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Abstract 

 
 The work presented in this thesis represents mainly the relaxation-time calculations 

of non-equilibrium nuclear systems during the collisions of two heavy-ions in the 

intermediate energy regimes (300-1000 MeV/nuclen).  The relaxation-times (or the inverse 

of the resonance widths) in hot hadronic matter are calculated using a non-equilibrium 

microscopic statistical model that incorporates the Boltzmann-Uehling-Uhlenbeck collision 

term with the relaxation-time approximation.  The relaxation-times were found to depend 

on both temperature and energy in the temperature range 20-180 MeV. 

The temperature dependence of relaxation-time is found to decrease at low 

temperature, and to increase at high temperature before the quark matter is reached.  For 

elastic processes at temperature about  T ∼ 150 MeV, a relaxation-time of 10 fm/c is 

obtained. This is comparable with typical time scales for a hadronic system generated in 

low energy heavy-ion collisions.  The inelastic effects of baryons collisions on relaxation-

times were also estimated and found to be negligible compared to elastic effects.  The 

inelastic relaxation-times were found to be smaller than that of elastic relaxation-times by a 

factor of 10. 

 The massive pion resonances become important at temperatures about 100 MeV.  

As the temperature rises with the bombarding energy and reaches about T=160 MeV 

deconfinment will take place.  This will continue up to T≈ 200 MeV.  

The chemical relaxation-time estimated to be about 26 fm/c at T≈ 150 MeV. This is 

very large compared to the size of hot matter produced in nucleus-nucleus collisions. This 

implies that the chemical equilibrium would not be reached in an expanding hot hadronic 

matter consisting of pions only.  
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                                     CHAPTER ONE 

Introduction and Motivations 

1.1 Introduction  

The meson’s family consists of several particles, the lightest of them being the pion. 

The pion or the pi-meson (π–meson) was proposed as a hypothetical particle to interpret 

and understand the general behavior of nuclear potential in 1935 (Yukawa, 1935) and it 

was confirmed experimentally in 1947.  This particle has a mass of approximately 270 

times the mass of the electron (mπ~270 em ~140 MeV) (Perkins, 1987).  The pi-meson 

family consists of a positively charged pion (π
 +

), a negatively charged pion (π
 -

) and a 

lighter neutral pion (π
 0

). The most general properties of pions are listed in Table 1.1 

(Longo, 1973) 

               Table 1.1. The basic properties of pi-meson particles 

Particle Charge Spin 

Isospin 

T 

Parity 

Mass 

(MeV) 

T3 

Mean 

Life(s) 

Quarks 

  
+e

* 
0 +1 Even 139.567 +1 

2.603× 

10
-8 

du  

  
-e

* 0 +1 Even 139.567 -1 

2.603× 

10
-8 

du  

  
0 0 +1 Even 134.963 0 8.3×10

-17 

ddor 

 uu
 

 

 
*
e=1.6×10

-19
 C. 

Relatively speaking, mesons as well as nucleons inside nuclides interact among 

themselves by means of strong interaction.  The strong interactions refer to processes 
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involving baryons such as nucleons and pions inside the nucleus.  These types of 

interactions give rise to nuclear forces between the nucleons inside nuclides and to the 

processes of formation and decay of mesons and baryons in nuclear interactions and high 

energies processes.  The strong interaction is mediated by the exchange of mesons between 

nucleons.  It gives rise to the longest range part of the strong interactions and is therefore 

commonly expressed as the absolute strength interaction.  The exchange particles are either 

uncharged pions, 


 , which leave the neutron and proton unchanged, or charged pions 




, which will alter the identify of the nucleons.  The forward neutron-proton (np) 

scattering represents the exchange of an uncharged pion and the backward represents 

proton-neutron (pn) scattering represents the exchange of a charged pion (Angelica, 2002).  

Processes in which strong interactions are manifested are said to be fast and their 

characteristic lifetimes vary from 10
-23

 to 10
-22

 sec. The nucleon-nucleon (NN) system 

interactions have been investigated extensively and the general properties of nuclear force 

have been well established in the low energy regime.  Extensions of such investigations 

require going beyond medium and high energy regimes which can be achieved by means of 

heavy-ion (HI) collisions.   

