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Abstract

Data networks are considered as a critical corner of data transmission
between the different hosts wherever they exist. In the last few years, the
wireless and mobile networks become more important for daily use and are their
spread is increasing for personal and commercial use. The main difference
between wired and wireless networks is the large number of lost packets during
the data transmission. The packet losses are a result of errors on the data
transmission channel. These errors are due to external noise, interference and
mobility of the wireless devices that results in deep fading. The mentioned
problems earlier are the reasons that the throughput of wireless, mobile and
mobile adhoc networks is less than wired networks, which does not suffer such

problems.

Old traditional transmission control protocols like (Standard TCP) behave
extremely hard when they detect any data packet losses. They drop the
congestion window to the half though the transmission channel capacity is not
exhausted. This high drop results in low throughput, hence longer time to finish

the transmission.

Most traditional TCP protocols lack the use of appropriate techniques to
estimate the available channel capacity, which are known as bandwidth
estimation (BWE) techniques. In 2004, TCP Westwood+ protocol proposed a
technique for estimating the available channel capacity. It uses a first-order low-
pass filter to find the available bandwidth. TCP Westwood+ has largely
improved the throughput of TCP connections, however, the problem of window
drops is still existing, which makes it less appropriate for use in networks, that
include mobility, i.e. MANETS. Hence, it is desired to modify the TCP protocol
behavior to eliminate these drops, which are the results of congestion events or



channel problems. If the congestion events are eliminated, then we can detect

the times at which the transmission channel problems occur.

The proposed approach in this thesis is called TCP DCM+. It is the
abbreviation for “Dynamic Congestion Control for Wireless and Mobile
Networks”. The transfer of data with different sizes has been simulated with
different packet error rates, which should simulate the existence of wireless

channel for large packet error rates (1e-3 to 5e-2).

We executed hundreds of simulations for cases with different parameters
like error rates, MTU sizes, bandwidth of both bottleneck (link) and destination
(access), protocol type and the size of sent data. We found that DCM+ performs
better than the other approaches, especially if the error rates are large. We used
the usual performance metrics like throughput, average delay and packet losses
to measure how well our approach performs. Additionally, we introduced two
new metrics to measure the total time needed to finish the transmission, and also
to measure the robustness and stability of the transmission. Our conclusion is,
that DCM+ is minimizing congestion events, hence, transmits data much faster,

shows stable behavior and is highly robust compared with other approaches.
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Introduction

1.1 Overview

1.1.1 Classification of Computer Networks

Computer network is a system of interconnected nodes such as PCs,
laptops, servers, mobile phones and peripherals such as printers. Information
sharing is then enabled among them during the interconnection. We may
connect the different nodes via wired or wireless media [1]. We can classify the

computer networks according to the following factors:

1- Area

2- Inter-connectivity
3- Administration
4- Architecture

1- Area
From the perspective of area, a network can belong to any of the

following categories:

= |t may be spanned across a few meters.

= It may connect the devices in a building,
= |t may be spanned across the whole town.
= |t may connect many towns or provinces.

= It could also connect the whole planet like the internet.



2- Inter-Connectivity
The components of the network can be connected differently.

Connectedness could use a logical or a physical topology, or both approaches.

= Network mesh, where every single device can be connected to
every other device on network.

= Bus structure, where all devices can be connected to a single
medium (switch), but geographically disconnected.

= Linear structure, where each device is connected to its left and
right peers only, like in ring structure.

= Star-like structure, where all devices are connected together with a
single device.

= Hybrid structure, where all devices are connected arbitrarily using

all previous ways.

3- Administration
A network can be private or public. Private networks, from an
administrator’s point of view, belongs a single autonomous system, hence
cannot be accessed outside its physical or logical domain. A public
network on the other side, can be accessed by all, depending on the

access right given by the administrator.

4- Architecture

Depending on their architecture, networks can be differentiated into various
types such as client-Server, peer-to-peer or hybrid,
= Client-Server architecture: one or more nodes are acting as server. The
clients make requests to the server(s). Servers take and process the
request(s), and send responses back to clients. An example is the banking

system.



= Point-to-Point architecture: Two systems are connected together. They
could be geographically separated, but the communication is restricted to
these devices (peers), like in torrent traffic.

= Hybrid architecture, which involves architectures of the above types.

1.1.2 Types of Data Networks

We distinguish networks based on their geographical span. A network
can be as small as 50 cm, the distance between the mobile phone and its
Bluetooth headphone. Also, it could be as large as the internet itself, covering

the whole world. Following types of networks are distinguished:

1- Personal Area Network (PAN)

PAN is the smallest network, which is very personal to the user. This type
includes Bluetooth- or infrared-enabled devices. This type has a range up to 10
meters. PAN may include wireless keyboard, mouse, headphones, printers and
TV remotes. Piconet is an example for Bluetooth-enabled PAN. It may contain

up to 8 devices connected together in a master-slave (client-server) architecture.

3

Figure 1-1: Bluetooth



2- Local Area Network (LAN)

If the network is spanned inside a building and operated under a single
administrative system, then it is called “Local Area Network”, or short (LAN).
LANs cover the offices in a company, schools, colleges or universities.
Depending on the class used in the network design, or the number of bits in the
network mask, the number of connected nodes in the LAN may vary from as
least as two to as much as millions. LANs provide a way for sharing the
resources between the end users, i.e. printers, scanners, public data on file

servers, etc. Figure 1.2 shows an example for a LAN.

[slele]

Printer
Workstations E
- O
TR

File Server

Figure 1-2: Local Area Network (LAN)

3- Metropolitan Area Network (MAN)

The Metropolitan Area Network (MAN) is designed to connect different
areas of a city. In Europe and USA, MAN network is used for cable TV
services. It can be in one or more of the following forms: Ethernet, Token-ring,
ATM, or Fiber Distributed Data Interface (FDDI). MAN is a service, that is
mostly provided by ISPs. This service enables users to expand their LAN, i.e.,
MAN can help the companies to connect all of its offices in a city.



Metropolitan Area Network

(MAN)

i __ e S,

EHE

Figure 1-3: Metropolitan Area Network (MAN) [2a]

MANSs mostly use fiber cables for their high-capacity and high-speed data
traffic. MANS lie between LANs and WANSs (Wide Area Networks).

4- Wide Area Network (WAN)

WANSs use routers to cover large areas. This coverage may be from small
provinces up to a whole country or a continent. Figure 1-4 shows an example of
a WAN.

Wide Area Network

Figure 1-4: Wide Area Network (WAN)



Telecommunication networks are generally WANSs, which use routers and
satellites for their data transfer. WANSs equipment are very expensive, hence
WAN services cost more than those of LAN, when using the same speed. The
WAN:Ss are equipped with high-speed devices to build the final backbone, which

connects the remote LANS.

5- Internetwork

Internetwork is a network of networks. It is also called the internet.
Internet is the planets’ largest network, that could be shown as a living creature.
The interruption of internet in one area on the planet may affect the whole

planet.

Service Provider
Commercial Cloud
Services

Figure 1-5: Internet [2b]

Figure 1-5 depicts the complexity of internet. The internet is made by a
huge number of connections between smaller WANS. Internet mainly uses
TCP/IP protocol suite for data transfer between the hosts. The IP protocol is

used for addressing and routing. At a huge level, internet can be considered as a



client-server model. Internet backbone is built from very high-speed fiber
cables. They connect the various continents via fiber cables, which may be laid
on the ground of the sea. They are known as “Submarine Communication
Cables”.

1.2 Motivation

Data transmission refers to the movement of data in form of bits between
two or more digital devices. It is classified as serial and parallel communication
like in figure 1-6. This transfer of data takes place via some form of
transmission media (i.e., coaxial cable, fiber optics, wireless channel, etc.).
Modern economies depend on data transmission as a business [3]. Telephone
and mobile companies make a huge profit from the telecommunication services.
These services are enhanced and extended to include emails, SMSs, data

sharing, internet browsing, etc., which require large bandwidths.

Data Transmission

o

.

Parallel Serial

._1-

Synchronous Asynchronous

Figure 1-6: Types of Data Transmission

The quick delivery and robustness of the transmission technique is crucial
[4]. Old standard TCP techniques (i.e. TCP Reno, TCP NewReno) were
invented to control when and how much data can be sent per time interval [5].

These approaches, however, have been found to be less appropriate for wireless



networks. Table 1-1 depicts the main differences between wired and wireless

networks.

Wireless Wired

Physical configuration needed No physical configuration required

Packet error rate is very high Packet error rate is very low

Large delays Small Delays

Security is low Security is high

Low data rate - low speed High data rate - High speed

Table 1-1: Wireless vs. Wired Networks

According to the underlying structure of the existing wireless network, we
differentiate 2 main types:

e Mobile (cellular) networks,

e Mobile Adhoc Networks (MANETS).

In Table 1-2, we present the main differences between these types.

Cellular Networks

MANETS

Infrastructure required

Infrastructure not existing

Locations of cell sites fixed

No fixed locations

Long planning before launch required

MANETSs automatically adapt to network changes

Setup cost too high

Setup cost low

Setup time to build the cellar network high

Less time is needed to form the MANET.

Table 1-2: Cellular Networks vs. MANETS

In wireless networks, that are static (not moving), the channel conditions
are varying slightly. On the other side, in MANETSs and mobile networks, the
channel conditions are varying largely [6a] and quickly, which cause the
channel capacity to change continuously [6b]. Hence, it is desired to use a

technique, that knows how much channel capacity is available before

9



transmitting data. Also, it should be dynamic in its speed. The technique should

allow the sender to transmit

data in bursts without causing new congestions. TCP DCM+ is a new approach,
that is targeting these aims in order to achieve extremely high throughput by the

existence of tough channel conditions like high error rates.

1.3 Problem Statements

A decrease in throughput and response speed of a network connectivity is
known as “network degradation” [7]. If this kind of deterioration exists within a
network, it is important to analyze it and to do a diagnosis. Degradation causes
of network may include propagation delays, which involve faulty network
devices, congestion, routing problems or transfer of large data files across the IT
infrastructure. Insufficient memory and low processing capacity of end nodes
may also be other reasons for the delays. There are also other forms of

degradation, that may occur as a result of malware or spyware in the network.

While problems with individual hardware devices don’t usually affect the
functionality throughout the entire network, other problems can be network-
wide. For example, congestion or problems of fragmentation of data packets can
affect network performance. To anticipate and handle some kinds of network
degradation like congestion or interruption of connection, network engineers
may consider fault-tolerant designs, where systems may be designed to operate
well even under extreme conditions. This prevents various kinds of natural
degradation from causing system failure or interrupting core network services.
In this thesis, a new technique will be presented to improve performance and to
prevent network congestion [8][9] [10a].

1.4 Objectives of This Thesis

10



The aim of this thesis is to design a new technique, that will be able to
use the accurate estimation of the channel capacity [10b], and to send data
accordingly in a dynamic way depending on the channel conditions like packet
error rates, bottleneck and destination bandwidths. TCP DCM+ should be fair in
sharing the channel capacity with other TCP sources, stable and robust in
delivering data to the destination. Also, the throughput and transmission time

should be improved. Our simulations show, that we have realized our aims.

