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Abstract 

 
The voluminous and readily available information on the Internet has given rise to 

exploration of intelligent technologies; for accessing, filtering, evaluating and integrating 

published information. 

 
Because of the daily increase of electronically available information on the internet, an 

additional burden has been placed on the implementers of information gathering systems. 

 

The set of data that represents the best response to a user's query may be the aggregation of 

data acquired from distributed, heterogeneous information sources. We have begun a 

project to build a cooperative agent for information gathering in the initial domain of 

computer science and medical topics. 

 

There is a need to develop an information gathering agent to work as an advisor to his 

owner in a special topic. This agent should be expert in this topic and his experience is 

increasing with time as well as his price too.  

 

The agent should use and make advantage from every piece of information published about 

the topic in the internet. His dictionary (knowledge) of this topic is re-indexed frequently 

with the time. 

 

This agent should be ready all the time to give his owner the hottest documents that are 

much related to his topic without stopping his job in searching or any of his activities. The 

agent should build his own queue of targets in the internet to search and knows all the time 

his next step. 

 

Our contributed system has four agent-roles:  

 

Document Fetcher: This Agent Role uses "wget" utility for document downloading from 

the internet. The link of this document is taken from a storage volume which contains a 

queue of links to be fetched. Links queue starts from a set of start Links presented by the 

administrator. 

 

Topic Analyzer: Using PLSI (probabilistic latent semantic indexing) arithmetic method. 

This role deals with every term and estimate's it‟s weight in the topic. This weight might be 

change up or down in the runtime of the system. 

 

Document Evaluator: This role is responsible to calculate the relevance of the document, 

and the weight of it.  

 

It contains filters with threshold to let the system decides if a document is accepted to be 

added to the relevant document collection or not. This filter and threshold are calculated 

and estimated in this thesis.  

 

This role is also helpful in (document-ranking) phase of the system, especially after 

calculating the weight of each document. 

 



 

v 

Links Filter: This role has to make sure that all attracted links are useful and not repeated 

(already checked before) in order to increase performance. 

 

Increasing precision and recall was our main result in this work, especially after using 

filters in addition to PLSI method. And it helps us a lot to select and determine the best 

threshold value in system's filter according to the target topic. 
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 :-الملخص
 

نظراً لمتزايد العظيم والكبير في حجم وكمية المعمومات المنشورة والموزعة عمى الشبكة العنكبوتية والحاجة الماسة لنظام 
بحث يستنبط ويستخرج المعمومات المفيدة والمباشرة والتي تمبي غرض المستخدم وحاجتو إلى فئة معينة من المعمومات 

 .دون التشتت في جمب معمومات  قد يكون جزز كبير منيا غير مفيد أو غير مطموب أصلاً 
 

نحن بحاجة إلى موظف أو وكيل برمجي يقوم بالعمل كمستشار يبحث عن الموضوع الذي يكمفو إياه مالكو ويقوم بجمع 
ويعتبر كخبير في الموضوع الذي . المعمومات والوثائق المفيدة والمرتبطة بيذا الموضوع من الانترنت دون كمل أو ممل

وخبرتو تمك من المفروض أنيا تزداد مع مرور الزمن وذلك يؤدي إلى زيادة ثمنو وسعره بالطبع، . يكمف بالبحث عنو
أي أنو يستفيد من كل . بحيث أن الخمفية العممية ليذا الوكيل حول الموضوع تتطور مع كل وثيقة تدخل إلى مجموعتو

. معمومة تدخل النظام
 

ويعتمد ىذا . يعمل ىذا الوكيل عمى استنباط الموضوع المطموب وتوزين مفرداتو ومقارنة مفردات الوثائق المحضرة بيا
: الوكيل عمى أربعة أدوار رئيسية ىي

 
  والذي يقوم بدوره بجمب الوثيقة من الشبكة العنكبوتية بحسب عناوين محفوظة بطابور خاص–جالب الوثيقة : أولا
(Queue)يتم إعداده في البداية من قبل مدير النظام كنقطة انطلاقة  .

 
 والذي يقوم اعتمادا عمى نظرية الاحتمالات آنفة الذكر بفيرسة وتوزين المفردات المتعمقة –محمل الموضوع : ثانياً 

. بطمب المستخدم والتي يستنبطيا منو بحسب الطمبات التي قام بإدخاليا وحفظيا في مخزن خاص بيا
 

أوزان تمك المفردات من المفروض أن تتأثر مع الزمن بحيث أما أن تتعزز أو تزيد أو تنقص بحسب الوثائق التي تنجح 
. في الوصول إلى مجموعة الوثائق المتعمقة بالموضوع المراد البحث عنو

 
 بالاعتماد أيضا عمى نظرية الاحتمالات الرياضية المذكورة أعلاه يستخدم الوكيل معادلة تم بناؤىا –مقيّم الوثيقة : ثالثاً 

في ىذه الرسالة تجعمو يبدأ بمقارنة مفردات الوثيقة ومدى تقاربيا مع الموضوع الذي يستيدفو المستخدم ليعطي الوثيقة 
. يتقرر بنازً عميو ما إن كانت الوثيقة مفيدة فتحفظ أم غير ذلك فتيمل( threshold)وزن نقارنو بقيمة 

 
يتم الاستفادة من ىذا الوزن أيضا في ترتيب الوثائق الناجحة لمعرض بشكل تنازلي أما المستخدم من الأكثر وزنا إلى 

. الأقل بحيث يضمن أن جميع ىذه الوثائق مفيدة ومرتبطة بالموضوع ولكن تعرض حسب الأكثر ارتباطا إلى الأقل
 

 في حال اجتياز وثيقة ما الاختبار بنجاح فإنو يقوم بتحميل الارتباطات الموجودة في تمك –فارز الارتباطات : رابعاً 
الوثيقة كل عمى حدا لتقدير مدى احتمالية كون ىذا الارتباط مفيدا وجديرا بأن يرسل إلى الطابور الخاص بجالب 

. الوثائق لضمان الفعالية وعدم التكرار



 

vii 

 
تم بحمد الله برمجة وتطبيق العناصر الأساسية ليذا النظام باستخدام لغة جافا وقد كانت لو نتائج مرضية خاصة في 

وذلك بمساعدة عناصر الفرز والتصفية التي . (Recall)والكفازة والقدرة عمى التذكر  (Precision)رفع مستوى الدقة 
سيتم عرضيا في و . حسب الموضوع (threshold)تم تطوير النظام بواسطتيا والقدرة عمى اختيار أفضل قيمة اختبار 

 .الفصول القادمة من ىذه الرسالة
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Chapter 1 
 

Introduction 

 
1.1 Information Retrieval 

 

A continuous growth of the internet usage with billions of published documents and data 

distributed around the world, demands a useful, fast, accurate and intelligent search system 

that satisfies users needs and queries.  We noticed from IWS (Internet world statistics) 

website[9], the rapid growth specially the last few years. We can see on Mar-2007 that the 

internet population grows up to 6,574,666,417 documents. while the internet latest data 

usage was about 1,114,274,426 documents. This indicates the huge amount of document 

that is distributed around the world [9].  
 

It‟s well known that search engines with centralized architecture can‟t index the whole 

Internet because the exponential growth of the number of documents published in the 

Internet. Search engine with distributed architecture is scalable solution of this problem 

[3]. 

 

Our system is based on Intelligent Information gathering Agent, aims to help the user, and 

its main roles are melting together to help the topic searcher to find his targets in an open 

system that contains other multi-agent system (MAS) and many other information access 

technologies, by investigating to what extent methods from IR mathematical methods, 

Intelligent search systems. 

 

Data storage Systems and Information Retrieval (IR) can be applied to information 

discovery by themes of information agents in the Internet and the World Wide Web[8],  [1]. 

 

In the framework of our suggested architecture, we use a set of topic target collections of 

electronic documents published in the Internet. These collections belong to different 

owners who are responsible for their content, indexing and quality of search. 

Administrator‟s demand is automatically propagated to one or more collections with topics 

relevant to his target topic [1], [2], [4]. 

 

This thesis describes architecture of an autonomous agent that gathers information from 

distributed environment, as Internet, to build subject-specific collection, and to extract 

information from documents using probabilistic latent semantic indexing algorithm.   

 

It also describes techniques for developing distributed and adaptive agent that coordinate to 

retrieve, filter and recommend information relevant to the owner, from various web 

sources. The knowledge of agent based on semantic indexing by analyzing multiple topics 

in HTML pages, with the help of probability mathematical method which is called PLSI. 

 

In contrast to most current research that has been investigated single-agent approaches, we 

are developing an agent with a collection of four major roles that team up on demand, 

depending on the user's query, topic and links queue, to access, filter and integrate 

information distributed in the internet.  
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We are investigating techniques for developing distributed adaptive roles of an information 

agent that coordinate to retrieve, filter and fuse information relevant to the user's query, 

topic and links queue, as well as anticipate user‟s information needs.  

 

In our system, information gathering is seamlessly integrated with search support. In this 

thesis we present the distributed system architecture, agent collaboration interactions, and a 

reusable set of software components for structuring agents.  

 

We have implemented most of this system framework and get successful output results 

compared to similar traditional systems. By developing collaborating agent's roles, using 

JAVA language, in diverse complex real world tasks, such as organizational document 

searching, and topic indexing management. 
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1.2 Agent theory. 

 

An agent is a computational entity such as a software program or a crawler[2] that can be 

viewed as perceiving and acting upon its environment and that is autonomous in that its 

behavior at least partially depends on its own experience. As an intelligent entity, an agent 

operates flexibly and rationally in a variety of environmental circumstances given its 

perceptual and effectual equipment. Behavioral flexibility and rationality are achieved by 

an agent on the basis of key processes such as problem solving, planning, decision-making, 

and learning. [11]. 

  
The study of multi-agent systems began in the field of distributed artificial intelligence 

(DAI) about 20 years ago. Today these systems are not simply a research topic, but are also 

beginning to become an important subject of academic teaching and industrial and 

commercial application [5], [7]. 

 

Our agent is expected to establish new cooperation among research groups in the related 

areas mentioned above, but also to strengthen existing contacts and focus scattered efforts 

for research on and development of intelligent information agents. 
 

In particular, managing and controlling such networks, the services provided, and the 

communications involved, is crucial to keep Internet a useful tool in the future. However, 

there is a growing awareness that current centralized IR architectures will soon reach the 

limits of their scalability. Some Scientifics argue that distributed but coordinated 

mechanisms that support adaptation and self-optimization of Information Agent societies 

can be an answer to this problem. [8],[4]. 

 
Figure 1.1 system environment 
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1.3 Thesis Motivation. 

 

Recent developments in agent-based computing and software engineering have revealed a 

significant potential and urgent demand for a close interaction among these disciplines.  

 

On the one hand, as the number of special-topic agent-based software systems grows it 

becomes important to build IR systems that use software engineering technology that is 

specifically tailored for agent systems.  

 

Thus software engineering is crucial to the textual and search application success of agent-

based computing.  

 

On the other hand, as today‟s and tomorrow‟s standard software systems are required to 

operate in increasingly complex – distributed, large, open, dynamic, unpredictable, 

heterogeneous and highly interactive – IR application environments, it appears to be very 

promising and natural to build these systems in terms of agent and multi-agent technology. 

 

Thus agent orientation can serve as a useful paradigm in software engineering. The field 

emerging as a result of this mutual demand for interaction has been referred to as Agent-

Oriented Software Engineering (AOSE)[12]. 
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1.4 Thesis Outline 

 

In the next chapter, we are going to analyze existed Algorithms and architectures that are 

related to such systems.  

 

We have analyzed existed programming models such as traditional programming in 

addition to OOP & AOP. And programming approaches like UML & AUML with its latest 

progresses and developments. 

 

Also, we have analyzed existed arithmetic IR Algorithms that is related to our agent 

system, like Vector space algorithm, LSI and Probabilistic models. And justify why we 

have chosen PLSI model in our agent. 

 

Chapter three introduces the design of agent architecture. Using AUML including its main 

four major roles which are, Role A (Document Fetcher), Role B (Topic Analyzer), Role C 

(Document Evaluator), and Role D (Links Filter).  

 

And we will discuss the major job of each role and how it works according to its position 

in the system. 

 

In chapter four we are going to discuss in details the development of the agent algorithm 

which depends on PLSI methods and how it works in our agent system. We will present 

the mathematical functions we used in it. 

 

The implementation of our agent will be presented in chapter five. Using JAVA 

programming language we are going to preview our agent's major classes starting from 

main class, moving to WGET class, stemming class, Getlinks class and the arithmetic filter 

of the system which is PLSI class. 

 

Two experiments were applied to our agent system, concentrating on one topic. The first 

experiment used traditional PLSI method without our contributed filter, while the other 

experiment was with the filter. Then we got results from each one and note the difference 

between them. 

 

These results were analyzed, summarized and presented in the chapter six. Then, our 

conclusions and further work presented too. 

 

By the end of the thesis, references with our published paper including Java code in the 

appendix were presented.   
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Chapter 2 
 

Analysis of  existing Algorithms and architectures 
 

2.1 Introduction 

 

Agents can be defined in many ways and there is no one universally correct or acceptable 

definition. An agent can be defined (simply) as an autonomous entity that can sense and act 

upon its environment. Such simple agents are analogous but not equivalent to orthodox 

automata [28]. More sophisticated descriptions draw on concepts such as intentionality, 

social ability, adaptation, learning, communication etc. Agent environments vary 

considerably, from synthetic worlds to those which robots inhabit through to more abstract 

worlds consisting of information and knowledge [11].  

 

Also, agents are a very promising technology for information retrieval. Some applications 

are intelligent IR interfaces, mediated searching and brokering, and clustering and 

categorization. An agent-based approach means that IR systems can be more scalable, 

flexible, extensible, and interoperable, using agents that route information, broker requests, 

and share metadata. 

 

The architecture and composition of an agent typically reflects its environment and the 

role(s) it plays within that environment; i.e. the challenge of an agents problem or niche 

space. Our current research relies heavily on the concept of agency across a number of 

different domains, and categories of processes, agencies and agents. For example, we can 

consider our ongoing research into decision support systems as that of an investigation into 

tightly-coupled agent communities making use of modern but relatively orthodox AI 

techniques [28].  

