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Abstract 

  

Data networks are considered as a critical corner of data transmission 

between the different hosts wherever they exist. In the last few years, the 

wireless and mobile networks become more important for daily use and are their 

spread is increasing for personal and commercial use. The main difference 

between wired and wireless networks is the large number of lost packets during 

the data transmission. The packet losses are a result of errors on the data 

transmission channel. These errors are due to external noise, interference and 

mobility of the wireless devices that results in deep fading. The mentioned 

problems earlier are the reasons that the throughput of wireless, mobile and 

mobile adhoc networks is less than wired networks, which does not suffer such 

problems. 

 

Old traditional transmission control protocols like (Standard TCP) behave 

extremely hard when they detect any data packet losses. They drop the 

congestion window to the half though the transmission channel capacity is not 

exhausted. This high drop results in low throughput, hence longer time to finish 

the transmission.  

Most traditional TCP protocols lack the use of appropriate techniques to 

estimate the available channel capacity, which are known as bandwidth 

estimation (BWE) techniques. In 2004, TCP Westwood+ protocol proposed a 

technique for estimating the available channel capacity. It uses a first-order low-

pass filter to find the available bandwidth. TCP Westwood+ has largely 

improved the throughput of TCP connections, however, the problem of window 

drops is still existing, which makes it less appropriate for use in networks, that 

include mobility, i.e. MANETs. Hence, it is desired to modify the TCP protocol 

behavior to eliminate these drops, which are the results of congestion events or 
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channel problems. If the congestion events are eliminated, then we can detect 

the times at which the transmission channel problems occur. 

The proposed approach in this thesis is called TCP DCM+. It is the 

abbreviation for “Dynamic Congestion Control for Wireless and Mobile 

Networks”. The transfer of data with different sizes has been simulated with 

different packet error rates, which should simulate the existence of wireless 

channel for large packet error rates (1e-3 to 5e-2). 

We executed hundreds of simulations for cases with different parameters 

like error rates, MTU sizes, bandwidth of both bottleneck (link) and destination 

(access), protocol type and the size of sent data. We found that DCM+ performs 

better than the other approaches, especially if the error rates are large. We used 

the usual performance metrics like throughput, average delay and packet losses 

to measure how well our approach performs. Additionally, we introduced two 

new metrics to measure the total time needed to finish the transmission, and also 

to measure the robustness and stability of the transmission.  Our conclusion is, 

that DCM+ is minimizing congestion events, hence, transmits data much faster, 

shows stable behavior and is highly robust compared with other approaches.  
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مهخصان  

 

 Wireless)اٌشجىبد اٌلاعٍى١خ  أصجحذٚ اٌج١بٔبد،ٔمً فٟ شجىبد اٌّؼٍِٛبد سوٕب أعبع١ب رؼزجش 

Networks)  غ١ش . الاعزؼّبي اٌشخصٟإداسح الأػّبي ٚ ٟش فرغزحٛر ػٍٝ ح١ض وج١ الأخ١شحفٟ اٌغٕٛاد

 شجأوثشىً ٘ٛ أْ اٌشجىبد اٌلاعٍى١خ ِؼشضخ ٚث١ٓ اٌشجىبد اٌغٍى١خ ٚاٌلاعٍى١خ  ُِٙ فشقٕ٘بٌه أْ 

 (Transmission Channel)الاسعبي رحصً ػٍٝ لٕبح ٚ٘زٖ ، ٌحذٚس أخطبء ػٍٝ اٌج١بٔبد اٌّشعٍخ

ٚلذ  ،ٌلأجٙضح ٚاٌزٕمً (Mobility) اٌحشوخأٚ ثغجت  ،(External Noise)ٟ اٌخبسجاٌزش٠ٛش  ثغجت

  الارصبي اٌّجبشش ث١ٓ طشفٟ اٌمٕبح. رّٕغ (Physical Barriers) ٚجٛد ػٛائك ف١ض٠بئ١خثغجت رىْٛ 

أٚ اٌشجىبد  ّزٕمٍخاٌأٚ اٌلاعٍى١خ عشػخ ٔمً اٌج١بٔبد فٟ اٌشجىبد  أخفبض فٟ غجت٠زج١ّغ ِب روش 

 اٌشجىبد اٌغٍى١خ. ٚ٘ٛ ِب لا رؼبٟٔ ِٕٗ (MANET Networks)اٌّخصصخ لأغشاض ِؼ١ٕخ 

 

٘زٖ  ".+TCP DCM"رُ الزشاح ٚرص١ُّ ٚاخزجبس رم١ٕخ جذ٠ذح رغّٝ  ،فٟ ٘زٖ الأطشٚحخ

، (Bandwidth Estimation)اٌّزبحخ ٌلإسعبي  رم١ٕخ اٌزحذ٠ذ اٌّغجك ٌٍغؼخ مَٛ ػٍٝ اػزّبدراٌطش٠مخ 

ِغ  دِجٙبصُ  "،+TCP Westwood" ثشٚرٛوٛيفٟ  اٌّٛجٛدح ٚرٌه ِٓ خلاي اػزّبد اٌخٛاسص١ِخ

ٗ راوشح فٟ م١بط حجُ اٌفشاؽ اٌّزبحأخٌشٜ ٌثشِج١خ  ِّ ٛج  ُّ   ث١ٓ طشفٟ الاسعبي. (Router Buffer) اٌ

ٌؼٍّزٟ اسعبي  (Round Trip Times)ِٓ خلاي ِمبسٔخ صِٓ اٌز٘بة ٚالإ٠بة ٠زُ ل١بط اٌحجُ اٌّزبح 

 ،، فبرا وبٔذ ٔغجخ اٌضِٓ اٌغبثك أوجش ِٓ اٌضِٓ اٌحبٌٟ فأٔٗ ٠ؼٕٟ أْ راوشح اٌشاٚرش رفشؽ ثغشػِٗززب١ٌز١ٓ

ٚ٘ٛ ِب ٠ؼزّذ  ،ػٍٝ ٘زٖ اٌم١ّخ ٠ىْٛ الاسعبي ثشىً عش٠غ جذا أٚ ثطٟء ٚثحزس ٚالا فأٔٙب رّزٍئ. اػزّبدا

حجُ ٔبفزح الاسعبي اٌغبثمخ اٌزٟ ٚصٍذ  وبْ إراف. (Window Size)ٕبفزح الاسعبي اٌغبثك ٌحجُ اٌػٍٝ 

٠زُ اسعبي و١ّخ وج١شح  فؼٕذ٘ب (slow- start threshold) ػزجخ اٌجذء اٌجطٟءألً ِٓ  ثٕجبح ٌٍّغزمجً

، ٚالا ٠زُ الاسعبي ثشىً ثطٟء ثحجُ اٌّىبْ اٌفبسؽ فٟ اٌشاٚرش (Burst)ٚاحذح  دفؼخ اٌج١بٔبدجذا ِٓ 
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ِغ حجُ اٌفشاؽ فٟ اٌشاٚرش، ٚثح١ش لا ٠حذس رصبدِبد ِغ ِشعً آخش ػٍٝ ٔفظ ِّش اٌج١بٔبد  ٠زلاءَ

(Data Path). 

 

ٔغجخ  اٌزٟ اعزخذِذ ف١ٙب ِزغ١شاد ِزؼذدح ِضًاٌّخزٍفخ، ٚ اٌحبلاد ّئبدٌِٓ خلاي اٌّحبوبح 

اٌّشعٍخ، فبْ الاسعبي، اٌجشٚرٛوٛي اٌّغزخذَ ٚحجُ اٌج١بٔبد حجُ اٌحضِخ، عؼخ لٕبح  ض١بع اٌحضَ،

ػٍٝ اٌزألٍُ جذا راد لذسح ػب١ٌخ  ٚأٔٙب، عشعٟ٘ الأ إٌز١جخ وبٔذ أْ اٌطش٠مخ اٌّمزشحخ ِٓ طشفٕب

(Robustness)  ثغجت  وّب أٙب لا رغجت أٞ اخزٕبلبد ػٍٝ لٕبح الاسعبي ٌلإسعبي،اٌمبع١خ  ظشٚفاٌِغ

ٚإرا ِب وبْ ٕ٘بن اِىب١ٔخ ٌلإسعبي ثغشػخ  ،ِؼشفخ صِٓ اٌز٘بة ٚالإ٠بة ٌٍحضَرص١ّّٙب اٌزٞ اػزّذ ػٍٝ 

 وج١شح أَ ل١ٍٍخ. 
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Introduction 

 

1.1 Overview 

 
 

1.1.1 Classification of Computer Networks 

 

Computer network is a system of interconnected nodes such as PCs, 

laptops, servers, mobile phones and peripherals such as printers. Information 

sharing is then enabled among them during the interconnection. We may 

connect the different nodes via wired or wireless media [1]. We can classify the 

computer networks according to the following factors:  

 

1- Area  

2- Inter-connectivity  

3- Administration  

4- Architecture  

 

1- Area 

From the perspective of area, a network can belong to any of the 

following categories:  

 

 It may be spanned across a few meters.  

 It may connect the devices in a building,  

 It may be spanned across the whole town.  

 It may connect many towns or provinces.  

 It could also connect the whole planet like the internet. 
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2- Inter-Connectivity  

The components of the network can be connected differently. 

Connectedness could use a logical or a physical topology, or both approaches.  
 

 Network mesh, where every single device can be connected to 

every other device on network.  

 Bus structure, where all devices can be connected to a single 

medium (switch), but geographically disconnected.  

 Linear structure, where each device is connected to its left and 

right peers only, like in ring structure.  

 Star-like structure, where all devices are connected together with a 

single device.  

 Hybrid structure, where all devices are connected arbitrarily using 

all previous ways.  

 

3- Administration 

A network can be private or public. Private networks, from an 

administrator‟s point of view, belongs a single autonomous system, hence 

cannot be accessed outside its physical or logical domain. A public 

network on the other side, can be accessed by all, depending on the 

access right given by the administrator. 

 

4- Architecture 

 

Depending on their architecture, networks can be differentiated into various 

types such as client-Server, peer-to-peer or hybrid, 

 Client-Server architecture: one or more nodes are acting as server. The 

clients make requests to the server(s). Servers take and process the 

request(s), and send responses back to clients. An example is the banking 

system. 
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 Point-to-Point architecture: Two systems are connected together. They 

could be geographically separated, but the communication is restricted to 

these devices (peers), like in torrent traffic. 

 Hybrid architecture, which involves architectures of the above types. 

 

1.1.2 Types of Data Networks 

 

We distinguish networks based on their geographical span. A network 

can be as small as 50 cm, the distance between the mobile phone and its 

Bluetooth headphone. Also, it could be as large as the internet itself, covering 

the whole world. Following types of networks are distinguished: 

 

1- Personal Area Network (PAN) 

 

PAN is the smallest network, which is very personal to the user. This type 

includes Bluetooth- or infrared-enabled devices. This type has a range up to 10 

meters. PAN may include wireless keyboard, mouse, headphones, printers and 

TV remotes. Piconet is an example for Bluetooth-enabled PAN. It may contain 

up to 8 devices connected together in a master-slave (client-server) architecture. 

 

 

 

Figure 1-1: Bluetooth 
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2- Local Area Network (LAN) 

 

If the network is spanned inside a building and operated under a single 

administrative system, then it is called “Local Area Network”, or short (LAN). 

