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Abstract 

 

A linear regression is a form of mathematical model that reflects results in a straight-line 

relationship between two variables (   and V ), A regression model  is given:                         

Usually   considered to be normally distributed with  mean of  0 and variance     Moreover,   in 

regression follows the normal distribution because it is inherited from.   

In practical applications, we need to check if the normality assumption is satisfied, if the 

assumption of normality is violated, or outliers are present, then the linear regression goodness 

of fit test may not be the most powerful or informative test available, and this could mean the 

difference between detecting a linear fit or not. In this situation, we could use nonparametric 

regression models or assume more robust probability distributions for the data. One possibility 

is to assume that the random variable    has a stable distribution            .              

It is well known that, in general, there is no closed form for the probability density function of 

stable distributions. However, under a Bayesian approach, the use of a latent or auxiliary 

random variable gives some simplification to obtain any posterior distribution when related to 

stable distributions. To illustrate the usefulness of calculations, the method is applied to two 

applications: one is related to a standard linear regression model assuming a normal 

distribution, and the other is related to the same model assuming a stable distribution. Using 

MCMC (Markov Chain Monte Carlo) method and r software, interesting posterior summaries 

were obtained. 
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Chapter 1

Introduction

1.1 Background

The concept of linear regression was first proposed by Sir Francis Galton in 1894.

Linear regression is a statistical test applied to a data set to define and quantify

the relation between the considered variables. In biomedical or clinical research, the

researcher often tries to understand or relate two or more independent (predictor)

variables to predict an outcome or dependent variable. This may be understood

as how the risk factors or the predictor variables or independent variables account

for the prediction of the chance of a disease occurrence, i.e., dependent variable.

Risk factors (or dependent variables) associate with biological (such as age and

gender), physical (such as body mass index and blood pressure [BP]), or lifestyle

(such as smoking and alcohol consumption) variables with the disease. The goal of

the regression model is to determine the relationship of the straight line connecting

x and v.

A regression model containing only one predictor variable is called a simple regres-

sion model x = d0 + d1v + ε. After the model has been defined and the data have

been collected, the next task is to estimate the parameters of the model based on the

collected data. The techniques used for parameter estimation are called estimators.

In this study approaches will be considered: Least squares method, Maximum Like-

lihood Estimation, the other estimation method that we consider in this research is
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the Bayesian method.

A Bayesian analysis of stable distributions is introduced by [16] using Markov Chain

Monte Carlo (MCMC) methods. The use of Bayesian methods with MCMC sim-

ulation can have great flexibility by considering latent variables, where samples of

latent variables are simulated in each step of the Gibbs or Metropolis-Hastings algo-

rithms. The appearance of outliers will absolutely affect the regression model under

standard normality assumptions. The ideal results not affected by outliers could be

obtained using the stable distribution. There are now reliable computer programs

to compute stable densities, distribution functions and quantiles. With these pro-

grams, it is possible to use stable models in a variety of practical problems. We will

provide a wide range of distributions that encompasses the Gaussian one is given by

the class of stable distributions. This large class defines location-scale families that

are closed under convolution.

This distribution family is described by four parameters α, β, δ and γ. The α ∈ (0, 2]

parameter defines the “fatness of the tails”, and when α = 2 this class reduces to

Gaussian distributions. The β ∈ [1, 1] is the skewness parameter and for β = 0

there are symmetric distributions. The location and scale parameters are, respec-

tively, δ ∈ (−∞,∞) and γ ∈ (0,∞). Stable distributions are usually denoted by

Sα(β, δ, γ). If a random variable X ∼ Sα(β, δ, γ), then Z = x−δ
γ
∼ Sα(β, 0, 1),

whenever α 6= 1 (see [13],[16]). The difficulty associated with stable distributions

Sα(β, δ, γ) is that, in general, there is no simple closed form for their probability

density functions. However, it is known that the probability density functions of

stable distributions are continuous. Also the support of all stable distributions is

given in (−∞,∞), except for α < 1 and | β |= 1 when the support is [δ,∞) for

β = 1 and (−∞, δ] for β = −1 see [16]. It known that asset returns are not normally

distributed. Rather, the empirical observations exhibit fat tails. This heavy tailed

or leptokurtic character of the distribution of price changes has been repeatedly

observed in various markets and may be quantitatively measured by the kurtosis in

excess of 3, a value obtained for the normal distribution. Returns are the cumulative
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outcome of a vast number of pieces of information and individual decisions arriving

almost continuously in time ([14],[15]). The strongest statistical argument for it is

based on the Central Limit Theorem, which states that the sum of a large number

of independent, identically distributed variables from a finite variance distribution

will tend to be normally distributed. Since stable distributions can accommodate

the fat tails and asymmetry, they often give a very good fit to empirical data. In

particular, they are valuable models for data sets covering extreme events.

1.2 Objective of the Thesis

The purpose of this study can be summarized as follows:

• To study and investigate the nature and assumptions of linear regression, more

specifically, when the normality assumption is violated.

• To study the properties of stable distributions and how and when to use it in

linear regression.

• To investigate different approaches for parameter estimation, such as, Least

squares, MLE, and Bayesian.

• To derive required formulas, necessary for parameter estimations, like, likeli-

hood functions, and posterior distributions.

• To execute an application to understand the accuracy and validity of the linear

model related to the stable distribution through simulation and real data sets.

In addition, the nature of the inspection data can be adapted to this type of

model. This can be done by writing the program code using suitable software.

1.3 Scope and Outline of the Thesis

This thesis deals exclusively with linear regression when the model fitting criteria are

violated or not met. The existence of outliers may lead to non-normal assumptions,

in this case an alternative approach or distribution must be considered. A strong
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emphasis is placed on model fit, parameter estimation and distribution throughout

the thesis because this is the main objective of many regression analyses. However,

the interpretation of the observed distribution pattern is meaningful, especially the

interpretation related to abnormal data, which must be dealt with here. This should

not be seen as a narrow use of data obtained by abnormal populations, but should

focus on the appropriate distribution of such data.

Since the main goal of this research is the development and application of linear

regression assuming stable distribution and other programs, different parameter es-

timation methods are considered. In this regard, some mathematical methods of

Bayesian analysis include stable distribution, using latent or auxiliary When related

to a stable distribution, random variables help to obtain any posterior distribu-

tion.

To show the usefulness of the computational aspects, the methodology is applied to

linear regression models. Posterior summaries of interest are obtained using the r

software. For many applications in data analysis, using stable distributions may be

a good choice because they are highly adaptable and therefore have powerful infer-

ence results. With the use of Bayesian methods and MCMC simulation algorithms,

it is possible to get inferences for the model despite of the nonexistence of an analyt-

ical form for the density function, to point out that the computational work in the

sample simulations the joint posterior distribution of interest can be greatly simpli-

fied using standard free software like the r software and Stable regression program

(stablereg.exe).

For most illustrations, different observations are distinguished and represented by

two types of data. Normal are considered solitary and rarly obtained in real data

life, while the abnormal high or low usually presented in most observations. Al-

though this may appear to limit a full discussion of results, generalization to other

distributions of data requires only slight modifications in most cases.

This thesis is divided into five chapters. The first chapter is an introductory chap-
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ter that introduces the main themes of the study. The second chapter introduces

the background information of linear regression, the definition of linear regression

analysis, linear regression models and parameter estimation techniques.

A general introduction to the stable distribution, clarifying the definition, attributes,

graphics, and methods of estimating the parameters of the stable distribution intro-

duced in Chapter 3.

Linear regression models assuming a stable distribution for response data and a

Bayesian analysis for parameter estimating including prior and posterior derivation

will be introduced in the fourth chapter.

The last chapter will introduce the application of linear regression assuming a stable

distribution, including simulation studies, analysis of real data sets and comparative

studies, and then summarize and conclude.
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Chapter 2 

 

Linear Regression Analysis 

 

In statistical analysis, regression analysis is a set of statistical processes for estimating the 

relationships between two or more variables. Explanatory Variables, also known as 

the independent or predictor variables, independent variable explains variations in the response 

variable; in an experimental study, it is manipulated by the researcher, moreover, Independent 

variables are controlled inputs.  Response variables, also known as dependent variables, these 

variables represent the output or outcome resulting from altering these inputs, dependent 

variable’s value is predicted or its variation is explained by the explanatory variable; in an 

experimental study, this is the outcome that is measured following manipulation of the 

explanatory variable.  

A linear regression is  a form of mathematical model that reflects results in  a straight-line 

relationship between two variables (V and X) rather than a curve as in the case of a non-linear 

regression. In  this research the linear regression only be considered.   

 2.1 Linear Regression Models 

Regression analysis is a conceptually simple method for investigating functional relationships 

among variables.  A real estate appraiser may wish to relate the sale price of a home from 

selected physical characteristics of the building and taxes (local, school, county) paid on the 
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building. We may wish to examine whether cigarette consumption is related to various 

socioeconomic and demographic variables such as age, education, income, and price of 

cigarettes. The relationship is expressed in the form of an equation or a model connecting the 

response or dependent variable and one or more explanatory or predictor variables. In the 

cigarette consumption example, the response variable is cigarette consumption (measured by the 

number of packs of cigarette sold in a given state on a per capita basis during a given year) and 

the explanatory or predictor variables are the various socioeconomic and demographic variables. 

In the real estate appraisal example, the response variable is the price of a home and the 

explanatory or predictor variables are the characteristics of the building and taxes paid on the 

building. 

We denote the response variable by   and the set of predictor variables by            , where 

m denotes the number of predictor variables. The true relationship between   and            , 

can be approximated by the regression model 

                  (2.1) 

where   is assumed to be a random error representing the discrepancy in the approximation. It 

accounts for the failure of the model to fit the data exactly. The function               

describes the relationship between   and           . An example is the linear regression model  

                        (2.2) 

where               , called the regression parameters or coefficients, are unknown constants 

to be determined (estimated) from the data. The predictor or explanatory variables are also called 

by other names such as independent variables, covariates, regressors, factors, and carriers. The 

name independent variable, though commonly used, is the least preferred, because in practice the 

predictor variables are rarely independent of each other. 
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The form of the model that is thought to relate the response variable to the set of predictor 

variables can be specified initially by the experts in the area of study based on their knowledge 

or their objective and or subjective judgments. The hypothesized model can then be either 

confirmed or refuted by the analysis of the collected data. Note that the model need to be 

specified only in form, but it can still depend on unknown parameters. We need to select the 

form of the function               in (2.1). This function can be classified into two types: 

linear and nonlinear. Model in (2.2) is an example of a linear function,  another example of a 

linear function is the simple linear regression model  

            (2.3) 

while a nonlinear function is 

                 (2.4) 

Note that the term linear (nonlinear) here does not describe the relationship between   and 

          ,. It is related to the fact that the regression parameters enter the equation linearly 

(nonlinearly). A regression model containing only one predictor variable is called a simple 

regression model (2.3) . A model containing more than one predictor variable is called a multiple 

regression model (2.2). 

In certain applications the response variable can actually be a set of variables,           , say, 

which are thought to be related to the same set of predictor variables,           ,. When we 

deal only with one response variable, regression analysis is called univariate regression and in 

cases where we have two or more response variables, the regression is called multivariate 

regression. 

In the case of  multivariate linear regression if  we let  
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Then, the Multivariate Linear Model can be expressed in terms of matrix form as 

        (2.5) 

After the model has been defined and the data have been collected, the next task is to estimate 

the parameters of the model based on the collected data. This is also referred to as parameter 

estimation or model fitting. The most commonly used method of estimation is called the least 

squares method. Under certain assumptions, least squares method produce estimators with 

desirable properties. In this research we will deal mainly with least squares method and its 

variants. In some instances (e.g., when one or more of the assumptions does not hold) other 

estimation methods may be superior to least squares. The other estimation method that we 

consider in this research is  the Bayesian method.  

2.2  Sample Regression Function 

Consider the simple linear regression model in (2.3), The variable   represents factors other than 

v that affect x. It is denominated error or random disturbance. The disturbance term can also 

capture measurement error in the dependent variable. The disturbance is an unobservable 

variable. The parameters    and    are fixed and unknown. On the right hand side of (2.3) we 

can distinguish two parts: the systematic component        and the random disturbance  . 

Calling     to the systematic component, we can write: 

          (2.6) 

This equation is known as the population regression function (PRF) or population line. 

Therefore, as can be seen in figure 2.1,    is a linear function of   with intercept    and slope 
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  . The linearity means that a one-unit increase in x changes the expected value of      

                   

Assume we have a random sample of size n,                 from the population. In figure 

2.2 the scatter diagram, corresponding to these data, have been displayed. 

 

  

Figure 2.1. The population regression function (PRF) Figure 2.2. The Scatter Diagram 

We can express the population model for each observation of the sample: 

                            (2.7) 

In Figure 2.3 the population regression function and the scatter diagram are put together, but it is 

important to keep in mind that although    and    are fixed, they are unknown. According to the 

model, it is possible to make the following decomposition from a theoretical point of view: 

                        (2.8) 

which is represented in figure 2.3 for the     observation. However, from an empirical point of 

view, it is not possible because    and    are unknown parameters and    is not observable. 
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Figure 2.3. The population regression function and the scatter diagram. 

