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Abstract  

 

Queuing theory is  a mathematical study of queues or waiting lines. It is used to model 

many systems in different fields in our life, whether simple or complex systems. The key 

idea in queuing theory of a mathematical model is to improve performance and productivity  

of the applications. Queuing models are constructed  in order to compute  the performance 

measures for the applications  and to predict the waiting times and  queue  lengths.  

This thesis is depended on  previous papers of queuing theory for varies application which 

analyze the behavior of these applications and  shows how to calculate the entire queuing 

statistic determined by measures of variability (mean, variance and coefficient of variance) 

for variety of queuing systems in order to define the appropriate queuing model. 

Computer simulation is an easy powerful tool to  estimate  approximately the proper 

queuing model and evaluate  the performance measures for the applications. This thesis 

presents a new simulation model  for  defining the appropriate models for the applications 

and identifying  the variables parameters that affect their performance measures. It depends 

on values of mean, variance and coefficient  of the real applications, comparing  them to the 

values for characteristics of the queuing model, then according to the comparison the 

appropriate queuing model is approximately identified.  

The simulation model will  measure the effectiveness performance of queuing models 

A/B/1 where A is inter arrival distribution, B is the service time distributions of the type 

Exponential, Erlang, Deterministic and Hyper-exponential. The effectiveness performance 

of queuing model are: 

 L : The expected number of arrivals in the system. 
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 Lq : The expected number of arrivals in the  queue. 

 W : The expected time required a customer to spend in  

       the system.   

 Wq : The expected time required a customer to spend in 

        Queue.        

 U : the server utilization. 
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system 

                 L     Length of the system The expected numbers 
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system 
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W Wait time in system The expected time of a 
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CV Coefficient of variance  Ratio of σ to the mean 
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Chapter One 
 

1.1 Introduction 

  

    Queuing theory is used to deal with systems that include queues (waiting times). It 

enables mathematical analysis of the behavior of systems in order to evaluate of the 

performance measures of the systems including waiting time in system/queue, utilization of 

server and so on. Queuing theory is adopted in many fields to predict the expected time a 

customer spends in the queue likewise in the system  and it is useful in defining the optimal 

number of servers in systems. Queuing analysis is very important  in capability problems 

which are very popular in many applications especially in industry and one of the 

fundamental operations of redesign process. It requires to balance between  the cost of 

increased capacity and the gains of increased service and productivity. It is also important to 

computer networking because it can predict the length of time for the data it request. 

There are many queuing models in the world which are used to model the approximate real 

application by  analyzing  mathematically the behavior of the application. The first step in 

solving any practical problem is  to define the appropriate queuing model. In queuing theory 

they always  begin with the simple model, but if the results are not proper to this case they 

move to another one but more complicated [1]. In simple models the simple formulas are 

used because it can easily predict  the effect of a given parameter on the performance 
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measures of the system, but if other distributions are used then the mathematical models 

will be more complicated. The most common models are stochastic ones. 

“Queuing models provide the analyst with a powerful tool for designing and evaluating the 

performance of queuing systems” (Nelson, Nicole, Banks and  Carson, 2009). 

In queuing models, we define number of important performance measures such as the 

expected number of customers /jobs in the queue and system, the expected time a 

customer/job spent in queue and system, the probability distribution for those numbers and 

times, the utilization of the server whether  it is full or empty, and the probability of the 

queue and system in steady state [1][2][3]. These performance measures are significant to 

improve the system and predict the effect of suggested changes in the system.  

The aim of the thesis is how to identify the appropriate queuing model for the application 

and calculate the performance measures for it. It will help to enhance more productive and 

efficient systems that decrease the waiting time in system and increment more number 

served customers; It will help analysts not to move from model to another if the model not 

fit their  application in order to  improve the performance for it. 

The thesis is based on historical data (previous papers) which analyze the behavior of the 

different applications and define the queuing model.  

 

1.2 Research Problem Statement 

Queuing theory is used to study  the waiting lines (queues) in various applications. Queuing 

models are used to typify the different queuing systems that occur in reality. Each model 

uses different formulas to denote how to accomplish the corresponding system, including  

the average number of customers  and the average time of customers that spend in system 



3 
 

,under various circumstances. These queuing models are useful in developing systems more 

productive and efficient. They can supply more service capacity with lower limit of cost. 

They have ability to  achieve equilibrium between the cost of system capacity and the 

amount of waiting time. 

 

Figure 1.1  queuing System 

 

 

The biggest challenge in queuing theory is defining the queuing models for different 

systems, so we state our research problem as follows: How can we identify the queuing 

models and determine the appropriate probability distribution for the characteristics of the 

queuing models in correspondence with the parameters real systems and improve the 

performance measures for them? 

 

1.3 Research Motivation 

Our motivation for this research are the following: 

1- Most of the previous papers has specified their queuing models as Markov models. “ 

Network arrivals are often modeled as Poison processes for analytic simplicity, even 

though a number of traffic studies have shown that the packet interarrivals are 

exponentially distributed. We evaluate … to determine the error introduced by 

modeling them using Poisson processes”, (Vern Paxson and Sally Floyd, 1995).    
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2- Most of the papers used the same models that  identified by the previous ones for the 

same application, without any analysis to be sure that they fit their application or not 

even if there are different parameters. For example call centers applications usually  

used Erlang C distribution, “ … the Erlang C model, a queuing model commonly 

used to analyze call center performance… our findings indicate that the Erlang C 

model is subject to significant error in predicting system performance”  (Robins, 

Medeiros and Harrison, 2010).     

3- In queuing systems most mathematical theories suggest to use the specific 

probability distribution such as exponential distribution in order to model the 

uncertainties in arrival time of customers and service time [6][12]. The previous 

papers in constructing the system depend on real observations indicated that the 

assumption of exponentially distribution of arrival times can be invalid (Law and 

Kelton, 2000). 

 

1.4 Research objectives 

The objectives of this research are the following: 

1- Using quantitative computations for defining the appropriate queuing models for the 

application by estimating the characteristics of the queuing model: 

 The arrival rate of customers/jobs. 

 The service rate of the system. 

2- Increasing  the understanding of the system and predicting the behavior of the future 

system. 