LANs cover the offices in a company, schools, colleges or universities. 

Depending on the class used in the network design, or the number of bits in the 

network mask, the number of connected nodes in the LAN may vary from as 

least as two to as much as millions. LANs provide a way for sharing the 

resources between the end users, i.e. printers, scanners, public data on file 

servers, etc. Figure 1.2 shows an example for a LAN. 

 

 

Figure 1-2: Local Area Network (LAN) 

 

3- Metropolitan Area Network (MAN) 

 

The Metropolitan Area Network (MAN) is designed to connect different 

areas of a city. In Europe and USA, MAN network is used for cable TV 

services. It can be in one or more of the following forms: Ethernet, Token-ring, 

ATM, or Fiber Distributed Data Interface (FDDI). MAN is a service, that is 

mostly provided by ISPs. This service enables users to expand their LAN, i.e., 

MAN can help the companies to connect all of its offices in a city. 
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Figure 1-3: Metropolitan Area Network (MAN) [2a] 

 

MANs mostly use fiber cables for their high-capacity and high-speed data 

traffic. MANs lie between LANs and WANs (Wide Area Networks). 

 

4- Wide Area Network (WAN) 

 

WANs use routers to cover large areas. This coverage may be from small 

provinces up to a whole country or a continent. Figure 1-4 shows an example of 

a WAN. 

 

Figure 1-4: Wide Area Network (WAN) 



7 

 

Telecommunication networks are generally WANs, which use routers and 

satellites for their data transfer. WANs equipment are very expensive, hence 

WAN services cost more than those of LAN, when using the same speed. The 

WANs are equipped with high-speed devices to build the final backbone, which 

connects the remote LANs.  

 

5- Internetwork  

 

Internetwork is a network of networks. It is also called the internet. 

Internet is the planets‟ largest network, that could be shown as a living creature. 

The interruption of internet in one area on the planet may affect the whole 

planet.  

 

 

Figure 1-5: Internet [2b] 

 

Figure 1-5 depicts the complexity of internet. The internet is made by a 

huge number of connections between smaller WANs. Internet mainly uses 

TCP/IP protocol suite for data transfer between the hosts. The IP protocol is 

used for addressing and routing. At a huge level, internet can be considered as a 
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client-server model. Internet backbone is built from very high-speed fiber 

cables. They connect the various continents via fiber cables, which may be laid 

on the ground of the sea. They are known as “Submarine Communication 

Cables”. 

1.2 Motivation 

Data transmission refers to the movement of data in form of bits between 

two or more digital devices. It is classified as serial and parallel communication 

like in figure 1-6. This transfer of data takes place via some form of 

transmission media (i.e., coaxial cable, fiber optics, wireless channel, etc.). 

Modern economies depend on data transmission as a business [3]. Telephone 

and mobile companies make a huge profit from the telecommunication services. 

These services are enhanced and extended to include emails, SMSs, data 

sharing, internet browsing, etc., which require large bandwidths.  

  

Figure 1-6: Types of Data Transmission 

 

The quick delivery and robustness of the transmission technique is crucial 

[4]. Old standard TCP techniques (i.e. TCP Reno, TCP NewReno) were 

invented to control when and how much data can be sent per time interval [5]. 

These approaches, however, have been found to be less appropriate for wireless 
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networks. Table 1-1 depicts the main differences between wired and wireless 

networks. 

 

Wireless Wired 

Physical configuration needed No physical configuration required 

Packet error rate is very high Packet error rate is very low   

Large delays Small Delays 

Security is low Security is high 

Low data rate  low speed High data rate  High speed 

 

Table 1-1: Wireless vs. Wired Networks 

 

 

According to the underlying structure of the existing wireless network, we 

differentiate 2 main types: 

 Mobile (cellular) networks, 

 Mobile Adhoc Networks (MANETs). 

 

 

 In Table 1-2, we present the main differences between these types.  

 

Cellular Networks MANETs 

Infrastructure required Infrastructure not existing 

Locations of cell sites fixed No fixed locations 

Long planning before launch required MANETs automatically adapt to network changes 

Setup cost too high Setup cost low 

Setup time to build the cellar network high Less time is needed to form the MANET. 

 

Table 1-2: Cellular Networks vs. MANETs 

 

In wireless networks, that are static (not moving), the channel conditions 

are varying slightly. On the other side, in MANETs and mobile networks, the 

channel conditions are varying largely [6a] and quickly, which cause the 

channel capacity to change continuously [6b]. Hence, it is desired to use a 

technique, that knows how much channel capacity is available before 
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transmitting data. Also, it should be dynamic in its speed. The technique should 

allow the sender to transmit  

 

data in bursts without causing new congestions. TCP DCM+ is a new approach, 

that is targeting these aims in order to achieve extremely high throughput by the 

existence of tough channel conditions like high error rates. 

1.3 Problem Statements 

A decrease in throughput and response speed of a network connectivity is 

known as “network degradation” [7]. If this kind of deterioration exists within a 

network, it is important to analyze it and to do a diagnosis. Degradation causes 

of network may include propagation delays, which involve faulty network 

devices, congestion, routing problems or transfer of large data files across the IT 

infrastructure. Insufficient memory and low processing capacity of end nodes 

may also be other reasons for the delays. There are also other forms of 

degradation, that may occur as a result of malware or spyware in the network.  

While problems with individual hardware devices don‟t usually affect the 

functionality throughout the entire network, other problems can be network-

wide. For example, congestion or problems of fragmentation of data packets can 

affect network performance. To anticipate and handle some kinds of network 

degradation like congestion or interruption of connection, network engineers 

may consider fault-tolerant designs, where systems may be designed to operate 

well even under extreme conditions. This prevents various kinds of natural 

degradation from causing system failure or interrupting core network services. 

In this thesis, a new technique will be presented to improve performance and to 

prevent network congestion [8][9] [10a]. 

1.4 Objectives of This Thesis 
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The aim of this thesis is to design a new technique, that will be able to 

use the accurate estimation of the channel capacity [10b], and to send data 

accordingly in a dynamic way depending on the channel conditions like packet 

error rates, bottleneck and destination bandwidths. TCP DCM+ should be fair in 

sharing the channel capacity with other TCP sources, stable and robust in 

delivering data to the destination. Also, the throughput and transmission time 

should be improved. Our simulations show, that we have realized our aims. 

1.5 Thesis Contributions 

We have designed an end-to-end approach, that extremely improves the 

TCP transmissions by modifying the behavior in the congestion avoidance 

phase in the TCP sender. The following modifications have been performed on 

the sender-side code of the files “rtt-estimator.xx” and “tcp-westwood.xx” and 

“TCP-Variants-Comparison.cc” to attain the desired behavior: 

1- keeping the old value of round-trip-time as (RTTold), 

2- adding a new member function called “Congestion Avoidance” to the 

code, which should emulate the procedure when entering a congestion 

phase. This behavior overwrites the behavior in NewReno, when 

entering congestion avoidance phase. 

3- A new parameter called rateCA has been introduced to emulate the 

free size of the TCP buffer in the intermediate node at the time of 

ACK segment reception. 

4- New metrics have been introduced to measure the stability, robustness 

and transmission time of TCP DCM+ in depth. 

 

1.6 Thesis Structure 

The rest of this thesis is structured as follows: 
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 Chapter Two: Congestion Control in Data Networks 

This chapter explains the reasons of congestion in data networks. Also, 

some strategies to handle congestion in mobile, wireless and wired 

networks have been discussed. 

 Chapter Three: TCP Protocols of Mobile and Wireless Networks 

In this chapter, we explain some techniques for managing network 

congestion. We discuss and compare the working of the following TCP 

Protocols: Westwood, Westwood+, NewReno, BIC, Hybla and Ledbat. 

 Chapter Four: Proposed Approach: DCM+ 

We propose here our new protocol (DCM+) as additive-increase/adaptive 

decrease approach. The building blocks of this protocol is explained in 

this chapter. 

 Chapter Five: Simulation Results and Analysis 

We present in this chapter the simulations using different parameters for 

different cases and show the advantages of this techniques over other 

approaches. 

 Chapter Six: Conclusion and Future Work 

We conclude the thesis in this chapter and make suggestions for possible 

future research using DCM+. 
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2.1 Introduction 

According to the queueing theory, congestion in data networks is the 

reduced quality of service (QoS), that could occur, if a network node or link is 

carrying more data than it can handle [11a]. Similar to a road congestion, effects 

like the followings could happen: queueing delay, packet loss or the blocking of 

new connections. As a consequence of network congestion, an additional 

increase of the offered load leads either only to a small increase or even to a 

decrease in network throughput [11b].  

Some network protocols use aggressive retransmissions to compensate 

for packet loss due to congestion, but this can lead to more congestion, and even 

after the initial load has been reduced to a level that would not normally have 

caused any congestion. Examples of this type are TCP Reno and TCP 

NewReno.  

After 1986, data networks, that use TCP protocol for their data 

communication, started to use TCP congestion control algorithms [31b] and 

congestion avoidance techniques to avoid a throughput collapse [12][13]. This 

collapse is called “window drop”. When a congestion is detected, the 

congestion window or (cwnd) is dropped to a predetermined value. Cwnd is an 

algorithm parameter, that saves the last value of sent data. To detect a network 

congestion, different techniques use different indicators, such as packet loss or 3 

https://en.wikipedia.org/wiki/Data_networking
https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/Queueing_delay
https://en.wikipedia.org/wiki/Packet_loss
https://en.wikipedia.org/wiki/Blocking_probability
https://en.wikipedia.org/wiki/Offered_load
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Retransmission_(data_networks)
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consecutive duplicate acknowledgement (also known as DUPACK) packets. 

Packet loss may be done intentionally, i.e. by routers to empty its buffer and 

hence to mitigate the congestion. It also can be lost as a reason of bad media 

like a noisy wireless channel.  

Known techniques to mitigate congestion are: exponential back-off is 

used in protocols such as CSMA/CA in the wireless standard IEEE 802.11. The 

original ethernet uses CSMA/CD. Reduction of the congestion window is used 

in most TCP protocols.  Network appliances like routers and switches use  fair-

queueing, Random Early Discard (RED) [14] or Active Queue Management 

(AQM) [15] technique. Other techniques that address congestion include 

priority schemes, which transmit some packets with higher priority first. 

Similarly is the explicit allocation of network resources to specific flows 

through the use of admission control [16].  

2.2 Congestion Control in Data Networks 

 

Congestion control techniques are those algorithms implemented in the 

operating systems in order to control or prevent congestion [14]-[16]. Generally, 

congestion control techniques can be classified into two groups: 

 

Figure 2-1: TCP Congestion Control Approaches 

 

https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_avoidance
https://en.wikipedia.org/wiki/802.11
https://en.wikipedia.org/wiki/Carrier-sense_multiple_access_with_collision_detection
https://en.wikipedia.org/wiki/Sliding_window
https://en.wikipedia.org/wiki/Transmission_control_protocol
https://en.wikipedia.org/wiki/Fair_queueing
https://en.wikipedia.org/wiki/Fair_queueing
https://en.wikipedia.org/wiki/Admission_control
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 Open Loop Congestion Control (OLCC) 

When OLCC is applied, then congestions are prevented before they 

happen. This technique can be applied either by the sender or the receiver. 

This technique make use of either of the following methods: retransmission 

timers, selective-repeat window, partially discarding of packets, 

acknowledgment packets and the policy to admit/deny a connection. 

