

Dean of Graduate Studies

Al-Quds University

Developing a Multi-Agent System for information gathering in a

distributed environment Using AUML approach

A.Mohsen Qawasmih

M.Sc. Thesis

Jerusalem – Palestine

Rabi' Thani 1429 / April 2008

Dean of Graduate Studies

Al-Quds University

Developing a Multi-Agent System for information gathering in a

distributed environment Using AUML approach

A.Mohsen Qawasmih

M.Sc. Thesis

Jerusalem – Palestine

Rabi' Thani 1429 / April 2008

Developing a Multi-Agent System for information gathering in a

distributed environment Using AUML approach

Prepared By:

A. Mohsen Khalil Qawasmih

B.Sc: Computer Systems Engineering – Palestine Polytechnic University -

Palestine

Supervisor: Dr. Rushdi Hamamreh

A Thesis Submitted in Partial fulfillment of requirements for

the degree of Master of Electronic and Computer

Engineering.

Department of Electrical Engineering / Master Program in

Electronic and Computer Engineering/ Al Quds University

Rabi' Thani 1429 / April 2008

Al Quds University

Deanship of Graduate Studies

Graduate Studies / Electronic and Computer Engineering

Thesis Approval

Developing a Multi-Agent System For Information Gathering

In a Distributed Environment, Using AUML Approach

Prepared By: A. Mohsen Khalil Qawasmih

Registration No: 20411051

Supervisor: Dr. Rushdi Hamamreh

Master thesis submitted and accepted, Date: 22, April 2008

The names and signatures of examining committee members are as follows:

1-Dr. Rushdi Hamamreh Head of Committee Signature …………..

2-Dr. Rashid Jayousi Internal Examiner Signature …………..

3-Dr. Radwan Tahboub External Examiner Signature …………..

Jerusalem – Palestine

2008

i

Dedication:

This work is dedicated to most precious family, brothers and

friends, who loved and gave me all hopefulness in life.

بسم الله الرحمن الرحيم
قل إن صلاتي ونسكي ومحياي ومماتي لله رب العالمين، لا شريك لو، بذلك أمرت "

" وأنا أول المسممين
صدق الله العظيم

ii

Declaration:
I certify that this thesis submitted for the degree of Master is the results of my own

research, except where otherwise acknowledged, and that this thesis (or any part of

the same) has been submitted for a higher degree to any other university or

institution.

Signed: …………………….

A. Mohsen Khalil Qawasmih

Date:- 22/04/2008

iii

Acknowledgments

 بسم الله الرحمن الرحيم

Thanks to "Allah" for this work.

First and foremost, I would like to thank my supervisor Dr. Rushdi Hamamreh, for his

efforts, assistance, insight, patience and guidance through my graduate work.

A lot of thanks also is to my parents, specially my mother "Nadia" & father "Khalil" in

addition to my lovely wife "Haya", brother "Mohannad" and sisters "Rola, Ola and Abeer"

for their support and encouragement.

My great thanks is to my family, friends, and my collage (PTC-Aroub) for their help and

support.

I don‟t forget also all the professors of Computer and Electronic Engineering department in

Al-Quds University, specially, Dr. Hussein Jaddu, Dr. Labib Arafeh, Dr. Abed Al Kareem

Ayad, and Dr. Ahmed Qutb. Furthermore to all Palestinians and people who loves

freedom.

iv

Abstract

The voluminous and readily available information on the Internet has given rise to

exploration of intelligent technologies; for accessing, filtering, evaluating and integrating

published information.

Because of the daily increase of electronically available information on the internet, an

additional burden has been placed on the implementers of information gathering systems.

The set of data that represents the best response to a user's query may be the aggregation of

data acquired from distributed, heterogeneous information sources. We have begun a

project to build a cooperative agent for information gathering in the initial domain of

computer science and medical topics.

There is a need to develop an information gathering agent to work as an advisor to his

owner in a special topic. This agent should be expert in this topic and his experience is

increasing with time as well as his price too.

The agent should use and make advantage from every piece of information published about

the topic in the internet. His dictionary (knowledge) of this topic is re-indexed frequently

with the time.

This agent should be ready all the time to give his owner the hottest documents that are

much related to his topic without stopping his job in searching or any of his activities. The

agent should build his own queue of targets in the internet to search and knows all the time

his next step.

Our contributed system has four agent-roles:

Document Fetcher: This Agent Role uses "wget" utility for document downloading from

the internet. The link of this document is taken from a storage volume which contains a

queue of links to be fetched. Links queue starts from a set of start Links presented by the

administrator.

Topic Analyzer: Using PLSI (probabilistic latent semantic indexing) arithmetic method.

This role deals with every term and estimate's it‟s weight in the topic. This weight might be

change up or down in the runtime of the system.

Document Evaluator: This role is responsible to calculate the relevance of the document,

and the weight of it.

It contains filters with threshold to let the system decides if a document is accepted to be

added to the relevant document collection or not. This filter and threshold are calculated

and estimated in this thesis.

This role is also helpful in (document-ranking) phase of the system, especially after

calculating the weight of each document.

v

Links Filter: This role has to make sure that all attracted links are useful and not repeated

(already checked before) in order to increase performance.

Increasing precision and recall was our main result in this work, especially after using

filters in addition to PLSI method. And it helps us a lot to select and determine the best

threshold value in system's filter according to the target topic.

vi

 :-الملخص

نظراً لمتزايد العظيم والكبير في حجم وكمية المعمومات المنشورة والموزعة عمى الشبكة العنكبوتية والحاجة الماسة لنظام
بحث يستنبط ويستخرج المعمومات المفيدة والمباشرة والتي تمبي غرض المستخدم وحاجتو إلى فئة معينة من المعمومات

 .دون التشتت في جمب معمومات قد يكون جزز كبير منيا غير مفيد أو غير مطموب أصلاً

نحن بحاجة إلى موظف أو وكيل برمجي يقوم بالعمل كمستشار يبحث عن الموضوع الذي يكمفو إياه مالكو ويقوم بجمع
ويعتبر كخبير في الموضوع الذي . المعمومات والوثائق المفيدة والمرتبطة بيذا الموضوع من الانترنت دون كمل أو ممل

وخبرتو تمك من المفروض أنيا تزداد مع مرور الزمن وذلك يؤدي إلى زيادة ثمنو وسعره بالطبع، . يكمف بالبحث عنو
أي أنو يستفيد من كل . بحيث أن الخمفية العممية ليذا الوكيل حول الموضوع تتطور مع كل وثيقة تدخل إلى مجموعتو

. معمومة تدخل النظام

ويعتمد ىذا . يعمل ىذا الوكيل عمى استنباط الموضوع المطموب وتوزين مفرداتو ومقارنة مفردات الوثائق المحضرة بيا
: الوكيل عمى أربعة أدوار رئيسية ىي

 والذي يقوم بدوره بجمب الوثيقة من الشبكة العنكبوتية بحسب عناوين محفوظة بطابور خاص–جالب الوثيقة : أولا
(Queue)يتم إعداده في البداية من قبل مدير النظام كنقطة انطلاقة .

 والذي يقوم اعتمادا عمى نظرية الاحتمالات آنفة الذكر بفيرسة وتوزين المفردات المتعمقة –محمل الموضوع : ثانياً

. بطمب المستخدم والتي يستنبطيا منو بحسب الطمبات التي قام بإدخاليا وحفظيا في مخزن خاص بيا

أوزان تمك المفردات من المفروض أن تتأثر مع الزمن بحيث أما أن تتعزز أو تزيد أو تنقص بحسب الوثائق التي تنجح
. في الوصول إلى مجموعة الوثائق المتعمقة بالموضوع المراد البحث عنو

 بالاعتماد أيضا عمى نظرية الاحتمالات الرياضية المذكورة أعلاه يستخدم الوكيل معادلة تم بناؤىا –مقيّم الوثيقة : ثالثاً

في ىذه الرسالة تجعمو يبدأ بمقارنة مفردات الوثيقة ومدى تقاربيا مع الموضوع الذي يستيدفو المستخدم ليعطي الوثيقة
. يتقرر بنازً عميو ما إن كانت الوثيقة مفيدة فتحفظ أم غير ذلك فتيمل(threshold)وزن نقارنو بقيمة

يتم الاستفادة من ىذا الوزن أيضا في ترتيب الوثائق الناجحة لمعرض بشكل تنازلي أما المستخدم من الأكثر وزنا إلى

. الأقل بحيث يضمن أن جميع ىذه الوثائق مفيدة ومرتبطة بالموضوع ولكن تعرض حسب الأكثر ارتباطا إلى الأقل

 في حال اجتياز وثيقة ما الاختبار بنجاح فإنو يقوم بتحميل الارتباطات الموجودة في تمك –فارز الارتباطات : رابعاً
الوثيقة كل عمى حدا لتقدير مدى احتمالية كون ىذا الارتباط مفيدا وجديرا بأن يرسل إلى الطابور الخاص بجالب

. الوثائق لضمان الفعالية وعدم التكرار

vii

تم بحمد الله برمجة وتطبيق العناصر الأساسية ليذا النظام باستخدام لغة جافا وقد كانت لو نتائج مرضية خاصة في

وذلك بمساعدة عناصر الفرز والتصفية التي . (Recall)والكفازة والقدرة عمى التذكر (Precision)رفع مستوى الدقة
سيتم عرضيا في و . حسب الموضوع (threshold)تم تطوير النظام بواسطتيا والقدرة عمى اختيار أفضل قيمة اختبار

 .الفصول القادمة من ىذه الرسالة

TABLE OF CONTENTS

Dedication I

Declaration II

viii

Acknowledgments III

Abstract IV

TABLE OF CONTENTS VII

List of Figures IX

List of Tables XI

List of Acronyms and Abbreviations IV

Chapter 1

Introduction

1.1 Information Retrieval 1

1.2 3

1.3 Thesis Motivation 4

1.4 Thesis Outline 5

Chapter 2

Analysis of existing Algorithms and architectures

2.1 Introduction 6

2.2 Programming models analysis. 7

 2.2.1 Traditional Programming. 8

 2.2.2 OOP & AOP. 9

 2.2.3 UML & AUML. 10

2.3 Arithmetic IR Algorithms analysis. 12

 2.3.1 Vector space algorithm. 14

 2.3.2 LSI & Probabilistic IR. 17

 2.3.3 Probabilistic Latent Semantic Indexing (PLSI). 21

2.4 Summary & Conclusion 23

Chapter 3

Design of Agent architecture

3.1 Introduction 24

3.2 Agent Architecture 25

 3.2.1 Role A (Document Fetcher) 26

 3.2.2 Role B (Topic Analyzer) 28

 3.2.3 Role C (Document Evaluator) 29

 3.2.4 Role D (Links Filter) 30

3.3 Summary & Conclusion 31

Chapter 4

Development Agent Algorithm

4.1 Introduction 32

4.2 PLSI Method 34

4.3 How it works? 37

4.4 Summary & Conclusion 38

Chapter 5

Implementation and testing

5.1 Introduction 39

5.2 Agent Major Classes 41

 5.2.1 Main Class. 43

 5.2.2 WGET Class. 45

 5.2.3 Stemming Class. 46

 5.2.4 PLSI Class. 49

 5.2.5 Get Links Class. 50

5.3 Testing Experiments 51

 5.3.1 Experiment 1 57

ix

 5.3.2 Experiment 2 61

 5.3.3 Experiment 3 65

5.4 Summary & Conclusion 66

Chapter 6

Conclusions and Future works

6.1 Conclusions. 69

6.2 Future works 72

References 73

Intelligent Focused Information Agent (Published Paper) + Annex 1

List of Figures
Figure 1.1 system environment 3

Figure 2.1 Levels of abstraction that affect programming model 7

Figure 2.2 Three Agent's Roles of the system 11

x

Figure 2.3 Precision & Recall 12

Figure 2.4 Vector Space Model 15

Figure 2.5 Training data for Probabilistic Retrieval 18

Figure 2.6 Precision-recall curves for the 4 test collections with term

weighting by PLSI compare to other methods

21

Figure 3.1 Agent Architecture AUML 27

Figure 5.1 Agent-User Interface 41

Figure 5.2 Agent's Interface with related classes 42

Figure 5.3 InterFace1 Class 43

Figure 5.4 AgentA Class 43

Figure 5.5 WGET Class 45

Figure 5.6 Converting full text to indexed terms through stemming 46

Figure 5.7 Stemmer Class 47

Figure 5.8 Experiment 1 results chat. (traditional system) 66

Figure 5.9 Experiment 2 results chat. (Our System) 67

Figure 5.10 Experiment 3 Precision & Recall on Medical topic 68

Figure 6.1 Surface chart for best threshold 71

Figure 6.2 Precision according to threshold τ 71

Figure 7.1 AgentA Class (user interface) 75

Figure 7.2 Agent's Main Method 75

Figure 7.3 Interface1 class (Frame constructor) 76

Figure 7.4 Dealing with user input 76

Figure 7.5 Creating query table from user's input field 77

Figure 7.6 CreatOutput() method 77

Figure 7.7 QcreatOutput() method 78

Figure 7.8 CcreatOutput() method 78

Figure 7.9 Component initialization 79

Figure 7.10 Bringing a document from internet 79

Figure 7.11 String's stemming before creating the table 80

Figure 7.12 WGET Class (Java code) 81

Figure 7.13 CreateAFile method. 82

Figure 7.14 Stemmer class's declaration 82

Figure 7.15 Add() method1 in stemmer class 82

Figure 7.16 Add() method2 in stemmer class 83

Figure 7.17 ToString() method in stemmer class 83

Figure 7.18 GetResultLength() method in stemmer class 83

Figure 7.19 GetResultBuffer() method in stemmer class 83

Figure 7.20 Consonant cases method in stemmer class 84

Figure 7.21 Consonants counter method in stemmer class 84

Figure 7.22 Vowel checker method in stemmer class 85

Figure 7.23 Double consonant checker in stemmer class 85

Figure 7.24 An "e" restore method in stemmer class 85

Figure 7.25 String's end checker method in stemmer class 85

Figure 7.26 Setto() method in stemmer class 86

Figure 7.27 String creator r() method in stemmer class 86

Figure 7.28 Step1 in stemming process 87

Figure 7.29 Step2 in stemming process 88

Figure 7.30 Step3 in stemming process 88

Figure 7.31 Step4 in stemming process 89

xi

Figure 7.32 Step5 in stemming process 90

Figure 7.33 Step6 in stemming process 91

Figure 7.34 Stem() method in stemmer class 91

Figure 7.35 PLSI implementation "Mex_EMstep.c". 92

Figure 7.36 PLSI implementation "mex_Pw_d.c" 93

Figure 7.37 PLSI implementation "mex_logL.c" 94

Figure 7.38 Getlinks class 95

Figure 7.39 Link Recognizer 96

List of Tables
Table 1-1

 Differentiation between agents and objects at the programming 9

xii

Table 2.1 level

Table 2.2 The relation between programming paradigms, modeling

techniques and programming languages

10

Table 5.1 Relevance of Test Document Collection 52

Table 5.2 Document[1..32]-Term matrix with P(w|z) 53

Table 5.3 Document[33..64]-Term matrix with P(w|z) 53

Table 5.4 Document[65..96]-Term matrix with P(w|z) 54

Table 5.5 Document[97..128]-Term matrix with P(w|z) 54

Table 5.6 Weighted terms and document [1..32] in PLSI 55

Table 5.7 Weighted terms and document [33..64] in PLSI 55

Table 5.8 Weighted terms and document [65..96] in PLSI 56

Table 5.9 Weighted terms and document [97..128] in PLSI 56

Table 5.10 Experiment 1 results (Precision & Recall) WGET[1..32] 57

Table 5.11 Experiment 1 results (Precision & Recall) WGET[33..64] 58

Table 5.12 Experiment 1 results (Precision & Recall) WGET[65..96] 59

Table 5.13 Experiment 1 results (Precision & Recall) WGET[97..128] 60

Table 5.14 Experiment 2 results (Precision & Recall) WGET[1..50] 62

Table 5.15 Experiment 2 results (Precision & Recall) WGET[51..76] 63

Table 5.16 Experiment 3 results (Precision & Recall) WGET[1..23] 64

List of Acronyms and Abbreviations
AOP Agent Oriented Programming

AOSE Agent-Oriented Software Engineering

xiii

AUML Agent UML

DAI Distributed Artificial Intelligence

DF Document Frequency

GF Global frequency

IDF Inverse Document Frequency

IR Information Retrieval

IWS Internet world stats

JADE Java Agent Development

LF Local frequency

LSI Latent Semantic Indexing

MAS Multi-Agent System

OOP Object Oriented Programming

PLSI Probabilistic Latent Semantic Indexing

PRP Probability Ranking Principle

SC Similarity Coefficient

SVD Singular Value Decomposition

TF Term Frequency

UML Unified Modeling language

VSM Vector Space Model

 0Chapter 1: Introduction.