3- Helpful in estimating the performance measures of the applications and support  in  

identifying  the parameters that affect the performance measures of the application. 
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4- Using technical tools and computations for predicting the queuing model from 

which  enable to use the optimization model. 

5- Valuable and very useful, especially  for people who do not have enough 

background in probability distributions, statistical analysis and mathematical 

simulation. “… There are probably 40 queuing models based on different 

management goals an conditions… and it is easy to apply the wrong model, if one 

does not have  a strong background in operations research” ( Weber, 2006) 

6- Most of the queuing models are Markov models, in this research we highlight the  

other queuing models that are more close to the real systems . 

 

1.5 Area of Applications 

Queuing theory is spread wide  used in different applications such as computer systems, 

networks and service centers. 

In this research ,we dealt with various real systems  that have been used in the previous 

papers. We  have  classified them as follows: 

1- Commercial systems such as banks. 

2- Networks systems such as compute support. 

3- Business systems . 

4- Service systems such as ATM 

5- Transportation systems. 

6- Social systems such as ER in a hospital. 
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1.6 Research Contribution 

In queuing theory, the purpose of designing a system is to make sure that the system meets 

the same requirements. We have modeled the system by analyzing the behavior and the 

properties, which enable us to improve and develop the performance of the system. 

Different statistical and analysis techniques are used in analysis. Also many computer 

simulation are used to evaluate the performance measures of the system but none of them 

can define the queuing model. The purpose of this thesis is to  present  an  easy computer 

simulation model that defines different  queuing model and estimates the performance 

measures for various applications, also shows how to calculate the entire queuing statistic 

determined by measures of variability (mean, variance and coefficient of variance) for 

variety of queuing systems. In order to yield more precise system measures for any static 

distribution  by  identify the approximate appropriate queuing model for different 

application without need for deep  probabilistic background to understand  the different 

distribution functions. 

 

1.7 Synopsis of the research 

 

In chapter two, we present the background, related work, queuing models are described and 

comparison between different techniques for defining the queuing models. In chapter three, 

our methodology is explained ,different types of arrival rate distribution and service time 

distribution are identified and evaluated. In chapter four, we discussed the analysis of our 

study for determining the queuing models. 

In chapter five, we  introduced  computer simulation and validations for different kinds of 

queuing theory. Finally, in chapter six the conclusion of the thesis and future work are 

presented. 
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Chapter Two 

 

2.1 Background 

 

    Queuing  theory was invented in the 1909s, by A.K Erlang to improve the development  

of telephony applications. In the 1950s, Leonard Kleinrock applied queuing theory to 

computer  network, James Jackson studied queuing theory in network of multiple nodes . In 

1953, G Kendall introduced the notation A/B/X/Y/Z type of queuing theory. 

In 1957, James Jackson studied queuing theory in network of multiple nodes, and presented 

an open queuing  network with exponential servers and Poisson distribution. Also he 

introduced the steady state has a product form. Parallel queues were presented by F. Haight  

in 1958. In 1961 J. Little a formula of mean number of customers in queue and system was 

proved from mean waiting time which known as Little’s law. In 1963, Jackson introduced 

another close queuing networks that have exponential servers and queuing networks which 

arrival process depends on the state of the system. In 70’s, most of researches in queuing 

theory were to evaluate the performance of the computer. In 2000, William Stalling 

provided a practical  guide of queuing analysis [2]. Joseph M. Lancaster, Mark A, Franklin, 
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Jeremy Buhler and Roger D. Chamberlain used queuing theory to model streaming 

applications. 

In recent years, they use queuing theory to model software and now  the researchers are 

interested in modeling the insurance systems and studying the retrial queues. 

 

2.2 Related Work 

Good references for fitting and estimation the queuing models are the early edition of 

Gross and Harris (1974), Hall (1991) and Law (2007). Hall (1991) describes goodness of 

fit tests in different models, (Green and Nguyen, 2001) satisfying the service time 

assumption of the M/M/s model in healthcare where the coefficient of variance of length  

of stay is very close to one. (Green, 2006) assumed that service time is follow an 

exponential distribution or Erlang distribution with the coefficient of variance close to one. 

(Noln and Thomopoulos, 2006) show how to calculate standardize system statistics for the 

Erlang distributed interarrival and service time which determined by the coefficient of 

variance and found that the queuing model (E1/E1/1 to E10/E10/1) the coefficient is range 

from [1-0.32] and when the model is (E10+/E10+/1) the coefficient is close to zero. 

 

2.3 The Main  Characteristics of Queuing Process  

 Arrival Pattern of customers: This refers to the probability distribution of inter 

arrival times which means  the arrival time of successive arrivals (customers/ jobs). 

 Service Time Pattern: This refers to the probability distribution of service times 

which depends on many factors; such as number of customers waiting in queue for 

service and number of servers. 

 Numbers of Servers: This refers number of servers which serve the system . 
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 System Capacity: The queuing can be finite or not finite, the system capacity refers 

to the maximum amount of the system that can  contain such as waiting room, if 

there is not enough space in room for waiting the following customer must leave the 

system. 

 Queue Discipline: This refers to the way  in which the customers are served in 

queue, the most popular queue discipline  : 

- FCFS which means first come first serve. 

- LCFS which means last come first serve. 

- RSS which means random selection service. 

 

2.4  Model Notation  

Queuing models can be  introduced by Kendall’s notation: 

A/B/X/Y/Z 

A: The distribution of inter arrival time. 

B:The distribution  of service time . 

X: The number of servers. 

Y:The capacity of the system. 

Z:The queue discipline. 

Common distributions used in queuing models: 

M:Markovian (Memory-less). 

Ek:Erlang with parameter k. 

Hk: Hyper Exponential with parameter k (mixture of k exponentials). 

D: Deterministic (constant). 

G: General. 
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2.5  Queuing Models 

In this section, most common of queuing models will described with their types an 

applications. 

 

2.5.1 Markovian models (systems) 

In these models the arrival process is Poisson with exponential service times [1][2].  λ is 

used to indicate the mean arrival rate, and µ is used to indicate the service time rate. We can 

derive the performance measures for the system from the equilibrium probabilities such as 

the average number of customers in queue or system and the waiting time the customers 

spent in queue or system. We will review the Markov models that are popular in queuing 

theory. 