1.5 Thesis Contributions

We have designed an end-to-end approach, that extremely improves the
TCP transmissions by modifying the behavior in the congestion avoidance
phase in the TCP sender. The following modifications have been performed on
the sender-side code of the files “rtt-estimator.xx” and “tcp-westwood.xx and

“TCP-Variants-Comparison.cc” to attain the desired behavior:

1- keeping the old value of round-trip-time as (RTTy),

2- adding a new member function called “Congestion Avoidance” to the
code, which should emulate the procedure when entering a congestion
phase. This behavior overwrites the behavior in NewReno, when
entering congestion avoidance phase.

3- A new parameter called rateCA has been introduced to emulate the
free size of the TCP buffer in the intermediate node at the time of
ACK segment reception.

4- New metrics have been introduced to measure the stability, robustness
and transmission time of TCP DCM+ in depth.

1.6  Thesis Structure

The rest of this thesis is structured as follows:

11



Chapter Two: Congestion Control in Data Networks

This chapter explains the reasons of congestion in data networks. Also,
some strategies to handle congestion in mobile, wireless and wired
networks have been discussed.

Chapter Three: TCP Protocols of Mobile and Wireless Networks

In this chapter, we explain some techniques for managing network
congestion. We discuss and compare the working of the following TCP
Protocols: Westwood, Westwood+, NewReno, BIC, Hybla and Ledbat.
Chapter Four:  Proposed Approach: DCM+

We propose here our new protocol (DCM+) as additive-increase/adaptive
decrease approach. The building blocks of this protocol is explained in
this chapter.

Chapter Five:  Simulation Results and Analysis

We present in this chapter the simulations using different parameters for
different cases and show the advantages of this techniques over other
approaches.

Chapter Six: Conclusion and Future Work

We conclude the thesis in this chapter and make suggestions for possible

future research using DCM+,

12
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2.1 Introduction

According to the queueing theory, congestion in data networks is the
reduced quality of service (QoS), that could occur, if a network node or link is
carrying more data than it can handle [11a]. Similar to a road congestion, effects
like the followings could happen: queueing delay, packet loss or the blocking of
new connections. As a consequence of network congestion, an additional
increase of the offered load leads either only to a small increase or even to a

decrease in network throughput [11b].

Some network protocols use aggressive retransmissions to compensate
for packet loss due to congestion, but this can lead to more congestion, and even
after the initial load has been reduced to a level that would not normally have
caused any congestion. Examples of this type are TCP Reno and TCP

NewReno.

After 1986, data networks, that use TCP protocol for their data
communication, started to use TCP congestion control algorithms [31b] and
congestion avoidance techniques to avoid a throughput collapse [12][13]. This
collapse is called “window drop”. When a congestion is detected, the
congestion window or (cwnd) is dropped to a predetermined value. Cwnd is an
algorithm parameter, that saves the last value of sent data. To detect a network

congestion, different techniques use different indicators, such as packet loss or 3
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consecutive duplicate acknowledgement (also known as DUPACK) packets.
Packet loss may be done intentionally, i.e. by routers to empty its buffer and
hence to mitigate the congestion. It also can be lost as a reason of bad media

like a noisy wireless channel.

Known techniques to mitigate congestion are: exponential back-off is
used in protocols such as CSMA/CA in the wireless standard IEEE 802.11. The
original ethernet uses CSMA/CD. Reduction of the congestion window is used
in most TCP protocols. Network appliances like routers and switches use fair-
gueueing, Random Early Discard (RED) [14] or Active Queue Management
(AQM) [15] technique. Other techniques that address congestion include
priority schemes, which transmit some packets with higher priority first.
Similarly is the explicit allocation of network resources to specific flows

through the use of admission control [16].

2.2 Congestion Control in Data Networks

Congestion control techniques are those algorithms implemented in the
operating systems in order to control or prevent congestion [14]-[16]. Generally,

congestion control techniques can be classified into two groups:

Congestion Control Approaches
/ N
™
S
™,

Open-Loop Congestion Control Closed-Loop Congestion Control

(oLcc) {cLcC)

Figure 2-1: TCP Congestion Control Approaches
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e Open Loop Congestion Control (OLCC)

When OLCC is applied, then congestions are prevented before they
happen. This technique can be applied either by the sender or the receiver.
This technique make use of either of the following methods: retransmission
timers, selective-repeat window, partially discarding of packets,

acknowledgment packets and the policy to admit/deny a connection.

e Closed Loop Congestion Control (CLCC)

In this case, congestion control algorithms are used to manage or alleviate
congestions after they happens. Several techniques exist, and they can be used
by different protocols. Techniques of this type are backpressure, choke packet,

implicit and explicit Signaling.

Congestion control is a vital process for data networks, especially those,
that rely mainly on TCP traffic. It has a central role for achieving high
performance and throughput via managing the congestions, which cause drops
in the windows size of the transmission. As a result, this prevents the collapse of
the global network like the internet [17][18]. Since 1986, many protocols have
been proposed and implemented for controlling data transmission between
hosts. Old Tahoe [19] is the earliest variant of TCP. It implements two
algorithms called slow start (SS) and congestion avoidance (CA) to update the
congestion window (cwnd). From the point of view of a sender, the algorithms

of old Tahoe are:

- Slow start (SS):
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o at the transmission start, the size of congestion window is 1. This
means TCP can send only one packet until it receives an
acknowledgement.

o When ACK is received, the congestion window increases to two.

o Upon the arrival of every new ACK, the sender increases its

congestion window by one.

The congestion window in this phase increases exponentially. So, on the

arrival of a new ACK, the window follows the equation:

cwnd + = MSS; (2.1)

- Congestion Avoidance (CA)

o continues slow start phase until it reaches a certain threshold, or a
packet loss occurs (congestion indicator)
o on congestion indicator: TCP enters the CA phase: cwnd increases

from ‘n’ to ‘n+1’ only when it has received ‘n’ new ACKs.

The window grows in this phase linearly. The rate of growth of the
window slows down, because this is the stage where TCP is susceptible to

packet loss. The equation used here is:

cwnd += (SMSS*SMSS) | cwnd (2.2)

TCP NewReno, on the other side, is a TCP variant of the old days of
wired networks [20][21][22]. NewReno though has some drawbacks and
limitations, especially in both wireless and mixed (wired/wireless) networks
[23]. Another limitation of TCP NewReno is its little support for mobility [24].

We conclude, that NewReno has little chances in mobile and wireless
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environments like Wi-Fi networks and Mobile Adhoc Networks (MANETS).
TCP NewReno has been implemented in the TCP protocol stack of different

operating systems.

Recently, newer TCP variants like TCP Westwood+, BIC, CUBIC,
HighSpeed, Scalable, Hybla and Ledbat are available in modern operating
systems like Linux [25][26][27]. They are better appropriate for wireless
networks. TCP Ledbat, for example, is implemented under MS Windows Server
2019, and also in MS Windows 10. Figure 2-2 depicts the network congestion,
while figure 2-3 shows the first proposed congestion control algorithm known
as “TCP Tahoe”
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Figure 2-2: Principle of Network Congestion [48 a]
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Figure 2-3: Congestion Management in Standard TCP Protocols [48 b]

2.3 TCP Congestion Control Strategies

TCP is a connection-oriented protocol, that is also very reliable. It uses
sequence numbers to each byte sent in segment. It also provides the feedback
mechanism, also known as “signaling”. It means, that when a host receives a
packet, it is bound to ACK it, having the next sequence number expected. When
a TCP Server crashes in the middle of a communication and restarts its
transmission, it sends a broadcast to all its hosts. The hosts can then send the
last data segment which was never unacknowledged and carry onwards.
According to TCP, congestion occurs if huge amount of data is fed into a
network, which is not capable of handling it. In this case, the mechanism used
to handle this problem is the “congestion window”. The value of congestion
window will be increased or decreased depending on the network status.
Different algorithms use different procedures to increase/decrease the value of

cwnd. The main strategies used in TCP are:

o Additive increase, Multiplicative Decrease (AIMD),
o Additive increase, Adaptive Decrease (AIADD)

o Multiplicative increase, Multiplicative Decrease (MIMD)

o AIMD

This approach represents a feedback control algorithm, which makes the
network to a closed loop system [29][30]. It is the working principle of TCP
NewReno. AIMD combines linear growth of cwnd with an exponential
reduction when a congestion is detected. When multiple flows using this

approach share the same link, then they will eventually converge to use
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equal amounts of bandwidth, which is known as “fair share”. The algorithm
used in AIMD is:

w(t)+a, nomal,

wt+1) = {w(t) b, congested,

(2.3)

Where, “a and b” are constants of additive increase and multiplicative

decrease, respectively. The variable “t” is the time point of the ACK arrival.

o AIADD

The main concept of this technique is to adapt the reduction of the
window to the available bandwidth at the time the congestion has occurred
[30]. TCP Westwood+, that lies at the heart of our proposed algorithm,
DCM+, was the first algorithm of this technique proposed in 2004 [31a]
[31b][32].
o MIMD

This approach shows instable behavior of congestion window. It does not

converge to a fair-share of the network bandwidth. Hence, it is not practical and

not used.

2.4  Congestion Control in Mobile and Wireless Networks

Over the years, congestion control in mobile and wireless networks has

been investigated [33a]. Many advanced schemes and techniques have been

developed, all with the aim of improving the performance in these networks. As

the mobile and wireless technologies are rapidly growing and implemented, it is

important to solve the problems caused by the congestion [33b].

The protocol (TCP) is the most used protocol in today’s Internet. It

supports reliable transport of data by establishing a connection between the
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transmitting and receiving nodes. The transmitter starts a timeout mechanism,
when it starts sending a packet to a receiver. The transmitter constantly tracks
the round-trip times (RTTs) for its packets as a means to determine the
appropriate timeout period. At the receiver, each received packet is
acknowledged implicitly or explicitly to the transmitter. If the transmitter does
not get an ACK packet for a given segment, and the corresponding timeout
period has expired, then the packet is deemed to be lost, and subject to
retransmission. A congestion window with dynamically adjusted cwnd size is
used by the TCP protocol to regulate the traffic flow from the transmitter to the

receiver [34].

Although TCP was initially designed and optimized for wired networks,
the growing popularity of wireless data applications has led mobile wireless
networks such as CDMA2000 and UMTS networks to extend TCP to wireless
communications as well. It was the main objective of TCP to efficiently use the
available bandwidth and to avoid overloading the network, which may result in
packet losses. The used strategy aims at appropriately throttle the senders’

transmission rates.

2.5 Summary

The congestion in the network is considered to be the main reason for
packet losses. Consequently, the performance of TCP connections is often
unsatisfactory when wireless networks are wused. It requires various
improvement techniques. Bad quality of radio links is the key factor for
unsatisfactory performance. This quality in wireless networks can fluctuate

greatly in time due to channel fading, noise and user mobility.
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3.1 TCP NewReno

TCP NewReno is also known as RFC 6582. It is an improvement on
standard TCP Reno. In particular, NewReno modifies Reno's Fast-Retransmit
and Fast-Recovery algorithms. It improves the performance of handling loss of

multiple segments in a single round-trip time (RTT), when no SACK is used.
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As NewReno is able to detect multiple packet losses, it is much more
efficient than Reno. New-Reno, like Reno, enters the fast-retransmit phase
when it receives multiple duplicate packets (3 DUPACKS). They however differ
in, that NewReno doesn’t exit fast-recovery until all outstanding data is
acknowledged, because fast-recovery phase allows for multiple re-transmissions

in NewReno.