 1

Chapter 1

Introduction

1.1 Information Retrieval

A continuous growth of the internet usage with billions of published documents and data

distributed around the world, demands a useful, fast, accurate and intelligent search system

that satisfies users needs and queries. We noticed from IWS (Internet world statistics)

website[9], the rapid growth specially the last few years. We can see on Mar-2007 that the

internet population grows up to 6,574,666,417 documents. while the internet latest data

usage was about 1,114,274,426 documents. This indicates the huge amount of document

that is distributed around the world [9].

It‟s well known that search engines with centralized architecture can‟t index the whole

Internet because the exponential growth of the number of documents published in the

Internet. Search engine with distributed architecture is scalable solution of this problem

[3].

Our system is based on Intelligent Information gathering Agent, aims to help the user, and

its main roles are melting together to help the topic searcher to find his targets in an open

system that contains other multi-agent system (MAS) and many other information access

technologies, by investigating to what extent methods from IR mathematical methods,

Intelligent search systems.

Data storage Systems and Information Retrieval (IR) can be applied to information

discovery by themes of information agents in the Internet and the World Wide Web[8], [1].

In the framework of our suggested architecture, we use a set of topic target collections of

electronic documents published in the Internet. These collections belong to different

owners who are responsible for their content, indexing and quality of search.

Administrator‟s demand is automatically propagated to one or more collections with topics

relevant to his target topic [1], [2], [4].

This thesis describes architecture of an autonomous agent that gathers information from

distributed environment, as Internet, to build subject-specific collection, and to extract

information from documents using probabilistic latent semantic indexing algorithm.

It also describes techniques for developing distributed and adaptive agent that coordinate to

retrieve, filter and recommend information relevant to the owner, from various web

sources. The knowledge of agent based on semantic indexing by analyzing multiple topics

in HTML pages, with the help of probability mathematical method which is called PLSI.

In contrast to most current research that has been investigated single-agent approaches, we

are developing an agent with a collection of four major roles that team up on demand,

depending on the user's query, topic and links queue, to access, filter and integrate

information distributed in the internet.

 0Chapter 1: Introduction.

 2

We are investigating techniques for developing distributed adaptive roles of an information

agent that coordinate to retrieve, filter and fuse information relevant to the user's query,

topic and links queue, as well as anticipate user‟s information needs.

In our system, information gathering is seamlessly integrated with search support. In this

thesis we present the distributed system architecture, agent collaboration interactions, and a

reusable set of software components for structuring agents.

We have implemented most of this system framework and get successful output results

compared to similar traditional systems. By developing collaborating agent's roles, using

JAVA language, in diverse complex real world tasks, such as organizational document

searching, and topic indexing management.

 0Chapter 1: Introduction.

 3

1.2 Agent theory.

An agent is a computational entity such as a software program or a crawler[2] that can be

viewed as perceiving and acting upon its environment and that is autonomous in that its

behavior at least partially depends on its own experience. As an intelligent entity, an agent

operates flexibly and rationally in a variety of environmental circumstances given its

perceptual and effectual equipment. Behavioral flexibility and rationality are achieved by

an agent on the basis of key processes such as problem solving, planning, decision-making,

and learning. [11].

The study of multi-agent systems began in the field of distributed artificial intelligence

(DAI) about 20 years ago. Today these systems are not simply a research topic, but are also

beginning to become an important subject of academic teaching and industrial and

commercial application [5], [7].

Our agent is expected to establish new cooperation among research groups in the related

areas mentioned above, but also to strengthen existing contacts and focus scattered efforts

for research on and development of intelligent information agents.

In particular, managing and controlling such networks, the services provided, and the

communications involved, is crucial to keep Internet a useful tool in the future. However,

there is a growing awareness that current centralized IR architectures will soon reach the

limits of their scalability. Some Scientifics argue that distributed but coordinated

mechanisms that support adaptation and self-optimization of Information Agent societies

can be an answer to this problem. [8],[4].

Figure 1.1 system environment

Y

X

Z

W

T

V

U

Document's

Collection

IR Agent

(Topic X)

Agent's

sphere of

influence

Agent's

Communication

 0Chapter 1: Introduction.

 4

1.3 Thesis Motivation.

Recent developments in agent-based computing and software engineering have revealed a

significant potential and urgent demand for a close interaction among these disciplines.

On the one hand, as the number of special-topic agent-based software systems grows it

becomes important to build IR systems that use software engineering technology that is

specifically tailored for agent systems.

Thus software engineering is crucial to the textual and search application success of agent-

based computing.

On the other hand, as today‟s and tomorrow‟s standard software systems are required to

operate in increasingly complex – distributed, large, open, dynamic, unpredictable,

heterogeneous and highly interactive – IR application environments, it appears to be very

promising and natural to build these systems in terms of agent and multi-agent technology.

Thus agent orientation can serve as a useful paradigm in software engineering. The field

emerging as a result of this mutual demand for interaction has been referred to as Agent-

Oriented Software Engineering (AOSE)[12].

 0Chapter 1: Introduction.

 5

1.4 Thesis Outline

In the next chapter, we are going to analyze existed Algorithms and architectures that are

related to such systems.

We have analyzed existed programming models such as traditional programming in

addition to OOP & AOP. And programming approaches like UML & AUML with its latest

progresses and developments.

Also, we have analyzed existed arithmetic IR Algorithms that is related to our agent

system, like Vector space algorithm, LSI and Probabilistic models. And justify why we

have chosen PLSI model in our agent.

Chapter three introduces the design of agent architecture. Using AUML including its main

four major roles which are, Role A (Document Fetcher), Role B (Topic Analyzer), Role C

(Document Evaluator), and Role D (Links Filter).

And we will discuss the major job of each role and how it works according to its position

in the system.

In chapter four we are going to discuss in details the development of the agent algorithm

which depends on PLSI methods and how it works in our agent system. We will present

the mathematical functions we used in it.

The implementation of our agent will be presented in chapter five. Using JAVA

programming language we are going to preview our agent's major classes starting from

main class, moving to WGET class, stemming class, Getlinks class and the arithmetic filter

of the system which is PLSI class.

Two experiments were applied to our agent system, concentrating on one topic. The first

experiment used traditional PLSI method without our contributed filter, while the other

experiment was with the filter. Then we got results from each one and note the difference

between them.

These results were analyzed, summarized and presented in the chapter six. Then, our

conclusions and further work presented too.

By the end of the thesis, references with our published paper including Java code in the

appendix were presented.

Chapter 2: Analysis of existed Algorithms and architectures.

 6

Chapter 2

Analysis of existing Algorithms and architectures

2.1 Introduction

Agents can be defined in many ways and there is no one universally correct or acceptable

definition. An agent can be defined (simply) as an autonomous entity that can sense and act

upon its environment. Such simple agents are analogous but not equivalent to orthodox

automata [28]. More sophisticated descriptions draw on concepts such as intentionality,

social ability, adaptation, learning, communication etc. Agent environments vary

considerably, from synthetic worlds to those which robots inhabit through to more abstract

worlds consisting of information and knowledge [11].

Also, agents are a very promising technology for information retrieval. Some applications

are intelligent IR interfaces, mediated searching and brokering, and clustering and

categorization. An agent-based approach means that IR systems can be more scalable,

flexible, extensible, and interoperable, using agents that route information, broker requests,

and share metadata.

The architecture and composition of an agent typically reflects its environment and the

role(s) it plays within that environment; i.e. the challenge of an agents problem or niche

space. Our current research relies heavily on the concept of agency across a number of

different domains, and categories of processes, agencies and agents. For example, we can

consider our ongoing research into decision support systems as that of an investigation into

tightly-coupled agent communities making use of modern but relatively orthodox AI

techniques [28].

One of the threads that draw this work together is that of investigating computational

architectures that allow or help to support computational intelligent methods on IR

applications.

Chapter 2: Analysis of existed Algorithms and architectures.

 7

2.2 Programming models analysis.

Figure 2.1: Levels of abstraction that affect programming model

Programming models are affected by different aspects at different level of abstraction.

Figure 2.1 shows these levels of computing abstraction. The triangle shape shows the

abstraction level that dominates the others. For instance, hardware plays a dominant factor

on operating systems, while operating systems abstract factors related to hardware, and so

on[11].

Chapter 2: Analysis of existed Algorithms and architectures.

 8

2.2.1 Traditional Programming.

We can note the differences between programming models with the traditional

programming in the runtime system which provides the environment for program

interpretation. These environments can be radically different between different paradigms.

These environments may be restricted to administrative tasks or they may also provide

slightly more elaborate services. At this level of abstraction, “agents” have distinct

behavior from “objects”. In an object-oriented runtime system, the objects are statically

represented by the objects‟ architecture.

This architecture contains the current state of any object and objects‟ relations to the object

classes, which subsequently determine the operations that can be performed by this object.

An object is usually represented as a collection of data elements with associated functions

and the granularity of objects is potentially not limited.

The object management system is responsible for managing the relations between objects

and classes (e.g. the inheritance relation) and for the manipulation of objects (e.g. objects

creation or destruction). Furthermore, the object management system is also responsible

for dynamic aspects, such as method selection of polymorphous objects, exception

handling and garbage collection.

In an agent-oriented runtime system, things are distinctly more complicated. Agent

architectures are far more complex than the object architecture, especially because of the

dynamic aspects that agents deal with. Each agent perceives the state of its environment,

integrates the perceived facts in its knowledge base, forms beliefs, desires, goals and

intentions to act and finally executes the planned activities (possibly in coordination with

other agents)[11].

Chapter 2: Analysis of existed Algorithms and architectures.

 9

2.2.2 OOP & AOP.

To sense differences between OOP & AOP at programming language level of abstraction,

the syntax and semantics of a programming language for the manipulation of entities at the

system runtime level is defined.

The programs that are written in a particular programming language are interpreted at the

system run-time level. In the programming language level, as well as it is at the runtime

level, there is a differentiation between objects and agents, as it is shown in the following

table (Table:2.1)

Table 2.1: Differentiation between agents and objects at the programming level[11]

 OOP AOP

Structural
Elements

Abstract class Generic role

Class Domain specific role

Member variable Knowledge, belief

Method Capabilities, (complex and primitive) actions

Relation &

Communication

Collaboration(uses) Negotiation

Composition (has) Institutionalized agents, groups of agents

inheritance (is) Role multiplicity

Instantiation Domain specific role and individual knowledge

Polymorphism Service matching

Chapter 2: Analysis of existed Algorithms and architectures.

 10

2.2.3 UML & AUML.

Design languages are further abstractions from a particular programming language that aim

at the conceptual modeling of a system at a more coarse grained level. Design languages

often use graphical notations that make it easier for the designer to use and manipulate the
overall system structure.

In the object oriented community UML is a well established design language being

supported by case tools such as the Rational Rose Software®, which can transform the

object architecture into class code in Java or C++, in conjunction to other useful design

utilities.

Table 2.2: The relation between programming paradigms, modeling techniques and

programming languages (updated from [11])

 Programming languages, and Software Modeling Techniques

 Programming language Analysis Design

P
ro

g
ra

m
m

in
g
 P

ar
ad

ig
m

s

Top down
(Monolithic)

Assembly High level

language

Textual,

Algorithms

Flowcharts Algorithms

Structural
(Modular)

High level languages with

built-in support routines

Dataflow diagram

HIPO Chart

Data Structure

Diagram and Structure

Chart

Object

Oriented

Object Oriented high-

level languages, Object

support libraries.

UML: Use Case

& Collaboration

Diagrams

UML: Class diagrams

and its relations, State

Machine…

Agent

Oriented

Agent Platform, an Agent

Oriented Language does

not exist yet.

AUML: Use Case

& Collaboration

Diagrams

AUML Class diagrams

and its relations, State
Machine…

In the agent-based world there is no uniform design language mainly due to the ellipsis of

an agent oriented programming paradigm. However, there is a large number of design

toolkits for special kind of agent architectures and platforms. But lately AUML is starting

to be a new step toward a complete design language as well as UML As shown in Table

2.2.

To know the goal behind moving from UML to AUML we should understand that Multi-

agent systems (MAS) are often characterized as extensions of object-oriented systems. So,

this overly simplified view has often troubled system designers as they try to capture the

unique features of MAS systems using "object oriented" tools. In response, an agent-based

unified modeling language (AUML) is being developed.

Instead of reliance on the UML, we used AUML in our system which is based on IR

(Information retrieval) agent where it makes sense. We do not want to be restricted by

UML; we only want to capitalize on it where we can. The general philosophy, then, is:

"When it makes sense to reuse portions of UML, then do it; when it doesn't make sense to

use UML, use something else or create something new." [11]

Since generating agents come as part of the software engineering process, they have to be

consistent and complement other models built during this process. This system shows how

our agent can be integrated within UML towards AUML.

Chapter 2: Analysis of existed Algorithms and architectures.

 11

Figure 2.2 Three Agent's Roles of the system

Our agent roles are integrated with other UML diagrams for specifying agents‟ interaction.

Returning to our Agent Architecture, let us consider the specification of the roles

functionality. Starting from the UML Use Agent's roles diagram in Figure 2.2, interactions

among interdependent roles are specified by means of AUML. So we can specify the

agent's roles given in Figure 3.1 that represents the interaction among agent's roles

communicating with each other. Which shows a combination of simple, agent instantiation,

and spanning role couples.

This new development on Agent view can be integrated with UML, reaching to AUML

that supports object classes, as well as agent and role classes. By this way an agent entity is

free from any role “burden”, it can move from one role to another without any pre-assigned

agent-role mapping, agent entities can be instantiated to perform atomic roles, agents can

move freely and be instantiated according to system functionality constrains (agent –role

switching constrains) or according to agents‟ internal state[10].

Chapter 2: Analysis of existed Algorithms and architectures.

 12

2.3 Arithmetic IR Algorithms analysis.

Our agent target is focused on Information Retrieval (IR) which is devoted to finding

relevant documents, not finding simple matches to patterns. Yet, often when information

retrieval systems are evaluated, they are found to miss numerous relevant documents.

Moreover, users have become complacent in their expectation of accuracy of information

retrieval systems.

We'll show the critical document categories that correspond to an issued topic. Namely, in

the collection there are documents which are retrieved, and there are those documents that

are relevant. In a perfect system, these two sets would be equivalent; we would only

retrieve relevant documents.

In reality, systems retrieve many non-relevant documents. To measure effectiveness, two

ratios are used: precision and recall.

Precision is the ratio of the number of relevant documents retrieved to the total number

retrieved. Precision provides an indication of the quality of the answer set. However this

dose not considers the total number of relevant documents. A system might have a good

precision by retrieving ten documents and finding that nine are relevant (a 0.9 precision),

but the total number of relevant documents is also important. If there were only nine

relevant documents, the system would be a huge success, however if millions of

documents were relevant and desired, this would not be a good result set[1].

Figure 2.3 Precision & Recall

Recall considers the total number of relevant documents; it is the ratio of the number of

relevant documents retrieved to the total number of documents in the collection that are

believed to be relevant. Computing the total number of relevant documents is non-trivial.

The only sure means of doing this is to read the entire document collection. Since this

clearly not feasible, an approximation of the number is obtained.

All Documents

Relevant

Retrieved

Relevant Retrieved

trieved

trievedlevant
ecision

Re

Re_Re
Pr

levant

trievedlevant
call

Re

Re_Re
Re

Chapter 2: Analysis of existed Algorithms and architectures.

 13

Next we will focus on the current strategies to find relevant documents quickly. The quest

to find efficient and effective IR algorithm continues as well as on our agent.

A retrieval strategy is an algorithm that takes a query Q and a set of documents D1,D2, … ,

Dn and identifies the Similarity Coefficient SC(Q,Di) for each of the documents 1 ≤ i ≤ n.