 

 Closed Loop Congestion Control (CLCC) 

In this case, congestion control algorithms are used to manage or alleviate 

congestions after they happens. Several techniques exist, and they can be used 

by different protocols. Techniques of this type are backpressure, choke packet, 

implicit and explicit Signaling. 

Congestion control is a vital process for data networks, especially those, 

that rely mainly on TCP traffic. It has a central role for achieving high 

performance and throughput via managing the congestions, which cause drops 

in the windows size of the transmission. As a result, this prevents the collapse of 

the global network like the internet [17][18]. Since 1986, many protocols have 

been proposed and implemented for controlling data transmission between 

hosts. Old Tahoe [19] is the earliest variant of TCP. It implements two 

algorithms called slow start (SS) and congestion avoidance (CA) to update the 

congestion window (cwnd). From the point of view of a sender, the algorithms 

of old Tahoe are: 

- Slow start (SS): 
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o at the transmission start, the size of congestion window is 1. This 

means TCP can send only one packet until it receives an 

acknowledgement. 

o When ACK is received, the congestion window increases to two. 

o Upon the arrival of every new ACK, the sender increases its 

congestion window by one.  

 

The congestion window in this phase increases exponentially. So, on the 

arrival of a new ACK, the window follows the equation: 

 

𝑐𝑤𝑛𝑑 + = 𝑀𝑆𝑆;    (2.1) 

 

- Congestion Avoidance (CA) 

 

o continues slow start phase until it reaches a certain threshold, or a 

packet loss occurs (congestion indicator)  

o on congestion indicator: TCP enters the CA phase: cwnd increases 

from „n‟ to „n+1‟ only when it has received „n‟ new ACKs. 

 

The window grows in this phase linearly. The rate of growth of the 

window slows down, because this is the stage where TCP is susceptible to 

packet loss. The equation used here is: 

 

𝑐𝑤𝑛𝑑 += (𝑆𝑀𝑆𝑆∗𝑆𝑀𝑆𝑆) / 𝑐𝑤𝑛𝑑   (2.2) 

 

TCP NewReno, on the other side, is a TCP variant of the old days of 

wired networks [20][21][22]. NewReno though has some drawbacks and 

limitations, especially in both wireless and mixed (wired/wireless) networks 

[23]. Another limitation of TCP NewReno is its little support for mobility [24]. 

We conclude, that NewReno has little chances in mobile and wireless 
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environments like Wi-Fi networks and Mobile Adhoc Networks (MANETs). 

TCP NewReno has been implemented in the TCP protocol stack of different 

operating systems. 

 

Recently, newer TCP variants like TCP Westwood+, BIC, CUBIC, 

HighSpeed, Scalable, Hybla and Ledbat are available in modern operating 

systems like Linux [25][26][27]. They are better appropriate for wireless 

networks. TCP Ledbat, for example, is implemented under MS Windows Server 

2019, and also in MS Windows 10. Figure 2-2 depicts the network congestion, 

while figure 2-3 shows the first proposed congestion control algorithm known 

as “TCP Tahoe” 

 

Figure 2-2: Principle of Network Congestion [48 a] 
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Figure 2-3: Congestion Management in Standard TCP Protocols [48 b] 

 

2.3 TCP Congestion Control Strategies 

TCP is a connection-oriented protocol, that is also very reliable. It uses 

sequence numbers to each byte sent in segment. It also provides the feedback 

mechanism, also known as “signaling”. It means, that when a host receives a 

packet, it is bound to ACK it, having the next sequence number expected. When 

a TCP Server crashes in the middle of a communication and restarts its 

transmission, it sends a broadcast to all its hosts. The hosts can then send the 

last data segment which was never unacknowledged and carry onwards. 

According to TCP, congestion occurs if huge amount of data is fed into a 

network, which is not capable of handling it. In this case, the mechanism used 

to handle this problem is the “congestion window”. The value of congestion 

window will be increased or decreased depending on the network status. 

Different algorithms use different procedures to increase/decrease the value of 

cwnd.  The main strategies used in TCP are: 

 

o Additive increase, Multiplicative Decrease (AIMD), 

o Additive increase, Adaptive Decrease (AIADD) 

o Multiplicative increase, Multiplicative Decrease (MIMD) 

 

o AIMD 

 

This approach represents a feedback control algorithm, which makes the 

network to a closed loop system [29][30]. It is the working principle of TCP 

NewReno. AIMD combines linear growth of cwnd with an exponential 

reduction when a congestion is detected. When multiple flows using this 

approach share the same link, then they will eventually converge to use 
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equal amounts of bandwidth, which is known as “fair share”. The algorithm 

used in AIMD is: 

 

 (   )  {
 ( )                                   
 ( ) ∗                              

   (2.3) 

 

where, “a and b” are constants of additive increase and multiplicative 

decrease, respectively. The variable “t” is the time point of the ACK arrival. 

 

o AIADD 

The main concept of this technique is to adapt the reduction of the 

window to the available bandwidth at the time the congestion has occurred 

[30]. TCP Westwood+, that lies at the heart of our proposed algorithm, 

DCM+, was the first algorithm of this technique proposed in 2004 [31a] 

[31b][32]. 

o MIMD 

This approach shows instable behavior of congestion window. It does not 

converge to a fair-share of the network bandwidth. Hence, it is not practical and 

not used. 

 

2.4  Congestion Control in Mobile and Wireless Networks 

 

Over the years, congestion control in mobile and wireless networks has 

been investigated [33a]. Many advanced schemes and techniques have been 

developed, all with the aim of improving the performance in these networks. As 

the mobile and wireless technologies are rapidly growing and implemented, it is 

important to solve the problems caused by the congestion [33b]. 

 

The protocol (TCP) is the most used protocol in today‟s Internet. It 

supports reliable transport of data by establishing a connection between the 
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transmitting and receiving nodes. The transmitter starts a timeout mechanism, 

when it starts sending a packet to a receiver. The transmitter constantly tracks 

the round-trip times (RTTs) for its packets as a means to determine the 

appropriate timeout period. At the receiver, each received packet is 

acknowledged implicitly or explicitly to the transmitter. If the transmitter does 

not get an ACK packet for a given segment, and the corresponding timeout 

period has expired, then the packet is deemed to be lost, and subject to 

retransmission.  A congestion window with dynamically adjusted cwnd size is 

used by the TCP protocol to regulate the traffic flow from the transmitter to the 

receiver [34]. 

 

Although TCP was initially designed and optimized for wired networks, 

the growing popularity of wireless data applications has led mobile wireless 

networks such as CDMA2000 and UMTS networks to extend TCP to wireless 

communications as well. It was the main objective of TCP to efficiently use the 

available bandwidth and to avoid overloading the network, which may result in 

packet losses. The used strategy aims at appropriately throttle the senders‟ 

transmission rates.  

 

2.5 Summary 

The congestion in the network is considered to be the main reason for 

packet losses. Consequently, the performance of TCP connections is often 

unsatisfactory when wireless networks are used. It requires various 

improvement techniques. Bad quality of radio links is the key factor for 

unsatisfactory performance. This quality in wireless networks can fluctuate 

greatly in time due to channel fading, noise and user mobility. 
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3.1 TCP NewReno 

 

TCP NewReno is also known as RFC 6582. It is an improvement on 

standard TCP Reno. In particular, NewReno modifies Reno's Fast-Retransmit 

and Fast-Recovery algorithms. It improves the performance of handling loss of 

multiple segments in a single round-trip time (RTT), when no SACK is used. 

 

https://wiki.geant.org/display/EK/TCP+Reno
https://wiki.geant.org/display/EK/Round+Trip+Time
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As NewReno is able to detect multiple packet losses, it is much more 

efficient than Reno. New-Reno, like Reno, enters the fast-retransmit phase 

when it receives multiple duplicate packets (3 DUPACKs). They however differ 

in, that NewReno doesn‟t exit fast-recovery until all outstanding data is 

acknowledged, because fast-recovery phase allows for multiple re-transmissions 

in NewReno.  

 

The fast-recovery phase proceeds as in Reno, however, when a fresh 

ACK is received then there are two cases: 

 

1- If the received ACK acknowledges all the segments, which were 

outstanding when we entered fast-recovery, then it exits fast recovery 

and sets cwnd to ssthresh and continues congestion avoidance like 

Tahoe.  

 

2- If the ACK is a partial ACK, then it deduces that the next segment in 

line was lost, it re-transmits that segment, and sets the number of 

duplicate ACKs to zero, and it exits fast-recovery. New-Reno has a 

problem, that it takes one RTT to detect each packet loss. When the 

ACK for the first retransmitted segment is received, only then we can 

deduce the other losses [20]. 

 

 

3.2 TCP Westwood/ Westwood+ 

 

3.2.1 TCP Westwood 
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TCP Westwood is end-to-end protocol, that was first proposed in 2001 

[33] [35a]. It belongs to the paradigm “additive increase/ adaptive decrease”, or 

short (AIADD). It uses the implicit feedback for the end-to-end measurement of 

the bandwidth available along a TCP connection. At the TCP sender, low-pass 

filter is applied to filter the returning rate of acknowledgments in order to 

estimate the available bandwidth. After a congestion episode, that is after a 

timeout or 3 duplicate acknowledgments, the estimated bandwidth is used to 

properly set the congestion window (cwnd) and the slow start threshold 

(ssthresh). After a congestion, the new states of congestion window and slow-

start threshold are consistent with the real network capacity. 

 

The main principle of TCP westwood is its mechanism of faster recovery. 

This phase is designed to avoid the large reduction of the congestion window 

after a congestion, by taking into account the end-to-end estimation of available 

bandwidth, which enable the sender to recover faster after a loss event. This 

very appropriate, especially over connections with large round-trip times (RTT), 

or when running over wireless links where sporadic losses are due to unreliable 

links rather than congestion [35b]. The proposed modifications follow the end-

to-end design principle of TCP. They require only slight modifications at the 

sender side and are backward-compatible. The feedback is merely end-to-end 

and does not rely upon explicit information from intermediate nodes or routers 

at the network level. 

 

When an ACK is received by the sender of TCP westwood, then it 

conveys the information that an amount of data corresponding to a specific 

transmitted packet was delivered to the receiver. Averaging the delivered data 

count over time yields a fair estimation of the bandwidth currently used by the 

source, in case that, the transmission process was not affected by losses. 
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When TCP source receives 3 duplicate ACKs (DUPACKs), indicating an 

out-of-sequence reception, they should also count toward the bandwidth 

estimate, and a new estimate should be computed right after they are received. 

As the source is in no position to tell which segment triggered the DUPACK 

transmission, it is unable to update the data count by the size of that segment. 

 

End-to-End Bandwidth Estimation 

 

Before a congestion event, the used bandwidth is less or equal to the 

available bandwidth of the network. So, TCP source can still probe the network 

capacity. Immediately after a congestion episode, the bandwidth used by the 

connection is exactly equal to the maximum bandwidth available to that 

connection. A congestion event like packet loss is a clear indicator, that the 

buffer of intermediate node (router) is fully saturated. It is known, that 

whenever the low-frequency input traffic rate exceeds the link capacity, then a 

congestion event occurs. Hence, low-pass filter is needed to calculate low-

frequency components of the available bandwidth. The used filter is obtained by 

discretizing a first-order low-pass filter using the trapezoidal rule (Tustin 

approximation). The bandwidth estimation is done by the algorithm (3-1) as in 

the following pseudocode: 

 

 

 

where:  
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acked:  number of segments acknowledged,  
pkt_size:  segment size in bytes, 

now:   current time, 

lastacktime: time the previous ACK was received, 
k and (k-1):  current and the previous value of the variable, 
BWE[k]:   low-pass filtered measurement of the available bandwidth at sample k. 
 