The fast-recovery phase proceeds as in Reno, however, when a fresh

ACK is received then there are two cases:

1- If the received ACK acknowledges all the segments, which were
outstanding when we entered fast-recovery, then it exits fast recovery
and sets cwnd to ssthresh and continues congestion avoidance like

Tahoe.

2- If the ACK is a partial ACK, then it deduces that the next segment in
line was lost, it re-transmits that segment, and sets the number of
duplicate ACKs to zero, and it exits fast-recovery. New-Reno has a
problem, that it takes one RTT to detect each packet loss. When the
ACK for the first retransmitted segment is received, only then we can

deduce the other losses [20].

3.2 TCP Westwood/ Westwood+

3.2.1 TCP Westwood
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TCP Westwood is end-to-end protocol, that was first proposed in 2001
[33] [35a]. It belongs to the paradigm “additive increase/ adaptive decrease”, or
short (AIADD). It uses the implicit feedback for the end-to-end measurement of
the bandwidth available along a TCP connection. At the TCP sender, low-pass
filter is applied to filter the returning rate of acknowledgments in order to
estimate the available bandwidth. After a congestion episode, that is after a
timeout or 3 duplicate acknowledgments, the estimated bandwidth is used to
properly set the congestion window (cwnd) and the slow start threshold
(ssthresh). After a congestion, the new states of congestion window and slow-

start threshold are consistent with the real network capacity.

The main principle of TCP westwood is its mechanism of faster recovery.
This phase is designed to avoid the large reduction of the congestion window
after a congestion, by taking into account the end-to-end estimation of available
bandwidth, which enable the sender to recover faster after a loss event. This
very appropriate, especially over connections with large round-trip times (RTT),
or when running over wireless links where sporadic losses are due to unreliable
links rather than congestion [35b]. The proposed modifications follow the end-
to-end design principle of TCP. They require only slight modifications at the
sender side and are backward-compatible. The feedback is merely end-to-end
and does not rely upon explicit information from intermediate nodes or routers

at the network level.

When an ACK is received by the sender of TCP westwood, then it
conveys the information that an amount of data corresponding to a specific
transmitted packet was delivered to the receiver. Averaging the delivered data
count over time yields a fair estimation of the bandwidth currently used by the

source, in case that, the transmission process was not affected by losses.
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When TCP source receives 3 duplicate ACKs (DUPACKS), indicating an
out-of-sequence reception, they should also count toward the bandwidth
estimate, and a new estimate should be computed right after they are received.
As the source is in no position to tell which segment triggered the DUPACK

transmission, it is unable to update the data count by the size of that segment.

End-to-End Bandwidth Estimation

Before a congestion event, the used bandwidth is less or equal to the
available bandwidth of the network. So, TCP source can still probe the network
capacity. Immediately after a congestion episode, the bandwidth used by the
connection is exactly equal to the maximum bandwidth available to that
connection. A congestion event like packet loss is a clear indicator, that the
buffer of intermediate node (router) is fully saturated. It is known, that
whenever the low-frequency input traffic rate exceeds the link capacity, then a
congestion event occurs. Hence, low-pass filter is needed to calculate low-
frequency components of the available bandwidth. The used filter is obtained by
discretizing a first-order low-pass filter using the trapezoidal rule (Tustin
approximation). The bandwidth estimation is done by the algorithm (3-1) as in

the following pseudocode:

Algorithm 3-1 BWE in TCP Westwood

if (ACK iz received)
sample_BHE“k] = (acked*pkt size*d) / (now - lastacktime) :
EWE[k] = (15/21) *BEWE[k-1] + (1/21) *(sample BWE[k] + sample BWE[k-1]):

endif;

where:
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acked: number of segments acknowledged,

pkt_size: segment size in bytes,

now: current time,

lastacktime: time the previous ACK was received,

k and (k-1): current and the previous value of the variable,

BWE [k]: low-pass filtered measurement of the available bandwidth at sample k.

TCP westwood Algorithm

Here, we describe in the algorithms (3-2) and (3-3) how the bandwidth

estimation can be used in TCP Westwood to control network congestions [36].

A. Algorithm after n duplicate ACKs

The pseudocode of the algorithm is the following:

Algorithm 3-2 Window growth of TCP Westwood
after n duplicate ACKs

if (n DUPACE= are received)

if (owin > ssthresh) /* congestion avoidance */
gsthresh = fl[BHE*RTTmidﬂ:
cwin = ssthresh;

endif

if (cwin < ssthresh) /* slow start */
zzthresh = f2 (BWE*ETTmin) ;
if (cwin > szthresh)

owin = ssthresh;

endif

endif

endif

B. Algorithm after coarse timeout expiration

The pseudocode of the algorithm is:
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Algorithm 3-3 Window growth of TCP Westwood
after coarse timeout expiration

if (coarse timeomt expires) /% RTO expired %/
if (cwin » ssthresh) /* congestion avoid. *f
gz2thresh = £3 (BWE*RTTmin) :

if (ssthresh < 2)
ssthresh =2;
cwin =1;

el=e
cwin =f4 (EWE*RTTmin)

endif

endif

if (cwin < =sthresh) /* =low start#®/
szsthresh = £5 (EWE *RTTmin) :
if (s=thresh < 2) ssthresh = 2;
owin =1;
el=e
owin =f6 (BWE*RETTmin)
endif
endif

endif

3.2.2 TCP Westwood+

The definition of TCP Westwood+ protocol is given bellow by its
founder Saverio Mascolo [32][37]:

“TCP Westwood+ 1is a sender-side only modification of the TCP
Reno/NewReno classic congestion control protocol stack that optimizes the

performance of TCP congestion control especially over wireless networks.”

The main difference between TCP Westwood and TCP Westwood+ is,

that in the first one each sample is calculated for each single ACK, that arrives
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at the sender. This is wrong, because it results in overestimation of the
bandwidth. On the other side, TCP Westwood+ calculates the estimation for
each round-trip time (RTT). Hence, the estimation in TCP Westwood+ is more
accurate, and reflects the precise value of available network capacity. Following
figure shows the BW estimation in TCP westwood+ after a congestion event,

and how to set the new states of ssthresh and cwnd.
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Figure 3-1: Window Dynamics of TCP Westwood+ [47]

As TCP westwood, TCP westwood+ is an end-to-end approach, that
makes use of the bandwidth estimation to set cwnd and ssthresh after a
congestion episode, that is, after 3 duplicate acknowledgments (3 DUPACKS),
or if the timeout threshold exceeded (RTO expired). Since Linux kernel 2.6,
TCP westwood+ is considered as the main congestion control protocol of Linux
operating systems. Key idea of TCP westwood+: end-to-end approach, that
makes use of the rate of returning ACKs to calculate the available network
capacity (bandwidth). To calculate the throughput of TCP Westwood+, we use
the following equation [32]:

ww+ _ __ 1 [1Zp
T = RTT*Tq* - (3.1)

where:

RTT. round trip time,
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T,.  average queueing delay,
jo packet error rate

Figure 3-2 shows the throughput of TCP Westwood+ as a 3D-function of
RTT (x-axis) and T, (y-axis), while the throughput (T) is depicted as (z-axis).
We assumed here, that (p) is constant. This plot is a general representation of
the growth rate of TCP Westwood+. It is clear, that for high values of RTT and
Ty the throughput is low and changes in very small portions, while it is

exponentially increasing for low RTT and Ty,

Figure 3-2: Throughput of Westwood+ as 3D plot for RTT and T,

Like in figure 3-2, we see, that the more realistic plot of throughput in
figure 3-3 shows an exponential behavior. In figure 3-3, we assume, that the
average queueing delay (T,) is constant, while (p) and RTT are the variables x

and y, respectively.
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Figure 3-3: Throughput of Westwood+ as 3D plot for p and RTT

In figure 3-3, the x-axis represents the packet-error-rate or (p). It can take
values in the range [0,1], while RTT (y-axis) can take random values. We
assumed here, that (p) takes values less than 0.1, and RTT is in the range 0.08
and 0.5. We see in this figure similar results as in the simulations (chapter 5).
The throughput is small and not changing for high values of (p), even if the
value of RTT is small. On the other hand, we have exponential increase, if (p) is
low (< 0.025). This behavior is similar to the behavior of TCP DCM+.

When comparing TCP Westwood+ with TCP Reno, as shown in equation

(3.2), it is clear, that both throughputs depend on (%), that is they are friendly

to each other. Also, Reno throughput depends on the value (%), while

Westwood+ depends on (\/%), which means, Westwood+ increases the fair-

sharing of the network capacity between the flows with different RTTs.

TReno — L, /2*(1"’> (3.2)
RTT p
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TCP Westwood+ follows the following algorithm (3-4) [8].

Algorithm 3-4 TCP Westwood+

Inpat = in
COntpat = onat

. If (in = ACEK) then

Ezxztimate available bandwidthr

. ont = Increase cwnd according to NewRenos
. end if

Ly M=

El=e

5. If in = (3 DUPACE=) then

&. ==thresh = max (2, {BWE*RTTminIfSeg_Sizeh:
7. ocwnd = s=sthresh;
g
9

. ot = ownd;
. end if
El=e
10. if in = (coarse timecunt) then
11. z=zthrezh = max (2, {BWE*RTTminJISeg_SizeI:
12. ownd = 1
13. ont = cwnd:
14. end if
15. retarn (ouat) ;

Algorithm (3-4) of Westwood+ shows the reactions of the TCP sender on

new coming ACK segments. It increases additively as NewReno, if normal ACK

is the input. Otherwise, if 3 duplicate acknowledgements (DUPACKS) or a

timeout segment (RTO) are the input, then ssthresh and cwnd are readjusted.

packets - packets
E— = EER
| p
“’7 | Network | Receiver

BwW Anti-  — I I I
Estimation Aliasing
Algorithm Filter I

ACKSs ACKSs

Figure 3-4: Key Working ldea of TCP Westwood/Westwood+
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Anti-Aliasing Filter
AAF is a filter used to limit the signal bandwidth in order to satisfy the

sampling theorem of Nyquist—Shannon.
d;

b; = RTT; (3.3)
where:
b; : anti-aliasing BW sample (W at the filter output)
d, data successfully acknowledged from receiver within last RTT (i)
RTT; last RTT (i)

The filter’s equations are given below:

by=a by_1+(1—a) by (3.4)
by = R;i'l;k (3.5)
where:
b, bandwidth sampled measured at time point k,
b, bandwidth estimation from the filter at time point k,
by_q : bandwidth estimation from the filter at time point (k-1),
a : filter constant (19/21)

3.3 TCP Hybla

TCP Hybla [38] has been designed to solve the problems of heterogenous
networks that exhibit large round-trip times (RTTSs) in their TCP connections.
Terrestrial or satellite links are such networks that are disadvantaged because of
their very long RTTs. TCP Hybla has emerged as an analytical model, as
depicted below, which stems from studying the dynamics of congestion window

in standard TCP variants (Tahoe, Reno, NewReno). This model suggests some
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necessary modifications to remove the dependence of TCP performance on
RTT.

