , ∞, 
so    as  ∞ .Therefore Lim ∞ µ V µ 0 .Since Ω ∞ and   Ω 
then there exist  such that    . Let Ω  be a  -measurable set and define 
the measure  

,
 

  

 
If  is   -measurable set with 0 then  , 0   .        
  E. Now since   Ω   , 0  and  we have  µ \ 0 
.Hence |Ω\  . Because Ω\  Ω we get µ Ω\   Ω ∞ .Then there 
exist 0,1  such that  implies E\     ref 6 , Theorem 30. B  . 
Suppose  is a Cauchy sequence in .  then there exist    such that far all 
,  we  have K ε δ 1. For ,  ,by Theorem2.2.2 and by 

(2.2.4)we have 
 ε δ  ε δ  

Let us set  , ,ε Ω: | | ε  want to show that , ,ε
′ for 

  ′ 0.Now                                                                   

                  , ,ε , ,ε  

     ,
 

, ,ε

   ε  

 As above since  |Ω\   and , ,ε  then  
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 µ , ,ε\   .With    we have  , ,ε 2  ,choose ′ 2  and since 
0 was arbitrary .This proves that  is a Cauchy sequence in measure. 

If 0, then as above there exist  such  that 

                          | | 2  for all   thus  0 . 

Lemma 2.4.2[4]: Let   Φ Ω  .Then every .  - Cauchy sequence       L  has a 
subsequence which converge  almost everywhere  to a measurable function . 

Proof : Recall that  is - finte . Let Ω ∞ with   pairwise  disjoint and              
∞ for all    . Then by  Lemma 2.4.1 ,  is a Cauchy  sequence with respect 

to convergence in measure on  therefore there exist a measurable function :  
such that   and by Theorem 1.5.1 there exist a subsequence  of  which 

converge  .  to .Rrepeating this argument for every   and passing to the diagonal 
sequence we get a subsequence  and a measurable function : Ω  such that              

    .  on Ω.   
                                                                                                                                                                  
Theorem 2.4.1[4]: Let  Φ Ω  . Then L Ω  is a Banach space . 
 
Proof: Let   be  a Cauchy sequence in  L  then want to show  is convergent in 
L .  By Lemma 2.4.2 there exist a subsequence   and  a measurable function            

: Ω  such that     .  on Ω so that  0 .  on Ω .This implies 

, 0   .    Ω  .Let 0 and 0 1 , since  is  a Cauchy 
sequence thus there exist ,  such that    1 for all 
,  which implies     ε by Theorem 2.2.2. Therefore by Fatou's 

Lemma (Theorem1.5.2) 
 

                                  , |   |
 

Ω
   

                             ,   lim
 

Ω
   

                            lim   ,  
 

Ω
   

                              lim    ,
 

 

Ω
   

                                                     lim    ε   

Hence   0    ∞ for all   0  and by Lemma 2.2.2 we have 
  0 thus  is converges in L  and since  is arbitrary then L  is 

complete  .we conclude that  L Ω  is a Banach space . 
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 The next lemma has the analogues of the classical Lebesgue integral convergence results . 

Lemma 2.4.3[4]: Let  Φ Ω  and , , L Ω  .Then  

(a) If     .  on Ω,   lim    . 
(b) If  | |   | |    .   on Ω  ,   lim ∞    . 
(c) If     .  on Ω  ,  | | | |    .  on Ω  , and   ∞   

for every  0  , then     in  L  . 

These properties are called Fatou's lemma (for the modular) , Monotone Convergence 
Theorem(for the modular),Lebesgue Convergence  Theorem(for the modular). 