 

One of the threads that draw this work together is that of investigating computational 

architectures that allow or help to support computational intelligent methods on IR 

applications. 
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2.2 Programming models analysis. 

 

 
Figure 2.1: Levels of abstraction that affect programming model 

 

 

Programming models are affected by different aspects at different level of abstraction. 

Figure 2.1 shows these levels of computing abstraction. The triangle shape shows the 

abstraction level that dominates the others. For instance, hardware plays a dominant factor 

on operating systems, while operating systems abstract factors related to hardware, and so 

on[11]. 
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2.2.1 Traditional Programming. 

 

We can note the differences between programming models with the traditional 

programming in the runtime system which provides the environment for program 

interpretation. These environments can be radically different between different paradigms. 

 

These environments may be restricted to administrative tasks or they may also provide 

slightly more elaborate services. At this level of abstraction, “agents” have distinct 

behavior from “objects”. In an object-oriented runtime system, the objects are statically 

represented by the objects‟ architecture.  

 

This architecture contains the current state of any object and objects‟ relations to the object 

classes, which subsequently determine the operations that can be performed by this object. 

An object is usually represented as a collection of data elements with associated functions 

and the granularity of objects is potentially not limited.  

 

The object management system is responsible for managing the relations between objects 

and classes (e.g. the inheritance relation) and for the manipulation of objects (e.g. objects 

creation or destruction). Furthermore, the object management system is also responsible 

for dynamic aspects, such as method selection of polymorphous objects, exception 

handling and garbage collection.  

 

In an agent-oriented runtime system, things are distinctly more complicated. Agent 

architectures are far more complex than the object architecture, especially because of the 

dynamic aspects that agents deal with. Each agent perceives the state of its environment, 

integrates the perceived facts in its knowledge base, forms beliefs, desires, goals and 

intentions to act and finally executes the planned activities (possibly in coordination with 

other agents)[11]. 
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2.2.2 OOP & AOP. 

 

To sense differences between OOP & AOP at programming language level of abstraction, 

the syntax and semantics of a programming language for the manipulation of entities at the 

system runtime level is defined.  

 

The programs that are written in a particular programming language are interpreted at the 

system run-time level. In the programming language level, as well as it is at the runtime 

level, there is a differentiation between objects and agents, as it is shown in the following 

table (Table:2.1) 

 

Table 2.1: Differentiation between agents and objects at the programming level[11] 

 OOP AOP 

Structural 
Elements 

Abstract class  Generic role 

Class Domain specific role 

Member variable Knowledge, belief 

Method Capabilities, (complex and primitive) actions 

Relation & 

Communication 

Collaboration(uses)  Negotiation 

Composition (has) Institutionalized agents, groups of agents 

inheritance (is) Role multiplicity 

Instantiation Domain specific role and individual knowledge 

Polymorphism Service matching 
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2.2.3 UML & AUML. 

 

Design languages are further abstractions from a particular programming language that aim 

at the conceptual modeling of a system at a more coarse grained level. Design languages 

often use graphical notations that make it easier for the designer to use and manipulate the 
overall system structure.  

 

In the object oriented community UML is a well established design language being 

supported by case tools such as the Rational Rose Software®, which can transform the 

object architecture into class code in Java or C++, in conjunction to other useful design 

utilities. 
 

Table 2.2: The relation between programming paradigms, modeling techniques and 

programming languages (updated from [11]) 

  Programming languages, and Software Modeling Techniques 

  Programming language Analysis Design 

P
ro

g
ra

m
m

in
g
 P

ar
ad

ig
m

s 

Top down 
(Monolithic) 

Assembly High level 

language 

Textual, 

Algorithms 

Flowcharts Algorithms 

Structural 
(Modular) 

High level languages with 

built-in support routines 

Dataflow diagram 

HIPO Chart 

Data Structure 

Diagram and Structure 

Chart 

Object 

Oriented 

Object Oriented high-

level languages, Object 

support libraries. 

UML: Use Case 

& Collaboration 

Diagrams 

UML: Class diagrams 

and its relations, State 

Machine… 

Agent 

Oriented 
 

Agent Platform, an Agent 

Oriented Language does 

not exist yet. 

AUML: Use Case 

& Collaboration 

Diagrams 

AUML Class diagrams 

and its relations, State 
Machine… 

 

In the agent-based world there is no uniform design language mainly due to the ellipsis of 

an agent oriented programming paradigm. However, there is a large number of design 

toolkits for special kind of agent architectures and platforms. But lately AUML is starting 

to be a new step toward a complete design language as well as UML As shown in Table 

2.2. 

  

To know the goal behind moving from UML to AUML we should understand that Multi-

agent systems (MAS) are often characterized as extensions of object-oriented systems. So, 

this overly simplified view has often troubled system designers as they try to capture the 

unique features of MAS systems using "object oriented" tools. In response, an agent-based 

unified modeling language (AUML) is being developed. 

 
Instead of reliance on the UML, we used AUML in our system which is based on IR 

(Information retrieval) agent where it makes sense. We do not want to be restricted by 

UML; we only want to capitalize on it where we can. The general philosophy, then, is: 

"When it makes sense to reuse portions of UML, then do it; when it doesn't make sense to 

use UML, use something else or create something new." [11] 

 

Since generating agents come as part of the software engineering process, they have to be 

consistent and complement other models built during this process. This system shows how 

our agent can be integrated within UML towards AUML. 
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Figure 2.2 Three Agent's Roles of the system 

 

 

Our agent roles are integrated with other UML diagrams for specifying agents‟ interaction. 

Returning to our Agent Architecture, let us consider the specification of the roles 

functionality. Starting from the UML Use Agent's roles diagram in Figure 2.2, interactions 

among interdependent roles are specified by means of AUML. So we can specify the 

agent's roles given in Figure 3.1 that represents the interaction among agent's roles 

communicating with each other. Which shows a combination of simple, agent instantiation, 

and spanning role couples. 

 

This new development on Agent view can be integrated with UML, reaching to AUML 

that supports object classes, as well as agent and role classes. By this way an agent entity is 

free from any role “burden”, it can move from one role to another without any pre-assigned 

agent-role mapping, agent entities can be instantiated to perform atomic roles, agents can 

move freely and be instantiated according to system functionality constrains ( agent –role 

switching constrains) or according to agents‟ internal state[10]. 
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2.3 Arithmetic IR Algorithms analysis. 

 

Our agent target is focused on Information Retrieval (IR) which is devoted to finding 

relevant documents, not finding simple matches to patterns. Yet, often when information 

retrieval systems are evaluated, they are found to miss numerous relevant documents. 

Moreover, users have become complacent in their expectation of accuracy of information 

retrieval systems. 

 

We'll show the critical document categories that correspond to an issued topic. Namely, in 

the collection there are documents which are retrieved, and there are those documents that 

are relevant. In a perfect system, these two sets would be equivalent; we would only 

retrieve relevant documents.  

 

In reality, systems retrieve many non-relevant documents. To measure effectiveness, two 

ratios are used: precision and recall.  

 

Precision is the ratio of the number of relevant documents retrieved to the total number 

retrieved. Precision provides an indication of the quality of the answer set. However this 

dose not considers the total number of relevant documents. A system might have a good 

precision by retrieving ten documents and finding that nine are relevant (a 0.9 precision), 

but the total number of relevant documents is also important. If there were only nine 

relevant documents, the system would be a huge success, however if millions of 

documents were relevant and desired, this would not be a good result set[1]. 

 

 
Figure 2.3 Precision & Recall 

 

Recall considers the total number of relevant documents; it is the ratio of the number of 

relevant documents retrieved to the total number of documents in the collection that are 

believed to be relevant. Computing the total number of relevant documents is non-trivial. 

The only sure means of doing this is to read the entire document collection. Since this 

clearly not feasible, an approximation of the number is obtained. 

 

All Documents 

 

 

Relevant 

 

 

Retrieved 

Relevant Retrieved 

trieved

trievedlevant
ecision

Re

Re_Re
Pr 

levant

trievedlevant
call

Re

Re_Re
Re 



Chapter 2: Analysis of existed Algorithms and architectures. 

 13 

Next we will focus on the current strategies to find relevant documents quickly. The quest 

to find efficient and effective IR algorithm continues as well as on our agent. 

 

A retrieval strategy is an algorithm that takes a query Q and a set of documents D1,D2, … , 

Dn and identifies the Similarity Coefficient SC(Q,Di) for each of the documents 1 ≤ i ≤ n. 

We will focus on the following arithmetic algorithms:- 

 

 Vector Space Model (VSM) – Both the query and each document are represented 

as vectors in the term space. A measure of similarity between the two vectors is 

computed. 

 Latent Semantic Indexing – The occurrence of terms in the documents is 

represented with a term document matrix. The matrix is reduced via Singular Value 

Decomposition (SVD) to filter out the noise found in a document so that two 

documents which have the same semantic are located close to one another in a 

multidimensional space. 

 Probabilistic Retrieval – A probability based on the chance that a term will appear 

in a relevant document is computed for each term in the collection. For terms that 

match between a query and a document, the similarity measure is computed as the 

combination of the probabilities of each matching terms. 
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2.3.1 Vector space algorithm. 

 

A vector space model computes a measure of similarity by defining a vector that represents 

the query. The model is based on the idea that, in some rough sense, the meaning of a 

document is conveyed by the words used. If one can represent the words in the document 

by a vector, it is possible to compare documents with queries to determine how similar 

their content is.  

 

If a query is considered to be like a document, a Similarity Coefficient (SC) that measures 

the similarity between a document and a query can be computed. Documents whose 

content, as measured by the terms in the document, correspond most closely to the content 

of the query are judged to be the most relevant. Figure 2.4 shows the basic notion of the 

vector space model in which vectors are that represents a query and multiple documents 

are shown. 

 

This model involves constructing a vector that represents the terms in the document and 

another vector that represents the terms in the query. Then, a method should be chosen to 

measure the closeness of any document vector to the query vector. 

 

One could look at the magnitude of the difference vector between two vectors, but this 

would tend to make any large document appear to be not relevant to most queries. Which 

typically are short.  

 

The traditional method of determining closeness of two vectors is to use the size of the 

angle between them. This angle is computed by using the inner product (or dot product); 

however, it is not necessary to use the actual angle. Any monotonic function of the angle 

suffices. Often SC is used instead of an angle. Computing this number is done in a variety 

of ways, but the inner product generally plays a prominent role. 
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Figure 2.4 Vector Space Model 

 

To construct a vector that corresponds to each document, consider the following 

definitions:- 

 t = number of distinct terms in the document collection 

 tfij = number of occurrences of term tj in document Di. This referred to as the term 

frequency. 

 dfj = number of documents which contains tj. This is the document frequency. 

 idfj = log ( 
dfi

d ) where d is the total number of documents. This is the inverse df. 

The vector of each documents has n components and contains an entry for each distinct 

term in the entire document collection. The components in the vector are filled with 

weights computed for each term in the document collection. The terms in each document 

are automatically assigned weights based on how frequently they occur in the entire 

document collection and how often a term appears in a particular document. The weight of 

a term in a document increases the more often the term appears in one document and 

decrease the more often it appears in all other documents. 

 

A weight computed for a term in a document vector is non-zero only if the term appears in 

the documents. For large document collection consisting of numerous small documents, 

the document vectors are likely to contain mostly zeros. 

 

The weighting factor for a term in a document is defined as a combination of term 

frequency, and inverse document frequency. That is, to compute the value of the jth entry 

in the vector corresponding to document i, the following equation is used [26]: 

 

dij = tfij ×  idfj 

 

Query 

 

Document

1 

 

Document

2 

 

Document

M 

< tq0, tq1, tq2, … , tqn > 

< td1,0, td1,1, t d1,2, … , t d1,n > 

< td2,0, td2,1, t d2,2, … , t d2,n > 

< tdm,0, tdm,1, t dm,2, … , t dm,n > 
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When a document retrieval system is used to query a collection of documents with t 

distinct collection-wide terms, the system computes a vector D (di1, di2, … , dit) of size t for 

each document. The vectors are filled with term weights as described before. Similarly, a 

vector Q (wq1, wq2, … , wqt) is constructed from terms found in the query. 

 

A simple SC between a query Q and a document Di is defined by the dot product of two 

vectors. Since a query vector is similar in length to a document vector, this same measure 

is often used to compute the similarity between two documents [26].   

 

SC(Q,Di) = 



t

j

ijqj dw
1
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2.3.2 LSI & Probabilistic IR. 

 

Latent Semantic Indexing (LSI) – Matrix computation is used as a basis for information 

retrieval in the retrieval strategy called LSI. The premise is that more conventional 

retrieval strategies like VSM all have problems because they match directly on keywords. 

Since the same concept can be described using many different keywords, this type of 

matching is prone to failure. The authors cite a study in which two people used the same 

word for the same concept only twenty percent of the time[26]. 

 

Searching for something that is closer to representing the underlying semantic of the 

document is not a new goal. Applied here, the idea is not to find a canonical knowledge 

presentation, but to use a matrix computation, in particular Singular Value Decomposition 

(SVD). This filters out the noise found in a document, such that two documents that have 

the same semantic (weather or not they have the same matching terms) will be located 

close to one another in a multi-dimensional space. 

 

The process is relatively straightforward. A term document matrix A is constructed such 

that location (i,j) indicates the number of times term i appears in document j. A SVD of 

this matrix results in matrices U  V
T
 such that  is a diagonal matrix. A is a matrix 

represents each term in a row. Each column of A represents documents. The values in 

 are referred to as the singular values. The singular value can be then stored by 

magnitude and the top k values are selected as a means of developing a "latent Semantic" 

representation of the A matrix. The remaining singular values are then set to 0. Only the 

first k columns are kept in Uk; only the first k rows are recorded in a Vk
T
. After setting the 

results to 0, a new A' matrix is generated to approximate A = U  V
T
 [26]. 

 

Comparison of two terms is done via an inner product of the two corresponding rows in Uk. 