As mentioned in its proposal, TCP Hybla reduces the penalization
suffered by the wireless links, i.e. the satellites connections. Also, Hybla does
not infringe the end-to-end semantics of TCP. Hence, it is compatible with the
standard TCP. The equation below describes the growth rate of the congestion
window W(t) of normal TCP as a function of RTT. As seen, it is RTT-

dependent.
2URTT 0<t<t, ,SS 36
W) = {.- :
® iy, txt, CA (3.6)
where:

W (t) : the congestion window expressed in segments,

14 : the slow-start threshold (ssthresh), which is defined as
y = 2u/RIT (3.7)
t,  :thetime at which ssthresh is reached. It results from the above equation:
t, = RTT * log,y (3.8)

The next figure shows the growth rate of normal TCP, which depends on
RTT. It is apparent that slower connections are penalized by a longer time to

reach the required ssthresh value.
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Figure 3-5: Window Dynamics of Standard TCP [38]

It is clear that with larger RTTs, the growth rate of the congestion

window becomes slower, hence, t, is higher. Now, we define the segments

transmission rate as:

B(t) = 20 (3.9)

RTT

After modifying the congestion window to be RTT-independent, as
suggested by TCP Hybla, we get:

pxt
* 2 RTT

wi@) = P
Pl

where;

p*%+ vl, t=t,,, CA

0<t<t,, ,SS | (3.10)

__ RIT
" RTT,

(3.11)

WH(t) : the congestion window of TCP Hybla expressed in segments,

p : the normalized round-trip time,

RTT, : the round-trip time of the reference connection.
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So, according to TCP Hybla, we have a segments transmission rate
BH(t), which is independent of RTT, and defined as:

wH(p)

Hipy —
B*(t) = RTT

(3.12)

Following figure shows the congestion window of TCP Hybla for

different RTTs.
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of TCP Hybla [38]

It is visible that for any possible RTT, the congestion window does not

depend on RTT, and the time needed to reach ssthresh is the same for all RTTs.

The following equation shows the segments

transmission rate BY(t) as a

function of RTT, only. For fast connections, (RTT < RTT,), Hybla behaves as

the standard TCP.

1 _t
<
BH(t) = {RTTO «[2rrM0], 0<t<t, ,SS
1 t—ty0
- —r- >
RTTO * [RTTO + Y]’ t= tY,O'
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3.4 TCP BIC (Binary Increase Congestion Control)

TCP BIC [39] consists of the following main parts as shown in the next figure:
- binary search increase,
- additive increase, and

- probing

CWND - : -

Additive Binary Max ‘.
Increase Search ' Probing

Figure 3-7: Window Phases of TCP BIC [40]

In the phase of binary search increase, the BIC congestion control is
viewed as a search problem. It gives “yes/no” feedback through packet loss as
to whether the current window size is larger than the network capacity. The
search problem uses 2 starting points: Wmin and Wmax, which are the minimum
and maximum window sizes, respectively. Wmax is defined as the window size
just before the last packet loss occurred (also called fast recovery). Wmin is the

window size just after the last packet loss.

The algorithm of this phase repeatedly computes a new value for the
midpoint between Wmax and Wmin. Then, it sets the current window size to this
value. Thereafter, it checks for feedback, in the form of packet losses. Based on
this feedback, the midpoint is taken as the new Wmax if there is a packet loss,
and as the new Wmin if not. The above process continues until the difference
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between Wmax and Wmin is smaller than a preset threshold, called the minimum
increment (Smin). On the other hand, Smax is the maximum increment. This
phase is needed to probe the available bandwidth. It is aggressive, when the
difference between the current window size and the target window size is large,
but becomes less aggressive as the current window size gets closer to the target

window size.

The second part of BIC algorithm is the additive increase. It shows a
linear behavior as shown in the figure below. When combined with the strategy
“binary search increase”, the strategy “additive increase” ensures faster
convergence and RTT-fairness. This combination of binary search increase and
additive increase is called binary increase. Combined with a multiplicative
decrease strategy, binary increase becomes close to pure additive increase
under large windows. This is because a larger window results in a larger
reduction (large decrease factor: ) in multiplicative decrease. Therefore, a
longer additive increase period. When the window size is small, it becomes
close to pure binary search increase — a shorter additive increase period [40].

Figure (3-8) shows the behavior of TCP BIC during its phases.
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Figure 3-8: Behavior of TCP BIC During its Phases [39]

The pseudo-code below describes the principle of TCP BIC

Algorithm 3-5 TCP BIC

while (cwnd < Wmax) {
if ( (midpoint - Wmin) > Smax )
cwnd = cwnd + Smax
else
if ((midpoint - Wmin) < Smin)

cwnd = Wmax
else

cwnd = midpoint

if (no packet loss)
Wmin = cwnd

else
Wmin = P*cwnd
Wmax = cwnd

39
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The bandwidth probing is executed according to the following algorithm:

Algorithm 3-6 BW Probing in TCP BIC

while (cwnd >= W___) {

if (cwnd < W_,_.. + S_..)
cwnd = cwnd + S ..
else
cwnd = cwnd + S ..

if (packet loss)
W _. = PpB*¥rocwnd

I3 T

w = Ccwnd

ol l= R4

The throughput of TCP BIC for very large window size can be given as:

~ L [Smax 228 1
R~ a2 B p (3.14)
But for very small window sizes, the throughput is:
Wmux
R ~ -2 (3.15)
where:
1
Wiax & 3.16
(logz *22xB )42 (1- ) p (3.16)
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3.5 TCP Ledbat

LEDBAT [41] is an abbreviation for Low Extra Delay Background
Transport, which is described in the RFC 6817. TCP LEADBAT is meanly used
with point-to-point (P2P) applications like BitTorrent and for non-interactive
streaming applications. It is an experimental congestion control protocol, that is
based on one-way delay. When a queue is building up, then the one-way delay
Is increasing, which means a congestion may happen. It utilizes the available
bandwidth on an end-to-end path while limiting the consequent increase in
queueing delay on that path. Following figure shows the working principle of
LEDBAT in the presence of TCP traffic.

' steady state

LEDBAT queue = target
sending TCP
rate F connection
\ ~*— minimum rate
pe—
L time

start up phase
rate depends on gain

Figure 3-9: Window Dynamics of TCP Ledbat [25][41]

Figure (3-9) above explains the design goal of LEDBAT, and why it
belongs to the class of transport protocols known as “Lower-Than-Best-Effort-
Protocols”. TARGET here stands for the value of queueing delay for which the
congestion window cwnd is maximal without causing packet losses. At

TAGET, LEDBAT is causing the maximum allowable queueing delay, which is
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introduced in the network. Next figure shows this idea and a comparison with
the standard TCP variants like TCP Reno and TCP NewReno.

Standard TCP LEDBAT
c >4 Losses c >4
e é X X X 0 é
8 < ‘é;.g TARGET is reached
%‘ 2 £ S
O @) No losses ¥
Time Time

Figure 3-10: Congestion Management in TCP Ledbat vs. Standard TCP

Another parameter called gain (G) is used to determine the rate at which
the cwnd responds to changes in the queueing delay. The cwnd increase or
decrease of LEDBAT depends on the difference between the current
measurement of queueing delay (D yrren:) and the predetermined delay
(TARGET). This difference is called offtarget. Following equations describe
the dynamic behavior of LEDBAT.

of ftarget = TARGET — Dcyrrent (3.17)

cwnd = h (of ftarget) = w(t) + Groj/set (3.18)

w(t)
where:
D.yrrent : the current queueing delay measured in the network.
h (.) : afunction describing the behavior of cwnd depending on offtarget.

The time evolution of LEDBAT source congestion window is calculated
according to:
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(3.19)

Wonin if cwnd < wy,;,

z w(t) if packet loss
2

w(t+1) =
cwnd otherwise

According to RFC paper of Ledbat, following pseudo-code shows the

algorithm and the operations of sender and receiver of LEDBAT.

Algorithm 3-7 TCP Ledabt

on data packet @ RX:
remote timestamp = data packet.timestamp
acknowledgement .delay =
local timestamp() - remote timestamp

on acknowledgement @ TX:
current delay = acknowledgement.delay
base delay = min(base delay, current delay)
gueuling delay = current delay - base delay
off target = TARGET - queuing delay
cwnd += GAIN % off target / cwnd

3.6 Summary

We tested some of the known TCP protocols dedicated for congestion
control in wired and wireless networks and we compared them versus
Westwood+. As visible in the next figures, we see that TCP Westwood+ is
preferred over all other protocols as it has the highest throughput (T), the best
link utilization (U) and the shortest time to complete transmission (CTT). We
assume that the data file has the size 100 MB. The bottleneck bandwidth is 100
Mbps and the time needed for transmitting the file is Tx, which depends on the
packet error rate, the segment size (MTU) and the protocol type. Based on these

values, we get the following equations:

. +106+8 bi
1 y = Databitsx100 _ _ _100+10 bgb;; 100 (%) = (872(0) (%) (3.20)
* I'X g

sec sec
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Link Utilization = Total bandwidth used (%)
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Figure 3-11: Network Utilization for Different TCP Approaches

Figure 3-11 shows that Westwood+ has the best utilization when the packet

error rate is higher than le-3.

2 T = Total Number of Bytes Transmitted (Throughput KbpS) (321)

Time Interval

Figure 3-12 shows that Westwood+ has the best throughput when the error
rate is higher than le-3.

Throughput (Kbps)
. 100000
\\\ \.. S~ *
S R TESSlL L - N
--‘-'WWP\\ . \\ '~ .-'_,"‘ “\\ A
~ - & 20000
— @— Hybla N < ~.
w \ e v
o \\ ~A. ~ .
S —x% - NR \ e ¥
\\ A. ~ ’.‘
Bic \\ A/\\ . "1000
N AN/\'
--@-- Ledbat *
edba ‘\___',‘._”__._ /\A
100
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

packet error rate

Figure 3-12: Network Throughput for Different TCP Approaches
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3. CTT = Last_Ack_Time - First_Ack_Time (3.22)

Complete Transmission Time (CTT)
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Figure 3-13: CTT for Different TCP Approaches

Figure 3-13 shows that Westwood+ has the shortest transmission time when
the error rate is higher than 1e-3.

Chapter Four: Proposed approach - DCM+
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4.1 Introduction

TCP DCM+ is a new approach, that we have proposed in [8], and has
been explained in more depth in [9]. It stands for Dynamic Congestion control
for wireless and Mobile systems. It uses the bandwidth estimation (BWE)
algorithm of TCP Westwood+, and hence comes the (+) sign. Please refer to
chapter 3 to see the procedure of BWE in Westwood+. Figure 4-1 shows the
origins of TCP DCM+. The transition lines between the different algorithms
show the time evolution of these approaches. We see that DCM+ has its origins
in many different techniques, i.e. DCM [42], which aims at improving the
performance in MANETS using TCP Westwood.
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Figure 4-1: Origin of TCP DCM+

TCP DCM+ has been designed to avoid the congestion problems
occurring in wireless and mobile networks. It is an L4-only protocol, which can
be used in different network types like wired, wireless and MANETS. It shows
its tremendous performance improvement when the packet error rate is between
(0.001 and 0.04).