HI collisions made it possible to go beyond the nuclear matter density and the low 

energy regime.  One of the main motivations for performing investigations with HI at 

medium and high energies is to produce nuclear matter at high density and excitation 

energy (Jaquman and Mekjian, 1985) by producing a nuclear system which is far from the 

ground state. Furthermore, this is resulted in producing other types of particles such as 

pions, mouns, leptons, --etc. to maintain conservation laws.  Accordingly, a great number 

of new short lived formation, with a lifetime characteristics of strong interactions such as 

baryons and mesons have been observed in HI collision reactions.  These types of particles 
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(pions, meuns,---) are called resonance particles, or resonant states or Fermi resonances. 

Such particles have a definite properties as well as certain momenta and energies that 

enable resonances to be regarded as particles.  Therefore, much more about nuclear 

potential can be learned by including the pion production in HI collisions.  Moreover, the 

system produced in HI collisions is not immediately in thermal and chemical equilibrium. 

Consequently, interactions among the produced particles are necessary to achieve 

equilibrium.  If equilibrium is reached, global observables such as transverse energy 

production can be related to thermodynamic variables, such as energy and entropy.  Density 

are commonly used to characterize these collisions, in general.   

1.2 Pion production in HI collisions 

           The study of pion production in nucleus–nucleus or HI collisions is of major concern 

of intermediate energy regime in high energy physics.  A pion in the final state of a nuclear 

reaction is of interest for reasons ranging from the unique momentum transfer and quantum 

number matching possibilities to the simple fact that a pion must come from a rather 

energetic interaction in a nucleus (Giacomo and Clover, 1985).  Provided a collision occurs, 

the two particles can scatter elastically or inelastically.  If the beam energy is 150 

MeV/nucleon or less, the inelastic channel can be suppressed and non relativistic 

kinematics used with considerable simplification (Gupta, 1988).   

The medium energy range 100-1000 MeV/nucleon in HI collisions is interesting 

because it encompasses the threshold for significant pion production.  The general picture 

of the threshold production can be figured out as a combination of the Fermi momentum of 

the two nuclei to permit the pion production in NN collisions.  The pion produced has a 

relatively long mean free path (~5 fm) in general (Bertsch, 1976).  



 xvii 

Meson production in HI collisions is considered to be as a sensitive probe of the 

reaction dynamics (Bertsch, 1988).  Particularly interesting is the production of heavy 

mesons like the ZandW,, mesons at a such high kinetic energy that is in sufficient to 

create the respective meson in a free single NN collision.  Secondary and cooperative 

processes such as ee  are needed to accumulate the energy for the reaction of the heavy 

meson.  Therefore, the study of the subthreshold particle production is thought to reveal 

many aspects of the behavior of strongly interacting matter including the equation of state 

(Mao, 1996). However, the pion, as the lightest meson, plays exclusively important role in 

nucleon and nuclear structures as well in hadronic and nuclear reactions occurring on the 

hadron structural level.  In particular, the problem of pionic constituents of nucleons has 

been discussing for an appreciable length of time from various view points (Baym, 1984).  

The experimental investigations of pion interactions with nucleons and nuclei can 

divide the relevant directions of investigations into two groups.  In the first case we are 

dealing with the pions as a probe of the nucleus and collective pionic modes in nuclei, and 

the role which the pion plays in hadronic structures.  Another direction of investigation is 

focused on the influence of the nuclear medium on the  interaction using the pion 

induced pion-production reaction (Bonutti, 2000).  Experiments on scattering of pions by 

nucleons indicate that at a kinetic energy approximately 160 MeV in the center of mass 

system, the scattering cross section processes pronounce a maximum. This maximum 

corresponds to the p state and to an isobaric spin equal to 3/2 (Perkins, 1987). These 

experiments imply that there is a strong interaction between the pion and the nucleon 

(Fritsch et al., 1974).   

The interaction between a pion and a nucleon plays a vital role in low and medium 

energy physics for several reasons (Schutz et al., 1993).  Firstly, it is being a prominent 
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example of a strong hadronic interaction.  Secondly, it is an important ingredient in many 

other hadronic reaction or scattering of a pion on a nucleus.  During the past three decades, 

the pion-nucleon interaction has been often parameterized in separable terms in order to 

simplify its application in related few and many-body systems.  One disadvantage of such 

an approach is that the underlying parameters which have no physical meaning and thus 

cannot be related to those occurring in other processes (Schutz et  al., 1993). 