Proof: (a)  By Fatou's lemma (Theorem1.5.2) 

  , | |
 

Ω
      

                        , lim
 

Ω
   

                                , lim | |
 

Ω
               

                      lim , | |
 

Ω
   

                     lim , | |
 

Ω
     

lim    

 
b  Let  | |   | |    .  .Since  ,  is non‐decreasing of   we have 

0 , | | , | |     .  on  Ω  
 
So by Monotone Convergence Theorem we get , 

      , | |
 

Ω
   

 

                                         , lim | |
 

Ω
              

                  
                                  

                     lim , | |
 

Ω
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      lim , | |
 

Ω
  lim     

 
(c) Assume       .   ,| | | |    .   , and  ∞  for every 
  0 then |    | 0  a.e   Ω  , | | lim

∞
| |   lim

∞
| | | | and                    

|    | 2| |.Since   2 ∞  then by Lebesgue Convergence  Theorem we 
have 

   lim     | | lim , | |
 

Ω
            

                           lim , | |
 

Ω
                    

          lim , | |
 

Ω
   

       , lim | |
 

Ω
      

                                                       , 0 0
 

Ω
  

Since 0  was arbitrary then by  Lemma 2.2.2 we have   0 which  implies 
that  in   L  . 

Note that  if   Φ Ω  ,  is positive then  in addition to modular condition of    
modular 

                  , | |
 

Ω
   

is also monotone  complete modular function. 

Theorem 2.4.2[3]: Let  , Φ Ω  , ,  are positive .Then  L Ω L (Ω) if and only 
if there exist , 0 and L Ω  such that  

, ,                        

For all 0 and .  on  Ω .                                                                                                                           

Proof:  Assume  is satisfied and let  L Ω  then want to show that L Ω . 
Since  L Ω  then : Ω  is measurable function and 

, | |
 

Ω
  ∞       0 

                                                                                                                                                                          
Then 

    , | |
 

Ω
  ∞      0   
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But   is satisfied for all 0 and .  on  Ω thus if we take  and | | then 
we have  

                  , | | , | |            .  on  Ω                                            

And since ,  is non- decreasing of t then , | | , | |  for 
some    0 so that  

                 , | | , | |          .  on  Ω    

Hence , 

, | |
 

Ω
    , | |

 

Ω
   

 

Ω
 

 

Now  L Ω  thus | |    ∞ , moreover  , | |    ∞  

       0, therefore 

, | |
 

Ω
  ∞       0   

Which implies that  L Ω . This  proves that  L Ω L (Ω) .                                                         

Assume L Ω L (Ω) ,want to show that    , ,    .  on  Ω .Let 
0 1,2,…  be the sequence of all positive rational numbers .For any measurable 
set    with µ ∞ and for , , 0 in Theorem 2.2.3 (b),we put 

: , ,         1  

And  

             2   

respectively , consider 0 .Since , ∞       we can define  

    , : ,  .So that   ,
∞   for all  where   is 

sufficiently large such that   , 0 ,then   ,       , L .Since if 

otherwise we have   ,  and so  from  eq. (1) 

  , ,   ,

 

Ω
 

                       ,  
 

,

 

                     ,
 

,
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      ,   ,

 

Ω
      

                                                               ,        

Which contradiction to Theorem2.2.3(b). Therefore 

  
  ,

∞       ,    
We  have 
                                 ,

∞ L        
 
by eq. (1) and  Theorem2.2.3(b) as above . Here putting   ∞   , hence we have  a 
sequence of step functions 0   ∞  and   L .Now since    is step function and 
every step function is simple function then we have   ∑  for …

 with 1,2, … ) and for the sequence of disjoint sets                       
 which are subset of  . Now by eq. (1) and                   

Theorem 2.2.3(b)  we have  for 1, 
 

                            ,  
 

Ω
         

                                                  

                                               ,
 

Ω
 

                                   ,             by Theorem 1.5.4   
 

Ω
 

                       

                  ,                
 

                            

 

                                                  ,               
 

 

                                  

    ,                
 

         

                                                

     ,               
 

 

Ω
 

      ,                 
 

 

Ω
 

Thus we have    which implies that  sup ∞ . Since                       
0   ∞  and  sup ∞ then L∞  because  is monotone 
complete ,and furthermore   then by Theorem 2.2.3 (a) we have . 
By our hypothesis L L  and since   L  then L .If we let                        

 : , ,  then for  1we get  
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                  ,
,                

 
,                 

 

The sequence  in which every  is depending on  with measure ∞ therefore 
we can construct a sequence 0   ∞

    . Since    then  sup ∞ 
then exist  ∞ L  so that L and  by the same reason 
state above  . Thus for all positive 0 we have 
                      
                   , , ,                  .  on  Ω . 
 