The M/M/1 or M/M/1/∞ 

This model is a stochastic process, and the most  commonly used in systems  in which the 

arrival process of customers have Poisson process, and the service times of customers are 

determined  by Exponential distribution with single server in system. An M/M/1 queue is a 

good estimation for enormous numbers of queuing systems such as customers service 

environment, banks, phone queuing  systems and so on. 

The M/M/c or M/M/c/∞ 

The arrivals process of this model are Poisson process and the service time is  exponential 

distribution  with multiple servers. These models arise in many systems  such as computer 

resources applications and phone line systems. 

The M/M/c/c loss systems 

The arrivals process and the service time in this queue  are like M/M/c model but the queue 

capacity is finite. In this model, if one server is free ,at least all arriving customers must  be 
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served, but if servers are busy the newly customer must leave the systems without getting 

any service. In this case, the customer is considered as lost. 

The M/M/∞ 

In this  model, there is no queue because  it has infinite servers, so each arriving customer 

receives service, as well as a customer  has never to wait for service if there is a server  

available for each arrivals of customer so we may think of such a system as self-service 

system. It is a suitable theoretical for  applications that have delays such as parking and 

warehouses. 

 

2.5.2 Non Markovian models (systems) 

In non Markovian models either the inter arrival time or the service time has to be non–

exponentially distributed. In these models the analysis and the computation for the 

performance measures are more complex. The most common  models  in non Markovian 

models are G/M/1 and M/G/1 which is a classical model. 

The M/G/1 model 

In M/G/1 model the arrival process is Poisson process and the service time is 

General distribution with single server[5][9]. This model is widely used in networking 

applications and a large number of real–life computer. 

The G/M/1 model  

In G/M/1 the customers arrive according to an arbitrary  distribution (General), and the 

service time has an exponential distribution with one service. 
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2.5.4  Network models (system) 

The queuing networks have become important tools in the design and analysis of the 

computer system, because network models fulfil a convenient balance between accuracy 

and efficiency for many applications. 

There are two kinds of network models; open and closed network [6][7][8], in an open 

queuing network the customers come from outside the network and receive a service at a 

systems then depart the network. 

In a closed queuing network, a new customer can enter the network exactly at the same time 

when one customer leaves, in this sort of models the number of customers must be constant. 

  

In this section, we will mention some of the common queuing networks  

Jackson network 

Jackson is the simplest models of queuing networks. The external customer in this model is 

defined by Poisson arrival process and the service time is exponentially  distributed with 

one or more servers. The service time rates rely on the number of customers in the system. 

These models have only one customer class with infinite jobs, and customers are served as 

first come first serve (FIFO). 

Gordon -Newell networks 

These models are also called closed Jackson networks, and they have the same assumption 

of Jackson network excepting that the customer cannot enter nor leave the network. In this 

queuing network the number of jobs is always fixed. 

Kelly’s networks 

The arrival  are Poisson process and the service time is exponentially distributed. Each 

system  in Kelly’s networks  can serve different classes of customers with a fixed route of 

network. The capacity in this system is infinity. 
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2.6 Strategies used to defining the queuing models  

Queuing models can provide the analysts a robust technique  to redesign and  resolve the 

queuing systems. The basic techniques are mathematical methods and computer simulation, 

but all these techniques have their advantages and disadvantages. When we want to choose  

the appropriate technique, many factors have to be taken in our consideration such as  the 

nature of the system, the goals that fit the needs of the system and the less analytically for 

its properties. 

 

2.6.1 Mathematical method 

Mathematical method is preferred to use if the modelling process itself is an iterative 

process; which has a number of separate steps that usually must be repeated. Mathematical 

models are more convenient  for mathematical analysis, which can make good predictions 

about the behaviour of the system, and  also mathematical methods have an efficient rules to 

evaluate the performance of the system and provides a real understanding of the effect of 

parameter changes on the properties of the system. 

The following sequence steps of the mathematical method: 

1- Data collection and empirical observation. 

2- Functional relationship, formalization of properties and mechanisms. 

3- Abstraction or the results of a mathematical model (e.g. boundary conditions and/or 

differential equations with constraints). 

4- Model analysis which uses mathematical techniques. 

5- Explanation and comparison the results that obtained from step four with the real 

system. 
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In mathematical methods, the probability distribution is defined for the characteristics of the 

queuing model by  analytical  method, the properties of the distribution and  graphs with 

visual data analysis are used as the following steps: 

1- Data is plotted for a visual representation of the data type. 

2- Data distribution and the type of equations in modelling data are determined by 

excluding what cannot be as the following: 

A) If the data set has not any peaks, then it cannot be a discrete  uniform distribution. 

B) If the data set has only one peak, then it is not a Poisson or Binomial distribution. 

C) If the data set has  one curve and has a slow slope on each side  without any 

secondary peaks, the expected distribution is Poisson or Gamma but  cannot  be 

discrete uniform distribution. 

D) If the distribution of the data is equal without any skew towards any side, then the  

a Gamma or Weibull distribution will put away. 

E) If the function is even distributed with a peak in the graphed results,  then it 

cannot be an exponential distribution or Geometric distribution. 

F) If the incidence of a factor changes with the variables of the system’s 

environment, then it is probably not the Poisson distribution. 

Using mathematical methods to model systems have some difficulties and limitations 

1- Data availability and accuracy. 

2- The mathematical model analysis. 

3- Assumption that supposed model is a real system. 

4- Communication in interdisciplinary  efforts. 

5- Use of representation methods that are unfit for thorough system. 
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2.6.2 Simulation Techniques  

Simulation technique is used to model the systems for its valuable aspects: 

1- Better understanding of  the  system by permitting to study it in real and 

compressed time  period, and also study and experiment the system’s  

interactions.  

2- Provide the analyst with obvious definition and identification for the variables 

in a system. 

3- Designing a simulation is more worthy than simulation itself because the 

designer  needs an overall understanding of the system  when the simulation 

model is constructed, this understanding  leads  to discover the hidden relations 

between the interaction of the variables. 

“The system contains a mixture of discrete events, discrete and different magnitudes, and 

continuous processes. Such mixed processes have generally been difficult to represent in 

continuous simulation models, and the common resource has been a very high level of 

aggregation which has exposed the  model to serious inaccuracy“ (Coly, 1982 ) 

Computer simulation as any technique has also its  disadvantages, the most common 

disadvantages are: 

1- Requires high degree of details in the model which leads to  a high degree 

of correspondence between  a model and the real system. 