We will focus on the following arithmetic algorithms:-

 Vector Space Model (VSM) – Both the query and each document are represented

as vectors in the term space. A measure of similarity between the two vectors is

computed.

 Latent Semantic Indexing – The occurrence of terms in the documents is

represented with a term document matrix. The matrix is reduced via Singular Value

Decomposition (SVD) to filter out the noise found in a document so that two

documents which have the same semantic are located close to one another in a

multidimensional space.

 Probabilistic Retrieval – A probability based on the chance that a term will appear

in a relevant document is computed for each term in the collection. For terms that

match between a query and a document, the similarity measure is computed as the

combination of the probabilities of each matching terms.

Chapter 2: Analysis of existed Algorithms and architectures.

 14

2.3.1 Vector space algorithm.

A vector space model computes a measure of similarity by defining a vector that represents

the query. The model is based on the idea that, in some rough sense, the meaning of a

document is conveyed by the words used. If one can represent the words in the document

by a vector, it is possible to compare documents with queries to determine how similar

their content is.

If a query is considered to be like a document, a Similarity Coefficient (SC) that measures

the similarity between a document and a query can be computed. Documents whose

content, as measured by the terms in the document, correspond most closely to the content

of the query are judged to be the most relevant. Figure 2.4 shows the basic notion of the

vector space model in which vectors are that represents a query and multiple documents

are shown.

This model involves constructing a vector that represents the terms in the document and

another vector that represents the terms in the query. Then, a method should be chosen to

measure the closeness of any document vector to the query vector.

One could look at the magnitude of the difference vector between two vectors, but this

would tend to make any large document appear to be not relevant to most queries. Which

typically are short.

The traditional method of determining closeness of two vectors is to use the size of the

angle between them. This angle is computed by using the inner product (or dot product);

however, it is not necessary to use the actual angle. Any monotonic function of the angle

suffices. Often SC is used instead of an angle. Computing this number is done in a variety

of ways, but the inner product generally plays a prominent role.

Chapter 2: Analysis of existed Algorithms and architectures.

 15

Figure 2.4 Vector Space Model

To construct a vector that corresponds to each document, consider the following

definitions:-

 t = number of distinct terms in the document collection

 tfij = number of occurrences of term tj in document Di. This referred to as the term

frequency.

 dfj = number of documents which contains tj. This is the document frequency.

 idfj = log (
dfi

d) where d is the total number of documents. This is the inverse df.

The vector of each documents has n components and contains an entry for each distinct

term in the entire document collection. The components in the vector are filled with

weights computed for each term in the document collection. The terms in each document

are automatically assigned weights based on how frequently they occur in the entire

document collection and how often a term appears in a particular document. The weight of

a term in a document increases the more often the term appears in one document and

decrease the more often it appears in all other documents.

A weight computed for a term in a document vector is non-zero only if the term appears in

the documents. For large document collection consisting of numerous small documents,

the document vectors are likely to contain mostly zeros.

The weighting factor for a term in a document is defined as a combination of term

frequency, and inverse document frequency. That is, to compute the value of the jth entry

in the vector corresponding to document i, the following equation is used [26]:

dij = tfij × idfj

Query

Document

1

Document

2

Document

M

< tq0, tq1, tq2, … , tqn >

< td1,0, td1,1, t d1,2, … , t d1,n >

< td2,0, td2,1, t d2,2, … , t d2,n >

< tdm,0, tdm,1, t dm,2, … , t dm,n >

Chapter 2: Analysis of existed Algorithms and architectures.

 16

When a document retrieval system is used to query a collection of documents with t

distinct collection-wide terms, the system computes a vector D (di1, di2, … , dit) of size t for

each document. The vectors are filled with term weights as described before. Similarly, a

vector Q (wq1, wq2, … , wqt) is constructed from terms found in the query.

A simple SC between a query Q and a document Di is defined by the dot product of two

vectors. Since a query vector is similar in length to a document vector, this same measure

is often used to compute the similarity between two documents [26].

SC(Q,Di) =

t

j

ijqj dw
1

Chapter 2: Analysis of existed Algorithms and architectures.

 17

2.3.2 LSI & Probabilistic IR.

Latent Semantic Indexing (LSI) – Matrix computation is used as a basis for information

retrieval in the retrieval strategy called LSI. The premise is that more conventional

retrieval strategies like VSM all have problems because they match directly on keywords.

Since the same concept can be described using many different keywords, this type of

matching is prone to failure. The authors cite a study in which two people used the same

word for the same concept only twenty percent of the time[26].

Searching for something that is closer to representing the underlying semantic of the

document is not a new goal. Applied here, the idea is not to find a canonical knowledge

presentation, but to use a matrix computation, in particular Singular Value Decomposition

(SVD). This filters out the noise found in a document, such that two documents that have

the same semantic (weather or not they have the same matching terms) will be located

close to one another in a multi-dimensional space.

The process is relatively straightforward. A term document matrix A is constructed such

that location (i,j) indicates the number of times term i appears in document j. A SVD of

this matrix results in matrices U V
T
 such that is a diagonal matrix. A is a matrix

represents each term in a row. Each column of A represents documents. The values in

 are referred to as the singular values. The singular value can be then stored by

magnitude and the top k values are selected as a means of developing a "latent Semantic"

representation of the A matrix. The remaining singular values are then set to 0. Only the

first k columns are kept in Uk; only the first k rows are recorded in a Vk
T
. After setting the

results to 0, a new A' matrix is generated to approximate A = U V
T
 [26].

Comparison of two terms is done via an inner product of the two corresponding rows in Uk.

Comparison of two documents is done as an inner product of two corresponding rows in

Vk
T
. A query-document similarity coefficient treats the query as a document and computes

the SVD. However, the SVD is computationally expensive; so, it is not recommended that

this be done as a solution. Techniques that approximate and a void the overhead of the

SVD exist. For infrequently updated document collection, it is often pragmatic to

periodically compute the SVD.

The Probabilistic model computes the similarity coefficient (SC) between a query and a

document as the probability that the document will be relevant to the query. This reduces

the relevance ranking problem to an application of probability theory.

Probability theory can be used to compute a measure of relevance between query and a

document. All of the work on probabilistic retrieval stems from the concept of estimating a

term's weight based on how often the term appears or doesn‟t appear in relevant documents

and non-relevant documents, respectively.

Simple Term Weights – The use of term weights is based on the probability ranking

principle (PRP), which assumes that optimal effectiveness occurs when documents are

ranked based on an estimate of the probability of their relevance to a query. The key is to

assign probabilities to components of the query and then use each of these as evidence in

computing the final probability that a document is relevant to a query.

Chapter 2: Analysis of existed Algorithms and architectures.

 18

The terms in the query are assigned weights which correspond to the probability that a

particular term, in a match with a given query, will retrieve a relevant document. The

weights for each term in the query are combined to obtain a final measure of relevance

[26].

Figure 2.5 Training data for Probabilistic Retrieval

The terms in the query can be viewed as indicators that a given document is relevant. The

presence or absence of a query term A can be used to predict whether or not a document is

relevant. Hence, after a period of observation, it is found that when term A is in both the

query and the document, there is an x percent chance the document is relevant. We then

assign a probability to term A. Assuming independence of terms, this can be done for each

of the terms in the query. Ultimately, the product of all the weights can be used to compute

the probability of relevance.

In Figure 2.5, we will show the need for training data with most probabilistic models. A

query with two terms, t1 and t2, is executed. Five documents are returned and an

assessment is made that the documents two and four are relevant. From this assessment,

the probability that a document is relevant (or non-relevant) given that it contains term t1 is

computed. Likewise, the same probabilities are computed for t2. Clearly these probabilities

are estimates based on training data. The idea is that sufficient training data can be

obtained so that when a user issues a query, a good estimate of which document are

relevant to the query can be obtained.

Consider a document, di, consisting of t terms (w1, w2, … ,wt), where wi is the estimate that

term i will result in this document being relevant the weight or "odds" that document di is

relevant is based on the probability of relevance of each term in the document. For a given

D2

t1, t2 Query q

t2 D1

t1

D4

t1,t2

D3

t1

D5

t1

Documents Retrieved
Relevant

P(t1 | Di is relevant) = 1/2

P(t1 | Di is relevant) = 2/3

P(t1 | Di is relevant) = 1

P(t1 | Di is relevant) = 1/3

Chapter 2: Analysis of existed Algorithms and architectures.

 19

term in a document, its contribution to estimate of relevance for the entire document is

computed as:

)|(

)|(

nonrelwP

relwP

i

i

Given our independence assumption, we can multiply the odds for each term in a

document to obtain the odds that the document is relevant. Taking the log of the product

yields:

 t

i i

i
t

i i

i

nonrelwP

relwP

nonrelwP

relwP

11)|(

)|(
log

)|(

)|(
log

We note that these values are computed based on the assumption that terms will

independently in the relevant and non-relevant documents. The assumption is also made

that if one term appears in a document, then it has no impact on whether or not another

term will appear in the same document.

The means of estimating the individual term weights by the following two

assumptions[26]:

I1: The distribution of terms in relevant documents is independent and their distribution in

all documents is independent. It indicates that terms occur randomly within a document –

that is, the presence of one term in a document is no way impact the presence of another

term in the same document. This states that distribution of terms across all documents is

independent unconditionally for all documents – that is, the presence of one term in a

document is no way impacts the presence of the same term in other documents.

I2: The distribution of terms in relevant document is independent and their distribution in

non-relevant documents is independent. It indicates that terms in relevant documents are

independent – that is, they satisfy I1 and terms in non-relevant documents also satisfy I1.

They also presented to methods, referred to as ordering principles, for presenting the result

set:-

O1: Probable relevance is based only on the presence of search terms in the documents. It

indicates that documents should be highly ranked only if they contain matching terms in

the query (i.e., the only evidence used in which query terms are actually present in the

term.

O2: Probable relevance is based on both the presence of search terms in documents and

their absence from documents.

Four weights are then derived based on different combination of theses ordering principles

and independence assumptions. Given term, t, consider the following quantities:

- N = number of documents in the collection.

- R = number of relevant documents from a given query q.

- n = number of documents that contain term t.

Chapter 2: Analysis of existed Algorithms and architectures.

 20

- r = number of relevant documents that contains term t.

Choosing I1 and O1 yields the following weight:

N

n
R

r

w log1

Choosing I2 and O1 yields the following weight:

RN

rn
R

r

w log2

Choosing I1 and O2 yields the following weight:

nN

n
rR

r

w log3

Choosing I2 and O2 yields the following weight:

rRnN

rn
rR

r

w log4

The claimed advantage to the probabilistic model is that it is entirely based on probability

theory. The implication is that other models have a certain arbitrary characteristics. They

might perform well experimentally, but they lack a sound theoretical basis because the

parameters are not easy to estimate. Either complete training data are required, or an

inaccurate estimate must be made[26].

Chapter 2: Analysis of existed Algorithms and architectures.

 21

2.3.3 Probabilistic Latent Semantic Indexing (PLSI).

Probabilistic Latent Semantic Indexing is a novel approach to automated document

indexing which is based on a statistical latent class model for factor analysis of count data.

Fitted from a training corpus of text documents by a generalization of the Expectation

Maximization algorithm, the utilized model is able to deal with domain-specific synonymy

as well as with polysemous words.

In contrast to standard Latent Semantic Indexing (LSI) by Singular Value Decomposition,

the probabilistic variant has a solid statistical foundation and defines a proper generative

data model.

Retrieval experiments on a number of test collections indicate substantial performance

gains over direct term matching methods as well as over LSI. In particular, the

combination of models with different dimensionalities has proven to be advantageous [27].

Compared to standard latent semantic analysis which stems from linear algebra and

downsizes the occurrence tables (usually via singular value decomposition), probabilistic

latent semantic analysis is based on a mixture decomposition derived from a latent class

model. This results in a more principled approach which has a solid foundation in statistics.

Considering observations in the form of co-occurrences (w,d) of words and documents,

PLSI models the probability of each co-occurrence as a mixture of conditionally

independent multinomial distributions:

The first formulation is the symmetric formulation, where w and d are both generated from

the latent class c in similar ways (using the conditional probabilities P(d | c) and P(w | c)),

whereas the second formulation is the asymmetric formulation, where, for each document

d, a latent class is chosen conditionally to the document according to P(c | d), and a word is

then generated from that class according to P(w | c).

Figure 2.6 Precision-recall curves for the 4 test collections with term weighting by PLSI

compare to other methods[27].

Chapter 2: Analysis of existed Algorithms and architectures.

 22

Although there are words and documents in PLSI experiments, the co-occurrence of any

couple of discrete variables may be modeled in exactly the same way.

It is reported that the aspect model used in the probabilistic latent semantic analysis has

severe over-fitting problems. The number of parameters grows linearly with the number of

documents. In addition, although PLSI is a generative model of the documents in the

collection it is estimated on, it is not a generative model of new documents [27].

PLSI was proved to be the best mathematical method in such systems compared to LSI and

vector space (tf.df) as shown in Figure 2.6 which shows precision and recall for traditional

centralized search system in different topics including medical and computer science[27].

Chapter 2: Analysis of existed Algorithms and architectures.

 23

2.4 Summary & Conclusion

In this chapter, we have presented existing Algorithms and architectures that are related to

IR systems.

We have analyzed existed programming models such as traditional programming in

addition to OOP & AOP. And programming approaches like UML & AUML with its latest

progresses and developments. We found that our system should be programmed and

developed using agent oriented programming approaches according to its features which

are not found in OOP. But there is no AOP language, so, we tried to build our agent using

JAVA language with AUML architecture.

Also, we have analyzed existed arithmetic IR Algorithms, which is related to our agent

system, like Vector space algorithm, LSI and Probabilistic models. And justify why we

have chosen probabilistic model in our agent which have been proved in some researches.

And we will show that clearly in Chapter 4.

Chapter 3: Design of Agent architecture.

 24

Chapter 3

Design of Agent architecture.

3.1 Introduction

Due to advances in technology, diverse and voluminous information is becoming available

to decision makers. This presents the potential for improved decision support, but poses

challenges in terms of building tools to support users in accessing, filtering, evaluating and

fusing information from heterogeneous information sources.

Most reported research on Intelligent Information Agents to date has dealt with a user

interacting with a single agent that has general knowledge and is capable of performing a

variety of user delegated information finding tasks[19].

For each information query, the agent is responsible for accessing different information

sources and integrating the results. It is believed that, given the current computational state

of art, a centralized agent approach has many limitations[19]:

(1) A single general agent would need an enormous amount of knowledge to be able to

deal effectively with user information requests that cover a variety of tasks.

(2) A centralized information agent constitutes a processing bottleneck and a “single point

of failure”.

(3) Unless the agent has beyond the state of the art learning capabilities, it would need

considerable reprogramming to deal with the appearance of new agents and information

sources in the environment.

(4) Because of the complexity of the information finding and filtering task, and the large

amount of information, the required processing would overwhelm a single agent.

Because of these reasons and because of the characteristics of the Internet environment, we

employ a distributed collaborative collection of agents for information gathering.

We are currently working on a system where each user is associated with a set of agents

which have access to the internet and select topics and keep track of the current state of the

links, query, environment and user information needs.

Based on this knowledge, the agents decide what information is needed and initiate

collaborative searches with other agents to get the information. During search, the agents

communicate with each other to request or provide information, find information sources,

filter or integrate information, and negotiate to resolve conflicts in information and task

models.

The returned information is communicated to display agent or agents that possibly

combine it with information from other sources (e.g. the user) and/or filter it for

appropriate display to the user.

This Chapter focuses on the design of such agent for the task environment of special topic,
and on the key issues that we will be addressing.

Chapter 3: Design of Agent architecture.

 25

3.2 Agent Architecture

In a distributed agent framework, we conceptualize a dynamic community of agents, where

multiple agents contribute services to the community. When external services or

information are required by a given agent, instead of calling a known subroutine or asking

a specific agent to perform a task, the agent submits a high-level expression describing the

needs and attributes of the request to a specialized Facilitator agent. The Facilitator agent

will make decisions about which agents are available and capable of handling sub-parts of

the request, and will manage all agent interactions required to handle the complex query.

The advantage of such distributed agent architecture allows the construction of systems

that are more flexible and adaptable than distributed object frameworks. Individual agents

can be dynamically added to the community, extending the functionality that the agent

community can provide as a whole. The agent - system is also able to adapt to available

resources in a way that hard-coded distributed objects systems can't.