Since  then ,   L Ω  . The prove is done 
       t    ,    .          
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Chapter Three 
(Weighted )Variable Exponent Lebesgue Spaces 

 
In this chapter we define Lebesgue spaces with variable exponents, L . .They differ from 
classical L  spaces in that the exponent  is not constant but a function from Ω to 
1,∞ .Also we define weighted variable exponent Lebesgue Spaces L . Ω   and 

noneffective weights in Variable Lebesgue Spaces , L . . The spaces L .  fit into the 
framework of Musielak–Orlicz spaces L  and are therefore also semimodular spaces. 
 
In Section 3.1 we study L .  properties. We have collection of properties that satisfied 
immediately from properties of L  .In section 3.2 we  study noneffective weights  in 
Variable Lebesgue Spaces  .We have more results which are linking noneffective weights 
by constant weights almost  everywhere on any subset Ω of . We will denote the set of 
all measurable functions from Ω     by L Ω  . 
 
Section3.1 variable exponent Lebesgue spaces 
 
For the definition of the variable exponent Lebesgue spaces it is necessary to introduce the 
kind of variable exponents .  that we are interested in. Let us also mention that main  
results on the basic properties on L .  in this section is satisfied immediately from section 
2.2 ,section 2.4 . 
 
Definition 3.1.1: Let Ω  and let (Ω,F, µ) be a σ-finite, complete measure space. We  
define  P(Ω, µ) :=P(Ω) to be  the set  of  all  measurable  functions  : Ω → [1, ∞]. These 
functions    P(Ω) are called variable exponents on Ω.  We define also ,for Ω ,that 

  sup and  Ω∞   Ω   ∞  .For brevity ,we denote                 
Ω   .We define also P1(Ω) to be the set of all measurable functions   : Ω    1,∞ . 

In  section 2.3 we mentioned the generalized  Φ- function .Now we  will  give   an example 
of it  and an other example in section 3.2.  

Example 3.1.1: Let   P1(Ω) and L Ω .Then  . , | |   | |  is  
positive generalized  Φ- function .                      

Solution : Since in example 2.3.1  . , | |   is positive  Φ- function   of  | | for 
every   Ω and since . , | |  is measurable function of   for all | | 0  by 
Theorem 2.3.1 . We conclude that  . , | | | |  is positive generalized  Φ- 
function .                      

 We will give other example of modular function which defined it in section 2.2 . 

Example 3.1.2:If    P1(Ω)  then  

. | |
 

Ω
 

is a modular function on L Ω . 
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Solution: Since . , | | | | Φ Ω , .  is positive  by Example 3.1.1 
and L Ω   then by Theorem  2.3.1 
 

    . . , | |
 

Ω
| |
 

Ω
 

 
is a modular function on L Ω  .  
 
Definition 3.1.2:( Variable Exponent Lebesgue Space . ) 
Let Ω, F , µ) be a σ-finite, complete measure space and .   P(Ω) Then we defined 
variable exponent Lebesgue Space  L . Ω, μ  by  
 

L . Ω,µ L Ω    . ∞      0  
 
With  modular function 

. | | ∞ Ω∞

 

Ω Ω∞⁄
 

 
To simplify , we write L . Ω , or L .  when the measure space has been specified . 
                                                                                                                                                                           
Note that if µ Ω∞ 0 then  ∞ Ω∞   =0 and so                                                                                         

. | |
 

Ω Ω∞⁄
 

And  if  µ Ω Ω⁄ 0 then by  Theorem 1.4.1(4)  we  have 
  

| |
 

⁄
0 

So  that 
 
                                                   .  
                                                                                                                                               
Since  L . Ω  is  L Ω   then L . Ω  can be equipped  Luxemburg  norm ,  
 

. 0:   . 1  

The next result  follows  from  Theorem 2.2.2 and  Corollary 2.2.1  . We will deal with 
variable  exponent  instead constant exponent in definition of modular function .  . 