 

The basic idea of the regression model is to estimate the population parameters,    and    from a 

given sample. The sample regression function (SRF) is the sample counterpart of the population 

regression function (PRF). Since the SRF is obtained for a given sample, a new sample will 

generate different estimates.  

The SRF, which is an estimation of the PRF, given by 

              (2.9) 

allows us to calculate the fitted value (   ) for x when     . In the SRF             estimators of 

the parameters    and   . For each    we have an observed value (  ) and 

a fitted value (   ). The difference between    and     is called the residual    : 

                        (2.10) 

In other words, the residual     is the difference between the sample value    and the fitted value  

of     , as can be seen in figure 2.4. In this case, it is possible to calculate the decomposition: 

           (2.11) 

for a given sample. 
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Figure 2.4. The sample regression function and the scatter diagram. 

To sum up             and     are the sample counterpart of          and    respectively. It is 

possible to calculate              for a given sample, but the estimates will change for each 

sample. On the contrary,            are fixed, but unknown. 

2.3  Parameters Estimation 

The techniques used for parameter estimation are called estimators. In this study the following 

approaches will be considered: 

  Rank Regression (Least Squares): A method of finding parameter values that minimizes 

the sum of the squares of the residuals. 

 Maximum Likelihood Estimation: A method of finding parameter values that, given a set 

of observations, will maximize the likelihood function. 

 Bayesian Estimation Methods: A family of estimation methods that tries to minimize the 

posterior expectation of what is called the utility function. In practice, what this means is 

that existing knowledge about a situation is formulated, data is gathered, and then 

posterior knowledge is used to update our beliefs. 
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2.3.1  The Ordinary Least Squares (OLS) Estimates 

The objective of this approach is to minimize the residual sum of the squares (S), given by: 

        
 

 

   
 

(2.12) 

By expressing S as a function of the estimators, using (2.10). Therefore, we must 

   
       

     
       

      
 

 

   
    

       
               

  

   
 

(2.13) 

To minimize S, we differentiate partially with respect to             : 

  

    
                  

 

   
 

  

    
                  

 

   
   

The LS estimators are obtained by equaling the previous derivatives to 0: 

                 
 

   
   

(2.13) 

                 
 

   
     

(2.14) 

Equations (2.13) and (2.14) are denominated normal equations or LS first order conditions. 

Operating with the normal equations, we have 

   
 

   
            

 

   
 (2.15) 

   
 

   
         

 

   
       

 
 

   
 (2.16) 

Dividing both sides of (2.15) by n, we have 

           (2.17) 

Therefore 
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           (2.18) 

Substituting the value of      in the second normal equation (2.16), we have 

   
 

   
              

 

   
       

 
 

   
 

   
 

   
       

 

   
        

 

   
       

 
 

   
 

Solving for     we have: 

    
   
 
          

 
   

   
  

        
 
   

 

By simplifying the above expression we get  

    
   
   

 (2.19) 

where          
 
              and             

  
   . Once    is calculated, then we 

can obtain     by using (2.18). Hence these two estimators will minimize the function in (2.12) 

that what we are looking for.  

 2.3.2  The Maximum Likelihood (ML) Estimates 

We introduced the method of maximum likelihood for simple linear regression by start with the 

statistical model in (2.3), which is the Gaussian-noise simple linear regression model, defined as 

follows: 

1. The distribution of V is arbitrary (and perhaps V is even non-random). 

2. If                      , for some constants (“coefficients”, “parameters”) 

         , and some random noise variable  . 

3.           and is independent of V. 

4.   is independent across observations. 
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A consequence of these assumptions is that the response variable X is independent across 

observations, conditional on the predictor V. The first two assumptions are the same, but we are 

now assuming much more about the noise variable    it's not just mean zero with constant 

variance, but it has a particular distribution (Normal), and everything we said was uncorrelated 

before we now strengthen to independence. Because of these stronger assumptions, the model 

tells us the conditional pdf of X for each v,                 
  . (This notation separates the 

random variables from the parameters.) Given any data set                          , we can 

now write down the probability density, under the model, of seeing that data: 

                
  

 

   
  

 

     
    

               
 

   
 

 

   
 (2.20) 

This is the likelihood, a function of the parameter values. It's just as informative, and much more 

convenient, to work with the log-likelihood, 

         
       

 

     
    

               
 

   
 

 

   
 

 
  

 
               

 

   
               

  

   

 (2.21) 

In the method of maximum likelihood, we pick the parameter values which maximize the 

likelihood, or, equivalently, maximize the log-likelihood in (2.21). After some calculus, this 

gives us the following estimators: 

    
   
   

              

    
 

 
                 

  

   

 (2.22) 

where          
 
              and             

  
   .Note, the same estimators we got 

as in LS method. 
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2.4.  The Bayesian Estimates 

In the Bayesian viewpoint, we formulate linear regression using probability distributions rather 

than point estimates. The response, x, is not estimated as a single value, but is assumed to be 

drawn from a probability distribution. The model for Bayesian Linear Regression with the 

response sampled from a normal distribution is: 

            
   (2.23) 

The output, x is generated from a normal (Gaussian) Distribution characterized by a mean and 

variance given in (2,23). The aim of Bayesian Linear Regression is not to find the single “best” 

value of the model parameters, but rather to determine the posterior distribution for the model 

parameters. Not only is the response generated from a probability distribution, but the model 

parameters are assumed to come from a distribution as well. Let           
   be the set of all 

model parameters, the posterior probability of the model parameters is conditional upon the 

training inputs and outputs: 

         
                

       
 (2.24) 

Here,          is the posterior probability distribution of the model parameters given the inputs 

and outputs. This is equal to the likelihood of the data,         , multiplied by the prior 

probability of the parameters         and divided by a normalization constant        . This is a 

simple expression of Bayes Theorem, the fundamental underpinning of Bayesian Inference: 

          
                

             
 (2.25) 

Let’s stop and think about what this means. In contrast to LS, we have a posterior distribution for 

the model parameters that is proportional to the likelihood of the data multiplied by 
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the prior probability of the parameters. Here we can observe the two primary benefits of 

Bayesian Linear Regression. 

1. Priors: If we have domain knowledge, or a guess for what the model parameters should 

be, we can include them in our model, unlike in the frequentist approach which assumes 

everything there is to know about the parameters comes from the data. If we don’t have 

any estimates ahead of time, we can use non-informative priors for the parameters such 

as a normal distribution. 

2. Posterior: The result of performing Bayesian Linear Regression is a distribution of 

possible model parameters based on the data and the prior. This allows us to quantify our 

uncertainty about the model: if we have fewer data points, the posterior distribution will 

be more spread out. 

As the amount of data points increases, the likelihood washes out the prior, and in the case of 

infinite data, the outputs for the parameters converge to the values obtained from OLS. 

Our goal is to update the distributions of the unknown parameters            
  , based on the 

data ,                          , where n is the number of observations. 

Under the assumption that the errors    are normally distributed with constant variance   , we 

have for the random variable of each response   , conditioning on the observed data   and the 

parameters           
  , is normally distributed: 

                   
              (2.26) 

That is, the likelihood of each    given      is given by 

           
 

     
     

              
 

   
  (2.26) 

And hence, the likelihood of            is given as in (2.20). 
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We first consider the case under the reference prior, which is our standard noninformative prior. 

Using the reference prior, we will obtain familiar distributions as the posterior distributions of 

           
 , which gives the analogue to the frequentist results. Here we assume the joint 

prior distribution of             
  to be proportional to the inverse of    

         
   

 

  
 (2.27) 

Using the hierachical model framework, this is equivalent to assuming that the joint prior 

distribution of            under     is the uniform prior, while the prior distribution of    is 

proportional to 
 

  
. That is 

          
                      

 

  
 

Combining the two using conditional probability, we will get the same joint prior distribution 

(2.27). 

Then we apply the Bayes’ rule to derive the joint posterior distribution after observing data 

          . Bayes’ rule states that the joint posterior distribution of            
  is 

proportional to the product of the likelihood and the joint prior distribution: 

         
                            

  
 

   
          

       
  

   
 

     
    

               
 

   
 

 

   
 
 

  

 
 

           
     

               
 
   

 

   
 

 

To obtain the marginal posterior distributions of            
  we introduce the following 

quantities derived from the formula of          and     to simplify our calculations. 
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We also further simplify the numerator inside the exponential function in the formula of 

         
            

             
  

 

   
                                   

 
 

   
 

                
 

 

   
          

  

   
          

  

   
  
            

 

   
               

           
 

   
                                     

 

   
     

              
 
         

 
   

 
 

   
                   

 

   
                     

 

   

                      

It is clear that 

                 
 

   
                                          

 

   
   

Finally, we use the quantity that     
  

           
 
      

 
 to combine the terms      

    
                       

 
    and         

 
   

  
    together. 

                
 

 

   
              

 
         

 
       

 
 

   

         
 
  

 
                    

             
 
                         

 

 

where 

            
 

 

   
      

 
 

   
 

Therefore, the posterior joint distribution of            
  can be simplied as 
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2.4.1  Marginal Posterior Distribution of     

To get the marginal posterior distribution of    , we need to integrate out         
  from 

         
            

 

 

                         
            

 

  

 

 

     
 

     
 

           
     

            
 
                         

 

   
       

 

  

    
 

 

        
             

 

 

 

 

We first calculate the inside integral, which gives us the joint posterior distribution of         
  

      
           

  
 

           
     

            
 
       

  
                         

 

   
      

 

  

 

 
 

           
     

            
 
       

  
   

   
       

                     
 

   
      

 

  

 

Here 

     
                     

 

   
  

can be viewed as part of a normal distribution of   , with mean              , and variance 

      Therefore, the integral from the last line above is proportional to      . We get 
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We then integrate    out to get the marginal distribution of   . Here we first perform change of 

variable and set    
 

 
. Then the integral becomes 

               
 

           
     

            
 
       

  
   

   
 

 

 

   

                 
            

 
       

  
   

 
  

 

 

   

  
            

 
       

  
   

 
  

 
       

 

              
 

 

  

 

Here we use another change of variable by setting   
            

 
       

  
   

 
 , and the fact 

that               
 

 
    gives us the Gamma function         which is constant. We can 

rewrite the last line from above to obtain the marginal posterior distribution of   . This marginal 

distribution is the Student’s t distribution with degrees of freedom    , centerred at    , and 

scale parameter of 
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where           
  

     is exactly the square of the standard error of     from the frequentist 

OLS model. 

2.4.2  Marginal Posterior Distribution of     

A similar approach will lead us to the marginal distribution of   . We again start from the joint 

posterior distribution and integrate         
   out to get the marginal posterior distribution of 

  .  We first compute the integral 

 

 

      
            

 

           
     

            
 
       

  
                         

 

   
      

 

  

 

Here we group the terms with        together, then complete the square so that we can treat is 

as part of a normal distribution function to simplify the integral 

                     
 
         

 
       

 
 

   
 

         
 
        

 
 

   
   

 
     

 
                          

 
 

         
 

 

   
   

 
           

          

       
  

      
  

 

          
 
 

       
  

   

       
  

      
   

         
 

 

   
   

 
           

          

       
  

      
  

 

 
        

 

 
 
 

 
 

       
  

   

 

When integrating, we can then view 

     
       

  
      

 

   
          

          

       
  

      
  

 

  

as part of a normal distribution function, and get 
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To get the marginal posterior distribution of   , we again integrate    out. using the same 

change of variable     
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In the last line, we use the same trick as we did for    to derive the form of the Student’s t 

distribution. This shows that the marginal posterior distribution of    also follows a Student’s t  
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distribution, with     degrees of freedom. Its center is    , the estimate of    in the frequentist 

OLS estimate, and its scale parameter is     
 

 
 

 
 

       
  

   

 , which is the square of the standard 

error of      

2.4.3  Marginal Posterior Distribution of     

To show that the marginal posterior distribution of     follows the inverse Gamma distribution, 

we only need to show the precision   
 

  
  follows a Gamma distribution. It is clear that the 

prior distribution of    proportional to 
 

  
 is equivalent to taking the prior distribution of    

proportional to 
 

 
. 

      
 

  
         

 

 
 

Therefore, under the parameters    ,    , and the precision  , we have the joint prior distribution 

as 

            
 

 
 

and the joint posterior distribution as 

                    
 
 
      

             
 
   

 
   

Using the partial results we have calculated previously, we get 

                                       

 

  

  
 
 
       

            
 
       

  
   

 
  

 

Intergrating over   , we have 
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This is a Gamma distribution with shape parameter 
   

 
 and rate parameter 

   

 
. Therefore, the 

updated    follows the inverse Gamma distribution 

  
 

  
                 

   

 
 
   

 
    

That is  

           
   
 
        

   

 
   

 

 



Chapter 3

Stable Distribution

3.1 Introduction

Stable distribution are general family of probabilities distributions that share certain

properties.They were first described by Paul Levy (1925) and so are also sometimes

informally called Levy distributions. This can cause confusion as ”Levy Distribu-

tion” is actually a specific member of the Stable Distribution family. Most of these

distributions do not have a distinct probability dinsity function, with the exception

of the Cauchy Distribution, Levy Distribution and Normal Distribution, but they

do share certain properties, like skewness and heavy tails or fat tails.

