
i

Deanship of Graduate Studies

AL-QUDS University

Robust Dynamic Congestion Control Protocol for Mobile Networks

(TCP DCM+)

Derar Sameeh Abdel-Aziz Khader

MSc. Thesis

Jerusalem – Palestine

1441 - 2020

ii

Robust Dynamic Congestion Control Protocol for Mobile Networks

(TCP DCM+)

Prepared by:

Derar Sameeh Abdel-Aziz Khader

BSc. Computer Engineering – Philadelphia University – Jordan, 2005

Supervisor: Dr. Rushdi Hamamreh

A thesis submitted to Faculty of Engineering, Al-Quds University in

Partial Fulfillment of the requirements for the degree of Master of

Electronic and Computer Engineering.

1441 - 2020

iv

Dedication

This thesis is dedicated to my beloved parents, who have raised me to be the

person I am today.

A special thanks to my best friend and brother (Salah),

To all other brothers and sisters (Iman, Rajaa and Inas), who always

encouraged me to continue my way to achieve this degree.

To my lovely wife ‘Kholoud’, who always stands to my side in all good and hard

times.

To my sons, Barhoom and Abood, who are the pleasure of my life.

Thank you all.

ii

Acknowledgements

At first, all the thank is to Allah, the only god, who gave me the time and

health to finish this thesis.

Also, I am very thankful to the best teacher and supervisor I got ever, Dr.

Rushdi Hamamreh, who believed in me and gave me the time to discuss and to

try new ideas. Without his encouragements, this work never comes to the end.

Also, I am deeply thankful to all my teachers at AL-QUDS university,

who always do their best.

iii

Abstract

Data networks are considered as a critical corner of data transmission

between the different hosts wherever they exist. In the last few years, the

wireless and mobile networks become more important for daily use and are their

spread is increasing for personal and commercial use. The main difference

between wired and wireless networks is the large number of lost packets during

the data transmission. The packet losses are a result of errors on the data

transmission channel. These errors are due to external noise, interference and

mobility of the wireless devices that results in deep fading. The mentioned

problems earlier are the reasons that the throughput of wireless, mobile and

mobile adhoc networks is less than wired networks, which does not suffer such

problems.

Old traditional transmission control protocols like (Standard TCP) behave

extremely hard when they detect any data packet losses. They drop the

congestion window to the half though the transmission channel capacity is not

exhausted. This high drop results in low throughput, hence longer time to finish

the transmission.

Most traditional TCP protocols lack the use of appropriate techniques to

estimate the available channel capacity, which are known as bandwidth

estimation (BWE) techniques. In 2004, TCP Westwood+ protocol proposed a

technique for estimating the available channel capacity. It uses a first-order low-

pass filter to find the available bandwidth. TCP Westwood+ has largely

improved the throughput of TCP connections, however, the problem of window

drops is still existing, which makes it less appropriate for use in networks, that

include mobility, i.e. MANETs. Hence, it is desired to modify the TCP protocol

behavior to eliminate these drops, which are the results of congestion events or

iv

channel problems. If the congestion events are eliminated, then we can detect

the times at which the transmission channel problems occur.

The proposed approach in this thesis is called TCP DCM+. It is the

abbreviation for “Dynamic Congestion Control for Wireless and Mobile

Networks”. The transfer of data with different sizes has been simulated with

different packet error rates, which should simulate the existence of wireless

channel for large packet error rates (1e-3 to 5e-2).

We executed hundreds of simulations for cases with different parameters

like error rates, MTU sizes, bandwidth of both bottleneck (link) and destination

(access), protocol type and the size of sent data. We found that DCM+ performs

better than the other approaches, especially if the error rates are large. We used

the usual performance metrics like throughput, average delay and packet losses

to measure how well our approach performs. Additionally, we introduced two

new metrics to measure the total time needed to finish the transmission, and also

to measure the robustness and stability of the transmission. Our conclusion is,

that DCM+ is minimizing congestion events, hence, transmits data much faster,

shows stable behavior and is highly robust compared with other approaches.

v

نقم انبياناث في انشبكاث انلاسهكيت وانمتنقهتفي انذيناميكي انتحكم بروتوكول

 ضرار سميح عبذ انعزيز خضر انطانب: اعذاد

 اشراف: د. رشذي حمامرة

مهخصان

 Wireless)اٌشجىبد اٌلاعٍى١خ أصجحذٚ اٌج١بٔبد،ٔمً فٟ شجىبد اٌّؼٍِٛبد سوٕب أعبع١ب رؼزجش

Networks) غ١ش . الاعزؼّبي اٌشخصٟإداسح الأػّبي ٚ ٟش فرغزحٛر ػٍٝ ح١ض وج١ الأخ١شحفٟ اٌغٕٛاد

 شجأوثشىً ٘ٛ أْ اٌشجىبد اٌلاعٍى١خ ِؼشضخ ٚث١ٓ اٌشجىبد اٌغٍى١خ ٚاٌلاعٍى١خ ُِٙ فشقٕ٘بٌه أْ

 (Transmission Channel)الاسعبي رحصً ػٍٝ لٕبح ٚ٘زٖ ، ٌحذٚس أخطبء ػٍٝ اٌج١بٔبد اٌّشعٍخ

ٚلذ ،ٌلأجٙضح ٚاٌزٕمً (Mobility) اٌحشوخأٚ ثغجت ،(External Noise)ٟ اٌخبسجاٌزش٠ٛش ثغجت

 الارصبي اٌّجبشش ث١ٓ طشفٟ اٌمٕبح. رّٕغ (Physical Barriers) ٚجٛد ػٛائك ف١ض٠بئ١خثغجت رىْٛ

أٚ اٌشجىبد ّزٕمٍخاٌأٚ اٌلاعٍى١خ عشػخ ٔمً اٌج١بٔبد فٟ اٌشجىبد أخفبض فٟ غجت٠زج١ّغ ِب روش

 اٌشجىبد اٌغٍى١خ. ٚ٘ٛ ِب لا رؼبٟٔ ِٕٗ (MANET Networks)اٌّخصصخ لأغشاض ِؼ١ٕخ

٘زٖ ".+TCP DCM"رُ الزشاح ٚرص١ُّ ٚاخزجبس رم١ٕخ جذ٠ذح رغّٝ ،فٟ ٘زٖ الأطشٚحخ

، (Bandwidth Estimation)اٌّزبحخ ٌلإسعبي رم١ٕخ اٌزحذ٠ذ اٌّغجك ٌٍغؼخ مَٛ ػٍٝ اػزّبدراٌطش٠مخ

ِغ دِجٙبصُ "،+TCP Westwood" ثشٚرٛوٛيفٟ اٌّٛجٛدح ٚرٌه ِٓ خلاي اػزّبد اٌخٛاسص١ِخ

ٗ راوشح فٟ م١بط حجُ اٌفشاؽ اٌّزبحأخٌشٜ ٌثشِج١خ ِّ ٛج ُّ ث١ٓ طشفٟ الاسعبي. (Router Buffer) اٌ

ٌؼٍّزٟ اسعبي (Round Trip Times)ِٓ خلاي ِمبسٔخ صِٓ اٌز٘بة ٚالإ٠بة ٠زُ ل١بط اٌحجُ اٌّزبح

 ،، فبرا وبٔذ ٔغجخ اٌضِٓ اٌغبثك أوجش ِٓ اٌضِٓ اٌحبٌٟ فأٔٗ ٠ؼٕٟ أْ راوشح اٌشاٚرش رفشؽ ثغشػِٗززب١ٌز١ٓ

ٚ٘ٛ ِب ٠ؼزّذ ،ػٍٝ ٘زٖ اٌم١ّخ ٠ىْٛ الاسعبي ثشىً عش٠غ جذا أٚ ثطٟء ٚثحزس ٚالا فأٔٙب رّزٍئ. اػزّبدا

حجُ ٔبفزح الاسعبي اٌغبثمخ اٌزٟ ٚصٍذ وبْ إراف. (Window Size)ٕبفزح الاسعبي اٌغبثك ٌحجُ اٌػٍٝ

٠زُ اسعبي و١ّخ وج١شح فؼٕذ٘ب (slow- start threshold) ػزجخ اٌجذء اٌجطٟءألً ِٓ ثٕجبح ٌٍّغزمجً

، ٚالا ٠زُ الاسعبي ثشىً ثطٟء ثحجُ اٌّىبْ اٌفبسؽ فٟ اٌشاٚرش (Burst)ٚاحذح دفؼخ اٌج١بٔبدجذا ِٓ

vi

ِغ حجُ اٌفشاؽ فٟ اٌشاٚرش، ٚثح١ش لا ٠حذس رصبدِبد ِغ ِشعً آخش ػٍٝ ٔفظ ِّش اٌج١بٔبد ٠زلاءَ

(Data Path).

ٔغجخ اٌزٟ اعزخذِذ ف١ٙب ِزغ١شاد ِزؼذدح ِضًاٌّخزٍفخ، ٚ اٌحبلاد ّئبدٌِٓ خلاي اٌّحبوبح

اٌّشعٍخ، فبْ الاسعبي، اٌجشٚرٛوٛي اٌّغزخذَ ٚحجُ اٌج١بٔبد حجُ اٌحضِخ، عؼخ لٕبح ض١بع اٌحضَ،

ػٍٝ اٌزألٍُ جذا راد لذسح ػب١ٌخ ٚأٔٙب، عشعٟ٘ الأ إٌز١جخ وبٔذ أْ اٌطش٠مخ اٌّمزشحخ ِٓ طشفٕب

(Robustness) ثغجت وّب أٙب لا رغجت أٞ اخزٕبلبد ػٍٝ لٕبح الاسعبي ٌلإسعبي،اٌمبع١خ ظشٚفاٌِغ

ٚإرا ِب وبْ ٕ٘بن اِىب١ٔخ ٌلإسعبي ثغشػخ ،ِؼشفخ صِٓ اٌز٘بة ٚالإ٠بة ٌٍحضَرص١ّّٙب اٌزٞ اػزّذ ػٍٝ

 وج١شح أَ ل١ٍٍخ.