Comparison of two documents is done as an inner product of two corresponding rows in 

Vk
T
. A query-document similarity coefficient treats the query as a document and computes 

the SVD. However, the SVD is computationally expensive; so, it is not recommended that 

this be done as a solution. Techniques that approximate  and a void the overhead of the 

SVD exist. For infrequently updated document collection, it is often pragmatic to 

periodically compute the SVD. 

 

The Probabilistic model computes the similarity coefficient (SC) between a query and a 

document as the probability that the document will be relevant to the query. This reduces 

the relevance ranking problem to an application of probability theory. 

 

Probability theory can be used to compute a measure of relevance between query and a 

document. All of the work on probabilistic retrieval stems from the concept of estimating a 

term's weight based on how often the term appears or doesn‟t appear in relevant documents 

and non-relevant documents, respectively. 

 

Simple Term Weights – The use of term weights is based on the probability ranking 

principle (PRP), which assumes that optimal effectiveness occurs when documents are 

ranked based on an estimate of the probability of their relevance to a query. The key is to 

assign probabilities to components of the query and then use each of these as evidence in 

computing the final probability that a document is relevant to a query.  
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The terms in the query are assigned weights which correspond to the probability that a 

particular term, in a match with a given query, will retrieve a relevant document. The 

weights for each term in the query are combined to obtain a final measure of relevance 

[26].  

 

 
Figure 2.5 Training data for Probabilistic Retrieval  

 

The terms in the query can be viewed as indicators that a given document is relevant. The 

presence or absence of a query term A can be used to predict whether or not a document is 

relevant. Hence, after a period of observation, it is found that when term A is in both the 

query and the document, there is an x percent chance the document is relevant. We then 

assign a probability to term A. Assuming independence of terms, this can be done for each 

of the terms in the query. Ultimately, the product of all the weights can be used to compute 

the probability of relevance. 

 

In Figure 2.5, we will show the need for training data with most probabilistic models. A 

query with two terms, t1 and t2, is executed. Five documents are returned and an 

assessment is made that the documents two and four are relevant. From this assessment, 

the probability that a document is relevant (or non-relevant) given that it contains term t1 is 

computed. Likewise, the same probabilities are computed for t2.  Clearly these probabilities 

are estimates based on training data. The idea is that sufficient training data can be 

obtained so that when a user issues a query, a good estimate of which document are 

relevant to the query can be obtained. 

 

Consider a document, di, consisting of t terms (w1, w2, … ,wt), where wi is the estimate that 

term i will result in this document being relevant the weight or "odds" that document di is 

relevant is based on the probability of relevance of each term in the document. For a given 

D2 

t1, t2 Query q 

 

t2 D1 
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term in a document, its contribution to estimate of relevance for the entire document is 

computed as: 

)|(

)|(

nonrelwP

relwP

i

i  

 

Given our independence assumption, we can multiply the odds for each term in a 

document to obtain the odds that the document is relevant. Taking the log of the product 

yields: 
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We note that these values are computed based on the assumption that terms will 

independently in the relevant and non-relevant documents. The assumption is also made 

that if one term appears in a document, then it has no impact on whether or not another 

term will appear in the same document. 

 

The means of estimating the individual term weights by the following two 

assumptions[26]: 

 

I1: The distribution of terms in relevant documents is independent and their distribution in 

all documents is independent. It indicates that terms occur randomly within a document – 

that is, the presence of one term in a document is no way impact the presence of another 

term in the same document. This states that distribution of terms across all documents is 

independent unconditionally for all documents – that is, the presence of one term in a 

document is no way impacts the presence of the same term in other documents. 

 

I2: The distribution of terms in relevant document is independent and their distribution in 

non-relevant documents is independent. It indicates that terms in relevant documents are 

independent – that is, they satisfy I1 and terms in non-relevant documents also satisfy I1. 

 

 

 

They also presented to methods, referred to as ordering principles, for presenting the result 

set:- 

 

O1: Probable relevance is based only on the presence of search terms in the documents. It 

indicates that documents should be highly ranked only if they contain matching terms in 

the query (i.e., the only evidence used in which query terms are actually present in the 

term. 

 

O2: Probable relevance is based on both the presence of search terms in documents and 

their absence from documents. 

 

Four weights are then derived based on different combination of theses ordering principles 

and independence assumptions. Given term, t, consider the following quantities: 

- N = number of documents in the collection. 

- R = number of relevant documents from a given query q. 

- n = number of documents that contain term t. 
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- r = number of relevant documents that contains term t. 

Choosing I1 and O1 yields the following weight: 
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The claimed advantage to the probabilistic model is that it is entirely based on probability 

theory. The implication is that other models have a certain arbitrary characteristics. They 

might perform well experimentally, but they lack a sound theoretical basis because the 

parameters are not easy to estimate. Either complete training data are required, or an 

inaccurate estimate must be made[26]. 
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2.3.3 Probabilistic Latent Semantic Indexing (PLSI). 

 

Probabilistic Latent Semantic Indexing is a novel approach to automated document 

indexing which is based on a statistical latent class model for factor analysis of count data. 

Fitted from a training corpus of text documents by a generalization of the Expectation 

Maximization algorithm, the utilized model is able to deal with domain-specific synonymy 

as well as with polysemous words.  

 

In contrast to standard Latent Semantic Indexing (LSI) by Singular Value Decomposition, 

the probabilistic variant has a solid statistical foundation and defines a proper generative 

data model.  

 

Retrieval experiments on a number of test collections indicate substantial performance 

gains over direct term matching methods as well as over LSI. In particular, the 

combination of models with different dimensionalities has proven to be advantageous [27]. 

 

Compared to standard latent semantic analysis which stems from linear algebra and 

downsizes the occurrence tables (usually via singular value decomposition), probabilistic 

latent semantic analysis is based on a mixture decomposition derived from a latent class 

model. This results in a more principled approach which has a solid foundation in statistics. 

 

Considering observations in the form of co-occurrences (w,d) of words and documents, 

PLSI models the probability of each co-occurrence as a mixture of conditionally 

independent multinomial distributions: 

 

 
 

The first formulation is the symmetric formulation, where w and d are both generated from 

the latent class c in similar ways (using the conditional probabilities P(d | c) and P(w | c)), 

whereas the second formulation is the asymmetric formulation, where, for each document 

d, a latent class is chosen conditionally to the document according to P(c | d), and a word is 

then generated from that class according to P(w | c).  

 

 
Figure 2.6 Precision-recall curves for the 4 test collections with term weighting by PLSI 

compare to other methods[27]. 
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Although there are words and documents in PLSI experiments, the co-occurrence of any 

couple of discrete variables may be modeled in exactly the same way. 
 

It is reported that the aspect model used in the probabilistic latent semantic analysis has 

severe over-fitting problems. The number of parameters grows linearly with the number of 

documents. In addition, although PLSI is a generative model of the documents in the 

collection it is estimated on, it is not a generative model of new documents [27]. 

 

PLSI was proved to be the best mathematical method in such systems compared to LSI and 

vector space (tf.df) as shown in Figure 2.6 which shows precision and recall for traditional 

centralized search system in different topics including medical and computer science[27]. 
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2.4 Summary & Conclusion 

 

In this chapter, we have presented existing Algorithms and architectures that are related to 

IR systems.  

 

We have analyzed existed programming models such as traditional programming in 

addition to OOP & AOP. And programming approaches like UML & AUML with its latest 

progresses and developments. We found that our system should be programmed and 

developed using agent oriented programming approaches according to its features which 

are not found in OOP. But there is no AOP language, so, we tried to build our agent using 

JAVA language with AUML architecture.  

 

Also, we have analyzed existed arithmetic IR Algorithms, which is related to our agent 

system, like Vector space algorithm, LSI and Probabilistic models. And justify why we 

have chosen probabilistic model in our agent which have been proved in some researches. 

And we will show that clearly in Chapter 4. 
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Chapter 3 
 

Design of Agent architecture. 
 

3.1 Introduction 

 

Due to advances in technology, diverse and voluminous information is becoming available 

to decision makers. This presents the potential for improved decision support, but poses 

challenges in terms of building tools to support users in accessing, filtering, evaluating and 

fusing information from heterogeneous information sources.  

 

Most reported research on Intelligent Information Agents to date has dealt with a user 

interacting with a single agent that has general knowledge and is capable of performing a 

variety of user delegated information finding tasks[19].  

 

For each information query, the agent is responsible for accessing different information 

sources and integrating the results. It is believed that, given the current computational state 

of art, a centralized agent approach has many limitations[19]:  

(1) A single general agent would need an enormous amount of knowledge to be able to 

deal effectively with user information requests that cover a variety of tasks.  

(2) A centralized information agent constitutes a processing bottleneck and a “single point 

of failure”.  

(3) Unless the agent has beyond the state of the art learning capabilities, it would need 

considerable reprogramming to deal with the appearance of new agents and information 

sources in the environment.  

(4) Because of the complexity of the information finding and filtering task, and the large 

amount of information, the required processing would overwhelm a single agent.  

 

Because of these reasons and because of the characteristics of the Internet environment, we 

employ a distributed collaborative collection of agents for information gathering. 

 
We are currently working on a system where each user is associated with a set of agents 

which have access to the internet and select topics and keep track of the current state of the 

links, query, environment and user information needs. 
 

Based on this knowledge, the agents decide what information is needed and initiate 

collaborative searches with other agents to get the information. During search, the agents 

communicate with each other to request or provide information, find information sources, 

filter or integrate information, and negotiate to resolve conflicts in information and task 

models.  

 

The returned information is communicated to display agent or agents that possibly 

combine it with information from other sources (e.g. the user) and/or filter it for 

appropriate display to the user. 
 

This Chapter focuses on the design of such agent for the task environment of special topic, 
and on the key issues that we will be addressing.  
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3.2  Agent Architecture 

 

In a distributed agent framework, we conceptualize a dynamic community of agents, where 

multiple agents contribute services to the community. When external services or 

information are required by a given agent, instead of calling a known subroutine or asking 

a specific agent to perform a task, the agent submits a high-level expression describing the 

needs and attributes of the request to a specialized Facilitator agent. The Facilitator agent 

will make decisions about which agents are available and capable of handling sub-parts of 

the request, and will manage all agent interactions required to handle the complex query. 

 

The advantage of such distributed agent architecture allows the construction of systems 

that are more flexible and adaptable than distributed object frameworks. Individual agents 

can be dynamically added to the community, extending the functionality that the agent 

community can provide as a whole. The agent - system is also able to adapt to available 

resources in a way that hard-coded distributed objects systems can't. 

 

Using AUML (Agent UML) we will capture the MAS complexity by role decomposition 

and controls MAS environment dynamicity by role/agent entities separation. In terms of 

modeling, AUML supports the idea of UML extension toward Agent UML, which results 

to the integration of agent classes, role classes and interaction protocols to UML[10],[2].  
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3.2.1 Role A (Document Fetcher) 

 
This Agent Role uses "wget" utility for document downloading from the internet. The link 

of this document is taken from a storage volume which contains a queue of links to be 

fetched. Links queue stars from a set of start Links presented by the administrator. 

 

Every link from this queue is assigned estimation of usefulness of this link for seeking of 

new relevant documents. At the first step the newly included to this queue link is assigned 

number 1 as its usefulness. 

  
The next stage of this role is the stemming stage, which leads to a logical view of 

documents from full text to a set of indexed terms. This stage includes Accent-spacing, 

noun-grouping, Stop-words-removing ... until reaching index terms from a full text. 
 

After that, the index terms of the fetched document will be handed to Agent role C, which 

is responsible to figure out if the document is relevant or not. 
If the document is relevant, Agent role A starts to extract all links from this document 

because the probability of relevance of these links is high. These links is handed directly to 

Agent Role D. 
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Figure 3.1 Agent Architecture AUML  
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3.2.2 Role B (Topic Analyzer) 

 

Using PLSI arithmetic method, this Role is responsible for two major stages:- 

 

Stage 1 includes receiving main target topic terms that is produced by the Administrator 

and stored in the topic input volume. PLSI method is used to give a weight these terms, in 

addition to index topic's terms that come from relevant documents stored in the Index core 

documents collection. Target topics terms weights are continuously modified when each 

new relevant document is added to the collection, at the same time these modifications are 

saved in Topic Input storage volume, and this loop increases the smartness of the agent. 

These modifications are also handed to Agent Role C, which is responsible to figure out if 

the document is relevant or not. 

 

Stage 2, starts when Agent Role C decides that the fetched document is relevant, it starts to 

analyze the topics of document index terms using PLSI and the global frequency of topic 

index terms before adding the relevant document to the collection. 
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3.2.3 Role C (Document Evaluator) 

 

This role is responsible to receive index terms from Role A, and Topic index from Role B, 

and starts to calculate the relevance of the document, and the weight of it. And then 

determine using special filter and comparing with a target threshold, whether the document 

is relevant or not. If the result is positive, then both of roles A and B start their mission on 

this new gift. But for negative result Role C ends its job on this not useful document. 
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3.2.4 Role D (Links Filter) 

 

At every next step Role A chose from queue a link with maximum value of estimation of 

its usefulness, downloads it and evaluates it. If this document is accepted by evaluator then 

at next steps agent randomly chose links presented in its text and includes them into Links 

queue with usefulness estimation equal 1. If a downloaded document isn‟t accepted by 

evaluator, then estimation of usefulness of a link of a document, where link to this 

document occurs, is decreased. As a result, estimation of the Link usefulness is 

approximation of probability of relevance of a link from the document to the collection 

topic. 

 

This role has to make sure that all attracted links are useful and not repeated (already 

checked before) in order to increase performance. And this is done with help of the stored 

documents collection description. So every link has to be filtered and the role decides 

whether to add it to Queue or not (which means to end role). 
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3.3 Summary & Conclusion 

 

In this chapter we introduced the design of the agent's architecture. Using AUML 

including its main four major roles which are, Role A (Document Fetcher), Role B (Topic 

Analyzer), Role C (Document Evaluator), and Role D (Links Filter).  

 

And we have discussed the major job of each role and how it works according to its 

position in the system.  