3.2 Definitions, features, and graphics of stable distribu-

tion

A distribution that is heavy tailed goes to zero slower than on without heavy

tails.Heavy tailed distributions tend to have many outliers with very high val-

ues.

The stable distribution requires four parameters. The index of stability α ∈ (0, 2],

also called the tail index,tail exponent or characteristic exponent, determines the

rate at which the tails of the distribution taper off, see the figure 3.2.
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Figure 3.1: Heavy tailed.

Figure 3.2: A semi-logarithmic plot of symmetric (β = 0) stable densities for four
value of α. Note, the distinct behavior of the Gussian α = 2 distribution.

The skewness parameter β ∈ [−1, 1] defines the asymmetry. When β > 0, the

distribution is skewed to the right, i.e. the right tail is thicker, see figure 3.3. When

β < 0, it is skewed to the left.When β = 0, the distribution is symmetric about the

mode (the peak) of the distribution.
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Figure 3.3: A plot of stable densities for α = 1.2 and four values of β

The last two parameters, δ ∈ (−∞,∞) and γ ∈ (0,∞), are the location and scale

parameters respectively. Sable distributions are usually denoted by Sα(β, δ, γ), then

Z = X−δ
γ
∼ Sα(β, 0, 1), (see [13], [16]).

Figure 3.4: A semilog plot of symmetric (β = δ = 0) α-stable probability density

functions (pdfs) for α = 2 (black), 1.8 (red), 1.5 (blue dashed line) and 1 (green

long-dashed line). The Gaussian (α = 2) density forms a parabola and is the only

α-stable density with exponential tails.

Figure 3.4: Dependence on alpha
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Figure 3.5: Right tails of symmetric α-stable cumulative distribution functions (cdfs)

for α = 2 (black), 1.95 (red), 1.8 (blue dashed line) and 1.5 (green long-dashed line)

on a double logarithmic paper. For α < 2 the tails form straight lines with slope

−α.

Figure 3.5: Tails of stable laws

using a central limit theorem type argument it can be shown that [11]


limx→∞ x

αP (X > x) = Dα(1 + β)γα,

limx→∞ x
αP (X < −x) = Dα(1 + β)γα,

(3.1)

Where :

Dα =

(
2

∫ ∞
0

x−α sin(x)dx

)−1

=
1

π
Γ(α) sin

πα

2
(3.2)

The convergence to a power-law tail varies for different α’s and, as can be seen in

the Figure 3.5, is slower for larger values of the tail index. The tails of α-stable

distribution functions exhibit a crossover from an approximate power decay with

exponent α > 2 to the true tail with exponent α. This phenomenon is more visible
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for large α’s.

An important property of normal or Gaussian random variables is that the sum of

two of them is itself a normal random variable. One consequence of this is that if Z

is normal, then for Z1 and Z2 independent copies of Z and any positive constants a

and b,

aZ1 + bZ2
d
= eZ + h (3.3)

or some positive e and some h ∈ R. The symbol
d
= means equality in distribution,

i.e. both expressions have the same probability law. equation (3.3) says that the

shape of Z is preserved up to scale and shift under addition.

Definition 3.1 A random variable Z is stable or stable in the broad sense if for Z1

and Z2 independent copies of Z and any positive constants a and b, (3.3) holds for

some positive e and some h ∈ R. The random variable is strictly stable or stable

in the narrow sense if (3.3) holds with h = 0 for all choices of a and b. A random

variable is symmetric stable if it is stable and symmetrically distributed around 0,

e.g. Z
d
= −Z, [16].

The addition rule for independent normal random variables says that the mean of

the sum is the sum of the means and the variance of the sum is the sum of the

variances.

Suppose Z ∼ N(µ, σ2), then the terms on the left hand side above areN(aµ, (aσ)2)

and N(bµ, (bσ)2) respectively, while the right hand side is N(eµ+ h, (eσ)2). By the

addition rule one must have e2 = a2 + b2and h = (a + b − e)µ. Expressions for e

and h in the general stable case are given below. The word stable is used because

the shape is stable or unchanged under sums of the type (3.3). Some authors use the

phrase sum stable to emphasize the fact that (3.3) is about a sum and to distinguish

between these distributions and max-stable, min-stable, multiplication stable and

geometric stable distributions. Also, some older literature used slightly different

terms: stable was originally used for what we now call strictly stable,quasi-stable
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was reserved for what we now call stable.

Two random variables Z and Y are said to be of the same type if there exist constants

A > 0 and B ∈ IR with Z
d
= AY + B. The definition of stability can be restated

as aZ1 + bZ2 has the same type as Z. There are three cases where one can write

down closed form expressions for the density and verify directly that they are stable

- normal, Cauchy and Levy distributions.

Normal or Gaussian distributions Z ∼ N(µ, σ2), if it has a density [16]

f(z) =
1√
2πσ

exp

(
−(z − µ)2

2σ2

)
, −∞ < z <∞ (3.4)

The cumulative distribution function, for which there is no closed form expression,

is F (z) = P (Z ≤ z) = ϕ((z − µ)/σ), where ϕ(z) = probability that a standard

normal random variable. is less than or equal z.

Cauchy distributions Z ∼ Cauchy (δ, γ) , if it has density [16]

f(z) =
1

π

γ

γ2 + (z − δ)2
−∞ < z <∞ (3.5)

Levy distributions Z ∼ Levy (δ, γ) , if it has density [16]

f(z) =

√
γ

2π

1

(z − δ)3/2
exp

(
− γ

2(z − δ)

)
, δ < z <∞ (3.6)

Note that some authors use the term Levy distribution for all sum stable laws; Figure

(3.6) shows a plot of these three densities. Both normal distributions and Cauchy

distributions are symmetric, bell-shaped curves. The main qualitative distinction

between them is that the Cauchy distribution has much heavier tails, see Table

3.1. In particular,there is a tiny amount of probability above 3 for the normal

distribution, but a significant amount above 3 for a Cauchy. In a sample of data

from these two distributions, there will be (on average) approximately 100 times

more values above 3 in the Cauchy case than in the normal case. This is the reason
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stable distributions are called heavy tailed. In contrast to the normal and Cauchy

distributions, the Levy distribution is highly skewed, with all of the probability

concentrated on x > 0 , and it has even heavier tails than the Cauchy.

Figure 3.6: Graphs of standarizad normal N(1, 0), Cauchy (1, 0) and levy (1, 0)
destination

Table 3.1: Comparison of tail probabilities for standard normal, Cauchy and Levy
distributions

P (Z > c)
c Normal Cauchy Levy
0 0.5000 0.5000 1.0000
1 0.1587 0.2500 0.6827
2 0.0228 0.1476 0.5205
3 0.001347 0.1024 0.4363
4 0.00003167 0.0780 0.3829
5 0.0000002866 0.0628 0.3453

General stable distributions allow for varying degrees of tail heaviness and varying

degrees of skewness. Other than the normal distribution, the Cauchy distribution,

the Levy distribution, and the reflection of the Levy distribution, there are no

known closed form expressions for general stable densities and it is unlikely that

any other stable distributions have closed forms for their densities. [21] shows that

in a few cases stable densities or distribution functions are expressible in terms

of certain special functions. This may seem to doom the use of stable models

in practice, but recall that there is no closed formula for the normal cumulative

32



distribution function. There are tables and accurate computer algorithms for the

standard normal distribution function, and people routinely use those values in

normal models. We now have computer programs to compute quantities of interest

for stable distributions, so it is possible to use them in practical problems.

Definition 3.2 Non-degenerate Z is stable if and only if for all n > 1,there exist

constants cn > 0 and dn ∈ IR, by such that [16]

Z1 + ...+Zn
d
= cnZ + dn, where Z1, ..., Zn are independent, identical copies of Z. Z

is strictly stable if and only if dn = 0 for all n.

The only possible choice for the scaling constants is cn = n
1
α for some α ∈ (0, 2].

Both the original definition of stable and the one above use distributional prop-

ertiesof Z, yet another distributional characterization is given by the Generalized

Central Limit Theorem, While useful, these conditions do not give a concrete way of

parameterizing stable distributions. The most concrete way to describe all possible

stable distributions is through the characteristic function or Fourier transform. (For

a random variable Z with distribution function F (z), the characteristic function is

defined by ϕ(x) = E exp(ixZ) =
∫∞
−∞ exp(ixz)dF (z). The function ϕ(x) completely

determines the distribution of Z and has many useful mathematical properties, The

sign function is used below, it is defined as

sign(x) =


−1, x < 0

0, x = 0

1, x > 0

(3.7)

the α = 1 case, 0.log0 is always interpreted as limz ↓0z log z = 0.

Due to the lack of closed form formulas for densities for all but three distribu-

tions, see the Figure 3.8, the α-stable law can be most conveniently described by its

characteristic function ϕ(t) the inverse Fourier transform of the probability density

function. However, there are multiple parameterizations for α-stable laws and much
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confusion has been caused by these different representations. see Figure 3.9, figure

3.10. The variety of formulas is caused by a combination of historical evolution

and the numerous problems that have been analyzed using specialized forms of the

stable distributions.

The most popular parameterization of the characteristic function of X ∼ Sα(β, δ, γ),

i.e. an α-stable random variable with parameters α, β, δ and γ, is given by [16]

parameterization.

log(ϕ(t)) =


iδt− γα | t |α {1 + iβ sin(t) tan πα

2
[(| γt |)1−α − 1]}, for α 6= 1,

iδt− γ | t | {1 + iβ 2
π

sin(t) log(γ | t |)}, for α = 1.

(3.8)

When α > 1, the mean of the distribution exists and is equal to δ. In general,the

pth moment of a stable random variable is finite if and only if p < α. When the

skewness parameter β is positive, the distribution is skewed to the right,i.e. the right

tail is thicker, see the Figure 3.7, Figure 3.8. When it is negative, it is skewed to the

left. When β = 0, the distribution is symmetric about δ. As α approaches 2, β loses

its effect and the distribution approaches the Gaussian distribution regardless of β.

The last two parameters, γ and δ, are the usual scale and location parameters, i.e.

γ determines the width and δ the shift of the mode (the peak) of the density. For

γ = 1 and δ = 0 the distribution is called standard stable.

see figure 3.7 Stable pdfs for α = 1.2 and β = 0 (black ), 0.5 (red), 0.8 (blue dashed

line) and 1 (green long-dashed line). Figure 3.8: Closed form formulas for densities

are known only for three distributions – Gaussian (α = 2; black ), Cauchy (α = 1;

red) and Levy (α = 0.5, β = 1; blue dashed line). The latter is a totally skewed

distribution, i.e. its support is IR+. In general, for α < 1 and β = 1(−1) the

distribution is totally skewed to the right (left).
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Figure 3.7: Dependence on beta

Figure 3.8: Gaussian, Cauchy, and Levy distributions

see Figure 3.9, figure 3.10. The variety of formulas is caused by a combination

of historical evolution and the numerous problems that have been analyzed using

specialized forms of the stable distributions.

The S0
α (β, δ0, γ) parameterization is a variant of Zolotariev’s (M)-parameterization

[21] , with the characteristic function and hence the density and the distribution

function jointly continuous in all four parameters, see the Figure 3.10. In particular,
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percentiles and convergence to the power-law tail vary in a continuous way as α

and β vary. The location parameters of the two representations are related by

δ = δ0 − βγ tan πα
2

for α = 1 and δ = δ0 − βγ 2
π

log γ Note also, that the traditional

scale parameter γ of the Gaussian distribution defined by:

fG(x) =
1√
2πγ

exp

{
−(x− δ)2

2γ2
G

}
, γG =

√
2γ. (3.9)

Figure 3.9 , 3.10: Comparison of S and S0 parameterizations: α-stable pdfs for β =

0.5 and α = 0.5 (black line), 0.75 (red line), 1 (blue short-dashed line), 1.25 (green

dashed line) and 1.5 (cyan longdashed line).

Figure 3.9: S parameterization
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Figure 3.10: S0 parameterization

3.3 Stable density and distribution functions

The lack of closed form formulas for most stable densities and distribution functions

has negative consequences. For example, during maximum likelihood estimation

computationally burdensome numerical approximations have to be used. There gen-

erally are two approaches to this problem. Either the fast Fourier transform (FFT)

has to be applied to the characteristic function [15] or direct numerical integration

has to be utilized [16]. For data points falling between the equally spaced FFT grid

nodes an interpolation technique has to be used. Taking a larger number of grid

points increases accuracy, however, at the expense of higher computational burden.

The FFT based approach is faster for large samples, whereas the direct integration

method favors small data sets since it can be computed at any arbitrarily chosen

point. [15] report that for N = 213 the FFT based method is faster for samples

exceeding 100 observations and slower for smaller data sets. Moreover, the FFT

based approach is less universal – it is efficient only for large α’s and only for pdf

calculations. When computing the cdf the density must be numerically integrated.
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In contrast, in the direct integration method [21] formulas either for the density or

the distribution function are numerically integrated.

Set ζ = −β tan πα
2

.Then the density f(x;α, β) of a standard α-stable random vari-

able in representation S0, i.e. X ∼ S0
α(1, β, 0) [4].