Due to the low production threshold, pions are produced and reabsorbed quite 

frequently and thus provide a single for the whole dynamical evolution of the HI reaction.  

This implies in particular that a transport theoretical description of HI collisions has to 

produce the pion yields correctly before one can draw any further conclusion on more 

specific channels from the model (Teis et al., 1997). 

Generally speaking, the πN reactions can be classified into three main categories, 

namely the elastic scattering, the inelastic scattering and the charge exchange one.  Thus, 

systems such as: πN, ππ is of great importance as well as NN system.  In all nuclear 

systems, the πN system becomes more and more considerably significant especially for 

nuclear energies higher than 100 MeV.    Elastic scattering πN reactions that represents an 

elastic scattering between two-body systems consists of pions and nucleons are listed 

below: 

(1.1)                                                                                               



































nn

pp

nn

pp

ppn

nnp

ppp

nnn

















 

Typical pion-nucleon reactions can be written as: 
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(1.2)                                                                                                   pp     

In fact, most of the attraction comes from two–pion exchange (TPE) processes, 

where nucleus resonance’s may be excited in an intermediate states, the low range and 

intermediate range Paris potential is completely determined from πN and ππ interactions 

(Wiringa et al., 1984).  Dynamical equations for NN and πN scattering and derived by 

making the assumption that NN and πN processes can be described in a subspace of NN, 

πN, ππ reactions. 

Inelastic scattering cases leading to pion production have a sizable threshold 

temperature 170 MeV, the other reactions will occur even for very low energies pion.  A 

tremendous number of experimental data have been collected in order to pursue 

experimentally the scattering of 
+
, 

-
, 

0
 pions on neutrons and protons to specify the πN 

interaction completely.  In inelastic reactions, the target nucleus is left in an excited state; 

while the pion energy may be deposited through the creation of new pions.  Accordingly,  

  (1.3)                                                          
nππpπ

pππpπ












 

 

           The charge exchange reactions are similar to proton-neutron (pn) reactions in which 

the proton can be transformed into a neutron by loosing its charge.  This reaction can be 

represented by: 

(1.4)                                                    n         πpπ 
 

  

          At high energy of the primary particles (greater than 510
9
 eV) their collisions with 

the atom of air lead, as a role, to the initiation of electron-nuclear showers.  Hence, the 

formation of a soft electron-photon component of the shower is expected (Krane, 1987).  

The result of interaction between the primary particles and the nucleus is disrupting the 



 xx 

nucleon into separate nucleons or larger fragments, and the formation of unstable particles 

(

 and 

0
 mesons). The subsequent decays 

          

(1.5)                                                                                                  
20 












ee

e




 

investigations of such reactions are beyond the scope of this work. 

 

1.3 Resonance theory of pion particles 

 The fundamental force between nucleons in nuclei is dominated by the exchange of 

pi-mesons.  When these particles are created in high energy proton reactions, they can be 

used to bombard nuclear targets.  When pion interacts with nucleus, it forms a resonance 

with one of the bound nucleons.  The resonance is shifted and broadened compared to the 

reaction on a free nucleon.  These changes reflect the influence of the neighboring nucleons 

(Schmidt and Schukraft, 1993).  

 The precise definition of a resonance has been a matter of much debate in literature, 

the notion of a resonance not being so clear.  Thus, different criteria are used for 

identifying resonances and determining their parameters (Kalkar, 2003).                One of 

the most concepts in this context is the resonance region.  In this region, an exchange 

particle is expected to appear on it at its threshold energy. These exchange particles appears 

from the excess energy of these reaction to keep it in the conservation laws.  The delay 

time or the lifetime for that exchange particle in the reaction is too small.  The baryon 

resonances were identified and investigated by analyzing the meson baryon scattering data 

using partial wave techniques.  Moreover, pion production in HI collisions has been studied 

within the coupled resonance BUU model (Larionov and Effenberger, 2001) 
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 In recent years, a new theoretical approach called the collision broadening of baryon 

resonances in a nuclear medium due to collisions of a resonance with nucleons has been 

developed.  The resonance parameters are determined by fitting some energy-dependent 

functional form such as the Breit-Wigner to the scattering amplitude.  In contrast to these 

conventional procedures we make use of one of the basic criteria for the existence of a 

resonance, namely a positive peak in the time delay in the collisions.  However, the 

formation of a resonance which occurs as an unstable intermediate state in scattering 

processes introduces a time delay between the arrival of the incident wave packet and its 

departure from the collision region (Kalkar, 2003). 