 

We noticed the importance of the integrated job of all of the roles to perform the objectives 

of the system. AUML was very helpful in describing the flow of data and task handling 

between every role of the agent. 
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Chapter 4 
 

Development Agent Algorithm. 
 

4.1 Introduction 

 

With the advent of digital databases and communication networks, huge repositories of 

textual data have become available to a large public.  

 

Today, it is one of the great challenges in the information sciences to develop intelligent 

interfaces for human machine interaction which support computer users in their quest for 

relevant information [27]. 

 
Although the use of elaborate ergonomic elements like computer graphics and 

visualization has proven to be extremely fruitful to facilitate and enhance information 

access, progress on the more fundamental question of machine intelligence is ultimately 

necessary to ensure substantial progress on this issue.  

 

In order for computers to interact more naturally with humans, one has to deal with the 

potential ambivalence, impreciseness, or even vagueness of user requests, and has to 

recognize the deference between what a user might say or do and what she or he actually 

meant or intended [27].  

 

One typical scenario of human machine interaction in information retrieval is by natural 

language queries: the user formulates a request, e.g., by providing a number of keywords 

or some free-form text, and expects the system to return the relevant data in some 

amenable representation, e.g., in form of a ranked list of relevant documents [27].  

 

Many retrieval methods are based on simple word matching strategies to determine the 

rank of relevance of a document with respect to a query.  

 

Yet, it is well known that literal term matching has severe drawbacks, mainly due to the 

ambivalence of words and their unavoidable lack of precision as well as due to personal 

style and individual deference's in word usage [27]. 

 

Latent Semantic Indexing (LSI) is an approach to automatic indexing and information 

retrieval that attempts to overcome these problems by mapping documents as well as terms 

to a representation in the so called latent semantic space.  

 

LSI usually takes the high dimensional vector space representation of documents based on 

term frequencies as a starting point and applies a dimension reducing linear projection.  

 

The specie form of this mapping is determined by a given document collection and is 

based on a Singular Value Decomposition (SVD) of the corresponding term/document 

matrix.  
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The general claim is that similarities between documents or between documents and 

queries can be more reliably estimated in the reduced latent space representation than in 

the original representation. 
 

The rationale is that documents which share frequently co-occurring terms will have a 

similar representation in the latent space, even if they have no terms in common.  

 

LSI thus performs some sort of noise reduction and has the potential benefit to detect 

synonyms as well as words that refer to the same topic.  

 

In many applications this has proven to result in more robust word processing. 

 
Although LSI has been applied with remarkable success in different domains including 

automatic indexing (Latent Semantic Indexing, LSI), it has a number of deficits, mainly 

due to its unsatisfactory statistical foundation[27].  

 

The primary goal of this chapter is to present a novel approach to LSI and factor analysis 

called Probabilistic Latent Semantic Analysis (PLSI), that has a solid statistical foundation, 

since it is based on the likelihood principle a proper generative model of the data [27].  

 

This implies in particular that standard techniques from statistics can be applied for 

questions like modulating, model combination, and complexity control. In addition, the 

factor representation obtained by PLSI allows to deal with polysemous words and to 

explicitly distinguish between different meanings and different types of word usage.  
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4.2 PLSI Method:- 

 

Using PLSI arithmetic method, Roles B and C is responsible to analyze the whole set of 

documents from this collection and create the collection description which reflects the 

main subjects presented in this collection. We‟ve used for this propose probabilistic latent 

semantic indexing  [3], [5]. 

 

The goal of the latent semantic indexing is extraction of latent factors which reflect a set of 

narrow topics presented in the given collection. 

 

Let z  Z = {z1,…, zk} be set of these factors. 

Let denote 

 P(zi) – probability that randomly selected document from the collection best of all 

corresponds to the topic zi 

 P(d|z) – probability that for the given factor zi  this factor best of all corresponds to 

the document di  

 P(t|z) – probability that for the given factor zi   this factor best of all corresponds to 

the word tj. 

 

Here dD={d1,…,dN} is set of all documents from the collection and tT ={t1,…, tM} is 

set of all terms from this collection. 

 

Functions P(zi), P(d|z) and P(t|z) can be estimated in the process of a likelihood function 

maximization. This function is presented in the following form 

 


d t

tdPtdtfL )),,(log(),( . 

 

Standard Expectation Maximization algorithm is used for maximization of this function.  

Two steps are executed on every iteration of this algorithm. The first one is Estimation 
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To generate the collection filter we‟ve selected the heaviest terms from T. Weight of the 

term t is calculated as 
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Zz

ztPzP )|()(weight(t)  

 

In our system we have used the same PLSI method to calculate the weight of every word in 

the (core index terms) wci which is considered to be a dictionary for the topic filter.  On the 

other hand, we have developed a formula which is considered to be an additional formula 

to calculate the weight of every document Wd inside the collection, which is:- 

 

 

 

This filter describes the Agent's associated Collection topic and is used to quickly calculate 

an approximate relevance score for retrieved documents. The goal of the Wd filter is to 

extract relevant pages, and abandon junk pages, recommended to the Collection, where the 

final arbitrator of relevancy is the collection itself . 

 

Also, this filter monitors a stream of incoming documents and selects those that match a 

certain query. The initial topic filter is set by the Collection, Wd basically consists of a term 

vector and a recommendation threshold τ. The term vector contains terms t with associated 

term weights wci. The threshold τ is a positive number used to decide whether a document 

is judged relevant enough to be recommended to the Collection . 

 

 

A document profile as well as a filter name is delivered to the Document Evaluation role.  

 

If ft,d is the frequency of term t in document d, then the document weight Wd is calculated 

by the Document Evaluation Role using mentioned formula.  

 

Only if Wd  > τ, then the document d is recommended to the Collection . 

 

This Filter is responsible for the following: 

 Recommend document. 

 Abandon document.  

 Rebuild core terms.  

 Automatic refinement a filter on the basis of accurate Wd from the Collection to 

improve the quick initial evaluation made by the document evaluation role. 

 Rank the relevant documents output.  

 

To better reflect the Collection's information needs, the Agent can automatically refine its 

filter based on relevance feedback from the Collection. Since the Collection feedback 

arrives continuously, the topic filter needs to be iteratively refined . 

 

When any document succeeds in passing throw the filter and threshold the system is 

supposed to use this document to modify and re-index the core terms according to the 

global frequency (gf) of each term which is calculated too. 

 

We mean by global frequency (gf) by the number (count) of repetition of a term among 

succeeded documents and not inside document (local frequency – lf). The increase of (gf) 

for any term should increase the weight of this term. A suggested formula could be helpful 

in rebuilding the core index terms of the agent. 
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If a term shows up in a new relevant document weight will be: 

w`(t) = w(t) + 1/ND 

Or 

w`(t) = w(t) - 1/ND 

w(t) : current weight of the term. 

w`(t) : new weight for the term. 

ND : number of all accepted documents. 

 

The range of the weight is in[0..1] , but this formula is not implemented yet in this work. It 

is one of our future works. We recommend this part to be studied carefully. 
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4.3 How it works? 

 

The goal of using PLSI method is to analyze the whole set of Administrator‟s queries 

which reflects information need of him.  

 

This analysis can be used to find new subjects which are interested to him but poorly 

presented in the collection core index. 

   

In order to do so we‟ve used the following approach. At first graph of all words used in the 

Administrator's terms was created.  Every word was presented as a vertex of this graph. 

Two vertices are joined with an edge if and only if the pair of corresponded words occurs 

in the same query.  

 

Every vertex should have a weight which reflects the role of this word in the collection 

subject. Some of these words are presented in the collection core and we can use 

probabilistic latent semantic indexing to calculate their weights. But a part of words 

presented in the queries can be new (not presented in the collection core). To estimate their 

weights we‟ve used the following method. 

 

We suppose that weight of every new word should be equal to the average value of weights 

of words which are neighbors of this word. We‟ve used iteration algorithm to estimate 

weights of all new words according to this proposal. All information about queries words 

and their weights is stored as queries statistics. 
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4.4 Summary & Conclusion 

 

In this chapter we have discussed in details the development of the agent algorithm which 

depends on PLSI methods and how it works in our agent. We have presented the 

mathematical functions that we used inside the agent. 

 

Calculating weights for documents and terms in both document and topics using PLSI 

method and threshold formula, was very helpful in estimating the relevance of each 

document to agent's object topic.  

 

PLSI was proved to be the best mathematical method in such systems compared to LSI and 

vector space (tf.df) as shown in Figure 2.6 which shows precision and recall for traditional 

centralized search system in different topics including medical and computer science[27]. 
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Chapter 5 
 

Implementation and testing. 
 

5.1 Introduction 

 

Intelligent Agents are currently the subject of research by a wide and varied community 

worldwide. Intelligent agents have received various, if not contradictory, definitions; this is 

not surprising, given the wide variety of goals set by different researchers.  

 

In general, researchers agree that an agent is a complex object that shows some degree of 

autonomy and social ability, and combines pro-active and reactive behaviors[16].  

 

To help put agents into a correct engineering perspective, we have included some general 

considerations regarding what has been called ‟agent oriented programming‟ AOP [12]. 

 
Broadly speaking, our agent can be seen as a process that pursues a number of goals over a 

long period of time (relative to the application domain), and somehow reacts and adapts to 

the evolution of its environment. A multi-agent system attempts to pursue some kind of 

common goals by a combination of cooperation, negotiation and competition among 

agents. 

 
From an engineering perspective, our agent-based systems differ from traditional 

distributed systems because of their emphasis on distributed problem solving; 

programming is at a higher level of abstraction than is currently allowed by mainstream 

languages and methodologies. 

 
Distributed object oriented applications are commonly developed by creating or 

customizing classes at different levels of abstraction and stacking them, starting from some 

communications infrastructure at the lowest layer. 
 

Typically, a traditional system does not incorporate any representation of 2 global or per-

process goals, which remain in the minds of its designers and are somehow lost in the 

process of top-down decomposition and distribution over the network. 

 
In contrast, building our agent-based system commonly follows a process that is the 

reverse of what is described above. Our agent is described in terms of its high-level 

objectives, which usually consist of handling certain messages and events and achieving 

given goals; multi-agent frameworks may allow the declaration of objectives for the whole 

system. 

  

At runtime, it is possible to trace the reasons (that is, the high-level objectives) that 

triggered the observed behaviors of an agent.  

 

Furthermore, agents can often choose between different courses of actions (that is, scripts, 

rules, plans, and so on) in order to pursue their objectives, and can try many of them 

sequentially or concurrently, depending on their state and that of the environment[16]. 
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In many instances, agent development frameworks are based on, or allow access to, other 

AI technologies (for example, logic or functional programming, knowledge bases, fuzzy 

logic, and so on) [16]. 

 
Our agent-based system could be seen as little more than an application of patterns such as 

the Active Object. However, its development process and tools are different from 

conventional distributed programming.  

 

These tools enable the declaration of the objectives and behavior of agents at a higher level 

of abstraction and support a corresponding view of the activity of the system at run-time.  

 

Among other advantages, this allows a richer set of distributed architectures than client-

server (including cooperation in teams, market-style negotiation for the distribution of 

tasks among participants, and so on) and rapid application development.  

 

The implementation of distributed procedures tends to be direct and straightforward. Thus 

a framework for intelligent agents is more than just a scripting language or a set of 

components for distributed applications.  

 

Such a framework must facilitate correspondence of the observed behavior of our agent to 

some high-level objectives. The framework must also take care of tasks being pursued 

concurrently and prioritize them when required. 

 
Importantly, it must help in coordinating potentially conflicting tasks, in choosing the best 

course of action when alternatives are possible and reacting appropriately on failure.  

 

Managing these aspects is sometimes referred to as „meta-programming‟, they are first-

order elements of agent programming and represent another important distinction 

compared with traditional procedural or object-oriented programming. 

 
Most frameworks currently available in the research environment have shortcomings. For 

example, some of them are based on languages or technologies considered (quite rightly) 

esoteric by mainstream engineering. 

 
Also, a very high level language or framework is usually not appropriate to solve problems 

for which proven, efficient algorithmic solutions are available.  

 

Moreover, agent-based applications require access to existing computing infrastructures 

and software in order to re-use components or information already in place and to add new 

functionality to legacy systems (by either „wrapping‟ them into an agent infrastructure or 

adding high-level procedures, such as business rules, as an external component).  

 

These considerations are some of the motivations for JAVA, which we have chosen to 

program our agent's classes. 

 

 

 

 



Chapter 5: Implementation and testing. 

 41 

5.2 Agent Major Classes 

 

Programming such agent is not like programming similar software. We tried to use Java as 

a programming language to perform the task and the objectives of our agent. We went 

through a lot of difficulties in building agent's classes. So, we started from Class "AgentA" 

as shown in Appendix Figure 7.1.  

 

In this class, we tried to construct a simple interface frame that will be used as an agent-

user interface. Its main object is to let the user initiates the agent and enter his options. This 

interface is not complicated and it appears like a small window in the middle of the screen. 

As shown in Figure 5.1. 

 
Figure 5.1 Agent-User Interface 

 

This Class is surely created by Main method as well as every Java class. Refer to Appendix 

Figure 7.2, shows the call for initiating "AgentA" class. 

 

In Java, all related classes should be compiled and loaded to main memory in order to run 

the interface frame successfully. In Figure 5.2, we can see the agent's interface running 

with related classes to perform the experiments of this thesis. 
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Figure 5.2 Agent's Interface with related classes 

 

In the next section we will discuss the main classes of our system that is critical to perform 

our experiments. 
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5.2.1 Main Class. 

 

In our system, the main class is called "Interface1", which contains the main procedure of 

the agent, and a reference intelligent point for the system. In Figure 5.3, we show the 

description of the class and its contents of sub-classes and parameters, variables, function, 

and declarations.  

 

 
Figure 5.3 InterFace1 Class 

 

We will try to describe in details some of these properties of Interface1 class. As we show, 

this class is created after it has been called from AgentA class which contains the main 

method (Figure 5.4).  