• when α 6= 1 and x > ζ :

f(x;α, β) =
α(x− ζ)

1
α−1

π | α− 1 |

∫ π
2

−ξ
V (θ;α, β)exp

{
−(x− ζ)

α
α−1V (θ;αβ)

}
dθ,

(3.10)

• when α 6= 1 and x = ζ :

f(x;α, β) =
Γ(1 + 1

α
) cos(ξ)

π(1 + ζ2)
1
2α

, (3.11)

• when α 6= 1 and x < ζ :

f(x;α, β) = f(−x;α,−β), (3.12)

• when α = 1 :

f(x;α, β) =


1

2|β|e
πx
2β
∫ π

2

−π
2
V (θ; 1, β)exp

{
−e−

πx
2β V (θ; 1, β)

}
dθ, β 6= 0,

1
π(1+x2)

, β = 0,

(3.13)

where

ξ =


1
α
arctan(−ζ), α 6= 1,

π
2
, α = 1,

(3.14)

and
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V (θ;α, β) =


(cosαξ)

1
α−1

(
cos θ

sinα(ξ+θ)

) α
α−1 cos{αξ+(α−1)θ}

cos θ
, α 6= 1,

2
π

(
π
2

+βθ

cos θ

)
exp

{
1
β
(π

2
+ βθ) tan θ

}
, α = 1, β 6= 0.

(3.15)

The distribution F (x;α, β) of a standard α-stable random variable in representation

S0 can be expressed as:

• when α 6= 1 and x > ζ :

F (x;α, β) = d1(α, β) +
sin(1− α)

π

∫ π
2

−ξ
exp

{
−(x− ζ)

α
α−1V (θ;α, β)

}
dθ,

where

d1(α, β) =


1
π
(π

2
− ξ), α < 1,

1, α > 1

(3.16)

when α 6= 1 and x = ζ :

F (x;α, β) =
1

π
(
π

2
− ξ), (3.17)

when α 6= 1 and x < ζ :

F (x;α, β) = 1− F (−x;α,−β), (3.18)

when α = 1 :
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F (X; 1, β) =



1
π

∫ π
2
−π
2

exp{−e− πx
2β
V (θ; 1, β)}dθ, β > 0,

1
2

+ 1
π

arctanx, β = 0,

1− F (x, 1,−β), β < 0,

(3.19)

Formula (3.10) requires numerical integration of the function g(·)exp{−g(.)}, where

g(θ;x, α, β) = (x − ζ)
α
α−1V (θ;α, β). The integrand is 0 at −ξ, increases monotoni-

cally to a maximum of 1
e

at point θ∗ for which g(θ∗;x,α, β) = 1, and then decreases

monotonically to 0 at π
2

[16]. However, in some cases the integrand becomes very

peaked and numerical algorithms can miss the spike and underestimate the integral.

To avoid this problem we need to find the argument θ∗ of the peak numerically and

compute the integral as a sum of two integrals: one from −ξ to θ∗ and the other

from θ∗ to π
2
.

Theorem 3.1 All (non-degenerate) stable distributions are continuous distributions

with an infinitely differentiable density, [16].

To distinguish between the densities and cumulative distribution functions in differ-

ent parameterizations, f(x | α, β, δ, γ; k) will denote the density and F (x | α, β, δ, γ; k)

will denote the d.f. of a S(α, β, δ, γ; k) distribution. When the distribution is stan-

dardized, i.e. scale γ = 1, and location δ = 0, f(x | α, β; k) will be used for the

density, and F (x | α, β; k) will be used for the d.f..

Since all stable distributions are shifts and scales of some Z ∼ (α, β; 0), we will focus

on those distributions here. The computer program STABLE, was used to compute

the probability density functions (pdf) and (cumulative) distribution functions (d.f.)

below to illustrate the range of shapes of these distributions. Stable densities are

supported on either the whole real line or a half line. The latter situation can only

occur when α < 1 and (β = +1 or β = −1). Precise limits are given by the following

lemma.

Lemma 3.1 The support of a stable distribution in the different parameterizations

is [16]
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support f(x|α, β, γ, δ; 0) =


[δ − γ tan πα

2
,∞), α < 1 and β = 1

(−∞, δ + γ tan πα
2

] , α < 1 and β = −1

(−∞,+∞), otherwise

(3.20)

support f(x|α, β, γ, δ; 1) =


[δ,∞), α < 1 and β = 1

(−∞, δ], α < 1 and β = −1

(−∞,+∞), otherwise

(3.21)

The constant tan πα
2

appears frequently when working with stable distributions, so it

is worth recording its behavior. As α ↑ 1, tan πα
2
↑ +∞, the expression is undefined

at α = 1, and when α ↓ 1,tan πα
2
↓ −∞ .This essential discontinuity at α = 1 is

sometimes anuisance when working with stable distributions, but here it is natural:

if |β| = 1 then as α ↑ 1, the support in Lemma 1.4 grows to Rin a natural way.

3.4 Logarithmic moments

This approach is as a result of the challenges encountered when using the FLOM

method which requires computing Gamma functions, the inversion of the sinc func-

tion and it only works for some p. The current method suggests computing deriva-

tives with respect to the moment order p resulting in moments of the logarithms of

the stable process. We illustrate in the following.

Lemma 3.2 Let S denote a symmetric stable random variable and let p ∈ IR. Then

[10]

Mn = E[(log | S |)n] = lim
p→0

dn

dpn
E[| S |p], n = 1, 2, ... (3.22)

The moments follow readily for n = 1, 2, ...
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M1 = E[log | S |] = φ0(1− 1

α
) +

1

α
log | γ

cos θ
| (3.23)

M2 = E[(log | S | −E[log | S |])]2 = φ1(
1

2
+

1

α2
)− θ2

α2
(3.24)

M3 = E[(log | S | −E[log | S |])3] = φ3(1− 1

α3
) (3.25)

where θ = arctan(β tanαπ
2

) terms φk are given by φ0 = −0.57721566, φ1 = π2

6
,

φ = 1.2020569 derived from the polygamma function

φk−1 =
dk

dxk
log Γ(x) |x=1 (3.26)

3.5 methods of parameter estimation of stable distribution

The four common methods for estimating parameters of stable processes include:

quantiles method, the logarithmic moments method, the empirical characteristics

method and the ML method. We will investigate their accuracy in the follow-

ing.

3.5.1 The quantiles method

Was much more appreciated through [14] after its extension to include asymmetric

distributions and for cases where α ∈ [0.6, 2] unlike the approach that restricts it to

α ≥ 1.

Suppose ĥ is a given data sample then the estimates for α and β are given by

α̂ = Θ1(θ̂α, θ̂β) and β̂ = Θ2(θ̂α, θ̂β) where
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θ̂α =
ĥ0.95 − ĥ0.05

ĥ0.75 − ĥ0.25

, θ̂β =
ĥ0.95 + ĥ0.05 − 2ĥ0.05

ĥ0.95 − ĥ0.05

(3.27)

The notation ĥq represents the qth quantile of sample ĥ and, α̂ and β̂ are obtained

by functions Θ1(θ̂α, θ̂β) and Θ2(θ̂α, θ̂β) given in Tables III and IV in [14] through

linear interpolation. Consequently, the scale parameter is given by

γ̂ =
ĥ0.75 − ĥ0.25

Θ3(α̂, β̂)
(3.28)

where Θ3(α̂, β̂) is given by Table V in [14]. The consistent estimator γ is then

obtained through interpolation.

Finally the location parameter δ is estimated through a new parameter defined

by

ξ =


δ + βv tan πα

2
, α 6= 1

δ, α = 1

(3.29)

Moreover, ξ is estimated by

ξ̂ = ĥ0.5 + γ̂Θ5(α̂, β̂), (3.30)

where Θ5(α̂, β̂) is obtained from Table VII in [14] by linear interpolation. The

location parameter is estimated consistently by

δ̂ = ξ̂ + β̂γ̂ tan
πα̂

2
(3.31)

3.5.2 Empirical characteristic function method

Suppose a set of observable data {h1, h2, ..., hN} follows a stable distribution. Then

we can approximate the characteristic function of this data by applying a basic
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Monte Carlo approach based on the law of large numbers i.e.

ϕ(u) = E[eiuhj ] ≈ ϕ̂(u) =
1

N

N∑
j=1

eiuhj (3.32)

We can express the characteristic function (3.8) in terms of the cosine and sine

function from basic trigonometric principles, i.e.

ϕ(u) = e−|γu|
α

(cos η + i sin η), (3.33)

where

η = γu− | γu |α β sin(u)ω(u, α)

ω(u, α) =


tan πα

2
, α 6= 1

2 log|u|
π

, α = 1

As a result, we observe that

| ϕ(u) |= e−|γu|α (3.34)

The estimated characteristic function relates to the model parameters by:

log | ϕ̂(uk) |= γα | uk |α, for k = 1, 2, uk > 0, α 6= 1. (3.35)

Solving this system leads to the estimation representation formulas for the stability

and variance parameters:

α̂ =
log log|ϕ̂(u1)|

log|ϕ̂(u2)|

log | u1
u2
|
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log γ̂ =
log | u1 | log(− log | ϕ̂(u2) |)− log | u2 | log(− log | ϕ̂(u1) |)

log | u1
u2
|

The real and imaginary parts of the characteristic function (3.33) provide estimates

for β̂ and δ̂:

arctan
Im(ϕ(u))

Re(ϕ(u))
= δu− | γu |α β sin(u)ω(u, α) (3.36)

Suppose Υ(u) = arctan( Im(ϕ(u))
Re(ϕ(u))

) and choose another set of positive numbers xk, k =

3, 4 together with α̂ and γ̂ then the estimates of the location and skewness parameters

are given respectively by

δ̂ =
uα̂4 Υ(u3)− uα̂3 Υ(u4)

u3uα̂4 − u3uα̂4
(3.37)

β̂ =
u4Υ(u3)− u3Υ(u4)

γ̂α̂tanπα̂
2

(u4uα̂3 − u3uα̂4 )
(3.38)

Notice, it can be deduced from Equation (3.33) that

log(− log(| ϕ(u) |2)) = log(2γα) + α log(u)

This provides an alternative way to envision the regression estimation method:

xi = d0 + d1vi + εi, i = 1, 2, ..., n,

where xi = log(− log(| ϕ̂(ui) |2)), d0 = log(2γα), vi = log(ui) and εi is an error term.

The stability parameter d1 and the scale parameter γ can be estimated by selecting

ui = πi
25
, i = 1, 2, ..., n; of real data see [10]. The estimates α̂ and γ̂ are then used to

estimate β and δ using the following relation
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zk = ηk + ξk, k = 1, 2, ..., Q.

where zk = Υn(uk) + πln(uk), ηk = γ̂ku− | γ̂ku |α̂ β sin(u)ω(u, α̂) and ξk is some

random error. The proposed real data set for Q (see [10], Table II) is uk = πk
50
, k =

1, 2, ..., Q.

3.5.3 Logarithmic moments method

The key innovation with this method is that there is no need of computing Gamma

functions and the sinc function as in the FLOM. Secondly, techniques of parameter

estimation for symmetric stable random variables (i.e. β = 0) can be applied to

skewed stable random variables (i.e. β 6= 0) and, techniques of parameter estimation

for centered stable random variables (i.e. γ = 0) to non-centered ones (i.e. γ 6= 0)

through centro-symmetrization. However, this comes at a cost of losing almost half

of the sample data. Therefore to obtain better estimates one has to use large sample

data sets.

Centro-symmetrization of stable random data sets

Let Sk be a sequence of n independent stable random variables distributed according

to Sk ∼ S(α, β, δ, γ). Then the distribution of a weighted sum of the above sequence

with weights ak can be estimated using their characteristic function:

Z =
n∑
k=1

akSk ∼ S

[
α,

∑n
k=1 a

<α>
k∑n

k=1 | ak |α
β,

n∑
k=1

akδ,
n∑
k=1

| ak |α γ

]
(3.39)

where the pth power of a number x is defined by X<P> = sin(X) | X |P .

As a result, it is easy to obtain sequences of independent stable random variables

with zero δ zero β as well as both zero δ and zero β for α 6= 1. This yields the

centred, deskewed, and symmetrized sequences:
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SCk = S3k + S3k−1 − 2S3k−2 ∼ S(α, [
2− 2α

2 + 2α
]β, [2 + 2α]γ, 0) (3.40)

SDk = S3k + S3k−1 − 2
1
αS3k−2 ∼ S(α, 0, 4γ, [2− 2

1
α ]δ (3.41)

SSk = S2k − S2k−1 ∼ S(α, 0, 2γ, 0) (3.42)

Parameter estimation

Suppose Sk is a data set assumed to be drawned from S(α, β, δ, γ) .Then the expo-

nent parameter α is estimated by setting θ = 0 in (3.24), and the log moment M2

is estimated from the obverted data (3.42). That is,

α̂ = (
M2

φ1

− 1

2
)
−1
2 (3.43)

The estimated α̂ is used to estimate θ using (3.23) where M1 is estimated from the

obverted data (3.41). That is,

| θ̂ |= ((
φ1

2
−M2)α̂2 + φ1)

1
2 (3.44)

From the definition of θ, | β0 | can be estimated by

β̂0 =
tan θ̂

tan α̂π
2

(3.45)

Centering see (3.40) requires | β̂0 | to be multiplied by 2+2α

2−2α
to obtain | β̂ | of the

original data where the sign of β is determined by

K = sin(| Smax − Smd | − | Smin − Smd |), such that β̂ = K | β̂ |.

where Smax, Smd, Smin is the maximum, median and minimum of the original data.