Theorem 3.1.1[4]: If    P(Ω) and  L . Ω  then  

 (a) .   1    . 1 are equivalent .  

 (b) If .  is continuous ,then  .   1 and  . 1  are equivalent.  

 (c) If  .   is continuous, then .   1 and  . 1 are equivalent . 
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Proof: (a)   If . 1  then . 1 by definition of  . .  .On  

 other hand if .   1  Indeed, let  .   1 then 

 . 1 thus                                                                                 

. .   . 1 

Let  .   is continuous .If . 1 then there exist 1 with 

 . 1 . It follows that by (2.2.4) . . . 1 .On 

other hand let . 1 and since .  is continuous then .  is right- continuous so 
that there exist 1 such  that 

. . 1 1 

Hence by  a  we have  . 1 thus  . 1. 

c  The  equivalence of   . 1 and  . 1 follows immediately from 
a and b  . 

Corollary 3.1.1[4]: If    P(Ω) and L . Ω  then 

1           If .   1, then . .  
2  If  .   1, then . .  

Proof:  (1) The claim is obvious for 0. Assume 0 . 1 then by (a) in 

Theorem 3.1.1 and since  
   . .  

1 1  we have  

  .    .
1 ,it follows that by (2.2.4) 

1
   .

.
1

   .
.    .    .   

 

                     
   .

   .
.    .

1 

Hence 

  .   .   

  (2) If  .   1 , then for 1 .   we get 1 .   . Since .   

then .    where   0 .By (2,2,4) , 
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1 .
1
  .   

Thus .   and since   0 was arbitrary then . .   .                                               

Let us give those properties of  L . Ω   derived directly by applying the results of Chap. 2 
.From Theorem 2.4.1we derive 

Theorem 3.1.2[4]:  If  P Ω  then  L . Ω  is a Banach space. 

Proof: Let P Ω . Since  L . Ω     L Ω  where  | | .  or                     
∞

∞  ,then by Theorem 2.4.1we have  L . Ω  is a Banach space . 

      As Lemma 2.4.3, In analogy with the properties for the integral, the next lemma will be 
called Fatou’s lemma (for the modular), monotone convergence  and dominated 
convergence, respectively. 
 
Lemma 3.1.1[4]: Let  P Ω  and , , L Ω  .Then  

(a) If     .  Ω , then  . lim  .  . 
(b) If  | |   | |    .  Ω , then  . lim ∞ .  . 
(c) If     .   on  Ω ,  | | | |    .  Ω , and . ∞   for every 

  0  then     in  L .  . 

Proof: By the same reason in Theorem 3.1.2 and by Lemma 2.4.3 then the proof will be 
done immediately . 

 
Section 3.2 Noneffective Weights in Variable Lebesgue Spaces 
 
We define in section 2.1 , L Ω  where 1 ∞ is constant  and   is  weighted 
function  . Also we define in section 3.1, L . Ω  where P Ω  . Below we will define 
 L . Ω  space where P Ω   we also see that  this space  is Banach  space . 
 
Our aim in this section is  to study  noneffective weights in the framework  of variable 
exponent Lebesgue spaces, This means  what are the necessary and sufficient conditions 
that needed to get the variable exponent Lebesgue spaces is equal  to weighted variable 
exponent  Lebesgue space i. e  L . L . Ω   up to the equivalence of norms.    
 