Using AUML (Agent UML) we will capture the MAS complexity by role decomposition

and controls MAS environment dynamicity by role/agent entities separation. In terms of

modeling, AUML supports the idea of UML extension toward Agent UML, which results

to the integration of agent classes, role classes and interaction protocols to UML[10],[2].

Chapter 3: Design of Agent architecture.

 26

3.2.1 Role A (Document Fetcher)

This Agent Role uses "wget" utility for document downloading from the internet. The link

of this document is taken from a storage volume which contains a queue of links to be

fetched. Links queue stars from a set of start Links presented by the administrator.

Every link from this queue is assigned estimation of usefulness of this link for seeking of

new relevant documents. At the first step the newly included to this queue link is assigned

number 1 as its usefulness.

The next stage of this role is the stemming stage, which leads to a logical view of

documents from full text to a set of indexed terms. This stage includes Accent-spacing,

noun-grouping, Stop-words-removing ... until reaching index terms from a full text.

After that, the index terms of the fetched document will be handed to Agent role C, which

is responsible to figure out if the document is relevant or not.
If the document is relevant, Agent role A starts to extract all links from this document

because the probability of relevance of these links is high. These links is handed directly to

Agent Role D.

Chapter 3: Design of Agent architecture.

 27

Document

Fetcher

Stemming &

Analysis

Agent

Role A

Agent

Role B

Calculating

Document's

Relevance

OK?

Internet

Document

Pass?

No End

Role

Yes

Attract

Links

Add

probable

important

Links

Topics

Indexing

For new

document

Topic

Input

Links

Queue

Topic

Analyzer

Index Core of

Documents

Collection

Links

Filter

Agent

Role D

OK?

Receiving

Links

No End

Role

Yes Agent

Role C

Collection's

Topics

Indexing

Document

Evaluator

Figure 3.1 Agent Architecture AUML

Chapter 3: Design of Agent architecture.

 28

3.2.2 Role B (Topic Analyzer)

Using PLSI arithmetic method, this Role is responsible for two major stages:-

Stage 1 includes receiving main target topic terms that is produced by the Administrator

and stored in the topic input volume. PLSI method is used to give a weight these terms, in

addition to index topic's terms that come from relevant documents stored in the Index core

documents collection. Target topics terms weights are continuously modified when each

new relevant document is added to the collection, at the same time these modifications are

saved in Topic Input storage volume, and this loop increases the smartness of the agent.

These modifications are also handed to Agent Role C, which is responsible to figure out if

the document is relevant or not.

Stage 2, starts when Agent Role C decides that the fetched document is relevant, it starts to

analyze the topics of document index terms using PLSI and the global frequency of topic

index terms before adding the relevant document to the collection.

Chapter 3: Design of Agent architecture.

 29

3.2.3 Role C (Document Evaluator)

This role is responsible to receive index terms from Role A, and Topic index from Role B,

and starts to calculate the relevance of the document, and the weight of it. And then

determine using special filter and comparing with a target threshold, whether the document

is relevant or not. If the result is positive, then both of roles A and B start their mission on

this new gift. But for negative result Role C ends its job on this not useful document.

Chapter 3: Design of Agent architecture.

 30

3.2.4 Role D (Links Filter)

At every next step Role A chose from queue a link with maximum value of estimation of

its usefulness, downloads it and evaluates it. If this document is accepted by evaluator then

at next steps agent randomly chose links presented in its text and includes them into Links

queue with usefulness estimation equal 1. If a downloaded document isn‟t accepted by

evaluator, then estimation of usefulness of a link of a document, where link to this

document occurs, is decreased. As a result, estimation of the Link usefulness is

approximation of probability of relevance of a link from the document to the collection

topic.

This role has to make sure that all attracted links are useful and not repeated (already

checked before) in order to increase performance. And this is done with help of the stored

documents collection description. So every link has to be filtered and the role decides

whether to add it to Queue or not (which means to end role).

Chapter 3: Design of Agent architecture.

 31

3.3 Summary & Conclusion

In this chapter we introduced the design of the agent's architecture. Using AUML

including its main four major roles which are, Role A (Document Fetcher), Role B (Topic

Analyzer), Role C (Document Evaluator), and Role D (Links Filter).

And we have discussed the major job of each role and how it works according to its

position in the system.

We noticed the importance of the integrated job of all of the roles to perform the objectives

of the system. AUML was very helpful in describing the flow of data and task handling

between every role of the agent.

Chapter 4: Development Agent Algorithm.

 32

Chapter 4

Development Agent Algorithm.

4.1 Introduction

With the advent of digital databases and communication networks, huge repositories of

textual data have become available to a large public.

Today, it is one of the great challenges in the information sciences to develop intelligent

interfaces for human machine interaction which support computer users in their quest for

relevant information [27].

Although the use of elaborate ergonomic elements like computer graphics and

visualization has proven to be extremely fruitful to facilitate and enhance information

access, progress on the more fundamental question of machine intelligence is ultimately

necessary to ensure substantial progress on this issue.

In order for computers to interact more naturally with humans, one has to deal with the

potential ambivalence, impreciseness, or even vagueness of user requests, and has to

recognize the deference between what a user might say or do and what she or he actually

meant or intended [27].

One typical scenario of human machine interaction in information retrieval is by natural

language queries: the user formulates a request, e.g., by providing a number of keywords

or some free-form text, and expects the system to return the relevant data in some

amenable representation, e.g., in form of a ranked list of relevant documents [27].

Many retrieval methods are based on simple word matching strategies to determine the

rank of relevance of a document with respect to a query.

Yet, it is well known that literal term matching has severe drawbacks, mainly due to the

ambivalence of words and their unavoidable lack of precision as well as due to personal

style and individual deference's in word usage [27].

Latent Semantic Indexing (LSI) is an approach to automatic indexing and information

retrieval that attempts to overcome these problems by mapping documents as well as terms

to a representation in the so called latent semantic space.

LSI usually takes the high dimensional vector space representation of documents based on

term frequencies as a starting point and applies a dimension reducing linear projection.

The specie form of this mapping is determined by a given document collection and is

based on a Singular Value Decomposition (SVD) of the corresponding term/document

matrix.

Chapter 4: Development Agent Algorithm.

 33

The general claim is that similarities between documents or between documents and

queries can be more reliably estimated in the reduced latent space representation than in

the original representation.

The rationale is that documents which share frequently co-occurring terms will have a

similar representation in the latent space, even if they have no terms in common.

LSI thus performs some sort of noise reduction and has the potential benefit to detect

synonyms as well as words that refer to the same topic.

In many applications this has proven to result in more robust word processing.

Although LSI has been applied with remarkable success in different domains including

automatic indexing (Latent Semantic Indexing, LSI), it has a number of deficits, mainly

due to its unsatisfactory statistical foundation[27].

The primary goal of this chapter is to present a novel approach to LSI and factor analysis

called Probabilistic Latent Semantic Analysis (PLSI), that has a solid statistical foundation,

since it is based on the likelihood principle a proper generative model of the data [27].

This implies in particular that standard techniques from statistics can be applied for

questions like modulating, model combination, and complexity control. In addition, the

factor representation obtained by PLSI allows to deal with polysemous words and to

explicitly distinguish between different meanings and different types of word usage.

Chapter 4: Development Agent Algorithm.

 34

4.2 PLSI Method:-

Using PLSI arithmetic method, Roles B and C is responsible to analyze the whole set of

documents from this collection and create the collection description which reflects the

main subjects presented in this collection. We‟ve used for this propose probabilistic latent

semantic indexing [3], [5].

The goal of the latent semantic indexing is extraction of latent factors which reflect a set of

narrow topics presented in the given collection.

Let z Z = {z1,…, zk} be set of these factors.

Let denote

 P(zi) – probability that randomly selected document from the collection best of all

corresponds to the topic zi

 P(d|z) – probability that for the given factor zi this factor best of all corresponds to

the document di

 P(t|z) – probability that for the given factor zi this factor best of all corresponds to

the word tj.

Here dD={d1,…,dN} is set of all documents from the collection and tT ={t1,…, tM} is

set of all terms from this collection.

Functions P(zi), P(d|z) and P(t|z) can be estimated in the process of a likelihood function

maximization. This function is presented in the following form

d t

tdPtdtfL)),,(log(),(.

Standard Expectation Maximization algorithm is used for maximization of this function.

Two steps are executed on every iteration of this algorithm. The first one is Estimation

.
)|()|()(

)|()|()(
),|(

z

ztPzdPzP

ztPzdPzP
tdzP

The second one is Maximization

',
)',|()',(

),|(),(
)|(

td

d

tdzPtdn

tdzPtdn
ztP

td

t

tdzPtdn

tdzPtdn
zdP

,'
),'|(),'(

),|(),(
)|(

td

tdzPtdn
R

zP
,

),|(),(
1

)(,
td

tdnR
,

),(

To generate the collection filter we‟ve selected the heaviest terms from T. Weight of the

term t is calculated as

Chapter 4: Development Agent Algorithm.

 35

Zz

ztPzP)|()(weight(t)

In our system we have used the same PLSI method to calculate the weight of every word in

the (core index terms) wci which is considered to be a dictionary for the topic filter. On the

other hand, we have developed a formula which is considered to be an additional formula

to calculate the weight of every document Wd inside the collection, which is:-

This filter describes the Agent's associated Collection topic and is used to quickly calculate

an approximate relevance score for retrieved documents. The goal of the Wd filter is to

extract relevant pages, and abandon junk pages, recommended to the Collection, where the

final arbitrator of relevancy is the collection itself .

Also, this filter monitors a stream of incoming documents and selects those that match a

certain query. The initial topic filter is set by the Collection, Wd basically consists of a term

vector and a recommendation threshold τ. The term vector contains terms t with associated

term weights wci. The threshold τ is a positive number used to decide whether a document

is judged relevant enough to be recommended to the Collection .

A document profile as well as a filter name is delivered to the Document Evaluation role.

If ft,d is the frequency of term t in document d, then the document weight Wd is calculated

by the Document Evaluation Role using mentioned formula.

Only if Wd > τ, then the document d is recommended to the Collection .

This Filter is responsible for the following:

 Recommend document.

 Abandon document.

 Rebuild core terms.

 Automatic refinement a filter on the basis of accurate Wd from the Collection to

improve the quick initial evaluation made by the document evaluation role.

 Rank the relevant documents output.

To better reflect the Collection's information needs, the Agent can automatically refine its

filter based on relevance feedback from the Collection. Since the Collection feedback

arrives continuously, the topic filter needs to be iteratively refined .

When any document succeeds in passing throw the filter and threshold the system is

supposed to use this document to modify and re-index the core terms according to the

global frequency (gf) of each term which is calculated too.

We mean by global frequency (gf) by the number (count) of repetition of a term among

succeeded documents and not inside document (local frequency – lf). The increase of (gf)

for any term should increase the weight of this term. A suggested formula could be helpful

in rebuilding the core index terms of the agent.

t

t

cidtd wfW .,

Chapter 4: Development Agent Algorithm.

 36

If a term shows up in a new relevant document weight will be:

w`(t) = w(t) + 1/ND

Or

w`(t) = w(t) - 1/ND

w(t) : current weight of the term.

w`(t) : new weight for the term.

ND : number of all accepted documents.

The range of the weight is in[0..1] , but this formula is not implemented yet in this work. It

is one of our future works. We recommend this part to be studied carefully.

Chapter 4: Development Agent Algorithm.

 37

4.3 How it works?

The goal of using PLSI method is to analyze the whole set of Administrator‟s queries

which reflects information need of him.

This analysis can be used to find new subjects which are interested to him but poorly

presented in the collection core index.

In order to do so we‟ve used the following approach. At first graph of all words used in the

Administrator's terms was created. Every word was presented as a vertex of this graph.

Two vertices are joined with an edge if and only if the pair of corresponded words occurs

in the same query.

Every vertex should have a weight which reflects the role of this word in the collection

subject. Some of these words are presented in the collection core and we can use

probabilistic latent semantic indexing to calculate their weights. But a part of words

presented in the queries can be new (not presented in the collection core). To estimate their

weights we‟ve used the following method.

We suppose that weight of every new word should be equal to the average value of weights

of words which are neighbors of this word. We‟ve used iteration algorithm to estimate

weights of all new words according to this proposal. All information about queries words

and their weights is stored as queries statistics.

Chapter 4: Development Agent Algorithm.

 38

4.4 Summary & Conclusion

In this chapter we have discussed in details the development of the agent algorithm which

depends on PLSI methods and how it works in our agent. We have presented the

mathematical functions that we used inside the agent.

Calculating weights for documents and terms in both document and topics using PLSI

method and threshold formula, was very helpful in estimating the relevance of each

document to agent's object topic.

PLSI was proved to be the best mathematical method in such systems compared to LSI and

vector space (tf.df) as shown in Figure 2.6 which shows precision and recall for traditional

centralized search system in different topics including medical and computer science[27].

Chapter 5: Implementation and testing.

 39

Chapter 5

Implementation and testing.

5.1 Introduction

Intelligent Agents are currently the subject of research by a wide and varied community

worldwide. Intelligent agents have received various, if not contradictory, definitions; this is

not surprising, given the wide variety of goals set by different researchers.

In general, researchers agree that an agent is a complex object that shows some degree of

autonomy and social ability, and combines pro-active and reactive behaviors[16].

To help put agents into a correct engineering perspective, we have included some general

considerations regarding what has been called ‟agent oriented programming‟ AOP [12].

Broadly speaking, our agent can be seen as a process that pursues a number of goals over a

long period of time (relative to the application domain), and somehow reacts and adapts to

the evolution of its environment. A multi-agent system attempts to pursue some kind of

common goals by a combination of cooperation, negotiation and competition among

agents.

From an engineering perspective, our agent-based systems differ from traditional

distributed systems because of their emphasis on distributed problem solving;

programming is at a higher level of abstraction than is currently allowed by mainstream

languages and methodologies.

Distributed object oriented applications are commonly developed by creating or

customizing classes at different levels of abstraction and stacking them, starting from some

communications infrastructure at the lowest layer.

Typically, a traditional system does not incorporate any representation of 2 global or per-

process goals, which remain in the minds of its designers and are somehow lost in the

process of top-down decomposition and distribution over the network.

In contrast, building our agent-based system commonly follows a process that is the

reverse of what is described above. Our agent is described in terms of its high-level

objectives, which usually consist of handling certain messages and events and achieving

given goals; multi-agent frameworks may allow the declaration of objectives for the whole

system.

At runtime, it is possible to trace the reasons (that is, the high-level objectives) that

triggered the observed behaviors of an agent.

Furthermore, agents can often choose between different courses of actions (that is, scripts,

rules, plans, and so on) in order to pursue their objectives, and can try many of them

sequentially or concurrently, depending on their state and that of the environment[16].

Chapter 5: Implementation and testing.

 40

In many instances, agent development frameworks are based on, or allow access to, other

AI technologies (for example, logic or functional programming, knowledge bases, fuzzy

logic, and so on) [16].

Our agent-based system could be seen as little more than an application of patterns such as

the Active Object. However, its development process and tools are different from

conventional distributed programming.

These tools enable the declaration of the objectives and behavior of agents at a higher level

of abstraction and support a corresponding view of the activity of the system at run-time.

Among other advantages, this allows a richer set of distributed architectures than client-

server (including cooperation in teams, market-style negotiation for the distribution of

tasks among participants, and so on) and rapid application development.

The implementation of distributed procedures tends to be direct and straightforward. Thus

a framework for intelligent agents is more than just a scripting language or a set of

components for distributed applications.

Such a framework must facilitate correspondence of the observed behavior of our agent to

some high-level objectives. The framework must also take care of tasks being pursued

concurrently and prioritize them when required.

Importantly, it must help in coordinating potentially conflicting tasks, in choosing the best

course of action when alternatives are possible and reacting appropriately on failure.

Managing these aspects is sometimes referred to as „meta-programming‟, they are first-

order elements of agent programming and represent another important distinction

compared with traditional procedural or object-oriented programming.

Most frameworks currently available in the research environment have shortcomings. For

example, some of them are based on languages or technologies considered (quite rightly)

esoteric by mainstream engineering.

Also, a very high level language or framework is usually not appropriate to solve problems

for which proven, efficient algorithmic solutions are available.