Next we estimate the scale parameter γ̂0 using (3.23) where M1 is estimated from

the obverted data (3.40). That is
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γ̂0 =| cos θ̂ | exp(M1 − φ0)α̂ + φ0) (3.46)

Again centering see (3.40) gives the parameter estimate γ̂ of the original data by

γ̂ = γ̂0(2− 2
1
α )−1. Finally, the location parameter δ is estimated by

δ̂ = δ̂0(2− 2
1
α )−1 (3.47)

where δ0 is the median or mean of the obverted data .

3.5.4 Maximum likelihood method

The ML method is the most favored parameter estimation method in economic and

financial applications. The method relies on the density function which in the case

of stable distributions poses a closed form representation problem.The method of

maximum likelihood chooses as estimates those values of the parameters that are

most consistent with the sample data.

If Xi ∼ F (Θ), i = 1, ..., n

then the likelihood function is

 L({Xi}ni=1,Θ) =
n∏
i=1

F (Xi,Θ) (3.48)

The likelihood function can be maximized w.r.t. the parameter(s) Θ, doing this one

can arrive at estimators for parameters as well.

 L({Xi}ni=1,Θ) =
n∏
i=1

F (Xi,Θ)

To do this, find solutions to (analytically or by following gradient)
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d L({Xi}ni=1,Θ)

dΘ
= 0 (3.49)

almost maximize the likelihood function, maximize the log likelihood function in-

stead.

log( L({Xi}ni=1,Θ)) = log(
n∏
i=1

F (Xi,Θ)) =
n∑
i=1

log(F (Xi,Θ)) (3.50)

Quite often the log of the density is easier to work with mathematically.

Likelihood function :

 L(d0, d1, σ
2) =

n∏
i=1

1

(2πσ2)
1
2

e−
1

2σ2
(Xi−d0−d1Vi)2

=
1

(2πσ2)
n
2

e−
1

2σ2

∑n
i=1(Xi−d0−d1Vi)2

σ̂2 =

∑
i(Xi − X̂i)

2

n

Note that maximum likelihood estimator is biased as s2 is unbiased and

s2 = MSE =
n

n− 2
σ̂2
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Chapter 4

Linear Regression Models Assuming a Stable

Distribution

4.1 Introduction

Stable distributions have long been regarded as important generalizations of the

normal distribution, being defined as the class of distributions whose location-scale

families are closed under convolution. In a more practical setting, stable distribu-

tions have attracted considerable interest, be- cause they can allow for skew and for

arbitrarily larger tails than can the normal distribution.

Stable distributions are described by four parameters (α, β, δ, γ) with α ∈ (0, 2],

β ∈ [−1, 1], δ(−∞,∞), and γ(0,∞).

The parameter α, known as the characteristic exponent, defines the “fatness of the

tails.” For a variety of mathematical reasons, the case α = 1 is usually studied

separately from the α 6= 1 cases. Skewness is governed by β, the symmetric case

corresponding to β = 0. The location and scale of the distributions are denoted by

δ and γ.

The two best-known stable distributions are the Normal (α = 2) and the Cauchy

(α = 1, β = 0), Sable distributions are usually as in the previous chapter.

Characteristic functions are essentially Fourier transformations of distribution func-

tions, which provide a general and powerful tool to analyze probability distribu-
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tions.

Definition 4.1 The function ϕX(t) = E exp(itτX) is called the characteristic func-

tion (cf) of X [12].

Every distribution on IRp has a cf regardless of whether moments exist. Recall from

complex analysis that exp(iu) = cos(u)+i sin(u). So, we see that exp(itτx) is indeed

bounded as a function of x for each t.

Example 4.1 (Normal distribution). Let fX(x) =
exp −x2

2√
2π

be the density of X [12].

Then

ϕX(t) =
1√
2π

∫
exp

(
itx− x2

2

)
dx

=
1√
2π

∫
exp

(
−1

2
[x− it]2 − t2

2

)
dx

= exp

(
−t2

2

)
.

Example 4.2 (Uniform distribution). Let f(x) = 1
2

for−1 < x < 1 [12]. Then

ϕ(t) =
1

2

∫ 1

−1

exp(itx)dx =
exp(it)− exp(−it)

2it
=

sin(t)

t
.

Example 4.3 (Cauchy distribution). Let fX(x) = [π(1 + x2)]−1 [12]. Then

ϕX(t) = exp(− | t |).

(Basic properties of cf). All cf’s have the following properties:

1. ϕ(0) = 1, | ϕ(t) |≤ 1,

2. ϕ(−t) = ϕ(t) (complex conjugate),

3. | ϕ(t+ h)− ϕ(t) |≤ E | eihX1 | (uniform continuity),

4. ϕaX+b(t) = eitbϕX(at).
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The next result gives a sufficient condition for ϕ(t) to be a cf.

Theorem 4.1 (Polya’s Criterion). Let ϕ be continuous, real, nonnegative, symmet-

ric, decreasing and convex on [0,∞), such that ϕ(0) = 1, limt→∞ ϕ(t) = 0, then ϕ

is a characteristic function [12].

Proposition 4.1 IfX and Y are independent, then ϕX+Y (t) = ϕX(t)ϕY (t) [12].

The remaining theorems about convergence in distribution are

• the inversion/uniqueness theorem that says that each cf corresponds to a unique

distribution,

• the continuity theorem that says that Xn
D−→ X if and only if ϕXn(t)ϕX(t) for all

t( the “only if” direction being trivial), and

• the central limit theorem that says that certain normalized sums of independent

(not necessarily identically distributed) random variables with finite variance con-

verge in distribution to a standard normal distribution.

Theorem 4.2 (Inversion and uniqueness). Let ϕ be the cf for the probability P on

(IRp,Bp) [12]. Let A be a rectangular region of the form

A = {(x1, ..., xp) : aj ≤ xj ≤ bj all j},

where aj < bj for all j and P (∂A) = 0. For each T > 0, let

BT = (t1, ..., tp) : −T ≤ tj ≤ T for all j.

Then

P (A) = lim
T→∞

1

(2π)p

∫
T

p∏
j=1

[
exp(−itjaj)− exp(−itj − bj)

itj

]
ϕ(t)dt1...dtp.

Distinct probability measures have distinct cf’s.
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The characteristic function ϕ(.) of a stable distribution is given by equation (3.8)

as in the previous chapter.

where i =
√
−1 and the sign (.) function is given by (3.7) as in the previous

chapter.

It is important to point out that if α < 1, the variance is infinite and the mean

of the stable distribution does not exist. Although this class of distributions is a

good alternative for data modeling in different areas, we usually have difficulties to

obtain estimates under a classical inference approach due to the lack of closed form

expressions for their probability density functions. One possibility in applications is

to get the probability density function from the inversion formula,

f(x) =
1

2π

∫ ∞
−∞

e−itxϕ(t)dt (4.1)

where ϕ(t) is the characteristic function. In applications, we need use numerical

methods to solve the integral in (4.1), usually taking a great computational time.

An alternative is the use of Bayesian methods. However, the computational cost can

be further high to get the posterior summaries of interest. A good alternative is to

use latent or artificial variables that could improve the simulation computation of

samples of the joint posterior distributions of interest. In this way, a Bayesian anal-

ysis of stable distributions was using Markov Chain Monte Carlo (MCMC) methods

and latent variables. The use of Bayesian methods with MCMC simulation can have

great flexibility by considering latent variables where samples of latent variables are

simulated in each step of the Gibbs or Metropolis-Hastings algorithms.

The Bayesian paradigm is to update prior parameter knowledge, in the form of a

density function π(θ), using observed data x, through the parametric model density

function f(x | θ). The result is a posterior density given by π(θ | x) ∝ f(x |

θ)π(θ). If the model density for x is not available in closed form, but the model

density,f(x, y | θ), jointly with some extra random variables y is available, then
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the posterior is formally obtainable through Bayes’s theorem by integrating out the

unwanted variables, so that π(θ | x) ∝
∫
f(x, y | θ)π(θ)dy. Such a representation is

available for x modeled by stable distributions.

Theorem 4.3 Let the bivariate probability density function of Z and Y , conditional

on α and β,f : (−∞, 0)×(−1
2
, lα,β)∪(0,∞)×(lα,β,

1
2
)→ (0,∞) [6],be given by

f(z, y | α, β) =
α

| α− 1 |
exp

{
−
∣∣∣∣ z

tα,β(y)

∣∣∣∣θ
}∣∣∣∣ z

tα,β(y)

∣∣∣∣θ 1

| z |
, (4.2)

Where θ = α
α−1

tα,β(y) =

(
sin[παy + bα,β]

cosπy

)(
cos πy

cos[π(α− 1)y + bα,β]

) 1
θ

(4.3)

and α ∈ (0, 2], β ∈ [−1, 1], δ ∈ (−∞,∞) and γ ∈ (0,∞),), with bα,β = βmin(α, 2−

α)π
2

and lα,β = −bα,β/πα. Then f is a proper bivariate probability density for the

distribution of (Z, Y ), and the marginal distribution of Z is Sα(β, 0, 1).

proof : tα,β is defined, continuous, and strictly monotonic on (-0.5,0.5); tα,β =

(±0.5) = ±∞; tα,β(y) = 0⇐⇒ y = lα,β; tα,β(y) = −tα,−β(−y); and the transforma-

tion y → tα,β(y) is 1-1.

We begin with random variables W and Y distributed independently as exponential(

1 ) and uniform (−0.5, 0.5). The joint probability density function of the distribution

of (W,Y ) is given as f(w, y) = exp{−w} . Now the transformation

T : (0,∞)× (−0.5, 0.5)→ (−∞, 0)× (−0.5, lα,β) ∪ (0,∞)× (lα,β, 0.5),

where T (W,Y ) = (tα,β(Y )W
α−1
α , Y ).

Note that the transformation is 1-1 and that the inverse transformation is given

by

T−1(Z, Y ) =

(∣∣∣∣ Z

tα,β(Y )

∣∣∣∣α−1
α

, Y

)
.
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By calculating the Jacobian of this transformation, we have that the joint probability

density function of the distribution of (Z, Y ) is given as

f(z, y | α, β) =
α

| α− 1 |
exp

{
−
∣∣∣∣ z

tα,β(y)

∣∣∣∣θ
}∣∣∣∣ z

tα,β(y)

∣∣∣∣θ 1

| z |
, (4.4)

and so our function is indeed a proper bivariate density function. Moreover, the

marginal of the distribution of Z has density function

f(z | α, β) =

∫ 0.5

lα,β

f(z, y | α, β)dy if z > 0,

=

∫ lα,β

−0.5

f(z, y | α, β)dy if z < 0,

which, using the properties of tα,β, can be written as

f(z | α, β) =

∫ 0.5

lα,β

f(z, y | α, β)dy if z > 0,

=

∫ 0.5

lα,−β

f(z, y | α,−β)dy if z < 0.

[21] proved that the cumulative distribution function of a stable distribution can be

represented as

F (z | α, β) =
1

2
+ lα,β +

∫ 0.5

lα,β

exp

{
−
∣∣∣∣ z

tα,β(y)

∣∣∣∣θ
}
dy if α < 1,

= 1−
∫ 0.5

lα,β

exp

{
−
∣∣∣∣ z

tα,β(y)

∣∣∣∣θ
}
dy if α > 1,

where θ = α
α−1

, z > 0. (For z < 0, the same representation is used with β replaced

by −β.) By differentiating, we have that the probability density function of a stable

distribution can be represented as
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f(z | α, β) =

∫ 0.5

lα,β

f(z, y | α, β)dy if z > 0,

=

∫ 0.5

lα,−β

f(z, y | α,−β)dy if z < 0.

which is marginal probability density function derived earlier.

4.2 Linear Regression Models Assuming a Stable Distribu-

tion

A random variable X related to a controlled variable V given by the linear relation-

ship

xi = d0 + d1vi + εi, for i = 1, 2, ..., n, (4.5)

where

• the random variable Xi represents the response for the ith unit associated with an

experimental value of the independent or explanatory variable v, which is assumed

to have a fixed value (a common regression model assumption). In this way, xi it is

an observation of Xi;

• the variables ε1, ε2, ..., εn are considered as components of unknown errors and

are unobserved random variables. Assume that these random variables εi, for

i = 1, 2, ..., n, are independent and identically distributed with normal distribution

(0, σ2
ε );

• the parameters d0 and d1 are unknown.

From the above assumptions, we have normality for the responses, that is,

Xi ∼ N(d0 + d1vi;σ
2
ε ). (4.6)
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In this way Xi has a normal distribution with mean d0 + d1vi and common variance

σ2
ε . Usually we get estimators for the regression parameters using the least squares

approach or standard maximum likelihood methods.

Standard generalization for the linear model (4.5) is given in the presence of k

independent or explanatory variables, that is, a multiple linear regression model

given by

xi = d0 + d1vi1 + d2vi2 + ...+ dkvik + εi (4.7)

From the normality assumption for the error εi in (4.7), the random variable Xi has

a normal distribution with mean d0 +d1vi1 +d2vi2 + ...+dkvik and variance σ2
ε .