vii

Table of Contents

Declaration __ i

Acknowledgements ___ ii

Abstract __ iii

 v __ الملخص

Table of Contents ___ vii

Table of Figures ___ x

List of Tables ___ xii

List of Algorithms ___ xiii

List of Equations __ xiv

Acronyms and Abbreviations____________________________________ xv

Chapter One: Introduction ______________________________________ 1

Introduction ___ 2

1.1 Overview ___ 2

1.1.1 Classification of Computer Networks _______________________ 2

1.1.2 Types of Data Networks _________________________________ 4

1.2 Motivation __ 8

1.3 Problem Statements _____________________________________ 10

1.4 Objectives of This Thesis _________________________________ 10

1.5 Thesis Contributions ____________________________________ 11

1.6 Thesis Structure __ 11

Chapter Two: Congestion Control in Data Networks ________________ 13

2.1 Introduction ___ 14

2.2 Congestion Control in Data Networks ______________________ 15

2.3 TCP Congestion Control Strategies ________________________ 19

2.4 Congestion Control in Mobile and Wireless Networks _________ 20

2.5 Summary __ 21

viii

Chapter Three: TCP Protocols for Mobile and Wireless Networks _____ 22

3.1 TCP NewReno __ 23

3.2 TCP Westwood/ Westwood+ ______________________________ 24

3.2.1 TCP Westwood ______________________________________ 24

3.2.2 TCP Westwood+ _____________________________________ 28

3.3 TCP Hybla___ 33

3.4 TCP BIC (Binary Increase Congestion Control) ______________ 37

3.5 TCP Ledbat __ 41

3.6 Summary __ 43

Chapter Four: Proposed approach - DCM+ ________________________ 45

4.1 Introduction ___ 46

4.2 Window Dynamics of TCP DCM+ _________________________ 47

4.3 TCP DCM+ algorithm ___________________________________ 49

4.4 TCP SACK Option _____________________________________ 57

4.5 Summary __ 59

Chapter Five: Simulation Results and Analysis _____________________ 60

5.1 Introduction ___ 61

5.2 Simulation Environment _________________________________ 61

5.3 Performance Metrics ____________________________________ 62

5.3.1 Throughput ___ 63

5.3.2 End-to-End Average Delay ____________________________ 64

5.3.3 Packet Delivery Ratio (PDR) ___________________________ 65

5.3.4 Normalized Advancing Index (NAI) _____________________ 65

5.3.5 Complete Transmission Time (CTT) ____________________ 66

5.3.6 Packet Losses _______________________________________ 67

5.4 Effect of TCP Buffer Size on the Window Size of TCP DCM+ __ 68

5.5 TCP DCM+ versus TCP Vegas ____________________________ 71

5.6 Optimizing the Segment Size (MTU) _______________________ 74

Case 1: Same error rate but different segment sizes. ______________ 74

Case 2: Different error rates but same segment sizes _____________ 75

5.7 Impact of Access Bandwidth on the Performance of DCM+ ____ 76

ix

5.8 Impact of Bottleneck Bandwidth on the Performance of DCM+ _ 78

5.9 Properties of DCM+ and comparing with DCM and Westwood+ 80

5.10 Summary __ 84

Chapter Six: Conclusion and Future Work ________________________ 85

6.1 Conclusion ___ 86

6.2 Future Work ___ 87

References __ 88

Appendix A: Published Papers __________________________________ 92

Paper1: IEEE Conference in Gaza (April 2019) _________________ 92

Paper2: SCIRP / IJCNS ____________________________________ 100

Paper3: IARIA (Conference in Valencia – Spain – Nov. 2019) _____ 111

Appendix B: DCM+ Source Code ______________________________ 117

Appendix C: Tables of Simulation Results in Chapter 5 _____________ 118

x

Table of Figures

Figure Legend page

1-1 Bluetooth 4

1-2 Local Area Network (LAN) 5

1-3 Metropolitan Area Network (MAN) 6

1-4 Wide Area Network (WAN) 6

1-5 Internet 7

1-6 Types of Data Transmission 8

2-1 TCP Congestion Control Approaches 15

2-2 Principle of Network Congestion 18

2-3 Congestion Management in Standard TCP Protocols 18

3-1 Window Dynamics of TCP Westwood+ 28

3-2 Throughput of Westwood+ as 3D plot for RTT and Tq 29

3-3 Throughput of Westwood+ as 3D plot for p and RTT 30

3-4 Key Working Idea of TCP Westwood/Westwood+ 31

xi

3-5 Window Dynamics of Standard TCP 33

3-6 Window Dynamics of TCP Hybla 35

3-7 Window Phase of TCP BIC 36

3-8 Behavior of TCP BIC During its Phases 37

3-9 Window Dynamics of TCP Ledbat 40

3-10 Congestion Management in TCP Ledbat vs. Standard TCP 40

3-11 Network Utilization for Different TCP Approaches 42

3-12 Network Throughput for Different TCP Approaches 43

3-13 CTT for Different TCP Approaches 43

4-1 Origin of TCP DCM+ 45

4-2 Phases of TCP DCM+ 46

4-3 Window Dynamics of TCP DCM+ 50

4-4 Changing of RTT as Indicator of Increase/Decrease of CWND 52

4-5 Drops of CWND as a Result of Wireless Channel Losses 53

4-6 Drops of CWND as Spikes on RTT Curve 53

4-7 Send-Receive Relationship of DCM+ Connection 54

4-8 Enlarged Section of DCM+ Data Bursts 54

4-9 TCP Connection with TCP SACK Option Enabled 55

4-10 Sending a Large File (512 MB) with TCP DCM+ 56

4-11 Sending a Mid-size File (100 MB) with TCP DCM+ 56

4-12 Sending a Small-size File (10 MB) with TCP DCM+ 57

5-1 Comparing Throughput of DCM+ with Different TCP Protocols 61

5-2 Comparing Delay of DCM+ with Different TCP Protocols 62

5-3 Comparing PDR of DCM+ with Different TCP Protocols 63

5-4 Comparing NAI (Robustness) of DCM+ with Different Protocols 64

5-5 Comparing CTT of DCM+ with Different TCP Protocols 65

5-6 Comparing Packet Losses of DCM+ with Different TCP Protocols 65

5-7 Effect of TCP Buffer Size on the DCM+ Connection 66

5-8 Effect of TCP Buffer Size on Robustness (NAI) 67

5-9 Effect of TCP Buffer Size on the Window Drops 67

5-10 Effect of TCP Buffer Size on the Transmission Time (CTT) 68

5-11 Effect of TCP Buffer Size on the Throughput of DCM+ 68

5-12 Effect of TCP Buffer Size on the Packet Losses 69

5-13 (a) Comparing robustness (NAI) for DCM+ vs. Vegas 70

5-13 (b) Comparing CTT for DCM+ vs. Vegas 70

5-14 Window Dynamics for Different MTU/Same Error Rate 72

5-15 Window Dynamics for Different Error Rates/Same MTU 73

xii

5-16 Throughput of DCM+ as function of Access BW 74

5-17 Avg. Delay of DCM+ as function of Access BW 75

5-18 Packet Losses Percentage of DCM+ as function of Access BW 75

5-19 Throughput of DCM+ as function of Bottleneck BW 76

5-20 Avg. Delay of DCM+ as function of Bottleneck BW 77

5-21 Packet Losses Percentage of DCM+ as function of Bottleneck BW 77

5-22 DCM+ Rule „2‟: Robustness Ratio is Inverse Proportional to the

Ratio of Transmission Time

78

5-23 Robustness curves for DCM+ and Vegas 78

5-24 Comparison of the Robustness of DCM+ vs Westwood+ 79

5-25 Comparison of the Robustness of DCM+ vs Westwood+ 79

5-26 Throughput Comparison: DCM+ vs DCM 80

5-27 CTT Comparison: DCM+ vs DCM 80

5-28 Robustness Comparison: DCM+ vs DCM 81

5-29 Utilization Comparison: DCM+ vs DCM 81

List of Tables

Table Legend page

1-1 Wireless vs. Wired Networks 9

1-2 Cellular Networks vs. MANETs 9

5-1 Simulation Environment Parameters 61

5-2 Simulation Parameters for Different TCP Buffer Sizes 66

5-3 Improvements of TCP DCM+ against TCP Vegas 71

C-1 Measurements of TCP DCM+ Throughput (Kbps) 114

C-2 Measurements of TCP DCM+ Packet Delivery Ration (PDR) 114

C-3 Measurements of TCP DCM+ Packet Losses (%) 115

C-4 Measurements of TCP DCM+ Normalized Advancing Index 115

C-5 Measurements of TCP DCM+ Average Delay 116

xiii

C-6 Measurements of TCP DCM+ Throughput 116

C-7 Impact of TCP Buffer Size on DCM+ Performance Metrics 117

C-8 Comparing DCM+ against Vegas 117

C-9 Impact of Access Bandwidth on the Performance of DCM+ 118

C-10 Impact of Access Bandwidth on the Performance of DCM+ 118

List of Algorithms

Algorithm Number Title Page

3-1 BWE in TCP Westwood 25

3-2 Window growth of TCP Westwood

after n duplicate ACKs

26

3-3 Window growth of TCP Westwood

after coarse timeout expiration

27

3-4 TCP Westwood+ 31

3-5 TCP BIC 38

3-6 BW Probing in TCP BIC 38

3-7 TCP Ledabt 41

xiv

4-1 TCP DCM+ 48

4-2 Congestion Avoidance in TCP DCM 49

List of Equations

Equation Number page

2.1 16

2.2 17

2.3 19

3.1 28

3.2 30

3.3 – 3.5 32

3.6 – 3.8 33

3.9 – 3.12 34

xv

3.13 35

3.14 – 3.16 39

3.17 - 3.19 41

3.20 42

3.21, 3.22 43

4.1 47

4.2 48

4.3 51

4.4, 4.5 52

5.1 – 5.5 60

5.6 – 5.8 71

Acronyms and Abbreviations

AAF Anti-aliasing filter

ACK Acknowledgement

AIADD Additive Increase-ADaptive Decrease

AIMD Additive Increase-Multiplicative Decrease

AQM Active Queue Management

CA Phase Congestion Avoidance Phase

CDMA Code-division multiple access

CSMA/CA Carrier-Sense Multiple Access/ Collision Avoidance

CSMA/CD Carrier-Sense Multiple Access/ Collision Detection

CTT Complete Transmission Time

https://en.wikipedia.org/wiki/Code-division_multiple_access

xvi

CWND Congestion Windows

DCM Dynamic Congestion Model

DCM+ Dynamic Congestion Control for Wireless and Mobile Systems

DUPACK Duplicate Acknowledgement

LAN Local Area Network

MAN Metropolitan Area Network

MANET Mobile Adhoc Network

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NAI Normalized Advancing Index

PDR Packet Delivery Ratio

RED Random Early (Discard / Drop)

RTO Retransmission Timeout

RTT Round Trip Time

SS Slow Start

SSTHRESH Slow-Strat Threshold

TCP Transmission Control Protocol

UMTS Universal Mobile Telecommunications Service

WAN Wide Area Network

1

Chapter One: Introduction

Content

1.1 Introduction …………………….……….……………………….……. 2

1.1.1 Classification of Computer Networks …………………….….... 2

1.1.2 Types of Data Networks ………………………………………... 4

1.2 Motivation ………………………………………………………….……. 8

1.3 Problem Statements …………………….…….…………………………. 10

1.4 Objectives of this Thesis ……………….…….…………………………. 10

1.5 Thesis Contributions ….……………………………………...…………. 11

1.6 Thesis Structure …………………………...……………………….….… 11

2

Introduction

1.1 Overview

1.1.1 Classification of Computer Networks

Computer network is a system of interconnected nodes such as PCs,

laptops, servers, mobile phones and peripherals such as printers. Information

sharing is then enabled among them during the interconnection. We may

connect the different nodes via wired or wireless media [1]. We can classify the

computer networks according to the following factors:

1- Area

2- Inter-connectivity

3- Administration

4- Architecture

1- Area

From the perspective of area, a network can belong to any of the

following categories:

 It may be spanned across a few meters.

 It may connect the devices in a building,

 It may be spanned across the whole town.

 It may connect many towns or provinces.

 It could also connect the whole planet like the internet.

3

2- Inter-Connectivity

The components of the network can be connected differently.

Connectedness could use a logical or a physical topology, or both approaches.

 Network mesh, where every single device can be connected to

every other device on network.

 Bus structure, where all devices can be connected to a single

medium (switch), but geographically disconnected.

 Linear structure, where each device is connected to its left and

right peers only, like in ring structure.

 Star-like structure, where all devices are connected together with a

single device.

 Hybrid structure, where all devices are connected arbitrarily using

all previous ways.

3- Administration

A network can be private or public. Private networks, from an

administrator‟s point of view, belongs a single autonomous system, hence

cannot be accessed outside its physical or logical domain. A public

network on the other side, can be accessed by all, depending on the

access right given by the administrator.

4- Architecture

Depending on their architecture, networks can be differentiated into various

types such as client-Server, peer-to-peer or hybrid,

 Client-Server architecture: one or more nodes are acting as server. The

clients make requests to the server(s). Servers take and process the

request(s), and send responses back to clients. An example is the banking

system.

4

 Point-to-Point architecture: Two systems are connected together. They

could be geographically separated, but the communication is restricted to

these devices (peers), like in torrent traffic.

 Hybrid architecture, which involves architectures of the above types.

1.1.2 Types of Data Networks

We distinguish networks based on their geographical span. A network

can be as small as 50 cm, the distance between the mobile phone and its

Bluetooth headphone. Also, it could be as large as the internet itself, covering

the whole world. Following types of networks are distinguished:

1- Personal Area Network (PAN)

PAN is the smallest network, which is very personal to the user. This type

includes Bluetooth- or infrared-enabled devices. This type has a range up to 10

meters. PAN may include wireless keyboard, mouse, headphones, printers and

TV remotes. Piconet is an example for Bluetooth-enabled PAN. It may contain

up to 8 devices connected together in a master-slave (client-server) architecture.

Figure 1-1: Bluetooth

5

2- Local Area Network (LAN)

If the network is spanned inside a building and operated under a single

administrative system, then it is called “Local Area Network”, or short (LAN).

LANs cover the offices in a company, schools, colleges or universities.

Depending on the class used in the network design, or the number of bits in the

network mask, the number of connected nodes in the LAN may vary from as

least as two to as much as millions. LANs provide a way for sharing the

resources between the end users, i.e. printers, scanners, public data on file

servers, etc. Figure 1.2 shows an example for a LAN.

Figure 1-2: Local Area Network (LAN)

3- Metropolitan Area Network (MAN)

The Metropolitan Area Network (MAN) is designed to connect different

areas of a city. In Europe and USA, MAN network is used for cable TV

services. It can be in one or more of the following forms: Ethernet, Token-ring,

ATM, or Fiber Distributed Data Interface (FDDI). MAN is a service, that is

mostly provided by ISPs. This service enables users to expand their LAN, i.e.,

MAN can help the companies to connect all of its offices in a city.

6

Figure 1-3: Metropolitan Area Network (MAN) [2a]

MANs mostly use fiber cables for their high-capacity and high-speed data

traffic. MANs lie between LANs and WANs (Wide Area Networks).

4- Wide Area Network (WAN)

WANs use routers to cover large areas. This coverage may be from small

provinces up to a whole country or a continent. Figure 1-4 shows an example of

a WAN.

Figure 1-4: Wide Area Network (WAN)

7

Telecommunication networks are generally WANs, which use routers and

satellites for their data transfer. WANs equipment are very expensive, hence

WAN services cost more than those of LAN, when using the same speed. The

WANs are equipped with high-speed devices to build the final backbone, which

connects the remote LANs.

5- Internetwork

Internetwork is a network of networks. It is also called the internet.

Internet is the planets‟ largest network, that could be shown as a living creature.

The interruption of internet in one area on the planet may affect the whole

planet.

Figure 1-5: Internet [2b]

Figure 1-5 depicts the complexity of internet. The internet is made by a

huge number of connections between smaller WANs. Internet mainly uses

TCP/IP protocol suite for data transfer between the hosts. The IP protocol is

used for addressing and routing. At a huge level, internet can be considered as a

8

client-server model. Internet backbone is built from very high-speed fiber

cables. They connect the various continents via fiber cables, which may be laid

on the ground of the sea. They are known as “Submarine Communication

Cables”.

1.2 Motivation

Data transmission refers to the movement of data in form of bits between

two or more digital devices. It is classified as serial and parallel communication

like in figure 1-6. This transfer of data takes place via some form of

transmission media (i.e., coaxial cable, fiber optics, wireless channel, etc.).

Modern economies depend on data transmission as a business [3]. Telephone

and mobile companies make a huge profit from the telecommunication services.

These services are enhanced and extended to include emails, SMSs, data

sharing, internet browsing, etc., which require large bandwidths.

Figure 1-6: Types of Data Transmission

The quick delivery and robustness of the transmission technique is crucial

[4]. Old standard TCP techniques (i.e. TCP Reno, TCP NewReno) were

invented to control when and how much data can be sent per time interval [5].

These approaches, however, have been found to be less appropriate for wireless

9

networks. Table 1-1 depicts the main differences between wired and wireless

networks.

Wireless Wired

Physical configuration needed No physical configuration required

Packet error rate is very high Packet error rate is very low

Large delays Small Delays

Security is low Security is high

Low data rate  low speed High data rate  High speed

Table 1-1: Wireless vs. Wired Networks

According to the underlying structure of the existing wireless network, we

differentiate 2 main types:

 Mobile (cellular) networks,

 Mobile Adhoc Networks (MANETs).

 In Table 1-2, we present the main differences between these types.

Cellular Networks MANETs

Infrastructure required Infrastructure not existing

Locations of cell sites fixed No fixed locations

Long planning before launch required MANETs automatically adapt to network changes

Setup cost too high Setup cost low

Setup time to build the cellar network high Less time is needed to form the MANET.

Table 1-2: Cellular Networks vs. MANETs

In wireless networks, that are static (not moving), the channel conditions

are varying slightly. On the other side, in MANETs and mobile networks, the

channel conditions are varying largely [6a] and quickly, which cause the

channel capacity to change continuously [6b]. Hence, it is desired to use a

technique, that knows how much channel capacity is available before

10

transmitting data. Also, it should be dynamic in its speed. The technique should

allow the sender to transmit

data in bursts without causing new congestions. TCP DCM+ is a new approach,

that is targeting these aims in order to achieve extremely high throughput by the

existence of tough channel conditions like high error rates.

1.3 Problem Statements

A decrease in throughput and response speed of a network connectivity is

known as “network degradation” [7]. If this kind of deterioration exists within a

network, it is important to analyze it and to do a diagnosis. Degradation causes

of network may include propagation delays, which involve faulty network

devices, congestion, routing problems or transfer of large data files across the IT

infrastructure. Insufficient memory and low processing capacity of end nodes

may also be other reasons for the delays. There are also other forms of

degradation, that may occur as a result of malware or spyware in the network.

While problems with individual hardware devices don‟t usually affect the

functionality throughout the entire network, other problems can be network-

wide. For example, congestion or problems of fragmentation of data packets can

affect network performance. To anticipate and handle some kinds of network

degradation like congestion or interruption of connection, network engineers

may consider fault-tolerant designs, where systems may be designed to operate

well even under extreme conditions. This prevents various kinds of natural

degradation from causing system failure or interrupting core network services.

In this thesis, a new technique will be presented to improve performance and to

prevent network congestion [8][9] [10a].

1.4 Objectives of This Thesis

11

The aim of this thesis is to design a new technique, that will be able to

use the accurate estimation of the channel capacity [10b], and to send data

accordingly in a dynamic way depending on the channel conditions like packet

error rates, bottleneck and destination bandwidths. TCP DCM+ should be fair in

sharing the channel capacity with other TCP sources, stable and robust in

delivering data to the destination. Also, the throughput and transmission time

should be improved. Our simulations show, that we have realized our aims.

