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Abstract 
 

COVID-19 was a big issue facing the world, and the development of an effective drug for the 

virus is still under research. However, developing a new drug is a lengthy and costly process 

that might take up many years. Artificial intelligence can have a vital role for faster and more 

cost-effective drug discovery. The primary protease that is essential to SARS-CoV-2 

replication is 3CLpro. In this thesis a machine learning model that can be used to predict the 

inhibitory activity of 3CLpro was developed based on decision tree regressor. The descriptors 

that represent the chemical molecules were obtained using PADEL descriptor software, and 

these descriptors were fed into the decision tree model to train it and predict the bioactivity of 

unknown compounds with the target protein. The model was optimized using pruning and 

ensemble methods, where the decision tree was combined with SVM to improve the model 

performance. The research focused on both external and internal approaches for validating 

model performance. The model successfully discovered 26 unknown compounds from Zinc 

natural product data source that showed bioactivity with the target protein. Moreover, Lipinski 

rule of five (RO5) was applied to prioritize drug-like compounds resulting in 25 of the 

discovered compounds having drug like properties and can be used in clinical trials.  The model 

was validated using 10-folds cross validation and was also validated using external dataset 

from different data source than the data source used in training the model, on both external and 

internal datasets, the proposed model has proven to be effective, however, the model showed 

higher performance on the external validation with accuracy of 0.89, precision of 0.75, recall 

of 0.6 and f1 score of 0.67 for the internal validation, while for external validation 0.98 

accuracy, 0.99 precision, recall of 0.93 and f1-score of 0.96. Compared to similar studies using 

deep learning, our machine learning model showed better performance. In conclusion the 

proposed model can be useful in the drug discovery of new compounds for the COVID-19 

virus. 
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Chapter 1  

Introduction and Background 
 

1.1 Introduction 

 

COVID-19 was a big issue facing the world, and the development of an effective drug for the 

virus is still under research. However, a typical drug discovery cycle might take up to 14 years 

[1] and cost up to 800 million dollars [2] to complete from target identification to Food and Drug 

Administration (FDA) approval. The median cost of the effectiveness trials for the 59 new drugs 

that the FDA had approved during the 2015–2016 time period was $19 million [3]. As a result, 

it is critical to replace the inefficient methodologies used in traditional drug development with 

more efficient, low-cost, and broad-spectrum computational alternatives. This is where 

Artificial Intelligence (AI) can take critical role in accelerating the drug discovery process, 

where intelligent and computational drug design offers a fresh perspective on the system-

centric approach, beginning with the definition of a new drug's scope [4]. The ability to manage 

new scales and levels of data complexity is what the AI methods deliver. Various approaches 

for statistical calculations normally work within the constraints of pre-built or fixed 

assumptions, but AI has the potential to be useful in a broad situation where it can assist in 

determining whether or not a molecule meets some criteria. AI has the ability to help in the 

fight against COVID-19 by assisting in the discovery of novel drugs and vaccinations. Indeed, 

even before the COVID-19 outburst, AI was known for its enormous ability to aid in the 

development of new drugs [5].  

 

The process of identifying novel drugs for new diseases is known as drug discovery. The 

process includes the following steps: target identification, target validation, lead identification, 

and lead optimization. The process of locating a protein with a particular role in a disease is 

known as target identification. Target validation is the process of verifying a target according 

to the inventor's thought process. Lead identification is the process of determining the best 

compounds for a given target protein. The process of assuring drug-related features of 

compounds is known as lead optimization. Bioavailability, specificity, and toxicity of 

discovered chemicals must all be guaranteed by the inventor. Experimental High-Throughput 

Screening (HTS) was used to identify promising leads in the past, but it is time consuming and 
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costly [6].  In contrast to earlier techniques for drug discovery, rational drug design is effective 

and affordable. The approach is often referred to as reverse pharmacology [7] since the initial 

phase in the rational drug design process is to identify interesting target proteins that are then 

used to screen small-molecule libraries. The ability to identify binding cavities due to the 

availability of 3D structures of therapeutically important proteins has cleared the way for 

Structure-Based Drug Discovery (SBDD). SBDD is a more focused, effective, and rapid 

approach for lead discovery and optimization because it uses information of the disease at the 

molecular level and the 3D structure of a target protein [8]. Computational resources are a 

useful tool for speeding up the drug development process, which involves screening processes, 

combinatorial chemistry, and calculations of parameters including Absorption, Distribution, 

Metabolism, Excretion, and Toxicity (ADMET) [9]. SBDD is a multi-cycle procedure that 

leads to the development of an optimized drug candidate for clinical trials. 

 

COVID-19 drug design methods are progressing at the same time as computational artificial 

intelligence and molecular chemistry. This approach is proving to be a useful tool in medicinal 

chemistry for identifying the beginning points for COVID-19 hit compounds. This method cuts 

down on the time and money spent on drug research and development. The applications that 

use an AI-based method for drug creation are specifically concerned with the molecular 

structure of the medications. AI-based apps are critical for finding new drug candidates and 

optimizing drug repurposing by retrieving data and information from engines. The COVID-19 

is becoming the benchmark for "Artificial Intelligence and Computational Drug Designing" 

approaches, bringing up new options for drug development [10]. 

 

The Papain-Like Protease (PLPro) and the 3C-like protease (3CL or "Main") are two appealing 

targets for small-molecule therapeutic intervention that are found in coronaviruses. The viral 

life cycle depends on both of these cysteine proteases, which are non-structural enzymes. It is 

feasible that protease inhibitors created to inhibit these viral proteins will have low toxicity 

because mammals lack proteases with similar substrate preferences. As the first step in the 

rational drug design process is to determine the target protein, the 3C-like protease (3CLpro) 

of the SAR-CoV [11] is one of the most potential protein targets. Protease inhibitors are the 

most effective at preventing replication [12-14]. As a result, the 3CLpro enzyme appears to be 

a suitable target for drug development, and hence, it is a prospective target for generating 

efficient COVID-19 inhibitors.  
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Validation of Machine Learning (ML) models is a common approach for verifying the efficacy 

and generalizability of models. According Ramspek, Jager, Dekker, Zoccali, and Ddiepen in 

their article about the use external validation [67], internal validation techniques like cross-

validation and bootstrap, cannot ensure the quality of a ML model due to possibly biased 

training data and the complexity of the validation procedure itself. They suggested using 

external data sources from elsewhere as validation datasets to better evaluate a learnt model's 

generalization capacity. So, in this thesis, external database was used to perform the model 

validation. 

 

This thesis proposes ML model for identifying new COVID-19 drugs against 3CLpro enzymes.  

A decision tree-based (DT) model was developed to predict the bioactivity of unknown 

compounds with the identified target protein 3CLpro. The descriptors that represent the 

chemical molecules were obtained using PADEL descriptor software, and these descriptors 

were then fed into the DT model to train it and predict active compounds. PubChem Bioassays 

were used to collect experimental datasets with bioactivity on 3CLpro.The data collected was 

not large though, and in order to ovoid model overfitting, 10-K cross validation was used, as 

for model hyperparameter tuning, grid search method was used, and for model optimization 

pruning and ensemble methods were applied. ChEMBL database was used to obtain external 

dataset for validation.  Furthermore, the model was deployed to predict unknown compounds 

retrieved from ZINC database, for predicted compounds that have active bioactivity with the 

target protein, Lipinski RO5 was employed to prioritize drug-like compounds. 