In practical applications, we need to check if the above assumptions are satisfied.

As such, we consider graphical approaches to verify if the model residuals satisfy

the above assumptions.

In the presence of outliers or discordant observations, we could have a large impact

on the estimators obtained for the regression model given by (4.7), which could

invalidate the inferences obtained. In this situation, we could use nonparametric

regression models or assume more robust probability distributions for the data. One

possibility is to assume that the random variable X in (4.7) or (4.5) has a stable

distribution Sα(β, δ, γ).

4.3 A Bayesian Analysis for Linear Regression Models As-

suming a Stable Distribution

let us assume that the response xi in the linear regression model (4.7) for i = 1, ..., n,

have a stable distribution Xi ∼ Sα(β, δ, γ), that is,

Zi =
Xi − δ
γ

∼ Sα(β, 0, 1)
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and where the location parameter δ of the stable distribution is related to the ex-

planatory variables by a linear relation given by

δ = β0 + β1v1i + β2v2i + ...+ βkvki (4.8)

Assuming a joint prior distribution for α, β, d and γ, where d = (d0, d1, d2, ..., dk)

given by π0(α, β, d, γ), [6] shows that the joint posterior distribution for parameters

α, β, d and γ, is given by,

π0(α, β, d, γ | x) ∝
∫ (

α

| α− 1 | γ

)n
exp

{
−

n∑
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ
}

n∏
i=1

∣∣∣∣ zi
tα,β(yi)

∣∣∣∣θ 1

| zi |
×π0(α, β, δ, γ)dy,

(4.9)

where θ = α
α−1

, zi = xi−δ
γ
, for i = 1, ..., n, α ∈ (0, 2], β ∈ [−1, 1], δ ∈ (−∞,∞), γ ∈

(0,∞), x = (x1, ..., xn) and y = (y1, ..., yn) are respectively, the observed and non-

observed data vectors. Observe that the bivariate distribution in expression (4.9) is

given in terms of xi and the latent variables yi, and not in terms of zi and yi (there

is the Jacobian σ−1 multiplied by the right-hand- side of expression (4.2)).

Observe that when α = 2 we have θ = 2 and bα,β = 0. In this case we have a Gaus-

sian distribution with mean equals to γ and variance equals to 2σ2. For a Bayesian

analysis of the proposed model, we assume uniform U(a, b) priors for ,α, β and γ

where the hyperparameters a and b are assumed to be known in each application

following the restrictions α ∈ (0, 2], β ∈ [−1, 1] and γ ∈ (0,∞) . We also assume

Normal N(a, b2) prior distributions for the regression parameters d0, d1, ..., dk con-

sidering known hyperparameter values a and b2. We further assume independence

among all parameters.

In the simulation algorithm to obtain a Gibbs sample for the random quantities

α, β, d and γ, having the joint posterior distribution (4.9), we assume a uniform

U(−0.5, 0.5) prior distribution for the latent random quantities Yi for i = 1, ..., n.

Observe that, in this case, we are assuming aα,β = 0(bα,β) With this choice of priors,

we use standard available software packages like OpenBugs.
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From expression (4.9), the joint posterior probability distribution for α, β, d, γ and

y = (y1, ..., yn) is given by

π(α, β, d, γ, y | x) ∝
∫ (

α

| α− 1 | γ

)n
exp

{
n∑
i=1

∣∣∣∣ Zi
tα,β(yi)

∣∣∣∣
}

n∏
i=1

∣∣∣∣ Zi
tα,β(yi)

∣∣∣∣θ 1

| Zi |

n∏
i=1

h(yi)π0(α, β, d, γ)

(4.10)

where θ and tα,β(.) are respectively defined in (4.2) and (4.3) and h(yi) is a U(−0.5, 0.5)

density function, for i = 1, ..., n.

4.3.1 The Gibbs Sampler

The Gibbs sampler is a Markovian updating scheme orig- inally developed by Ge-

man and Geman ( 1984) for use in image processing and publicized as a power-

ful tool in general Bayesian statistics by Gelfand and Smith ( 1990) . The algo-

rithm is as follows. Suppose that we have a model driven by the parameter vector

θ = (θ1, θ2, ..., θk), and that we have observed x = (xl, x2, ..., xn). By taking a

set of starting values θ(0) we can generate θ
(1)
1 from π(θ1 | θ(0)

2 , ..., θ
(0)
k , x), θ

(1)
2 from

π(θ2 | θ(1)
1 θ

(0)
3 , ..., θ

(0)
k , x), and so on up to θ

(1)
k from π(θk | θ(1)

1 , ..., θ
(1)
k−1, x) there by

performing one iteration producing the sample θ(1) = θ
(1)
1 , θ

(1)
2 , ..., θ

(1)
k . Iterations

of this scheme produces a sequence θ(0), θ(1), ..., θ(t), ... Under mild regularity condi-

tions, it can be shown that the sample θ(t) produced after t such iterations tends, in

distribution, to a sample from the joint posterior π(θ | x) as t tends to infinity, and

that ergodic averages of suitable functions of the Markov chain realizations provide

consistent estimates of features of π(θ | x) of interest. But there is no reason why θ

need be restricted just to parameters. It is often necessary (or a conceptual simpli-

fication) to include auxiliary variables, and such unobservables can simply be added

to the parameter vector and the MCMC run for the augmented vector.

Once we have generated the entire n vector y , we generate from

π(α | β, δ, γ, x, y), π(β | α, δ, γ, x, y),

π(δ | α, β, γ, x, y), π(γ | α, β, δ, x, y).
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A long run, iterating this procedure, enables us to estimate and summarize features

of π(α, β, δ, γ | x) as required. The crucial feature of this method of analysis is that

we have circumvented the problem of being unable to specify the stable likelihood

in closed form.

4.3.2 Random Variate Generation From π(α | β, δ, γ, x, y)

The characteristic exponent, α, is the most difficult parameter to sample from. The

way in which it enters into terms of the likelihood function renders a study of the

posterior density of a impossible, even with a uniform prior. Assuming that the

prior density for α is π(α), and recalling that zi = xi−δ
γ

, the posterior for α is

π(α | β, δ, γ, x, y) ∝
(

α
|α−1|

)n
× exp

{
−
∑n

i=1

∣∣∣ Zi
tα,β(yi)

∣∣∣θ}∏n
i=1

∣∣∣ Zi
tα,β(y)

∣∣∣θ π(α)

Detailed study of plots of this form makes it clear that π(α | β, δ, γ, x, y) can be quite

undulating and rather concentrated. We thus decided that a reparameterization

would greatly facilitate any sampling strategy.

By transforming from y to v = tα,β(y), the new density becomes, on the whole,

unimodal, supporting the parameter range much more evenly:

π(α | β, δ, γ, x, v) ∝
(

α
|α−1|

)n
×exp

{
−
∑n

i=1

∣∣∣Zivi ∣∣∣θ}∏n
i=1

∣∣∣Zivi ∣∣∣θ ∣∣∣dtα,βdy

∣∣∣−1

tα,β(y)=vi
π(α)

Unfortunately, we must now solve tα,β(yi) = vi for i = 1, ..., n to compute the

likelihood; but this can be done quickly using the safeguarded Newton method and

can be accelerated by ordering the vi’s prior to computation. The fact that we have

no information about the shape of the likelihood suggests using the Hastings ( 1970)

generalization of the Metropolis sampling algorithm, which runs as follows. Assume

that we are currently performing the ith iteration of the sampler; then:

1. Generate α∗ from a distribution with density g.

2. Generate u From a Uniform (0, 1).

3. If u < π(α∗ | β, δ, γ, x, v)g(αi | α∗)/π(αi | β, δ, γ, x, v)g(α∗ | αi), then αi+1 = α∗;

otherwise αi+1 = αi.
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4.3.3 Random Variate Generation From π(β | α, δ, γ, x, y)

The conditional posterior density for β, with prior density π(β) , is given as

π(β | α, δ, γ, x, y) ∝ exp

{
−
∑n

i=1

∣∣∣ Zi
tα,β(yi)

∣∣∣θ}∏n
i=1

∣∣∣ 1
tα,β(yi)

∣∣∣θ π(β)

where θ = α
α−1

, zi = xi−δ
γ

.

We know that tα,β(y) = 0 if and only if παy = −βmin(α, 2 − α)π/2; thus the

posterior density π(β | α, y, z) has zeros at β = −2αyi/min(α, 2−α) for i = 1, ..., n.

Depending on the size of a, a proportion of these zeros will lie outside (−1, 1), but

the implication is that posterior density of β is highly multimodal, becoming ever

more so as the number of observations increases. This presents sampling difficulties

that are confounded with the fact that there can be a strong correlation between β

and y. Fortunately, these problems can be solved by transforming y to v = tα,β(y),

so that the new density becomes

π(β | α, δ, γ, x, v) =
∏n

i=1

∣∣∣dtα,βdy

∣∣∣−1

tα,β(y)=vi
π(β)

We have little knowledge of the shape of π(β | α, δ, γ, x, v), so once again, we use

Hasting’s version of the Metropolis algorithm. Assume that we are currently per-

forming the ith iteration of the sampler; then:

1. Generate β∗ from a distribution with density h.

2. Generate u from a Uniform (0, 1).

3. If u < π(β∗ | α, δ, γ, x, v)h(βi | β∗)/π(βi | α, δ, γ, x, v)h(β∗ | βi), then βi+1 = β∗

otherwise, βi+1 = βi.

4.3.4 Random Variate Generation From π(δ | α, β, γ, x, y)

We have that

π(δ | α, β, γ, x, y) ∝ exp

{
−
∑n

i=1

∣∣∣ Zi
tα,β(yi)

∣∣∣θ}×∏n
i=1

∣∣∣ Zi
tα,β(y)

∣∣∣θ 1
|xi−δ|π(δ)

where θ = α
α−1

, zi = xi−δ
γ

and π(δ) is the prior density for δ. Obvious problems in
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sampling from this density π(δ | α, β, γ, x, y) begin with the fact that it equals zero

whenever δ = xi for any i = 1, ..., n. Additionally, this multimodality is coupled

with a very high dependence between δ and the yi’s, thereby forcing the density to

be very sharply spiked. But under the transformation

φi =
tα,β(yi)

xi − δ

the conditional density for δ becomes

π(δ | α, β, γ, x, φ) ∝
∏n

i=1

∣∣∣dtα,βdy

∣∣∣−1

tα,β(y)=φi(xi−δ)
π(δ)

and the new density is more spread and appears to be uni- modal. Once again, no

real information on the shape of the π(δ | α, β, γ, x, φ) is available, and we must

resort to the Metropolis algorithm.

Assume that we are currently performing the ith iteration of the sampler; then:

1. Generate δ∗ from a distribution with density f.

2. Generate u from a Uniform (0, 1).

3. If u < π(δ∗ | α, β, γ, x, φ)f(δi | δ∗)/π(δi | α, β, γ, x, φ)f(δ∗ | δi) then δi+1 = δ∗;

otherwise, δi+1 = δi.

4.3.5 Random Variate Generation From π(γ | α, β, δ, x, y)

Noting that the density of γ given a α, β, δ, x, and v = tα,β(y) is

π(γ | α, β, δ, x, v) ∝
(

1
γθ

)n
exp

{
− 1
γθ

∑n
i=1

∣∣∣xi−δvi

∣∣∣θ}π(γ),

we have that if π(γ) ∝ Θ−(a+1) exp−b/Θ where Θ = γθ, then

π(γ | α, β, δ, x, v) ∝
(

1
Θ

)a+n+1
exp

{
− 1

Θ

(
b+

∑n
i=1

∣∣∣xi−δvi

∣∣∣θ)}.

That is the inverse delta distribution is conjugate for the scale parameter γθ and a

simple transformation gives us γ.

A sample is easily extracted from the inverse delta distribution, because if Θ ∼
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ID(a, b), then Θ−1 ∼ D(a, b) and delta generators exist in multitude and have been

well documented by both Devroye (1986) and Ripley (1987). If an inverse delta

prior is not assumed, then we can use the same algorithm as is used to generate

from π(δ | α, β, γ, x, y) as follows. Assume that we are currently performing the ith

iteration of the sampler; then:

1. Generate γ∗ from a transformed ID(n,
∑
| (xi − δ)/vi |θ).

2. Generate u from a Uniform (0, 1).

3. If u < π(γ∗)/π(γi) then γi+1 = γ; otherwise, γi+1 = γi.
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Chapter 5 

Applications 

 

5.1  Data Analysis 

To illustrate the methodology developed in the previous chapters for Simple Linear Regression 

Model with and without assuming stable distribution, we examine data set described in Table 

5.1, contains hypothetical sales estimates, list prices, and physical specifications for various 

makes and models of vehicles. The list prices and physical specifications were obtained 

alternately from edmunds.com and manufacturer sites. The complete data set were presented in 

Appendix A. 