1.4 Theoretical background  

  According to Yukawa proposal, strong interaction between nucleons is mediated by 

the exchange of mesons in analogy with photon exchange in quantum electrodynamics.  

The meson theory of nuclear forces has been pursued in order to describe the NN 

interaction both qualitatively and quantitatively.  Indeed, this picture is fully justified 

nowadays.  

  HI collisions of relativistic energies produce a unique possibility to study nuclear 

matter at high densities and high temperatures in the laboratory.  These reactions last only 

several s2310  and within this time interval, the baryonic density varies between about 

three times normal nuclear matter density 









3
17.0

fm

nucleon
  in the early phase (Blättel et 

al., 1993).  Pions are considered to be a sensitive probe of the reaction dynamics.  They are 

produced a abundantly and due to the large N  cross section pions are continuously 

trapped by forming baryonic resonances (e.g. N  ) which then can decay by pion 

emission.  Therefore, pions, especially these with momenta between 0.2 GeV/c and 0.5 

GeV/c are expected to freeze out predominantly in the late stay of the collision.  High 
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energy pions, however, interact less strongly with nucleons and hence have a chance to 

decouple already in the early phase.  Therefore, a detailed study of high energy pions may 

shed light on the hot and dense stage of the collisions.  Therefore, the investigations of 

high-energy pions may open a new path to study the nuclear matter equation of state of 

high baryonic densities. 

Pion production in nucleus-nucleus collisions has been proposed as an observable to 

test the nucleus equation of state.  The pion production is an important field of nuclear 

research due to the pions important role in the overall reaction dynamics.  The most 

elaborate threshold approaches for the description of pion production are microscopical 

kinetic models which include the propagation of pions and nucleon-resonances as well as 

their mutual interactions (Cassing et al., 1990).  Basically these are three different 

microscopical models. 

Many models have been introduced and developed to understand the πN interaction 

in a step searching for a general form of nuclear potential.  An approximate representation 

for the scattering amplitude of processes with two final particles, expected to be valid 

below the threshold for an elastic production of new particles, is deduced from the 

Mandelstam double integral representation (Cini and Fubini, 1960).  Meson-nucleon and 

nucleon-nucleon scattering are then investigated by means of a model in which all particles 

are natural and spinless.  For nucleon-nucleon scattering, the contribution of the two meson 

exchange to the scattering amplitude is expressed in terms of pion-pion and pion-nucleon 

amplitudes (Galitskii et al., 1979). 

There are numerous types of successful NN potentials based on meson exchange, 

among; the simple one-boson exchange (OBE) models have been used for constructing the 

NN potential by making use of very few parameters.  The selected parameters were able to 

account reasonably well for the empirical NN data below pion production threshold.  A 
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realistic inclusion of such 2 -exchange contributions which replace not only the   but 

also the   meson of OBE models can be done with the help of dispersion relations using 

N data (Kim et al., 1994). 

 A simultaneous understanding of various hadronic reactions requires a microscopic 

treatment based on the fundamental theory of strong interactions.  Hence, several 

investigations were conducted to present a meson exchange model for N scattering. All 

models based on meson exchange have been very successful in describing the NN 

empirical data, up to nucleon kinetic energies of 1GeV or so.  Therefore, it should be 

expected that the meson exchange concept works comparably well in the N in system 

(Schutz et al., 1993).  The coupling of the N  in the reaction NN   and in the 

NNNN  interaction take into account nucleon,  and   exchange processes, but one 

obtains no satisfactory description of the N scattering data as the width of the resonance 

is too small (Schutz et al., 1995).                  