 

 
Figure 5.4 AgentA Class 

 

This class starts with constructing the main frame of the interface window that will appear 

after AgentA is initiated. It contains the text-fields, text-areas, scroll panels, hash tables, 

and some other parameters that is essential for the agent to start building his own 

peripherals which he need to perform user's instructions and queries, as shown in 

Appendix Figure 7.3.   
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All important components like web address, topic terms, term's frequencies, and files are 

declared in this class. An important method in Interface1 class is "createTable()".  

 

This method (Appendix Figure 7.4) is responsible for creating a table of term frequencies 

contained in the input document (brought from internet). The same steps are done to create 

"qtable" from user's terms in the input-field (Appendix Figure 7.5). 

 

Another important method of interface1 is "createOutput()" which is essential in 

performing an output in the window showing table's values (terms and their frequencies) as 

shown in Appendix Figure 7.6. 

 

The same steps of this method is used in "qcreatOutput()"  which is used in performing an 

output in the window showing query's values (terms and their frequencies) as shown in 

Appendix Figure 7.7. 

 

We used the same steps in creating an output for the shared terms between table and query. 

This job was handled by "ccreatOutput()" method. In other words, it shows the terms of the 

query that exists in table and their frequencies in table. See Appendix Figure 7.8. 

 

As well as all Java applications there should be a method considered to be "component 

initiator". And this Job in handled in our thesis by method called "jbInit()". As shown in 

Appendix Figure 7.9. 

 

The most important part of Interface1 class is that to bring internet document from a user-

given website address or from an addresses queue.  

 

An inner class in interface1 class called "ActionEventHandler" which includes an action 

that should be handled after an event happened inside the interface frame's components. 

 

When a text field called "WebURL" the program initiates directly a class that is called 

"WGET" which its main job is to bring that document from the internet and save it into a 

local file inside the computer. As shown in Appendix Figure 7.10. 

 

The brought file in local volume will be named "Website.html". 

 

Another important part of interface1 class is to call "stemmer" class, to stem every string 

inside the brought file. The stemming stage of the document includes ignoring some words 

and phrases, before creating the table. As shown  in Appendix Figure 7.11.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Implementation and testing. 

 45 

5.2.2 WGET Class. 

 

An important class, which helps the agent to bring any document from the internet, and 

fetch any web page address. Similar to WGET command in UNIX, we presented the 

WGET class. It contains two important method, "creatAFile" and "get" as shown in Figure 

5.5. 

 

 
Figure 5.5 WGET Class 

 

This class is essential to the system as independent class to be initiated and called when it 

is needed. It also, saves the retrieved file into a local storage volume. See Appendix Figure 

7.12. 

 

The "wget" class uses "createAFile" method in order to create a local file contains the 

contents of the brought website. As shown in Appendix Figure 7.13. 
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5.2.3 Stemming Class. 

 

Every loaded document should be put under an essential treatment. All words inside this 

document should be stemmed in order to increase the efficiency of the system.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Converting full text to indexed terms through stemming 

 

Our object is to get to a logical view of documents from full text to a set of indexed terms 

(Figure 5.6).  We mean by "Full text (doc)" by logical view of terms (representation) 

because modern approach IR agents are making it possible to represent a document by its 

full set words. 

 

are steps like:- 

1- Eliminate stop words: such as articles and connectives. 

2- Identifications of Noun Groups: verb, adverb, adjectives. 

3- Use stemming: Identification grammatical root. 

4- Indexing : set of terms. 

 

The "Stemmer" class agent (Figure 5.7) is responsible to do the part of Transformation 

(Text Operations) in our system. 
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Figure 5.7 Stemmer Class 

 

By implementing the stemmer class in order to transform a word into its root form, the 

input word can be provided a character at a time (by calling "add()" method) -shown in 

Appendix Figure 7.15, or at once (by calling one of the various stem()  methods). 

 

In Appendix Figure 7.14, we can see the declaration and main parameters of stemmer 

class. 

 

The same steps in add() method, is used in other case of characters but faster that the 

previous one as shown in Appendix Figure 7.16. 

 

After a word has been stemmed, it can be retrieved by "toString()" method. (Appendix 

Figure 7.17) 

 

 

Stemmer class contains the ability of returning the length of the word resulting from 

stemming process using i_end variable And "getResultLength()" function. (Appendix 

Figure 7.18) 

 

Sometime we need to return a reference to a character buffer containing the results of the 

stemming process. This can be done with the help of "getResultBuffer()" method. As 

shown in Appendix Figure 7.19. 
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Appendix Figure 7.20 shows a part of stemmer that is concerned with consonant cases. 

 

The following function method can measures the number of consonants not vowels in the 

word to be treated later on. See Appendix Figure 7.21. 

 

For sure we do need a vowel checker to indicate if or not the word contains vowel. See 

Appendix Figure 7.22. Note that this method depends on cons(). 

 

In some cases in English language we do need to indicate if there exists a double consonant 

in the word or not. This job is handled by "doublec() method " as shown in Appendix 

Figure 7.23. 

 

Special cases in English language when some words contains consonant-vowel-consonant 

and the second consonant is not w,x, or y, we need the following step to restore an "e" at 

the end of the word. (e.g. cav(e), lov(e) …). See Appendix Figure 7.24. 

 

Appendix Figure 7.25 shows a string's end checker which is helpful in some cases in 

English words. 

 

After a word is stemmed we need to take part of word's letters and ignore others. So we use 

the following method do this job. See Appendix Figure 7.26 And Appendix Figure 7.27. 

 

The stemming procedure on any word should pass through many steps. We will discuss 

these steps in the next methods. 

 

Let us start with step1, which removes plurals and –ed or –ing from the word that is to be 

stemmed. See Appendix Figure 7.28. 

 

Step 2, is important to turn terminal y to i when there is another vowel in the string.( 

Appendix Figure 7.29). 

 

Step 3, is important to map double suffices to single ones, for special cases. See Appendix 

Figure 7.30 

 

Step 4, uses strategy similar to step 3 but deals with cases of words contains –ic-, -full, -

ness. etc. See Appendix Figure  7.31. 

 

Step 5, takes of word's ends like –ant, ence, etc. in some cases. As presented in Appendix 

Figure 7.32. 

 

Last step is step 6 , which removes "e" in some word that lasts with it. See Appendix 

Figure 7.33 

 

All words that are needed to be stemmed should go through the six steps. The method 

called "stem()" applies all these steps in every word. As shown in Appendix Figure 7.34. 
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5.2.4 PLSI Class. 

 

In this class, we tried to implement PLSI mathematical method inside our agent. Its main 

job is to evaluate (estimate) the weights of documents, topics and terms. We have used 

three major C++ language programs to calculate our readings. 

 

Let us start with "mex_EMstep.c"
1
 (Appendix Figure 7.35). mex_EMstep performs one 

step of (T)EM given the parameters 
   usage:  Y = mex_EMstep(X,C,Pw_z,Pz_d) 
   or      Y = mex_EMstep(X,C,Pw_z,Pz_d,beta) 
where 'X' is the term-document matrix, 'C' the normalization constant (evaluated at the non 

zero points of 'X', 'Pw_z' the conditional distribution over words given the topics, 'Pz_d'  

the document conditioned distribution over the topics. 'beta' \elem (0,1) for tempered EM. 

(default: 1)   'X' and 'C' have to be sparse (and of the same structure). 

 

Another important C++ program is "mex_Pw_d.c", which computes the normalization 

constant during learning for PLSI. The elements are computed only at those positions 

needed. See Appendix Figure 7.36. 

 

The third C++ program used in PLSI implementation was "mex_logL.c". Which syntax is  

logL = mex_logL(X,Pw_d,Pd) 
where X is the term-document matrix, Pw_d the distribution over the words given the 

documents and Pd the prior distribution over the documents. X and Pw_d need to be sparse 

(and of the same structure). See Appendix Figure 7.37. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
 Peter Gehler,  Max Planck Institute for biological Cybernetics,  pgehler@tuebingen.mpg.de,  Feb 2006 
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5.2.5 Get Links Class. 

 

A very important part in the program, is "Getlinks" class. As mentioned before in chapter 

three, if a document passes the threshold condition and found relevance to agent's object 

topic, the links inside this document has a good possibility to be relevant too. The agent 

should be able to get these links to be fetched in the queue after have been checked by 

"Role D". Appendix Figure 7.38, shows this part of our system.  

 

This job is done with the help of "getReader()" methods, which checks all parts of the 

document begins with "http:" in order to recognize a link inside a document. See Appendix 

Figure 7.39. 
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5.3 Testing Experiments 

 

In order to test our system, -using the previously mentioned methods and classes- we have 

made a collection of documents about computer science topic. Some of these documents 

are relevant to our topic which we have selected to be a test-topic for our system.  

 

The documents we have collected, contains terms and links to each other. The following 

table 5.1 shows the relevance of each document in our test-collection. Then we applied two 

tests to this collection. 

 

The first test was by applying traditional topic-search system that uses PLSI method on this 

collection. In fact we used a duplicate of our system but has no filters or thresholds in it. 

Then we calculated precision and recall. The details will be presented later in the next 

section. 

 

The second test was by applying our topic-search agent system that uses PLSI method on 

this collection with our filter with thresholds inside it. Then we calculated precision and 

recall too. The details will be presented later in the next sections. 

 

 

Comparing the results of both experiments indicate the precision and recall of our 

architecture and design is better than the other one. In chapter six, we will discuss in details 

the advantages of our system.  

 

As we can see in table 5.1, more than a hundred documents are involved in the collection 

and used in both experiments one and two. The relevant documents are selected carefully 

to be about a topic that we are familiar with. for example, the first experiment was about 

computer science which we can decide whether the document is relevant or not. 
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Table 5.1 Relevance of Test Document Collection 

Docs Relevant? Docs Relevant? Docs Relevant? Docs Relevant? 

D001 FALSE D033 FALSE D065 FALSE D097 TRUE 

D002 FALSE D034 TRUE D066 TRUE D098 TRUE 

D003 FALSE D035 TRUE D067 FALSE D099 FALSE 

D004 FALSE D036 TRUE D068 TRUE D100 FALSE 

D005 TRUE D037 FALSE D069 FALSE D101 FALSE 

D006 FALSE D038 FALSE D070 TRUE D102 TRUE 

D007 FALSE D039 FALSE D071 FALSE D103 TRUE 

D008 FALSE D040 FALSE D072 TRUE D104 FALSE 

D009 FALSE D041 FALSE D073 FALSE D105 FALSE 

D010 FALSE D042 FALSE D074 FALSE D106 TRUE 

D011 FALSE D043 FALSE D075 FALSE D107 FALSE 

D012 FALSE D044 FALSE D076 FALSE D108 FALSE 

D013 FALSE D045 TRUE D077 FALSE D109 TRUE 

D014 FALSE D046 FALSE D078 FALSE D110 FALSE 

D015 FALSE D047 FALSE D079 FALSE D111 FALSE 

D016 FALSE D048 FALSE D080 FALSE D112 FALSE 

D017 FALSE D049 FALSE D081 TRUE D113 TRUE 

D018 TRUE D050 FALSE D082 FALSE D114 FALSE 

D019 TRUE D051 FALSE D083 FALSE D115 FALSE 

D020 TRUE D052 FALSE D084 FALSE D116 FALSE 

D021 FALSE D053 FALSE D085 FALSE D117 FALSE 

D022 FALSE D054 FALSE D086 FALSE D118 FALSE 

D023 FALSE D055 FALSE D087 FALSE D119 FALSE 

D024 FALSE D056 FALSE D088 FALSE D120 FALSE 

D025 FALSE D057 TRUE D089 FALSE D121 FALSE 

D026 FALSE D058 FALSE D090 TRUE D122 TRUE 

D027 FALSE D059 FALSE D091 FALSE D123 FALSE 

D028 TRUE D060 FALSE D092 FALSE D124 TRUE 

D029 FALSE D061 FALSE D093 TRUE D125 TRUE 

D030 FALSE D062 FALSE D094 FALSE D126 FALSE 

D031 FALSE D063 FALSE D095 FALSE D127 TRUE 

D032 FALSE D064 FALSE D096 TRUE D128 TRUE 

 

The next step was to select terms in our selected topic and apply our software to get the 

document-term matrix (frequencies). Then to calculate the weight of each term in the topic 

using methods mentioned in chapter 4. using the following formula: 

 

 

 

The following four tables, Table 5.2, 5.3, 5.4 and 5.5 shows the document-term matrix 

with term's weights in the selected topic 
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Table 5.2 Document[1..32]-Term matrix with P(w|z) 

 
 

Table 5.3 Document[33..64]-Term matrix with P(w|z) 
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Table 5.4 Document[65..96]-Term matrix with P(w|z) 

 
 

Table 5.5 Document[97..128]-Term matrix with P(w|z) 
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Using the following formulas, we calculated the weights of each document in the 

collection.  

 

 

we got the following results in tables 5.6, 5.7, 5.8 and 5.9 

 

Table 5.6 Weighted terms and document [1..32] in PLSI 

 
 

Table 5.7 Weighted terms and document [33..64] in PLSI 
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Table 5.8 Weighted terms and document [65..96] in PLSI 

 
 

Table 5.9 Weighted terms and document [97..128] in PLSI 
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5.3.1 Experiment 1 

 

In this experiment we started by applying traditional topic-search system that uses PLSI 

method on this collection. In fact we used a system that is similar to our system but has no 

filters or thresholds in it. Then we calculated precision and recall. The details are as shown 

in Tables 5.10, 5.11, 5.12 and 5.13. Note that the sequence of documents to be fetched was 

according to the links queue and those are inside the documents starting from document 

82. 