1.5 Thesis Contributions

We have designed an end-to-end approach, that extremely improves the

TCP transmissions by modifying the behavior in the congestion avoidance

phase in the TCP sender. The following modifications have been performed on

the sender-side code of the files “rtt-estimator.xx” and “tcp-westwood.xx” and

“TCP-Variants-Comparison.cc” to attain the desired behavior:

1- keeping the old value of round-trip-time as (RTTold),

2- adding a new member function called “Congestion Avoidance” to the

code, which should emulate the procedure when entering a congestion

phase. This behavior overwrites the behavior in NewReno, when

entering congestion avoidance phase.

3- A new parameter called rateCA has been introduced to emulate the

free size of the TCP buffer in the intermediate node at the time of

ACK segment reception.

4- New metrics have been introduced to measure the stability, robustness

and transmission time of TCP DCM+ in depth.

1.6 Thesis Structure

The rest of this thesis is structured as follows:

12

 Chapter Two: Congestion Control in Data Networks

This chapter explains the reasons of congestion in data networks. Also,

some strategies to handle congestion in mobile, wireless and wired

networks have been discussed.

 Chapter Three: TCP Protocols of Mobile and Wireless Networks

In this chapter, we explain some techniques for managing network

congestion. We discuss and compare the working of the following TCP

Protocols: Westwood, Westwood+, NewReno, BIC, Hybla and Ledbat.

 Chapter Four: Proposed Approach: DCM+

We propose here our new protocol (DCM+) as additive-increase/adaptive

decrease approach. The building blocks of this protocol is explained in

this chapter.

 Chapter Five: Simulation Results and Analysis

We present in this chapter the simulations using different parameters for

different cases and show the advantages of this techniques over other

approaches.

 Chapter Six: Conclusion and Future Work

We conclude the thesis in this chapter and make suggestions for possible

future research using DCM+.

13

Chapter Two: Congestion Control in Data Networks

Content

2.1 Introduction …………………………………………………………….

14

2.2 Congestion Control in Data Networks ……………………………….…

15

2.3 TCP Congestion Control Strategies …………………………………….

18

2.4 Congestion Control in Mobile and Wireless Networks ………………....

20

2.5 Summary …………………………………………………………….… 21

14

2.1 Introduction

According to the queueing theory, congestion in data networks is the

reduced quality of service (QoS), that could occur, if a network node or link is

carrying more data than it can handle [11a]. Similar to a road congestion, effects

like the followings could happen: queueing delay, packet loss or the blocking of

new connections. As a consequence of network congestion, an additional

increase of the offered load leads either only to a small increase or even to a

decrease in network throughput [11b].

Some network protocols use aggressive retransmissions to compensate

for packet loss due to congestion, but this can lead to more congestion, and even

after the initial load has been reduced to a level that would not normally have

caused any congestion. Examples of this type are TCP Reno and TCP

NewReno.

After 1986, data networks, that use TCP protocol for their data

communication, started to use TCP congestion control algorithms [31b] and

congestion avoidance techniques to avoid a throughput collapse [12][13]. This

collapse is called “window drop”. When a congestion is detected, the

congestion window or (cwnd) is dropped to a predetermined value. Cwnd is an

algorithm parameter, that saves the last value of sent data. To detect a network

congestion, different techniques use different indicators, such as packet loss or 3

https://en.wikipedia.org/wiki/Data_networking
https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/Queueing_delay
https://en.wikipedia.org/wiki/Packet_loss
https://en.wikipedia.org/wiki/Blocking_probability
https://en.wikipedia.org/wiki/Offered_load
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Retransmission_(data_networks)

15

consecutive duplicate acknowledgement (also known as DUPACK) packets.

Packet loss may be done intentionally, i.e. by routers to empty its buffer and

hence to mitigate the congestion. It also can be lost as a reason of bad media

like a noisy wireless channel.

Known techniques to mitigate congestion are: exponential back-off is

used in protocols such as CSMA/CA in the wireless standard IEEE 802.11. The

original ethernet uses CSMA/CD. Reduction of the congestion window is used

in most TCP protocols. Network appliances like routers and switches use fair-

queueing, Random Early Discard (RED) [14] or Active Queue Management

(AQM) [15] technique. Other techniques that address congestion include

priority schemes, which transmit some packets with higher priority first.

Similarly is the explicit allocation of network resources to specific flows

through the use of admission control [16].

2.2 Congestion Control in Data Networks

Congestion control techniques are those algorithms implemented in the

operating systems in order to control or prevent congestion [14]-[16]. Generally,

congestion control techniques can be classified into two groups:

Figure 2-1: TCP Congestion Control Approaches

https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_avoidance
https://en.wikipedia.org/wiki/802.11
https://en.wikipedia.org/wiki/Carrier-sense_multiple_access_with_collision_detection
https://en.wikipedia.org/wiki/Sliding_window
https://en.wikipedia.org/wiki/Transmission_control_protocol
https://en.wikipedia.org/wiki/Fair_queueing
https://en.wikipedia.org/wiki/Fair_queueing
https://en.wikipedia.org/wiki/Admission_control

16

 Open Loop Congestion Control (OLCC)

When OLCC is applied, then congestions are prevented before they

happen. This technique can be applied either by the sender or the receiver.

This technique make use of either of the following methods: retransmission

timers, selective-repeat window, partially discarding of packets,

acknowledgment packets and the policy to admit/deny a connection.

 Closed Loop Congestion Control (CLCC)

In this case, congestion control algorithms are used to manage or alleviate

congestions after they happens. Several techniques exist, and they can be used

by different protocols. Techniques of this type are backpressure, choke packet,

implicit and explicit Signaling.

Congestion control is a vital process for data networks, especially those,

that rely mainly on TCP traffic. It has a central role for achieving high

performance and throughput via managing the congestions, which cause drops

in the windows size of the transmission. As a result, this prevents the collapse of

the global network like the internet [17][18]. Since 1986, many protocols have

been proposed and implemented for controlling data transmission between

hosts. Old Tahoe [19] is the earliest variant of TCP. It implements two

algorithms called slow start (SS) and congestion avoidance (CA) to update the

congestion window (cwnd). From the point of view of a sender, the algorithms

of old Tahoe are:

- Slow start (SS):

17

o at the transmission start, the size of congestion window is 1. This

means TCP can send only one packet until it receives an

acknowledgement.

o When ACK is received, the congestion window increases to two.

o Upon the arrival of every new ACK, the sender increases its

congestion window by one.

The congestion window in this phase increases exponentially. So, on the

arrival of a new ACK, the window follows the equation:

𝑐𝑤𝑛𝑑 + = 𝑀𝑆𝑆; (2.1)

- Congestion Avoidance (CA)

o continues slow start phase until it reaches a certain threshold, or a

packet loss occurs (congestion indicator)

o on congestion indicator: TCP enters the CA phase: cwnd increases

from „n‟ to „n+1‟ only when it has received „n‟ new ACKs.

The window grows in this phase linearly. The rate of growth of the

window slows down, because this is the stage where TCP is susceptible to

packet loss. The equation used here is:

𝑐𝑤𝑛𝑑 += (𝑆𝑀𝑆𝑆∗𝑆𝑀𝑆𝑆) / 𝑐𝑤𝑛𝑑 (2.2)

TCP NewReno, on the other side, is a TCP variant of the old days of

wired networks [20][21][22]. NewReno though has some drawbacks and

limitations, especially in both wireless and mixed (wired/wireless) networks

[23]. Another limitation of TCP NewReno is its little support for mobility [24].

We conclude, that NewReno has little chances in mobile and wireless

18

environments like Wi-Fi networks and Mobile Adhoc Networks (MANETs).

TCP NewReno has been implemented in the TCP protocol stack of different

operating systems.

Recently, newer TCP variants like TCP Westwood+, BIC, CUBIC,

HighSpeed, Scalable, Hybla and Ledbat are available in modern operating

systems like Linux [25][26][27]. They are better appropriate for wireless

networks. TCP Ledbat, for example, is implemented under MS Windows Server

2019, and also in MS Windows 10. Figure 2-2 depicts the network congestion,

while figure 2-3 shows the first proposed congestion control algorithm known

as “TCP Tahoe”

Figure 2-2: Principle of Network Congestion [48 a]

19

Figure 2-3: Congestion Management in Standard TCP Protocols [48 b]

2.3 TCP Congestion Control Strategies

TCP is a connection-oriented protocol, that is also very reliable. It uses

sequence numbers to each byte sent in segment. It also provides the feedback

mechanism, also known as “signaling”. It means, that when a host receives a

packet, it is bound to ACK it, having the next sequence number expected. When

a TCP Server crashes in the middle of a communication and restarts its

transmission, it sends a broadcast to all its hosts. The hosts can then send the

last data segment which was never unacknowledged and carry onwards.

According to TCP, congestion occurs if huge amount of data is fed into a

network, which is not capable of handling it. In this case, the mechanism used

to handle this problem is the “congestion window”. The value of congestion

window will be increased or decreased depending on the network status.

Different algorithms use different procedures to increase/decrease the value of

cwnd. The main strategies used in TCP are:

o Additive increase, Multiplicative Decrease (AIMD),

o Additive increase, Adaptive Decrease (AIADD)

o Multiplicative increase, Multiplicative Decrease (MIMD)

o AIMD

This approach represents a feedback control algorithm, which makes the

network to a closed loop system [29][30]. It is the working principle of TCP

NewReno. AIMD combines linear growth of cwnd with an exponential

reduction when a congestion is detected. When multiple flows using this

approach share the same link, then they will eventually converge to use

20

equal amounts of bandwidth, which is known as “fair share”. The algorithm

used in AIMD is:

 () {
 ()
 () ∗

 (2.3)

where, “a and b” are constants of additive increase and multiplicative

decrease, respectively. The variable “t” is the time point of the ACK arrival.

o AIADD

The main concept of this technique is to adapt the reduction of the

window to the available bandwidth at the time the congestion has occurred

[30]. TCP Westwood+, that lies at the heart of our proposed algorithm,

DCM+, was the first algorithm of this technique proposed in 2004 [31a]

[31b][32].

o MIMD

This approach shows instable behavior of congestion window. It does not

converge to a fair-share of the network bandwidth. Hence, it is not practical and

not used.

2.4 Congestion Control in Mobile and Wireless Networks

Over the years, congestion control in mobile and wireless networks has

been investigated [33a]. Many advanced schemes and techniques have been

developed, all with the aim of improving the performance in these networks. As

the mobile and wireless technologies are rapidly growing and implemented, it is

important to solve the problems caused by the congestion [33b].

The protocol (TCP) is the most used protocol in today‟s Internet. It

supports reliable transport of data by establishing a connection between the

21

transmitting and receiving nodes. The transmitter starts a timeout mechanism,

when it starts sending a packet to a receiver. The transmitter constantly tracks

the round-trip times (RTTs) for its packets as a means to determine the

appropriate timeout period. At the receiver, each received packet is

acknowledged implicitly or explicitly to the transmitter. If the transmitter does

not get an ACK packet for a given segment, and the corresponding timeout

period has expired, then the packet is deemed to be lost, and subject to

retransmission. A congestion window with dynamically adjusted cwnd size is

used by the TCP protocol to regulate the traffic flow from the transmitter to the

receiver [34].

Although TCP was initially designed and optimized for wired networks,

the growing popularity of wireless data applications has led mobile wireless

networks such as CDMA2000 and UMTS networks to extend TCP to wireless

communications as well. It was the main objective of TCP to efficiently use the

available bandwidth and to avoid overloading the network, which may result in

packet losses. The used strategy aims at appropriately throttle the senders‟

transmission rates.

2.5 Summary

The congestion in the network is considered to be the main reason for

packet losses. Consequently, the performance of TCP connections is often

unsatisfactory when wireless networks are used. It requires various

improvement techniques. Bad quality of radio links is the key factor for

unsatisfactory performance. This quality in wireless networks can fluctuate

greatly in time due to channel fading, noise and user mobility.

22

Chapter Three: TCP Protocols for Mobile and Wireless Networks

Content

3.1 TCP NewReno ……………………………………………………….…

23

3.2 TCP Westwood/ Westwood+ ……………………….………………….

24

3.2.1 TCP Westwood ……………………………………………….…

24

3.2.2 TCP Westwood+ ………………………………………………...

27

23

3.3 TCP Hybla …………………………………………………………...…

32

3.4 TCP BIC ……………………………………………………….…….…

35

3.5 TCP Ledbat ……………………….…………………………………… 39

3.6 Summary …………………………………………………………….… 42

3.1 TCP NewReno

TCP NewReno is also known as RFC 6582. It is an improvement on

standard TCP Reno. In particular, NewReno modifies Reno's Fast-Retransmit

and Fast-Recovery algorithms. It improves the performance of handling loss of

multiple segments in a single round-trip time (RTT), when no SACK is used.

https://wiki.geant.org/display/EK/TCP+Reno
https://wiki.geant.org/display/EK/Round+Trip+Time

24

As NewReno is able to detect multiple packet losses, it is much more

efficient than Reno. New-Reno, like Reno, enters the fast-retransmit phase

when it receives multiple duplicate packets (3 DUPACKs). They however differ

in, that NewReno doesn‟t exit fast-recovery until all outstanding data is

acknowledged, because fast-recovery phase allows for multiple re-transmissions

in NewReno.

The fast-recovery phase proceeds as in Reno, however, when a fresh

ACK is received then there are two cases:

1- If the received ACK acknowledges all the segments, which were

outstanding when we entered fast-recovery, then it exits fast recovery

and sets cwnd to ssthresh and continues congestion avoidance like

Tahoe.

2- If the ACK is a partial ACK, then it deduces that the next segment in

line was lost, it re-transmits that segment, and sets the number of

duplicate ACKs to zero, and it exits fast-recovery. New-Reno has a

problem, that it takes one RTT to detect each packet loss. When the

ACK for the first retransmitted segment is received, only then we can

deduce the other losses [20].

3.2 TCP Westwood/ Westwood+

3.2.1 TCP Westwood

25

TCP Westwood is end-to-end protocol, that was first proposed in 2001

[33] [35a]. It belongs to the paradigm “additive increase/ adaptive decrease”, or

short (AIADD). It uses the implicit feedback for the end-to-end measurement of

the bandwidth available along a TCP connection. At the TCP sender, low-pass

filter is applied to filter the returning rate of acknowledgments in order to

estimate the available bandwidth. After a congestion episode, that is after a

timeout or 3 duplicate acknowledgments, the estimated bandwidth is used to

properly set the congestion window (cwnd) and the slow start threshold

(ssthresh). After a congestion, the new states of congestion window and slow-

start threshold are consistent with the real network capacity.

The main principle of TCP westwood is its mechanism of faster recovery.

This phase is designed to avoid the large reduction of the congestion window

after a congestion, by taking into account the end-to-end estimation of available

bandwidth, which enable the sender to recover faster after a loss event. This

very appropriate, especially over connections with large round-trip times (RTT),

or when running over wireless links where sporadic losses are due to unreliable

links rather than congestion [35b]. The proposed modifications follow the end-

to-end design principle of TCP. They require only slight modifications at the

sender side and are backward-compatible. The feedback is merely end-to-end

and does not rely upon explicit information from intermediate nodes or routers

at the network level.