2- Computer simulation does not give us a better insight of the impact of 

parameter change on properties in the system, such as stability and 

optimality of the system performance. 

3- More time consuming and more expensive than the mathematical method, 

despite that the two techniques obtain the same data. 
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The decision of choosing one of the strategies whether mathematical method or computer 

simulation depend on the accuracy of the  model that we want  to get and the availability of 

techniques to analysis them.  Therefore when we want to study the behavior and the 

properties of some applications we use mixture of the both techniques; the analytical 

method and simulation technique. 
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Chapter Three  

 

3.1 Methodology 

 

Queuing models are mathematical description of the queuing systems which make some 

specific assumptions about the probabilistic nature of the arrival and service processes, the 

queue discipline and number of servers.  Queuing models are  used to model the 

applications by analysing  the behaviour of them. It is very important to identify the 

appropriate queuing model that fit the real application in order to improve the system 

performance and achieve a good prediction about the behavior in the future. 

We have  two kinds of analysis; transient and equilibrium analysis, but we can get exact 

analytical results for the mean performance  parameters under equilibrium conditions, also 

in some special cases, we can obtain results on higher moments, such as variance or 

probability distributions. In contrast, transient analysis is impractical in general only for 

some very simple cases, so simulation methods are preferred to use. 

Queuing models depends on the nature of the applications and their behavior. The most 

common models which depend on application’s behavior: 

1- Dynamic model: The state variables are changing over time , e.g. discrete 

event and dynamic systems. 



18 
 

2- Static models (steady state): The state of system parameter at a specific 

time instant and computes the system in equilibrium, e.g. optimization 

models. 

3- Stochastic model: The behavior of the system cannot be completely 

predictable. 

4- Deterministic models: The behavior of the system can be completely 

predictable and perfect understanding for the comprehensive system, e.g. 

insurance industry. 

5- Discrete models: The state variables are changing only when an event 

occurs or change in state over time . 

6- Continuous models: The state variables are changing in continuous 

manner, e.g. electric field. 

 

3.2 Assumption of the study 

Constructing the queuing models depend heavily on the assumptions, our assumption for 

this study: 

1- Departure and arrival rate are in steady state, which means arrival rate is 

less than service time in the system, and its properties are independent of 

time. 

2- Assume that the application has only single server, so if the application has 

more than one the service time is divided on number of servers. 

3- Assume that the size of buffer is infinite. 

4- The queue should be unconstrained which means no balking, reneging, 

retails, abandonment, or state-dependent behavior. 
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The most of queuing models depend on the assumption that the concerned random variables 

are independent with exponential distribution. This assumption is artificial because in 

practice the exponential distribution is rare but the memory-less (Markov) property of  

exponential distribution makes the analysis simple and easy, and also has only one 

parameter. Although it provides  a good fit for inter arrival times if  the service provided is 

random than if it involves a fixed set of tasks. It is common in client/server systems. 

Memory-less property refers to the state of the system at future time which is decided by the 

system state at the present time and does not depend on the state at earlier time instants. 

Therefore, the most widely used queuing models for which relatively simple closed 

analytical formulas have been developed are specified  as M/M/S/K/FCFS  type (Hall, 

1990; Lawrence and Pasternak, 1998) which refers : 

M: Markov process that assumes the arrival process follows the   Poisson distribution and 

the time service follows the exponential distribution. 

 S:  Number of the servers which can be one server as in the simplest case or multiple. 

K: The system capacity but for this model it is infinity. 

FCFS: The queue discipline. 

We must take into consideration the three main key characteristics of queuing process to 

model the real system. We must estimate each of these characteristics of the real system in 

accordance with them of the queuing process; arrival process distribution, service time 

distribution and number of servers. 

 



20 
 

3.3 Parameters of queuing models  

λ: Arrival rate (average number of customers /jobs arriving to the system per period of 

time). 

1/λ :  average interarrival time.   

µ: Service rate (average number of customers/ jobs served in a system per period of time). 

1/µ: average service time. 

cµ: Service rate when c more than one (c: number of servers). 

ρ: Traffic intensity  or utilization factor, the average utilization of the server, ρ is calculated 

as (λ/µ). 

Figure 3.2.  parameters of queuing models 

 

3.4 Arrival Process  and  service times probability distributions 

Arrivals rate means number of  (customers / jobs /requests ) per period of time. Arrivals are 

arriving to the  system in various ways. They are arriving individually or in a group, in 

steady rate or unsteady, independently or according to some kind of correlation  and  are 

characterized by a probability distribution. 
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Service times means the average amount of time required to provide the customer a service, 

but service rate means average number of customers which can be served per period of 

time. Service rate can be calculated by inverting the value of service time or vice versa. 

Service times are also characterized by probability distribution. From a modeling 

standpoint, the operational characteristics of service important more than the physical 

characteristics. For examples we care about whether service time are long or short, whether 

arrivals are served in first come first service order (FCFS) or according to some kind of 

priority rule, whether they are regular or highly variable.  

In steady sate or statistical equilibrium state, the arrival rate is less than service rate but if 

the opposite  happened, then the system will be blocked. The  service rate is sometimes 

constant as in many manufacturing processes. In other cases, the service times are  variable 

depending on variations in the service requirements and customer inputs. 

In this section, we will review a brief summary of the common probability distributions for 

arrival process and service time: 

3.4.1 Poisson Distribution  

Poisson distribution is the most common distribution in queuing models for arrivals process. 

It is a discrete distribution which means the number random of events occur in fixed 

intervals  of time and these intervals of times between successive events are independent 

random variables. In queuing models, M denotes that customers or requests for disk access 

behave according to a Poisson process, which refers to stochastic or Markov process thus 

the use of “M”. 

Exponential distribution means the intervals of time between successive events in a Poisson 

process. M  denotes that the time between completing service for a  customer is independent  

and follows an  Exponential distribution. 



22 
 

 If a queuing model has M for both of the inter -arrival times and the service times then the  

arrival rate  follows Poisson distribution with Parameter λ and service times follow the 

exponential distribution with parameter µ. 