 

The aim of this study is to inspect the use ML model like DT in order to predict the bioactivity 

of unknown molecules that has drug-like properties which could be used as inhibitors for the 

3CLpro enzyme and hence be used as drugs for COVID-19 virus.    

 

1.2 Background 

1.2.1 AI-Driven Drug Discovery 
 

Artificial intelligence has been used to create molecules that are chemically correct and 

effective against new ailments. AI systems can be taught to learn the essential 

characteristics of a well-known drug. A well-trained AI algorithm can learn to assemble 

new molecules, leading to the creation of valuable compounds. In their study [15], the 
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authors applied AI approaches to improve and speed up the drug selection process. In 

their study [16, 17], the authors talked about applying artificial intelligence to target 

and design drugs.  

 

Artificial Intelligence in computational drug designing [18] seeks high-quality research 

on drug and clinical research on artificial intelligence techniques to leveraging the 

power of computational drug designing by combining AI and core chemistry. 

Computational drug designing is a growing field of study that focuses on the design and 

testing of molecular characteristics, interactions, and behavior in order to create better 

materials, processes, and systems for specific activities. ML is a subfield of AI that uses 

statistical learning methods. The use of AI in drug discovery can be seen as the 

automated integration of ML algorithms to find new compounds by analyzing, learning, 

and interpreting pharmaceutical large data [19]. 

 

The effectiveness of ML has frequently been demonstrated in classification, generative 

modeling, and Reinforcement Learning (RL). ML is broken down into three groups: 

reinforcement learning, unsupervised learning, and supervised learning. The model is 

predicted using input and output data sources by the subcategory of supervised learning, 

classification, and regression methods. Binary activity prediction is used by Support 

Vector Machine (SVM) with supervised ML algorithms to distinguish between a drug 

and a nondrug [20,21] or between particular and nonspecific substances [22,23]. As a 

result of a clustering strategy for an unsupervised learning category, a disease subtype 

can be found, whereas a target in a disease can be found using a feature-finding method 

[24,25]. Decision-making Modeling and quantum chemistry help RL improve its 

performance in de novo drug design. Dataset learning is less important in RL. RL can 

be used to influence the intended physical and biological features of freshly produced 

chemical compounds [26]. 

 

ML is used to create drugs that take advantage of the link between biological action and 

chemical structure. Quantitative Structure-Activity Relationship (QSAR) models, 

pharmacophore models, molecular docking analyses, and ranking/scoring functions in 

similarity searches can all be implemented using machine learning techniques and 

statistically validated [27]. The diversity of the training dataset, the capability to handle 

imbalanced datasets of active and inactive compounds in the library, and the definition 
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of precise parameters to cover the entire chemical space, including active and inactive 

molecules, are just some factors that affect the output of machine learning methods 

[28]. Effective machine learning models can be created to screen large libraries with 

few false positives and a large number of active chemicals in the output. This can be 

accomplished by employing a variety of training datasets that include anticipated 

inactive substances [29,30]. 

 

1.2.2 Deep Learning for Drug Discovery 

 

Molecular features can be examined in a rational and systematic manner using 

contemporary computational tools. The information gathered from each chemical can 

be analyzed from a variety of angles [31]. There has most likely been a rise in the size 

of data generation in the current era of technology. The resulting data may contain 

errors, duplications, missing or incorrect data, and other inconsistencies that might 

affect how accurately simulation and analytical processes work. Advanced stages such 

as preliminary analysis and curation are necessary to assure fairness, accuracy, and 

experimental efficacy [32]. In deep learning, artificial neurons are employed to process 

data, and this method is used to accelerate the drug development process in drug 

discovery. Deep learning is also used in the drug development process, and it is most 

commonly used in virtual screening [33]. 

 

1.2.3 Lipinski Rule of five (RO5) 
 

Lipinski's rule of five is a general guideline for determining a molecule's drugability. This 

criterion aids in determining whether a biologically active molecule has the chemical and 

physical qualities required for oral bioavailability. Pharmacokinetic drug features such as 

absorption, distribution, metabolism, and excretion are based on specific molecular 

qualities such as:  

• There should be no more than 5 hydrogen bond donors. 

• There should be no more than ten hydrogen bond acceptors. 

• Less than 500 Da molecular mass 

• Not more than 5 partition coefficients 

A compound is predicted to be a non-orally accessible medication if two or more of 
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these conditions are violated. The term "rule of five" stems from the fact that all of the 

determinant criteria are multiples of five [65,66]. 

 

 

1.2.4 De Novo Drug Design 
 

De novo drug design is a technique for creating new chemical compounds from the 

ground up. The basic idea behind this method is to create chemical structures for tiny 

molecules that attach to the target binding cavity with high affinity [34]. For de novo 

design, a stochastic technique is typically utilized, and it is critical to consider the search 

space information in the design algorithm. The positive and negative designs are being 

used. A search is narrowed to certain regions of chemical space in the former design, 

with a higher possibility of obtaining results with the needed properties. In the negative 

mode, on the other hand, the search criteria are established to prevent the selection of 

false positives [35]. Computational approaches can be used to develop chemical 

compounds that mimic synthetic chemistry, while scoring functions can be used to 

perform binding experiments [36]. 

 

One of the assessment tools for a candidate's critical evaluation, which is essential for 

the design process, is the scoring function. For multi-objective drug design [37], which 

analyzes numerous aspects at once, multiple scoring algorithms can be used in parallel. 

 

1.2.5 Molecular Docking 
 

Docking is a virtual simulation tool for molecular interactions [38]. Because molecular 

docking accurately predicts the conformation and binding of ligands inside a target 

active site, it is the most widely used approach in SBDD [39,40]. This approach may 

be used to investigate essential molecular processes like ligand-binding posture and 

intermolecular interactions, which are important for a complex's stability [41]. 

Furthermore, docking algorithms use several scoring methods to predict binding 

energies and rank ligands [41,42]. The proper ligand-binding conformation is 

determined by two factors: a wide conformational space defining various binding poses, 

and an explicit prediction of binding energy associated with each conformation. 

Multiple repetitions are carried out until the minimal energy state is reached, at which 
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point ligand-binding is evaluated using a variety of scoring systems [43]. 

 

1.2.6 Scoring Functions 
 

A scoring method can be used by a docking program to delve deeper into the ligand-

binding area. Once a relevant binding conformation is determined, the scoring function 

determines binding affinity. As a result, docking is likely to be significantly impacted 

by scoring functions. A training dataset of compounds from a related class for which 

experimental binding affinity data is available is used to develop scoring functions. 

There are four types of scoring functions: force field, empirical, knowledge-based, and 

ML [44–46]. Dynamic methodologies for developing and optimizing models that 

predict binding posture and affinity are provided by machine learning techniques, 

which are essentially model-based approaches. ML is increasingly being used to 

develop novel scoring functions [47]. These methods account for interactions between 

a ligand and its target but disregard interactions that are prone to mistake. In order to 

cope with nonlinear dependence among binding interactions, various ML approaches, 

including Random Forests (RF), Support Vector Machines (SVM), and Neural 

Networks (NN), are used. As a result, in estimations of binding energy, ML-based 

scoring functions perform better than competing scoring methods. Consensus scoring 

is a scoring function that makes use of group scores in order to lower the probability of 

individual score inaccuracy and raise the possibility of true positive selection [48]. 
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Chapter 2 

Literature Review  
 

2.1 Related work  

This section has an overview of some of the related papers that have been published which 

discuss AI and drug discovery for COVID-19. Not many studies implement machine learning 

models specifically in the field but rather do an overview for the computational methods and 

techniques for COVID-19 drug design. S. Lalmuanawma, J. Hussain, and L. Chhakchhuak  

[49] in their article, they provide an insight of recent studies that use ML and AI. It also 

discusses a few common pitfalls and difficulties encountered when applying such algorithms 

to real-world applications. The article also includes model designers, medical experts, and 

policymakers’ recommendations for dealing with the COVID-19 pandemic now and in the 

future. They came with a conclusion that for the COVID-19 epidemic, continuous advances in 

AI and machine learning have dramatically improved treatment, medication, screening, 

prediction, forecasting, contact tracing, and drug/vaccine research, while reducing human 

participation in medical practice. However, most of the models haven't been tested enough to 

show how well they work in the real world, but they're still capable of combating the COVID-

19 outbreak.  