When an ACK is received by the sender of TCP westwood, then it

conveys the information that an amount of data corresponding to a specific

transmitted packet was delivered to the receiver. Averaging the delivered data

count over time yields a fair estimation of the bandwidth currently used by the

source, in case that, the transmission process was not affected by losses.

26

When TCP source receives 3 duplicate ACKs (DUPACKs), indicating an

out-of-sequence reception, they should also count toward the bandwidth

estimate, and a new estimate should be computed right after they are received.

As the source is in no position to tell which segment triggered the DUPACK

transmission, it is unable to update the data count by the size of that segment.

End-to-End Bandwidth Estimation

Before a congestion event, the used bandwidth is less or equal to the

available bandwidth of the network. So, TCP source can still probe the network

capacity. Immediately after a congestion episode, the bandwidth used by the

connection is exactly equal to the maximum bandwidth available to that

connection. A congestion event like packet loss is a clear indicator, that the

buffer of intermediate node (router) is fully saturated. It is known, that

whenever the low-frequency input traffic rate exceeds the link capacity, then a

congestion event occurs. Hence, low-pass filter is needed to calculate low-

frequency components of the available bandwidth. The used filter is obtained by

discretizing a first-order low-pass filter using the trapezoidal rule (Tustin

approximation). The bandwidth estimation is done by the algorithm (3-1) as in

the following pseudocode:

where:

27

acked: number of segments acknowledged,
pkt_size: segment size in bytes,

now: current time,

lastacktime: time the previous ACK was received,
k and (k-1): current and the previous value of the variable,
BWE[k]: low-pass filtered measurement of the available bandwidth at sample k.

TCP westwood Algorithm

Here, we describe in the algorithms (3-2) and (3-3) how the bandwidth

estimation can be used in TCP Westwood to control network congestions [36].

A. Algorithm after n duplicate ACKs

The pseudocode of the algorithm is the following:

B. Algorithm after coarse timeout expiration

The pseudocode of the algorithm is:

28

3.2.2 TCP Westwood+

The definition of TCP Westwood+ protocol is given bellow by its

founder Saverio Mascolo [32][37]:

“TCP Westwood+ is a sender-side only modification of the TCP

Reno/NewReno classic congestion control protocol stack that optimizes the

performance of TCP congestion control especially over wireless networks.”

The main difference between TCP Westwood and TCP Westwood+ is,

that in the first one each sample is calculated for each single ACK, that arrives

29

at the sender. This is wrong, because it results in overestimation of the

bandwidth. On the other side, TCP Westwood+ calculates the estimation for

each round-trip time (RTT). Hence, the estimation in TCP Westwood+ is more

accurate, and reflects the precise value of available network capacity. Following

figure shows the BW estimation in TCP westwood+ after a congestion event,

and how to set the new states of ssthresh and cwnd.

Figure 3-1: Window Dynamics of TCP Westwood+ [47]

As TCP westwood, TCP westwood+ is an end-to-end approach, that

makes use of the bandwidth estimation to set cwnd and ssthresh after a

congestion episode, that is, after 3 duplicate acknowledgments (3 DUPACKs),

or if the timeout threshold exceeded (RTO expired). Since Linux kernel 2.6,

TCP westwood+ is considered as the main congestion control protocol of Linux

operating systems. Key idea of TCP westwood+: end-to-end approach, that

makes use of the rate of returning ACKs to calculate the available network

capacity (bandwidth). To calculate the throughput of TCP Westwood+, we use

the following equation [32]:

√ ∗
∗ √

 (3.1)

where:

RTT: round trip time,

30

 : average queueing delay,

p: packet error rate

Figure 3-2 shows the throughput of TCP Westwood+ as a 3D-function of

RTT (x-axis) and Tq (y-axis), while the throughput (T) is depicted as (z-axis).

We assumed here, that (p) is constant. This plot is a general representation of

the growth rate of TCP Westwood+. It is clear, that for high values of RTT and

Tq, the throughput is low and changes in very small portions, while it is

exponentially increasing for low RTT and Tq.

Figure 3-2: Throughput of Westwood+ as 3D plot for RTT and Tq

Like in figure 3-2, we see, that the more realistic plot of throughput in

figure 3-3 shows an exponential behavior. In figure 3-3, we assume, that the

average queueing delay (Tq) is constant, while (p) and RTT are the variables x

and y, respectively.

31

Figure 3-3: Throughput of Westwood+ as 3D plot for p and RTT

In figure 3-3, the x-axis represents the packet-error-rate or (p). It can take

values in the range [0,1], while RTT (y-axis) can take random values. We

assumed here, that (p) takes values less than 0.1, and RTT is in the range 0.08

and 0.5. We see in this figure similar results as in the simulations (chapter 5).

The throughput is small and not changing for high values of (p), even if the

value of RTT is small. On the other hand, we have exponential increase, if (p) is

low (< 0.025). This behavior is similar to the behavior of TCP DCM+.

When comparing TCP Westwood+ with TCP Reno, as shown in equation

(3.2), it is clear, that both throughputs depend on (

√
), that is they are friendly

to each other. Also, Reno throughput depends on the value (

), while

Westwood+ depends on (

√
), which means, Westwood+ increases the fair-

sharing of the network capacity between the flows with different RTTs.

∗ √

 ∗()

 (3.2)

32

TCP Westwood+ follows the following algorithm (3-4) [8].

Algorithm (3-4) of Westwood+ shows the reactions of the TCP sender on

new coming ACK segments. It increases additively as NewReno, if normal ACK

is the input. Otherwise, if 3 duplicate acknowledgements (DUPACKs) or a

timeout segment (RTO) are the input, then ssthresh and cwnd are readjusted.

Figure 3-4: Key Working Idea of TCP Westwood/Westwood+

33

Anti-Aliasing Filter

AAF is a filter used to limit the signal bandwidth in order to satisfy the

sampling theorem of Nyquist–Shannon.

 (3.3)

where:

 : anti-aliasing BW sample (W at the filter output)

𝑑 : data successfully acknowledged from receiver within last RTT (i)

 : last RTT (i)

The filter‟s equations are given below:

 ̂ ̂ () (3.4)

 (3.5)

where:

 : bandwidth sampled measured at time point k,

 ̂ : bandwidth estimation from the filter at time point k,

 ̂ : bandwidth estimation from the filter at time point (k-1),

 : filter constant (19/21)

3.3 TCP Hybla

TCP Hybla [38] has been designed to solve the problems of heterogenous

networks that exhibit large round-trip times (RTTs) in their TCP connections.

Terrestrial or satellite links are such networks that are disadvantaged because of

their very long RTTs. TCP Hybla has emerged as an analytical model, as

depicted below, which stems from studying the dynamics of congestion window

in standard TCP variants (Tahoe, Reno, NewReno). This model suggests some

34

necessary modifications to remove the dependence of TCP performance on

RTT.

As mentioned in its proposal, TCP Hybla reduces the penalization

suffered by the wireless links, i.e. the satellites connections. Also, Hybla does

not infringe the end-to-end semantics of TCP. Hence, it is compatible with the

standard TCP. The equation below describes the growth rate of the congestion

window () of normal TCP as a function of RTT. As seen, it is RTT-

dependent.

 () {

 (3.6)

where:

 () : the congestion window expressed in segments,

 : the slow-start threshold (ssthresh), which is defined as

 (3.7)

 : the time at which ssthresh is reached. It results from the above equation:

 ∗ (3.8)

The next figure shows the growth rate of normal TCP, which depends on

RTT. It is apparent that slower connections are penalized by a longer time to

reach the required ssthresh value.

35

Figure 3-5: Window Dynamics of Standard TCP [38]

It is clear that with larger RTTs, the growth rate of the congestion

window becomes slower, hence, is higher. Now, we define the segments

transmission rate as:

 ()
 ()

 (3.9)

After modifying the congestion window to be RTT-independent, as

suggested by TCP Hybla, we get:

 () {
 ∗

 ∗

 ∗ ∗

 , (3.10)

 (3.11)

where:

 () : the congestion window of TCP Hybla expressed in segments,

 : the normalized round-trip time,

RTT0 : the round-trip time of the reference connection.

36

So, according to TCP Hybla, we have a segments transmission rate

 (), which is independent of RTT, and defined as:

 ()
 ()

 (3.12)

Following figure shows the congestion window of TCP Hybla for

different RTTs.

Figure 3-6: Window Dynamics of TCP Hybla [38]

It is visible that for any possible RTT, the congestion window does not

depend on RTT, and the time needed to reach ssthresh is the same for all RTTs.

The following equation shows the segments transmission rate () as a

function of RTT0 only. For fast connections, (RTT RTT0), Hybla behaves as

the standard TCP.

 () {

∗

∗

 (3.13)

37

3.4 TCP BIC (Binary Increase Congestion Control)

TCP BIC [39] consists of the following main parts as shown in the next figure:

- binary search increase,

- additive increase, and

- probing

Figure 3-7: Window Phases of TCP BIC [40]

In the phase of binary search increase, the BIC congestion control is

viewed as a search problem. It gives “yes/no” feedback through packet loss as

to whether the current window size is larger than the network capacity. The

search problem uses 2 starting points: Wmin and Wmax, which are the minimum

and maximum window sizes, respectively. Wmax is defined as the window size

just before the last packet loss occurred (also called fast recovery). Wmin is the

window size just after the last packet loss.

The algorithm of this phase repeatedly computes a new value for the

midpoint between Wmax and Wmin. Then, it sets the current window size to this

value. Thereafter, it checks for feedback, in the form of packet losses. Based on

this feedback, the midpoint is taken as the new Wmax if there is a packet loss,

and as the new Wmin if not. The above process continues until the difference

38

between Wmax and Wmin is smaller than a preset threshold, called the minimum

increment (Smin). On the other hand, Smax is the maximum increment. This

phase is needed to probe the available bandwidth. It is aggressive, when the

difference between the current window size and the target window size is large,

but becomes less aggressive as the current window size gets closer to the target

window size.

The second part of BIC algorithm is the additive increase. It shows a

linear behavior as shown in the figure below. When combined with the strategy

“binary search increase”, the strategy “additive increase” ensures faster

convergence and RTT-fairness. This combination of binary search increase and

additive increase is called binary increase. Combined with a multiplicative

decrease strategy, binary increase becomes close to pure additive increase

under large windows. This is because a larger window results in a larger

reduction (large decrease factor:) in multiplicative decrease. Therefore, a

longer additive increase period. When the window size is small, it becomes

close to pure binary search increase – a shorter additive increase period [40].

Figure (3-8) shows the behavior of TCP BIC during its phases.

39

Figure 3-8: Behavior of TCP BIC During its Phases [39]

The pseudo-code below describes the principle of TCP BIC

Algorithm 3-5 TCP BIC

__

40

The bandwidth probing is executed according to the following algorithm:

Algorithm 3-6 BW Probing in TCP BIC

The throughput of TCP BIC for very large window size can be given as:

 √

 (3.14)

But for very small window sizes, the throughput is:

 (3.15)

where:

((

) ())

 (3.16)

41

3.5 TCP Ledbat

LEDBAT [41] is an abbreviation for Low Extra Delay Background

Transport, which is described in the RFC 6817. TCP LEADBAT is meanly used

with point-to-point (P2P) applications like BitTorrent and for non-interactive

streaming applications. It is an experimental congestion control protocol, that is

based on one-way delay. When a queue is building up, then the one-way delay

is increasing, which means a congestion may happen. It utilizes the available

bandwidth on an end-to-end path while limiting the consequent increase in

queueing delay on that path. Following figure shows the working principle of

LEDBAT in the presence of TCP traffic.

Figure 3-9: Window Dynamics of TCP Ledbat [25][41]

Figure (3-9) above explains the design goal of LEDBAT, and why it

belongs to the class of transport protocols known as “Lower-Than-Best-Effort-

Protocols”. TARGET here stands for the value of queueing delay for which the

congestion window cwnd is maximal without causing packet losses. At

TAGET, LEDBAT is causing the maximum allowable queueing delay, which is

42

introduced in the network. Next figure shows this idea and a comparison with

the standard TCP variants like TCP Reno and TCP NewReno.

Figure 3-10: Congestion Management in TCP Ledbat vs. Standard TCP

Another parameter called gain (G) is used to determine the rate at which

the cwnd responds to changes in the queueing delay. The cwnd increase or

decrease of LEDBAT depends on the difference between the current

measurement of queueing delay () and the predetermined delay

(TARGET). This difference is called offtarget. Following equations describe

the dynamic behavior of LEDBAT.

 (3.17)

 () ()
 ∗

 ()
 (3.18)

where:

 the current queueing delay measured in the network.

 () : a function describing the behavior of cwnd depending on offtarget.

The time evolution of LEDBAT source congestion window is calculated

according to:

43

 () {

 ()

 (3.19)

According to RFC paper of Ledbat, following pseudo-code shows the

algorithm and the operations of sender and receiver of LEDBAT.

Algorithm 3-7 TCP Ledabt

3.6 Summary

We tested some of the known TCP protocols dedicated for congestion

control in wired and wireless networks and we compared them versus

Westwood+. As visible in the next figures, we see that TCP Westwood+ is

preferred over all other protocols as it has the highest throughput (T), the best

link utilization (U) and the shortest time to complete transmission (CTT). We

assume that the data file has the size 100 MB. The bottleneck bandwidth is 100

Mbps and the time needed for transmitting the file is , which depends on the

packet error rate, the segment size (MTU) and the protocol type. Based on these

values, we get the following equations:

1.

 ∗ ∗

 ∗ ∗

 ∗

∗ ()

(

)
 () (3.20)

44

Figure 3-11: Network Utilization for Different TCP Approaches

Figure 3-11 shows that Westwood+ has the best utilization when the packet

error rate is higher than 1e-3.

2.

 (Throughput Kbps) (3.21)

Figure 3-12 shows that Westwood+ has the best throughput when the error

rate is higher than 1e-3.

Figure 3-12: Network Throughput for Different TCP Approaches

0.1

1

10

100

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

U
ti

liz
at

io
n

 (
%

)

packet error rate

Link Utilization = Total bandwidth used (%)

WWP

Hybla

NR

Bic

Ledbat

100

1000

10000

100000

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

K
b

p
s

packet error rate

Throughput (Kbps)

WWP

Hybla

NR

Bic

Ledbat

45

3. CTT = Last_Ack_Time - First_Ack_Time (3.22)

Figure 3-13: CTT for Different TCP Approaches

Figure 3-13 shows that Westwood+ has the shortest transmission time when

the error rate is higher than 1e-3.

Chapter Four: Proposed approach - DCM+

Content

4.1 Introduction ………………………...……………….………………… 45

4.2 Window Dynamics of TCP DCM+ …………………………………… 46

4.3 TCP DCM+ algorithm ……………………….………...……………… 47

4.4 TCP SACK Option ……………………………………………….…… 55

4.5 Summary ……………………………………….……………………… 58

8

80

800

8000

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

se
co

n
d

s

packet error rate

Complete Transmission Time (CTT)

WWP

Hybla

NR

BIC

Ledbat

46

4.1 Introduction

TCP DCM+ is a new approach, that we have proposed in [8], and has

been explained in more depth in [9]. It stands for Dynamic Congestion control

for wireless and Mobile systems. It uses the bandwidth estimation (BWE)

algorithm of TCP Westwood+, and hence comes the (+) sign. Please refer to

chapter 3 to see the procedure of BWE in Westwood+. Figure 4-1 shows the

origins of TCP DCM+. The transition lines between the different algorithms

show the time evolution of these approaches. We see that DCM+ has its origins

in many different techniques, i.e. DCM [42], which aims at improving the

performance in MANETs using TCP Westwood.