3.4.2 General Distribution 

In queuing models, general distribution is described G when the behavior of queue has 

unknown rate of customer arrivals with unknown service time distribution. We assume that 

the arrivals or service time distribution or both of them have general distribution when we 

are not able to determine which distribution would take the place of them. 

3.4.3 Deterministic (constant) Distribution 

In deterministic model, a given input always gets the same output and does not include 

random variables. This distribution treats all of the input parameters as constant. Every 

time, the deterministic model will get the same results when we run it with the same initial 

conditions. 

Deterministic models are typified most simple mathematical models of everyday situations. 

 

3.4.4 Erlang Distribution 

The Erlang distribution  is a continuous probability distribution  developed by  A.K Erlang 

for telephone calls application. It is  particular case of Gamma distribution. 

In  queuing theory Erlang distribution is most common used to describe waiting times of 

telephone engineering systems. 

3.4.5 Hypo exponential Distribution 

Hypo exponential distribution is a continuous probability distribution , also called 

generalized Erlang distribution. This distribution can be used in many domains of 
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applications. Moreover, it can be used in the same fields as Erlang distribution, such as 

telephone traffic engineering systems and more generally in stochastic processes. 

 

3.5 Steps of fitting a theoretical distribution: 

There are three steps of fitting a theoretical distribution to a sample data [15][20]:  

1- In first step, a histogram is constructed for a sample of data. The overall shape of the 

histogram is compared with probability function from theoretical distributions. The 

aim of this step is to identify several candidate distributions for further processing. It 

is important to include all likely theoretical distribution candidates at this step; and 

those that do not fit well to the sample data will be eliminated in the third step. 

2- The second step is to determine the distribution parameters in order to obtain the 

best fit of the theoretical distribution to the sample data. This should  be done for all 

the candidates of the theoretical distributions from the first step. In this step there are 

two approaches that are often used: the maximum likelihood estimation method and 

the method of moments. The first approach identifies the distribution parameters that 

make the resulting distribution the most likely to have produced the sample data. 

The second approach equates the first q population moments with the first q sample 

moments (q is equal to the number of distribution parameters). The result of this step 

is a set of parameters for each candidate distribution that make the distribution fit the 

sample data very closely. 

3- The third step is to identify the best fit theoretical distribution, from the candidate 

distributions to represent the sample data which depends on the use of statistical 

goodness of fit tests. In this step two goodness of fit tests are commonly used: the 

first one the chi square test which is a measure of the squared distance between the 
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sample data histogram and the fitted theoretical probability density function. The 

second one is the Kolmogorov-Smirnov (K-S) test which is a measure of the largest 

vertical distance between an empirical distribution and the fitted theoretical 

cumulative distribution function. The test results of both tests are reported as p-value 

(p-value is a measure of the probability that compare another data sample with the 

same as the present data sample given that the distribution is appropriate). 

 

3.6 Approaches of the study 

This study is depended on  previous papers of queuing theory for varies application, the 

previous papers analyze the behavior of the applications and define the  queuing model for 

them using the methods that mention above, only 5% of these papers used the measure of 

variability  the coefficient of variance in their analysis and exploit it  in defining the 

probability distribution for  both interarrival and service time. The papers especially those 

which not hinted or used  the coefficient of variance in the analysis, we reanalyze them by 

including histogram and tables of mean and  variance for interarrival time, also tables of 

coefficient of variance for service time.  In this paper we estimating the probability 

distribution for both arrival and service processes based  on the measures of variability to 

estimate the queuing model. 

Computer simulation model  is presented  which defines the most appropriate queuing 

model for a system based on results of the measures of variability and calculates the 

performance measures for it. 

This study is based on the role of approximate analysis of queuing systems. 
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3.7 Evaluating Arrival Distribution  

In this section we present how to calculate the entire queuing models based on mean and 

variance to estimate the arrival process. Many papers based the coefficient of variance to 

estimate the interarrival time and service time distributions [27] especially the Erlang 

distribution.  

Interarrival times most commonly fall into one of these probability distributions 

(Dharmawirya and Adi, 2011): 

1- Poisson distribution 

2- General distribution 

3- Deterministic distribution 

In specifying the queuing model for any application, we must make assumption about the 

probabilistic nature of the arrival rate and service time. Since the most common assumption 

about arrivals processes is Poisson distribution, So if N(t) is the number of arrivals per 

period of time  t and N(t) is Poisson distribution then, 

                       Probability {N(t) = n} = e
-λt 

(λt)
n 

/n!  

Where λ is the expected number of arrivals per period of time, t is period of time, Another 

way to characterize the Poisson distribution is the inter-arrival time (time between the 

consequence arrivals) which has exponential distribution. If  I is the interarrival time of a 

Poisson Process with rate λ and 1/λ is the average time between arrivals then,   

               Probability {I ≤ t} =1 – e
-λt 

The exponential distribution has an important property that is “memoryless”, which means 

the occurrence of next arrival (customer) is independent of the last arrival. Poisson process 

is considered the most “random “ arrival process for this reason. 
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 Determining whether the arrival process is Poisson distribution is according to its 

properties. The properties (or conditions) of  Poisson distribution are: 

1- The arrivals must be identical and independent of other arrival. 

2- The arrivals are processed in sequence and not concurrent . 

3- The number of arrivals cannot be predictable, if the time of arrivals is 

known. 

4- Arrivals can have known peaks. 

If the arrival process satisfied  these conditions, then the arrival process follows Poisson 

distribution. 

The  mathematical method is based on   statistical equations to determine the arrival 

distribution as the following steps: 

1- Pick carefully intervals of overall time. 

2- Compute the arrival rate λ. 

3- Compute  the  frequency of observed arrival rate which  must occur over 

large time intervals. 

4- Calculate the mean and variance using the following formulas: 

Mean = ∑ (   )   
  

Variance =(Σ (λ
2
 * f

 
) - (N* Mean

2
))/(N-1) 

 N : The total observations 

 λ : The arrival rate. 

 f :  The frequency observed for an arrival rate  

5- Compare the values of mean and  variance  from step four. 

As a result of comparison between those values of mean and variance, the appropriate 

arrival rate distribution is determined approximately. 
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3.8  Evaluating Service Time Distribution 

Service times can follow  one of the following probability distribution: 

1- Exponential distribution. 