 

E. N. Muratov [50] in their study offered a critical overview of the most important 

computational methods and their applications for the discovery of COVID-19 small-molecule 

therapies that have been described in the scientific literature. It stated that, following the first 

year of the COVID-19 pandemic, drug repurposing appears to have failed to deliver speedy 

and worldwide remedies. It assumed that truly effective computational tools must provide 

actionable, experimentally testable hypotheses that enable the discovery of novel drugs and 

drug combinations, and that open science and rapid sharing of research results are critical for 

accelerating the development of novel drugs and drug combinations. 

M. Batool, B. Ahmad, and S. Choi in their article [51] also focused on the currently available 

methodologies and algorithms for structure-based drug design, such as virtual screening and 

de novo drug design, with a special emphasis on AI- and deep-learning-based drug discovery 

methods.  

 

In their opinion, A. Chandra Kaushik and U. Raj [4], an artificial intelligence (AI) based 
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method that can predict drugs/peptides directly from infected patients' sequences and hence 

have better affinity with the target and contribute to COVID-19 vaccine formulation would be 

beneficial. However, they stated that testing of these proposed vaccines/drugs will be required 

to ensure their safety and feasibility in combating COVID-19. 

 

Table (2.1) below discusses the related work that implements machine learning COVID-19 

drug discovery in their approach, publication year and main contribution in the field. 
 

Table 2.1: Summary of related work papers that implement machine learning COVID-19 drug discovery in their approach. 

Paper Year Contribution 

Gianchandani et al.  2020 Ensemble deep transfer learning models were proposed to 

diagnosis coronavirus infections from radiography [52].  

Singh et al.  2021 Proposed an automated COVID-19 screening model based on 

densely linked convolutional networks [53]. 

Kumari et al.  2020 Used machine learning methods such as random forest (RF), 

support vector machine (SVM), and DT for the classification of 

anti-tubercular compounds [54]. 

Chen et al. 2020 Developed a deep learning-based approach in order to detect 

new coronavirus pneumonia from a picture [55]. 

J. Peng, J. Li, X. 

Shang  

2020 Convolutional neural network (CNN) models were used to 

predict drug-target interactions [56]. 

S. Hu, C.P. Chen, J. 

Zhang, B. Wang 

2019 CNN models were used for predicting drug-target interactions 

from drug structure [57]. 

Meyer et al.  2019 Used CNN and RF models to deduce pharmacological 

functionalities from chemical structures [58]. 

Kumari M., 

Subbarao N. 

2021 Developed a deep learning CNN model to predict drugs for 

3CLpro enzymes to cure COVID-19 infections [59]. 

 
 

2.1.1 Related Work Results Discussion 
 

This subsection provides an insight on the closely related work to our thesis starting from the 

least relevant to the most relevant, it also mentioned if any of these studies have contributed to 

our work.  
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S. Hu, C.P. Chen, and J. Zhang [57] used three benchmark datasets in their investigation 

to examine potential interactions between drugs and target proteins. Two datasets were 

created using the DrugBank database, and one dataset was constructed using the KEGG 

DRUG database. They suggested a CNN-based deep learning approach in their research 

to predict drug-target interactions only based on knowledge of drug structures and 

protein sequences. The final results demonstrated that, for the target families of 

enzymes, ion channels, GPCRs, and nuclear receptors in their dataset, respectively, 

their technique can perform with accuracies up to 0.92, 0.90, 0.92, and 0.91. To further 

evaluate the generality of the model, a different dataset collected from DrugBank was 

employed, which produced an accuracy of 0.9015. 

 

To anticipate the drug-target interactions, J. Peng, J. Li, and X. Shang [56] introduced 

the DTI-CNN, a learning-based approach based on feature representation learning and 

deep neural networks. They begin by employing the Jaccard similarity coefficient and 

a restart random walk model to extract the pertinent characteristics of medicines and 

proteins from heterogeneous networks. Then, in order to shrink the dimensions and 

isolate the crucial characteristics, they used a denoising autoencoder model. 

subsequently created a CNN model to forecast how medications would interact with 

proteins. The evaluation's findings revealed that the DTI-CNN's average AUROC and 

AUPR scores were 0.9416 and 0.9499, respectively. 

 

In their work M. Kumari and N. Subbarao [59], they developed a deep learning-based 

CNN model that was to do virtual screening for the 3CLpro target protein to predict 

anti-SARS-CoV drug candidates and compare. They compared their model with other 

classification methods, including RF, NB, DT, and SVM modelling. The model was 

trained on 282 compounds and predicted an external validation test set of 141 

compounds with an accuracy of 0.86, a sensitivity of 0.45, a specificity of 0.96, a 

precision of 0.73, a recall of 0.45, and an F-measure of 0.55. The CNN model screened 

17 out of 918 phytochemical compounds; 60 out of 423 natural products from the NCI 

divest IV; 17,831 out of 1,12,267 natural compounds from the ZINC natural product 

database; and 315 out of 1556 FDA-approved drugs as anti-SARS-CoV agents. This 

study was the most related study to our thesis, first because of targeting the same protein 

and also because of having small data set which is similar to our case, however, the 
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method for calculating the descriptors were different as we used PADEL, they have 

also used the 3D structure of the chemical compounds while we used the Simplified 

Molecular Input Line Entry System (SMILES) of the compounds, however it was based 

the on deep learning and the use of CNN.  

 

D. Singh, V. Kumar and M. Kaur [53] research work used machine learning-based 

predictive modelling for virtual screening on a big dataset of compounds which 

retrieved from ChEMBL dataset. In their research, three classifiers; RF, DT and SVM 

were used to build predictive models. The comparative analysis of predictive models 

revealed that RF showed the best performance compared with the J48 DT, and SVM, 

however, they concluded that this performance depends on the type of data to be used 

for modelling. The RF model exhibited an accuracy of 0.938. The second-ranked 

predictive model was J48 DT showing accuracy of 0.928. The last Lib SVM model with 

accuracy 0.906 Their results showed that a systematically designed computational 

model for bioactivity based on IC50 value works very well to prioritize specific 

compounds. Their findings were used along with domain expert’s recommendations 

when our external validation data was retrieved from ChEMBL as it was also filtered 

only based on the IC50 values, so we used their study as a reference, also in the use of 

molecule’s SMILES, however, we made distinction by using PADEL descriptors 

directly from SMILES unlike their study that converted SMILES to 3D structure and 

the use of other software to generate the descriptors .  
 