47

Figure 4-1: Origin of TCP DCM+

TCP DCM+ has been designed to avoid the congestion problems

occurring in wireless and mobile networks. It is an L4-only protocol, which can

be used in different network types like wired, wireless and MANETS. It shows

its tremendous performance improvement when the packet error rate is between

(0.001 and 0.04).

In chapter 5, we compare DCM+ versus other protocols and show that it

is superior to these approaches. Our comparison uses TCP NewReno, TCP

Hybla, TCP Ledbat, TCP BIC, TCP Vegas, TCP HighSpeed and TCP

Westwood+. The properties of DCM+ like stability and robustness are eminent.

For packet error rates less than 0.05, it shows very similar results like TCP

Westwood+, however it has the advantage that it does not suffer any window

drops because of congestion. The only drops it shows are those caused by

wireless channel losses.

4.2 Window Dynamics of TCP DCM+

48

Applying TCP DCM+ for any connection between end devices may consist

of the following 5 phases like in figure 4-2:

1- Initialization (Probing) phase (IP), where rate of growth (cwnd) is

small, though channel capacity is not exhausted. In this phase, no

danger of congestion is expected. Packet losses may happen

depending on the channel conditions. This phase is a core phase, that

always happen at the beginning of each DCM+ transmission. Small

amounts of data are sent within this period; hence, their throughput

may be less or equal than other approaches.

2- Advancing phase (AP), where the transmission increases quickly by

large steps (exponentially). This is a core phase for mid to large files,

which is the reason for high performance of DCM+.

3- Near-Channel-Capacity phase (NCCP), where TCP DCM+ uses the

whole available channel capacity to transmit data at a near-constant

rate. This is a core phase for large files. It can be reached after an AP-

or an LP-phase like in phase 4.

49

4- Losses phase (LP), where a lost packet is detected and retransmitted.

The channel capacity after sending the lost packets is nearly equal the

available channel capacity before the losses has been detected. This

phase may occur in any of the previous phases, but it is more

convenient to happen within the phases 2 and 3, because the number

of sent segment in phases 2 and 3 is the highest. The number of losses

in all phases depend on TCP buffer size and the channel conditions

like packet error rate, bottleneck BW, segment size, etc. This phase is

random and not a core phase.

5- End phase (EP), where the transmission is completed successfully.

Drops may happen randomly at the end of this phase. See figure 5-7.

4.3 TCP DCM+ algorithm

As mentioned previously, DCM+ is an end-to-end (E2E) technique,

which maintains the standard TCP semantics and does not create any additional

overhead. DCM+ is used from the TCP sender to control the sent amount of

data on the transmission link. As given in the published paper [8][9] and [10],

the window increase follows the following equations:

 (4.1)

 {
 ∗

 (

 ∗
)

 (4.2)

Algorithm (4-1) below shows the behavior of TCP DCM+.

Algorithm 4-1 TCP DCM+

50

From the view point of TCP NewReno, it has modified behaviors in both

SS and CA phases. However, from view point of TCP Westwood+ [35][36], CA

only is modified. This modification is done through C++-function overloading

in the Westwood+ implementation files under ns-3.29 network simulator.

Through function overloading, we are able to redefine the behavior as needed.

The complete behavior is placed in the belonging C++ file, which ends in ns3

with „.cc’ . The new member function that we redefine in „TcpWestwood.cc‟

file is:

This member function has 2 parameters, which are described as follows:

51

tcb: internal congestion state,

and

segmentsAcked: count of segments acked.

The behavior of this function is described in the algorithm (4-2):

After the bandwidth estimation (BWE) is calculated, DCM+ calculates the

new values for both ssth and cwnd depending on the previous values RTT,

RTO, the parameter rateCA and whether the calculated cwnd is less than ssth or

not. As feedback signals, we use the previous states of both RTT and RTO. The

behavior of cwnd is observed to be dynamical, in that it tracks the state of

ssthresh as shown in figure 4-3.

52

Figure 4-3: Window Dynamics of TCP DCM+

If a change (increase or decrease) of ssthresh has been observed within a

specific time interval, then DCM+ keeps using the current value of cwnd until a

newer ssthresh has been reached. Thereafter, cwnd moves and remains at the

new state of ssthresh for the new time interval. This way, cwnd will

theoretically never exceed the available ssthresh. Hence, congestion events

cannot occur. We claim that congestion events are eliminated. Figure 4-4 shows

this behavior for packet error rate = 7.5e-3 and for MTU size =1200 bytes.

The design of TCP DCM+ is similar to TCP NewReno, which is detailed

in RFC 6582. DCM+ uses the same 4 phases like NewReno (SS, CA, fast

retransmission (FR) and fast recovery (FV)). In DCM+, the behaviors in (SS)

and (CA) have been so modified to enforce the cwnd to track ssth in the next

time interval. TCP timing parameters RTT and RTO have been used as

feedback signals to control the values of ssth and cwnd in the next interval.

53

During the design of this approach, we followed the idea, that a

continuous increase in RTT values leads gradually to an increased queue length

in the intermediate nodes. This will later result in a true congestion event (i.e.,

packet drop), and also higher delays of the returning ACK packets to the

sending node. Late arrival of ACK packets at the source node may cause wrong

interpretation of the network status as “congested”, especially if the RTO

threshold is exceeded. In this case, cwnd will drop down to the value of 1

segment or (MSS=1). So, we tied this idea of congestion with the parameters

RTT and RTO, and we introduced a new parameter called congestion rate or

rateCA as in the equation (4.3), which is an important measure for congestion,

especially if the CA phase has been entered. This parameter is crucial for

determining the next appropriate values of cwnd and ssth. It is defined as the

ratio of the previous RTT divided by the current minimal RTT. As a result, all

parameters (cwnd, ssth, RTT, RTO and rateCA) in the next interval, are

affected, and therefor dynamically changing during the transmission.

 (4.3)

Now, we consider rateCA higher than 1 as advance or “Link Capacity

Increasing”, and on the other hand, values lower than 1 as danger or “Link

Capacity Decreasing”. Depending on the condition stated in CA phase of

DCM+ [8][9][10], if cwnd is less than or equal ssth, then rateCA will be used to

start the retransmission in wide steps, otherwise, retransmission goes slowly and

prevents any possible congestions. Please refer to figure 4-4, which is taken for

the same parameters as figure 4-3, to see the dynamics of RTT and rateCA. We

see, that increased values of RTT (RTTold < RTTnew means rateCA <1) lead to

low values of cwnd, while decreased values of RTT (RTTold > RTTnew means

rateCA > 1) lead to an increase of cwnd. We clearly observe, that the average

delay is minimized and it took only 68 seconds to transmit the sent data size.

54

Figure 4-4: Changing of RTT as Indicator of Increase/Decrease of CWND

At each time point during the transmission, the value of the next RTO is

also affected by the newly calculated rateCA. If the current RTT is decreasing,

then RTO shall be also reduced, as no congestion is expected. As described in

the CA phase of DCM+, next RTO depends on the current rateCA. This

behavior is described through the following equations (4.4) and (4.5):

 (4.4)

The equation above can be reformulated as:

 (4.5)

Figures 4-5 and 4-6 depict an important property of TCP DCM+, namely

the detection of link quality, i.e. wireless channel, as a result of the occurring

RTO timeouts, which mean lost packets as a reason for bad link conditions.

When a packet is lost because of bad wireless links, then the retransmission

timeout counter is reset to a predefined value, here (in the ns3 simulator) the

initial RTO value is equal 1 msec.

55

Figure 4-5: Drops of CWND as a Result of Wireless Channel Losses

The drops of cwnd, which are highlighted in figure 4-5 and marked as (1)

and (2) coincide with the RTO reset time points, which are 54 sec and 65 sec.

The drop at time point 18 sec is minimal and cannot be observed on the cwnd

curve. This time point is marked as (*) in the following plots of RTT and RTO.

At the drop points, the RTO counter is reset to 1 segment. Also, these time

points appear on the RTT curve as spikes, and mean lost packets.

Figure 4-6: Drops of CWND as Spikes on RTT Curve

1

2

1 2

2 1

56

The next property of TCP DCM+ is burst transmission, which is visible

in figure 4-7. It is the reason for the high throughput and quick delivery of data

by this approach. It is presented as a relationship between sent bytes (sender)

and received bytes (receiver). We observe the huge number of bytes that are

received correctly at each time point.

Figure 4-7: Send-Receive Relationship of DCM+ Connection

Figure 4-8 depicts this behavior again in more depth through an enlarged

section of figure 4-7.

Figure 4-8: Enlarged Section of DCM+ Data Bursts

57

4.4 TCP SACK Option

This option is placed in the TCP options field inside the TCP header [43].

It was originally mentioned in RFC 1072. Currently, it exists officially as a

proposal known as selective acknowledgment (SACK) TCP option, which is

detailed in RFC 2018. SACKs work by appending a TCP option to a duplicate

acknowledgment (DUPACK) packet. The SACK option contains a range of

noncontiguous data, that are received successfully. It indicated the sender to

send only the missing segments, which are not listed in the SACK option. To

enable SACK for a TCP connection, SACK negotiation is required at the

beginning of connection between the source and destination. TCP DCM+

benefits largely if SACK option is enabled. Figure (4-9) shows a connection

with SACK enabled.

Figure 4-9: TCP Connection with TCP SACK Option Enabled

Figures (4-10), (4-11) and (4-12) compare 3 cases where the sizes of sent

data are small (10 MB), mid (100 MB) and large (512 MB). The simulations are

58

done for TCP SACK enabled and disabled. The benefits are visible when TCP

SACK option is enabled, especially when large and mid-size amount of data is

transmitted. Both throughput and transmission time are improved. Large size

files are sent much quicker (only 44% of the required time) and with very little

drops (< 5% of the case without SACK), as depicted in figure 4-10, while mid-

size files as in figure 4-11 have a little longer time (130%) to transmit the file.

Figure 4-10: Sending a Large File (512 MB) with TCP DCM+

However, mid-size files with the SACK option enabled suffer only (<

7%) window drops compared with SACK not enabled.

59

Figure 4-11: Sending a Mid-size File (100 MB) with TCP DCM+

As shown in the figure 4-12, small files don‟t benefit largely from SACK

option. It may be recommended to disable SACK if channel conditions are good

and the size of sent data is small.

Figure 4-12: Sending a Small-size File (10 MB) with TCP DCM+

4.5 Summary

We presented a new approach, that finds its roots in many approaches

like TCP NewReno, TCP Westwood+ and TCP WELCOME. DCM+ is

designed like a standard TCP NewReno, and consists of 4 phases. It makes use

of bandwidth estimation like TCP Westwood+. The behavior of congestion

avoidance is added and overloaded in TCP DCM+ to modify its behavior as

needed. The behavior of DCM+ during the CA phase enforces the cwnd to track

ssthresh, and it never exceeds it. Hence, we made the claim, that congestion

events are minimized largely. The only drops of window size are the results of

bad wireless links, which are the reason for lost packets. We also presented its

60

properties like burst transmission and high throughput, robustness and

transmission speed.

Chapter Five: Simulation Results and Analysis

Content

5.1 Introduction …………………………………………………………… 59

5.2 Simulation Environment ………………………………………………. 59

5.3 Performance Metrics ………………………………………………...… 60

5.3.1 Throughput ……………………………….…………….…….… 61

5.3.2 End-to-End Average Delay ……….……………………………. 62

5.3.3 Packet Delivery Ratio (PDR) …………….………………….…. 63

5.3.4 Normalized Advancing Index (NAI) …………………………… 63

5.3.5 Complete Transmission Time (CTT) ………………………...… 64

5.3.6 Packet Losses ………………….….……………………………. 65

5.4 Effect of TCP Buffer Size on the Window Size of TCP DCM+ ……... 66

5.5 TCP DCM+ versus TCP Vegas …………………………….……….… 69

5.6 Optimizing Segment Size (MTU size) ………………….……….….… 72

5.7 Impact of Access Bandwidth on the Performance of DCM+ ……….… 74

5.8 Impact of Bottleneck Bandwidth on the Performance of DCM+ ……... 76

5.9 Properties of DCM+ and Comparing with DCM and Westwood+ …… 78

5.10 Summary …………………………………………………………….… 82

61

5.1 Introduction

 The simulations in this chapter clearly show the improvements achieved by

TCP DCM+ like stability, robustness and short transmission time. Through

intensive simulations we found, that DCM+ also shows improved metrics like

high throughput, low average delay, minimized lost packets. Also, we observed

no cwnd drops, except the lost packets caused by bad wireless channel. All these

properties make DCM+ competitive against other TCP protocols.

5.2 Simulation Environment

 As a simulator, we used the network simulator (ns-3.29), which is a

discrete-event simulator (DES). Contrary to ns-2, ns-3 is C++-only simulator,

which makes debugging much easier than in ns-2, which for simulating a

scenario applies (C++/TCL) bi-language. Some people find it inconvenient to

learn and program with TCL. Ns-3, however, has an optional python interface,

which makes it possible to invoke the C++ code from python. Yet, python

bindings (interfaces) for ns-3 are a work in progress, and some limitations are

known by developers. Another important difference, is that ns-3 has an

emulation mode, which allows for the integration with real networks. Also, ns-3

came to resolve the problems already existing in ns-2. To analyze the results,

we used many tools like NetAnim, which is the main tool for the analysis in ns-

3. Other tools like Gnuplot, TraceMetrics or Wireshark have been applied

depending on the file type, that we wish to analyze.

As ns-3 [44] is primarily developed on GNU/Linux platforms, we used

the virtualization software VirtualBox 5.22 [45], later updated to 6.0, in order to

62

install Ubuntu Linux 18.04 as a guest OS, while MS Windows 7 SP1 ultimate is

used as a host OS. More details about installing last version of ns-3 can be

found under the simulator‟s main site.

5.3 Performance Metrics

While trying to troubleshoot network problem like degradation or

outage, measuring network performance is crucial to determine when the

network is slow and what are the roots for the problem (e.g., bandwidth outage,

misconfiguration saturation, network device defect, etc.). These needed

indicators are usually called metrics and are required to produce tangible figures

when analyzing network performance. For the reason of detailed comparison,

we introduced a new metric, which we called normalized advancing index

(NAI). It is defined as the ratio of throughput divided by the product of lost

packets (given in bytes) and error rates. Its unit is (1/second), and should

indicate the speed of delivering the complete size of data from one end to the

other despite the existence of lost packets at a specific error rate. The figures

produced in this chapter are created according to the following equations:

63

The figures in this chapter are shown for different values of performance

metrics for different TCP congestion control protocols (DCM+, Westwood+,

NewReno, BIC, Ledbat and Hybla). The simulations are executed for

different packet error rates. The simulation environment is a virtual machine

of ns-3.29 under Linux Ubuntu. The VM is inside Oracle VirtualBox 6.1.x.