2- General distribution. 

3- Erlang distribution. 

4- Deterministic distribution. 

5- Hypo exponential distribution. 

6- Hyper exponential distribution. 

This section shows how to determine the service time distribution using the coefficient of 

variance and for more accuracy the 95% confidence interval for service time is used. We 

analyzed the data from papers (all the papers below did not used coefficient of variance 

or even hinted it in their analysis) following the steps which described below.   

Since the most widely used distribution for service time is an exponential distribution, first 

we must verify  that the service time distribution is exponential or not according to its 

properties: 

1- The service time based on the contents of the arrivals (customers 

/requests). 

2- Most arrivals have different service times. 

 if the service time distribution is not exponential, it should  be ruled out and search for 

another distribution using the mathematical method as  a following step: 

1- Compute the observations of service times. 

2- Calculate the mean (average service time), standard deviation and variance 

by using the following formulas: 
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Average service time  (m)= ∑
  

 

 
    

Standard deviation (σ ) = √∑ (    )     
    

Variance (V)=∑ (    )     
    

Whereas: 

n : number of service times 

Si: service time of the observation i 

3- Compute the coefficient of variance for the service times by this formula: 

Coefficient of Variance (CV) = σ / m  

4- For more accuracy results the confidence of intervals for service time is 

used: 

95% confidence intervals for service times: 

Mean (service time) – (1.96 (SE (service time)) 

Mean (service time )+ (1.96 (SE(service time)) 

SE =  √  

Appropriate service time distribution is approximately determined in accordance with the 

value of the coefficient of service time. 

 

3.9 Analysis problems in queuing systems   

The fundamental objective of analysis the queuing systems is to get a deep understanding 

for the behavior of their  underlying processes in order to predict the future behavior of 

these systems and therefore an intelligent decision can be taken to improve the performance 

and productivity  of the systems. But many problems encountered in analysis the queuing 

systems which can be classified in three types: 
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1- Behavior problems: in queuing theory, most results based on the 

behavior problems, which can be avoided by understanding   how 

system behaves under variety of conditions. Mathematical models are 

used in analysis to display the probability relations among the various 

elements of the underlying process. In queuing system, a collections of 

random variables ( number of customers or requests) are indexed by a 

parameter, such as time  is known a stochastic process. We should 

study well the properties and dependence characteristics between the 

customers and time. Stochastic process under certain conditions is 

located to what is called steady state and it is easy  to deal with system 

in which its distribution properties are independent of  time than 

system with dependent time. So, if we want to get a perfect analysis a 

deep understanding is needed for the behavior of distribution 

characteristics of  the stochastic process , and the random variables. 

The information which are obtained from this idealism analysis  will be 

helpful in the decision making process. 

2- Analytical problems: These problems mean the analysis of 

experimental data so as to define the proper  mathematical model, and 

using validation methods to decide whether the proposed model is  

appropriate for desired system. Statistical study which can derive the 

properties of the mathematical model  is used to choose the correct 

model. 

Analysis and modeling of any system based on assumptions of the 

basic characteristics (elements ) of the queuing model, there should be 

analytical mechanisms to verify all these assumptions, assess all the 
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elements of the model and examine hypotheses which are related to the 

system behavior. 

In analytical study, it is important to determine the dependencies 

among elements in the model and the dependence of the system on 

time .Most of the previous papers had Monrovian models, which 

assume Poisson distribution for arrival process and Exponential 

distribution for service time, Historically, these models are  used in the 

early stage of queuing theory  because they had only one parameter, 

and consequently easy to analysis and provide a useful results for 

decision makers. 

3- Decision Problems: These problems are related to people who choose the 

same queuing models for their system  from previous studies, without 

trying to re-analyze the  system and investigate if the both systems have 

the same parameters and behave under the certain conditions. 

Other problems are related to the design of the system and the 

measurement of the system performance.  
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Chapter Four 

   

4.1 Analysis of  the study  

 

This research is based on a large number of previous studies in queuing theory, especially 

those papers which are not used the measures of variability (mean, variance and coefficient 

of variance). The purpose of this chapter is to obtain tables of numeric results of measures 

of variability for  different queuing models of large number of applications, in order to get 

ability of designing a proposed computer simulation model for identifying the appropriate a 

queuing model.  

 

4.2 Analysis Arrival Rate Distribution 

Data is collected from previous studies and analyzed by mathematical method, we defined 

the parameters of the queuing model from empirical data. We calculated   the arrival rates 

for the application  and compared it with the same previous study, then  the mean and 

variance  for arrival rates are computed. According  to the  values of mean and variance of 

the arrival rate, we estimate the appropriate arrival rate distribution approximately. 
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Now, we will discuss a research paper [31] “The sea port application” as an example, the 

objective of the research was to define the queuing model for seaport and improve its the 

measures performance. They collected data of arrival rate (ships per day) for one year, they 

used actual the number of days and predicted number of days for arrival rate as illustrated in 

table 4.1. They determined that the arrival rate follows the Poisson distribution. 

Table 4.1 Arrival rate for seaport application  

    

We analyzed this application again using the measures of variability: 

1-  The mean and variance for arrival rates (ships per day) are calculated 

twice using the same  equations formulas that reported in chapter three. 

2- The first one  we used the  actual number days to compute the mean and 

variance  for arrival rate ,the second one we used the predicted number of 

days ,as clarified in table  4.2 . 

3-  The values of mean and variance for arrival rate are  compared to identify 

the appropriate arrival rate distribution. 



33 
 

Table 4.2  Table of our calculations for  mean and variance of arrival rate 

 

In this application, the value of mean approximately equals the variance for the arrival rate, 

which means that the arrival rate distribution is Poisson. 

After we analyzed a large number of  previous studies in queuing models and adopted the 

measures of variability in order  to identify approximate the appropriate arrival rate 

distribution, we have tables of  numeric results for mean and variance for varies 

distributions  of different applications which means: 

 If the mean and variance for the arrival rates are equal ,the arrival rate 

follows approximate  Poisson distribution . 

 If the arrival rates do not change over time, then  the arrival rate 

follows approximate  deterministic distribution. 