This thesis was performed using DT model in comparison to other studies that focused 

on deep learning and CNN,  as related work and previous studies have most of their 

studies based on using deep learning, which in their studies proved to outperform the 

use machine learning model like DT, however, in this study we explore the possibility 

to enhance the DT model in order improve its performance and explore its ability to be 

used in drug development, the model optimization that was used include the use of cross 

validation , pruning and ensemble method with SVM.  This thesis also has added the 

use of PaDEL descriptors and the use PubChemPy API, as before building the model, 

critical descriptor vectors were extracted for bioactivity prediction using PaDEL 

software. This work has also focused on implementing internal and external validation 

data sets. The validated model's results suggested acceptable and good values for 

various internal and external validations.  
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Chapter 3 

Methodology 
The purpose of this chapter is to outline the process for applying ML to the problem of finding 

new drugs. The data collection and preprocessing, model selection and training, model 

optimization, and evaluation and validation of the models' performance are all covered in detail 

in this chapter. This chapter also provides insights into best practices and potential traps to 

avoid for other researchers working in the area of ML for drug discovery. 

 

The aim of this thesis is to use ML model and examine its ability to predict new drugs for our 

target protein. There are many crucial steps in the methodology for using ML in drug discovery. 

First, a collection of chemical compounds and their corresponding properties are collected. The 

data is then cleaned, normalized, and the chemical structures transformed in a way that is 

appropriate to be used in the ML model. Then, using this pre-processed data, the ML model is 

trained. The model is then optimized using hyperparameter tuning and validation procedures 

to ensure that it performs as well as possible when predicting a compound's activity against the 

target protein. The model is then deployed to screen libraries of compounds and identify 

promising drug candidates for additional clinical experiments. 

 

To identify promising molecules that could be used as inhibitors for the target protein, The 

molecule should have certain features to be good candidate, first it should have some general 

features which qualify it to be a drug, and this where Lipinski's RO5 was used to identify the 

drug like molecules. The molecule should also have local features which are unique building 

blocks that describe the molecule, as each molecule is comprised of several building blocks 

and the way these blocks are connected will create a unique property for the molecule, which 

is described in the chemical structure of the compound, so we need to find molecules that has 

certain chemical structure that suits the binding cavity of the target protein, these building 

blocks are characterized in the canonical SMILES of each compound, represents the 2D 

molecular structure of a chemical compound as a unique string of characters.  
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3.1 Dataset 
 

The data used in this thesis is composed of two main sets, the first set is used for model training 

and testing and was collected from PubChem bioassays [60] and the second data set is used for 

external validation and was collected from ChEMBL [61] database. Data collection was 

performed separately for each data set as each set was obtained from a different data source. 

 

3.1.1 Data Collection  
 

PubChem Bioassays were used to gather publicly available experimental datasets with 

bioactivity on 3CLpro of SARS-CoV target protein. For this study, five assays were 

selected based on the total number of tested compounds, where assays with the greatest 

number of compounds were chosen, one conformational high throughput screening 

bioassay, two dose-response bioassays and two late-stage bioassays, the used bioassays 

are shown in Table (3.1).  

 
   Table 3.1: List of PubChem bioassays of 3CLpro of COVID-19 that were used to collect data. 

 

  

 

 

 

 

 

 

The assays have a total number of 428 compounds, including 69 active and 359 inactive 

compounds. Experimental bioassays had already been used to classify the chemicals' 

activity of the compounds, so each of these bioassays has several compounds and their 

corresponding bioactivity with the 3CLpro. Compounds are labeled as either Active or 

Inactive, a sample of the labeled raw data is shown in Table (3.2). 
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 Table 3.2: Sample of one of the bioassays data that was collected from PubChem. 

 

 

 

 

 

 

 

 

 

 

 

3.1.2 Data Preprocessing 
 

The raw data has unnecessary columns that will not be used or useful in the model 

training, so only PUBCHEM_CID and PUBCHEM_ACTIVITY_OUTCOME columns 

were taken into consideration and the other columns were dropped.  After that 

duplicates compound were removed, and this resulted in 400 distinct compounds. 

 

The chemical structure of each compound is the most important property, as all feature 

for model training will be extracted from the chemical structure, however, the raw data 

doesn’t have it, so in order to get the chemical structure information, PubChemPy API 

[62] was used to fetch the canonical SMILES as these SMILES were used to calculate 

the important features that are required for the molecule to inhibit the target protein and 

hence, the canonical SMILES are crucial  for model training and testing. Table (3.3) 

shows sample of the data after removing unnecessary columns and adding canonical 

SMILES. 

 
 

3.1.3 External Validation Dataset 
 

For external validation of the model, ChEMBL database was used. ChEMBL contains 

more than 2 million compounds, and it is compiled from 84,092 documents, the used 

version is ChEMBL 30. ChEMBL is a database of bioactive drug-like small molecules, 
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it contains 2-D structures, calculated properties and abstracted bioactivities. The data is 

abstracted and curated from the primary scientific literature and covers a significant 

fraction of the discovery of modern drugs. The used data set which contains the 

biological activity data with the target protein 3CLpro was downloaded directly from 

the ChEMBL database. The concentration of the molecule needed to achieve a specific 

level of inhibition of the biological target is usually expressed as an IC50 or EC50, 

which represents the observed activity. The data was filtered based on the standard type 

(IC50), so only data that has IC50 value was considered. The standard value is the 

potency of the drug and the lower the value the better the potency of the drug becomes, 

and likewise the higher the number the worse the potency becomes. 

 

Compounds were cleaned first, so compounds which have missing value for the 

standard value were dropped. Following that compounds were labeled as active or 

inactive based on the value of the IC50 unit, where compounds with values less than 

1000 nM are considered active, whereas those with values larger than 7500 nM are 

considered inactive, the threshold values were based on domain experts’ 

recommendation. That resulted in a total of 119 compounds, in which 104 were inactive 

and 15 compounds were active. 

After that The IC50 value was converted to the negative logarithmic scale, which is 

effectively -log10(IC50), to enable more equal distribution of the IC50 data.  
 

 

3.1.4  Exploratory Data Analysis 
 

In order to have better understanding of the structure of the data, visualization of the 

bioactivity of the compounds with target protein are shown in Figure (3.1), the figure 

shows big difference between active and inactive compounds in the main dataset of 

PubChem. Figure (3.2) shows the distribution of active and inactive compounds in the 

ChEMBL dataset.  
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      Figure 3.1: Data bioactivity distribution for the PubChem bioassays. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Figure 3.2: Data bioactivity distribution for the ChEMBL. 

 

3.2 Descriptor calculation 
 

The Molecular descriptors are representation of certain structural features of a molecule. And 

in order to calculate if certain molecules have the functional and structural features that are 

required to have bioactivity with the target protein, these features must be represented in a 

mathematical way.  For this purpose, PaDEL software [63] was used to calculate the 

fingerprints for each molecule. PaDEL-Descriptor is a program that calculates molecular 
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fingerprints and descriptors. The Chemistry Development Kit [64] is primarily used to calculate 

these descriptors and fingerprints. The presence or absence of a given feature in a molecule is 

indicated by each element of the fingerprint vector. The fingerprints generated using PaDEL 

resulted in a matrix of 400 rows × 881 columns. Figure (3.3) shows a sample of the resulting 

matrix of fingerprints for each molecule. 

 

 Figure 3.3: The fingerprints matrix for each molecule resulted from PADEL software. 

 

3.3 Feature Selection 
 

The feature selection method that was used is removing low variance features, this is a basic 

technique of feature selection. The idea is that if a feature is constant (i.e., has no variance), it 

can't be used to identify any interesting patterns and should be removed from the dataset. 