 

Table 5.10 Experiment 1 results (Precision &  Recall) WGET[1..32] 

WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall 

1 D082 0.504781 FALSE 0 29 1 98 0 0 

2 D045 0.682782 TRUE 1 28 1 98 0.5 0.034483 

3 D035 0.692718 TRUE 2 27 1 98 0.666667 0.068966 

4 D008 0.544601 FALSE 2 27 2 97 0.5 0.068966 

5 D062 0.616768 FALSE 2 27 3 96 0.4 0.068966 

6 D106 0.744729 TRUE 3 26 3 96 0.5 0.103448 

7 D069 0.594778 FALSE 3 26 4 95 0.428571 0.103448 

8 D072 0.713054 TRUE 4 25 4 95 0.5 0.137931 

9 D043 0.60354 FALSE 4 25 5 94 0.444444 0.137931 

10 D108 0.655617 FALSE 4 25 6 93 0.4 0.137931 

11 D014 0.660878 FALSE 4 25 7 92 0.363636 0.137931 

12 D031 0.595368 FALSE 4 25 8 91 0.333333 0.137931 

13 D070 0.879918 TRUE 5 24 8 91 0.384615 0.172414 

14 D090 0.763442 TRUE 6 23 8 91 0.428571 0.206897 

15 D052 0.604035 FALSE 6 23 9 90 0.4 0.206897 

16 D076 0.531237 FALSE 6 23 10 89 0.375 0.206897 

17 D079 0.278816 FALSE 6 23 11 88 0.352941 0.206897 

18 D015 0.571226 FALSE 6 23 12 87 0.333333 0.206897 

19 D028 0.737799 TRUE 7 22 12 87 0.368421 0.241379 

20 D047 0.594696 FALSE 7 22 13 86 0.35 0.241379 

21 D024 0.577798 FALSE 7 22 14 85 0.333333 0.241379 

22 D056 0.564595 FALSE 7 22 15 84 0.318182 0.241379 

23 D054 0.589669 FALSE 7 22 16 83 0.304348 0.241379 

24 D071 0.313847 FALSE 7 22 17 82 0.291667 0.241379 

25 D018 0.707376 TRUE 8 21 17 82 0.32 0.275862 

26 D006 0.591998 FALSE 8 21 18 81 0.307692 0.275862 

27 D068 0.820505 FALSE 8 21 19 80 0.296296 0.275862 

28 D012 0.60342 FALSE 8 21 20 79 0.285714 0.275862 

29 D041 0.624845 FALSE 8 21 21 78 0.275862 0.275862 

30 D114 0.6391 FALSE 8 21 22 77 0.266667 0.275862 

31 D107 0.508272 FALSE 8 21 23 76 0.258065 0.275862 

32 D089 0.474764 FALSE 8 21 24 75 0.25 0.275862 
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Table 5.11 Experiment 1 results (Precision &  Recall) WGET[33..64] 
WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall 

33 D078 0.477959 FALSE 8 21 25 74 0.242424 0.275862 

34 D075 0.537479 FALSE 8 21 26 73 0.235294 0.275862 

35 D105 0.637283 FALSE 8 21 27 72 0.228571 0.275862 

36 D032 0.578318 FALSE 8 21 28 71 0.222222 0.275862 

37 D057 0.68649 TRUE 9 20 28 71 0.243243 0.310345 

38 D036 0.681048 TRUE 10 19 28 71 0.263158 0.344828 

39 D127 0.877714 TRUE 11 18 28 71 0.282051 0.37931 

40 D073 0.616113 FALSE 11 18 29 70 0.275 0.37931 

41 D085 0.353067 FALSE 11 18 30 69 0.268293 0.37931 

42 D097 0.859593 TRUE 12 17 30 69 0.285714 0.413793 

43 D081 0.779926 TRUE 13 16 30 69 0.302326 0.448276 

44 D037 0.605731 FALSE 13 16 31 68 0.295455 0.448276 

45 D104 0.670373 FALSE 13 16 32 67 0.288889 0.448276 

46 D033 0.517563 FALSE 13 16 33 66 0.282609 0.448276 

47 D049 0.554995 FALSE 13 16 34 65 0.276596 0.448276 

48 D111 0.633138 FALSE 13 16 35 64 0.270833 0.448276 

49 D044 0.6033 FALSE 13 16 36 63 0.265306 0.448276 

50 D077 0.658674 FALSE 13 16 37 62 0.26 0.448276 

51 D023 0.592686 FALSE 13 16 38 61 0.254902 0.448276 

52 D050 0.564782 FALSE 13 16 39 60 0.25 0.448276 

53 D026 0.612502 FALSE 13 16 40 59 0.245283 0.448276 

54 D027 0.471359 FALSE 13 16 41 58 0.240741 0.448276 

55 D063 0.575586 FALSE 13 16 42 57 0.236364 0.448276 

56 D029 0.570268 FALSE 13 16 43 56 0.232143 0.448276 

57 D128 0.693741 TRUE 14 15 43 56 0.245614 0.482759 

58 D121 0.450292 FALSE 14 15 44 55 0.241379 0.482759 

59 D003 0.625641 FALSE 14 15 45 54 0.237288 0.482759 

60 D091 0.473705 FALSE 14 15 46 53 0.233333 0.482759 

61 D030 0.593542 FALSE 14 15 47 52 0.229508 0.482759 

62 D098 0.82863 TRUE 15 14 47 52 0.241935 0.517241 

63 D004 0.674718 FALSE 15 14 48 51 0.238095 0.517241 

64 D103 0.771209 TRUE 16 13 48 51 0.25 0.551724 
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Table 5.12 Experiment 1 results (Precision &  Recall) WGET[65..96] 
WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall 

65 D109 0.739249 TRUE 17 12 48 51 0.261538 0.586207 

66 D125 0.837158 TRUE 18 11 48 51 0.272727 0.62069 

67 D039 0.638393 FALSE 18 11 49 50 0.268657 0.62069 

68 D058 0.558378 FALSE 18 11 50 49 0.264706 0.62069 

69 D001 0.67094 FALSE 18 11 51 48 0.26087 0.62069 

70 D113 0.834881 TRUE 19 10 51 48 0.271429 0.655172 

71 D093 0.727403 TRUE 20 9 51 48 0.28169 0.689655 

72 D017 0.643965 FALSE 20 9 52 47 0.277778 0.689655 

73 D051 0.602936 FALSE 20 9 53 46 0.273973 0.689655 

74 D116 0.637703 FALSE 20 9 54 45 0.27027 0.689655 

75 D067 0.620184 FALSE 20 9 55 44 0.266667 0.689655 

76 D115 0.605136 FALSE 20 9 56 43 0.263158 0.689655 

77 D061 0.658942 FALSE 20 9 57 42 0.25974 0.689655 

78 D002 0.609397 FALSE 20 9 58 41 0.25641 0.689655 

79 D092 0.413948 FALSE 20 9 59 40 0.253165 0.689655 

80 D007 0.632233 FALSE 20 9 60 39 0.25 0.689655 

81 D074 0.665074 FALSE 20 9 61 38 0.246914 0.689655 

82 D038 0.620836 FALSE 20 9 62 37 0.243902 0.689655 

83 D083 0.523528 FALSE 20 9 63 36 0.240964 0.689655 

84 D122 0.890193 TRUE 21 8 63 36 0.25 0.724138 

85 D046 0.635419 FALSE 21 8 64 35 0.247059 0.724138 

86 D124 0.745513 TRUE 22 7 64 35 0.255814 0.758621 

87 D055 0.446511 FALSE 22 7 65 34 0.252874 0.758621 

88 D119 0.33586 FALSE 22 7 66 33 0.25 0.758621 

89 D101 0.592929 FALSE 22 7 67 32 0.247191 0.758621 

90 D120 0.629868 FALSE 22 7 68 31 0.244444 0.758621 

91 D102 0.729473 TRUE 23 6 68 31 0.252747 0.793103 

92 D088 0.649748 FALSE 23 6 69 30 0.25 0.793103 

93 D025 0.555248 FALSE 23 6 70 29 0.247312 0.793103 

94 D021 0.639761 FALSE 23 6 71 28 0.244681 0.793103 

95 D010 0.504824 FALSE 23 6 72 27 0.242105 0.793103 

96 D096 0.739996 TRUE 24 5 72 27 0.25 0.827586 
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Table 5.13 Experiment 1 results (Precision &  Recall) WGET[97..128] 
WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall 

97 D126 0.647634 FALSE 24 5 73 26 0.247423 0.827586 

98 D099 0.629595 FALSE 24 5 74 25 0.244898 0.827586 

99 D053 0.608683 FALSE 24 5 75 24 0.242424 0.827586 

100 D110 0.547243 FALSE 24 5 76 23 0.24 0.827586 

101 D034 0.681417 TRUE 25 4 76 23 0.247525 0.862069 

102 D059 0.616141 FALSE 25 4 77 22 0.245098 0.862069 

103 D080 0.632831 FALSE 25 4 78 21 0.242718 0.862069 

104 D022 0.590105 FALSE 25 4 79 20 0.240385 0.862069 

105 D112 0.529016 FALSE 25 4 80 19 0.238095 0.862069 

106 D123 0.317798 FALSE 25 4 81 18 0.235849 0.862069 

107 D060 0.674157 FALSE 25 4 82 17 0.233645 0.862069 

108 D011 0.604205 FALSE 25 4 83 16 0.231481 0.862069 

109 D086 0.652306 FALSE 25 4 84 15 0.229358 0.862069 

110 D087 0.657575 FALSE 25 4 85 14 0.227273 0.862069 

111 D009 0.557666 FALSE 25 4 86 13 0.225225 0.862069 

112 D020 0.685407 TRUE 26 3 86 13 0.232143 0.896552 

113 D066 0.787155 TRUE 27 2 86 13 0.238938 0.931034 

114 D016 0.506173 FALSE 27 2 87 12 0.236842 0.931034 

115 D013 0.639832 FALSE 27 2 88 11 0.234783 0.931034 

116 D100 0.521291 FALSE 27 2 89 10 0.232759 0.931034 

117 D084 0.30538 FALSE 27 2 90 9 0.230769 0.931034 

118 D094 0.61339 FALSE 27 2 91 8 0.228814 0.931034 

119 D065 0.47012 FALSE 27 2 92 7 0.226891 0.931034 

120 D040 0.595716 FALSE 27 2 93 6 0.225 0.931034 

121 D005 0.728029 TRUE 28 1 93 6 0.231405 0.965517 

122 D064 0.532658 FALSE 28 1 94 5 0.229508 0.965517 

123 D118 0.584407 FALSE 28 1 95 4 0.227642 0.965517 

124 D042 0.596187 FALSE 28 1 96 3 0.225806 0.965517 

125 D019 0.698225 TRUE 29 0 96 3 0.232 1 

126 D117 0.393035 FALSE 29 0 97 2 0.230159 1 

127 D095 0.590978 FALSE 29 0 98 1 0.228346 1 

128 D048 0.548474 FALSE 29 0 99 0 0.226563 1 
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5.3.2 Experiment 2 

 

The second experiment we started by applying our topic-search agent system that uses 

PLSI method on this collection with our filters and thresholds inside it. Then we calculated 

precision and recall too. The details will be presented later in the next sections. 

 

We have selected our threshold on document weight to be 0.6 to be able to pass through 

role C. This means that some of the documents will be ignored and not be send to the store 

volume of relevant documents. 

 

Then we calculated precision and recall. The details are as shown in Tables 5.14 and 5.15. 

Note that the sequence of documents to be fetched was according to the links queue and 

those are inside the documents starting from Document 82. 
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Table 5.14 Experiment 2 results (Precision &  Recall) WGET[1..50] 

WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall 

1 D082 0.504781 FALSE 0 29 1 98 0 0 

2 D045 0.682782 TRUE 1 28 1 98 0.5 0.034483 

3 D035 0.692718 TRUE 2 27 1 98 0.666667 0.068966 

4 D062 0.616768 FALSE 2 27 2 97 0.5 0.068966 

5 D106 0.744729 TRUE 3 26 2 97 0.6 0.103448 

6 D072 0.713054 TRUE 4 25 2 97 0.666667 0.137931 

7 D043 0.60354 FALSE 4 25 3 96 0.571429 0.137931 

8 D108 0.655617 FALSE 4 25 4 95 0.5 0.137931 

9 D014 0.660878 FALSE 4 25 5 94 0.444444 0.137931 

10 D070 0.879918 TRUE 5 24 5 94 0.5 0.172414 

11 D090 0.763442 TRUE 6 23 5 94 0.545455 0.206897 

12 D052 0.604035 FALSE 6 23 6 93 0.5 0.206897 

13 D028 0.737799 TRUE 7 22 6 93 0.538462 0.241379 

14 D018 0.707376 TRUE 8 21 6 93 0.571429 0.275862 

15 D068 0.820505 FALSE 8 21 7 92 0.533333 0.275862 

16 D012 0.60342 FALSE 8 21 8 91 0.5 0.275862 

17 D041 0.624845 FALSE 8 21 9 90 0.470588 0.275862 

18 D114 0.6391 FALSE 8 21 10 89 0.444444 0.275862 

19 D105 0.637283 FALSE 8 21 11 88 0.421053 0.275862 

20 D057 0.68649 TRUE 9 20 11 88 0.45 0.310345 

21 D036 0.681048 TRUE 10 19 11 88 0.47619 0.344828 

22 D127 0.877714 TRUE 11 18 11 88 0.5 0.37931 

23 D073 0.616113 FALSE 11 18 12 87 0.478261 0.37931 

24 D097 0.859593 TRUE 12 17 12 87 0.5 0.413793 

25 D081 0.779926 TRUE 13 16 12 87 0.52 0.448276 

26 D037 0.605731 FALSE 13 16 13 86 0.5 0.448276 

27 D104 0.670373 FALSE 13 16 14 85 0.481481 0.448276 

28 D111 0.633138 FALSE 13 16 15 84 0.464286 0.448276 

29 D044 0.6033 FALSE 13 16 16 83 0.448276 0.448276 

30 D077 0.658674 FALSE 13 16 17 82 0.433333 0.448276 

31 D026 0.612502 FALSE 13 16 18 81 0.419355 0.448276 

32 D128 0.693741 TRUE 14 15 18 81 0.4375 0.482759 

33 D003 0.625641 FALSE 14 15 19 80 0.424242 0.482759 

34 D098 0.82863 TRUE 15 14 19 80 0.441176 0.517241 

35 D004 0.674718 FALSE 15 14 20 79 0.428571 0.517241 

36 D103 0.771209 TRUE 16 13 20 79 0.444444 0.551724 

37 D109 0.739249 TRUE 17 12 20 79 0.459459 0.586207 

38 D125 0.837158 TRUE 18 11 20 79 0.473684 0.62069 

39 D039 0.638393 FALSE 18 11 21 78 0.461538 0.62069 

40 D001 0.67094 FALSE 18 11 22 77 0.45 0.62069 

41 D113 0.834881 TRUE 19 10 22 77 0.463415 0.655172 

42 D093 0.727403 TRUE 20 9 22 77 0.47619 0.689655 

43 D017 0.643965 FALSE 20 9 23 76 0.465116 0.689655 

44 D051 0.602936 FALSE 20 9 24 75 0.454545 0.689655 

45 D116 0.637703 FALSE 20 9 25 74 0.444444 0.689655 

46 D067 0.620184 FALSE 20 9 26 73 0.434783 0.689655 

47 D115 0.605136 FALSE 20 9 27 72 0.425532 0.689655 

48 D061 0.658942 FALSE 20 9 28 71 0.416667 0.689655 

49 D002 0.609397 FALSE 20 9 29 70 0.408163 0.689655 

50 D007 0.632233 FALSE 20 9 30 69 0.4 0.689655 
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Table 5.15 Experiment 2 results (Precision &  Recall) WGET[51..76] 
WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall 