As is section 3.1 we give an other example of   generalized  Φ- function as we defined  in  
section 2.3.  
 
Example 3.2.1: Let   P1(Ω) , is weight function   and L Ω . Then 

, . , | | | |  is positive generalized Φ- function.                          

Solution : Since in example 2.3.2  , . , | |   is positive  Φ- function  of  | |  for 
every   Ω and since , . , | |  is measurable function of    for  all | | 0  
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by Theorem 2.3.1 . We conclude that  , . , | | | |  is positive 
generalized  Φ- function .                      

      We will give an other example of modular function which we defined in section 2.2 . 

Example 3.2.2: If   P1(Ω)  and   is weight function  then  
 

, . | |
 

 

Is a modular function on  L Ω  . 
                                                                                                                                                                           
Solution: Since   , . , | | | | Φ Ω , .  is postive 
by Example 3.2.1 and L Ω   then by Theorem 2.3.1 
 

, . , . , | |
 

| |
 

 

 
is a modular function on  L Ω .  
 
Definition 3.2.1 : (weighted variable Lebesgue  space ; . Ω  )                                                           

Let (Ω, F , µ) be a σ-finite, complete measure space , .   P(Ω) and   is  weight  
function  .Then we define weighted variable exponent Lebesgue Space  L . Ω,µ  by  

L . Ω,µ L Ω    , . ∞      0  
 
With  modular function 

, . | |   ∞
∞

 

∞⁄
 

 
To simplify , we write L . Ω , or L .  when the measure space has been specified . 
    Note that if Ω∞ 0 then    ∞

∞ 0 and so                                                                                 

, . | |
 

⁄
 

 
And  if  µ Ω Ω⁄ 0 then by  Theorem 1.4.1(4)  we have  

| |
 

⁄
0 

so that  
                                                    , .    
                                                                                                                                                                                              
Since  L . Ω  is  L Ω  where  Φ Ω  then L . Ω  can be equipped  Luxemburg  
norm ,  

, . 0:   , . 1  
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We can see that if 1 then L . Ω L . Ω  and so in this case we say that   
is noneffective weight variable  exponent Lebesgue  space . We will  give general case of 

 to be noneffective at the end of this section . 

                                                                                                                                                                           
We see that in Example 3.2.1 that if   P1(Ω) ,  is weight function and                      

L Ω  then , . , | | | | .  is positive generalized Φ- function.We 
begin with following theorem, which is a consequence  of  results in this example and in 
Theorem 2.4.2 . 

Theorem 3.2.1[1]: Let Ω , . , .    P(Ω) where ∞ , ∞ and 
. , .  are weights functions . Then 

                                                 L .
. Ω L .

. Ω  
if and only if  there   exist positive constants ,  and L Ω  such that 

     

For all 0 and .  on  Ω  . 

Proof: If  . , .    P(Ω) where  ∞ , ∞  then    

   . ∞   , .   ∞  so that  . , .  P1(Ω) thus 

, . , | | | |  

And 
, . , | | | |  

are positive generalized  Φ- function . Since L . Ω  is L Ω  where   Φ Ω  and   by  
Theorem 2.4.2 we have L .

. Ω L .
. Ω  if and only if there exist , 0  and 

L Ω  such that  

                      , . , , . ,        1  

For all | | 0 and .  on  Ω . Since  t   and t   for , 0 and  is  
non decreasing  we have  

, . , , . ,           2  

And 

, . , , . ,          3  

Thus by (1),(2),(3) we get 

, . , , . ,  
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But   
, . ,  

And 

, . ,  

Which imply, 

L .
. Ω L .

. Ω  if and only if  there exist positive constants ,  and L Ω  
such that 

 

For all 0 and .  on  Ω . 

 In the following theorem we consider the case   ∞ that the noneffective weights must 
hold. 

Theorem 3.2.2[1]: Let Ω  , .    P(Ω) , where   ∞ and  .  is weight  
function .Then L . Ω L . Ω   if and only if   is constant   .   on Ω . 