In chapter 5, we compare DCM+ versus other protocols and show that it
Is superior to these approaches. Our comparison uses TCP NewReno, TCP
Hybla, TCP Ledbat, TCP BIC, TCP Vegas, TCP HighSpeed and TCP
Westwood+. The properties of DCM+ like stability and robustness are eminent.
For packet error rates less than 0.05, it shows very similar results like TCP
Westwood+, however it has the advantage that it does not suffer any window
drops because of congestion. The only drops it shows are those caused by

wireless channel losses.

4.2  Window Dynamics of TCP DCM+
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Figure 4-2: Phases of TCP DCM~+

Applying TCP DCM+ for any connection between end devices may consist

of the following 5 phases like in figure 4-2:

1-

Initialization (Probing) phase (IP), where rate of growth (cwnd) is
small, though channel capacity is not exhausted. In this phase, no
danger of congestion is expected. Packet losses may happen
depending on the channel conditions. This phase is a core phase, that
always happen at the beginning of each DCM+ transmission. Small
amounts of data are sent within this period; hence, their throughput
may be less or equal than other approaches.

Advancing phase (AP), where the transmission increases quickly by
large steps (exponentially). This is a core phase for mid to large files,
which is the reason for high performance of DCM+.
Near-Channel-Capacity phase (NCCP), where TCP DCM+ uses the
whole available channel capacity to transmit data at a near-constant
rate. This is a core phase for large files. It can be reached after an AP-

or an LP-phase like in phase 4.
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4-  Losses phase (LP), where a lost packet is detected and retransmitted.
The channel capacity after sending the lost packets is nearly equal the
available channel capacity before the losses has been detected. This
phase may occur in any of the previous phases, but it is more
convenient to happen within the phases 2 and 3, because the number
of sent segment in phases 2 and 3 is the highest. The number of losses
in all phases depend on TCP buffer size and the channel conditions
like packet error rate, bottleneck BW, segment size, etc. This phase is
random and not a core phase.

5-  End phase (EP), where the transmission is completed successfully.

Drops may happen randomly at the end of this phase. See figure 5-7.

4.3 TCP DCM+ algorithm

As mentioned previously, DCM+ is an end-to-end (E2E) technique,
which maintains the standard TCP semantics and does not create any additional
overhead. DCM+ is used from the TCP sender to control the sent amount of
data on the transmission link. As given in the published paper [8][9] and [10],
the window increase follows the following equations:

RTOpew RTT jew

= 4.1
RTO,14 RTTo1q (4.1)
CWNDg, 4+ 2 *xratecy ; cwnd < ssthresh
CWNDrey, = CWND,, + (m) ; cwnd > ssthresh (4.2)
CcA* old

Algorithm (4-1) below shows the behavior of TCP DCM+.

Algorithm 4-1 TCP DCM+
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From the view point of TCP NewReno, it has modified behaviors in both
SS and CA phases. However, from view point of TCP Westwood+ [35][36], CA
only is modified. This modification is done through C++-function overloading
in the Westwood+ implementation files under ns-3.29 network simulator.
Through function overloading, we are able to redefine the behavior as needed.
The complete behavior is placed in the belonging C++ file, which ends in ns3
with “.cc’ . The new member function that we redefine in ‘TcpWestwood.cc’

file is:

void TcpWestwood: :CongestionAvoidance (Ptr<TcpSocketState> tcb,

uintBE_ﬁ SegmentsAcked)

This member function has 2 parameters, which are described as follows:
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tcb: internal congestion state,
and
segmentsAcked: count of segments acked.

The behavior of this function is described in the algorithm (4-2):

Algorithm 4-2 Congestion Awvoidance in TCP DCM+

rateCh oldrtt / minRtt

;
minRte = minRte [/ rateCh

r

If (segmentshcked > 0)

{ if (ownd <= (currentBW * minRtt))
{ownd += 2 * rateChA * segment Size; }
else {ocwnd += 2 J/ (cwnd * rateCha) ; }

After the bandwidth estimation (BWE) is calculated, DCM+ calculates the
new values for both ssth and cwnd depending on the previous values RTT,
RTO, the parameter rateCA and whether the calculated cwnd is less than ssth or
not. As feedback signals, we use the previous states of both RTT and RTO. The

behavior of cwnd is observed to be dynamical, in that it tracks the state of
ssthresh as shown in figure 4-3.
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Figure 4-3: Window Dynamics of TCP DCM+

If a change (increase or decrease) of ssthresh has been observed within a
specific time interval, then DCM+ keeps using the current value of cwnd until a
newer ssthresh has been reached. Thereafter, cwnd moves and remains at the
new state of ssthresh for the new time interval. This way, cwnd will
theoretically never exceed the available ssthresh. Hence, congestion events
cannot occur. We claim that congestion events are eliminated. Figure 4-4 shows

this behavior for packet error rate = 7.5e-3 and for MTU size =1200 bytes.

The design of TCP DCM+ is similar to TCP NewReno, which is detailed
in RFC 6582. DCM+ uses the same 4 phases like NewReno (SS, CA, fast
retransmission (FR) and fast recovery (FV)). In DCM+, the behaviors in (SS)
and (CA) have been so modified to enforce the cwnd to track ssth in the next
time interval. TCP timing parameters RTT and RTO have been used as

feedback signals to control the values of ssth and cwnd in the next interval.
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During the design of this approach, we followed the idea, that a
continuous increase in RTT values leads gradually to an increased queue length
in the intermediate nodes. This will later result in a true congestion event (i.e.,
packet drop), and also higher delays of the returning ACK packets to the
sending node. Late arrival of ACK packets at the source node may cause wrong
interpretation of the network status as “congested”, especially if the RTO
threshold is exceeded. In this case, cwnd will drop down to the value of 1
segment or (MSS=1). So, we tied this idea of congestion with the parameters
RTT and RTO, and we introduced a new parameter called congestion rate or
rateCA as in the equation (4.3), which is an important measure for congestion,
especially if the CA phase has been entered. This parameter is crucial for
determining the next appropriate values of cwnd and ssth. It is defined as the
ratio of the previous RTT divided by the current minimal RTT. As a result, all
parameters (cwnd, ssth, RTT, RTO and rateCA) in the next interval, are
affected, and therefor dynamically changing during the transmission.

RTT 14
RTTmin

rateCA = (4.3)

Now, we consider rateCA higher than 1 as advance or “Link Capacity
Increasing”, and on the other hand, values lower than 1 as danger or “Link
Capacity Decreasing”. Depending on the condition stated in CA phase of
DCM+ [8][9][10], if cwnd is less than or equal ssth, then rateCA will be used to
start the retransmission in wide steps, otherwise, retransmission goes slowly and
prevents any possible congestions. Please refer to figure 4-4, which is taken for
the same parameters as figure 4-3, to see the dynamics of RTT and rateCA. We
see, that increased values of RTT (RTTy4 < RTT,ew means rateCA <1) lead to
low values of cwnd, while decreased values of RTT (RTTyq4 > RT T Means
rateCA > 1) lead to an increase of cwnd. We clearly observe, that the average

delay is minimized and it took only 68 seconds to transmit the sent data size.
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DCM+ RTT for MTU = 1200 bytes, err. rate = 7.5e-3
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Figure 4-4: Changing of RTT as Indicator of Increase/Decrease of CWND

At each time point during the transmission, the value of the next RTO is
also affected by the newly calculated rateCA. If the current RTT is decreasing,
then RTO shall be also reduced, as no congestion is expected. As described in
the CA phase of DCM+, next RTO depends on the current rateCA. This
behavior is described through the following equations (4.4) and (4.5):

RTT 14 _ RTO 14

rateCA = = = (4.4)
RTTmin RTOnew
The equation above can be reformulated as:
__ RTO4q4
RTO,,, = ——— (4.5)

Figures 4-5 and 4-6 depict an important property of TCP DCM+, namely
the detection of link quality, i.e. wireless channel, as a result of the occurring
RTO timeouts, which mean lost packets as a reason for bad link conditions.
When a packet is lost because of bad wireless links, then the retransmission
timeout counter is reset to a predefined value, here (in the ns3 simulator) the

initial RTO value is equal 1 msec.
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detecting transmission drop; err. rate = 0.01, MTU=1500
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Figure 4-5: Drops of CWND as a Result of Wireless Channel Losses

The drops of cwnd, which are highlighted in figure 4-5 and marked as (1)
and (2) coincide with the RTO reset time points, which are 54 sec and 65 sec.
The drop at time point 18 sec is minimal and cannot be observed on the cwnd
curve. This time point is marked as (*) in the following plots of RTT and RTO.
At the drop points, the RTO counter is reset to 1 segment. Also, these time

points appear on the RTT curve as spikes, and mean lost packets.
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Figure 4-6: Drops of CWND as Spikes on RTT Curve
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The next property of TCP DCM+ is burst transmission, which is visible
in figure 4-7. It is the reason for the high throughput and quick delivery of data
by this approach. It is presented as a relationship between sent bytes (sender)
and received bytes (receiver). We observe the huge number of bytes that are

received correctly at each time point.

Relationship between send/freceive as "Burst Transmission'
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Figure 4-7: Send-Receive Relationship of DCM+ Connection

Figure 4-8 depicts this behavior again in more depth through an enlarged
section of figure 4-7.
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Figure 4-8: Enlarged Section of DCM+ Data Bursts
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4.4 TCP SACK Option

This option is placed in the TCP options field inside the TCP header [43].
It was originally mentioned in RFC 1072. Currently, it exists officially as a
proposal known as selective acknowledgment (SACK) TCP option, which is
detailed in RFC 2018. SACKSs work by appending a TCP option to a duplicate
acknowledgment (DUPACK) packet. The SACK option contains a range of
noncontiguous data, that are received successfully. It indicated the sender to
send only the missing segments, which are not listed in the SACK option. To
enable SACK for a TCP connection, SACK negotiation is required at the
beginning of connection between the source and destination. TCP DCM+
benefits largely if SACK option is enabled. Figure (4-9) shows a connection
with SACK enabled.