TCP westwood Algorithm 

 

Here, we describe in the algorithms (3-2) and (3-3) how the bandwidth 

estimation can be used in TCP Westwood to control network congestions [36].  

 

A. Algorithm after n duplicate ACKs 

The pseudocode of the algorithm is the following: 

 

 

 

B. Algorithm after coarse timeout expiration 

 

The pseudocode of the algorithm is: 
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3.2.2 TCP Westwood+ 

 

The definition of TCP Westwood+ protocol is given bellow by its 

founder Saverio Mascolo [32][37]: 

 

“TCP Westwood+ is a sender-side only modification of the TCP 

Reno/NewReno classic congestion control protocol stack that optimizes the 

performance of TCP congestion control especially over wireless networks.” 

 

The main difference between TCP Westwood and TCP Westwood+ is, 

that in the first one each sample is calculated for each single ACK, that arrives 
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at the sender. This is wrong, because it results in overestimation of the 

bandwidth. On the other side, TCP Westwood+ calculates the estimation for 

each round-trip time (RTT). Hence, the estimation in TCP Westwood+ is more 

accurate, and reflects the precise value of available network capacity. Following 

figure shows the BW estimation in TCP westwood+ after a congestion event, 

and how to set the new states of ssthresh and cwnd. 

 

 

Figure 3-1: Window Dynamics of TCP Westwood+ [47] 

 

 

As TCP westwood, TCP westwood+ is an end-to-end approach, that 

makes use of the bandwidth estimation to set cwnd and ssthresh after a 

congestion episode, that is, after 3 duplicate acknowledgments (3 DUPACKs), 

or if the timeout threshold exceeded (RTO expired). Since Linux kernel 2.6, 

TCP westwood+ is considered as the main congestion control protocol of Linux 

operating systems. Key idea of TCP westwood+: end-to-end approach, that 

makes use of the rate of returning ACKs to calculate the available network 

capacity (bandwidth). To calculate the throughput of TCP Westwood+, we use 

the following equation [32]: 

                                   
 

√   ∗  
∗ √

   

 
          (3.1) 

where: 

RTT:  round trip time, 
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  :  average queueing delay, 

p:  packet error rate 

 

Figure 3-2 shows the throughput of TCP Westwood+ as a 3D-function of 

RTT (x-axis) and Tq (y-axis), while the throughput (T) is depicted as (z-axis). 

We assumed here, that (p) is constant. This plot is a general representation of 

the growth rate of TCP Westwood+. It is clear, that for high values of RTT and 

Tq, the throughput is low and changes in very small portions, while it is 

exponentially increasing for low RTT and Tq. 

 

Figure 3-2: Throughput of Westwood+ as 3D plot for RTT and Tq 

 

Like in figure 3-2, we see, that the more realistic plot of throughput in 

figure 3-3 shows an exponential behavior. In figure 3-3, we assume, that the 

average queueing delay (Tq) is constant, while (p) and RTT are the variables x 

and y, respectively. 
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Figure 3-3: Throughput of Westwood+ as 3D plot for p and RTT 

 

In figure 3-3, the x-axis represents the packet-error-rate or (p). It can take 

values in the range [0,1], while RTT (y-axis) can take random values. We 

assumed here, that (p) takes values less than 0.1, and RTT is in the range 0.08 

and 0.5. We see in this figure similar results as in the simulations (chapter 5). 

The throughput is small and not changing for high values of (p), even if the 

value of RTT is small. On the other hand, we have exponential increase, if (p) is 

low (< 0.025). This behavior is similar to the behavior of TCP DCM+. 

 

When comparing TCP Westwood+ with TCP Reno, as shown in equation 

(3.2), it is clear, that both throughputs depend on (
 

√ 
 ), that is they are friendly 

to each other.  Also, Reno throughput depends on the value (
 

   
), while 

Westwood+ depends on (
 

√   
), which means, Westwood+ increases the fair-

sharing of the network capacity between the flows with different RTTs. 

      
 

   
∗ √

 ∗(   )

 
     (3.2) 
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TCP Westwood+ follows the following algorithm (3-4) [8]. 

 

 

 

Algorithm (3-4) of Westwood+ shows the reactions of the TCP sender on 

new coming ACK segments. It increases additively as NewReno, if normal ACK 

is the input. Otherwise, if 3 duplicate acknowledgements (DUPACKs) or a 

timeout segment (RTO) are the input, then ssthresh and cwnd are readjusted.  

 

 

Figure 3-4: Key Working Idea of TCP Westwood/Westwood+ 
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Anti-Aliasing Filter 

AAF is a filter used to limit the signal bandwidth in order to satisfy the 

sampling theorem of Nyquist–Shannon. 

    
  

    
     (3.3) 

where: 

   :  anti-aliasing BW sample (W at the filter output) 

𝑑  : data successfully acknowledged from receiver within last RTT (i) 

     :  last RTT (i) 

 

The filter‟s equations are given below: 

 

 ̂       ̂    (   )       (3.4) 

    
  

    
     (3.5) 

where: 

    :  bandwidth sampled measured at time point k, 

 ̂  :  bandwidth estimation from the filter at time point k, 

 ̂    :  bandwidth estimation from the filter at time point (k-1), 

  :  filter constant (19/21) 

 

3.3 TCP Hybla 

 

TCP Hybla [38] has been designed to solve the problems of heterogenous 

networks that exhibit large round-trip times (RTTs) in their TCP connections. 

Terrestrial or satellite links are such networks that are disadvantaged because of 

their very long RTTs. TCP Hybla has emerged as an analytical model, as 

depicted below, which stems from studying the dynamics of congestion window 

in standard TCP variants (Tahoe, Reno, NewReno). This model suggests some 
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necessary modifications to remove the dependence of TCP performance on 

RTT. 

As mentioned in its proposal, TCP Hybla reduces the penalization 

suffered by the wireless links, i.e. the satellites connections. Also, Hybla does 

not infringe the end-to-end semantics of TCP. Hence, it is compatible with the 

standard TCP. The equation below describes the growth rate of the congestion 

window   ( ) of normal TCP as a function of RTT. As seen, it is RTT-

dependent. 

 

 ( )   {
                           
    

   
                          

       (3.6) 

where: 

 ( ) : the congestion window expressed in segments, 

   : the slow-start threshold (ssthresh), which is defined as  

               (3.7) 

   : the time at which ssthresh is reached. It results from the above equation:  

      ∗             (3.8) 

 

The next figure shows the growth rate of normal TCP, which depends on 

RTT. It is apparent that slower connections are penalized by a longer time to 

reach the required ssthresh value. 
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Figure 3-5: Window Dynamics of Standard TCP  [38] 

 

It is clear that with larger RTTs, the growth rate of the congestion 

window becomes slower, hence,    is higher. Now, we define the segments 

transmission rate as: 

 ( )  
 ( )

   
                 (3.9) 

 

After modifying the congestion window to be RTT-independent, as 

suggested by TCP Hybla, we get: 

 

 

  ( )   {
 ∗   

 ∗ 

                                       

 ∗   ∗
      

   
                            

           ,  (3.10) 

 

   
   

    
     (3.11) 

where: 

 

  ( ) : the congestion window of TCP Hybla expressed in segments, 

     : the normalized round-trip time, 

RTT0    : the round-trip time of the reference connection. 
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So, according to TCP Hybla, we have a segments transmission rate 

  ( ), which is independent of RTT, and defined as: 

 

  ( )  
  ( )

   
       (3.12) 

 

Following figure shows the congestion window of TCP Hybla for 

different RTTs.  
 

 

Figure 3-6: Window Dynamics of TCP Hybla   [38]  

 

It is visible that for any possible RTT, the congestion window does not 

depend on RTT, and the time needed to reach ssthresh is the same for all RTTs. 

The following equation shows the segments transmission rate   ( ) as a 

function of RTT0 only. For fast connections, (RTT   RTT0), Hybla behaves as 

the standard TCP. 

 

  ( )   {

 

    
∗     

 

                            

 
 

    
∗   

      

    
                           

       (3.13) 
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3.4 TCP BIC (Binary Increase Congestion Control) 

 

TCP BIC [39] consists of the following main parts as shown in the next figure: 

- binary search increase,  

- additive increase, and 

- probing 
 

 

 

Figure 3-7: Window Phases of TCP BIC   [40] 

 

In the phase of binary search increase, the BIC congestion control is 

viewed as a search problem. It gives “yes/no” feedback through packet loss as 

to whether the current window size is larger than the network capacity. The 

search problem uses 2 starting points: Wmin and Wmax, which are the minimum 

and maximum window sizes, respectively. Wmax is defined as the window size 

just before the last packet loss occurred (also called fast recovery). Wmin is the 

window size just after the last packet loss. 

 

 

The algorithm of this phase repeatedly computes a new value for the 

midpoint between Wmax and Wmin. Then, it sets the current window size to this 

value. Thereafter, it checks for feedback, in the form of packet losses. Based on 

this feedback, the midpoint is taken as the new Wmax if there is a packet loss, 

and as the new Wmin if not. The above process continues until the difference 
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between Wmax and Wmin is smaller than a preset threshold, called the minimum 

increment (Smin). On the other hand, Smax is the maximum increment. This 

phase is needed to probe the available bandwidth.  It is aggressive, when the 

difference between the current window size and the target window size is large, 

but becomes less aggressive as the current window size gets closer to the target 

window size. 

 

The second part of BIC algorithm is the additive increase. It shows a 

linear behavior as shown in the figure below. When combined with the strategy 

“binary search increase”, the strategy “additive increase” ensures faster 

convergence and RTT-fairness. This combination of binary search increase and 

additive increase is called binary increase. Combined with a multiplicative 

decrease strategy, binary increase becomes close to pure additive increase 

under large windows. This is because a larger window results in a larger 

reduction (large decrease factor:   ) in multiplicative decrease. Therefore, a 

longer additive increase period. When the window size is small, it becomes 

close to pure binary search increase – a shorter additive increase period [40]. 

Figure (3-8) shows the behavior of TCP BIC during its phases. 
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Figure 3-8: Behavior of TCP BIC During its Phases [39] 

 

 

 

 

 

 

The pseudo-code below describes the principle of TCP BIC 

 

Algorithm 3-5 TCP BIC 

____________________________________________________ 
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The bandwidth probing is executed according to the following algorithm: 

 

Algorithm 3-6 BW Probing in TCP BIC 

 

 
 

 

 

 

The throughput of TCP BIC for very large window size can be given as:  

 

            
 

   
 √

    

 
 
   

 
 
 

 
               (3.14) 

 

But for very small window sizes, the throughput is: 

 

    
    

   
              (3.15) 

 

where: 

      
 

(      (
       

    
 )   (    ))  

                        (3.16) 
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3.5 TCP Ledbat 

 

LEDBAT [41] is an abbreviation for Low Extra Delay Background 

Transport, which is described in the RFC 6817. TCP LEADBAT is meanly used 

with point-to-point (P2P) applications like BitTorrent and for non-interactive 

streaming applications. It is an experimental congestion control protocol, that is 

based on one-way delay. When a queue is building up, then the one-way delay 

is increasing, which means a congestion may happen. It utilizes the available 

bandwidth on an end-to-end path while limiting the consequent increase in 

queueing delay on that path. Following figure shows the working principle of 

LEDBAT in the presence of TCP traffic. 