51 D074 0.665074 FALSE 20 9 31 68 0.392157 0.689655 

52 D038 0.620836 FALSE 20 9 32 67 0.384615 0.689655 

53 D122 0.890193 TRUE 21 8 32 67 0.396226 0.724138 

54 D046 0.635419 FALSE 21 8 33 66 0.388889 0.724138 

55 D124 0.745513 TRUE 22 7 33 66 0.4 0.758621 

56 D120 0.629868 FALSE 22 7 34 65 0.392857 0.758621 

57 D102 0.729473 TRUE 23 6 34 65 0.403509 0.793103 

58 D088 0.649748 FALSE 23 6 35 64 0.396552 0.793103 

59 D021 0.639761 FALSE 23 6 36 63 0.389831 0.793103 

60 D096 0.739996 TRUE 24 5 36 63 0.4 0.827586 

61 D126 0.647634 FALSE 24 5 37 62 0.393443 0.827586 

62 D099 0.629595 FALSE 24 5 38 61 0.387097 0.827586 

63 D053 0.608683 FALSE 24 5 39 60 0.380952 0.827586 

64 D034 0.681417 TRUE 25 4 39 60 0.390625 0.862069 

65 D059 0.616141 FALSE 25 4 40 59 0.384615 0.862069 

66 D080 0.632831 FALSE 25 4 41 58 0.378788 0.862069 

67 D060 0.674157 FALSE 25 4 42 57 0.373134 0.862069 

68 D011 0.604205 FALSE 25 4 43 56 0.367647 0.862069 

69 D086 0.652306 FALSE 25 4 44 55 0.362319 0.862069 

70 D087 0.657575 FALSE 25 4 45 54 0.357143 0.862069 

71 D020 0.685407 TRUE 26 3 45 54 0.366197 0.896552 

72 D066 0.787155 TRUE 27 2 45 54 0.375 0.931034 

73 D013 0.639832 FALSE 27 2 46 53 0.369863 0.931034 

74 D094 0.61339 FALSE 27 2 47 52 0.364865 0.931034 

75 D005 0.728029 TRUE 28 1 47 52 0.373333 0.965517 

76 D019 0.698225 TRUE 29 0 47 52 0.381579 1 

 

Note that only seventy-six document succeeded to pass the threshold and filters, and gave 

better results in precision, recall and speed.  

 

But, when we tried to increase our threshold to 0.7, the precision increases but did not 

recall about 72% of the relevant documents. As shown in table 5.16 
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Table 5.16 Experiment 3 results (Precision &  Recall) WGET[1..23] 

WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall 

1 D082 0.504781 FALSE 0 29 1 98 0 0 

2 D106 0.744729 TRUE 1 28 1 98 0.5 0.034483 

3 D072 0.713054 TRUE 2 27 1 98 0.666667 0.068966 

4 D070 0.879918 TRUE 3 26 1 98 0.75 0.103448 

5 D090 0.763442 TRUE 4 25 1 98 0.8 0.137931 

6 D028 0.737799 TRUE 5 24 1 98 0.833333 0.172414 

7 D018 0.707376 TRUE 6 23 1 98 0.857143 0.206897 

8 D068 0.820505 FALSE 6 23 2 97 0.75 0.206897 

9 D127 0.877714 TRUE 7 22 2 97 0.777778 0.241379 

10 D097 0.859593 TRUE 8 21 2 97 0.8 0.275862 

11 D081 0.779926 TRUE 9 20 2 97 0.818182 0.310345 

12 D098 0.82863 TRUE 10 19 2 97 0.833333 0.344828 

13 D103 0.771209 TRUE 11 18 2 97 0.846154 0.37931 

14 D109 0.739249 TRUE 12 17 2 97 0.857143 0.413793 

15 D125 0.837158 TRUE 13 16 2 97 0.866667 0.448276 

16 D113 0.834881 TRUE 14 15 2 97 0.875 0.482759 

17 D093 0.727403 TRUE 15 14 2 97 0.882353 0.517241 

18 D122 0.890193 TRUE 16 13 2 97 0.888889 0.551724 

19 D124 0.745513 TRUE 17 12 2 97 0.894737 0.586207 

20 D102 0.729473 TRUE 18 11 2 97 0.9 0.62069 

21 D096 0.739996 TRUE 19 10 2 97 0.904762 0.655172 

22 D066 0.787155 TRUE 20 9 2 97 0.909091 0.689655 

23 D005 0.728029 TRUE 21 8 2 97 0.913043 0.724138 
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5.3.3 Experiment 3 

 

We have repeated all the previously mentioned steps to another collection of documents 

that part of them deals with medical-issues. Medical terms were used in the input query. 

 

We have collected a set of medical related documents with the help of specialists in 

medical issues. The documents collection contained also non-relevant documents. The 

specialists helped us in filling the input query which should help the agent in building his 

core index (knowledge) about such topic. 

 

Two tests on the collection were made:- 

1- Testing the system with our contributed filter and threshold. 

2- Testing the system without (filter and threshold). 

In each of those tests we monitored the system output results and recoded all readings 

came out in precision and recall after every document fetched from the collection. 

 

This experiment was important for me to compare precision and recall between two 

different topics. We 'v calculated the recall and precision of the system output with and 

without filter and threshold in order to note difference between topics in multi-agent 

system for more than one topic.  

 

The main objective from implementing this experiment is to calculate precision and recall 

using our contributed system and to note its behavior. We discovered that, on one hand, the 

system gave better results in precision and recall form other systems we have described 

before.  

 

On the other hand, the system gave better results in precision and recall from other topic 

we have used before which is "computer science". 

 

The different between those two topics will be discussed in more details in the next 

section. 
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5.4 Summary & Conclusion 

 

Testing and implementation for such system is somehow complicated. We need useful 

tools for implementation. Plus, designing and programming such agent with no Agent 

programming language is difficult. So we tried to program our own system with the most 

required classes and methods which we mentioned before and used in experiments. 

 

A part of our future work we recommend on this system is to complete building the agent 

using an agent programming tools that have been made in the recent years like JADE (Java 

Agent Development) or any other similar programming tools. 

 

Comparing the results of these experiments indicated progress in precision and recall of 

our architecture and design. In chapter six, we will discuss in details the advantages of our 

system. 

 

From results of experiment one and two, we can see that our filters and thresholds increase 

the efficiency and the speed of our system. If we draw a chart figures for both experiments 

as shown for experiment one in Figure 5.8 and experiment two in Figure 5.9, we will note 

that precision is kept in a high, stable and reliable values, on the other hand the system 

succeeded to recall all relevant document without fetching a lot of non-relevant documents. 

 

 

 
Figure 5.8 Experiment 1 results chart. (traditional system) 
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Figure 5.9 Experiment 2 results chart. (Our System) 

 

Selecting documents for the test-collection for experiments 1 and 2 which was made on 

"computer science" topic was handled by us. This was our starting topic, because we 

consider our-selves familiar with such topic and have the ability to decide which document 

is relevant among all documents.    

 

Results that have been recorded in precision and recall in both experiments 1 and 2 was 

very helpful in proving that our contributed filter and threshold where successful in giving 

better results in precision and recall on one hand. But on the other hand, it did affect the 

speed of the system, which is the factor that because it is not one of the requirements to 

this system has been ignored in our agent system,  
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Figure 5.10 Experiment 3 Precision & Recall on Medical topic 

 

Figure 5.10, shows the implementation of another agent applied to another topic. The new 

topic was (medical topic). We wanted to see the system behavior on completely different 

topic in order to get some notes and imagine this agent in a multi-agent system.  

 

We got the following notes:- 

 Precision in (Medical topic) is much higher than (Computer science topic). 

 Medical terms in most cases are very unique and very strong key words and gives 

high results. 

 Our agent – system (with filter and threshold = 0.6) gives higher precision. But not 

as much as in (Computer science).  

 

In "Computer science" topic, a lot of terms that is considered to be related to is related to 

other topics at the same time but with different weight. These weights are sometimes 

having only small differences in between, which is not in "medical issues". Let's take for 

example the term "treatment" its weight in "medical topic" was recorded about 

(0.6321201) but in "computer science" was about (0.5214.286). Such term is not absolutely 

concerned to be only a medical topic term, it can be a "computer science" topic related too. 

As well as "virus", "infection" … etc. but terms like "medicine", "Aspirin", "cholera" etc, 

have extremely high weights in medical topics. 
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Chapter 6 
 

Conclusions and Future works. 
 

6.1 Conclusions 

 

In this chapter we are going to discuss the two experiments which were applied to our 

agent system, concentrating on one topic. The first experiment used traditional PLSI 

method with no filter, while the other experiment was with filter. Then we got results from 

each one and note the difference between them. 

 

We will also analyze, summarize and present the results of the experiments. Then, our 

conclusions and further work will be presented too. 

 

From results of experiment one and two, we can see that our filters and thresholds increase 

the efficiency and the speed of our system. If we draw a chart figures for both experiments 

as shown for experiment one in Figure 5.8 and experiment two in Figure 5.9, we will note 

that precision is kept in a high, stable and reliable values, on the other hand the system 

succeeded to recall all relevant document without fetching a lot of non-relevant documents. 

 

Testing and implementation for such system was not that easy. Preparing useful tools in 

implementation, in addition to designing and programming such agent with no Agent 

programming language is difficult. So we have programmed our own tool with the most 

required classes and methods which we mentioned before and used in experiments. 

 

As we see that the results of both experiments indicate a progress in the precision and 

recall of our architecture and design. In this chapter, we will discuss in details the 

advantages of our system. 
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As mentioned before. In testing our architecture, we‟ve used a collection on the 

information retrieval topic. The collection core contains many documents which were 

selected by topic administrator (Agent programming topic) relevant documents.  

 

These documents were used to generate the collection topic analyzer. We‟ve used a set of 

terms as topic-terms archive. These terms were supplied by an administrator also and were 

used for topic-analyzer generation.  

 

Agent starts with a set of start Links. This set contains about 5 links on relevant html 

documents and was presented by the administrator. 

 

From results of experiment one and two, we can see that our filters and thresholds increase 

the precision and recall of our system. If we draw a chart figures for both experiments as 

shown for experiment one in Figure 5.8 and experiment two in Figure 5.9, we note that 

precision is kept higher and better than traditional system in all the test range from 0% to 

100% of document collection, in addition, the system succeeded to recall all relevant 

document without fetching a lot of non-relevant documents. 

 

By monitoring and calculating precision and recall after every single document fetched 

from the collection until the end of the collection, note that our filter blocked most of non-

relevant documents and not allowing them to pass.  

 

Assume that document dx is related to our topic with weight w = 0.6. this document will 

manage to pass through threshold τ <= 0.6. but if the threshold increases to τ>0.6, the 

document dx will not manage to pass and will be abandoned by agent role C.  

 

For sure increasing τ will increase precision, but this will affect recall in a negative way. In 

other words, some of relevant documents to the system will not manage to pass through the 

thresholds with weight w > τ. This means that the owner should choose in particular point 

between precision and recall. In other words, he should decide the target of his agent by 

valuing the threshold volume.  

 

Note that if we take the whole range of τ:[0,1] and tried to monitor precision and recall we 

will note the following: 

- For τ = 0, system is working as traditional search system with no filter. 

- For τ = 1, system will bring almost no document but those with w = τ. 

- For 1 > τ > 0, system will select document according to its relevance to topic.  

 

 

The goal of the second experiment test was to find best values for thresholds for document 

evaluator and topic-Analyzer. Result of the test shows that in the best case the precision of 

the agent is 0.722. This means that our agent downloaded a set of new documents, about 

72 % of which were recommended by this agent to the collection, and our topic-

administrator estimate that almost all recommended documents are relevant to the 

collection topic.  As shown in Figure 6.1 and Figure 6.2. 
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Figure 6.1 surface chart for best threshold 

 

 
Figure 6.2 precision according to threshold τ  
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6.2 Future works 

 

It was important to implement experiments on our system without filter and record results 

and to compare with results that have been achieved by other researchers in similar 

systems that use similar PLSI method. Not only similar method but also similar to our 

selected-topic. Since we found out that results are almost the same, then it was the suitable 

environment to test our filter and threshold. 

 

As we can see that, selecting the best threshold is not an easy job. It depends on the topic 

we are searching for. And it depends also on the user himself, and how many documents to 

be retrieved to his own collection. 

 

Finally, it was not possible to program a complete agent using Java language to satisfy the 

requirements. We programmed small separate tools in Java to complete all roles of the 

agent. 

 

Working in this agent will not stop. We hope in the future to continue improving such 

agent using an agent programming language, which could help a lot to make it more 

powerful, fast and intelligent. 

 

By the end of the thesis we recommend the following future work: 

 

- This agent should be rebuilding using AOP agent oriented programming language. 

JADE for example might be helpful in designing such system. 