@ Ack 1, Sack 3

Ack 1, Sack 3-4 @

@ k/’,Seg 2
\Ack 4
\b

Figure 4-9: TCP Connection with TCP SACK Option Enabled

Figures (4-10), (4-11) and (4-12) compare 3 cases where the sizes of sent
data are small (10 MB), mid (100 MB) and large (512 MB). The simulations are
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done for TCP SACK enabled and disabled. The benefits are visible when TCP
SACK option is enabled, especially when large and mid-size amount of data is
transmitted. Both throughput and transmission time are improved. Large size
files are sent much quicker (only 44% of the required time) and with very little
drops (< 5% of the case without SACK), as depicted in figure 4-10, while mid-

size files as in figure 4-11 have a little longer time (130%) to transmit the file.
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Figure 4-10: Sending a Large File (512 MB) with TCP DCM+

However, mid-size files with the SACK option enabled suffer only (<

7%) window drops compared with SACK not enabled.
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Figure 4-11: Sending a Mid-size File (100 MB) with TCP DCM+
As shown in the figure 4-12, small files don’t benefit largely from SACK

option. It may be recommended to disable SACK if channel conditions are good

and the size of sent data is small.
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Figure 4-12: Sending a Small-size File (10 MB) with TCP DCM+

45 Summary

We presented a new approach, that finds its roots in many approaches
like TCP NewReno, TCP Westwood+ and TCP WELCOME. DCM+ is
designed like a standard TCP NewReno, and consists of 4 phases. It makes use
of bandwidth estimation like TCP Westwood+. The behavior of congestion
avoidance is added and overloaded in TCP DCM+ to modify its behavior as
needed. The behavior of DCM+ during the CA phase enforces the cwnd to track
ssthresh, and it never exceeds it. Hence, we made the claim, that congestion
events are minimized largely. The only drops of window size are the results of

bad wireless links, which are the reason for lost packets. We also presented its
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properties like burst transmission and high throughput, robustness and

transmission speed.

Chapter Five: Simulation Results and Analysis
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5.1 Introduction

The simulations in this chapter clearly show the improvements achieved by
TCP DCM+ like stability, robustness and short transmission time. Through
intensive simulations we found, that DCM+ also shows improved metrics like
high throughput, low average delay, minimized lost packets. Also, we observed
no cwnd drops, except the lost packets caused by bad wireless channel. All these

properties make DCM+ competitive against other TCP protocols.

5.2  Simulation Environment

As a simulator, we used the network simulator (ns-3.29), which is a
discrete-event simulator (DES). Contrary to ns-2, ns-3 is C++-only simulator,
which makes debugging much easier than in ns-2, which for simulating a
scenario applies (C++/TCL) bi-language. Some people find it inconvenient to
learn and program with TCL. Ns-3, however, has an optional python interface,
which makes it possible to invoke the C++ code from python. Yet, python
bindings (interfaces) for ns-3 are a work in progress, and some limitations are
known by developers. Another important difference, is that ns-3 has an
emulation mode, which allows for the integration with real networks. Also, ns-3
came to resolve the problems already existing in ns-2. To analyze the results,
we used many tools like NetAnim, which is the main tool for the analysis in ns-
3. Other tools like Gnuplot, TraceMetrics or Wireshark have been applied

depending on the file type, that we wish to analyze.

As ns-3 [44] is primarily developed on GNU/Linux platforms, we used

the virtualization software VirtualBox 5.22 [45], later updated to 6.0, in order to
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install Ubuntu Linux 18.04 as a guest OS, while MS Windows 7 SP1 ultimate is
used as a host OS. More details about installing last version of ns-3 can be

found under the simulator’s main site.

5.3 Performance Metrics

While trying to troubleshoot network problem like degradation or
outage, measuring network performance is crucial to determine when the
network is slow and what are the roots for the problem (e.g., bandwidth outage,
misconfiguration saturation, network device defect, etc.). These needed
indicators are usually called metrics and are required to produce tangible figures
when analyzing network performance. For the reason of detailed comparison,
we introduced a new metric, which we called normalized advancing index
(NAI). It is defined as the ratio of throughput divided by the product of lost
packets (given in bytes) and error rates. Its unit is (1/second), and should
indicate the speed of delivering the complete size of data from one end to the
other despite the existence of lost packets at a specific error rate. The figures

produced in this chapter are created according to the following equations:

. _ Total Number of Bytes Transmitted

Thy ﬂughput (Kbpsj Time Interval (51)
.y . Databi 100

Utilization (%) = ————" (5.2)

Boandwidth = Interval

Total packets dropped
Loss rate (%) = 5.3
{ D) Total packets sent ( )

NAJ = Throughput (54)

(LostPackets « MTUzizes ErrorRote)

CTT = Last Ack Time - First Ack Time (5.5)
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The figures in this chapter are shown for different values of performance

metrics for different TCP congestion control protocols (DCM+, Westwood+,
NewReno, BIC, Ledbat and Hybla). The simulations are executed for
different packet error rates. The simulation environment is a virtual machine
of ns-3.29 under Linux Ubuntu. The VM is inside Oracle VirtualBox 6.1.x.

The following parameters are constant through this thesis:

Table 5.1: Simulation Environment Parameters

Kbps

A

1.E-06 1.E-05

- Ledbat

Hybla

1.E-04

Throughput

1.E-03
packet errror rate

Data size | Bottleneck BW | Access BW MTU Size | Duration (sec)
100 MB 100 Mb/sec 1000 Mb/sec | 1500 Bytes 5000
53.1 Throughput

100000

10

1.E-02 1.E-01

Figure 5-1: Comparing Throughput of DCM+ with Different TCP Protocols

In figure 5-1, we see the plots of the throughput for different protocols,

and we clearly see the advantage of DCM+ over most other protocols. This high

throughput extends nearly over the most range of error rates, which is from le-6

to 0.05. For error rates less than 1le-3, we see that only BIC protocol performs

better, but that is at the expense of other metrics like packet delivery ration
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(PDR), average delay and normalized advancing index (NAI), where BIC
performs worst.

5.3.2 End-to-End Average Delay

Figure 5-2 shows the average delay for the different protocols. Our
approach is among the few protocols with least average delay in all tested cases.
BIC protocol has the highest E2E delay. We conclude, that DCM+ does not

cause long queues (full buffers) in the intermediate routers.
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packet error rate

Figure 5-2: Comparing Delay of DCM+ with Different TCP Protocols
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5.3.3 Packet Delivery Ratio (PDR)

Packet Delivery Ratio
101
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2 99
DCM+ \
NR '~: 98
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195
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packet error rate

Figure 5-3: Comparing PDR of DCM+ with Different TCP Protocols

In figure 5-3, it is clear that DCM+ has very similar PDR-behavior like
other protocols. It reaches values of 99.998 % for low error rates (1e-6), and has

like Hybla the best performance for high error rates (< 0.05).

534 Normalized Advancing Index (NAI)

NAI can be considered as a robustness measure. From figure 5-4 we see,
that DCM+ performs better than all other protocols in this research study. It is
obvious, that DCM+ has the best results for all used error rates. This reflects the

highest speed and best quality for TCP systems and applications.
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Normalized Advancing Index (Robustness)
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Figure 5-4: Comparing NAI (Robustness) of DCM+ with Different Protocols
5.35 Complete Transmission Time (CTT)

CTT is defined as the time needed for the last ACK segment to arrive at
the sender. When transmitting data, it is desired to finish transmission in short
time without causing congestions. We claim, that this is the case for DCM+
protocol as depicted in figure 5-5. It has the lowest (CTT) among all tested
protocols. Based on our results, TCP DCM+ applications and devices can
extremely speedup data transmission, hence finish using the link earlier, which

results in less power consumption.
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Figure 5-5: Comparing CTT of DCM+ with Different TCP Protocols

5.3.6 Packet Losses

The total number of lost packets during transmission depends on many
factors like bandwidth between routers, bandwidth used from destination node,
MTU size, error rate and TCP buffer size. We see in figure 5-6, that DCM+ has

beside Hybla the lowest percentage of lost packets.
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Figure 5-6 Comparing Packet Losses of DCM+ with Different TCP Protocols
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5.4 Effect of TCP Buffer Size on the Window Size of TCP DCM+

The plots in figure 5-7 are taken for different sizes of TCP buffer. The
simulations are shown for the following sizes: 4MB, 2 MB, 1 MB, 512 KB, 256
KB, 128 KB, 64 KB, 32 KB and 16 KB. It is visible, that depending on these
different sizes, the number of drops and window sizes are also different. The

parameters used in figure 5-7 are shown in table 5-2.

Table 5-2: Simulation Parameters for Different TCP Buffer Sizes

Parameter MTU Packet Error Rate | Access BW | Bottleneck BW
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Figure 5-7: Effect of TCP Buffer Size on the DCM+ Connection
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Figure 5-7 shows, that more time is needed for the transmission with
decreasing the TCP buffer size. The number of lost packets (window drops)
increases. Also, the window size and throughput decrease. Figure 5-8 below
shows the robustness (NAI) of the DCM+ transmission for different buffer
sizes. With increased buffer size, the robustness increases until we reach a

maximum at the size equal 4 MB.

Robustness (NAI)

250
196.91
200

147.37 147.37

121.54 12883 1270

16 64 256 1024 4096 16384
buffer size (KB)

Figure 5-8: Effect of TCP Buffer Size on Robustness (NAI)

In figure 5-9, we present the number of drops as a function of the TCP
buffer size. As shown below, it is decreasing with increased buffer size. At 4

Mb we have a minimum of just 2 drops.

Window Drops vs. Buffer Size

16384 65536 262144 1048576 4194304
Buffer Size (Bytes)

Figure 5-9: Effect of TCP Buffer Size on the Window Drops
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The buffer size has a big influence on CTT. We see from figure 5-10, that
it is exponentially decreasing with increased buffer size. The sizes greater than

512 KB deliver the lowest transmission times.

Complete Transmission Time versus Buffer Size
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Figure 5-10: Effect of TCP Buffer Size on the Transmission Time (CTT)

The throughput of TCP DCM+ connection as a function of the TCP
buffer size is sketched out in figure 5-11. As shown, it reaches a maximum of

16.5 Mbps at 512 KB. With increased sizes, the throughput fluctuates around 13
Mbps.

Throughput
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1.6852 109315

15

10

Mbps

5.51194
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16 64 256 1024 4096 16384
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Figure 5-11: Effect of TCP Buffer Size on the Throughput of DCM+

The total number of lost packets during the TCP DCM+ transmission is

given in figure 5-12. At 512 KB buffer size, we have the highest throughput and
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also packet losses. Decreasing these losses is achieved by increasing the buffer
size. From figure 5-12, it is visible, that the least losses are achieved when the
buffer size is 4 MB.

Packet Losses
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Figure 5-12: Effect of TCP Buffer Size on the Packet Losses

5.5 TCP DCM+ versus TCP Vegas

TCP Vegas is a technique that reacts to queueing delay. The main idea
behind this method is as follows: if the queueing delay is large, then decrease
the window size, else increase it [46]. Figures 5-13 (a) and (b) present a
comparison between TCP Vegas and TCP DCM+ for 6 different cases with
random packet error rates, but the same buffer size in all cases. The

measurements of this section are displayed in appendix C, table C-8.
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Normalized Advancing Index (NAI)
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Figure 5-13 (a): Comparing robustness (NAI) for DCM+ vs. Vegas

For each of the following cases, the parameters for both DCM+ and
Vegas are equivalent. In figure 5-13 (a), the comparison is made for robustness

(i.e., NAI), while in figure 5-13 (b) we compare the transmission time (CTT).
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Figure 5-13 (b): Comparing CTT for DCM+ vs. Vegas
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In the following table 5-3, we have written down the ratios (TCP DCM+ /
TCP Vegas) for robustness (ryai) and transmission time (rerr). From this table,
we have the conclusion, that the product of both ratios in all cases equal “1”.
That means, if we know the transmission ratio, then we can calculate the
robustness ratio, and vice versa, but it is still not clear, if this rule holds for

other approaches and topologies.