 

 

 

Figure 3-9: Window Dynamics of TCP Ledbat [25][41] 

Figure (3-9) above explains the design goal of LEDBAT, and why it 

belongs to the class of transport protocols known as “Lower-Than-Best-Effort-

Protocols”. TARGET here stands for the value of queueing delay for which the 

congestion window cwnd is maximal without causing packet losses. At 

TAGET, LEDBAT is causing the maximum allowable queueing delay, which is 
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introduced in the network. Next figure shows this idea and a comparison with 

the standard TCP variants like TCP Reno and TCP NewReno. 

 

Figure 3-10: Congestion Management in TCP Ledbat vs. Standard TCP 

Another parameter called gain (G) is used to determine the rate at which 

the cwnd responds to changes in the queueing delay. The cwnd increase or 

decrease of LEDBAT depends on the difference between the current 

measurement of queueing delay (        ) and the predetermined delay 

(TARGET). This difference is called offtarget. Following equations describe 

the dynamic behavior of LEDBAT. 

                                (3.17) 

       (         )   ( )  
 ∗      

 ( )
      (3.18) 

where: 

           the current queueing delay measured in the network. 

  (  ) : a function describing the behavior of cwnd depending on offtarget. 

The time evolution of LEDBAT source congestion window is calculated 

according to: 
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 (   )   {

 

 
  ( )                                  

                                      

                                         

           (3.19) 

According to RFC paper of Ledbat, following pseudo-code shows the 

algorithm and the operations of sender and receiver of LEDBAT. 

Algorithm 3-7 TCP Ledabt 

 

 

3.6     Summary 

 

We tested some of the known TCP protocols dedicated for congestion 

control in wired and wireless networks and we compared them versus 

Westwood+. As visible in the next figures, we see that TCP Westwood+ is 

preferred over all other protocols as it has the highest throughput (T), the best 

link utilization (U) and the shortest time to complete transmission (CTT). We 

assume that the data file has the size 100 MB. The bottleneck bandwidth is 100 

Mbps and the time needed for transmitting the file is   , which depends on the 

packet error rate, the segment size (MTU) and the protocol type. Based on these 

values, we get the following equations: 

1.   
              

                   
 

   ∗   ∗     

   ∗   ∗
   

    
 ∗   

∗     ( )   
   

(
  

   
)
 ( )    (3.20) 
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Figure 3-11: Network Utilization for Different TCP Approaches 

 

Figure 3-11 shows that Westwood+ has the best utilization when the packet 

error rate is higher than 1e-3. 

 

 

2.    
                                 

             
  (Throughput Kbps) (3.21) 

 

Figure 3-12 shows that Westwood+ has the best throughput when the error 

rate is higher than 1e-3. 

 

 

Figure 3-12: Network Throughput for Different TCP Approaches 
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3. CTT = Last_Ack_Time - First_Ack_Time     (3.22) 

 

 
 

Figure 3-13: CTT for Different TCP Approaches 

 

Figure 3-13 shows that Westwood+ has the shortest transmission time when 

the error rate is higher than 1e-3. 

Chapter Four: Proposed approach - DCM+ 
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4.1 Introduction 

 

TCP DCM+ is a new approach, that we have proposed in [8], and has 

been explained in more depth in [9]. It stands for Dynamic Congestion control 

for wireless and Mobile systems. It uses the bandwidth estimation (BWE) 

algorithm of TCP Westwood+, and hence comes the (+) sign. Please refer to 

chapter 3 to see the procedure of BWE in Westwood+. Figure 4-1 shows the 

origins of TCP DCM+. The transition lines between the different algorithms 

show the time evolution of these approaches. We see that DCM+ has its origins 

in many different techniques, i.e. DCM [42], which aims at improving the 

performance in MANETs using TCP Westwood. 
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Figure 4-1: Origin of TCP DCM+ 

 

TCP DCM+ has been designed to avoid the congestion problems 

occurring in wireless and mobile networks. It is an L4-only protocol, which can 

be used in different network types like wired, wireless and MANETS. It shows 

its tremendous performance improvement when the packet error rate is between 

(0.001 and 0.04).  

In chapter 5, we compare DCM+ versus other protocols and show that it 

is superior to these approaches. Our comparison uses TCP NewReno, TCP 

Hybla, TCP Ledbat, TCP BIC, TCP Vegas, TCP HighSpeed and TCP 

Westwood+. The properties of DCM+ like stability and robustness are eminent. 

For packet error rates less than 0.05, it shows very similar results like TCP 

Westwood+, however it has the advantage that it does not suffer any window 

drops because of congestion. The only drops it shows are those caused by 

wireless channel losses. 

4.2 Window Dynamics of TCP DCM+ 
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Applying TCP DCM+ for any connection between end devices may consist 

of the following 5 phases like in figure 4-2:  

1- Initialization (Probing) phase (IP), where rate of growth (cwnd) is 

small, though channel capacity is not exhausted. In this phase, no 

danger of congestion is expected. Packet losses may happen 

depending on the channel conditions. This phase is a core phase, that 

always happen at the beginning of each DCM+ transmission. Small 

amounts of data are sent within this period; hence, their throughput 

may be less or equal than other approaches. 

2-  Advancing phase (AP), where the transmission increases quickly by 

large steps (exponentially). This is a core phase for mid to large files, 

which is the reason for high performance of DCM+. 

3- Near-Channel-Capacity phase (NCCP), where TCP DCM+ uses the 

whole available channel capacity to transmit data at a near-constant 

rate. This is a core phase for large files. It can be reached after an AP- 

or an LP-phase like in phase 4. 
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4- Losses phase (LP), where a lost packet is detected and retransmitted. 

The channel capacity after sending the lost packets is nearly equal the 

available channel capacity before the losses has been detected. This 

phase may occur in any of the previous phases, but it is more 

convenient to happen within the phases 2 and 3, because the number 

of sent segment in phases 2 and 3 is the highest. The number of losses 

in all phases depend on TCP buffer size and the channel conditions 

like packet error rate, bottleneck BW, segment size, etc. This phase is 

random and not a core phase. 

5- End phase (EP), where the transmission is completed successfully. 

Drops may happen randomly at the end of this phase. See figure 5-7. 

 

4.3 TCP DCM+ algorithm 

 

As mentioned previously, DCM+ is an end-to-end (E2E) technique, 

which maintains the standard TCP semantics and does not create any additional 

overhead. DCM+ is used from the TCP sender to control the sent amount of 

data on the transmission link. As given in the published paper [8][9] and [10], 

the window increase follows the following equations: 

      

      
 

      

      
           (4.1) 

 

         {
          ∗                                              

        (
 

      ∗        
)                             

        (4.2) 

 

Algorithm (4-1) below shows the behavior of TCP DCM+. 

 

Algorithm 4-1 TCP DCM+ 
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From the view point of TCP NewReno, it has modified behaviors in both 

SS and CA phases. However, from view point of TCP Westwood+ [35][36], CA 

only is modified. This modification is done through C++-function overloading 

in the Westwood+ implementation files under ns-3.29 network simulator. 

Through function overloading, we are able to redefine the behavior as needed. 

The complete behavior is placed in the belonging C++ file, which ends in ns3 

with „.cc’ . The new member function that we redefine in „TcpWestwood.cc‟ 

file is: 

 

 

This member function has 2 parameters, which are described as follows: 
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tcb:  internal congestion state,  

and 

segmentsAcked: count of segments acked. 

The behavior of this function is described in the algorithm (4-2): 

 

 

After the bandwidth estimation (BWE) is calculated, DCM+ calculates the 

new values for both ssth and cwnd depending on the previous values RTT, 

RTO, the parameter rateCA and whether the calculated cwnd is less than ssth or 

not. As feedback signals, we use the previous states of both RTT and RTO. The 

behavior of cwnd is observed to be dynamical, in that it tracks the state of 

ssthresh as shown in figure 4-3. 
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Figure 4-3: Window Dynamics of TCP DCM+ 

 

If a change (increase or decrease) of ssthresh has been observed within a 

specific time interval, then DCM+ keeps using the current value of cwnd until a 

newer ssthresh has been reached. Thereafter, cwnd moves and remains at the 

new state of ssthresh for the new time interval. This way, cwnd will 

theoretically never exceed the available ssthresh. Hence, congestion events 

cannot occur. We claim that congestion events are eliminated. Figure 4-4 shows 

this behavior for packet error rate = 7.5e-3 and for MTU size =1200 bytes. 

The design of TCP DCM+ is similar to TCP NewReno, which is detailed 

in RFC 6582. DCM+ uses the same 4 phases like NewReno (SS, CA, fast 

retransmission (FR) and fast recovery (FV)). In DCM+, the behaviors in (SS) 

and (CA) have been so modified to enforce the cwnd to track ssth in the next 

time interval. TCP timing parameters RTT and RTO have been used as 

feedback signals to control the values of ssth and cwnd in the next interval. 
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During the design of this approach, we followed the idea, that a 

continuous increase in RTT values leads gradually to an increased queue length 

in the intermediate nodes. This will later result in a true congestion event (i.e., 

packet drop), and also higher delays of the returning ACK packets to the 

sending node. Late arrival of ACK packets at the source node may cause wrong 

interpretation of the network status as “congested”, especially if the RTO 

threshold is exceeded. In this case, cwnd will drop down to the value of 1 

segment or (MSS=1). So, we tied this idea of congestion with the parameters 

RTT and RTO, and we introduced a new parameter called congestion rate or 

rateCA as in the equation (4.3), which is an important measure for congestion, 

especially if the CA phase has been entered. This parameter is crucial for 

determining the next appropriate values of cwnd and ssth. It is defined as the 

ratio of the previous RTT divided by the current minimal RTT. As a result, all 

parameters (cwnd, ssth, RTT, RTO and rateCA) in the next interval, are 

affected, and therefor dynamically changing during the transmission.  

 

       
      

      
                                          (4.3) 

 

Now, we consider rateCA higher than 1 as advance or “Link Capacity 

Increasing”, and on the other hand, values lower than 1 as danger or “Link 

Capacity Decreasing”. Depending on the condition stated in CA phase of 

DCM+ [8][9][10], if cwnd is less than or equal ssth, then rateCA will be used to 

start the retransmission in wide steps, otherwise, retransmission goes slowly and 

prevents any possible congestions. Please refer to figure 4-4, which is taken for 

the same parameters as figure 4-3, to see the dynamics of RTT and rateCA. We 

see, that increased values of RTT (RTTold < RTTnew means rateCA <1) lead to 

low values of cwnd, while decreased values of RTT (RTTold > RTTnew means 

rateCA > 1) lead to an increase of cwnd. We clearly observe, that the average 

delay is minimized and it took only 68 seconds to transmit the sent data size. 
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Figure 4-4:  Changing of RTT as Indicator of Increase/Decrease of CWND 

 

At each time point during the transmission, the value of the next RTO is 

also affected by the newly calculated rateCA. If the current RTT is decreasing, 

then RTO shall be also reduced, as no congestion is expected. As described in 

the CA phase of DCM+, next RTO depends on the current rateCA. This 

behavior is described through the following equations (4.4) and (4.5): 

 

        
      

      
  

      

      
                                              (4.4) 

 

The equation above can be reformulated as: 

 

                                                 
      

      
                                        (4.5) 

Figures 4-5 and 4-6 depict an important property of TCP DCM+, namely 

the detection of link quality, i.e. wireless channel, as a result of the occurring 

RTO timeouts, which mean lost packets as a reason for bad link conditions. 