 

- Developing Agent role A, to be capable of dealing with other languages like Arabic or 

any other language in addition to English. This will need more studies in stemming 

algorithms. The agent could be a Multilanguage topic searcher. And this will increase 

his influence in environment. 

 

- Developing the mathematical method of indexing core terms of target topic. In addition 

to indexing terms of fetched documents too. 

 

- Implementing more studies on agent role D and selecting or contributing more 

effective mathematical method to indexing links inside relevant document and 

selecting more relevant links to be put in the queue, which will make a continuous and 

dynamic re-indexing of links inside the queue. 

 

- Developing a better mathematical formula to re-index the terms of the core index terms 

taking advantage from every new succeeded document that manage to pass through 

filter, in a dynamic way. 
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Figure 7.1 AgentA Class (user interface) 

 

 
Figure 7.2 Agent's Main Method 
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Figure 7.3 Interface1 class (Frame constructor) 

 

 
Figure 7.4 Dealing with user input. 
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Figure 7.5 Creating query table from user's input field 

 

 

 
Figure 7.6 creatOutput() method 
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Figure 7.7 qcreatOutput() method 

 

 
Figure 7.8 ccreatOutput() method 
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Figure 7.9 Component initialization. 

 

 
Figure 7.10 bringing a document from internet 
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Figure 7.11 string's stemming before creating the table.  
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Figure 7.12 WGET Class (Java code) 
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Figure 7.13 createAFile method. 

 

 
Figure 7.14 Stemmer class's declaration. 

 

 
Figure 7.15 add() method1 in stemmer class. 
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Figure 7.16 add() method2 in stemmer class. 

 

 

 
Figure 7.17 toString() method in stemmer class 

 

 

 
Figure 7.18 getResultLength() method in stemmer class 

 

 

 
Figure 7.19 getResultBuffer() method in stemmer class 

 



References & Appendix 

 84 

 
Figure 7.20 consonant cases method in stemmer class 

 

 
Figure 7.21 consonants counter method in stemmer class 
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Figure 7.22 vowel checker method in stemmer class 

 

 
Figure 7.23 double consonant checker in stemmer class 

 

 
Figure 7.24 an "e" restore method in stemmer class 

 

 
Figure 7.25 string's end checker method in stemmer class 
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Figure 7.26 setto() method in stemmer class 

 

 

 
Figure 7.27 string creator r() method in stemmer class 
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Figure 7.28 step1 in stemming process. 
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Figure 7.29 step2 in stemming process 

 

 
Figure 7.30 step3 in stemming process 
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Figure 7.31 step4 in stemming process 
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Figure 7.32 step5 in stemming process 
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Figure 7.33 step6 in stemming process 

 

 
Figure 7.34 stem() method in stemmer class 
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Figure 7.35 "mex_EMstep.c" PLSI implementation. 
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Figure 7.36 "mex_Pw_d.c" PLSI implementation 
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Figure 7.37 "mex_logL.c" PLSI implementation 
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Figure 7.38 Getlinks class 
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Figure 7.39 Link Recognizer 
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ABSTRACT 
This paper describes techniques 

for developing distributed and adaptive 

agent that coordinate to retrieve, filter 

and recommend information relevant to 

the owner, from various web sources.  

The knowledge of agent based on  

semantic indexing by analyzing multiple 

topics in HTML pages. 

 

General Terms/Topics/Keywords 

Agent, Information Retrieval, 

Topic-Analyzer, Latent semantic 

indexing, Adaptation, AUML. 

 

1. Introduction 

A continuous growth of the 

internet usage with billions of published 

documents and data distributed around 

the world, demands a useful, fast, 

accurate and intelligent search system 

that satisfies users needs and queries.  We 

noticed From IWS (Internet world stats) 

website, the rapid growth specially the 

last few years. We can see on Mar-2007 

that the internet population grows up to 

6,574,666,417 while the internet usage 

latest data was about 1,114,274,426. and 

this indicates the huge amount of 

document that is distributed around the 

world [8,1].  

It‟s well known that search 

engines with centralized architecture 

can‟t index the whole Internet because 

the exponential growth of the number of 

documents published in the Internet. 

Search engine with distributed 

architecture is scalable solution of this 

problem [3].  

Our system is based on Intelligent 

Information Agents aims at helping the 

user and melting together the multi-agent 

system (MAS) and the information access 

technologies by investigating to what 

extent methods from Artificial 

Intelligence, Database Systems and 

Information Retrieval (IR) can be applied 

to information discovery by themes of 

information agents in the Internet and the 

World Wide Web. 

In the framework of our suggested 

architecture, we use a set of topic target 

collections of electronic documents 

published in the Internet. These 

collections belong to different owners 

who are responsible for their content, 

indexing and quality of search. 

Administrator‟s demand is automatically 

propagated to one or more collections 

with topics relevant to his target 

topic[1,2,4]. 

 

2. Why .. Agent? 

An agent is a computational entity 

such as a software program or a robot that 

can be viewed as perceiving and acting 

upon its environment and that is 

autonomous in that its behavior at least 

partially depends on its own experience. 

As an intelligent entity, an agent operates 

flexibly and rationally in a variety of 

environmental circumstances given its 

perceptual and effectual equipment. 

Behavioral flexibility and rationality are 

achieved by an agent on the basis of key 

processes such as problem solving, 

planning, decision making, and 

learning.[11,2] 

The study of multi-agent systems 

began in the field of distributed artificial 

intelligence (DAI) about 20 years ago. 

Today these systems are not simply a 

research topic, but are also beginning to 

become an important subject of academic 

mailto:rushbeth@hotmail.com
mailto:aqawasmi@eng.alquds.edu
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teaching and industrial and commercial 

application.[5,7] 

 Our agent is expected to establish 

new cooperation among research groups 

in the related areas mentioned above, but 

also to strengthen existing contacts and 

focus scattered efforts for research on and 

development of intelligent information 

agents. 

 In particular, managing and 

controlling such networks, the services 

they provide, and the communications 

they involve, is crucial to keep Internet a 

useful tool in the future. However, there 

is a growing awareness that current 

centralized IR architectures will soon 

reach the limits of their scalability. We 

argue that distributed but coordinated 

mechanisms that support adaptation and 

self-optimization of Information Agent 

societies can be an answer to this 

problem.[8,4] 

 
Figure 1  system environment.(Shoham 1996-modified) 

 

3. Agent Architecture 

In a distributed agent framework, 

we conceptualize a dynamic community 

of agents, where multiple agents 

contribute services to the community. 

When external services or information 

are required by a given agent, instead of 

calling a known subroutine or asking a 

specific agent to perform a task, the agent 

submits a high-level expression 

describing the needs and attributes of the 

request to a specialized Facilitator agent. 

The Facilitator agent will make decisions 

about which agents are available and 

capable of handling sub-parts of the 

request, and will manage all agent 

interactions required to handle the 

complex query. 

The advantage of such distributed 

agent architecture allows the construction 

of systems that are more flexible and 

adaptable than distributed object 

frameworks. Individual agents can be 

dynamically added to the community, 

extending the functionality that the agent 

community can provide as a whole. The 

agent - system is also able to adapt to 

available resources in a way that hard-

coded distributed objects systems can't. 

        Using AUML (Agent UML) 

we will capture the MAS complexity by 

role decomposition and controls MAS 

environment dynamicity by role/agent 

entities separation. In terms of modeling, 

AUML supports the idea of UML 

extension toward Agent UML, which 

results to the integration of agent classes, 

role classes and interaction protocols to 

UML.[10,2] 

 

 

3.1 Role A (Document Fetcher):- 
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Figure 2 Agent Architecture AUML (As Presented by Juneidi [10]) 

 

Document 

Evaluator 

        This Agent Role uses wget utility 

for document-downloading from the 

internet. The link of this document is 

taken from a storage volume which 

contains a queue of links to be fetched. 

Links queue stars from a set of start 

Links presented by the administrator. 

Every 

Link from this queue is assigned 

estimation of usefulness of this Link for 

seeking of new relevant documents. At 

the first step the newly included to this 

queue Link is assigned number 1 as its 

usefulness.  

The next stage of this role is the 

stemming stage. Logical view of 

documents from full text to a set of 

indexed terms. This stage includes 

Accent spacing, Noun grouping, Stop 

words removing ... until reaching index 

terms from a full text. 

After that, the index terms of the 

fetched document will be handed to 

Agent role C, which is responsible to 

figure out if the document is relevant or 

not. 
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If the document is relevant, Agent 

role A starts to extract all links from this 

document because the probability of  

relevance of these links is high. These 

links is handed directly to Agent Role D. 

 

3.2 Role B (Topic Analyzer):- 

        Using  PLSI arithmetic method, this 

Role is responsible for two major stages:- 

Stage 1, includes receiving main 

target topic terms that is produced by the 

Administrator and stored in the topic 

input volume. PLSI method is used to 

give a weight these terms, in addition to 

index topic terms that comes from 

relevant documents stored in the Index 

core Documents collection. Target topics 

terms weights are continuously modified  

when each new relevant document is 

added to the collection, at the same time 

these modifications are saved in Topic 

Input storage volume, and this loop 

increases the smartness of the agent. 

These modifications are also handed to 

Agent Role C, which is responsible to 

figure out if the document is relevant or 

not. 

Stage 2, starts when  Agent Role 

C decides that the fetched document is 

relevant, it starts to analyze the topics of 

document index terms using PLSI before 

adding the relevant document to the 

collection. 

 

3.3 Role C (Document Evaluator):- 

This role is responsible to receive 

index terms from Role A, and Topic 

index from Role B, and starts to calculate 

the relevance of the document, and the 

weight of it. And then determine 

comparing with a target threshold, 

whether the document is relevant or not. 

If the result is positive, then both of roles 

A and B start their mission on this new 

gift. But for negative result Role C ends 

its job on this not useful document. 

 

3.4 Role D (Links Filter):- 

At every next step Role A chose 

from queue a Link with maximum value 

of estimation of its usefulness, downloads 

it and evaluates it. If this document is 

accepted by evaluator then at next steps 

agent randomly chose links presented in 

its text and includes them into Links 

queue with usefulness estimation equal 1. 

If a downloaded document isn‟t accepted 

by evaluator, then estimation of 

usefulness of a Link of a document, 

where link to this document occurs, is 

decreased. As a result, estimation of the 

Link usefulness is approximation of 

probability of relevance of a link from the 

document to the collection topic. 

This role has to make sure that all 

attracted links are useful and not repeated 

(already checked before) in order to 

increase performance. And this is done 

with help of the stored documents 

collection description. So every link has 

to be filtered and the role decides whether 

to add it to Queue or not (which means to 

end role). 

 

4.1 PLSI Method:- 

Using  PLSI arithmetic method, this 

Role B and C is responsible to analyze 

the whole set of documents from this 

collection and create the collection 

description which reflects the main 

subjects presented in this collection. 

We‟ve used for this propose probabilistic 

latent semantic indexing [3,5]. 

The goal of the latent semantic 

indexing is extraction of latent factors 

which reflect a set of narrow topics 

presented in the given collection. 

Let z  Z = {z1,…, zk} be set of these 

factors. 

Let denote 

 P(zi) – probability that randomly 

selected document from the 

collection best of all corresponds 

to the topic zi 

 P(d|z) – probability that for the 

given factor zi  this factor best of 

all corresponds to the document di  

 P(w|z) – probability that for the 

given factor zi   this factor best of 

all corresponds to the word wj. 
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Here dD={d1, … ,dN} is set of all 

documents from the collection and wW 

={w1,…, wM} is set of all words from this 

collection. 

Functions P(zi), P(d|z) and P(w|z) 

can be estimated in the process of a 

likelihood function maximization. This 

function is presented in the following 

form 


d w

wdPwdtfL )),,(log(),(

. 

Standard Expectation 

Maximization algorithm is used for 

maximization of this function.  Two steps 

are executed at every iteration of this 

algorithm. The first one is Estimation 

.
)|()|()(

)|()|()(
),|(






z

zwPzdPzP

zwPzdPzP
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The second one is Maximization 

 

 

 
 

To generate the collection filter 

we‟ve selected the most heavy words 

from W. Weight of the word w is 

calculated as 





Zz

zwPzP )|()(weight(w)

 
4.2 How it works? 

The goal of using PLSI method is 

to analyze the whole set of 

Administrator‟s queries which reflects 

information need of him. This analysis 

can be used to find new subjects which 

are interested to him but poorly presented 

in the collection core.   

In order to do so we‟ve used the 

following approach. At first graph of all 

words used in the Administrator's terms 

was created.  Every word was presented 

as a vertex of this graph. Two vertices are 

joined with an edge if and only if the pair 

of corresponded words  occurs in the 

same query. Every vertex should have a 

weight which reflects the role of this 

word in the collection subject. Some of 

these words are presented in the 

collection core and we can use 

probabilistic latent semantic indexing to 

calculate their weights. But a part of 

words presented in the queries can be 

new (not presented in the collection 

core). To estimate their weights we‟ve 

used the following method. 

We suppose that weight of every 

new word should be equal to the average 

value of weights of words which are 

neighbors  of this word. We‟ve used 

iteration algorithm to estimate weights of 

all new words according to this proposal. 

All information about queries words and 

their weights is stored as queries 

statistics. 

 

5. Results:- 

 To test our agent we‟ve used it to     

generate a collection on the information 

retrieval topic. The collection core 

contains about 50 documents which were 

selected by a topic administrator 

(Security topic) relevant documents. 

These documents were used to generate 

the collection topic analyzer. We‟ve used 

a set of terms (about 25) as  topic-terms 

archive. These terms were supplied by an 

administrator also and were used for 

topic-analyzer generation. Agent starts 

with a set of start Links. This set contains 

about 5 links on relevant html documents 

and was presented by the administrator. 

 The goal of the test was to find 

best values for thresholds for document 

evaluator and topic-Analyzer. Result of 

the test shows that in the best case the 

precision of the agent is 0.722. This 

means that our agent downloaded a set of 

new documents, about 72 % of which 

were recommended by this agent to the 

collection, and our topic-administrator 

estimate that almost all recommended 

documents are relevant to the collection 

topic. 
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