 If there is no pattern of distribution ,the arrival rate follows 

approximate General distribution . 
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The table below demonstrates the values of mean and variance of the arrival for different 

applications  from previous studies and  their  proposed distribution and , also the expected 

distribution.  

Table 4.3  Table of values of mean and variance for arrival rate for different 

applications  

 

4.3 Analysis of  Service Time 

Each probability distribution has its characteristics that influences determining the  service 

times distribution  : 

1- If the service time  based on the content of the arrivals and most of them 

have different  service times ,then the service time distribution is 

exponential . 

 

Application 

Name 

 

 

λ µ Mean 

(M) 

Variance 

(V) 

The proposed 

Distribution by 

previous studies 

 

The expected 

Distribution  

by our study 

 

conclusio

n 

seaport 5.67 

 

0.18 5.68 5.57 Poisson Poisson m = V 

Health care 28 14 6.277

2 

 

7.07171

9 

Poisson Poisson m = V 

Electronic 

data system 
1 1.428571 

 

2 0 Deterministic Deterministi

c 

λ stays 

constant 
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2- If the service time is not based on the content of arrivals , then the service 

time distribution is constant. 

3- If the service time based on the content of the arrivals and the same arrivals 

have the same service time , then the service time distribution is   Hyper 

exponential . 

4- If the entire  service times are equal to the entire of all parameters of the 

service time ,then the  service time distribution is Hypo exponential 

distribution . 

5- If the  arrival rate is unknown with unknown  service time , then the 

service time distribution is General distribution , which is the most 

complex model .  

the service time depends on  the value of the coefficient  of variance ,  in which the 

appropriate service time distribution can be determined . 

Now , we will describe the ATM application from previous studies, the service time is 

calculated  for three months in different times of  the ATM application, and  proposed that 

the service times  follows the deterministic distribution .   

We reanalyze the application as the following steps: 

1- The mean of the service time , the standard deviation, and the variance  are 

computed . 

2- For more accuracy results  we used 95 % confidence intervals for service 

time . 

3- The coefficient of the service time is calculated , which is equal 0.443277 as  

shown in table 4.4.  
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4- The values of the  coefficient of the service time is used to determine the  

approximate service time distribution. 

Table 4.4 Table of our calculations for the coefficient of service time  

 

The following table shows  the values of the coefficient of confidence of mean 95% for 

different applications  from previous studies, and the expected probability distribution the 

service time . 

Table 4.5 Table of coefficient of variance for service time for different applications   

Application 

name 

Mean Standard 

derivation 

Coefficient µ 

 

Coefficient 

of 

Confidence  

Of mean  

95% 

The 

expected 

distributi

on by our 

study 

The 

distribution 

from 

previous 

studies 

Bank (free 

days) 

120 32.86335 

 

0.273861 

 

 

0.008333 

 

[ 

0.234121 

- 

0.32985 

] 

 

Determini

stic 

Deterministi

c 

Bank (busy 

days) 

95 

 

75 

 

0.789474 

 

0.010526 

 

[0.741121- 

0.844576] 

 

 

Exponenti

al 

Exponential 

Bank (free days) 108 

 

33.40659 

 

0.30932 

 

0.009259 

 

[ 

0.259558- 

0.382689] 

 

 

Determini

stic 

deterministic 

seaport  

 

5.58 

 

1.43 

 

0.25627240

1 

 

0.18 

 

N/A Erlang Erlang 



37 
 

Electronic data 

system 

8.85714285

7 

 

6.127888742 

 

0.61185840

6 

0.1129032

26 

 

[ 

0.5811243-

0.633453] 

Erlang Erlang 

Supermarket 

system 

 

0.01818 

 

0.0146 

 

0.80310 55 [0.7884 - 

1.1388] 

 

Exponenti

al 

Exponential 

Telephone Call 

Center 

201 248 1.233   0.004951 N/A Exponenti

al 

Exponential 

 

After we analyzed a large number of  previous studies in queuing models and adopted the 

measures of variability in order  to identify approximately the service time distribution, we 

have tables of  numeric results for coefficient of variance for different  distributions  which 

means: 

1- If the coefficient of the service time is close to zero , then the  service time 

follows the deterministic distribution. 

2- If the coefficient of the service time is close to one , the service time 

follows the exponential distribution. A Chi-squared test and the rule thumb 

are to define the range of  close to one is [0.7-1.3]. 

3- If the coefficient of service time is between zero and one ,but not 

considerably  close to any one of them ,then the service time follows the 

Erlang distribution. 

4- If the coefficient of service time is greater than one, then the service time 

follows the Hyper exponential distribution . 

5- If the service time is none of these values, then the service time follows the 

General distribution . 
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Chapter Five 

 

5.1 Simulation and Validation 

 

Simulation is a powerful tool to use for systems that change with time. Different simulation 

techniques are helpful in decision making, especially when the analytical methods are 

inapplicable or unavailable. Computer simulation is very  useful  to analyze the  future 

systems and to predict the parameters that affect the behavior and  system performance. 

We present a simulation model that determine the appropriate queuing model for different 

applications. Approximately the proper distribution for the arrival rate is identifying by the 

values of mean and variance and the distribution for the service time is identifying by the 

value of the coefficient of variance. The simulation model will  measure the effectiveness 

performance of A/B/1 models where A is interarrival distribution of type Poisson and B is 

distributions of the type Exponential, Erlang, Deterministic and Hyper-exponential. 

Computer simulation used to validate the results from the previous studies and proved the 

accuracy of the results  obtained from our  mathematical method .  
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5.2 Simulation Model Methodology    

A novel technique is presented in defining  the appropriate queuing model and evaluating 

the performance measures for different application. This simulation model will be a 

valuable tool in queuing theory for its ability to identify the proper probability distribution 

for arrival rate and service time without the need for the application analysis. In all the 

previous simulation models, the user has to identify the  arrival rate, arrival rate distribution, 

service time and the service time  distribution as inputs, then the simulation model  

evaluates the  system performance.  

The simulation model will used to simulate the interarrival time distribution of Poisson and 

the service time distributions of types ( Exponential, Erlang, deterministic and Hyper 

exponential distribution).  

The methodology principle of simulation model as follows : 

1- The probability distributions for both arrival and service processes are 

determined according to the measures of variability; The interarrival time 

distribution will determined by comparing the mean and variance. The 

service time distribution will determined according to the values of 

coefficient of variance.  