When a packet is lost because of bad wireless links, then the retransmission 

timeout counter is reset to a predefined value, here (in the ns3 simulator) the 

initial RTO value is equal 1 msec. 
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Figure 4-5: Drops of CWND as a Result of Wireless Channel Losses 

 

The drops of cwnd, which are highlighted in figure 4-5 and marked as (1) 

and (2) coincide with the RTO reset time points, which are 54 sec and 65 sec. 

The drop at time point 18 sec is minimal and cannot be observed on the cwnd 

curve. This time point is marked as (*) in the following plots of RTT and RTO.  

At the drop points, the RTO counter is reset to 1 segment. Also, these time 

points appear on the RTT curve as spikes, and mean lost packets. 

 

Figure 4-6: Drops of CWND as Spikes on RTT Curve 

1 

2 

1 2 

2 1 
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The next property of TCP DCM+ is burst transmission, which is visible 

in figure 4-7. It is the reason for the high throughput and quick delivery of data 

by this approach. It is presented as a relationship between sent bytes (sender) 

and received bytes (receiver). We observe the huge number of bytes that are 

received correctly at each time point. 

 

Figure 4-7: Send-Receive Relationship of DCM+ Connection 

 

Figure 4-8 depicts this behavior again in more depth through an enlarged 

section of figure 4-7.  

 

Figure 4-8: Enlarged Section of DCM+ Data Bursts  
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4.4 TCP SACK Option 

This option is placed in the TCP options field inside the TCP header [43]. 

It was originally mentioned in RFC 1072. Currently, it exists officially as a 

proposal known as selective acknowledgment (SACK) TCP option, which is 

detailed in RFC 2018. SACKs work by appending a TCP option to a duplicate 

acknowledgment (DUPACK) packet. The SACK option contains a range of 

noncontiguous data, that are received successfully. It indicated the sender to 

send only the missing segments, which are not listed in the SACK option. To 

enable SACK for a TCP connection, SACK negotiation is required at the 

beginning of connection between the source and destination. TCP DCM+ 

benefits largely if SACK option is enabled. Figure (4-9) shows a connection 

with SACK enabled. 

 

Figure 4-9: TCP Connection with TCP SACK Option Enabled 

Figures (4-10), (4-11) and (4-12) compare 3 cases where the sizes of sent 

data are small (10 MB), mid (100 MB) and large (512 MB). The simulations are 
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done for TCP SACK enabled and disabled. The benefits are visible when TCP 

SACK option is enabled, especially when large and mid-size amount of data is 

transmitted. Both throughput and transmission time are improved. Large size 

files are sent much quicker (only 44% of the required time) and with very little 

drops (< 5% of the case without SACK), as depicted in figure 4-10, while mid-

size files as in figure 4-11 have a little longer time (130%) to transmit the file. 

 

Figure 4-10: Sending a Large File (512 MB) with TCP DCM+ 

 

However, mid-size files with the SACK option enabled suffer only (< 

7%) window drops compared with SACK not enabled.  
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Figure 4-11: Sending a Mid-size File (100 MB) with TCP DCM+ 

As shown in the figure 4-12, small files don‟t benefit largely from SACK 

option. It may be recommended to disable SACK if channel conditions are good 

and the size of sent data is small. 

 

Figure 4-12: Sending a Small-size File (10 MB) with TCP DCM+ 

 

4.5 Summary 

 

We presented a new approach, that finds its roots in many approaches 

like TCP NewReno, TCP Westwood+ and TCP WELCOME. DCM+ is 

designed like a standard TCP NewReno, and consists of 4 phases. It makes use 

of bandwidth estimation like TCP Westwood+. The behavior of congestion 

avoidance is added and overloaded in TCP DCM+ to modify its behavior as 

needed. The behavior of DCM+ during the CA phase enforces the cwnd to track 

ssthresh, and it never exceeds it. Hence, we made the claim, that congestion 

events are minimized largely. The only drops of window size are the results of 

bad wireless links, which are the reason for lost packets. We also presented its 
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properties like burst transmission and high throughput, robustness and 

transmission speed. 

Chapter Five: Simulation Results and Analysis 
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5.1 Introduction 

 

 The simulations in this chapter clearly show the improvements achieved by 

TCP DCM+ like stability, robustness and short transmission time. Through 

intensive simulations we found, that DCM+ also shows improved metrics like 

high throughput, low average delay, minimized lost packets. Also, we observed 

no cwnd drops, except the lost packets caused by bad wireless channel. All these 

properties make DCM+ competitive against other TCP protocols. 

 

5.2 Simulation Environment 

 As a simulator, we used the network simulator (ns-3.29), which is a 

discrete-event simulator (DES). Contrary to ns-2, ns-3 is C++-only simulator, 

which makes debugging much easier than in ns-2, which for simulating a 

scenario applies (C++/TCL) bi-language. Some people find it inconvenient to 

learn and program with TCL. Ns-3, however, has an optional python interface, 

which makes it possible to invoke the C++ code from python. Yet, python 

bindings (interfaces) for ns-3 are a work in progress, and some limitations are 

known by developers. Another important difference, is that ns-3 has an 

emulation mode, which allows for the integration with real networks. Also, ns-3 

came to resolve the problems already existing in ns-2. To analyze the results, 

we used many tools like NetAnim, which is the main tool for the analysis in ns-

3. Other tools like Gnuplot, TraceMetrics or Wireshark have been applied 

depending on the file type, that we wish to analyze.  

 

As ns-3 [44] is primarily developed on GNU/Linux platforms, we used 

the virtualization software VirtualBox 5.22 [45], later updated to 6.0, in order to 
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install Ubuntu Linux 18.04 as a guest OS, while MS Windows 7 SP1 ultimate is 

used as a host OS. More details about installing last version of ns-3 can be 

found under the simulator‟s main site. 

 

5.3 Performance Metrics 

While trying to troubleshoot network problem like degradation or 

outage, measuring network performance is crucial to determine when the 

network is slow and what are the roots for the problem (e.g., bandwidth outage, 

misconfiguration saturation, network device defect, etc.). These needed 

indicators are usually called metrics and are required to produce tangible figures 

when analyzing network performance. For the reason of detailed comparison, 

we introduced a new metric, which we called normalized advancing index 

(NAI). It is defined as the ratio of throughput divided by the product of lost 

packets (given in bytes) and error rates.  Its unit is (1/second), and should 

indicate the speed of delivering the complete size of data from one end to the 

other despite the existence of lost packets at a specific error rate. The figures 

produced in this chapter are created according to the following equations: 
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The figures in this chapter are shown for different values of performance 

metrics for different TCP congestion control protocols (DCM+, Westwood+, 

NewReno, BIC, Ledbat and Hybla). The simulations are executed for 

different packet error rates. The simulation environment is a virtual machine 

of ns-3.29 under Linux Ubuntu. The VM is inside Oracle VirtualBox 6.1.x. 

The following parameters are constant through this thesis: 

 

Table 5.1: Simulation Environment Parameters 

Data size Bottleneck BW Access BW MTU Size Duration (sec) 

100 MB 100 Mb/sec 1000 Mb/sec 1500 Bytes 5000 

 

5.3.1  Throughput 

 

 

Figure 5-1: Comparing Throughput of DCM+ with Different TCP Protocols 

 

In figure 5-1, we see the plots of the throughput for different protocols, 

and we clearly see the advantage of DCM+ over most other protocols. This high 

throughput extends nearly over the most range of error rates, which is from 1e-6 

to 0.05. For error rates less than 1e-3, we see that only BIC protocol performs 

better, but that is at the expense of other metrics like packet delivery ration 
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(PDR), average delay and normalized advancing index (NAI), where BIC 

performs worst. 

5.3.2  End-to-End Average Delay 

 

Figure 5-2 shows the average delay for the different protocols. Our 

approach is among the few protocols with least average delay in all tested cases. 

BIC protocol has the highest E2E delay. We conclude, that DCM+ does not 

cause long queues (full buffers) in the intermediate routers. 

 

 

Figure 5-2:  Comparing Delay of DCM+ with Different TCP Protocols 
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5.3.3 Packet Delivery Ratio (PDR)  

 

 
 

Figure 5-3: Comparing PDR of DCM+ with Different TCP Protocols 

 

In figure 5-3, it is clear that DCM+ has very similar PDR-behavior like 

other protocols. It reaches values of 99.998 % for low error rates (1e-6), and has 

like Hybla the best performance for high error rates (< 0.05).  

 

5.3.4  Normalized Advancing Index (NAI) 
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Figure 5-4: Comparing NAI (Robustness) of DCM+ with Different Protocols 
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Figure 5-5: Comparing CTT of DCM+ with Different TCP Protocols 

 

 

5.3.6 Packet Losses 

 

 

The total number of lost packets during transmission depends on many 

factors like bandwidth between routers, bandwidth used from destination node, 

MTU size, error rate and TCP buffer size. We see in figure 5-6, that DCM+ has 

beside Hybla the lowest percentage of lost packets.  

 

 

Figure 5-6 Comparing Packet Losses of DCM+ with Different TCP Protocols 
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5.4 Effect of TCP Buffer Size on the Window Size of TCP DCM+ 

 

 

The plots in figure 5-7 are taken for different sizes of TCP buffer. The 

simulations are shown for the following sizes: 4MB, 2 MB, 1 MB, 512 KB, 256 

KB, 128 KB, 64 KB, 32 KB and 16 KB.  It is visible, that depending on these 

different sizes, the number of drops and window sizes are also different. The 

parameters used in figure 5-7 are shown in table 5-2. 

 

Table 5-2: Simulation Parameters for Different TCP Buffer Sizes 

Parameter MTU Packet Error Rate Access BW Bottleneck BW 

Value 750 bytes 0.01 10 Gbps 100 Mbps 

 

 

 

Figure 5-7: Effect of TCP Buffer Size on the DCM+ Connection 
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Figure 5-7 shows, that more time is needed for the transmission with 

decreasing the TCP buffer size. The number of lost packets (window drops) 

increases. Also, the window size and throughput decrease. Figure 5-8 below 

shows the robustness (NAI) of the DCM+ transmission for different buffer 

sizes. With increased buffer size, the robustness increases until we reach a 

maximum at the size equal 4 MB. 

  

 

 Figure 5-8: Effect of TCP Buffer Size on Robustness (NAI)  

 

In figure 5-9, we present the number of drops as a function of the TCP 

buffer size. As shown below, it is decreasing with increased buffer size. At 4 

Mb we have a minimum of just 2 drops. 

 

 

Figure 5-9: Effect of TCP Buffer Size on the Window Drops 
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 The buffer size has a big influence on CTT. We see from figure 5-10, that 

it is exponentially decreasing with increased buffer size. The sizes greater than 

512 KB deliver the lowest transmission times.  

 

 

Figure 5-10: Effect of TCP Buffer Size on the Transmission Time (CTT) 

 

 The throughput of TCP DCM+ connection as a function of the TCP 

buffer size is sketched out in figure 5-11. As shown, it reaches a maximum of 
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Figure 5-11: Effect of TCP Buffer Size on the Throughput of DCM+ 
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also packet losses. Decreasing these losses is achieved by increasing the buffer 

size. From figure 5-12, it is visible, that the least losses are achieved when the 

buffer size is 4 MB. 