Proof : Let  is constant  .   on Ω .Want to show that  L . Ω L . Ω .  Since   is 
constant  .   on Ω then   a constant     0  such that    .   on Ω. Since 
  ∞ then ∞ so  Ω Ω∞⁄  . If  L . Ω   and    then 

                    , . | |
 

Ω Ω∞⁄
 

Therefore  

                                    , . 0:   , . 1  

                  0:    
 

Ω Ω∞⁄
1  

          0:     
 

Ω Ω∞⁄
1  

      
1

0:  
 

Ω Ω∞⁄
1  

   0:   . 1 .  

And so that  L . Ω L . Ω   . Conversely , assume  L . Ω L . Ω  then 
L . Ω L . Ω  and L . Ω L . Ω  ,want to show that   .   on Ω  .If  
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L . Ω L . Ω    then by Theorem 3.2.1 let  .  . .  P(Ω)  where 
. ∞ , . 1  and    . . . Thus  L . Ω L . Ω  if and only if  there  

exist positive   constants , 1 and L Ω  such that 

        For all  0 and  .  on  Ω   
So that , 

        For all  0 and  .  on  Ω 

Hence, 

              For all  0 and  .  on  Ω        

From which, letting   ∞  we have 0  , therefore  

                         For all  0 and  .  on  Ω        1           

On other hand , if  L . Ω L . Ω   then also by Theorem 3.2.1                        
let . . .     P(Ω) where . ∞ , . 1 and  . . .Thus 
L . Ω L . Ω  if and only if  there  exist  positive constants , 1                       
and  L Ω  such that 

        For all  0 and  .  on  Ω   
So that  , 

        For all  0 and  .  on  Ω   

Hence , 

1         For all  0 and  .  on  Ω    

From which, letting  ∞  we have 0  .Choose   ,therefore 

          For all  0 and  .  on  Ω      2          

Thus by (1) and (2) we have   is  constant   .   on Ω . 

Example  3.2.3: Let  Ω 1,2  ,     , 2  a. e on   

   Ω  .Then show   that    is noneffective that means : 

L .   1,2 L . 1,2  

Solution: Since  .    is bounded on  1,2  then   ∞ and  is constant 
a. e  on Ω  .Thus by Theorem 3.2.2 we conclude  that 
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                                                              L .   1,2 L . 1,2          

Theorem 3.2.2  is a special case of the following more general result when   we consider 
the case   Ω Ω∞⁄ ∞ the noneffective weights must  hold. 

Theorem 3.2.3[1]: Let Ω  , .    P(Ω)  where   Ω Ω∞⁄ ∞  and .  is weight  
function .Then L . Ω L . Ω   if and only if   is constant  .   on Ω. 

Proof: If .    P(Ω) , where  Ω Ω∞⁄ ∞ then there exist 0 such that  

| |   ∞    .  on  Ω Ω∞⁄  

but Ω Ω∞⁄ Ω: ∞   

Then                                                                                                                                                                  
| |   ∞    .  on Ω 

So that    Ω ∞ thus by Theorem 3.2.2 we have L . Ω L . Ω   if and only if   
is constant  .   on Ω . 

We consider now the case if   ∞ ,as in the previous case that the noneffective  weights 
must  hold .  

First we claim that if   is not constant  .  on Ω then  L∞ Ω     L∞ . 

For If     .   on  Ω where  c is constant . Then  either µ : 0  
or µ : 0  .Assume  that µ : 0  and    L∞ Ω  . If  L∞ Ω  

then   is  essentially bounded ,so there exist  0 ∞ such that  

| |      .  on Ω  
And  

                   sup | |   : | |      .  

Therefore           .  on Ω  which is a contradiction to  µ : 0. 
Hence if  µ : 0  then  L Ω .Also if : 0  and                 

L∞ Ω  thus there exist  0 1 ∞ such that  
                               
                                             1     .    Ω  
And  

1
    sup

1
  :

1
     .  
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Therefore           .  on Ω  which is a contradiction to                                                   

: 0 .Thus   if : 0 then  L Ω . 