The boson exchange model has been introduced and developed not only to describe 

very well the NN data below pion threshold without the use of phenomenological form 

factors, but also can be applied consistently to analyze N  scattering. 

The many-particle system, in the context of quantum field theory, is one for which 

the eigenvalue of the number operator is large (Martin and Schroinger, 1959).  In such 

systems, the relativistic quantum field theory was found to be appropriate to describe 

particle production where the vacuum appears to as the natural reference state.  The 

asymptotic evaluation that characterizes microscopic features were performed in terms of 

intensive parameters. 

 The time-dependent field correlation function, or Green’s function, which describes 

the microscopic behavior of a multiparticle system, was found to be appropriate for cases of 
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large energy and particle numbers. The full quantum approach or the finite-temperature 

Greens function formalism was applied to study the equation of state of a hot interacting 

pion gas at zero chemical potential and calculated the in-medium single pion self energy 

and the   scattering amplitude in the quasi particle approximation. The result obtained is 

that the higher energy range as well as higher partial waves in the ππ interaction is 

important for a reliable description of thermodynamic properties of an interacting gas of 

pions (Rapp and Wambach, 1995).   

 In most of HI collisions, the local wavelength of relative motion is small as 

compared to the nuclear interaction region, therefore, the classical approximations are 

useful in describing and understanding HI reactions.  Many features of nuclear dynamics at 

lower energies, were the particles remain fairly degenerate, can be understood in terms of 

one-body nuclear models, such as the time dependent Hartree-Fock model or its classical 

analog (Randrup and Remond, 1990).  But, there are two defects, namely, the neglect of 

quantal and absorption effects which limits the applicability of classical description of 

elastic scattering, however, these two effects don’t destroy the classical picture completely 

and hence make semi-classical approximation to HI elastic scattering theory feasible and 

practicable (Mokherjee and Pandy, 1984).  

The earliest nuclear dynamical models to describe HI collisions were based on 

hydrodynamic assumptions (Glassgold et al., 1959).  This model assumes a short mean free 

path and large number of degrees of freedom in order to reach local equilibrium 

(Danielewicz, 1979).  However hydrodynamic models have been successfully employed for 

the simulation of high energy HI collisions.  One can also use the hydrodynamic equations 

to study the evolution of the hadronic system at finite temperature and/or density.  A 

hydrodynamic model of the high energy particle-nucleus and nucleus-nucleus collisions 

was introduced and developed to investigate the production of π-meson and resonance 
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excitations at high temperatures and densities of nuclear matter (Lee and Matsuyama,1985). 

In the hydrodynamic picture, nuclear matter is always in thermal equilibrium and the 

density, temperature vary both in space and time (Hahn and Glendenning, 1987).   

Therefore, it cannot be applied at low energy regimes where the mean free path is large.  It 

sometimes extended by introducing viscosity and heat conductivity concepts (Amsden et 

al., 1977).  The central high energy HI collisions are studied in a hydrodynamic model, 

they had devise an equation of state of the nuclear matter which contains a phase transition 

at low densities of the matter and includes the pion production and resonance excitations at 

high temperatures, they had use a numerical model calculation of the collision process 

exhibits two shock-waves propagating both in the target and in the projectile, they found 

that a substantial increase of the cross section for emitting higher energy fragments around 

120
º 
lab angle could serve as an experimental prove of the existence of a nuclear shock-

wave ( Danielewicz, 1979). 

          The Intra Nuclear Cascad model (INC) has been developed to study the collisional 

properties of the nuclear many-body system in the relativistic HI collisions regimes with a 

beam of energy ranging from 250 MeV to 2 GeV per nucleon (Serber, 1947).  This model 

assumes multiple scattering but neglects the mean field effects and Pauli exclusion 

principle, for this approach to be valid, the inter particle distance must be larger than the 

size of the nucleon (Madey et al., 1983). 

    The Isospin Quantum Molecular Dynamics (QMD) follows the same scheme as the 

INC, but takes into account the nucleus potential which is calculated as the sum  of all two-

body potentials (Engle et al., 1994).  Although quantum chrmodynamics (QCD), with 

quarks and gluons as fundamental degrees of freedom, is believed to be the underlying of 

the strong interaction, baryons and mesons have definitely retained their importance as 
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relevant degrees of freedom for a realistic description of low energy nuclear phenomena 

(Kim et  al., 1994). 