 

 

Figure 5-12: Effect of TCP Buffer Size on the Packet Losses 
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Figure 5-13 (a): Comparing robustness (NAI) for DCM+ vs. Vegas 

 

For each of the following cases, the parameters for both DCM+ and 

Vegas are equivalent.  In figure 5-13 (a), the comparison is made for robustness 

(i.e., NAI), while in figure 5-13 (b) we compare the transmission time (CTT).  

 

 

Figure 5-13 (b): Comparing CTT for DCM+ vs. Vegas 
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In the following table 5-3, we have written down the ratios (TCP DCM+ / 

TCP Vegas) for robustness (rNAI) and transmission time (rCTT). From this table, 

we have the conclusion, that the product of both ratios in all cases equal “1”. 

That means, if we know the transmission ratio, then we can calculate the 

robustness ratio, and vice versa, but it is still not clear, if this rule holds for 

other approaches and topologies. 

 

Table 5-3:  Improvements of TCP DCM+ against TCP Vegas 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

NAI ratio  2.38 5.16 2.36 2.13 35.82 6.02 

CTT ratio 0.43 0.19 0.43 0.47 0.028 0.17 

Product 1.02 0.99 1.01 1.00 1.00 1.02 

 

P = rNAI * rCTT = 1         (5.6) 

 

We can also reformulate the above equation to: 

       

        
∗

       

        
 = 1     (5.7) 

 

Or equivalently, 

 
       

        
 

        

       
     (5.8) 

 

From the table above, we have the worst-case improvements for both 

NAI and CTT in case 4, and the best-case improvements in case 5. We 

conclude, that DCM+ largely improves the TCP transmission.  In all cases we 

clearly identify the supremacy of TCP DCM+. 
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5.6 Optimizing the Segment Size (MTU)  

 

Optimizing the segments size is crucial before sending data with DCM+. 

To understand the effect of the MTU optimization, we consider the following 

cases. The simulations below are done for different packet error rates and MTU 

sizes. Following two cases are distinguished: 

 

Case 1: Same error rate but different segment sizes. 

 

 

In figure 5-14, we see, that unwanted drops are occurring as a side effect 

of changing the MTU size. In this figure we sent data of the size 100 MB and 

the error rate is 1e-2. The SACK option is enabled. Here, if MTU = 1500 bytes, 

we finish transmission in lower time compared with the case MTU = 1200. In 

the first case, it suffers just 1 unwanted drop. On the other hand, if MTU = 1200 

bytes, we have the longest time to finish transmission (CTT) and suffers 4 

window drops.  
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Figure 5-14: Window Dynamics for Different MTU/Same Error Rate 

It is also clear, that the performance is best when MTU = 1200 bytes. It 

finishes transmission faster and suffers no unwanted drops, as shown in figure 

5-7. It gives a hint, that an additional increase of the performance of DCM+ 

may be possible if the used MTU size is optimized before the transmission. 

 

Case 2: Different error rates but same segment sizes 

 

In figure 5-15, the size of data to be transmitted is (256 MB), and the 

used error rates are: (1e−3, 1e−2). We see, that for the error rate = 1e−3, the 

transmission is much quicker (CTT is reduced by the half) while the throughput 

is improved by 1.8 times. Besides, it does not make any false drops. 

 

 

Figure 5-15: Window Dynamics for Different Error Rates/Same MTU 
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5.7 Impact of Access Bandwidth on the Performance of DCM+ 

 

The following parameters are used during the following section.  

 

Bottleneck BW: 100 Mbps; packet error rate = 0.02; Data Size = 100 

MB;  

 

MTU = 1500 BYTE; SACK option = true. 

Figure 5-16 depicts the network throughput as a function of access 

BW at the destination node. If the access BW is equal the bottleneck BW, 

then we have a maximum. Values of access BW, that are greater than the 

bottleneck BW deliver throughput values that fluctuate around the 

maximum throughput.    

 

 

Figure 5-16: Throughput of DCM+ as function of Access BW 
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Figure 5-17: Avg. Delay of DCM+ as function of Access BW 

Decreasing the average delay is possible as long as the BW at the 

destination is smaller than the existing bottleneck BW. Here, the maximal 

decrease in average delay is 1.17 msec per Mbps in the interval 1 to 10 Mbps. If 

the used BW at the destination is much larger than the bottleneck, then the 

minimization of the delay is negligible and equal 0.01 msec per Mbps. 

 

 

Figure 5-18: Packet Losses Percentage of DCM+ as function of Access BW 

 

The packet losses as a function of access BW is shown in figure 5-18. As 

the throughput increases for access BW greater than bottleneck BW, it is clear 

that the losses will also increase. 
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5.8 Impact of Bottleneck Bandwidth on the Performance of DCM+ 

 

The following parameters are used during this section.  

 

Access BW: 1 Gbps; error rate = 0.02; Data Size = 100 MB; 

MTU = 1500 byte; SACK = true 

 

The maximal throughput as previously said is if the BW of the 

bottleneck is equal the destination BW. The maximum is at 1 Gbps as 

shown in figure 5-19. The improvements are minimal for higher values of 

bottleneck BW. 

 

 

Figure 5-19: Throughput of DCM+ as function of Bottleneck BW 

 

Figure 5-20 shows the delay as a function of bottleneck BW. We see very 
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Figure 5-20: Avg. Delay of DCM+ as function of Bottleneck BW 

 

In figure 5-21, we have a look at the impact of increasing the bottleneck 

BW on the packet losses. In this figure, we have a decrease of losses as the 

bottleneck BW increases. However, the losses are minimal as the difference 

between maximal (2.08 %) and minimal (1.98 %) losses is just (0.1 %) in the 

range 1 Mbps up to 100 Gbps, which means stable and robust transmission. 

 

 

Figure 5-21: Packet Losses Percentage of DCM+ as function of Bottleneck BW 
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5.9 Properties of DCM+ and comparing with DCM and Westwood+ 

 Figure 5-22 shows the transmission rule 2, where the product P of the 

ratios rNAI and rCTT is theoretically equal 1. This figure shows rule „2‟ for five 

cases that compare DCM+ against TCP Vegas. It is clear that for case one the 

robustness ratio is  5 while the CTT ratio is  0.194 and P is   0.97. For case 

four it is  1.004 .  

 

 

Figure 5-22: DCM+ Rule „2‟:  Robustness Ratio is Inverse Proportional to the Ratio of Transmission Time 

 

Figure 5-23 below shows the robustness curves for DCM+ and Vegas. 

The ratio of the robustness for case 1 is nearly „5‟. 

 

 

Figure 5-23: Robustness curves for DCM+ and Vegas 
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Figure 5-24 shows a comparison of the robustness between DCM+ and 

Westwood+. DCM+ shows the same robustness as Westwood+ for some error 

rates, which means that DCM+ suffers less packet losses and, hence, better 

fairness. 

 

Figure 5-24: Comparison of the Robustness of DCM+ vs Westwood+ 

 

Figure 5-25 is about the utilization of DCM+ and Westwood+. We see that 

DCM+ uses less bandwidth than Westwood+ if the error rate is low. If the link 

suffers higher losses and needs more bandwidth to achieve the best 

performance, then DCM+ can make use of a utilization that exceeds 

Westwood+. This will result in a better fairness than for Westwood+.  

 

Figure 5-25: Comparison of the Utilization of DCM+ vs Westwood+ 
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Figures 5-26, 5-27, 5-28 and 5-29 shows the superiority of DCM+ over DCM in 

terms of throughput, complete transmission time, robustness and utilization. 

From very low packet error rates (1e-6) up to (0.05), DCM+ owns much better 

throughput values against DCM as shown in figure 5-26. 

 

Figure 5-26: Throughput Comparison: DCM+ vs DCM 
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Figure 5-27: CTT Comparison: DCM+ vs DCM 
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Figure 5-28 compares the robustness of DCM+ and DCM. While DCM shows 

piecewise linear behavior for all all error rates, DCM+ is nonlinear over the 

regions with higher error rates in order to minimize the packet losses. 

 

Figure 5-28: Robustness Comparison: DCM+ vs DCM 

 

Figure 5-29 shows the utilization of DCM+ and DCM. DCM+ has the ability to 
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DCM. 

 

Figure 5-29: Utilization Comparison: DCM+ vs DCM 
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5.10 Summary 

 

As a result, our simulations of many cases with different values of parameter 

(error rate, data size, MTU size, protocol, bottleneck bandwidth and access 

bandwidth) show, that next cwnd does not exceed ssth, and hence, only very 

little congestion events could occur. We also found, that cwnd is changing 

dynamically and quickly as a reaction on the continuously changing channel 

capacity. This has been reflected as a higher throughput, NAI and lower CTT.  

 

In this research work, we have shown, that our approach is stable and robust. 

It has the ability to minimize the average delay and packet losses, but also to 

improve the throughput (over 1200% higher than NewReno, over 350% than 

BIC and 400% than Hybla) at error rate = 0.004.  
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Chapter Six: Conclusion and Future Work 
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6.1 Conclusion 

In this thesis, we have proposed a new TCP algorithm for controlling the 

congestion events. It is an L4-only protocol that is designed to be suitable for 

the different data networks, i.e. wired/ wireless and MANETs. It is a sender-side 

technique that estimates the available channel capacity (link bandwidth) after 

each congestion event and before the transmission. It uses the same algorithm as 

TCP Westwood+ to estimate the bandwidth. Through the simulations, we have 

shown, that this approach is best appropriate for tough wireless environments 

with packet error rates between 1e-4 and 5e-2, which are the default values for 

bad links. 

 

The main idea of DCM+ is based on the ratio between the previous and 

the current RTT measurements, which we expressed as the parameter rateCA. 

In ns3.x simulator, the default algorithm to estimate RTT value after each ACK 

is the Karn algorithm. The parameter rateCA helps the TCP sender to detect the 

status of the channel whether congested or not. According to this value, the 

transmission may be very fast or very slow. On the other hand, if we detect that 

rateCA is increasing, then we can also minimize the RTO timer, which can 

additionally speed-up the transmission process. During the transmission, the 

cwnd always tracks and never exceeds the value of ssthresh. This has the effect, 

that less congestion events could occur, and hence, it results in less packet 

losses and better robustness. Through the robustness measure that we 

introduced in this thesis, we found that the behavior of DCM+ leads to higher 

throughputs, improved fairness, less losses, shorter end-to-end delays and 

transmission times. The analysis of the results shows 2 important properties. 

The first one is the transmission burstiness, which can be seen in the linear 

relationship between Tx and Rx. The second property is the inverse relation 
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between the ratios of CTT and robustness, which simplifies the judgement of 

the behavior of DCM+ against other techniques. 

 

The comparison of DCM+ against 12 other TCP protocols has been 

executed. The advantage of DCM+ is clear in all simulations and their results. 

Hence, DCM+ shows best performance among all tested approaches. It finishes 

transmission much faster; it has the highest throughput and it, theoretically, 

causes no new congestions on the transmission link. This is of great benefit for 

new devices, that may be currently using the same channel. 