Removing low variance features is seen as appropriate feature selection since these features 

lack discriminatory power and information, and as a result, do not significantly improve the 

performance of a ML model. These features may produce noise or increase computational 

complexity without adding any meaningful information, which might degrade the performance 

of the model. We may streamline the model and lessen overfitting by eliminating low variance 

features, which happens when a model is overly complex and tends to fit the noise in the 

training data instead of the underlying patterns. Additionally, by minimizing the amount of 

unnecessary or redundant features that may obfuscate the relationship between the input 

variables and the target variable, the removal of low variance features can enhance the model's 

interpretability. Removing the low variance features from the dataset resulted in a matrix of 

400 rows × 148 columns. 
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  3.4 Dataset division 
 

Model validation is an important step to ensure that if the model is exposed to completely new, 

unseen data, it will predict with the same accuracy and it will not fail to generalize over the 

new data, which is the problem of over-fitting. The model should also avoid the problem of 

underfitting which occurs due to high bias and low variance. 

 

Initially Model validation was made on a subset of the data by using the Hold-Out method, 

which basically split the data between training and testing where the proportion of train to test 

data is (80,20). The model was trained on 80% of the random split set and then validated on 

the remaining 20% of the curated dataset, and this was only done for the purpose of selecting 

the most appropriate ML model.  

 

Although in ML, it's typical to divide the data into 20% for testing and 80% for training. This 

split, however, could not be enough if the dataset is very small since it can lead to high variance 

in model performance and incorrect estimations of model performance. When the dataset is 

small, there may be a lot of randomness and ambiguity in the data, which makes it challenging 

to determine a model's actual performance. The model may be overfitted or underfitted because 

the training and testing sets may not have enough data to adequately represent the data's 

underlying distribution. Alternative methods, like cross-validation may be more applicable in 

such circumstances.  

 

To avoid overfitting, k-fold cross validation was used to validate the model. Here, training 

takes place on the training set, followed by validation on the validation set, and finally testing 

on the test set. However, dividing the original dataset into three sets (train, validation, and test) 

significantly reduces the amount of data available for training. A process known as k-fold 

cross-validation was employed as a solution, where k is the number of folds, which was set to 

10. The 10-fold cross validation performed the fitting procedure a total of ten times. The model 

was trained on 9 of the folds set selected at random and with the remaining fold used as a 

holdout set for validation. The process was repeated ten times, with the performance measure 

provided after each run. The average was then calculated. The test set was then evaluated after 

the parameters had been set. 
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3.5  Model Selection  
 

Choosing the right model is essential since it has a direct impact on the precision and 

effectiveness of the final model. Drug design can make use of a number of ML algorithms, 

including DT, RF, SVM, and neural networks. The algorithm selected will rely on the size and 

complexity of the dataset.  Understanding how the model generates its predictions is frequently 

crucial in drug creation. Moreover, when choosing a model, interpretability is also a crucial 

factor, and complex models like neural networks are typically more difficult to interpret than 

linear models, DT, and rule-based models. A variety of ML models were compared, including 

the Gaussian Process Regressor, DT, and many more, as shown in Table (3.3). Based on the 

results of the comparison, Extra Trees, DT and Gaussian Process Regressors were the top-

performing models, and among them DT was selected and deployed, because of its ability to 

handle small dataset. DT models are also easy to interpret, don't need a lot of training data, and 

are computationally efficient. 

 
    Table 3.3: Classification models comparison table. 

 

 

3.5.1 Hyperparameter tuning for DT 
 

Underfitting and overfitting conditions should be avoided when developing the optimal 

model. For the DT hyperparameter tuning is the process of determining the best values 

for max depth of the DT (one that is neither too small nor too large). Hyperparameters, 
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which are parameters defined before training the model as they are not learned from the 

data during training, can significantly affect how well the model performs. 

Hyperparameters can be done using different methods such as grid search, Bayesian 

optimization or random search. For our DT model grid search was used. Grid search 

method is a tuning approach that was used to find the best hyperparameter values. It is 

an exhaustive search carried out on a model's specific parameter values. For a given k 

number of folds, it determines all hyperparameter combinations. For the DT regressor 

model, the Grid search found the optimal values for maximum depth parameter of the 

model.  The GridSearchCV function searches for one point and trains the model using 

the optimal value along with k-fold cross-validation. The GridSearchCV function 

returned 20 as the best value for the maximum depth of the DT model. 

 

3.6 Model development 
 

Supervised learning techniques were used to train the model using the labeled data as either 

active or inactive that was retrieved from PubChem bioassays. The DT regressor, which is in 

this case doing binary classification, constructs classification models in the shape of a tree 

structure. It incrementally breaks down a dataset into smaller and smaller subsets while also 

developing an associated DT. The final result is a tree containing leaf nodes and decision nodes, 

the predicted output is either active or inactive class in terms of the target protein 3CLpro. 

For modeling and evaluation, Python 3.7. was used.  

 

3.6.1 Time Complexity analysis 

  

Building a DT takes O (N * K * log(N)) time, where N is the number of instances in 

the training dataset and K is the number of features. 

When using a DT, k-fold cross-validation entails fitting the model k times on various 

subsets of the data and validating its performance on the remaining data. As a result, 

the time complexity of k-fold cross-validation with a DT is   O (k * N * K * log(N)) 

times the time complexity of creating DT. 

 

The time complexity of 10-fold cross-validation with a DT is O (N * K * log(N)), 

presuming a fixed value of k (in this case, k = 10). Cross-validation therefore has the 
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same computing cost as creating a single DT on the entire dataset. 

The DT's time complexity for prediction is O(log(N)), which is extremely effective and 

makes DTs acceptable for usage with big datasets. 

 

3.7 Model Evaluation  
 

To evaluate the performance of the model, accuracy, precision, recall and F1-score measure 

were used as main metrics for evaluating the performance of the model. SK-learn was used to 

calculate these metrics. 

Where accuracy is defined as percentage of accurately predicted values for a given dataset by 

the model. It is a proportion between the model's total number of predictions and the number 

of predictions that were correct.  

 

  Accuracy = (Number of Correct Predictions / Total Number of Predictions) * 100 

 

While Precision is the ratio of correct positive predictions made by the model to all positive 

predictions made; a true positive is a positive prediction made correctly, whereas a false 

positive is a positive prediction made incorrectly. 

 

Precision = TP / (TP + FP) 

 

Recall or sensitivity is the ratio of true positives (TP) to the total of true positives and false 

negatives (FN). 

    Recall = TP / (TP + FN) 

 

F1 score combines the model's precision and recall into a single value, which measures the 

model's overall performance.  In our classification tasks, the F1 score is a good evaluation 

metric, particularly as the dataset is unbalanced, and the cost of false positives and false 

negatives is not equal. 

 

 Confusion matrix which allows for the visualization of the model's performance was also used 

to display true positives (TPs) and true negatives (TNs), false positives (FPs) and false 

negatives (FNs).  For this context, TPs are the molecules that are active and were predicted as 

active, TNs are the molecules that are actually inactive and was predicted by the model as 
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inactive, FPs are the molecules that are actually inactive and were predicted as active by the 

model, and finally, FNs are the molecules that were predicted to be inactive but were actually 

active. 