Moreover, agent-based applications require access to existing computing infrastructures

and software in order to re-use components or information already in place and to add new

functionality to legacy systems (by either „wrapping‟ them into an agent infrastructure or

adding high-level procedures, such as business rules, as an external component).

These considerations are some of the motivations for JAVA, which we have chosen to

program our agent's classes.

Chapter 5: Implementation and testing.

 41

5.2 Agent Major Classes

Programming such agent is not like programming similar software. We tried to use Java as

a programming language to perform the task and the objectives of our agent. We went

through a lot of difficulties in building agent's classes. So, we started from Class "AgentA"

as shown in Appendix Figure 7.1.

In this class, we tried to construct a simple interface frame that will be used as an agent-

user interface. Its main object is to let the user initiates the agent and enter his options. This

interface is not complicated and it appears like a small window in the middle of the screen.

As shown in Figure 5.1.

Figure 5.1 Agent-User Interface

This Class is surely created by Main method as well as every Java class. Refer to Appendix

Figure 7.2, shows the call for initiating "AgentA" class.

In Java, all related classes should be compiled and loaded to main memory in order to run

the interface frame successfully. In Figure 5.2, we can see the agent's interface running

with related classes to perform the experiments of this thesis.

Chapter 5: Implementation and testing.

 42

Figure 5.2 Agent's Interface with related classes

In the next section we will discuss the main classes of our system that is critical to perform

our experiments.

Chapter 5: Implementation and testing.

 43

5.2.1 Main Class.

In our system, the main class is called "Interface1", which contains the main procedure of

the agent, and a reference intelligent point for the system. In Figure 5.3, we show the

description of the class and its contents of sub-classes and parameters, variables, function,

and declarations.

Figure 5.3 InterFace1 Class

We will try to describe in details some of these properties of Interface1 class. As we show,

this class is created after it has been called from AgentA class which contains the main

method (Figure 5.4).

Figure 5.4 AgentA Class

This class starts with constructing the main frame of the interface window that will appear

after AgentA is initiated. It contains the text-fields, text-areas, scroll panels, hash tables,

and some other parameters that is essential for the agent to start building his own

peripherals which he need to perform user's instructions and queries, as shown in

Appendix Figure 7.3.

Chapter 5: Implementation and testing.

 44

All important components like web address, topic terms, term's frequencies, and files are

declared in this class. An important method in Interface1 class is "createTable()".

This method (Appendix Figure 7.4) is responsible for creating a table of term frequencies

contained in the input document (brought from internet). The same steps are done to create

"qtable" from user's terms in the input-field (Appendix Figure 7.5).

Another important method of interface1 is "createOutput()" which is essential in

performing an output in the window showing table's values (terms and their frequencies) as

shown in Appendix Figure 7.6.

The same steps of this method is used in "qcreatOutput()" which is used in performing an

output in the window showing query's values (terms and their frequencies) as shown in

Appendix Figure 7.7.

We used the same steps in creating an output for the shared terms between table and query.

This job was handled by "ccreatOutput()" method. In other words, it shows the terms of the

query that exists in table and their frequencies in table. See Appendix Figure 7.8.

As well as all Java applications there should be a method considered to be "component

initiator". And this Job in handled in our thesis by method called "jbInit()". As shown in

Appendix Figure 7.9.

The most important part of Interface1 class is that to bring internet document from a user-

given website address or from an addresses queue.

An inner class in interface1 class called "ActionEventHandler" which includes an action

that should be handled after an event happened inside the interface frame's components.

When a text field called "WebURL" the program initiates directly a class that is called

"WGET" which its main job is to bring that document from the internet and save it into a

local file inside the computer. As shown in Appendix Figure 7.10.

The brought file in local volume will be named "Website.html".

Another important part of interface1 class is to call "stemmer" class, to stem every string

inside the brought file. The stemming stage of the document includes ignoring some words

and phrases, before creating the table. As shown in Appendix Figure 7.11.

Chapter 5: Implementation and testing.

 45

5.2.2 WGET Class.

An important class, which helps the agent to bring any document from the internet, and

fetch any web page address. Similar to WGET command in UNIX, we presented the

WGET class. It contains two important method, "creatAFile" and "get" as shown in Figure

5.5.

Figure 5.5 WGET Class

This class is essential to the system as independent class to be initiated and called when it

is needed. It also, saves the retrieved file into a local storage volume. See Appendix Figure

7.12.

The "wget" class uses "createAFile" method in order to create a local file contains the

contents of the brought website. As shown in Appendix Figure 7.13.

Chapter 5: Implementation and testing.

 46

5.2.3 Stemming Class.

Every loaded document should be put under an essential treatment. All words inside this

document should be stemmed in order to increase the efficiency of the system.

Figure 5.6 Converting full text to indexed terms through stemming

Our object is to get to a logical view of documents from full text to a set of indexed terms

(Figure 5.6). We mean by "Full text (doc)" by logical view of terms (representation)

because modern approach IR agents are making it possible to represent a document by its

full set words.

are steps like:-

1- Eliminate stop words: such as articles and connectives.

2- Identifications of Noun Groups: verb, adverb, adjectives.

3- Use stemming: Identification grammatical root.

4- Indexing : set of terms.

The "Stemmer" class agent (Figure 5.7) is responsible to do the part of Transformation

(Text Operations) in our system.

Docs
Accent

Spacing

Structure

Stop

words

Noun

groups Stemming
Indexing

Structure Full text Index Terms

Chapter 5: Implementation and testing.

 47

Figure 5.7 Stemmer Class

By implementing the stemmer class in order to transform a word into its root form, the

input word can be provided a character at a time (by calling "add()" method) -shown in

Appendix Figure 7.15, or at once (by calling one of the various stem() methods).

In Appendix Figure 7.14, we can see the declaration and main parameters of stemmer

class.

The same steps in add() method, is used in other case of characters but faster that the

previous one as shown in Appendix Figure 7.16.

After a word has been stemmed, it can be retrieved by "toString()" method. (Appendix

Figure 7.17)

Stemmer class contains the ability of returning the length of the word resulting from

stemming process using i_end variable And "getResultLength()" function. (Appendix

Figure 7.18)

Sometime we need to return a reference to a character buffer containing the results of the

stemming process. This can be done with the help of "getResultBuffer()" method. As

shown in Appendix Figure 7.19.

Chapter 5: Implementation and testing.

 48

Appendix Figure 7.20 shows a part of stemmer that is concerned with consonant cases.

The following function method can measures the number of consonants not vowels in the

word to be treated later on. See Appendix Figure 7.21.

For sure we do need a vowel checker to indicate if or not the word contains vowel. See

Appendix Figure 7.22. Note that this method depends on cons().

In some cases in English language we do need to indicate if there exists a double consonant

in the word or not. This job is handled by "doublec() method " as shown in Appendix

Figure 7.23.

Special cases in English language when some words contains consonant-vowel-consonant

and the second consonant is not w,x, or y, we need the following step to restore an "e" at

the end of the word. (e.g. cav(e), lov(e) …). See Appendix Figure 7.24.

Appendix Figure 7.25 shows a string's end checker which is helpful in some cases in

English words.

After a word is stemmed we need to take part of word's letters and ignore others. So we use

the following method do this job. See Appendix Figure 7.26 And Appendix Figure 7.27.

The stemming procedure on any word should pass through many steps. We will discuss

these steps in the next methods.

Let us start with step1, which removes plurals and –ed or –ing from the word that is to be

stemmed. See Appendix Figure 7.28.

Step 2, is important to turn terminal y to i when there is another vowel in the string.(

Appendix Figure 7.29).

Step 3, is important to map double suffices to single ones, for special cases. See Appendix

Figure 7.30

Step 4, uses strategy similar to step 3 but deals with cases of words contains –ic-, -full, -

ness. etc. See Appendix Figure 7.31.

Step 5, takes of word's ends like –ant, ence, etc. in some cases. As presented in Appendix

Figure 7.32.

Last step is step 6 , which removes "e" in some word that lasts with it. See Appendix

Figure 7.33

All words that are needed to be stemmed should go through the six steps. The method

called "stem()" applies all these steps in every word. As shown in Appendix Figure 7.34.

Chapter 5: Implementation and testing.

 49

5.2.4 PLSI Class.

In this class, we tried to implement PLSI mathematical method inside our agent. Its main

job is to evaluate (estimate) the weights of documents, topics and terms. We have used

three major C++ language programs to calculate our readings.

Let us start with "mex_EMstep.c"
1
 (Appendix Figure 7.35). mex_EMstep performs one

step of (T)EM given the parameters
 usage: Y = mex_EMstep(X,C,Pw_z,Pz_d)
 or Y = mex_EMstep(X,C,Pw_z,Pz_d,beta)
where 'X' is the term-document matrix, 'C' the normalization constant (evaluated at the non

zero points of 'X', 'Pw_z' the conditional distribution over words given the topics, 'Pz_d'

the document conditioned distribution over the topics. 'beta' \elem (0,1) for tempered EM.

(default: 1) 'X' and 'C' have to be sparse (and of the same structure).

Another important C++ program is "mex_Pw_d.c", which computes the normalization

constant during learning for PLSI. The elements are computed only at those positions

needed. See Appendix Figure 7.36.

The third C++ program used in PLSI implementation was "mex_logL.c". Which syntax is

logL = mex_logL(X,Pw_d,Pd)
where X is the term-document matrix, Pw_d the distribution over the words given the

documents and Pd the prior distribution over the documents. X and Pw_d need to be sparse

(and of the same structure). See Appendix Figure 7.37.

1
 Peter Gehler, Max Planck Institute for biological Cybernetics, pgehler@tuebingen.mpg.de, Feb 2006

Chapter 5: Implementation and testing.

 50

5.2.5 Get Links Class.

A very important part in the program, is "Getlinks" class. As mentioned before in chapter

three, if a document passes the threshold condition and found relevance to agent's object

topic, the links inside this document has a good possibility to be relevant too. The agent

should be able to get these links to be fetched in the queue after have been checked by

"Role D". Appendix Figure 7.38, shows this part of our system.

This job is done with the help of "getReader()" methods, which checks all parts of the

document begins with "http:" in order to recognize a link inside a document. See Appendix

Figure 7.39.

Chapter 5: Implementation and testing.

 51

5.3 Testing Experiments

In order to test our system, -using the previously mentioned methods and classes- we have

made a collection of documents about computer science topic. Some of these documents

are relevant to our topic which we have selected to be a test-topic for our system.

The documents we have collected, contains terms and links to each other. The following

table 5.1 shows the relevance of each document in our test-collection. Then we applied two

tests to this collection.

The first test was by applying traditional topic-search system that uses PLSI method on this

collection. In fact we used a duplicate of our system but has no filters or thresholds in it.

Then we calculated precision and recall. The details will be presented later in the next

section.

The second test was by applying our topic-search agent system that uses PLSI method on

this collection with our filter with thresholds inside it. Then we calculated precision and

recall too. The details will be presented later in the next sections.

Comparing the results of both experiments indicate the precision and recall of our

architecture and design is better than the other one. In chapter six, we will discuss in details

the advantages of our system.

As we can see in table 5.1, more than a hundred documents are involved in the collection

and used in both experiments one and two. The relevant documents are selected carefully

to be about a topic that we are familiar with. for example, the first experiment was about

computer science which we can decide whether the document is relevant or not.

Chapter 5: Implementation and testing.

 52

Table 5.1 Relevance of Test Document Collection

Docs Relevant? Docs Relevant? Docs Relevant? Docs Relevant?

D001 FALSE D033 FALSE D065 FALSE D097 TRUE

D002 FALSE D034 TRUE D066 TRUE D098 TRUE

D003 FALSE D035 TRUE D067 FALSE D099 FALSE

D004 FALSE D036 TRUE D068 TRUE D100 FALSE

D005 TRUE D037 FALSE D069 FALSE D101 FALSE

D006 FALSE D038 FALSE D070 TRUE D102 TRUE

D007 FALSE D039 FALSE D071 FALSE D103 TRUE

D008 FALSE D040 FALSE D072 TRUE D104 FALSE

D009 FALSE D041 FALSE D073 FALSE D105 FALSE

D010 FALSE D042 FALSE D074 FALSE D106 TRUE

D011 FALSE D043 FALSE D075 FALSE D107 FALSE

D012 FALSE D044 FALSE D076 FALSE D108 FALSE

D013 FALSE D045 TRUE D077 FALSE D109 TRUE

D014 FALSE D046 FALSE D078 FALSE D110 FALSE

D015 FALSE D047 FALSE D079 FALSE D111 FALSE

D016 FALSE D048 FALSE D080 FALSE D112 FALSE

D017 FALSE D049 FALSE D081 TRUE D113 TRUE

D018 TRUE D050 FALSE D082 FALSE D114 FALSE

D019 TRUE D051 FALSE D083 FALSE D115 FALSE

D020 TRUE D052 FALSE D084 FALSE D116 FALSE

D021 FALSE D053 FALSE D085 FALSE D117 FALSE

D022 FALSE D054 FALSE D086 FALSE D118 FALSE

D023 FALSE D055 FALSE D087 FALSE D119 FALSE

D024 FALSE D056 FALSE D088 FALSE D120 FALSE

D025 FALSE D057 TRUE D089 FALSE D121 FALSE

D026 FALSE D058 FALSE D090 TRUE D122 TRUE

D027 FALSE D059 FALSE D091 FALSE D123 FALSE

D028 TRUE D060 FALSE D092 FALSE D124 TRUE

D029 FALSE D061 FALSE D093 TRUE D125 TRUE

D030 FALSE D062 FALSE D094 FALSE D126 FALSE

D031 FALSE D063 FALSE D095 FALSE D127 TRUE

D032 FALSE D064 FALSE D096 TRUE D128 TRUE

The next step was to select terms in our selected topic and apply our software to get the

document-term matrix (frequencies). Then to calculate the weight of each term in the topic

using methods mentioned in chapter 4. using the following formula:

The following four tables, Table 5.2, 5.3, 5.4 and 5.5 shows the document-term matrix

with term's weights in the selected topic

Zz

ztPzP)|()(weight(t)

Chapter 5: Implementation and testing.

 53

Table 5.2 Document[1..32]-Term matrix with P(w|z)

Table 5.3 Document[33..64]-Term matrix with P(w|z)

Chapter 5: Implementation and testing.

 54

Table 5.4 Document[65..96]-Term matrix with P(w|z)

Table 5.5 Document[97..128]-Term matrix with P(w|z)

Chapter 5: Implementation and testing.

 55

Using the following formulas, we calculated the weights of each document in the

collection.

we got the following results in tables 5.6, 5.7, 5.8 and 5.9

Table 5.6 Weighted terms and document [1..32] in PLSI

Table 5.7 Weighted terms and document [33..64] in PLSI

t

t

cidtd wfW .,

Chapter 5: Implementation and testing.

 56

Table 5.8 Weighted terms and document [65..96] in PLSI

Table 5.9 Weighted terms and document [97..128] in PLSI

Chapter 5: Implementation and testing.

 57

5.3.1 Experiment 1

In this experiment we started by applying traditional topic-search system that uses PLSI

method on this collection. In fact we used a system that is similar to our system but has no

filters or thresholds in it. Then we calculated precision and recall. The details are as shown

in Tables 5.10, 5.11, 5.12 and 5.13. Note that the sequence of documents to be fetched was

according to the links queue and those are inside the documents starting from document

82.