   The most elaborate theoretical approach for the description of pion production is 

based on the microscopic kinetic theories.  This type of approach includes the propagation 

of pions and nucleon resonances as well as their mutual interactions (Engle et al., 1994).  

Each pion-nucleon resonance forms a structure as definite and real as an ordinary proton or 

neutron, and the fact that these resonances are extremely short-lived should not prejudice us 

against including them in a list of particles.  The pπ  cross-section is dominated by a 

huge resonance at a pion energy of same resonance occurs in the pπ  elastic and charge-

exchange cross sections as well. 

     A number of dynamical models have been developed with success at different levels, 

among the dynamical models, molecular dynamics (Aichelin, 1991).  Dynamical models of 

mean field approach, represented by the Boltzmann /Vlasov /Nordheim–Uehling–

Uhlenbeck models (BUU/VUU/BNV) (Bertsch and Gupta, 1988), (Baver et al., 1987), 

(Stocher and Greiner, 1986) have been used to study the mechanism of particle 

productions.  

    The classical Boltzmann equation has been extended and modified by Uehling and 

Uhlenbeck (Uehling and Uhlenbeck, 1933) to include quantum effects by revising the 

collision term in the classical Boltzmann model.  This model has been also called the 

Boltzmann-Uehling–Uhlenbeck (BUU) equation.  The modified collision term is known as 

the Uehling- Uhlenbeck (UU) collision term. To emphasize that the mean field is included, 

it is often referred to as the well-known Vlasov-Uehling–Uhlenbeck (VUU) equation 

(Balescu, 1975).  If the collision term is neglected the VUU equation is reduced to the 

Vlasov equation, these equations (BUU, VUU) provide a semi-classical approximation to 



 xxvii 

HI collision.  During the past decade, such models have been widely used in studying the 

HI collisions in high energy regimes (Aichelin and Bertsch, 1985).  The BUU is quite 

successful in describing the experimental data on pion production in proton-nucleus as well 

as nucleus –nucleus collisions (Engle et al., 1994). 

          The transport theories as BUU and QMD, IQMD have been very successful in 

describing the reaction dynamics of HI collisions.  It has been found that the experimental 

meson spectra can be well understood when assuming the excitation and subsequent decay 

of nucleon resonances during the compressed stage.  Since pions couple strongly to these 

resonances, the differential pion spectra provide a well suited probe for the dynamics of the 

baryonic resonances (Teis et al., 1997). 

The isospin-dependent transport model has been introduced to study the isospin and 

momentum relaxation-times in the heavy residues formed in heavy-ion collisions at 

intermediate energies (Li and Ko, 1998). It was found that chemical and thermal 

equilibrium can be reached before dynamical instability is developed in heavy residues only 

at incident energies below the Fermi energy.   Also the isospin relaxation-time was found to 

be shorter (longer) than that for momentum at beam energies (higher) than the Fermi 

energy (Li and Gross, 1993). 

 The structure of the nucleon resonance has been studied within the frame of 

coupled-channel meson exchange model for pion-nucleon scattering.  It was found that the 

decay widths of unstable particles in the quasi-two-body states are important to explain the 

inelasticity of N channel (Krehl  et al., 2000). 

1.5 Statement of the problem 

           We shall consider non-equilibrium nuclear system consisting of nucleons and pions.  

Our main interest will be focused on two-body collisions and only elastic collision 
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processes between particles will be considered.  The distribution function of the system in 

the overlapping region of nucleons and pions will correspond to a state of non-equilibrium.   

In order to investigate the effect of two-body collisions in HI collisions, each small volume 

can be studied separately in a local density approximation because of the short range of the 

nuclear forces.  The collision processes between NN and nucleon pion (N) will destroy the 

equilibration state of the system at a certain time known as the relaxation-time, .  The time 

evolution of the pion distribution function was found to satisfy a kinetic equation of the 

form (Emelyanov and Pantis, 1994):                                                      
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is known as the collision term (IColl) which represents the rate of 

change  of f  due to collisions, f , is the pion distribution function, zp , is the longitudinal 

momentum and, pE , is the energy of the projectile particle.  