The following parameters are constant through this thesis:

Table 5.1: Simulation Environment Parameters

Data size Bottleneck BW Access BW MTU Size Duration (sec)

100 MB 100 Mb/sec 1000 Mb/sec 1500 Bytes 5000

5.3.1 Throughput

Figure 5-1: Comparing Throughput of DCM+ with Different TCP Protocols

In figure 5-1, we see the plots of the throughput for different protocols,

and we clearly see the advantage of DCM+ over most other protocols. This high

throughput extends nearly over the most range of error rates, which is from 1e-6

to 0.05. For error rates less than 1e-3, we see that only BIC protocol performs

better, but that is at the expense of other metrics like packet delivery ration

1

10

100

1000

10000

100000

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

K
b

p
s

packet errror rate

Throughput

DCM+

NR

BIC

Ledbat

Hybla

64

(PDR), average delay and normalized advancing index (NAI), where BIC

performs worst.

5.3.2 End-to-End Average Delay

Figure 5-2 shows the average delay for the different protocols. Our

approach is among the few protocols with least average delay in all tested cases.

BIC protocol has the highest E2E delay. We conclude, that DCM+ does not

cause long queues (full buffers) in the intermediate routers.

Figure 5-2: Comparing Delay of DCM+ with Different TCP Protocols

35

45

55

65

75

85

95

105

115

125

135

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

(m
se

c)

packet error rate

Avg. E2E Delay

DCM+

NR

BIC

Ledbat

Hybla

65

5.3.3 Packet Delivery Ratio (PDR)

Figure 5-3: Comparing PDR of DCM+ with Different TCP Protocols

In figure 5-3, it is clear that DCM+ has very similar PDR-behavior like

other protocols. It reaches values of 99.998 % for low error rates (1e-6), and has

like Hybla the best performance for high error rates (< 0.05).

5.3.4 Normalized Advancing Index (NAI)

NAI can be considered as a robustness measure. From figure 5-4 we see,

that DCM+ performs better than all other protocols in this research study. It is

obvious, that DCM+ has the best results for all used error rates. This reflects the

highest speed and best quality for TCP systems and applications.

95

96

97

98

99

100

101

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

(%
)

packet error rate

Packet Delivery Ratio

DCM+

NR

BIC

Ledbat

Hybla

66

Figure 5-4: Comparing NAI (Robustness) of DCM+ with Different Protocols

5.3.5 Complete Transmission Time (CTT)

CTT is defined as the time needed for the last ACK segment to arrive at

the sender. When transmitting data, it is desired to finish transmission in short

time without causing congestions. We claim, that this is the case for DCM+

protocol as depicted in figure 5-5. It has the lowest (CTT) among all tested

protocols. Based on our results, TCP DCM+ applications and devices can

extremely speedup data transmission, hence finish using the link earlier, which

results in less power consumption.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

(1
/s

e
c)

packet error rate

Normalized Advancing Index (Robustness)

DCM+

NR

BIC

Ledbat

Hybla

67

Figure 5-5: Comparing CTT of DCM+ with Different TCP Protocols

5.3.6 Packet Losses

The total number of lost packets during transmission depends on many

factors like bandwidth between routers, bandwidth used from destination node,

MTU size, error rate and TCP buffer size. We see in figure 5-6, that DCM+ has

beside Hybla the lowest percentage of lost packets.

Figure 5-6 Comparing Packet Losses of DCM+ with Different TCP Protocols

-1000

0

1000

2000

3000

4000

5000

6000

7000

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

(s
e

c)

packet error rate

CTT

DCM+

NR

BIC

Ledbat

Hybla

-1

0

1

2

3

4

5

6

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

(%
)

packet error rate

Packet Loss Percentage

DCM+

NR

BIC

Ledbat

Hybla

68

5.4 Effect of TCP Buffer Size on the Window Size of TCP DCM+

The plots in figure 5-7 are taken for different sizes of TCP buffer. The

simulations are shown for the following sizes: 4MB, 2 MB, 1 MB, 512 KB, 256

KB, 128 KB, 64 KB, 32 KB and 16 KB. It is visible, that depending on these

different sizes, the number of drops and window sizes are also different. The

parameters used in figure 5-7 are shown in table 5-2.

Table 5-2: Simulation Parameters for Different TCP Buffer Sizes

Parameter MTU Packet Error Rate Access BW Bottleneck BW

Value 750 bytes 0.01 10 Gbps 100 Mbps

Figure 5-7: Effect of TCP Buffer Size on the DCM+ Connection

69

Figure 5-7 shows, that more time is needed for the transmission with

decreasing the TCP buffer size. The number of lost packets (window drops)

increases. Also, the window size and throughput decrease. Figure 5-8 below

shows the robustness (NAI) of the DCM+ transmission for different buffer

sizes. With increased buffer size, the robustness increases until we reach a

maximum at the size equal 4 MB.

 Figure 5-8: Effect of TCP Buffer Size on Robustness (NAI)

In figure 5-9, we present the number of drops as a function of the TCP

buffer size. As shown below, it is decreasing with increased buffer size. At 4

Mb we have a minimum of just 2 drops.

Figure 5-9: Effect of TCP Buffer Size on the Window Drops

13.77
26.33

44.97
66.44

97.13
121.54 128.83 122.02

196.91

147.37 147.37

0

50

100

150

200

250

16 64 256 1024 4096 16384

1
/s

ec

buffer size (KB)

Robustness (NAI)

2 2
3

1

4 4

6
5

7

0

2

4

6

8

16384 65536 262144 1048576 4194304

D
ro

p
s

Buffer Size (Bytes)

Window Drops vs. Buffer Size

70

 The buffer size has a big influence on CTT. We see from figure 5-10, that

it is exponentially decreasing with increased buffer size. The sizes greater than

512 KB deliver the lowest transmission times.

Figure 5-10: Effect of TCP Buffer Size on the Transmission Time (CTT)

 The throughput of TCP DCM+ connection as a function of the TCP

buffer size is sketched out in figure 5-11. As shown, it reaches a maximum of

16.5 Mbps at 512 KB. With increased sizes, the throughput fluctuates around 13

Mbps.

Figure 5-11: Effect of TCP Buffer Size on the Throughput of DCM+

The total number of lost packets during the TCP DCM+ transmission is

given in figure 5-12. At 512 KB buffer size, we have the highest throughput and

110 110 115 116 144 178
245

390

780

0

200

400

600

800

1000

16384 65536 262144 1048576 4194304

C
T

T
 (

se
co

n
d

s)

Buffer Size (Bytes)

Complete Transmission Time versus Buffer Size

1.41575

2.89988

5.51194

8.62713

13.2146

16.5717

11.6852 10.9315

7.96086

13.1337 13.1337

0

5

10

15

20

16 64 256 1024 4096 16384

M
b

p
s

buffer size (KB)

Throughput

71

also packet losses. Decreasing these losses is achieved by increasing the buffer

size. From figure 5-12, it is visible, that the least losses are achieved when the

buffer size is 4 MB.

Figure 5-12: Effect of TCP Buffer Size on the Packet Losses

5.5 TCP DCM+ versus TCP Vegas

TCP Vegas is a technique that reacts to queueing delay. The main idea

behind this method is as follows: if the queueing delay is large, then decrease

the window size, else increase it [46]. Figures 5-13 (a) and (b) present a

comparison between TCP Vegas and TCP DCM+ for 6 different cases with

random packet error rates, but the same buffer size in all cases. The

measurements of this section are displayed in appendix C, table C-8.

1755

1880
2092 2216 2322 2327

1548 1529

690

1521 1521

0

500

1000

1500

2000

2500

3000

16 64 256 1024 4096 16384

P
ac

k
et

s

buffer size (KB)

Packet Losses

72

Figure 5-13 (a): Comparing robustness (NAI) for DCM+ vs. Vegas

For each of the following cases, the parameters for both DCM+ and

Vegas are equivalent. In figure 5-13 (a), the comparison is made for robustness

(i.e., NAI), while in figure 5-13 (b) we compare the transmission time (CTT).

Figure 5-13 (b): Comparing CTT for DCM+ vs. Vegas

9.5715166909E+01

4.0163289918E+01

8.4789393939E+01

1.6414181423E+01

9.4974820144E+01

4.0163289918E+01

1.7015918195E+02

7.9869206349E+01

7.1185916667E+08

1.9872666667E+07

7.3769592476E+00

1.2245468510E+00

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

case1_DCM+

case1_Vegas

case2_DCM+

case2_Vegas

case3_DCM+

case3_Vegas

case4_DCM+

case4_Vegas

case5_DCM+

case5_Vegas

case6_DCM+

case6_Vegas

(1 /sec)

Th
e

 C
as

es

Normalized Advancing Index (NAI)

107.9

251.9

77.6

404.3

108

251.9

105.07

221.7

9.83

347.6

150.3

898.4

0 100 200 300 400 500 600 700 800 900 1000

case1_DCM+

case1_Vegas

case2_DCM+

case2_Vegas

case3_DCM+

case3_Vegas

case4_DCM+

case4_Vegas

case5_DCM+

case5_Vegas

case6_DCM+

case6_Vegas

Complete Transmission Time (sec)

T
h
e

 C
as

es

CTT (sec)

73

In the following table 5-3, we have written down the ratios (TCP DCM+ /

TCP Vegas) for robustness (rNAI) and transmission time (rCTT). From this table,

we have the conclusion, that the product of both ratios in all cases equal “1”.

That means, if we know the transmission ratio, then we can calculate the

robustness ratio, and vice versa, but it is still not clear, if this rule holds for

other approaches and topologies.

Table 5-3: Improvements of TCP DCM+ against TCP Vegas

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NAI ratio 2.38 5.16 2.36 2.13 35.82 6.02

CTT ratio 0.43 0.19 0.43 0.47 0.028 0.17

Product 1.02 0.99 1.01 1.00 1.00 1.02

P = rNAI * rCTT = 1 (5.6)

We can also reformulate the above equation to:

∗

 = 1 (5.7)

Or equivalently,

 (5.8)

From the table above, we have the worst-case improvements for both

NAI and CTT in case 4, and the best-case improvements in case 5. We

conclude, that DCM+ largely improves the TCP transmission. In all cases we

clearly identify the supremacy of TCP DCM+.

74

5.6 Optimizing the Segment Size (MTU)

Optimizing the segments size is crucial before sending data with DCM+.

To understand the effect of the MTU optimization, we consider the following

cases. The simulations below are done for different packet error rates and MTU

sizes. Following two cases are distinguished:

Case 1: Same error rate but different segment sizes.

In figure 5-14, we see, that unwanted drops are occurring as a side effect

of changing the MTU size. In this figure we sent data of the size 100 MB and

the error rate is 1e-2. The SACK option is enabled. Here, if MTU = 1500 bytes,

we finish transmission in lower time compared with the case MTU = 1200. In

the first case, it suffers just 1 unwanted drop. On the other hand, if MTU = 1200

bytes, we have the longest time to finish transmission (CTT) and suffers 4

window drops.

75

Figure 5-14: Window Dynamics for Different MTU/Same Error Rate

It is also clear, that the performance is best when MTU = 1200 bytes. It

finishes transmission faster and suffers no unwanted drops, as shown in figure

5-7. It gives a hint, that an additional increase of the performance of DCM+

may be possible if the used MTU size is optimized before the transmission.

Case 2: Different error rates but same segment sizes

In figure 5-15, the size of data to be transmitted is (256 MB), and the

used error rates are: (1e−3, 1e−2). We see, that for the error rate = 1e−3, the

transmission is much quicker (CTT is reduced by the half) while the throughput

is improved by 1.8 times. Besides, it does not make any false drops.

Figure 5-15: Window Dynamics for Different Error Rates/Same MTU

76

5.7 Impact of Access Bandwidth on the Performance of DCM+

The following parameters are used during the following section.

Bottleneck BW: 100 Mbps; packet error rate = 0.02; Data Size = 100

MB;

MTU = 1500 BYTE; SACK option = true.

Figure 5-16 depicts the network throughput as a function of access

BW at the destination node. If the access BW is equal the bottleneck BW,

then we have a maximum. Values of access BW, that are greater than the

bottleneck BW deliver throughput values that fluctuate around the

maximum throughput.

Figure 5-16: Throughput of DCM+ as function of Access BW

Figure 5-17 shows the average delay as a function of access BW. We see,

that a minimum delay is achieved for values greater than the bottleneck BW.

The improvements in average delay for values much higher than bottleneck are

minimal.

0.171655

1.2619

7.51129

4.32254

7.14204 7.00971

0

1

2

3

4

5

6

7

8

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

 (
M

b
p

s)

Access Bandwidth of Destination (Mbps)

Throughput (Tx bitrate)

77

Figure 5-17: Avg. Delay of DCM+ as function of Access BW

Decreasing the average delay is possible as long as the BW at the

destination is smaller than the existing bottleneck BW. Here, the maximal

decrease in average delay is 1.17 msec per Mbps in the interval 1 to 10 Mbps. If

the used BW at the destination is much larger than the bottleneck, then the

minimization of the delay is negligible and equal 0.01 msec per Mbps.

Figure 5-18: Packet Losses Percentage of DCM+ as function of Access BW

The packet losses as a function of access BW is shown in figure 5-18. As

the throughput increases for access BW greater than bottleneck BW, it is clear

that the losses will also increase.

40

45

50

55

60

65

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

m
se

c

Average Delay (msec)

1.995

2

2.005

2.01

2.015

2.02

2.025

2.03

2.035

2.04

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

(%
)

Access Bandwidth (Mbps)

Packet Loss (%)

78

5.8 Impact of Bottleneck Bandwidth on the Performance of DCM+

The following parameters are used during this section.

Access BW: 1 Gbps; error rate = 0.02; Data Size = 100 MB;

MTU = 1500 byte; SACK = true

The maximal throughput as previously said is if the BW of the

bottleneck is equal the destination BW. The maximum is at 1 Gbps as

shown in figure 5-19. The improvements are minimal for higher values of

bottleneck BW.

Figure 5-19: Throughput of DCM+ as function of Bottleneck BW

Figure 5-20 shows the delay as a function of bottleneck BW. We see very

similar characteristic as in figure 5-17, but the highest improvement of delay

minimization is nearly 0.87 msec per Mbps increase in the bottleneck BW.

Values of bottleneck BW higher than the used access BW have no impact on

delay.

0.171683

3.42403

4.32254 4.48865
4.05888 4.18666

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.E-01 5.E+00 5.E+01 5.E+02 5.E+03 5.E+04

M
b

p
s

Bottleneck Bandwidth (Mbps)

Throughput of Transmission

1 Gbps

79

Figure 5-20: Avg. Delay of DCM+ as function of Bottleneck BW

In figure 5-21, we have a look at the impact of increasing the bottleneck

BW on the packet losses. In this figure, we have a decrease of losses as the

bottleneck BW increases. However, the losses are minimal as the difference

between maximal (2.08 %) and minimal (1.98 %) losses is just (0.1 %) in the

range 1 Mbps up to 100 Gbps, which means stable and robust transmission.