Table 5.10 Experiment 1 results (Precision & Recall) WGET[1..32]

WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall

1 D082 0.504781 FALSE 0 29 1 98 0 0

2 D045 0.682782 TRUE 1 28 1 98 0.5 0.034483

3 D035 0.692718 TRUE 2 27 1 98 0.666667 0.068966

4 D008 0.544601 FALSE 2 27 2 97 0.5 0.068966

5 D062 0.616768 FALSE 2 27 3 96 0.4 0.068966

6 D106 0.744729 TRUE 3 26 3 96 0.5 0.103448

7 D069 0.594778 FALSE 3 26 4 95 0.428571 0.103448

8 D072 0.713054 TRUE 4 25 4 95 0.5 0.137931

9 D043 0.60354 FALSE 4 25 5 94 0.444444 0.137931

10 D108 0.655617 FALSE 4 25 6 93 0.4 0.137931

11 D014 0.660878 FALSE 4 25 7 92 0.363636 0.137931

12 D031 0.595368 FALSE 4 25 8 91 0.333333 0.137931

13 D070 0.879918 TRUE 5 24 8 91 0.384615 0.172414

14 D090 0.763442 TRUE 6 23 8 91 0.428571 0.206897

15 D052 0.604035 FALSE 6 23 9 90 0.4 0.206897

16 D076 0.531237 FALSE 6 23 10 89 0.375 0.206897

17 D079 0.278816 FALSE 6 23 11 88 0.352941 0.206897

18 D015 0.571226 FALSE 6 23 12 87 0.333333 0.206897

19 D028 0.737799 TRUE 7 22 12 87 0.368421 0.241379

20 D047 0.594696 FALSE 7 22 13 86 0.35 0.241379

21 D024 0.577798 FALSE 7 22 14 85 0.333333 0.241379

22 D056 0.564595 FALSE 7 22 15 84 0.318182 0.241379

23 D054 0.589669 FALSE 7 22 16 83 0.304348 0.241379

24 D071 0.313847 FALSE 7 22 17 82 0.291667 0.241379

25 D018 0.707376 TRUE 8 21 17 82 0.32 0.275862

26 D006 0.591998 FALSE 8 21 18 81 0.307692 0.275862

27 D068 0.820505 FALSE 8 21 19 80 0.296296 0.275862

28 D012 0.60342 FALSE 8 21 20 79 0.285714 0.275862

29 D041 0.624845 FALSE 8 21 21 78 0.275862 0.275862

30 D114 0.6391 FALSE 8 21 22 77 0.266667 0.275862

31 D107 0.508272 FALSE 8 21 23 76 0.258065 0.275862

32 D089 0.474764 FALSE 8 21 24 75 0.25 0.275862

Chapter 5: Implementation and testing.

 58

Table 5.11 Experiment 1 results (Precision & Recall) WGET[33..64]
WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall

33 D078 0.477959 FALSE 8 21 25 74 0.242424 0.275862

34 D075 0.537479 FALSE 8 21 26 73 0.235294 0.275862

35 D105 0.637283 FALSE 8 21 27 72 0.228571 0.275862

36 D032 0.578318 FALSE 8 21 28 71 0.222222 0.275862

37 D057 0.68649 TRUE 9 20 28 71 0.243243 0.310345

38 D036 0.681048 TRUE 10 19 28 71 0.263158 0.344828

39 D127 0.877714 TRUE 11 18 28 71 0.282051 0.37931

40 D073 0.616113 FALSE 11 18 29 70 0.275 0.37931

41 D085 0.353067 FALSE 11 18 30 69 0.268293 0.37931

42 D097 0.859593 TRUE 12 17 30 69 0.285714 0.413793

43 D081 0.779926 TRUE 13 16 30 69 0.302326 0.448276

44 D037 0.605731 FALSE 13 16 31 68 0.295455 0.448276

45 D104 0.670373 FALSE 13 16 32 67 0.288889 0.448276

46 D033 0.517563 FALSE 13 16 33 66 0.282609 0.448276

47 D049 0.554995 FALSE 13 16 34 65 0.276596 0.448276

48 D111 0.633138 FALSE 13 16 35 64 0.270833 0.448276

49 D044 0.6033 FALSE 13 16 36 63 0.265306 0.448276

50 D077 0.658674 FALSE 13 16 37 62 0.26 0.448276

51 D023 0.592686 FALSE 13 16 38 61 0.254902 0.448276

52 D050 0.564782 FALSE 13 16 39 60 0.25 0.448276

53 D026 0.612502 FALSE 13 16 40 59 0.245283 0.448276

54 D027 0.471359 FALSE 13 16 41 58 0.240741 0.448276

55 D063 0.575586 FALSE 13 16 42 57 0.236364 0.448276

56 D029 0.570268 FALSE 13 16 43 56 0.232143 0.448276

57 D128 0.693741 TRUE 14 15 43 56 0.245614 0.482759

58 D121 0.450292 FALSE 14 15 44 55 0.241379 0.482759

59 D003 0.625641 FALSE 14 15 45 54 0.237288 0.482759

60 D091 0.473705 FALSE 14 15 46 53 0.233333 0.482759

61 D030 0.593542 FALSE 14 15 47 52 0.229508 0.482759

62 D098 0.82863 TRUE 15 14 47 52 0.241935 0.517241

63 D004 0.674718 FALSE 15 14 48 51 0.238095 0.517241

64 D103 0.771209 TRUE 16 13 48 51 0.25 0.551724

Chapter 5: Implementation and testing.

 59

Table 5.12 Experiment 1 results (Precision & Recall) WGET[65..96]
WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall

65 D109 0.739249 TRUE 17 12 48 51 0.261538 0.586207

66 D125 0.837158 TRUE 18 11 48 51 0.272727 0.62069

67 D039 0.638393 FALSE 18 11 49 50 0.268657 0.62069

68 D058 0.558378 FALSE 18 11 50 49 0.264706 0.62069

69 D001 0.67094 FALSE 18 11 51 48 0.26087 0.62069

70 D113 0.834881 TRUE 19 10 51 48 0.271429 0.655172

71 D093 0.727403 TRUE 20 9 51 48 0.28169 0.689655

72 D017 0.643965 FALSE 20 9 52 47 0.277778 0.689655

73 D051 0.602936 FALSE 20 9 53 46 0.273973 0.689655

74 D116 0.637703 FALSE 20 9 54 45 0.27027 0.689655

75 D067 0.620184 FALSE 20 9 55 44 0.266667 0.689655

76 D115 0.605136 FALSE 20 9 56 43 0.263158 0.689655

77 D061 0.658942 FALSE 20 9 57 42 0.25974 0.689655

78 D002 0.609397 FALSE 20 9 58 41 0.25641 0.689655

79 D092 0.413948 FALSE 20 9 59 40 0.253165 0.689655

80 D007 0.632233 FALSE 20 9 60 39 0.25 0.689655

81 D074 0.665074 FALSE 20 9 61 38 0.246914 0.689655

82 D038 0.620836 FALSE 20 9 62 37 0.243902 0.689655

83 D083 0.523528 FALSE 20 9 63 36 0.240964 0.689655

84 D122 0.890193 TRUE 21 8 63 36 0.25 0.724138

85 D046 0.635419 FALSE 21 8 64 35 0.247059 0.724138

86 D124 0.745513 TRUE 22 7 64 35 0.255814 0.758621

87 D055 0.446511 FALSE 22 7 65 34 0.252874 0.758621

88 D119 0.33586 FALSE 22 7 66 33 0.25 0.758621

89 D101 0.592929 FALSE 22 7 67 32 0.247191 0.758621

90 D120 0.629868 FALSE 22 7 68 31 0.244444 0.758621

91 D102 0.729473 TRUE 23 6 68 31 0.252747 0.793103

92 D088 0.649748 FALSE 23 6 69 30 0.25 0.793103

93 D025 0.555248 FALSE 23 6 70 29 0.247312 0.793103

94 D021 0.639761 FALSE 23 6 71 28 0.244681 0.793103

95 D010 0.504824 FALSE 23 6 72 27 0.242105 0.793103

96 D096 0.739996 TRUE 24 5 72 27 0.25 0.827586

Chapter 5: Implementation and testing.

 60

Table 5.13 Experiment 1 results (Precision & Recall) WGET[97..128]
WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall

97 D126 0.647634 FALSE 24 5 73 26 0.247423 0.827586

98 D099 0.629595 FALSE 24 5 74 25 0.244898 0.827586

99 D053 0.608683 FALSE 24 5 75 24 0.242424 0.827586

100 D110 0.547243 FALSE 24 5 76 23 0.24 0.827586

101 D034 0.681417 TRUE 25 4 76 23 0.247525 0.862069

102 D059 0.616141 FALSE 25 4 77 22 0.245098 0.862069

103 D080 0.632831 FALSE 25 4 78 21 0.242718 0.862069

104 D022 0.590105 FALSE 25 4 79 20 0.240385 0.862069

105 D112 0.529016 FALSE 25 4 80 19 0.238095 0.862069

106 D123 0.317798 FALSE 25 4 81 18 0.235849 0.862069

107 D060 0.674157 FALSE 25 4 82 17 0.233645 0.862069

108 D011 0.604205 FALSE 25 4 83 16 0.231481 0.862069

109 D086 0.652306 FALSE 25 4 84 15 0.229358 0.862069

110 D087 0.657575 FALSE 25 4 85 14 0.227273 0.862069

111 D009 0.557666 FALSE 25 4 86 13 0.225225 0.862069

112 D020 0.685407 TRUE 26 3 86 13 0.232143 0.896552

113 D066 0.787155 TRUE 27 2 86 13 0.238938 0.931034

114 D016 0.506173 FALSE 27 2 87 12 0.236842 0.931034

115 D013 0.639832 FALSE 27 2 88 11 0.234783 0.931034

116 D100 0.521291 FALSE 27 2 89 10 0.232759 0.931034

117 D084 0.30538 FALSE 27 2 90 9 0.230769 0.931034

118 D094 0.61339 FALSE 27 2 91 8 0.228814 0.931034

119 D065 0.47012 FALSE 27 2 92 7 0.226891 0.931034

120 D040 0.595716 FALSE 27 2 93 6 0.225 0.931034

121 D005 0.728029 TRUE 28 1 93 6 0.231405 0.965517

122 D064 0.532658 FALSE 28 1 94 5 0.229508 0.965517

123 D118 0.584407 FALSE 28 1 95 4 0.227642 0.965517

124 D042 0.596187 FALSE 28 1 96 3 0.225806 0.965517

125 D019 0.698225 TRUE 29 0 96 3 0.232 1

126 D117 0.393035 FALSE 29 0 97 2 0.230159 1

127 D095 0.590978 FALSE 29 0 98 1 0.228346 1

128 D048 0.548474 FALSE 29 0 99 0 0.226563 1

Chapter 5: Implementation and testing.

 61

5.3.2 Experiment 2

The second experiment we started by applying our topic-search agent system that uses

PLSI method on this collection with our filters and thresholds inside it. Then we calculated

precision and recall too. The details will be presented later in the next sections.

We have selected our threshold on document weight to be 0.6 to be able to pass through

role C. This means that some of the documents will be ignored and not be send to the store

volume of relevant documents.

Then we calculated precision and recall. The details are as shown in Tables 5.14 and 5.15.

Note that the sequence of documents to be fetched was according to the links queue and

those are inside the documents starting from Document 82.

Chapter 5: Implementation and testing.

 62

Table 5.14 Experiment 2 results (Precision & Recall) WGET[1..50]

WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall

1 D082 0.504781 FALSE 0 29 1 98 0 0

2 D045 0.682782 TRUE 1 28 1 98 0.5 0.034483

3 D035 0.692718 TRUE 2 27 1 98 0.666667 0.068966

4 D062 0.616768 FALSE 2 27 2 97 0.5 0.068966

5 D106 0.744729 TRUE 3 26 2 97 0.6 0.103448

6 D072 0.713054 TRUE 4 25 2 97 0.666667 0.137931

7 D043 0.60354 FALSE 4 25 3 96 0.571429 0.137931

8 D108 0.655617 FALSE 4 25 4 95 0.5 0.137931

9 D014 0.660878 FALSE 4 25 5 94 0.444444 0.137931

10 D070 0.879918 TRUE 5 24 5 94 0.5 0.172414

11 D090 0.763442 TRUE 6 23 5 94 0.545455 0.206897

12 D052 0.604035 FALSE 6 23 6 93 0.5 0.206897

13 D028 0.737799 TRUE 7 22 6 93 0.538462 0.241379

14 D018 0.707376 TRUE 8 21 6 93 0.571429 0.275862

15 D068 0.820505 FALSE 8 21 7 92 0.533333 0.275862

16 D012 0.60342 FALSE 8 21 8 91 0.5 0.275862

17 D041 0.624845 FALSE 8 21 9 90 0.470588 0.275862

18 D114 0.6391 FALSE 8 21 10 89 0.444444 0.275862

19 D105 0.637283 FALSE 8 21 11 88 0.421053 0.275862

20 D057 0.68649 TRUE 9 20 11 88 0.45 0.310345

21 D036 0.681048 TRUE 10 19 11 88 0.47619 0.344828

22 D127 0.877714 TRUE 11 18 11 88 0.5 0.37931

23 D073 0.616113 FALSE 11 18 12 87 0.478261 0.37931

24 D097 0.859593 TRUE 12 17 12 87 0.5 0.413793

25 D081 0.779926 TRUE 13 16 12 87 0.52 0.448276

26 D037 0.605731 FALSE 13 16 13 86 0.5 0.448276

27 D104 0.670373 FALSE 13 16 14 85 0.481481 0.448276

28 D111 0.633138 FALSE 13 16 15 84 0.464286 0.448276

29 D044 0.6033 FALSE 13 16 16 83 0.448276 0.448276

30 D077 0.658674 FALSE 13 16 17 82 0.433333 0.448276

31 D026 0.612502 FALSE 13 16 18 81 0.419355 0.448276

32 D128 0.693741 TRUE 14 15 18 81 0.4375 0.482759

33 D003 0.625641 FALSE 14 15 19 80 0.424242 0.482759

34 D098 0.82863 TRUE 15 14 19 80 0.441176 0.517241

35 D004 0.674718 FALSE 15 14 20 79 0.428571 0.517241

36 D103 0.771209 TRUE 16 13 20 79 0.444444 0.551724

37 D109 0.739249 TRUE 17 12 20 79 0.459459 0.586207

38 D125 0.837158 TRUE 18 11 20 79 0.473684 0.62069

39 D039 0.638393 FALSE 18 11 21 78 0.461538 0.62069

40 D001 0.67094 FALSE 18 11 22 77 0.45 0.62069

41 D113 0.834881 TRUE 19 10 22 77 0.463415 0.655172

42 D093 0.727403 TRUE 20 9 22 77 0.47619 0.689655

43 D017 0.643965 FALSE 20 9 23 76 0.465116 0.689655

44 D051 0.602936 FALSE 20 9 24 75 0.454545 0.689655

45 D116 0.637703 FALSE 20 9 25 74 0.444444 0.689655

46 D067 0.620184 FALSE 20 9 26 73 0.434783 0.689655

47 D115 0.605136 FALSE 20 9 27 72 0.425532 0.689655

48 D061 0.658942 FALSE 20 9 28 71 0.416667 0.689655

49 D002 0.609397 FALSE 20 9 29 70 0.408163 0.689655

50 D007 0.632233 FALSE 20 9 30 69 0.4 0.689655

Chapter 5: Implementation and testing.

 63

Table 5.15 Experiment 2 results (Precision & Recall) WGET[51..76]
WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall

51 D074 0.665074 FALSE 20 9 31 68 0.392157 0.689655

52 D038 0.620836 FALSE 20 9 32 67 0.384615 0.689655

53 D122 0.890193 TRUE 21 8 32 67 0.396226 0.724138

54 D046 0.635419 FALSE 21 8 33 66 0.388889 0.724138

55 D124 0.745513 TRUE 22 7 33 66 0.4 0.758621

56 D120 0.629868 FALSE 22 7 34 65 0.392857 0.758621

57 D102 0.729473 TRUE 23 6 34 65 0.403509 0.793103

58 D088 0.649748 FALSE 23 6 35 64 0.396552 0.793103

59 D021 0.639761 FALSE 23 6 36 63 0.389831 0.793103

60 D096 0.739996 TRUE 24 5 36 63 0.4 0.827586

61 D126 0.647634 FALSE 24 5 37 62 0.393443 0.827586

62 D099 0.629595 FALSE 24 5 38 61 0.387097 0.827586

63 D053 0.608683 FALSE 24 5 39 60 0.380952 0.827586

64 D034 0.681417 TRUE 25 4 39 60 0.390625 0.862069

65 D059 0.616141 FALSE 25 4 40 59 0.384615 0.862069

66 D080 0.632831 FALSE 25 4 41 58 0.378788 0.862069

67 D060 0.674157 FALSE 25 4 42 57 0.373134 0.862069

68 D011 0.604205 FALSE 25 4 43 56 0.367647 0.862069

69 D086 0.652306 FALSE 25 4 44 55 0.362319 0.862069

70 D087 0.657575 FALSE 25 4 45 54 0.357143 0.862069

71 D020 0.685407 TRUE 26 3 45 54 0.366197 0.896552

72 D066 0.787155 TRUE 27 2 45 54 0.375 0.931034

73 D013 0.639832 FALSE 27 2 46 53 0.369863 0.931034

74 D094 0.61339 FALSE 27 2 47 52 0.364865 0.931034

75 D005 0.728029 TRUE 28 1 47 52 0.373333 0.965517

76 D019 0.698225 TRUE 29 0 47 52 0.381579 1

Note that only seventy-six document succeeded to pass the threshold and filters, and gave

better results in precision, recall and speed.