In this study, the relaxation-times were calculated by introducing the Boltzmann 

Uhleing-Uhlenbeck relaxation-time approximation (BUURTA) model.  The BUURTA 

model provides a simpler context for the BUU collision term which gives many practical 

results with less work.  In the proposed model, the relaxation-times can be calculated by 

equating the collision term with the relaxation-time collision term (Abu-Samreh, 1991).  In 

general it was found that relaxation-times depend on density and temperature as well as the 

chemical potential.  In order to give a realistic estimate of the relaxation-time, one thus 

needs to know the chemical potential as a function of temperature.  The correct of the 

treatment, of course, requires the complete solution of all kinetic equations including the 
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expansion of the system.  This is best done in a transport approach that will be addressed in 

this work.     

By knowing the relaxation-times, the width of the reaction and the cross section of 

each reaction can be calculated.  This model will be used to study the HI reactions in 

energy rang 0.1–1.0 GeV and to calculate the distribution functions and the relaxation-

times for these reactions. 

 

 

 

 

 

 

 

 

 

 

 

                                   CHAPTER TWO 

The Kinetic Equations 

2.1 Introduction 

            In this chapter, we shall introduce the kinetic equations to be used in calculating the 

relaxation-rates (width resonances).  The particle collisions at the center-of-mass energies 

Ecen≤ 1 GeV are predominantly elastic and the pion number is conserved during the 

collision.  The relaxation to the equilibrium state is connected with elastic scattering 
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collision frequency which is density dependent (Emelyanov and Pantis, 1994).  A 

theoretical model will be developed in order to meet our objectives.  Such objectives are 

basically concerned with the calculations of relaxation-times and resonance widths.   

2.2 The model 

In order to investigate the pion resonance width in HI colisions theoretically, we 

shall start by considering a non-equlibrium nuclear system that consists of nucleons and 

pions. The statistical mechanics approach to the thermalization of non-equilibrium nuclear 

many-body system far from non-equilibrium state to equilibrium state can be made possible 

by means of the BUU microscopic model. In making use of the BUU model for studying 

the thermalization of the distribution function during HI collision processes and calculating 

the resonance widths, the following assumptions were made: 

1- The non-equilibrium state of the nuclear system under study is the result of a collision 

between two heavy ions consists of free pions and nucleons.  We shall be concerned 

mainly with only two-body systems and only elastic collision processes between 

particles will be considered.  Accordingly, only binary collisions such as NN, 

N and N  will be considered, while the three and four collisions are neglected. 

2- The microscopic state of the system can be described in terms of a single-particle 

distribution function  tprf ,,


.  The distribution function of the system in the 

overlapping region of nucleons and pions will correspond to a state of non-

equilibrium.  In this region the momentum distribution at each point in coordinate 

space is locally deformed.  In order to investigate the effect of two-body collisions in 

HI collisions, each small volume can be studied separately in a local density 

approximation because of the short range of the nuclear forces. 
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3- The collision process between NN or N in a microscopic picture and the distribution 

function of the system in the overlapping region will correspond to a state of non-

equilibrium.  The collision process between NN and nucleon with pion (N) will 

destroy the equilibration state of the system at a certain time known as the relaxation-

time.  The collision between nucleons and pions will change the distribution function 

due to the transition of nucleons and pions into and out of states.   

4- The relaxation-times can be calculated by equating the collision term with the 

relaxation-time collision term.  This approximation is valid for special cases such as 

the case when the non-equilibrium distribution function is not far from the 

equilibrium one. 

5-  The system under considerations consists of nucleons and pions that at   0t  occupy 

states described by two Fermi spheres and separated by the relative momentum of the 

two nucleons and pions in momentum space.  When the two-body collisions starts, the 

occupation numbers will change and the Fermi spheres will be distorted, that means 

the equilibration process will start.  For the system under considerations, only elastic 

collision between NN, N , N will be considered (energy and momentum is 

conserved). This restricts the possible number of collisions and only these reactions 

listed in equation (1.1) will be investigated.  