Figure 5-21: Packet Losses Percentage of DCM+ as function of Bottleneck BW

40

45

50

55

60

65

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

m
se

c

Bottleneck Bandwidth (Mbps)

mean delay (msec)

1.98

2

2.02

2.04

2.06

2.08

2.1

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

(%
)

Bottleneck Bandwidth (Mbps)

Packet Loss (%)

80

5.9 Properties of DCM+ and comparing with DCM and Westwood+

 Figure 5-22 shows the transmission rule 2, where the product P of the

ratios rNAI and rCTT is theoretically equal 1. This figure shows rule „2‟ for five

cases that compare DCM+ against TCP Vegas. It is clear that for case one the

robustness ratio is 5 while the CTT ratio is 0.194 and P is 0.97. For case

four it is 1.004 .

Figure 5-22: DCM+ Rule „2‟: Robustness Ratio is Inverse Proportional to the Ratio of Transmission Time

Figure 5-23 below shows the robustness curves for DCM+ and Vegas.

The ratio of the robustness for case 1 is nearly „5‟.

Figure 5-23: Robustness curves for DCM+ and Vegas

0

1

2

3

4

5

6

1 1.5 2 2.5 3 3.5 4 4.5 5

R
at

io

Case Nr.

rCTT , rNAI

P

rNai

rCTT

1

10

100

1000

10000

1 1.5 2 2.5 3 3.5 4 4.5 5

N
A

I (
1

 /
se

c)

Case nr.

Robustness (NAI)

DCM+
Vegas

81

Figure 5-24 shows a comparison of the robustness between DCM+ and

Westwood+. DCM+ shows the same robustness as Westwood+ for some error

rates, which means that DCM+ suffers less packet losses and, hence, better

fairness.

Figure 5-24: Comparison of the Robustness of DCM+ vs Westwood+

Figure 5-25 is about the utilization of DCM+ and Westwood+. We see that

DCM+ uses less bandwidth than Westwood+ if the error rate is low. If the link

suffers higher losses and needs more bandwidth to achieve the best

performance, then DCM+ can make use of a utilization that exceeds

Westwood+. This will result in a better fairness than for Westwood+.

Figure 5-25: Comparison of the Utilization of DCM+ vs Westwood+

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

1
/s

e
c

Packet Error Rate

Robustness (NAI)

NAI_WW+ NAI_DCMP

0

10

20

30

40

50

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

(
%

)

Packet Error Rate

Channel Utilization

WW+ Utilization

DCM+ Utilization

82

Figures 5-26, 5-27, 5-28 and 5-29 shows the superiority of DCM+ over DCM in

terms of throughput, complete transmission time, robustness and utilization.

From very low packet error rates (1e-6) up to (0.05), DCM+ owns much better

throughput values against DCM as shown in figure 5-26.

Figure 5-26: Throughput Comparison: DCM+ vs DCM

Figure 5-27 shows that DCM+ under the same transmission parameters owns

much shorter transmission times. We see that the error rate 0.04 is the limit for

better performance. It is clear that DCM+ is at least 120 times faster than DCM.

Figure 5-27: CTT Comparison: DCM+ vs DCM

1

10

100

1000

10000

100000

1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01

K
b

p
s

Packet Error Rate

Throughput (DCM vs DCM+)

DCM Throughput (kbps)

DCM+ Thr (kbps)

-2000

0

2000

4000

6000

8000

10000

12000

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

se
c

Packet Error Rate

CTT

CTT (DCM) CTT (DCM+) - sec

83

Figure 5-28 compares the robustness of DCM+ and DCM. While DCM shows

piecewise linear behavior for all all error rates, DCM+ is nonlinear over the

regions with higher error rates in order to minimize the packet losses.

Figure 5-28: Robustness Comparison: DCM+ vs DCM

Figure 5-29 shows the utilization of DCM+ and DCM. DCM+ has the ability to

dynamically select the most appropriate bandwidth in order to achieve the best

robustness. Beyond the error rate 0.05, we don‟t get any gains compared with

DCM.

Figure 5-29: Utilization Comparison: DCM+ vs DCM

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

1
/s

e
c

Packet Error Rate

Robustness (DCM vs DCM+)

NAI_DCM

NAI_DCM+

0.01

0.1

1

10

100

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

(%
)

Packet Error Rate

Utilization

DCM Utilization (%) DCM+ Utilization (%)

84

5.10 Summary

As a result, our simulations of many cases with different values of parameter

(error rate, data size, MTU size, protocol, bottleneck bandwidth and access

bandwidth) show, that next cwnd does not exceed ssth, and hence, only very

little congestion events could occur. We also found, that cwnd is changing

dynamically and quickly as a reaction on the continuously changing channel

capacity. This has been reflected as a higher throughput, NAI and lower CTT.

In this research work, we have shown, that our approach is stable and robust.

It has the ability to minimize the average delay and packet losses, but also to

improve the throughput (over 1200% higher than NewReno, over 350% than

BIC and 400% than Hybla) at error rate = 0.004.

85

Chapter Six: Conclusion and Future Work

Content

6.1 Conclusion ……………………………………………………….… 84

6.2 Future Work …………………………………………………...…… 85

86

6.1 Conclusion

In this thesis, we have proposed a new TCP algorithm for controlling the

congestion events. It is an L4-only protocol that is designed to be suitable for

the different data networks, i.e. wired/ wireless and MANETs. It is a sender-side

technique that estimates the available channel capacity (link bandwidth) after

each congestion event and before the transmission. It uses the same algorithm as

TCP Westwood+ to estimate the bandwidth. Through the simulations, we have

shown, that this approach is best appropriate for tough wireless environments

with packet error rates between 1e-4 and 5e-2, which are the default values for

bad links.

The main idea of DCM+ is based on the ratio between the previous and

the current RTT measurements, which we expressed as the parameter rateCA.

In ns3.x simulator, the default algorithm to estimate RTT value after each ACK

is the Karn algorithm. The parameter rateCA helps the TCP sender to detect the

status of the channel whether congested or not. According to this value, the

transmission may be very fast or very slow. On the other hand, if we detect that

rateCA is increasing, then we can also minimize the RTO timer, which can

additionally speed-up the transmission process. During the transmission, the

cwnd always tracks and never exceeds the value of ssthresh. This has the effect,

that less congestion events could occur, and hence, it results in less packet

losses and better robustness. Through the robustness measure that we

introduced in this thesis, we found that the behavior of DCM+ leads to higher

throughputs, improved fairness, less losses, shorter end-to-end delays and

transmission times. The analysis of the results shows 2 important properties.

The first one is the transmission burstiness, which can be seen in the linear

relationship between Tx and Rx. The second property is the inverse relation

87

between the ratios of CTT and robustness, which simplifies the judgement of

the behavior of DCM+ against other techniques.

The comparison of DCM+ against 12 other TCP protocols has been

executed. The advantage of DCM+ is clear in all simulations and their results.

Hence, DCM+ shows best performance among all tested approaches. It finishes

transmission much faster; it has the highest throughput and it, theoretically,

causes no new congestions on the transmission link. This is of great benefit for

new devices, that may be currently using the same channel.

6.2 Future Work

We may need more research to enhance the stability and robustness beyond

the barrier of (4%) packet error rates. The analysis of more complex topologies

by the existence of reverse TCP traffic and different TCP protocols could be

very helpful to further understand the fairness and friendliness of DCM+.

Further step could be the implementation of DCM+ as an independent module

under the network simulators (ns2 and ns3). Practical implementation under

Linux kernel may be also very helpful to test the performance in real-world

networks. We can here summarize the future research topics as follow:

 Generalization of the DCM+ approach through a mathematical model,

 Enhancing the performance of DCM+ through improving the RTT

estimation technique,

 Checking the appropriateness of DCM+ for mobile networks like LTE

(4G) and (5G).

 Enabling the integration with machine learning approaches like

reinforcement learning (RL) to minimize the unwanted drops, and to

understand the wireless channel characteristics.

88

References

[1] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, RFC 4782: Quick-Start

for TCP and IP. Internet Engineering Task Force (IETF), 2007.

[2a] Classification Network, http://www.geocities.ws/azlee98/index.html .

[2b] Internet Service Providers, 2015.

Weblink: http://internetserviceprovider.blogspot.com/

[3] GSM Association, The Mobile Economy, North America 2017.

[4] D. Clark et al., Making the world (of communications) a different place,

ACM SIGCOMM Computer Communication Review, July 2005.

[5] H. Elaarag, Improving TCP Performance over Mobile Networks, Stetson

University.

[6a] W. K. Leong, Z. Wang, B. Leong, TCP Congestion Control Beyond

Bandwidth-Delay Product for Mobile Cellular Networks, CoNEXT '17:

Proceedings of the 13th International Conference on emerging

Networking EXperiments and Technologies, pp. 167–179, Nov. 2017.

[6b] R. Wang, K. Yamada, M. Y. Sanadidi, M. Gerla, TCP With Sender-Side

Intelligence to Handle Dynamic, Large, Leaky Pipes, IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 2,

FEBRUARY 2005.

[7] S. Floyd and R. Mahajan, Controlling High-Bandwidth Flows at the

Congested Router. ICSI Tech Report TR-01-001, April 2001.

[8] R. Hamamreh, D. Khader, DCM+: a multi-purpose protocol for

congestion control, 2019 IEEE 7th Palestinian International Conference

on Electrical and Computer Engineering (PICECE), 2019.

[9] R. Hamamreh and D. Khader, Adaptive Control of Congestion in Tough

Wireless Environments Using DCM+ Algorithm, Int. J. Communications,

Network and System Sciences, 2019, 12, 113-123.

[10a] R. Hamamreh and D. Khader, DCM+: Robust Congestion Control

Protocol for Mobile Networks, IARIA Conference, ICSNC 2019,

Valencia, Spain.

[10b] P. Goyal, M. Alizadeh, H. Balakrishnan, Rethinking Congestion Control

for Cellular Networks, HotNets-XVI, November 30-December 1, Palo

Alto, CA, USA , 2017.

http://www.geocities.ws/azlee98/index.html
http://internetserviceprovider.blogspot.com/

89

[11a] S. Floyd and K. Fall, Promoting the Use of End-to-End Congestion

Control in the Internet. IEEE/ACM Transactions on Networking, August

1999.

[11b] S. Mangiante, M. Schapira and A. Navon, Congestion Control for Future

Mobile Networks, Conf. Paper: CHANTS‟18, India, 2018.

[12] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. RFC 4782: Quick-Start

for TCP and IP, Internet Engineering Task Force (IETF).

[13] T. Kelly, S. Floyd, and S. Shenker, Patterns of Congestion Collapse.

2003.

[14] R. Gummadi, S. Shenker, S. Floyd, Adaptive RED: An Algorithm for

Increasing the Robustness of RED's Active Queue Management, 2001.

[15] R. Pan, Active Queue Management, Cisco Systems, 2006.

[16] T. B. Reddy and A. Ahammed, Performance Comparison of Active

Queue Management Techniques, Journal of Computer Science 4 (12):

1020-1023, 2008 ISSN 1549-3636, Science Publications.

[17] Y. Tian, K. Xu and N. Ansari, TCP in Wireless Environments: Problems

and Solutions. IEEE Communications Magazine , S27-S32, 2005.

[18] K. Miller and L. Hsiao, TCPTuner: Congestion Control Your Way, 2016.

[19] C. Zhang and V. Tsaoussidis, TCP-real: improving real-time capabilities

of TCP over heterogeneous networks, NOSSDAV '01 Proceedings of the

11th international workshop on Network and operating systems support

for digital audio and video, pp. 189-198, ACM New York, 2001.

[20] T. Henderson and S. Floyd, RFC 6582: The NewReno Modif. to TCP's

Fast Recovery Algorithm, Internet Engineering Task Force (IETF), 2012.

[21] M. Allman, V. Paxson and E. Blanton, TCP Congestion Control. RFC

5681. https://doi.org/10.17487/rfc5681, 2009.

[22] S. Floyd, T. Henderson and A. Gurtov, "The NewReno Modification to

TCP's Fast Recovery Algorithm", RFC 3782, April 2004.

[23] J. Olsen, On Packet Loss Rates for TCP Network Modeling, 2004.

[24] Y. Tian, K. XU and N. ANSARI, TCP in Wireless Environments:

Problems and Solutions, IEEE Radio Communications, March 2005.

[25] Microsoft Networking Blog. Category-Ledbat. 2018.

https://blogs.technet.microsoft.com/networking/category/windows-

transports/ledbat/

[26] S. Arianfar, TCP‟s Congestion Control Implem. in Linux Kernel, 2012.

[27] P. Sarolahti and A. Kuznetsov, Congestion Control in Linux TCP, 2002.

https://doi.org/10.17487/rfc5681
https://tools.ietf.org/html/rfc3782
https://blogs.technet.microsoft.com/networking/category/windows-transports/ledbat/
https://blogs.technet.microsoft.com/networking/category/windows-transports/ledbat/

90

[28] Y. R. Yang and S. L. Simon, General AIMD Congestion Control,

National Science Foundation, Technical Report, May 9, 2000.

[29] R. N. Shorten, D. J. Leith, J. Foy and R. Kilduff, Analysis and design of

congestion control in synchronized communication networks, Hamilton

Institute, NUI Maynooth, June, 2003.

[30] G. Boggia, P. Camarda, A. D‟Alconzo, L. A. Grieco, and S. Mascolo,

Modeling the AIADD Paradigm in Networks with Variable Delays, 2006.

[31a] R. Ferorelli, L. A. Grieco, S. Mascolo, G. Piscitelli and P. Camarda, Live

Internet Measurements Using Westwood+ TCP Congestion Control,

MIUR Research Project 488/92, 2004.

[31b] R. Al-Saadi, G. Armitage, J. But and P. Branch, A Survey of Delay-

Based and Hybrid TCP Congestion Control algorithms, IEEE

Communications Surveys & Tutorials, 2019.

[32] L. A. Grieco and S. Mascolo, “Performance evaluation and comparison of

Westwood+, New Reno, and Vegas TCP congestion control”, ACM

Comp. Comm. Rev., vol. 34, pp. 25 – 38, April 2004.

[33a] S. Park, et. al., ExLL: an extremely low-latency congestion control for

mobile cellular networks, CoNEXT '18: Proceedings of the 14th

International Conference on emerging Networking EXperiments and

Technologies, pp. 307–319, December 2018.

[33b] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi and R. Wang, TCP

Westwood: End-to-End Congestion Control for Wired/Wireless

Networks, Kluwer Academic Publishers, 2002.

[34] J. Hoe, Start-up Dynamics of TCP's Congestion Control and Avoidance

Schemes, MSc. Thesis, Massachusetts Institute of Technology, June

1995.

[35a] L. A. Grieco and S. Mascolo, End-to-End Bandwidth Estimation for

Congestion Control in Packet Networks, 2002.

[35b] Y. Zaki, et. al., Adaptive Congestion Control for Unpredictable Cellular

Networks, SIGCOMM ‟15, August 17 - 21, pp. 509-522, London, 2015.