 

3.8 Model Optimization 
 

The goal of model optimization is to enhance the model's performance. We can decrease 

overfitting and enhance the model's generalization capabilities by optimizing it. To make sure 

that the ML model works well, generalizes new data, and makes optimum use of computational 

and resource resources, model optimization is required. There were two model optimization 

techniques made to the DT model. The first one is Pruning, which is a technique that entails 

cutting off DT branches that don't help the model perform better on the validation data. The 

second method was the use of ensemble methods, where multiple models are trained 

independently and then combined to make a final prediction. The DT model was combined 

with SVM to create a more robust ML model. DTs can be used to identify key molecular 

features or substructures that are associated to a target protein. Support vector machines 

(SVMs) can capture the non-linear relationships between molecular features and the target 

protein bioactivity. Combining the two algorithms can enhance the model performance. 

 

 

3.9 Model Deployment 
 

The model was deployed in a web app, where compounds’ smiles were passed into the app in 

the form of text file and the model predicts their activity with the target protein. The 

deployment of unknown dataset on the predictive model is a crucial step in finding new 

possible COVID-19 3CLpro enzyme inhibitors. The dataset was virtually screened using the 

established model, where 748 natural compounds were extracted from ZINC database [68], and 

then Lipinski's rule of five (RO5) was used to identify drug-like molecules during screening.  
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Chapter 4 

Results and discussion 
 

This chapter represents the results and findings of applying the DT model on the PubChem 

dataset and using 10-folds cross validation, it also shows the results of using completely new 

dataset, ChEMBL which was retrieved from different data source than that used to train the 

model, to validate the model performance. This chapter also shows the result after optimizing 

the model by applying pruning and ensemble methods to the model. Finally, this chapter will 

provide a discussion of the results. 

 

4.1 Model Results  

 

The DT model was used to predict the bioactivity of compounds for the inhibition of 3CLpro 

enzymes in COVID-19 infections. Bioactive chemicals data from five distinct experimental 

bioassays were extracted from PubChem and curated by removing duplicate compounds and 

salts, as a result, 400 distinct chemical structures were gathered for model building. To 

construct an easily reproducible model for the prediction and screening of unknown chemical 

compounds, compounds fingerprints were generated, where the structural and functional 

requirements of the 3CLpro enzyme are described by these molecular descriptors. There were 

881 descriptors in the model and removing low variance features resulted in 148 descriptors 

using the from sklearn feature selection method VarianceThreshold. Based on both internal 

and external validation methodologies, the results revealed good predictive capacity. For 

quality and performance measurements different metrics were calculated on the original dataset 

as well as the external dataset.  10-folds cross validation was used since the data is not large. 

Figure (4.1) shows accuracy for each of the 10 folds for both training and validation data. 
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Figure 4.1: Accuracy scores in 10 folds. 

 

As can be shown from Figure (4.1), the accuracy for the training data was very high, and for 

the validation data was also close to the accuracy of the training in most of the folds. Moreover, 

the model performance was evaluated after each run of the 10 folds, where accuracy, precision, 

recall and F1 score were measured for both training data and validation data.  

 
Table 4.1: Model performance metrics for training data for each of the 10 folds. 

  Training Mean 

Accuracy 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.989 0.989 1 0.988 

Precision 0.928 0.928 0.928 0.928 0.928 0.928 0.930 0.952 0.952 1 0.94 

Recall 0.951 0.951 0.951 0.951 0.951 0.951 0.952 0.952 0.952 1 0.956 

F1-Score 0.9397 0.939 0.939 0.939 0.939 0.939 0.941 0.952 0.952 1 0.948 
 

 

Table 4.2: Model performance metrics for validation data for each of the 10 folds 

 
Validation Mean 

Accuracy 0.8 0.825 0.85 0.8 0.825 0.925 0.825 0.875 0.925 0.725 0.8375 

Precision 0.2857 0.333 0.333 0.2 0.4 0.67 0.28 0.43 0.67 0.11 0.377 

Recall 0.4 0.4 0.2 0.2 0.8 0.8 0.5 0.75 0.5 0.25 0.48 

F1-Score 0.333 0.364 0.25 0.2 0.533 0.727 0.3636 0.545 0.545 0.154 0.41 
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Table (4.1) shows the performance metrics for the training data, while Table (4.2) shows the 

performance metrics for the validation data in each run. The mean accuracy value for the 

training data is 0.988 and 0.837 for the validation data, while the mean value for the precision was 

0.94 for training and 0.37 for validation and for recall it was 0.956 for training and 0.48 for validation.  

 

4.2 Results after optimizing the Model 
  

Figure (4.2) shows accuracy for each of the 10 folds for both training and validation data after 

applying ensemble methods to the model and Figure (4.3) shows accuracy for each of the 10 

folds for both training and validation data after applying pruning. Table (4.3) shows a 

comparison of the result of the model performance after applying the pruning and ensemble 

methods to the model.   
 

Figure 4.2: Accuracy scores in 10 folds after ensemble methods.   Figure 4.3: Accuracy scores in 10 folds after pruning.

  

 

Table 4.3: Ccomparison of the result of the model performance after applying the pruning and ensemble methods to the model.   

 

 

 

 

 
 

4.3 External Validation Results 
 

After performing the 10 folds cross validation, external dataset was retrieved from new data 

source ChEMBL which is different than the data source from which that data was retrieved for 

Original After Pruning After Ensemble Method
Accuracy 84% 89% 89%
Precision 0.38 0.43 0.75
Recall 0.48 0.67 0.6
F1-Score 0.41 0.52 0.67
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model training (PubChem).  The external data set was passed to the model and the model 

evaluation metrics were calculated. The classification report is shown in Figure (4.4), and 

confusion matrix is shown in Figure (4.5). As shown from the results, the model is predicting 

the bioactivity of the compounds with high accuracy.  

 

 
Figure 4.4: Classification report for the external (ChEMBL dataset). 

 

 

 
Figure 4.5: Confusion Matrix for the external (ChEMBL) dataset. 

 

 

The classification model's accuracy in classifying data from different classes is summarized in 

a table like form which is the confusion matrix. The model's predicated label is on one axis of 

the confusion matrix, and the actual label is on the other. We can use confusion matrix to check 

how well the model predicted TPs and TNs. The model can be considered a high-performance 

model if it accurately predicted TPs and TNs which is shown clearly in the confusion matrix. 

The model predicted all inactive compounds correctly, and only predicted two of the active 

compounds as inactive as shown in Figure (4.5), where it shows that it has predicted all the 104 
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inactive compounds as inactive which represents the TNs, and from the 15 active compounds, 

it predicted 13 as active which represent the TPs, while miss predicting only 2 out of the 15 as 

inactive which represent FPs.  

 

4.4 Screening Results 
 

The model was deployed in a web application where the application takes molecules IDs and 

their SMILES, and it will return descriptors for these molecules as well as classification to 

whether or not the molecule has bioactivity to the 3CLpro. New unknown datasets from ZINC 

[70] were passed to it, and it has found anti-COVID-19 agents in 26 of 748 natural compounds 

from the ZINC natural product database. Moreover, the possibility of drug repurposing was 

also checked by passing FDA approved drugs data set to the model where it has found anti-

COVID-19 agents in 1 out of 63 from the FDA approved drugs, as Acebutolol was classified 

as active to 3CLpro. Furthermore, Lipinski's RO5 was applied to all of the screened anti-

COVID-19 compounds except for the FDA approved ones in order to prioritize drug-like 

compounds. 