Table 5.1: A sample data set of car Prices and Sales in thousands. 

n 1 10 25 59 70 90 100 120 135 150 

Price (V) 16.919 91.561 32.299 12.855 12.698 20.38 42.643 92.364 142.535 16.957 

Sales (X) 21.5 21.975 13.96 26.6 37.805 22.51 13.499 21.665 13.108 23.4 

 

From a preliminary data analysis, we see that a linear regression model (2.9) is suitable for this 

data set, see Table 5.2.  

Table 5.2: ANOVA table of linear regression model 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 66902.899 1 66902.899 15.663 .000
b
 

Residual 653543.735 153 4271.528   

Total 720446.634 154    

 

The estimated regression straight line obtained by least squares estimates and by using the 

software SPSS (version 23) is given by  
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                      (5.1) 

where the regression parameter    is statistically different from zero (p-value < 0.05) see results 

in Table 5.3. From standard residuals graphs (Figures 5.2 and 5.3) we can verify that the required 

assumptions (residuals normality and homoscedastic variance are not satisfied), also outliers 

were presented, even though, the model and the coefficients were statistically significant, this 

leads for more investigations and other approaches for such case. 

 

Table 5.3: Coefficients of linear regression model 

Model Par. B Std. Error t Sig. 

(Constant) 93.026 11.340 8.203 .000 

Price in thousands -1.452 .367 -3.958 .000 

Dependent Variable: Sales in thousands 

 

 

 

 

Figure 5.1: Density Plot of the Dependent Variable (Sales). 
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Figure 5.2: Standardized residuals plot Figure 5.3: Normal P-P Plot of Regression 

Standardized Residual 

 

Moreover, summary statistics in table 5.4 indicates that the dependent variable (Sales) is not 

normally distributed it is about right skewed and positively Kurtosis, also a lot of outlier values 

were presented see Figure 5.1 and 5.4. 

 

 

Table 5.4: Sales variable descriptive statistics 

 

 Statistic Std. Error 

Sales in thousands Mean 53.24583 5.493823 

95% Confidence Interval for 

Mean 

Lower Bound 42.39285  

Upper Bound 64.09881  

5% Trimmed Mean 43.76296  

Median 29.45000  

Variance 4678.225  

Std. Deviation 68.397550  

Minimum .110  

Maximum 540.561  

Range 540.451  

Interquartile Range 54.613  

Skewness 3.388 .195 

Kurtosis 17.337 .387 
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Figure 5.4: Box-and-Whiskers Plot of dependent variable. 

 

 

5.2  Bayesian Approach 

For a comparison purpose, we first fit the linear model (5.2) assuming no stable distribution. 

                              (5.2) 

Let us now turn to the Bayesian version and show that under the reference prior, we will obtain 

the posterior distributions of        and      analogous with the frequentist OLS results. The 

Bayesian model starts with the same model as the classical frequentist approach: 

With the assumption that the errors,   , are independent and identically distributed as normal 

random variables with mean zero and variance   . This assumption is exactly the same as in the 

classical inference case for testing and constructing confidence intervals for          . Our goal 

is to update the distributions of the unknown parameters               , based on the 

data           , and             where n is the number of observations. 
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Under the assumption that the errors    are normally distributed with constant variance   , we 

have for the random variable of each response   , conditioning on the observed data    and the 

parameters          , is normally distributed: 

              
                              (5.3) 

That is, the likelihood of each    given                  is given by 

                
   

 

     
    

              
 

   
   (5.4) 

The likelihood of         is the product of each likelihood                 
  , since we 

assume each response    is independent from each other. Since this likelihood depends on the 

values of               , it is sometimes denoted as a function of                          
  . 

Using the reference prior, we will obtain familiar distributions as the posterior distributions 

of              , which gives the analogue to the frequentist results  as in chapter 4. Here we 

assume the joint prior distribution of               to be proportional to the inverse of    

          
   

 

  
  (5.5) 

The full conditional density of the parameters          
   is a product of it’s prior density and 

some standard distribution density, then, with the choice of conjugate priors: 
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where,    
    

    
    

          are defined in chapter 4. For this application the 

hyperparameters and the initial values for Gibbs sampler were calculated due to the ordinary 

least squares approach see the r software codes in Appendix A. 

Thus, drawing random variates from their full conditional distribution is straight forward, 

therefore, we will use the full conditional density as a proposal density in Gibbs sampler 

algorithm, and in sampling process each updating step for these parameters, a new draw from the 

full conditional density is always accepted. With initial values of all parameters set at their 

MLEs, we perform this algorithm for each parameter 25,000 Gibbs samples after 10000 burn-in. 

The time series plots of one sequence of Gibbs samples for different number of iterations, 

posterior density, and the average number of these iterations for these parameters are presented 

in Figure 5.4.  It is clear that these sequences are mix well and converge within 15,000 iterations. 

With the initial values of the parameters for which the data are generated considered as the truth 

values of the parameters, estimate Monte Carlo Summary statistics, Monte Carlo Standard 

Deviation (MCSD), Mean Squared Error (MSE), 95% Confidence Converge Rate (CCR), and 

Bias in Percentage Terms (BPT) are presented in Table 5.5 Where, MCE stand for Monte Carlo 

Error and it can be evaluated as follows : In our simulation study we used 155 data replications, 

thus the resulting estimates are subject to sampling variation (Monte Carlo Error), this variation 

for the point estimate can be calculated as              , the MCE then can be found by 

      
        

   
  

Results in Table 5.5 assert the convergence of the Markov Chain and the samplers reached the 

convergence after 15,000 iterations after 10,000 iterations are burn-in. Also, all results are closed 

to that in ordinary least squares approach in section 5.1.  



70 
 

 
Figure 5.4: Posterior Time Series, Density, Average Values Plot of All Parameters 

 

 

Table 5.5: Monte Carlo Summary statistics of the parameters estimate 

Parameter Initial 

Value 

Estimated 

Value 
MCSD MSE 95% CCR BP MCE 

   98.4285 91.37549 0.016 0.0006 98% -0.021% 0.005 

   -1.6662 -1.402252 0.021 0.0007 98% 0.023% 0.005 

   4184.63 4325.206 0.083 0.0015 96% 0.044% 0.009 

 

5.3  Bayesian Approach Assuming Stable Distribution. 

As we see in the above application we need to check if all model assumptions are verified. In this 

way, we consider graphical approaches to verify if the residuals of the model satisfy the above 

assumptions.  
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In presence of outliers or discordant observations we could have great effects on the obtained 

estimators for the regression model given by (5.2) which could invalidate the obtained 

inferences. In this way, we could use non-parametric regression models or to assume more robust 

probability distributions for the data. One possibility is to assume that the random variable X in 

(5.2) has a stable distribution            

So that, assume model (5.2) have a stable distribution, that is 

                            
    

 
                          (5.6) 

where the location parameter    of the stable distribution is related to the explanatory variables 

by a linear relation given by,  

                           (5.7) 

Hence, our unknown parameters in model (5.6) are                    From the analysis of 

chapter two, the joint posterior distribution                   for these parameters, is given by,  

 

                    
 

      
 

 

        
  

        
 

  

   
 

   
  

        
 

 

 
 

    
              

 

   
   

 (5.8) 

where,  
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                                   are the observed and non-observed data vectors 

respectively. 

Note that, the bivariate distribution in expression (5.8) is given in terms of            and not in 

terms of            simplification of expression (5.8) gives: 

                   
 

      
 

 

       
  

        
 

 

   
 

   
  

        
 

 

 
 

    
                    

 

   

 

   

 (5.9) 

where 

          
              

        
  

        

                  
                      

 

 
  

and        is a             for           

With the choice of conjugate priors, the full conditional density of the parameters          are 

same as in section 5.2. Whereas, the full conditional density of the parameters          is then 

        where the hyperparameters a and b are assumed to be known in each application 

following the restrictions                   and      .  

In this application using Bayesian approach via (Stable Regression Program stabelreg.exe), with 

the choice of the following prior distributions: 

                              

All response distributions are significantly different from Gaussian              
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With the initial values of the parameters for which the data are generated considered as the truth 

values of the parameters, Posterior Estimates, Standard Deviation (SD), and 95% Credible 

Interval, are presented in Table 5.6  assuming stable distribution for the response variable. 

Table 5.6: Stable Distribution Summary Statistics of the Parameters Estimate 

Parameter Initial Value Estimated Value SD 95% Credible Interval 

   98.4285 92.3362 8.21 (91.043, 93.629) 

   -1.6662 -1.3250 1.38 (-1.617, -1.183) 

  1 1.63 0.18 (1.602, 1.658) 

  0.5 0.34 0.24 (0.302, 0.378) 

  5 8.71 3.13 (8.217, 9.203) 

 

Results in the above table indicate that all parameter estimates are statistically significant. 

In order to make a comparisons between the three approaches above, especially when Normal 

assumption is not satisfied and in the presence of outliers, we present plots of observed, fitted 

mean considering three approaches versus samples. Results are presented in Figures 5.6.a – 5.6.c 

 

 

Figure 5.6.a: Plots of Observed, Fitted Means Considering Least Squares Model.  
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Figure 5.6.b: Plots of Observed, Fitted Means Considering Bayesian Model. 

 

 

 

 

Figure 5.6.c: Plots of Observed, Fitted Means Considering Stable Model. 

 

In Figures 5.6.a, and 5.6.b we have the plots of observed, fitted means considering models with 

(Least squares and Bayesian approaches) versus samples. We observe similar fit of both models 

(linear regression model assuming normality). In Figures 5.6.c, we observe that model with a 

stable distribution is very robust to the presence of the outlier given similar inference results as 

obtained without the presence of the outlier. 
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 5.4  Maximum Likelihood Approach 

Again for comparison purposes, and assuming different heavy-tailed distribution namely 

(Cauchy distributions) is compared with the normal distribution using maximum likelihood (ML) 

approach, to see the performance of the above model. In the previous section, the OLS method 

was implemented, which minimizes the sum of absolute errors (MSAE) by fitting regression 

through the Bayesian method. The maximum likelihood method is superior to the MSAE 

method. However, MSAE procedure that do not depend on the distribution of error. Back to 

likelihood function in (5.4) for the normal distribution, the log likelihood is given by 

           
    

 

 
              

 

   
               

  

   
  (5.10) 

In the method of maximum likelihood, we pick the parameter values which maximize the 

likelihood, or, equivalently, maximize the log-likelihood. Using the advantages of the software r 

packages, we can use the function optimize( ) to find the values of                that maximize 

(5.10), which are the estimated value of the required parameters, see r codes in Appendix C. 

In the case of Cauchy distribution, the probability density function (pdf) is given by, 

         
 

  
 

  

         
   (5.11) 

where,   is the location parameter, specifying the location of the peak of the distribution, and    

is the scale parameter which specifies the half-width at half-maximum. The likelihood of 

each    given                   is then given by 



76 
 

                
 

  
 

  

             
 

   
 

 

   
  (5.12) 

Hence, with some simplifications, the log likelihood is given by 

                               
           

 
 

 

 
 

   
  (5.13) 

Again the function optimize( ) was used to estimate all unknown parameters in (5.13). 

Tables 5.7 shows the maximum likelihood estimates of model parameters (Est.), standard errors 

(se), and 95% confidence intervals (95% CI) of the proposed distribution with regression model 

for the dataset in Table (5.1). For comparison purpose, also Table 5.7 shows the Log-likelihood 

and Akaike Information Criteria (AIC) associated to the above distributions. 

Unsurprisingly, regardless of the parameter estimates, the model fit under the Cauchy 

distribution is better than the normal distribution. The smaller the AIC, the better the model fit. 

This is due to the heavy tail distribution (Cauchy), which some authors called it “Supper heavy 

tailed”. 

Table 5.7: Model Parameters’ Estimates for Different Distributions 

Distribution Parameter 
Estimated 

Value 
se. 95% Credible Interval 

Log-

likelihood 
AIC 

Normal 

   93.0868 7.9668 (77.4717, 108.702) 

-1176.129 2358.257    -1.4543 0.2578 (-1.9597, -0.9491) 

  64.9364 2.6080 (59.8246, 70.0482) 

Cauchy 

   51.7263 296.582 (-5761.284, 5864.736) 

-879.979 1767.958 
   -0.6155 0.0732 (-0.7573, -0.4736) 

  8.4261 296.582 (-5804.582, 5821.435) 

  14.9295 1.2860 (12.409, 17.450) 
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5.5  Discussion 

With the assumption of normality and no outliers, we conclude that we do not need to assume a 

stable distribution of the data, because the results are very similar to the results obtained from the 

erroneous normality assumption. In addition, the computational cost of using a stable distribution 

is very high (see Achcar, Achcar and Martinez 2013). 

However, when there are abnormal (outlier) values or inconsistent observations, it is due to 

multiple measurement errors or violation of the normality assumption. This situation is very 

common in the application of regression analysis. In the presence of these inconsistent 

observations, it is usually based on the assumption of normality of error and constant variance, 

which has a significant impact on the inferences usually obtained in regression parameters or 

predictions based on least squares or maximum likelihood methods, which may means wrong 

results. The use of stable distributions could be a good alternative for many applications in the 

data analysis to have robust inference results, since this distribution has a great flexibility to fit 

for the data. With the use of Bayesian methods and MCMC simulation algorithms, it is possible 

to get inferences for the model despite of the nonexistence of an analytical form for the density 

function as it was showed in this chapter. It is important to point out that the computational work 

in the sample simulations for the joint posterior distribution of interest can be greatly simplified 

using standard free software like the r software and Stable regression program (stablereg.exe). 