2- The Inputs of the model are: 

 The mean and the variance for the arrival rate. 

 The mean and coefficient of variance for service time. 

3- The outputs of the simulation models are: 

 The arrival rate (λ). 

  The service rate (µ). 

 The arrival rate distribution . 
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 The service time distribution. 

4- The queuing model will determined and the effectiveness of system 

performance will be  measured : 

 L : The expected number of arrivals in the system.  

 Lq : The expected number of arrivals in the  queue. 

 W : The expected time required a customer to spend in  

       the system.   

 Wq : The expected time required a customer to spend in 

        Queue.        

 U : the server utilization. 

  

Figure 5.1 Simulation Model Methodology  
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5.3  Simulation Model  

We used  Anylogic software in our simulation, Anylogic is a multi-method simulation 

modeling tool.  Our simulation model is divided in two major paradigms : 

1- The first paradigm outputs  are  the arrival rate (λ),service time(µ) and their 

approximate probability distributions, which identify the queuing model 

for the application . 
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2- The second paradigm outputs are the queue length ,the system length ,the 

waiting time in queue ,the waiting time in system and the server utilization 

. 

In this section, some simulation models for different applications and different queuing 

models will be presented. The following simulation model is M/M/1. As it is shown  in this 

model, the mean is equal to the variance of the arrival rate, which means that the 

distribution of the arrival rate is approximate Poisson. The coefficient of the service time is 

equal 0.7, which means that the service time distribution is approximate Exponential. 

Figure  5.2 Simulation model for M/M/1 model  

 

 The following simulation model  illustrates the performance measures for M/M/1 queuing 

model ; the server utilization ,the queue length ,the system length ,the waiting time in queue 

and the waiting time in system. 



43 
 

Figure 5.3   The performance measure for M/M/1 model

 

The following simulation model illustrates the queuing model M/E/1.The mean is equal to 

the variance for the arrival rate,  which means that the distribution of the arrival rate is 

Poisson .The service time is equal 0.6 which means that the service time distribution is 

Erlang. 

Figure 5.4  Simulation model for M/E/1 model  
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The following model shows the performance measures for M/E/1 model queuing model. 

Figure 5.5 The performance measures for M/E/1 model 
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The following simulation model is the M/Hk/1 model. The mean is equal to variance for the 

arrival rate , so the arrival rate distribution is Poisson . The service time is equal to 1.2 , so 

the service time distribution is  Hyper-exponential. 

Figure 5.6 Simulation model for M/Hk/1 model  

 

  

The following model illustrates the performance measures for M/Hk/1 

Figure  5.7 The performance measure for M/Hk/1 
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5.4 Validation 

This research is based on the previous studies which determined the queuing models and 

computed the performance measures. In our simulation models we determined the queuing 

models according to the measures of variability, and compute the effectiveness performance 

for each  application from previous studies. The outcomes of the performance measures for   

applications that obtained from our simulation model were compared with theirs from 

previous studies , and the outcomes were approximately similar .  
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Chapter five 

  

Conclusion and Future work 

 

In this research ,the appropriate queuing models is defined approximately for different 

applications. Computer simulation model is presented to  determine the queuing model. The 

simulation model is based on measures of variability which using mean and variance to 

identify the arrival distribution; the coefficient of variance of service time to identify the 

service time  distribution.   We can also measure the effectiveness of system performance; 

the length of system, the length of queue , server utilization, waiting time in queue and 

waiting time in system. 

This research will increase the understanding of the queuing models, improve the 

performance and productivity of  them, and predict the future system behavior . 
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Future work 

In our study, we presented a simulation model for Markov queuing models with one server 

and infinite buffer. So we hope we develop our model to be used for Non-Markov queuing 

models with multiple servers and finite buffer. 
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التطبيقات  على المستند المناسبالطابور تحديد نموذج لالإحصائي  المنهج  
 

سالم" صالح حرباوي محمد" نعيمه: عدادإ  

  شراف: د.  بديع السرطاويإ

 الملخص
 

العديد من  ذجةنظرية الانتظار ىو دراسة رياضية طوابير أو خطوط الانتظار. يتم استخدامو لنم
الأنظمة في مختمف المجالات في حياتنا، سواء كانت أنظمة بسيطة أو معقدة. الفكرة الرئيسية في 

ير من نموذج رياضي في تحسين الأداء والإنتاجية في التطبيقات. ىي التي شيدت نماذج نظرية الطواب
 الطابور من أجل حساب مقاييس الأداء لمتطبيقات والتنبؤ فترات الانتظار وطول قائمة انتظار.

بتحميل   قومي الذيالتطبيقات المختمفة  فييعتمد ىذا البحث عمى الأوراق السابقة لنظرية الانتظار 
قياسات التباين )يعني التباين باستخدام سموك ىذه التطبيقات ويبين كيفية حساب إحصائية الطابور 

نظم الطوابير من أجل تحديد نموذج الطابور المناسب. منومعامل التباين( لمجموعة متنوعة   
 

ح وتقييم مقاييس محاكاة الكمبيوتر ىو أداة قوية وسيمة لتقدير ما يقرب من نموذج الطابور الصحي
الأداء لمتطبيقات. يقدم ىذا البحث نموذج محاكاة جديدة لتحديد النماذج المناسبة لمتطبيقات وتحديد 

عمى قيم المتوسط،   بالاعتمادالمتغيرات المعممات التي تؤثر عمى مقاييس الأداء الخاصة بيم  وذلك 
صائص نموذج الطابور، ثم وفقا لممقارنة يتم قيم خ معمعامل التطبيقات الحقيقية  ومقارنتيا  معالتباين 

 التعرف عمى نموذج الطابور المناسب تقريبا.
ر:الطابو  فعالية قياس أداءب سيقوم  محاكاةال إن نموذج  

.النظامفي  لموافدين ( العدد المتوقع١  

في قائمة الانتظار لموافدين ( العدد المتوقع٢  

النظام. في لقضاء العملاء يتطمب المتوقعالوقت ( ٣  



54 
 

الطابور. في لقضاء العملاء يتطمب المتوقعالوقت ( ٤  

.الخادم (فعالية( استخدام )٥  