But, when we tried to increase our threshold to 0.7, the precision increases but did not

recall about 72% of the relevant documents. As shown in table 5.16

Chapter 5: Implementation and testing.

 64

Table 5.16 Experiment 3 results (Precision & Recall) WGET[1..23]

WGET Documents Weight Relevant R-R R-N I-R I-N Precision Recall

1 D082 0.504781 FALSE 0 29 1 98 0 0

2 D106 0.744729 TRUE 1 28 1 98 0.5 0.034483

3 D072 0.713054 TRUE 2 27 1 98 0.666667 0.068966

4 D070 0.879918 TRUE 3 26 1 98 0.75 0.103448

5 D090 0.763442 TRUE 4 25 1 98 0.8 0.137931

6 D028 0.737799 TRUE 5 24 1 98 0.833333 0.172414

7 D018 0.707376 TRUE 6 23 1 98 0.857143 0.206897

8 D068 0.820505 FALSE 6 23 2 97 0.75 0.206897

9 D127 0.877714 TRUE 7 22 2 97 0.777778 0.241379

10 D097 0.859593 TRUE 8 21 2 97 0.8 0.275862

11 D081 0.779926 TRUE 9 20 2 97 0.818182 0.310345

12 D098 0.82863 TRUE 10 19 2 97 0.833333 0.344828

13 D103 0.771209 TRUE 11 18 2 97 0.846154 0.37931

14 D109 0.739249 TRUE 12 17 2 97 0.857143 0.413793

15 D125 0.837158 TRUE 13 16 2 97 0.866667 0.448276

16 D113 0.834881 TRUE 14 15 2 97 0.875 0.482759

17 D093 0.727403 TRUE 15 14 2 97 0.882353 0.517241

18 D122 0.890193 TRUE 16 13 2 97 0.888889 0.551724

19 D124 0.745513 TRUE 17 12 2 97 0.894737 0.586207

20 D102 0.729473 TRUE 18 11 2 97 0.9 0.62069

21 D096 0.739996 TRUE 19 10 2 97 0.904762 0.655172

22 D066 0.787155 TRUE 20 9 2 97 0.909091 0.689655

23 D005 0.728029 TRUE 21 8 2 97 0.913043 0.724138

Chapter 5: Implementation and testing.

 65

5.3.3 Experiment 3

We have repeated all the previously mentioned steps to another collection of documents

that part of them deals with medical-issues. Medical terms were used in the input query.

We have collected a set of medical related documents with the help of specialists in

medical issues. The documents collection contained also non-relevant documents. The

specialists helped us in filling the input query which should help the agent in building his

core index (knowledge) about such topic.

Two tests on the collection were made:-

1- Testing the system with our contributed filter and threshold.

2- Testing the system without (filter and threshold).

In each of those tests we monitored the system output results and recoded all readings

came out in precision and recall after every document fetched from the collection.

This experiment was important for me to compare precision and recall between two

different topics. We 'v calculated the recall and precision of the system output with and

without filter and threshold in order to note difference between topics in multi-agent

system for more than one topic.

The main objective from implementing this experiment is to calculate precision and recall

using our contributed system and to note its behavior. We discovered that, on one hand, the

system gave better results in precision and recall form other systems we have described

before.

On the other hand, the system gave better results in precision and recall from other topic

we have used before which is "computer science".

The different between those two topics will be discussed in more details in the next

section.

Chapter 5: Implementation and testing.

 66

5.4 Summary & Conclusion

Testing and implementation for such system is somehow complicated. We need useful

tools for implementation. Plus, designing and programming such agent with no Agent

programming language is difficult. So we tried to program our own system with the most

required classes and methods which we mentioned before and used in experiments.

A part of our future work we recommend on this system is to complete building the agent

using an agent programming tools that have been made in the recent years like JADE (Java

Agent Development) or any other similar programming tools.

Comparing the results of these experiments indicated progress in precision and recall of

our architecture and design. In chapter six, we will discuss in details the advantages of our

system.

From results of experiment one and two, we can see that our filters and thresholds increase

the efficiency and the speed of our system. If we draw a chart figures for both experiments

as shown for experiment one in Figure 5.8 and experiment two in Figure 5.9, we will note

that precision is kept in a high, stable and reliable values, on the other hand the system

succeeded to recall all relevant document without fetching a lot of non-relevant documents.

Figure 5.8 Experiment 1 results chart. (traditional system)

Chapter 5: Implementation and testing.

 67

Figure 5.9 Experiment 2 results chart. (Our System)

Selecting documents for the test-collection for experiments 1 and 2 which was made on

"computer science" topic was handled by us. This was our starting topic, because we

consider our-selves familiar with such topic and have the ability to decide which document

is relevant among all documents.

Results that have been recorded in precision and recall in both experiments 1 and 2 was

very helpful in proving that our contributed filter and threshold where successful in giving

better results in precision and recall on one hand. But on the other hand, it did affect the

speed of the system, which is the factor that because it is not one of the requirements to

this system has been ignored in our agent system,

Chapter 5: Implementation and testing.

 68

Figure 5.10 Experiment 3 Precision & Recall on Medical topic

Figure 5.10, shows the implementation of another agent applied to another topic. The new

topic was (medical topic). We wanted to see the system behavior on completely different

topic in order to get some notes and imagine this agent in a multi-agent system.

We got the following notes:-

 Precision in (Medical topic) is much higher than (Computer science topic).

 Medical terms in most cases are very unique and very strong key words and gives

high results.

 Our agent – system (with filter and threshold = 0.6) gives higher precision. But not

as much as in (Computer science).

In "Computer science" topic, a lot of terms that is considered to be related to is related to

other topics at the same time but with different weight. These weights are sometimes

having only small differences in between, which is not in "medical issues". Let's take for

example the term "treatment" its weight in "medical topic" was recorded about

(0.6321201) but in "computer science" was about (0.5214.286). Such term is not absolutely

concerned to be only a medical topic term, it can be a "computer science" topic related too.

As well as "virus", "infection" … etc. but terms like "medicine", "Aspirin", "cholera" etc,

have extremely high weights in medical topics.

Chapter 6: Conclusions.

 69

Chapter 6

Conclusions and Future works.

6.1 Conclusions

In this chapter we are going to discuss the two experiments which were applied to our

agent system, concentrating on one topic. The first experiment used traditional PLSI

method with no filter, while the other experiment was with filter. Then we got results from

each one and note the difference between them.

We will also analyze, summarize and present the results of the experiments. Then, our

conclusions and further work will be presented too.

From results of experiment one and two, we can see that our filters and thresholds increase

the efficiency and the speed of our system. If we draw a chart figures for both experiments

as shown for experiment one in Figure 5.8 and experiment two in Figure 5.9, we will note

that precision is kept in a high, stable and reliable values, on the other hand the system

succeeded to recall all relevant document without fetching a lot of non-relevant documents.

Testing and implementation for such system was not that easy. Preparing useful tools in

implementation, in addition to designing and programming such agent with no Agent

programming language is difficult. So we have programmed our own tool with the most

required classes and methods which we mentioned before and used in experiments.

As we see that the results of both experiments indicate a progress in the precision and

recall of our architecture and design. In this chapter, we will discuss in details the

advantages of our system.

Chapter 6: Conclusions.

 70

As mentioned before. In testing our architecture, we‟ve used a collection on the

information retrieval topic. The collection core contains many documents which were

selected by topic administrator (Agent programming topic) relevant documents.

These documents were used to generate the collection topic analyzer. We‟ve used a set of

terms as topic-terms archive. These terms were supplied by an administrator also and were

used for topic-analyzer generation.

Agent starts with a set of start Links. This set contains about 5 links on relevant html

documents and was presented by the administrator.

From results of experiment one and two, we can see that our filters and thresholds increase

the precision and recall of our system. If we draw a chart figures for both experiments as

shown for experiment one in Figure 5.8 and experiment two in Figure 5.9, we note that

precision is kept higher and better than traditional system in all the test range from 0% to

100% of document collection, in addition, the system succeeded to recall all relevant

document without fetching a lot of non-relevant documents.

By monitoring and calculating precision and recall after every single document fetched

from the collection until the end of the collection, note that our filter blocked most of non-

relevant documents and not allowing them to pass.

Assume that document dx is related to our topic with weight w = 0.6. this document will

manage to pass through threshold τ <= 0.6. but if the threshold increases to τ>0.6, the

document dx will not manage to pass and will be abandoned by agent role C.

For sure increasing τ will increase precision, but this will affect recall in a negative way. In

other words, some of relevant documents to the system will not manage to pass through the

thresholds with weight w > τ. This means that the owner should choose in particular point

between precision and recall. In other words, he should decide the target of his agent by

valuing the threshold volume.

Note that if we take the whole range of τ:[0,1] and tried to monitor precision and recall we

will note the following:

- For τ = 0, system is working as traditional search system with no filter.

- For τ = 1, system will bring almost no document but those with w = τ.

- For 1 > τ > 0, system will select document according to its relevance to topic.

The goal of the second experiment test was to find best values for thresholds for document

evaluator and topic-Analyzer. Result of the test shows that in the best case the precision of

the agent is 0.722. This means that our agent downloaded a set of new documents, about

72 % of which were recommended by this agent to the collection, and our topic-

administrator estimate that almost all recommended documents are relevant to the

collection topic. As shown in Figure 6.1 and Figure 6.2.

Chapter 6: Conclusions.

 71

Figure 6.1 surface chart for best threshold

Figure 6.2 precision according to threshold τ

Chapter 6: Conclusions.

 72

6.2 Future works

It was important to implement experiments on our system without filter and record results

and to compare with results that have been achieved by other researchers in similar

systems that use similar PLSI method. Not only similar method but also similar to our

selected-topic. Since we found out that results are almost the same, then it was the suitable

environment to test our filter and threshold.

As we can see that, selecting the best threshold is not an easy job. It depends on the topic

we are searching for. And it depends also on the user himself, and how many documents to

be retrieved to his own collection.

Finally, it was not possible to program a complete agent using Java language to satisfy the

requirements. We programmed small separate tools in Java to complete all roles of the

agent.

Working in this agent will not stop. We hope in the future to continue improving such

agent using an agent programming language, which could help a lot to make it more

powerful, fast and intelligent.

By the end of the thesis we recommend the following future work:

- This agent should be rebuilding using AOP agent oriented programming language.

JADE for example might be helpful in designing such system.

- Developing Agent role A, to be capable of dealing with other languages like Arabic or

any other language in addition to English. This will need more studies in stemming

algorithms. The agent could be a Multilanguage topic searcher. And this will increase

his influence in environment.

- Developing the mathematical method of indexing core terms of target topic. In addition

to indexing terms of fetched documents too.

- Implementing more studies on agent role D and selecting or contributing more

effective mathematical method to indexing links inside relevant document and

selecting more relevant links to be put in the queue, which will make a continuous and

dynamic re-indexing of links inside the queue.

- Developing a better mathematical formula to re-index the terms of the core index terms

taking advantage from every new succeeded document that manage to pass through

filter, in a dynamic way.

References & Appendix

 73

References
[1] Survey On Web Information Retrieval Technologies, Lan Huang, Computer Science

Department, State University of New York at Stony Brook, 2000.

[2] Efficient crawling through url ordering, Junghoo Cho and Lawrence Page,

Proceedings of the 8th International WWW conference, Canada, Tronoto, May 1999.

[3] Multi-agent system of a distributed environment to build thematic collections Rushdi

Hamamreh. // Web Instruments, № 9, 2001.

[4] Intelligent information Agents, S. Haverkamp, JASIS, V49, N4, 1998.

[5] Latent class models for collaborative filtering, Hofmann T.,. In Proceedings of the

16th International Joint conference on Artificial Intelligent, 1999.

[6] An introduction to Multiagent Systems, Michael Wooldridge, John Wiley & sons

Ltd, 2002.

[7] Multi-agent Systems A Modern Approach to Distributed Modern Approach to

Artificial Intelligence, Gerhard Weiss, The MIT Press, Cambridge, Massachusetts,

Massachusetts Institute of Technology.Lan, London, England,©1999,

[8] Towards Agent Societies for Information Retrieval, Holger Billhardt and Sascha

Ossowski Universidad Rey Juan Carlos Dpt. of Computer Science. 2001.

[9] World Internet Usage And Population Statistics, IWS (Internet world stats) website

www.internetworldstats.com.

[10] Agent Role Locking Theory ARL, Salaheddin J. Juneidi. MIT-Press Cambridge,

USA, 1-3 Nov. 2005.

[11] Toward Programming Paradigms For Agent Oriented Software Engineering,.

Salaheddin J. Juneidi IASTED SE Austria. 18-20 feb. 2004.

[12] Agent orientation in software engineering, Gerhard Weib, Cambridge University.

2001.

[13] Agent-oriented software engineering, Carolre Bernon, Massimo Cossintino and Juan

Pavon, Cambridge University, 2005.

[14] Supporting Agent-Oriented Modelling With UML, Federico Bergenti and Agostino

Poggi, University degli Studi di Parma. International Journal of Software

Engineering and Knowledge Engineering Vol. 12, No. 6 605{618) 2002.

[15] Evaluation of Agent Oriented Software Engineering, Main Approaches, Salaheddin J.

Juneidi, George A. Vouros, University of the Aegean.

[16] Using Java for Artificial Intelligence and Intelligent Agent Systems, October 1999,

Paolo Busetta, Ralph Rönnquist, Andrew Hodgson & Andrew Lucas, Agent Oriented

Software Pty. Ltd., Melbourne, Australia

[17] Autonomous Agent For Gathering Information To Build Focused Index From

Distributed Environment, Rushdi A. Hamamreh, IJCSNS, Jan. 2008.

[18] Cooperative Multi-Agent Information Gathering, Keith Decker, Victor Lesser, M. V.

NagendraPrasad, and Thomas Wagner.

[19] Designing a Multi-Agent Portfolio Management System, Keith Decker, Katia Sycara,

and Dajun Zeng, The Robotics Institute, Carnegie Mellon University.

[20] Extending a Multi-Agent System for Genomic Annotation, Keith Decker, Salim

Khan, Carl Schmidt, and Dennis Michaud, Computer and Information Sciences

Department, University of Delaware.

[21] MultiAgent Integration of Information Gathering and Decision Support Katia Sycara

and Dajun Zeng, Published by John Wiley & Sons, Ltd. in 1996.

[22] Multiagent Planning for Agents with Internal Execution Resource Constraints,

Haksun Li, Edmund H. Durfee, Kang G. Shin, The University of Michigan, Ann

Arbor, Copyright 2003.

References/huang00survey.pdf
References/showDoc.pdf
References/20080133.pdf
References/HofmannPuzicha-IJCAI99.pdf
References/GerhardWeiss-MultiagentSystems--AModernApproachtoDistributedArtificialIntelligence.pdf
References/GerhardWeiss-MultiagentSystems--AModernApproachtoDistributedArtificialIntelligence.pdf
References/Towards%20Agent%20Societies.htm
http://www.internetworldstats.com/
References/Chapter%20Four2.doc
References/418-192.pdf
References/Agent%20orientation%20in%20software%20engineering.pdf
References/Agent-oriented%20software%20engineering.pdf
References/SUPPORTING%20AGENT-ORIENTED%20MODELLING%20WITH%20UML.pdf
References/418-193.pdf
References/Using%20Java%20for%20Artificial%20Intelligence%20and%20Intelligent%20Agent%20Systems.pdf
References/Paper_Agent.doc
References/Paper_Agent.doc
References/COOPERATIVE%20MULTI-AGENT%20INFORMATION%20GATHERING.doc
References/Designing%20a%20Multi-Agent%20Portfolio%20Management%20System.pdf
References/Extending%20a%20Multi-Agent%20System%20for%20Genomic%20Annotation.pdf
References/Multi-Agent%20Integration%20of%20Information%20Gathering%20and%20Decision%20Support.pdf
References/p560-li.pdf

References & Appendix

 74

[23] Building A Modern Standard Arabic Corpus, Ahmed Abdelali, Jim Cowie, Hamdy S.