Generally, the appearance of outliers will absolutely affect the regression model under standard 

normality assumptions. The ideal results not affected by outliers could be obtained using the 

stable distribution methodology as observed in our application. These results could be of great 

interest in applications. 
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It has been noticed that the lack of closed formulas for densities and distribution functions for all 

but a few stable distributions (Cauchy and Levy) has been a major drawback to the use of stable 

distributions by practitioners. Also there are multiple parameterization for stable laws and much 

confused has been caused by these parameterizations. However, there are now reliable computer 

programs to compute stable densities, distribution functions and quantiles. With these programs, 

it is possible to use stable models in a variety of practical problems. 
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Appendix  A 

Data Set: 

 

 

 

 

 

 

 

 

 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X 16.919 39.384 8.588 20.397 18.78 1.38 19.747 9.231 17.527 91.561 39.35 27.851 83.257 63.729 15.943

V 21.5 28.4 42 23.99 33.95 62 26.99 33.4 38.9 21.975 25.3 31.965 27.885 39.895 44.475

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

X 6.536 11.185 14.785 145.519 135.126 24.629 42.593 26.402 17.947 32.299 21.855 107.995 7.854 32.775 31.148

V 39.665 31.01 46.225 13.26 16.535 18.89 19.39 24.34 45.705 13.96 9.235 18.89 19.84 24.495 22.245

n 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

X 32.306 13.462 30.696 76.034 4.734 71.186 88.028 0.916 227.061 16.767 31.038 111.313 101.323 181.749 70.227

V 16.48 28.34 29.185 12.64 19.045 20.23 22.505 69.725 19.46 21.315 18.575 16.98 26.31 19.565 12.07

n 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

X 113.369 35.068 245.815 175.67 63.403 276.747 155.787 125.338 220.65 540.561 199.685 230.902 73.203 12.855 76.029

V 21.56 17.035 17.885 12.315 22.195 31.93 21.41 36.135 12.05 26.935 12.885 15.35 20.55 26.6 26

n 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

X 41.184 66.692 29.45 23.713 15.467 55.557 80.556 157.04 24.072 12.698 3.334 6.375 9.126 51.238 13.798

V 9.699 11.799 14.999 29.465 42.8 14.46 21.62 26.895 31.505 37.805 46.305 54.005 60.105 34.605 39.08

n 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

X 48.911 22.925 26.232 42.541 55.616 5.711 0.11 11.337 39.348 14.351 26.529 67.956 81.174 27.609 20.38

V 43.33 42.66 13.987 19.047 17.357 24.997 25.45 31.807 22.527 16.24 16.54 19.035 22.605 27.56 22.51

n 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

X 18.392 27.602 16.774 3.311 7.998 1.526 11.592 0.954 28.976 42.643 88.094 79.853 27.308 42.574 54.158

V 31.75 49.9 69.7 82.6 38.9 41 41.6 85.5 35.3 13.499 20.39 26.249 26.399 29.299 22.799

n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

X 65.005 1.112 38.554 80.255 14.69 20.017 24.361 32.734 5.24 24.155 1.872 51.645 131.097 19.911 92.364

V 17.89 18.145 24.15 18.27 36.229 31.598 25.345 12.64 16.08 18.85 43 21.61 19.72 25.31 21.665

n 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

X 35.945 39.572 8.982 1.28 1.866 9.191 12.115 80.62 24.546 5.223 8.472 49.989 47.107 33.028 142.535

V 23.755 25.635 41.43 71.02 74.97 33.12 26.1 10.685 12.535 14.29 18.835 15.01 22.695 20.095 13.108

n 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

X 247.994 63.849 33.269 84.087 65.119 25.106 68.411 9.835 9.761 83.721 51.102 9.569 5.596 49.463 16.957

V 17.518 25.545 16.875 11.528 22.368 16.888 22.288 51.728 14.9 16.7 21.2 19.99 17.5 15.9 23.4
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Appendix  B 

r codes of Gibbs Sampler Process: 

 
########################################################## 
#function returns samples from the model: 
# Y is the vector of outcomes 
# X is the vector of predictors 
########################################################## 
Bayes.slm<-function(y,X, 
                    mu=rep(0,2),tau=rep(100,2), 
                    a=0.01,b=0.01, 
                    n.samples=Niteration){ 
   n <- length(y) 
   #intial values: 
   ols     <- lm(y~X) 
   sigma2  <- var(ols$residuals) 
   beta    <- ols$coef 
   beta1_av <- 0; beta2_av <- 0;  sigma2_av <- 0 
   s1 <- 0; s2 <- 0; s3 <- 0; 
   #Initialize matrix to store the results: 
   samples           <- matrix(0,n.samples,6) 
   colnames(samples) <- 
c("beta1","beta2","sigma^2","beta1_av","beta2_av","sigma^2_av") 
   #colnames(av) <- c("beta1_av","beta2_av","sigma^2_av") 
   #Start the MCMC sampler: 
   for(i in 1:n.samples){ 
 
     #update sigma^2: 
      SSE    <- sum((y-beta[1]-X*beta[2])^2) 
     sigma2 <- 1/rgamma(1,n/2+a,SSE/2+b) 
 s1 <- s1+ sigma2 
 sigma2_av <- s1/i 
     #update beta1: 
      VVV     <- n/sigma2 + 1/tau[1]^2 
      MMM     <- sum(y-X*beta[2])/sigma2 + mu[1]/tau[1]^2 
      beta[1] <- rnorm(1,MMM/VVV,1/sqrt(VVV)) 
 s2 <- s2+ beta[1] 
 beta1_av <- s2/i 
 
     #update beta2: 
      VVV     <- sum(X^2)/sigma2 + 1/tau[2]^2 
     MMM     <- sum(X*(y-beta[1]))/sigma2 + mu[2]/tau[2]^2 
      beta[2] <- rnorm(1,MMM/VVV,1/sqrt(VVV)) 
  
 
 s3 <- s3+ beta[2] 
 beta2_av <- s3/i 
    #store results: 
      samples[i,]  <- c(beta,sigma2,beta1_av,beta2_av,sigma2_av) 
    } 
#return a list with the posterior samples: 
 return(samples)} 
##################################################################### 
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#Fit the model by Least squares Approach 
##################################################################### 
library (foreign) 
setwd("d:/My courses/Master/Layla Khalid/simulation/") 
main_data <- read.spss("Car_Sales_Price.sav",to.data.frame=TRUE) 
library(BAS) 
data(main_data) 
summary(main_data) 
sales.lm = lm(Sales ~ Price, data = main_data) 
summary(sales.lm) 
##################################################################### 
#set data values and call the MCMC sampler function  
X <- main_data$Sales 
V <- main_data$Price 
n <- length(X) 
sigma <- 1;  beta  <- c(2,1) 
Niteration <- 25000;  Nburn <- 10000 
post<-Bayes.slm(X,V) 
##################################################################### 
#Posterior summaries 
##################################################################### 
summary(post) 
##################################################################### 
#Posterior Plots 
##################################################################### 
par(mfrow=c(3,3)) 
plot(post[Nburn:Niteration ,1],type="l",ylab="d0",xlab="Iteration", main="Time Series 
Plot of d0") 
d <- density(post[Nburn:Niteration ,1]) # returns the density data 
plot(d, main="Posterior Density of d0", ylab="Probability deensity of d0") # plots 
the results 
plot(post[1:Niteration ,4],type="l",ylab="Average of d0",xlab="Iteration") 
 
plot(post[Nburn:Niteration ,2],type="l",ylab="d1",xlab="Iteration", main="Time Series 
Plot of d1") 
d <- density(post[Nburn:Niteration ,2]) # returns the density data 
plot(d, main="Posterior Density of d1", ylab="Probability deensity of d1") # plots 
the results 
plot(post[1:Niteration ,5],type="l",ylab="Average of d1",xlab="Iteration") 
 
plot(post[Nburn:Niteration ,3],type="l",ylab="Sigma^2",xlab="Iteration", main="Time 
Series Plot of Sigma^2") 
d <- density(post[Nburn:Niteration ,3]) # returns the density data 
plot(d, main="Posterior Density of Sigma^2", ylab="Probability deensity of Sigma^2") 
# plots the results 
plot(post[1:Niteration ,6],type="l",ylab="Average of Sigma^2",xlab="Iteration") 
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Appendix  C 

 

r codes for optimization of  LE : 

 
library (foreign) 
library (rmutil) 
setwd("d:/My courses/Master/Layla Khalid/simulation/") 
main_data <- read.spss("Car_Sales_Price.sav",to.data.frame=TRUE) 
#########Build the Loss Function / Determine log-likelihood, and AIC ################ 
lm.loss <- function(par) { 
  d1.par <- par[1]   # The slope  
  d0.par <- par[2]   # The intercept 
  scale.par <- par[3]   # The scale parameter 
  loc.par <- par[4]   # The location parameter 
   if(scale.par < 0) {deviance <- 10000000} # If the scale.par is invalid reject 
it 
   if(scale.par > 0) {       
  likelihoods <- dcauchy(main_data$Sales, location = (main_data$Price * 
d1.par + d0.par)- loc.par, scale = scale.par, log = FALSE) 
  log.likelihoods <- log(likelihoods) 
log_like <<- sum(log.likelihoods) 
deviance <- -2 * log_like 
AIC_n <<- deviance + 2 * length(par) 
} 
return(deviance) 
} 
 
##################### Call the loss function ################################## 
dev.temp <- lm.loss(c(1, 5, 20, 20)) 
dev.temp # print value 
log_like 
AIC_n 
##############optimization functions to find parameter values######################## 
parameter.fits <- optim(par = c(1, 5, 20, 20), 
      fn = lm.loss, hessian = T 
      ) 
parameter.fits # print value 
###################parameter values standard error################################## 
hessian <- parameter.fits$hessian 
hessian.inv <- solve(hessian) 
parameter.se <- sqrt(diag(hessian.inv)) 
parameter.se # print value 
################Getting confidence intervals for parameter values################### 
CI.matrix <- as.data.frame(matrix(NA, nrow = 3, ncol = 4)) 
CI.matrix[1,] <- parameter.fits$par 
CI.matrix[2,] <- parameter.fits$par - 1.96 * parameter.se 
CI.matrix[3,] <- parameter.fits$par + 1.96 * parameter.se 
names(CI.matrix) <- c("d1", "d0", "scale", "location") 
rownames(CI.matrix) <- c("ML", "95% Lower bound", "95% Upper bound") 
CI.matrix # print value 
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 مع التطبيقات توزيع مستقر بفرضنماذج الانحدار الخطي 

 

 .ليلى خالد محمود اللهاليه: اعداد 

 .الدكتور خالد صلاح: اشراف 

 

 

 الملخص

 

 متغيار اااب و  متغيار متات ل باين خطياة الذي يعكس النتااج  ياي علا اة  ةذج الرياضياالانحدار الخطي هو شكل من أشكال النم

 :البتيط ويق العلا ة التالية نموذج الانحدار حيث يعطى،  

           

ياخاذ نفاس    ، ومن هذا الفار  يااا المتغيار العئاواجي التااب      اتب  التوزي  الطبيعي بوسط حتابي صفر واباين      عادة

 .التوزي  بالوراثة

ات ايتراضاعدة الانحدار الخطي يتطلب استخدام نموذج احصاجي يعتمد علي  نماذج ، ولكي يصح استخدام يي التطبي ات العملية

وجاود  ايي ولكان اذا لاي يتح اق هاذا الئارش او شاروش اخار  مثال . للمتغار التااب ( الطبيعاي)من ضمنها واهمها التوزي  المثاالي 

وجاود علا اة  اد لا يكاوا هاذا يعناي او  ، مة هاو أ او  اختباار متااحج، ي د لا يكوا اختبار الانحدار الخطي لاختبار الملامتطرية

أو ايترا  اوزيعات احتمالية أكثر  ةيمكننا استخدام نماذج الانحدار اللامعلمي ، يي هذه الحالة. خطية بين المتغر التاب  والمتت ل

              متت رله اوزي    X  هو ايترا  أا المتغير العئواجي هذه التوزيعاتأحد .  وة للبيانات

اطبيق ، يي ظل وم  ذلك .لية للتوزيعات المتت رةلدالة الكثاية الاحتما معروفمن المعروف أنه، بئكل عام ، لا يوجد شكل 

( posterior)، يإا استخدام متغير عئواجي كامن أو متاعد يعطي بعض التبتيط للحصول على أي اوزي  لاحق بيز شري ة

أحدهما : اطبي ين اي استخدام، هذه الطري ة وخاصة يي العمليات الحتابيةلتوضيح ياجدة . لق بالتوزيعات المتت رةعندما يتع

 .مرابط بنموذج الانحدار الخطي ال ياسي بايترا  التوزي  الطبيعي ، والآخر مرابط بنفس النموذج بايترا  اوزي  متت ر

 posterior، اي الحصول على  rوبرنام  (  Markov Chain Monte Carlo)باستخدام شري ة  وبتطبيق ما سبق

summaries وكانت النتاج  مرضية وم بولة. 

 

 

 