Theorem 3.2.4 [1]: Let Ω and  .     is weight function .Then L∞ Ω L∞ Ω  if 
and only if   is constant  .   on Ω . 

Proof: Let     .   on Ω ,  and  L∞ Ω  then 
 

                     ∞, .   ∞
∞  

Therefore  

                                     ,       0:     1                                                         

                0:  
1

  1  

           0:      

                                                               

                                                              sup | | 

      inf : | |      .  

    : | |      .  

  : | |     .  

                                                              : | |     .  

                                                                  : | |     .    

Hence L∞ Ω L∞ Ω  .On other hand let L∞ Ω L∞ Ω  then want to show that   is 
constant  .   on Ω . By contradiction , assume L∞ Ω L∞ Ω  and  is not  constant  .   
on Ω then either L∞ Ω  or  L∞ Ω  . If  L∞ Ω  then set  

Ω:   ,  

So that 0 for all  .Now since L∞ Ω L∞ Ω  then there exist  , 0 
such that  

  ∞   ∞   ∞ 

Taking  the supremum in the case   ∞   ∞ with  we have 
sup

  ∞

  ∞ sup
  ∞

  ∞  
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Thus 
  ∞  

But  so that  

  ∞  
                                                                                                                                                                           
for all  which  is a contradiction to    L∞ Ω  .In the second case  If  L∞ Ω   
then set  

Ω:   ,  

So that µ 0 for all  .Now since L∞ Ω L∞ Ω  then there exist , 0 
such that  

  ∞   ∞   ∞ 

Taking  the supremum  in the case   ∞   ∞ with  we have 
sup

 
  sup

 
    

Thus 
   

But  so that  

   

 for all  which  is a contradiction to    L Ω  .So that    is constant  .   on Ω . 

Example  3.2.4: Let  Ω 1,2    ,  ∞ , 2  a. e  on Ω. Then show that  
  is noneffective weight that means : 

L∞  1,2 L∞ 1,2  

Solution: Since  is  constant a. e   on Ω  . Thus  by  Theorem  3.2.4 we  conclude   that 

                                                  L∞  1,2 L∞ 1,2  

Also this can be checked directly , 

                                             ∞, .   ∞
∞  

                                                                                                                                                                           
Let     ,we  have  

                                         ,∞       0:   2 
∞

∞
1                                                         

                                                        2   ∞ 
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                                                               sup
Ω∞

|2 | 

        : |2 |      .  

      : | | 2     .  

                                                              2 : | |     .  

                                                     2    : | |     . 2  ∞ 

Thus  L∞  1,2 L∞ 1,2  and so    is noneffective weight . 

 The following result is our main theorem that give us the conditions where noneffective 
weights have been introduced. Theorem 3.2.2 and Theorem 3.2.4 are consequences of our 
general theorem ,where in  Ω Ω∞⁄ , which possibly empty, an unbounded exponent is 
allowed . 

Theorem 3.2.5[1]: Let Ω  , .    P(Ω)  , and  .  is weight function. Then 
L . Ω L . Ω   if and only if 

                                                                                                                                                  

(1)     is constant  .   on Ω Ω∞⁄  . 

2    is constant  .   on Ω∞ . 

                                                                                                                                                                           
Proof : We have four cases .The two cases  µ Ω∞ 0 and µ Ω Ω∞⁄ 0 the same result  
and the two cases µ Ω∞ 0 and µ Ω Ω∞⁄ 0 the same result  . 