 

After applying Lipinski RO5 to the screened molecules, 25 out 26 compounds have the 

properties of drug like compounds, where these compounds can be used in clinical trials. The 

screened compounds that have drug like properties of Lipinski RO5 and their SMILES, 

molecular weight, log P, number of Hydrogen donors, and number of Hydrogen acceptors 

shown in Table (4.4). Figure (4.6-a) and Figure (4.6-b) shows each of the 25 screened 

molecules has their chemical structure. 
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Table 4.4: The screening of the active compounds with 3CLpro. 

 

 

 

In the above table if we take a look at any of the rows, we can see that the molecular weight (MW) is 

less than 500 Da, the hydrogen bond acceptors are all less than 10, all the hydrogen bond donors are 

less than 5 and partition coefficients are less than 5. These values are all in accordance to Lipinski’s 

RO5, so all of these molecules can be drugs and have the drug-like properties.  

SMILES Molecule ID MW LogP NumHDonors NumHAcceptors
COCCNC=C1C(=O)NC(=O)NC1=O ZINC5905785 213.193 -1.5277 3 5
CC(=O)OC[C@@H]1O[C@H](N=[N+]=[N-
])[C@H](O)[C@H]( ZINC257346023 247.207 -1.3326 3 7
CN(C)CCNC=C1C(=O)NC(=O)NC1=O ZINC85892727 226.236 -1.6125 3 5
O=C(O)C(=O)COC(=O)[C@@H]1C[C@H]1[
N+](=O)[O-] ZINC1594823036 217.133 -1.1515 1 6
O=C(O)[C@H]1COCCN1C(=O)[C@@H]1C[
C@H]1[N+](=O)[O ZINC1574661692 244.203 -1.0364 1 5
CN1C(=O)CN(C(=O)[C@@H]2C[C@H]2[N+
](=O)[O-])CC1=O ZINC848048479 241.203 -1.5212 0 5
Cn1cnn(CC(=O)OCCC[N+](=O)[O-])c1=O ZINC860920224 244.207 -1.2082 0 8
O=C(Cn1cc([N+](=O)[O-
])cn1)N[C@H]1CNOC1 ZINC722472253 241.207 -1.1891 2 7
O=C(O)COC(=O)Cn1cnc([N+](=O)[O-])n1 ZINC1610784971 230.136 -1.1859 1 8
O=C(O)CNC(=O)CNC(=O)[C@@H]1C[C@H
]1[N+](=O)[O-] ZINC1602069684 245.191 -2.0314 3 5
O=[N+]([O-])c1cnc(NCCn2ncnn2)nc1 ZINC354596249 236.195 -0.5166 1 9
O=C(Cn1cnc([N+](=O)[O-
])n1)O[C@H]1CNOC1 ZINC1326769379 243.179 -1.3671 1 9
O=C(O)CNC(=O)COC(=O)[C@@H]1C[C@H
]1[N+](=O)[O-] ZINC1606264945 246.175 -1.6044 2 6
NCC(=O)NCCn1cc([N+](=O)[O-])cn1 ZINC1118269651 213.197 -1.1338 2 6
CNC(=O)[C@H](O)CNc1ncc([N+](=O)[O-
])cn1 ZINC758115244 241.207 -1.0964 3 7
O=C(O)[C@H]1COCCN1C(=O)[C@@H]1C[
C@H]1[N+](=O)[O ZINC1574661692 244.203 -1.0364 1 5
COC(=O)COCCNC(=O)[C@@H]1C[C@H]1[
N+](=O)[O-] ZINC862950467 246.219 -1.0426 1 6
Cn1cnn(CC(=O)OCCC[N+](=O)[O-])c1=O ZINC860920224 244.207 -1.2082 0 8
O=C(Cn1cc([N+](=O)[O-
])cn1)N[C@H]1CNOC1 ZINC722472253 241.207 -1.1891 2 7
CN(CCNC(=O)[C@@H]1C[C@H]1[N+](=O)[
O-])CC(=O)O ZINC1598492128 245.235 -1.2158 2 5
O=C(O)[C@@H]1CN(C(=O)[C@@H]2C[C@
H]2[N+](=O)[O-]) ZINC1594947991 244.203 -1.0364 1 5
O=C(O)[C@@H]1COCCN1C(=O)[C@@H]1C
[C@H]1[N+](=O) ZINC378180195 244.203 -1.0364 1 5
CNCCNC(=O)Cn1cnc([N+](=O)[O-])n1 ZINC1326581486 228.212 -1.4781 2 7
O=C(O)CNC(=O)COC(=O)[C@@H]1C[C@H
]1[N+](=O)[O-] ZINC1606264945 246.175 -1.6044 2 6
O=C(O)[C@H]1CN(C(=O)[C@@H]2C[C@H]
2[N+](=O)[O-])CC ZINC1594947990 244.203 -1.0364 1 5
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Figure 4.6-a: Screened compounds and their chemical structure. 
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Figure 4.6-b: Screened compounds and their chemical structure 

 

4.5 Discussion 
 

This study was performed to deploy ML model, which in this case based on DT regressor in 

order to discover drugs for COVID-19 virus by predicting the bioactivity of unknown 

molecules with the 3CLpro enzyme. The seed values that were used is 20 for the max depth of 
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the DT tree, 10 for the number of folds for cross validation.  

The model has shown good results with high accuracy for training and validation set, while the 

precision and recall for the training set was much higher than that of the validation set, which 

indicates that it is likely that the model is overfitting to the training data or due to class 

imbalance, as the dataset had much more samples of the inactive class than the active class. 

 

As for the external validation set the results show very high performance on external data that 

was never exposed to the model. It is interesting to see that the model performed much better 

on external validation more than internal validation and this could be due to many reasons, 

such as that the data sets are not equally sampled and distributed, differences in the quality of 

the validation datasets, as in some cases, the DT model may be able to fit the noise or outliers 

in one dataset but not in another, leading to different performance levels, and differences in the 

pre-processing of the two dataset, as in the external validation dataset, we used the negative 

logarithmic scale which is -log10(IC50) which gave us even distribution of the data. So, 

although 10 folds cross validation was used to avoid the problem of overfitting, the model was 

still facing this due to the data. The DT model may be overfitting if it is too sophisticated for 

the quantity of training data provided, which is one cause. The model might be able to 

remember the training data in this situation and fit the data noise, but it won't be able to 

generalize to new data that it hasn't seen before. The use pruning and ensemble methods 

combining the DT with SVM enhanced the model performance and reduced the overfitting of 

the model. 

  

When comparing this study findings with previous studies’ findings, we could see similar 

results in terms of discovering new compounds although different machine learning models 

were used, which leads us to conclude that regardless of the machine learning model deployed, 

AI can proof to be effective in discovering bioactive unknown molecules with the specified 

target protein. However, deploying different machine learning models than other studies has 

resulted in different performance metrics, and different and new compounds discovered as each 

study has different data source.  