 

6.2 Future Work 

We may need more research to enhance the stability and robustness beyond 

the barrier of (4%) packet error rates. The analysis of more complex topologies 

by the existence of reverse TCP traffic and different TCP protocols could be 

very helpful to further understand the fairness and friendliness of DCM+. 

Further step could be the implementation of DCM+ as an independent module 

under the network simulators (ns2 and ns3). Practical implementation under 

Linux kernel may be also very helpful to test the performance in real-world 

networks. We can here summarize the future research topics as follow: 

 

 Generalization of the DCM+ approach through a mathematical model, 

 Enhancing the performance of DCM+ through improving the RTT 

estimation technique, 

 Checking the appropriateness of DCM+ for mobile networks like LTE 

(4G) and (5G). 

 Enabling the integration with machine learning approaches like 

reinforcement learning (RL) to minimize the unwanted drops, and to 

understand the wireless channel characteristics. 
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Paper3: IARIA (Conference in Valencia – Spain – Nov. 2019) 
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Appendix B:  DCM+ Source Code 

 

void TcpWestwood::CongestionAvoidance (Ptr<TcpSocketState> tcb, 

uint32_t segmentsAcked) 

{ 

   NS_LOG_FUNCTION (this << tcb << segmentsAcked ); 

 

 double rateCA ;// Rate of congestion 

 

 rateCA = static_cast<double>(m_oldRtt.GetSeconds()) / 

static_cast<double>(tcb->m_minRtt.GetSeconds()) ;  

 this->m_minRto= static_cast<Time>( static_cast<double> 

(m_minRto.GetSeconds()) /rateCA ) ;   

   

 

  if  ( segmentsAcked > 0 ) 

   

    {   

     

    if (tcb->m_cWnd <= static_cast<uint32_t> (m_currentBW * 

static_cast<double> (tcb->m_minRtt.GetSeconds ()))) 

        

       { 

             tcb->m_cWnd += static_cast<uint32_t> ( 2*rateCA );               

     }      else 

 

     { 

 

         tcb->m_cWnd += static_cast<uint32_t>  ( 2 / ( 

static_cast<double> ( tcb->m_cWnd) * rateCA)) ; 

     } 

      

          NS_LOG_INFO ("In CongAvoid, updated to cwnd =  " << tcb-

>m_cWnd <<", and ssthresh = " << tcb->m_ssThresh ) ; 

     } 

   } 
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Appendix C: Tables of Simulation Results in Chapter 5 

 

Table C-1: Measurements of TCP DCM+ Throughput (Kbps) 

error rate DCM+ NR BIC Ledbat Hybla      

1.00E-06 85424.7 85078.2 85424.7 85078.2 90521.5 

1.00E-05 85424.7 85078.2 85424.7 85078.2 90521.5 

1.00E-04 39985.9 26770.5 75686.3 11031.7 40235.8 

1.00E-03 16191.3 4165.15 18787.4 274.136 10460.1 

4.00E-03 20713.5 1660.08 5653.28 254.581 4698.02 

0.0075 8149.35 1073.2 3276.99 240.844 3093.64 

0.01 8165 874.047 2500.27 233.41 2654.59 

0.02 3633.28 546.539 1138.1 210.725 1707.25 

0.03 5500.75 388.013 664.214 189.079 1246.67 

0.04 4836.52 293.019 460.197 168.445 954.074 

0.05 587.097 237.567 360.947 152.864 784.448 
 

 

Table C-2: Measurements of TCP DCM+ Packet Delivery Ration (PDR) 

error rate DCM+ NR BIC Ledbat Hybla 

1.00E-06 99.99857 99.99857 99.99857 99.99857 99.99856588 

1.00E-05 99.99857 99.99857 99.99857 99.99857 99.99856588 

1.00E-04 99.98995 99.99288 97.56887 99.99145 99.99002551 

1.00E-03 99.91099 99.92806 99.92089 99.9137 99.91512257 

4.00E-03 99.60482 99.63137 99.5987 99.60611 99.6300651 

7.50E-03 99.27015 99.28837 99.2902 99.27415 99.27607625 

1.00E-02 99.0181 99.00574 99.00939 99.01226 99.0278272 

2.00E-02 98.01206 98.10951 98.07573 98.01145 98.07354285 

3.00E-02 96.99295 97.02601 97.06824 97.0198 97.02532085 

4.00E-02 95.9936 95.88556 95.96028 95.96395 95.94160065 

5.00E-02 95.00237 94.95806 94.97931 94.96039 95.01630119 
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Table C-3: Measurements of TCP DCM+ Packet Losses (%) 

error rate DCM+ NR BIC Ledbat Hybla 

1.00E-06 0.0014283 0.0014341 0.001428 0.001434 0.001434 

1.00E-05 0.0014283 0.0014341 0.001428 0.001434 0.001434 

1.00E-04 0.0100479 0.0071248 2.43113 0.00855 0.009974 

1.00E-03 0.089005 0.0719435 0.079114 0.0863 0.084877 

4.00E-03 0.395184 0.368628 0.401296 0.393893 0.369935 

7.50E-03 0.729845 0.7711632 0.70979 0.725847 0.723924 

1.00E-02 0.981903 0.99426 0.990606 0.987735 0.972173 

2.00E-02 1.98794 1.89049 1.92427 1.98855 1.92646 

3.00E-02 3.00705 2.97399 2.93176 2.9802 2.97468 

4.00E-02 4.0064 4.11444 4.03972 4.03605 4.0584 

5.00E-02 4.99763 5.04194 5.02069 5.03961 4.9837 
 

 

Table C-4: Measurements of TCP DCM+ Normalized Advancing Index (NAI) 

error rate DCM+ NR BIC Ledbat Hybla 

1.00E-06 7.29E+09 7.26E+09 7289574400 7260006400 7724501333 

1.00E-05 7.29E+08 7.26E+08 728957440 726000640 772450133.3 

1.00E-04 4.87E+06 4.57E+06 35081.82654 1568952.889 4904935.619 

1.00E-03 2.23E+04 7.11E+03 29148.93576 389.8823111 15128.7322 

4.00E-03 1.58E+03 1.38E+02 430.7260952 19.74931394 388.46677 

0.0075 1.78E+02 2.45E+01 75.01984708 5.383633617 69.42553934 

0.01 9.94E+01 1.07E+01 30.65465134 2.8658494 33.16618058 

0.02 1.07E+01 1.74E+00 3.552226286 0.634504822 5.316982968 

0.03 7.07E+00 5.16E-01 0.896687149 0.249918546 1.653956882 

0.04 3.40E+00 2.08E-01 0.333816253 0.12156608 0.686229894 

0.05 2.64E-01 1.09E-01 0.166490868 0.069737475 0.363406963 
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Table C-5: Measurements of TCP DCM+ Average Delay 

error rate DCM+ NR BIC Ledbat Hybla 

1.00E-06 124.785 124.961 124.909 124.961 126.755 

1.00E-05 124.785 124.961 124.909 124.961 126.755 

1.00E-04 48.1966 48.5637 66.2789 48.5497 50.6474 

1.00E-03 45.2303 45.2296 45.3605 45.2083 45.3775 

4.00E-03 45.4196 45.2311 45.277 45.2077 45.3814 

0.0075 45.6092 45.2247 45.2418 45.201 45.3329 

0.01 45.3512 45.2241 45.2374 45.1997 45.3268 

0.02 45.4831 45.2235 45.2425 45.1983 45.3161 

0.03 45.3572 45.2207 45.2412 45.1974 45.3153 

0.04 45.849 45.2164 45.2369 45.1964 45.3379 

0.05 45.762 45.2147 45.2341 45.1958 45.3803 
 

 

Table C-6: Measurements of TCP DCM+ Throughput 

error rate DCM+ NR BIC Ledbat Hybla 

1.00E-06 9.82705 9.82705 9.82705 9.82705 9.23883 

1.00E-05 9.82705 9.82705 9.82705 9.82705 9.23883 

1.00E-04 20.8397 31.3329 11.9867 75.9722 20.8627 

1.00E-03 51.3938 199.197 44.2103 3027.05 79.3608 

4.00E-03 40.7255 501.293 147.354 3273.2 177.226 

0.0075 104.794 778.227 255.071 3475.2 270.243 

0.01 104.404 958.691 335.442 3598.06 315.921 

0.02 239.654 1549.1 745.053 4036.08 497.211 

0.03 159.799 2211.41 1291.46 4558.22 690.081 

0.04 186.741 2970.03 1888.2 5189.59 914.311 

0.05 1544.51 3713.82 2436.92 5795.91 1124.77 
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Table C-7: Impact of TCP Buffer Size on DCM+ Performance Metrics  

buffer size (KB) Throughput (Kbps) Packet Loss NAI 

16 k 1415.75 1755 13.76759734 

32 k 2899.88 1880 26.32515177 

64 k 5511.94 2092 44.9667508 

128 k 8627.13 2216 66.44239711 

256 k 13214.6 2322 97.1271203 

512 k 16571.7 2327 121.540043 

1 M 11685.2 1548 128.8290784 

2 M 10931.5 1529 122.017179 

4 M 7960.86 690 196.9062957 
8M 13133.7 1521 147.3691519 

16M 13133.7 1521 147.3691519 

    

Table C-8: Comparing DCM+ against Vegas 

Case Id Throughput (Kbps) delay (msec) lost packets CTT (sec) NAI 

case1_DCM+ 7913.73 45.3964 689 107.9 9.5715166909E+01 

case1_Vegas 3330.34 45.224 691 251.9 4.0163289918E+01 

case2_DCM+ 11192.2 45.2965 1100 77.6 8.4789393939E+01 

case2_Vegas 2113.49 45.1575 1073 404.3 1.6414181423E+01 

case3_DCM+ 7920.9 45.4733 695 108 9.4974820144E+01 

case3_Vegas 3330.34 45.2247 691 251.9 4.0163289918E+01 

case4_DCM+ 8070.65 45.3906 527 105.07 1.7015918195E+02 

case4_Vegas 3773.82 45.2257 525 221.7 7.9869206349E+01 

case5_DCM+ 85423.1 124.776 1 9.83 7.1185916667E+08 

case5_Vegas 2384.72 45.2011 1 347.6 1.9872666667E+07 

case6_DCM+ 5930.19 45.6565 2233 150.3 7.3769592476E+00 

case6_Vegas 956.616 45.2183 2170 898.4 1.2245468510E+00 
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Table C-9: Impact of Access Bandwidth on the Performance of DCM+ 

Bottleneck BW Tx bitrate (Kbps) mean delay (msec) Packet Loss (%) 

1.E+06 171.683 62.585 1.985 

1.E+07 3424.03 53.922 2.08 

1.E+08 4322.54 45.5361 2.033 

1.E+09 4488.65 45.1647 2.043 

1.E+10 4058.88 45.1463 2.019 

1.E+11 4186.66 45.1423 2.014 
 

 

 

Table C-10: Impact of Access Bandwidth on the Performance of DCM+ 

Access BW Tx bitrate (Kbps) mean delay (msec) Packet Loss (%) 

1.E+06 171.655 62.69 1.9988 

1.E+07 1261.9 50.974 2.0356 

1.E+08 7511.29 45.47 2.0285 

1.E+09 4322.54 45.54 2.033 

1.E+10 7142.04 45.55 2.034 

1.E+11 7009.71 45.41 2.037 
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