Table 5-3: Improvements of TCP DCM+ against TCP Vegas

Casel | Case2 | Case3 | Case4 | Case5 | Case6
NAI ratio 2.38 5.16 2.36 2.13 35.82 6.02

CTT ratio 0.43 0.19 0.43 0.47 0.028 0.17
Product 1.02 0.99 1.01 1.00 1.00 1.02

P=fNA|*rc'|-|'=1 (56)

We can also reformulate the above equation to:

NAlpcm+  CTTpem+ _ 1 (5.7)
NAIVegas CTTVegas .
Or equivalently,

NAIDCM+ _ CTTVegaS
NAIVegas CTTpcm+

(5.8)

From the table above, we have the worst-case improvements for both
NAI and CTT in case 4, and the best-case improvements in case 5. We
conclude, that DCM+ largely improves the TCP transmission. In all cases we
clearly identify the supremacy of TCP DCM+.
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5.6 Optimizing the Segment Size (MTU)

Optimizing the segments size is crucial before sending data with DCM+.
To understand the effect of the MTU optimization, we consider the following
cases. The simulations below are done for different packet error rates and MTU

sizes. Following two cases are distinguished:

Case 1: Same error rate but different segment sizes.

In figure 5-14, we see, that unwanted drops are occurring as a side effect
of changing the MTU size. In this figure we sent data of the size 100 MB and
the error rate is 1e-2. The SACK option is enabled. Here, if MTU = 1500 bytes,
we finish transmission in lower time compared with the case MTU = 1200. In
the first case, it suffers just 1 unwanted drop. On the other hand, if MTU = 1200
bytes, we have the longest time to finish transmission (CTT) and suffers 4
window drops.
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Figure 5-14: Window Dynamics for Different MTU/Same Error Rate

It is also clear, that the performance is best when MTU = 1200 bytes. It

finishes transmission faster and suffers no unwanted drops, as shown in figure

5-7. It gives a hint, that an additional increase of the performance of DCM+

may be possible if the used MTU size is optimized before the transmission.

Case 2: Different error rates but same segment sizes

In figure 5-15, the size of data to be transmitted is (256 MB), and the

used error rates are: (1e—3, 1e—2). We see, that for the error rate = 1e—3, the

transmission is much quicker (CTT is reduced by the half) while the throughput

is improved by 1.8 times. Besides, it does not make any false drops.
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Figure 5-15: Window Dynamics for Different Error Rates/Same MTU
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5.7 Impact of Access Bandwidth on the Performance of DCM+

The following parameters are used during the following section.

Bottleneck BW: 100 Mbps; packet error rate = 0.02; Data Size = 100
MB;
MTU = 1500 BYTE; SACK option = true.

Figure 5-16 depicts the network throughput as a function of access
BW at the destination node. If the access BW is equal the bottleneck BW,
then we have a maximum. Values of access BW, that are greater than the
bottleneck BW deliver throughput values that fluctuate around the

maximum throughput.

Throughput (Tx bitrate)
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Access Bandwidth of Destination (Mbps)

Figure 5-16: Throughput of DCM+ as function of Access BW

Figure 5-17 shows the average delay as a function of access BW. We see,
that a minimum delay is achieved for values greater than the bottleneck BW.
The improvements in average delay for values much higher than bottleneck are

minimal.
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Figure 5-17: Avg. Delay of DCM+ as function of Access BW

Decreasing the average delay is possible as long as the BW at the
destination is smaller than the existing bottleneck BW. Here, the maximal
decrease in average delay is 1.17 msec per Mbps in the interval 1 to 10 Mbps. If
the used BW at the destination is much larger than the bottleneck, then the

minimization of the delay is negligible and equal 0.01 msec per Mbps.
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Figure 5-18: Packet Losses Percentage of DCM+ as function of Access BW

The packet losses as a function of access BW is shown in figure 5-18. As
the throughput increases for access BW greater than bottleneck BW, it is clear

that the losses will also increase.
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5.8 Impact of Bottleneck Bandwidth on the Performance of DCM+

The following parameters are used during this section.

Access BW: 1 Gbps; error rate = 0.02; Data Size = 100 MB;
MTU = 1500 byte; SACK = true

The maximal throughput as previously said is if the BW of the
bottleneck is equal the destination BW. The maximum is at 1 Gbps as
shown in figure 5-19. The improvements are minimal for higher values of
bottleneck BW.
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Figure 5-19: Throughput of DCM+ as function of Bottleneck BW

Figure 5-20 shows the delay as a function of bottleneck BW. We see very
similar characteristic as in figure 5-17, but the highest improvement of delay
minimization is nearly 0.87 msec per Mbps increase in the bottleneck BW.
Values of bottleneck BW higher than the used access BW have no impact on

delay.
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Figure 5-20: Avg. Delay of DCM+ as function of Bottleneck BW

In figure 5-21, we have a look at the impact of increasing the bottleneck
BW on the packet losses. In this figure, we have a decrease of losses as the
bottleneck BW increases. However, the losses are minimal as the difference
between maximal (2.08 %) and minimal (1.98 %) losses is just (0.1 %) in the

range 1 Mbps up to 100 Gbps, which means stable and robust transmission.
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Figure 5-21: Packet Losses Percentage of DCM+ as function of Bottleneck BW
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5.9 Properties of DCM+ and comparing with DCM and Westwood+

Figure 5-22 shows the transmission rule 2, where the product P of the

ratios I'ya; and Iyt is theoretically equal 1. This figure shows rule 2’ for five

cases that compare DCM+ against TCP Vegas. It is clear that for case one the

robustness ratio is ~5 while the CTT ratio is ~0.194 and P is ~ 0.97. For case
four itis =1.004 .
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—e— rCTT
3
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—_———— — —
fe——— — — ———— _ _,
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Figure 5-22: DCM+ Rule ‘2’: Robustness Ratio is Inverse Proportional to the Ratio of Transmission Time

Figure 5-23 below shows the robustness curves for DCM+ and Vegas.

The ratio of the robustness for case 1 is nearly ‘5°.
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Figure 5-23: Robustness curves for DCM+ and Vegas
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Figure 5-24 shows a comparison of the robustness between DCM+ and
Westwood+. DCM+ shows the same robustness as Westwood+ for some error
rates, which means that DCM+ suffers less packet losses and, hence, better

fairness.
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Figure 5-24: Comparison of the Robustness of DCM+ vs Westwood+

Figure 5-25 is about the utilization of DCM+ and Westwood+. We see that
DCM+ uses less bandwidth than Westwood+ if the error rate is low. If the link
suffers higher losses and needs more bandwidth to achieve the best
performance, then DCM+ can make use of a utilization that exceeds

Westwood+. This will result in a better fairness than for Westwood+.
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Figure 5-25: Comparison of the Utilization of DCM+ vs Westwood+

81



Figures 5-26, 5-27, 5-28 and 5-29 shows the superiority of DCM+ over DCM in
terms of throughput, complete transmission time, robustness and utilization.
From very low packet error rates (1e-6) up to (0.05), DCM+ owns much better

throughput values against DCM as shown in figure 5-26.
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Figure 5-26: Throughput Comparison: DCM+ vs DCM

Figure 5-27 shows that DCM+ under the same transmission parameters owns
much shorter transmission times. We see that the error rate 0.04 is the limit for
better performance. It is clear that DCM+ is at least 120 times faster than DCM.
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Figure 5-27: CTT Comparison: DCM+ vs DCM
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Figure 5-28 compares the robustness of DCM+ and DCM. While DCM shows
piecewise linear behavior for all all error rates, DCM+ is nonlinear over the

regions with higher error rates in order to minimize the packet losses.
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Figure 5-28: Robustness Comparison: DCM+ vs DCM

Figure 5-29 shows the utilization of DCM+ and DCM. DCM+ has the ability to
dynamically select the most appropriate bandwidth in order to achieve the best

robustness. Beyond the error rate 0.05, we don’t get any gains compared with

DCM.
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Figure 5-29: Utilization Comparison: DCM+ vs DCM
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5.10 Summary

As a result, our simulations of many cases with different values of parameter
(error rate, data size, MTU size, protocol, bottleneck bandwidth and access
bandwidth) show, that next cwnd does not exceed ssth, and hence, only very
little congestion events could occur. We also found, that cwnd is changing
dynamically and quickly as a reaction on the continuously changing channel

capacity. This has been reflected as a higher throughput, NAI and lower CTT.

In this research work, we have shown, that our approach is stable and robust.
It has the ability to minimize the average delay and packet losses, but also to
improve the throughput (over 1200% higher than NewReno, over 350% than
BIC and 400% than Hybla) at error rate = 0.004.
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Chapter Six: Conclusion and Future Work

Content
6.1 Conclusion ..
6.2 Future Work

------------------------------------------------------------------
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6.1 Conclusion

In this thesis, we have proposed a new TCP algorithm for controlling the
congestion events. It is an L4-only protocol that is designed to be suitable for
the different data networks, i.e. wired/ wireless and MANETS. It is a sender-side
technique that estimates the available channel capacity (link bandwidth) after
each congestion event and before the transmission. It uses the same algorithm as
TCP Westwood+ to estimate the bandwidth. Through the simulations, we have
shown, that this approach is best appropriate for tough wireless environments
with packet error rates between le-4 and 5e-2, which are the default values for
bad links.

The main idea of DCM+ is based on the ratio between the previous and
the current RTT measurements, which we expressed as the parameter rateCA.
In ns3.x simulator, the default algorithm to estimate RTT value after each ACK
Is the Karn algorithm. The parameter rateCA helps the TCP sender to detect the
status of the channel whether congested or not. According to this value, the
transmission may be very fast or very slow. On the other hand, if we detect that
rateCA is increasing, then we can also minimize the RTO timer, which can
additionally speed-up the transmission process. During the transmission, the
cwnd always tracks and never exceeds the value of ssthresh. This has the effect,
that less congestion events could occur, and hence, it results in less packet
losses and better robustness. Through the robustness measure that we
introduced in this thesis, we found that the behavior of DCM+ leads to higher
throughputs, improved fairness, less losses, shorter end-to-end delays and
transmission times. The analysis of the results shows 2 important properties.
The first one is the transmission burstiness, which can be seen in the linear

relationship between Tx and Rx. The second property is the inverse relation
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between the ratios of CTT and robustness, which simplifies the judgement of

the behavior of DCM+ against other techniques.

The comparison of DCM+ against 12 other TCP protocols has been
executed. The advantage of DCM+ is clear in all simulations and their results.
Hence, DCM+ shows best performance among all tested approaches. It finishes
transmission much faster; it has the highest throughput and it, theoretically,
causes no new congestions on the transmission link. This is of great benefit for

new devices, that may be currently using the same channel.