Soliman, New Mexico State University.

[24] Distributed Search-Based Advertising On The Web, Nikita Schmidt and Ahmed

Patel1, Saint Petersburg State University. 1999.

[25] Modern information retrieval, Recardo Christopher D. Manning Prabhakar Raghavan

Hinrich Schütze 2008.

[26] Information Retrieval Algorithms and Heuristics, David A. Grossman, Opher Frieder,

Second edition. 2004.

[27] Probabilistic Latent Semantic Indexing, Thomas Hofmann, International Computer

Science Institute, Berkeley, CA & EECS Department, CS Division, UC Berkeley.

[28] Towards an Architecture for A-life Agents, Darryl N. Davis, T. Chalabi and B.

Berbank-Green, Stanford University

References/MSA_Corpus.pdf
References/DISTRIBUTED%20SEARCH-BASED.pdf
References/irbookonlinereading.pdf
References/Probabilistic%20Latent%20Semantic%20Indexing.pdf
References/Towards%20an%20Architecture%20for%20A-life%20Agents.pdf

References & Appendix

 75

Figure 7.1 AgentA Class (user interface)

Figure 7.2 Agent's Main Method

References & Appendix

 76

Figure 7.3 Interface1 class (Frame constructor)

Figure 7.4 Dealing with user input.

References & Appendix

 77

Figure 7.5 Creating query table from user's input field

Figure 7.6 creatOutput() method

References & Appendix

 78

Figure 7.7 qcreatOutput() method

Figure 7.8 ccreatOutput() method

References & Appendix

 79

Figure 7.9 Component initialization.

Figure 7.10 bringing a document from internet

References & Appendix

 80

Figure 7.11 string's stemming before creating the table.

References & Appendix

 81

Figure 7.12 WGET Class (Java code)

References & Appendix

 82

Figure 7.13 createAFile method.

Figure 7.14 Stemmer class's declaration.

Figure 7.15 add() method1 in stemmer class.

References & Appendix

 83

Figure 7.16 add() method2 in stemmer class.

Figure 7.17 toString() method in stemmer class

Figure 7.18 getResultLength() method in stemmer class

Figure 7.19 getResultBuffer() method in stemmer class

References & Appendix

 84

Figure 7.20 consonant cases method in stemmer class

Figure 7.21 consonants counter method in stemmer class

References & Appendix

 85

Figure 7.22 vowel checker method in stemmer class

Figure 7.23 double consonant checker in stemmer class

Figure 7.24 an "e" restore method in stemmer class

Figure 7.25 string's end checker method in stemmer class

References & Appendix

 86

Figure 7.26 setto() method in stemmer class

Figure 7.27 string creator r() method in stemmer class

References & Appendix

 87

Figure 7.28 step1 in stemming process.

References & Appendix

 88

Figure 7.29 step2 in stemming process

Figure 7.30 step3 in stemming process

References & Appendix

 89

Figure 7.31 step4 in stemming process

References & Appendix

 90

Figure 7.32 step5 in stemming process

References & Appendix

 91

Figure 7.33 step6 in stemming process

Figure 7.34 stem() method in stemmer class

References & Appendix

 92

Figure 7.35 "mex_EMstep.c" PLSI implementation.

References & Appendix

 93

Figure 7.36 "mex_Pw_d.c" PLSI implementation

References & Appendix

 94

Figure 7.37 "mex_logL.c" PLSI implementation

References & Appendix

 95

Figure 7.38 Getlinks class

References & Appendix

 96

Figure 7.39 Link Recognizer

 1

Intelligent Focused Information Agent

Dr. Rushdi A. Hamamreh A.Mohsen K. Qawasmih

rushbeth@hotmail.com aqawasmi@eng.alquds.edu

Al Quds University, Jerusalem Palestine,

Higher educational collage

ABSTRACT
This paper describes techniques

for developing distributed and adaptive

agent that coordinate to retrieve, filter

and recommend information relevant to

the owner, from various web sources.

The knowledge of agent based on

semantic indexing by analyzing multiple

topics in HTML pages.

General Terms/Topics/Keywords

Agent, Information Retrieval,

Topic-Analyzer, Latent semantic

indexing, Adaptation, AUML.

1. Introduction

A continuous growth of the

internet usage with billions of published

documents and data distributed around

the world, demands a useful, fast,

accurate and intelligent search system

that satisfies users needs and queries. We

noticed From IWS (Internet world stats)

website, the rapid growth specially the

last few years. We can see on Mar-2007

that the internet population grows up to

6,574,666,417 while the internet usage

latest data was about 1,114,274,426. and

this indicates the huge amount of

document that is distributed around the

world [8,1].

It‟s well known that search

engines with centralized architecture

can‟t index the whole Internet because

the exponential growth of the number of

documents published in the Internet.

Search engine with distributed

architecture is scalable solution of this

problem [3].

Our system is based on Intelligent

Information Agents aims at helping the

user and melting together the multi-agent

system (MAS) and the information access

technologies by investigating to what

extent methods from Artificial

Intelligence, Database Systems and

Information Retrieval (IR) can be applied

to information discovery by themes of

information agents in the Internet and the

World Wide Web.

In the framework of our suggested

architecture, we use a set of topic target

collections of electronic documents

published in the Internet. These

collections belong to different owners

who are responsible for their content,

indexing and quality of search.

Administrator‟s demand is automatically

propagated to one or more collections

with topics relevant to his target

topic[1,2,4].

2. Why .. Agent?

An agent is a computational entity

such as a software program or a robot that

can be viewed as perceiving and acting

upon its environment and that is

autonomous in that its behavior at least

partially depends on its own experience.

As an intelligent entity, an agent operates

flexibly and rationally in a variety of

environmental circumstances given its

perceptual and effectual equipment.

Behavioral flexibility and rationality are

achieved by an agent on the basis of key

processes such as problem solving,

planning, decision making, and

learning.[11,2]

The study of multi-agent systems

began in the field of distributed artificial

intelligence (DAI) about 20 years ago.

Today these systems are not simply a

research topic, but are also beginning to

become an important subject of academic

mailto:rushbeth@hotmail.com
mailto:aqawasmi@eng.alquds.edu

 2

teaching and industrial and commercial

application.[5,7]

 Our agent is expected to establish

new cooperation among research groups

in the related areas mentioned above, but

also to strengthen existing contacts and

focus scattered efforts for research on and

development of intelligent information

agents.

 In particular, managing and

controlling such networks, the services

they provide, and the communications

they involve, is crucial to keep Internet a

useful tool in the future. However, there

is a growing awareness that current

centralized IR architectures will soon

reach the limits of their scalability. We

argue that distributed but coordinated

mechanisms that support adaptation and

self-optimization of Information Agent

societies can be an answer to this

problem.[8,4]

Figure 1 system environment.(Shoham 1996-modified)

3. Agent Architecture

In a distributed agent framework,

we conceptualize a dynamic community

of agents, where multiple agents

contribute services to the community.

When external services or information

are required by a given agent, instead of

calling a known subroutine or asking a

specific agent to perform a task, the agent

submits a high-level expression

describing the needs and attributes of the

request to a specialized Facilitator agent.

The Facilitator agent will make decisions

about which agents are available and

capable of handling sub-parts of the

request, and will manage all agent

interactions required to handle the

complex query.

The advantage of such distributed

agent architecture allows the construction

of systems that are more flexible and

adaptable than distributed object

frameworks. Individual agents can be

dynamically added to the community,

extending the functionality that the agent

community can provide as a whole. The

agent - system is also able to adapt to

available resources in a way that hard-

coded distributed objects systems can't.

 Using AUML (Agent UML)

we will capture the MAS complexity by

role decomposition and controls MAS

environment dynamicity by role/agent

entities separation. In terms of modeling,

AUML supports the idea of UML

extension toward Agent UML, which

results to the integration of agent classes,

role classes and interaction protocols to

UML.[10,2]

3.1 Role A (Document Fetcher):-

 3

Document

Fetcher

Stemming &

Analysis

Agent

Role A

Agent

Role B

Calculating

Document's

Relevance

OK?

Internet

Document

Pass?

No End

Role

Yes

Attract

Links

Add

probable

important

Links

Topics

Indexing

For new

document

Topic

Input

Links

Queue

Topic

Analyzer

Index Core of

Documents

Collection

Links

Filter

Agent

Role D

OK?

Receiving

Links

No End

Role

Yes Agent

Role C

Collection's

Topics

Indexing

Figure 2 Agent Architecture AUML (As Presented by Juneidi [10])

Document

Evaluator

 This Agent Role uses wget utility

for document-downloading from the

internet. The link of this document is

taken from a storage volume which

contains a queue of links to be fetched.

Links queue stars from a set of start

Links presented by the administrator.

Every

Link from this queue is assigned

estimation of usefulness of this Link for

seeking of new relevant documents. At

the first step the newly included to this

queue Link is assigned number 1 as its

usefulness.

The next stage of this role is the

stemming stage. Logical view of

documents from full text to a set of

indexed terms. This stage includes

Accent spacing, Noun grouping, Stop

words removing ... until reaching index

terms from a full text.

After that, the index terms of the

fetched document will be handed to

Agent role C, which is responsible to

figure out if the document is relevant or

not.

 4

If the document is relevant, Agent

role A starts to extract all links from this

document because the probability of

relevance of these links is high. These

links is handed directly to Agent Role D.

3.2 Role B (Topic Analyzer):-

 Using PLSI arithmetic method, this

Role is responsible for two major stages:-

Stage 1, includes receiving main

target topic terms that is produced by the

Administrator and stored in the topic

input volume. PLSI method is used to

give a weight these terms, in addition to

index topic terms that comes from

relevant documents stored in the Index

core Documents collection. Target topics

terms weights are continuously modified

when each new relevant document is

added to the collection, at the same time

these modifications are saved in Topic

Input storage volume, and this loop

increases the smartness of the agent.

These modifications are also handed to

Agent Role C, which is responsible to

figure out if the document is relevant or

not.

Stage 2, starts when Agent Role

C decides that the fetched document is

relevant, it starts to analyze the topics of

document index terms using PLSI before

adding the relevant document to the

collection.

3.3 Role C (Document Evaluator):-

This role is responsible to receive

index terms from Role A, and Topic

index from Role B, and starts to calculate

the relevance of the document, and the

weight of it. And then determine

comparing with a target threshold,

whether the document is relevant or not.

If the result is positive, then both of roles

A and B start their mission on this new

gift. But for negative result Role C ends

its job on this not useful document.

3.4 Role D (Links Filter):-

At every next step Role A chose

from queue a Link with maximum value

of estimation of its usefulness, downloads

it and evaluates it. If this document is

accepted by evaluator then at next steps

agent randomly chose links presented in

its text and includes them into Links

queue with usefulness estimation equal 1.

If a downloaded document isn‟t accepted

by evaluator, then estimation of

usefulness of a Link of a document,

where link to this document occurs, is

decreased. As a result, estimation of the

Link usefulness is approximation of

probability of relevance of a link from the

document to the collection topic.

This role has to make sure that all

attracted links are useful and not repeated

(already checked before) in order to

increase performance. And this is done

with help of the stored documents

collection description. So every link has

to be filtered and the role decides whether

to add it to Queue or not (which means to

end role).

4.1 PLSI Method:-

Using PLSI arithmetic method, this

Role B and C is responsible to analyze

the whole set of documents from this

collection and create the collection

description which reflects the main

subjects presented in this collection.

We‟ve used for this propose probabilistic

latent semantic indexing [3,5].

The goal of the latent semantic

indexing is extraction of latent factors

which reflect a set of narrow topics

presented in the given collection.

Let z Z = {z1,…, zk} be set of these

factors.

Let denote

 P(zi) – probability that randomly

selected document from the

collection best of all corresponds

to the topic zi

 P(d|z) – probability that for the

given factor zi this factor best of

all corresponds to the document di

 P(w|z) – probability that for the

given factor zi this factor best of

all corresponds to the word wj.

 5

Here dD={d1, … ,dN} is set of all

documents from the collection and wW

={w1,…, wM} is set of all words from this

collection.

Functions P(zi), P(d|z) and P(w|z)

can be estimated in the process of a

likelihood function maximization. This

function is presented in the following

form

d w

wdPwdtfL)),,(log(),(

.

Standard Expectation

Maximization algorithm is used for

maximization of this function. Two steps

are executed at every iteration of this

algorithm. The first one is Estimation

.
)|()|()(

)|()|()(
),|(

z

zwPzdPzP

zwPzdPzP
wdzP

The second one is Maximization

To generate the collection filter

we‟ve selected the most heavy words

from W. Weight of the word w is

calculated as

Zz

zwPzP)|()(weight(w)

4.2 How it works?

The goal of using PLSI method is

to analyze the whole set of

Administrator‟s queries which reflects

information need of him. This analysis

can be used to find new subjects which

are interested to him but poorly presented

in the collection core.

In order to do so we‟ve used the

following approach. At first graph of all

words used in the Administrator's terms

was created. Every word was presented

as a vertex of this graph. Two vertices are

joined with an edge if and only if the pair

of corresponded words occurs in the

same query. Every vertex should have a

weight which reflects the role of this

word in the collection subject. Some of

these words are presented in the

collection core and we can use

probabilistic latent semantic indexing to

calculate their weights. But a part of

words presented in the queries can be

new (not presented in the collection

core). To estimate their weights we‟ve

used the following method.

We suppose that weight of every

new word should be equal to the average

value of weights of words which are

neighbors of this word. We‟ve used

iteration algorithm to estimate weights of

all new words according to this proposal.

All information about queries words and

their weights is stored as queries

statistics.

5. Results:-

 To test our agent we‟ve used it to

generate a collection on the information

retrieval topic. The collection core

contains about 50 documents which were

selected by a topic administrator

(Security topic) relevant documents.

These documents were used to generate

the collection topic analyzer. We‟ve used

a set of terms (about 25) as topic-terms

archive. These terms were supplied by an

administrator also and were used for

topic-analyzer generation. Agent starts

with a set of start Links. This set contains

about 5 links on relevant html documents

and was presented by the administrator.

 The goal of the test was to find

best values for thresholds for document

evaluator and topic-Analyzer. Result of

the test shows that in the best case the

precision of the agent is 0.722. This

means that our agent downloaded a set of

new documents, about 72 % of which

were recommended by this agent to the

collection, and our topic-administrator

estimate that almost all recommended

documents are relevant to the collection

topic.

 6

6. References:-

1. Lan Huang , Survey On Web

Information Retrieval

Technologies, Computer

Science Department, State

University of NewYork at

Stony Brook, 2000.

2. Junghoo Cho and Lawrence

Page, Efficient crawling

through url ordering,

Proceedings of the 8th

International WWW

conference, Canada, Tronoto,

May 1999,

http://www7.scu.edu.au/progr

amme/fullpapers/1919/com19

19.htm.

3. Rushdi Hamamreh. Multi-

agent system of a distributed

environment to build thematic

collections // Web

Instruments, № 9, 2001.

4. S. Haverkamp, Intelligent

information Agents, JASIS,

V49, N4, 1998.

5. Hofmann T., Latent class

models for collaborative

filtering. In Proceedings of the

16th International Joint

conference on Artificial

Intelligent, 1999.

6. Michael Wooldridge, An

introduction to Multiagent

Systems, John Wiley & sons

Ltd,2002.

7. Multiagent Systems A Modern

Approach to Distributed

Modern Approach to Artificial

Intelligence edited by Gerhard

Weiss The MIT Press

Cambridge, Massachusetts

London, England.

8. Towards Agent Societies for

Information Retrieval∗†

Holger Billhardt and Sascha

Ossowski Universidad Rey

Juan Carlos Dpt. of Computer

Science

9. WORLD INTERNET USAGE

AND POPULATION

STATISTICS, IWS (Internet

world stats) website

www.internetworldstats.com.

10. Agent Role Locking Theory

ARL, Salaheddin J. Juneidi.

MIT-Press Cambridge, USA,

1-3 Nov. 2005.

11. Toward Programming

paradigms for AGENT

ORIENTED SOFTWARE

ENGINEERING. IASTED SE

Austria. Salaheddin J.

Juneidi. 18-20 feb. 2004

http://www.internetworldstats.com/