 

When comparing the finding with Kumari M, Subbarao N study that developed CNN model to 

predict bioactivity for the same target protein 3CLpro, their model was trained on 282 

compounds and predicted an external validation test set of 141 compounds with an accuracy of 

0.86, a precision of 0.73, a recall of 0.45, an F1-score of 0.55. while our model showed 0.89 
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accuracy, precision of 0.75, recall of 0.6 and f1 score of 0.67 for internal validation. While the 

finding of previous study by Mody, V., Ho, J. [69] which has investigated 47 FDA approved 

drugs that inhibit the SARS-COV-2 3CLpro enzymatic activity were used, as that study 

performed an in vitro enzymatic inhibitory assay using commercially available assay kits, and 

has identified that boceprevir, paritaprevir, and tipranavir were able to partially inhibit the 

3CLpro enzymatic activity at 50 µM drug concentration while PIs lopinavir and ritonavir did 

not exhibit any 3CLpro inhibitory activity. These drugs were passed to our model and among 

the three of them the paritaprevir was predicted to be active, the PIs lopinavir and ritonavir 

were predicted to be in-active using our model which agrees with the previous study findings 

as well.  
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Chapter 5 

Conclusion and future work 
 

5.1 Conclusion 

  

This thesis developed ML model that is based on DT regressor to predict the bioactivity of 

unknown compounds with 3CL-Protease, it has successfully identified new compounds that 

could be candidates for the inhibition of 3CLpro enzyme that could be used in clinical trials. 

The DT model’s performance was compared to various classification approaches before 

deployment such as RF, MLP, SVR and other regression models and has shown better 

performance than others. The DT model was trained and validated on 400 compounds from 

PubChem bioassays and 119 compounds from ChEMBL database were used for external 

validation. The model implemented 10 folds cross validation, and although the model showed 

very good accuracy of 0.84 for internal validation, it had poor precision, recall and f1-score 

with values of 0.37, 0.48 and 0.41 respectively, which indicated overfitting, the performance 

was enhanced by applying DT pruning and ensembled methods combing the DT with SVM, 

this resulted in  0.89 accuracy, precision of 0.75, recall of 0.6 and f1- score of 0.67 for internal 

validation. On the other hand, the model should an excellent performance for the external 

dataset with 0.98 accuracy, 0.99 precision, recall of 0.93 and f1-score of 0.96. The model was 

deployed in a web application where new unknown datasets were passed to it, resulting in 

finding 26 bioactive molecules out of 748 unknown compounds, in which 25 molecules could 

be used as drug as they have the drug-like properties of Lipinski rule. These compounds could 

be used in clinical trials to test their effectiveness on the virus. The number of discovered 

compounds could certainly increase if more unknown molecules are passed to the model. The 

chemical structures of FDA approved drugs were also passed to the model, where their 

bioactivity with the 3CLpro was observed in previous studies and the result of model has agreed 

with this observation to some extent.   

 

The limitation of this work was in the small amount of data that was used for training the model, 

and since the model is based on supervised learning, the amount of data might have caused 

overfitting in the model, and this was due to the limited amount of data available in the 

published bioassays in relation to the target protein.  

In conclusion, quality, size, preprocessing and mostly the distribution of the validation datasets 
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can affect the model performance greatly. DTs are a useful tool in drug discovery as they are 

relatively easy to interpret and visualize, However, they are not always the most accurate or 

effective method for every task, and by combining DTs and SVMs, it is possible to create a 

more robust and accurate machine learning model for drug discovery. The DT can capture 

important features of the compounds, while the SVM can learn more complex relationships 

between these features and biological activity. 

 

This thesis shows that drug development can benefit greatly from the use ML models that can 

dramatically improve drug development while reducing human engagement in medical 

practice, however, the developed ML models still must be deployed in real world to study their 

effectiveness. 

 

5.2 Future Work  
 

There are several potential directions for future work on the model, such as increasing the data 

size by searching for new data sources or bioassays in regard to the target protein.  Another 

method of improving the model is by doing feature engineering to identify the features that 

might be crucial for drug discovery. This entails combining feature importance analysis and 

domain knowledge to identify the features that capture important chemical properties. 

Exploring deep learning techniques like CNN in combination with the current model is another 

way to improve the model and increase the model's accuracy and predictive potential. In 

addition, it's critical to make sure the model is easily understood and able to provide insight on 

how it generates predictions, to better understand how various features and models contribute 

to the final prediction, this could entail implementing approaches like DT visualization. 
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 باستخدام الذكاء الاصطناعي 19-نموذج التعلم الآلي لاكتشاف عقار كوفید 

 اعداد : كلاودیا الیاس رأفت علاوي 

 اشراف: د. رشید جیوسي و د. یوسف نجاجرة 

 ملخص 

تطویر دواء جدید عملیة  مشكلة كبیرة تواجھ العالم، ولا یزال تطویر دواء فعال للفیروس قید البحث. ومع ذلك، فإن  رونا  روس كوفی   كان

طویلة ومكلفة وقد تستغرق سنوات عدیدة. یمكن أن یلعب الذكاء الاصطناعي دورًا حیویاً في اكتشاف الأدویة بشكل أسرع وأكثر فعالیة  

ه  في ھذ  .)3CLpro(نمو الفیروس ھو إنزیم البروتیز الرئیسي  الازم لتضاعف و    من حیث التكلفة. إن البروتیاز الأساسي الضروري

  تطبیق شجرة القرار. من خلال  لبروتیز الرئیسي  لالأطروحة، تم تطویر نموذج التعلم الآلي الذي یمكن استخدامھ للتنبؤ بالنشاط المثبط  

، وتم إدخال ھذه الواصفات في نموذج   PADELتم الحصول على الواصفات التي تمثل الجزیئات الكیمیائیة باستخدام برنامج واصف

شجرة القرار لتدریبھا والتنبؤ بالنشاط الحیوي لمركبات غیر معروفة مع البروتین المستھدف. تم تحسین النموذج باستخدام طرق التقلیم 

لتحسین أداء النموذج. ركز البحث على كلا النھجین الخارجي والداخلي  آلة المتجھ الداعم   ج شجرة القرار معوالتجمیع، حیث تم دم

مركباً غیر معروف من مصدر بیانات منتج الزنك الطبیعي الذي أظھر نشاطًا حیویاً   26للتحقق من أداء النموذج. اكتشف النموذج بنجاح  

التي تصلح ان تكون عقاقیر و لھا لتحدید المركبات   Lipinski  (RO5) ، تم تطبیق قاعدة  مع البروتین المستھدف. علاوة على ذلك

من المركبات المكتشفة التي لھا خصائص شبیھة بالعقاقیر ویمكن استخدامھا في التجارب السریریة.    25  انتج عنمما    خصائص العقاقیر

وتم التحقق من صحتھ أیضًا باستخدام مجموعة بیانات  تقاطعات    10ن من  المتكو  التحقق المتقاطعتم التحقق من صحة النموذج باستخدام  

على كل من وقد أثبت النموذج المقترح فعالیتھ  خارجیة من مصدر بیانات مختلف عن مصدر البیانات المستخدم في تدریب النموذج ،  

  إحكام   و،    0.89بدقة    ة. فقد كانت النتائجالخارجی   البیاناتأظھر النموذج أداءً أعلى في    و لكنمجموعات البیانات الخارجیة والداخلیة  

و  دقة،    0.98للتحقق الداخلي ، بینما بالنسبة للتحقق الخارجي    00.67 النتیجة الكاملة للكفائة ودقة النموذج و  0.6، واسترجاع    0.75

. مقارنة بالدراسات المماثلة التي تستخدم التعلم العمیق ، 0.96 ئة ودقة النموذجالنتیجة الكاملة للكفا  و  0.93، واسترجاع  0.99  إحكام

س  و أظھر نموذج التعلم الآلي لدینا أداءً أفضل. في الختام، یمكن أن یكون النموذج المقترح مفیداً في اكتشاف الأدویة لمركبات جدیدة لفیر

 .كورونا
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