6.2 Future Work

We may need more research to enhance the stability and robustness beyond
the barrier of (4%) packet error rates. The analysis of more complex topologies
by the existence of reverse TCP traffic and different TCP protocols could be
very helpful to further understand the fairness and friendliness of DCM+.
Further step could be the implementation of DCM+ as an independent module
under the network simulators (ns2 and ns3). Practical implementation under
Linux kernel may be also very helpful to test the performance in real-world

networks. We can here summarize the future research topics as follow:

e Generalization of the DCM+ approach through a mathematical model,

e Enhancing the performance of DCM+ through improving the RTT
estimation technique,

e Checking the appropriateness of DCM+ for mobile networks like LTE
(4G) and (5G).

e Enabling the integration with machine learning approaches like
reinforcement learning (RL) to minimize the unwanted drops, and to

understand the wireless channel characteristics.
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Appendix B: DCM+ Source Code

void TcpWestwood: :CongestionAvoidance (Ptr<TcpSocketState> tcb,
uint32 t segmentsAcked)

{
NS LOG FUNCTION (this << tcb << segmentsAcked );

double rateCA ;// Rate of congestion

rateCA = static cast<double>(m oldRtt.GetSeconds()) /
static cast<double>(tcb->m minRtt.GetSeconds())

this->m minRto= static cast<Time>( static cast<double>
(m_minRto.GetSeconds()) /rateCA ) ;

if ( segmentsAcked > 0 )

{

if (tcb->m cWnd <= static cast<uint32 t> (m currentBW *
static cast<double> (tcb->m minRtt.GetSeconds ())))

{
tcb->m cWnd += static cast<uint32 t> ( 2*rateCA );

} else

tcb->m cWnd += static cast<uint32 t> ( 2 / (
static cast<double> ( tcb->m cWnd) * rateCA)) ;
}

NS LOG INFO ("In CongAvoid, updated to cwnd = " << tcb-
>m_cWnd <<", and ssthresh = " << tcb->m ssThresh ) ;
}
}
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Appendix C: Tables of Simulation Results in Chapter 5

Table C-1: Measurements of TCP DCM+ Throughput (Kbps)

error rate DCM+ NR BIC Ledbat Hybla
1.00E-06 | 85424.7 | 85078.2 | 85424.7 | 85078.2 | 90521.5
1.00E-05 | 85424.7 | 85078.2 | 85424.7 | 85078.2 | 90521.5
1.00E-04 | 39985.9 | 26770.5 | 75686.3 | 11031.7 | 40235.8
1.00E-03 16191.3 | 4165.15 | 18787.4 | 274.136 | 10460.1
4.00E-03 | 20713.5 | 1660.08 | 5653.28 | 254.581 | 4698.02
0.0075 8149.35 | 1073.2 | 3276.99 | 240.844 | 3093.64
0.01 8165 874.047 | 2500.27 | 233.41 | 2654.59
0.02 3633.28 | 546.539 | 1138.1 | 210.725 | 1707.25
0.03 5500.75 | 388.013 | 664.214 | 189.079 | 1246.67
0.04 4836.52 | 293.019 | 460.197 | 168.445 | 954.074
0.05 587.097 | 237.567 | 360.947 | 152.864 | 784.448

Table C-2: Measurements of TCP DCM+ Packet Delivery Ration (PDR)

error rate | DCM+ NR BIC Ledbat Hybla
1.00E-06 99.99857 | 99.99857 | 99.99857 | 99.99857 | 99.99856588
1.00E-05 99.99857 | 99.99857 | 99.99857 | 99.99857 | 99.99856588
1.00E-04 99.98995 | 99.99288 | 97.56887 | 99.99145 | 99.99002551
1.00E-03 99.91099 | 99.92806 | 99.92089 | 99.9137 99.91512257
4.00E-03 99.60482 | 99.63137 | 99.5987 99.60611 | 99.6300651
7.50E-03 99.27015 | 99.28837 | 99.2902 99.27415 | 99.27607625
1.00E-02 99.0181 99.00574 | 99.00939 | 99.01226 | 99.0278272
2.00E-02 98.01206 | 98.10951 | 98.07573 | 98.01145 | 98.07354285
3.00E-02 96.99295 | 97.02601 | 97.06824 | 97.0198 97.02532085
4.00E-02 95.9936 95.88556 | 95.96028 | 95.96395 | 95.94160065
5.00E-02 95.00237 | 94.95806 | 94.97931 | 94.96039 | 95.01630119
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Table C-3: Measurements of TCP DCM+ Packet Losses (%)

error rate | DCM+ NR BIC Ledbat Hybla
1.00E-06 | 0.0014283 | 0.0014341 | 0.001428 | 0.001434 | 0.001434
1.00E-05 | 0.0014283 | 0.0014341 | 0.001428 | 0.001434 | 0.001434
1.00E-04 | 0.0100479 | 0.0071248 | 2.43113 | 0.00855 | 0.009974
1.00E-03 | 0.089005 | 0.0719435 | 0.079114 | 0.0863 | 0.084877
4.00E-03 | 0.395184 | 0.368628 | 0.401296 | 0.393893 | 0.369935
7.50E-03 | 0.729845 | 0.7711632 | 0.70979 | 0.725847 | 0.723924
1.00E-02 | 0.981903 0.99426 | 0.990606 | 0.987735 | 0.972173
2.00E-02 1.98794 1.89049 1.92427 | 1.98855 | 1.92646
3.00E-02 3.00705 2.97399 293176 2.9802 2.97468
4.00E-02 4.0064 411444 4.03972 | 4.03605 4.0584
5.00E-02 4.99763 5.04194 5.02069 | 5.03961 4.9837

Table C-4: Measurements of TCP DCM+ Normalized Advancing Index (NAI)

error rate | DCM+ NR BIC Ledbat Hybla

1.00E-06 | 7.29E409 | 7.26E+09 7289574400 7260006400 7724501333
1.00E-05 | 7.29E408 | 7.26E+08 728957440 726000640 | 772450133.3
1.00E-04 | 4.87E4+06 | 4.57E+06 35081.82654 | 1568952.889 | 4904935.619
1.00E-03 | 2.23E4+04 | 7.11E+403 29148.93576 | 389.8823111 15128.7322
4.00E-03 | 1.58E+03 | 1.38E+402 430.7260952 | 19.74931394 388.46677
0.0075 | 1.78E+02 | 2.45E+01 75.01984708 | 5.383633617 | 69.42553934
0.01 | 9.94E+01 | 1.07E4+01 30.65465134 2.8658494 | 33.16618058
0.02 | 1.07E401 | 1.74E+400 3.552226286 | 0.634504822 | 5.316982968
0.03 | 7.07E400 5.16E-01 0.896687149 | 0.249918546 | 1.653956882
0.04 | 3.40E+00 2.08E-01 0.333816253 0.12156608 | 0.686229894
0.05 | 2.64E-01 1.09E-01 0.166490868 | 0.069737475 | 0.363406963

119




Table C-5: Measurements of TCP DCM+ Average Delay

error rate | DCM+ NR BIC Ledbat Hybla
1.00E-06 | 124.785 | 124.961 | 124.909 | 124.961 126.755
1.00E-05 | 124.785 | 124.961 | 124909 | 124.961 126.755
1.00E-04 | 48.1966 | 48.5637 | 66.2789 | 48.5497 | 50.6474
1.00E-03 | 45.2303 | 45.2296 | 45.3605 | 45.2083 | 45.3775
4.00E-03 | 45.4196 | 45.2311 45.277 45.2077 | 45.3814
0.0075 45.6092 | 45.2247 | 45.2418 45.201 45.3329
0.01 45.3512 | 45.2241 | 45.2374 | 45.1997 | 45.3268
0.02 45.4831 | 45.2235 | 45.2425 | 45.1983 | 45.3161
0.03 45.3572 | 45.2207 | 45.2412 | 45.1974 | 45.3153
0.04 45.849 | 45.2164 | 45.2369 | 45.1964 | 45.3379
0.05 45.762 | 45.2147 | 45.2341 | 45.1958 | 45.3803
Table C-6: Measurements of TCP DCM+ Throughput
error rate | DCM+ NR BIC Ledbat Hybla

1.00E-06 | 9.82705 9.82705 9.82705 9.82705 9.23883
1.00E-05 | 9.82705 9.82705 9.82705 9.82705 9.23883
1.00E-04 | 20.8397 31.3329 11.9867 75.9722 20.8627
1.00E-03 | 51.3938 199.197 | 44.2103 3027.05 79.3608
4.00E-03 | 40.7255 501.293 147.354 3273.2 177.226
0.0075 104.794 778.227 255.071 3475.2 270.243
0.01 104.404 | 958.691 335.442 3598.06 315.921
0.02 239.654 1549.1 745.053 4036.08 497.211
0.03 159.799 2211.41 1291.46 4558.22 690.081
0.04 186.741 2970.03 1888.2 5189.59 914.311
0.05 1544.51 3713.82 2436.92 5795.91 1124.77
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Table C-7: Impact of TCP Buffer Size on DCM+ Performance Metrics

buffer size (KB) | Throughput (Kbps) | Packet Loss NAI
16k 1415.75 1755 13.76759734
32k 2899.88 1880 26.32515177
64 k 5511.94 2092 44.9667508
128k 8627.13 2216 66.44239711
256 k 13214.6 2322 97.1271203
512k 16571.7 2327 121.540043
1M 11685.2 1548 128.8290784
2M 10931.5 1529 122.017179
4M 7960.86 690 196.9062957
8M 13133.7 1521 147.3691519
16M 13133.7 1521 147.3691519
Table C-8: Comparing DCM+ against Vegas
Case Id Throughput (Kbps) | delay (msec) | lost packets | CTT (sec) NAI
casel DCM+ 7913.73 45.3964 689 107.9 9.5715166909E+01
casel_Vegas 3330.34 45.224 691 2519 4.0163289918E+01
case2_DCM+ 11192.2 45.2965 1100 77.6 8.4789393939E+01
case2_Vegas 2113.49 45.1575 1073 404.3 1.6414181423E+01
case3_DCM+ 7920.9 45.4733 695 108 9.4974820144E401
case3_Vegas 3330.34 45.2247 691 251.9 4.0163289918E+01
case4_DCM+ 8070.65 45.3906 527 105.07 1.7015918195E4-02
case4_Vegas 3773.82 45.2257 525 221.7 7.9869206349E+01
case5_DCM+ 85423.1 124.776 1 9.83 7.1185916667E4+08
case5_Vegas 2384.72 45.2011 1 347.6 1.9872666667E+07
case6_DCM+ 5930.19 45.6565 2233 150.3 7.3769592476E400
case6_Vegas 956.616 45.2183 2170 898.4 1.2245468510E400
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Table C-9: Impact of Access Bandwidth on the Performance of DCM+

Bottleneck BW Tx bitrate (Kbps) mean delay (msec) Packet Loss (%)
1.E406 171.683 62.585 1.985
1.E407 3424.03 53.922 2.08
1.E408 4322.54 45.5361 2.033
1.E4+09 4488.65 45.1647 2.043
1.E4+10 4058.88 45.1463 2.019
1.E+11 4186.66 45.1423 2.014

Table C-10: Impact of Access Bandwidth on the Performance of DCM+

Access BW | Tx bitrate (Kbps) | mean delay (msec) | Packet Loss (%)
1.E406 171.655 62.69 1.9988
1.E407 1261.9 50.974 2.0356
1.E408 7511.29 45.47 2.0285
1.E409 4322.54 45.54 2.033
1.E4+10 7142.04 45.55 2.034
1.E4+11 7009.71 4541 2.037
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