[36] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi and R. Wang, TCP

Westwood: Bandwidth Estimation for Enhanced Transport over Wireless

Links, ACM Mobicom 2001, Rome, Italy, July 2001.

[37] A. Dell‟Aera, L. A. Grieco, S. Mascolo, Linux 2.4 Implementation of

Westwood+ TCP with rate-halving: A Performance Evaluation over the

Internet, Tech. Rep. N. 08/03/S, 2004.

91

[38] C. Caini and R. Firrincieli, TCP Hybla: a TCP enhancement for

heterogeneous networks, INTERNATIONAL JOURNAL OF

SATELLITE COMMUNICATIONS AND NETWORKING Int. J. Satell.

Commun. Network. 2004; 22:547–566 (DOI: 10.1002/sat.799), 2004.

[39] L. Xu, K. Harfoush, I. Rhee, Binary increase congestion control (BIC) for

fast long-distance networks, IEEE INFOCOM 2004.

[40] W. Hua, G. Jian, Analysis of TCP BIC Congestion Control Implement.,

2009.

[41] S. Shalunov and J. Iyengar, RFC6817: Low Extra Delay Background

Transport (LEDBAT), Internet Engineering Task Force (IETF), 2012.

[42] R. Hamamreh, M. Bawatna, DCM: Protocol for Dynamic Avoiding End-

to-End Congestion in MANETs, Journal of Wireless Networking and

Communications 2014, 4(3) :67-75.

[43] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, TCP Selective

Acknowledgement Options. RFC 2018, April 1996.

[44] Network Simulator (ns3), https://www.nsnam.org/.

[45] Oracle VirtualBox, https://www.virtualbox.org/.

[46] R. Srikant, The Mathe of Internet Congestion Control, Birkhäuser, 2004.

[47] TCP Westwood+ Congestion Control

website: https://c3lab.poliba.it/index.php/Westwood

[48 a] R. S. Chang, Computer Networks, https://slideplayer.com/slide/2749292/

.

[48 b] G. A. Abed, M. Ismail and K. Jumari, A Survey on Performance of

Congestion Control Mechanisms for Standard TCP Versions, Australian

Journal of Basic and Applied Sciences 5(12):1345-1352, Dec. 2011.

https://www.nsnam.org/
https://www.virtualbox.org/
https://c3lab.poliba.it/index.php/Westwood
https://slideplayer.com/slide/2749292/

92

Appendix A: Published Papers

Paper1: IEEE Conference in Gaza (April 2019)

93

94

95

96

97

98

99

100

Paper2: SCIRP / IJCNS

101

102

103

104

105

106

107

108

109

110

111

Paper3: IARIA (Conference in Valencia – Spain – Nov. 2019)

112

113

114

115

116

117

Appendix B: DCM+ Source Code

void TcpWestwood::CongestionAvoidance (Ptr<TcpSocketState> tcb,

uint32_t segmentsAcked)

{

 NS_LOG_FUNCTION (this << tcb << segmentsAcked);

 double rateCA ;// Rate of congestion

 rateCA = static_cast<double>(m_oldRtt.GetSeconds()) /

static_cast<double>(tcb->m_minRtt.GetSeconds()) ;

 this->m_minRto= static_cast<Time>(static_cast<double>

(m_minRto.GetSeconds()) /rateCA) ;

 if (segmentsAcked > 0)

 {

 if (tcb->m_cWnd <= static_cast<uint32_t> (m_currentBW *

static_cast<double> (tcb->m_minRtt.GetSeconds ())))

 {

 tcb->m_cWnd += static_cast<uint32_t> (2*rateCA);

 } else

 {

 tcb->m_cWnd += static_cast<uint32_t> (2 / (

static_cast<double> (tcb->m_cWnd) * rateCA)) ;

 }

 NS_LOG_INFO ("In CongAvoid, updated to cwnd = " << tcb-

>m_cWnd <<", and ssthresh = " << tcb->m_ssThresh) ;

 }

 }

118

Appendix C: Tables of Simulation Results in Chapter 5

Table C-1: Measurements of TCP DCM+ Throughput (Kbps)

error rate DCM+ NR BIC Ledbat Hybla

1.00E-06 85424.7 85078.2 85424.7 85078.2 90521.5

1.00E-05 85424.7 85078.2 85424.7 85078.2 90521.5

1.00E-04 39985.9 26770.5 75686.3 11031.7 40235.8

1.00E-03 16191.3 4165.15 18787.4 274.136 10460.1

4.00E-03 20713.5 1660.08 5653.28 254.581 4698.02

0.0075 8149.35 1073.2 3276.99 240.844 3093.64

0.01 8165 874.047 2500.27 233.41 2654.59

0.02 3633.28 546.539 1138.1 210.725 1707.25

0.03 5500.75 388.013 664.214 189.079 1246.67

0.04 4836.52 293.019 460.197 168.445 954.074

0.05 587.097 237.567 360.947 152.864 784.448

Table C-2: Measurements of TCP DCM+ Packet Delivery Ration (PDR)

error rate DCM+ NR BIC Ledbat Hybla

1.00E-06 99.99857 99.99857 99.99857 99.99857 99.99856588

1.00E-05 99.99857 99.99857 99.99857 99.99857 99.99856588

1.00E-04 99.98995 99.99288 97.56887 99.99145 99.99002551

1.00E-03 99.91099 99.92806 99.92089 99.9137 99.91512257

4.00E-03 99.60482 99.63137 99.5987 99.60611 99.6300651

7.50E-03 99.27015 99.28837 99.2902 99.27415 99.27607625

1.00E-02 99.0181 99.00574 99.00939 99.01226 99.0278272

2.00E-02 98.01206 98.10951 98.07573 98.01145 98.07354285

3.00E-02 96.99295 97.02601 97.06824 97.0198 97.02532085

4.00E-02 95.9936 95.88556 95.96028 95.96395 95.94160065

5.00E-02 95.00237 94.95806 94.97931 94.96039 95.01630119

119

Table C-3: Measurements of TCP DCM+ Packet Losses (%)

error rate DCM+ NR BIC Ledbat Hybla

1.00E-06 0.0014283 0.0014341 0.001428 0.001434 0.001434

1.00E-05 0.0014283 0.0014341 0.001428 0.001434 0.001434

1.00E-04 0.0100479 0.0071248 2.43113 0.00855 0.009974

1.00E-03 0.089005 0.0719435 0.079114 0.0863 0.084877

4.00E-03 0.395184 0.368628 0.401296 0.393893 0.369935

7.50E-03 0.729845 0.7711632 0.70979 0.725847 0.723924

1.00E-02 0.981903 0.99426 0.990606 0.987735 0.972173

2.00E-02 1.98794 1.89049 1.92427 1.98855 1.92646

3.00E-02 3.00705 2.97399 2.93176 2.9802 2.97468

4.00E-02 4.0064 4.11444 4.03972 4.03605 4.0584

5.00E-02 4.99763 5.04194 5.02069 5.03961 4.9837

Table C-4: Measurements of TCP DCM+ Normalized Advancing Index (NAI)

error rate DCM+ NR BIC Ledbat Hybla

1.00E-06 7.29E+09 7.26E+09 7289574400 7260006400 7724501333

1.00E-05 7.29E+08 7.26E+08 728957440 726000640 772450133.3

1.00E-04 4.87E+06 4.57E+06 35081.82654 1568952.889 4904935.619

1.00E-03 2.23E+04 7.11E+03 29148.93576 389.8823111 15128.7322

4.00E-03 1.58E+03 1.38E+02 430.7260952 19.74931394 388.46677

0.0075 1.78E+02 2.45E+01 75.01984708 5.383633617 69.42553934

0.01 9.94E+01 1.07E+01 30.65465134 2.8658494 33.16618058

0.02 1.07E+01 1.74E+00 3.552226286 0.634504822 5.316982968

0.03 7.07E+00 5.16E-01 0.896687149 0.249918546 1.653956882

0.04 3.40E+00 2.08E-01 0.333816253 0.12156608 0.686229894

0.05 2.64E-01 1.09E-01 0.166490868 0.069737475 0.363406963

120

Table C-5: Measurements of TCP DCM+ Average Delay

error rate DCM+ NR BIC Ledbat Hybla

1.00E-06 124.785 124.961 124.909 124.961 126.755

1.00E-05 124.785 124.961 124.909 124.961 126.755

1.00E-04 48.1966 48.5637 66.2789 48.5497 50.6474

1.00E-03 45.2303 45.2296 45.3605 45.2083 45.3775

4.00E-03 45.4196 45.2311 45.277 45.2077 45.3814

0.0075 45.6092 45.2247 45.2418 45.201 45.3329

0.01 45.3512 45.2241 45.2374 45.1997 45.3268

0.02 45.4831 45.2235 45.2425 45.1983 45.3161

0.03 45.3572 45.2207 45.2412 45.1974 45.3153

0.04 45.849 45.2164 45.2369 45.1964 45.3379

0.05 45.762 45.2147 45.2341 45.1958 45.3803

Table C-6: Measurements of TCP DCM+ Throughput

error rate DCM+ NR BIC Ledbat Hybla

1.00E-06 9.82705 9.82705 9.82705 9.82705 9.23883

1.00E-05 9.82705 9.82705 9.82705 9.82705 9.23883

1.00E-04 20.8397 31.3329 11.9867 75.9722 20.8627

1.00E-03 51.3938 199.197 44.2103 3027.05 79.3608

4.00E-03 40.7255 501.293 147.354 3273.2 177.226

0.0075 104.794 778.227 255.071 3475.2 270.243

0.01 104.404 958.691 335.442 3598.06 315.921

0.02 239.654 1549.1 745.053 4036.08 497.211

0.03 159.799 2211.41 1291.46 4558.22 690.081

0.04 186.741 2970.03 1888.2 5189.59 914.311

0.05 1544.51 3713.82 2436.92 5795.91 1124.77

121

Table C-7: Impact of TCP Buffer Size on DCM+ Performance Metrics

buffer size (KB) Throughput (Kbps) Packet Loss NAI

16 k 1415.75 1755 13.76759734

32 k 2899.88 1880 26.32515177

64 k 5511.94 2092 44.9667508

128 k 8627.13 2216 66.44239711

256 k 13214.6 2322 97.1271203

512 k 16571.7 2327 121.540043

1 M 11685.2 1548 128.8290784

2 M 10931.5 1529 122.017179

4 M 7960.86 690 196.9062957
8M 13133.7 1521 147.3691519

16M 13133.7 1521 147.3691519

Table C-8: Comparing DCM+ against Vegas

Case Id Throughput (Kbps) delay (msec) lost packets CTT (sec) NAI

case1_DCM+ 7913.73 45.3964 689 107.9 9.5715166909E+01

case1_Vegas 3330.34 45.224 691 251.9 4.0163289918E+01

case2_DCM+ 11192.2 45.2965 1100 77.6 8.4789393939E+01

case2_Vegas 2113.49 45.1575 1073 404.3 1.6414181423E+01

case3_DCM+ 7920.9 45.4733 695 108 9.4974820144E+01

case3_Vegas 3330.34 45.2247 691 251.9 4.0163289918E+01

case4_DCM+ 8070.65 45.3906 527 105.07 1.7015918195E+02

case4_Vegas 3773.82 45.2257 525 221.7 7.9869206349E+01

case5_DCM+ 85423.1 124.776 1 9.83 7.1185916667E+08

case5_Vegas 2384.72 45.2011 1 347.6 1.9872666667E+07

case6_DCM+ 5930.19 45.6565 2233 150.3 7.3769592476E+00

case6_Vegas 956.616 45.2183 2170 898.4 1.2245468510E+00

122

Table C-9: Impact of Access Bandwidth on the Performance of DCM+

Bottleneck BW Tx bitrate (Kbps) mean delay (msec) Packet Loss (%)

1.E+06 171.683 62.585 1.985

1.E+07 3424.03 53.922 2.08

1.E+08 4322.54 45.5361 2.033

1.E+09 4488.65 45.1647 2.043

1.E+10 4058.88 45.1463 2.019

1.E+11 4186.66 45.1423 2.014

Table C-10: Impact of Access Bandwidth on the Performance of DCM+

Access BW Tx bitrate (Kbps) mean delay (msec) Packet Loss (%)

1.E+06 171.655 62.69 1.9988

1.E+07 1261.9 50.974 2.0356

1.E+08 7511.29 45.47 2.0285

1.E+09 4322.54 45.54 2.033

1.E+10 7142.04 45.55 2.034

1.E+11 7009.71 45.41 2.037

	Declaration
	Acknowledgements
	Abstract
	الملخص
	Table of Contents

	Table of Figures
	List of Tables
	List of Algorithms
	List of Equations
	Acronyms and Abbreviations
	Chapter One: Introduction
	Introduction
	1.1 Overview
	1.1.1 Classification of Computer Networks
	1.1.2 Types of Data Networks

	1.2 Motivation
	1.3 Problem Statements
	1.4 Objectives of This Thesis
	1.5 Thesis Contributions
	1.6 Thesis Structure

	Chapter Two: Congestion Control in Data Networks
	2.1 Introduction
	2.2 Congestion Control in Data Networks
	2.3 TCP Congestion Control Strategies
	2.4 Congestion Control in Mobile and Wireless Networks
	2.5 Summary

	Chapter Three: TCP Protocols for Mobile and Wireless Networks
	3.1 TCP NewReno
	3.2 TCP Westwood/ Westwood+
	3.2.1 TCP Westwood
	3.2.2 TCP Westwood+

	3.3 TCP Hybla
	3.4 TCP BIC (Binary Increase Congestion Control)
	3.5 TCP Ledbat
	3.6 Summary

	Chapter Four: Proposed approach - DCM+
	4.1 Introduction
	4.2 Window Dynamics of TCP DCM+
	4.3 TCP DCM+ algorithm
	4.4 TCP SACK Option
	4.5 Summary

	Chapter Five: Simulation Results and Analysis
	5.1 Introduction
	5.2 Simulation Environment
	5.3 Performance Metrics
	5.3.1 Throughput
	5.3.2 End-to-End Average Delay
	5.3.3 Packet Delivery Ratio (PDR)
	5.3.4 Normalized Advancing Index (NAI)
	5.3.5 Complete Transmission Time (CTT)
	5.3.6 Packet Losses

	5.4 Effect of TCP Buffer Size on the Window Size of TCP DCM+
	5.5 TCP DCM+ versus TCP Vegas
	5.6 Optimizing the Segment Size (MTU)
	Case 1: Same error rate but different segment sizes.
	Case 2: Different error rates but same segment sizes

	5.7 Impact of Access Bandwidth on the Performance of DCM+
	5.8 Impact of Bottleneck Bandwidth on the Performance of DCM+
	5.9 Properties of DCM+ and comparing with DCM and Westwood+
	5.10 Summary

	Chapter Six: Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	References

	Appendix A: Published Papers
	Paper1: IEEE Conference in Gaza (April 2019)
	Paper2: SCIRP / IJCNS
	Paper3: IARIA (Conference in Valencia – Spain – Nov. 2019)

	Appendix B: DCM+ Source Code
	Appendix C: Tables of Simulation Results in Chapter 5