If µ Ω Ω∞⁄ 0 then Ω∞ so that . ∞ and since  is weight  function thus by 
Theorem 3.2.4 we have   L∞ Ω L∞ Ω   if and only if   is constant  .   on Ω∞. So 

want to show  only if .   ∞ then  L . Ω L . Ω   if and only if     is 
constant  .   on  Ω Ω∞⁄   .                                                                                                                       

If  µ Ω∞ 0  and L . Ω L . Ω    then Ω Ω∞⁄  and . ∞  .Since              

L . Ω L . Ω   so that   L . Ω Ω∞⁄ L . Ω Ω∞⁄   and therefore by applying  
Theorem 3.2.1 ,there exist positive constants    , , and 

 L Ω Ω∞⁄  ,such that 

     

For all 0 and .  on Ω Ω∞⁄   . So that  

1    For all  0 and  .  on  Ω Ω∞⁄     
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Thus , 

1   For all  0 and  .  on  Ω Ω⁄  

From which, letting   ∞  we have 0  .Hence  1  So  

      For all  0 and  .  on  Ω Ω⁄    

We get the existence of constant  .Then 

   For all  0 and  .  on  Ω Ω ⁄       1  

Starting from the opposite way, that is if L . Ω L . Ω   thus also by Theorem 3.2.1, 
there exist positive constants   , , and  L Ω Ω⁄  such that 

  For all  0 and  .  on  Ω Ω⁄       

For all  0 and  .  on Ω Ω⁄   . So that  

   For all  0 and  .  on  Ω Ω⁄     

Thus , 

    For all  0 and  .  on  Ω Ω⁄  

From which, letting   ∞  we have 0  .Hence                                          

      For all  0 and  .  on  Ω Ω⁄     

We get the existence of constant  .Then 

   For all  0 and  .  on  Ω Ω⁄     2   

 By (1) and (2) we have , 

is constant   .   on  Ω Ω⁄  

But this equivalent to  

 is constant   .   on  Ω Ω⁄  

That because, 

          
1

 is constant          For  .  on  Ω Ω⁄      
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Conversely ,  assume that     is constant    .   on  Ω Ω⁄   want  to  show  that  if 
  ∞ then  L . Ω L . Ω       . Since  ∞  then    Ω Ω⁄  . Let        . If 

L . Ω  then  

                     , . | |
 

⁄
 

Therefore  

                               , . 0:   , . 1  

                0:    
 

⁄
1  

                       0:  
 

⁄
1  

                                                0:    
⁄ 1  

     0:  
 

⁄
1  

          0:  
 

⁄
1  

         0:   . 1 .  

And so that  L . Ω L . Ω  . 

Example  3.2.5: Let  Ω 0,1    ,   ,  2   a. e  on Ω .Then show that  
  is noneffective weight that means : 

L .   0,1 L . 0,1  

Solution: Since   then ∞  0,1  ,so that Ω Ω∞⁄  .And since 

  . 2 then .  is constant  a. e  on  Ω Ω∞⁄   . Then by  Theorem 3.2.5  we   have 

L .   0,1 L . 0,1  

Also this can be checked directly,  

Let   . If L . 0,1  then   , . | | 2 
∞⁄  



57 
 

Therefore  

                        , . 0:   , . 1  

                  0:   2  
 

∞⁄
1  

                0:   2
 

∞⁄
1  

                2 0:  
 

∞⁄
1  

                 2   0:  
 

∞⁄
1  

                     2   0:   . 1 2 .  

Thus L .   0,1 L . 0,1  . 
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Conclusion 

We have studied in this thesis the background of the concept of   noneffective Weights in 
Variable Lebesgue Space, L . , by proving two theorems using more general theorem. 

 In the beginning we have introduced the concept of measure space and Lebesgue integral 
and given the most important theorems on convergence of integrals of sequence of real 
valued functions. After that we described the modular functions that are used in some 
spaces like modular spaces and other spaces definition called Orlicz spaces, L . The 
second concept L  depends on finite modular function     for some real positive . 

We use this definition in definitions of  L .  and  L . . 

Finally, we presented the main theorem which states how the weight function can be 
noneffective on Variable Lebesgue Space. 
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