 Hence, the proton-proton (pp), neutron-neutron (nn), neutron-proton (np), 

proton-neutron (pn), proton-pion  p , pion-proton  p , neutron-pion  n  and 

pion-neutron  n differential cross sections were required. Hence, these cross 

sections are chosen carefully in a way to reproduce the main features of the NN, 

N and N scattering in the energy range (100-1000 MeV/ nucleon). Relatively 
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speaking, the main features of p, p, n, and n are expected to be the same because 

of the common features between the proton and the neutron.   

             Since we are concerned mainly in the intermediate energy range where the 

NN collision occurred and the  -meson exchange the energy and momentum 

between nucleons.  Moreover, in case of  N elastic scattering the  and  are 

vector mesons exchange the energy and momentum between the pions and nucleons.  

In such  case, it will be too difficult to take these exchanged particles into account 

since the resonance width for N is too small (Rapp and Wambach, 1995). 

6- The quantal effects are included through the Pauli blocking factors  if1  for pions 

(Boson particles) and  if1  for nucleons (Fermion particles), where 4,3,2,1i .  It is 

worth mentioning here that 1 and 2 refer to particles in initial states before collisions 

and 3 and 4 refer to particles in the final states after collisions. 

7-   The kinetic equation developed by Emelyanov and Pantis (1994) to investigate the time 

evolution of the pion distribution similar to equation (1.6) will be used in this study.  In 

this case, the evolutions of particles (pions) to equilibration state in the collision volume 

are assumed to be driven by longitudinal expansion and in the absence of transverse 

flow. Thus, the distribution function depends on the longitudinal position, z, and 

momentum, pz, as well as on t.  According to the Boltzmann frame work, this represents 

the phase space time evolution of pion matter distribution function, t),p,r(



f , for the 

predominantly longitudinal expansion (Emelyanov and Pantis, 1994).  We shall 

concentrate mainly on the central collision region which we assume to be essentially 

uniform space (Bjorken, 1983). Ideally, one would like to describe  tpf ,


by a set of 

transport equations (Wong, 1996). Assuming the dimensional expansion along the z-
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axis, equation (1.6) can be rewritten, according to the relaxation-time approximation, 

can be rewritten as (Heisenberg and Wang, 1996): 

 
     
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where
eq

f is the thermalized distribution function.  

  The general solution of the pion distribution function presented in equation (2.1) 

can be written in the following form (Baym, 1984): 
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. The general solution contains the contributions from the initial state 

(at t = t0) of pion matter 
0

f  and the thermalized part 
eq

f .  Thus, information about the 

partial thermalization of pions can be extracted.  The time t0 is the time when pion–like 

excitations become well defined which depends on the geometry of collision.  The pion 

distribution function near t0 is defined according to the following equation: 
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where  0t   is the chemical potential and  00 tTT   is the temperature initially. 

Given same initial distribution  tpftandf ,, 000  is the free streaming, 0collI .  It is 

convenient to introduce the time dimensionless variable 

0
t

t
s   to describe the time for 

pion system. 

 Similar kinetic equation can be introduced to describe the time evolution of 

nucleon’s distribution function from non-equilibrium states to equilibrium ones.  The 
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difference between the pion kinetic equation and the nucleon kinetic equation is related 

to the collision term and to the distribution functions.  This is because of the two 

different particle species, one is the fermion (nucleon) and the other is the boson (pion).  

8-  The collective variables like energy density ε and the number density n of pions will be 

decreased due to the expansion of nuclear matter.  For each time t we have two self–

consistent equations, for the local chemical potential  tμ  and local temperature T(t).  

The first equation is introduced to calculate the number of nucleons (pions) (Emelyanov 

and Pantis, 1994): 
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     The second equation is developed by Emelyanov and Pantis (1994) for calculating 

the pion energy: 
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where g = 3 ( three different values of the isospin).  Particle energy and momentum are 

assumed to be conserved quantities during the collision process.  Supposing that we 

have at some initial distribution function 
0

f and the initial values n0, we can find μ(t) 

for any t > t0 and define the function ),,(p t
z

pf


. 

2.3 The kinetic equations 

The study of equilibration or thermalization processes of excited states of nuclear 

many-body systems is essential in chasing the time evolution of the distribution function of 

non-equilibrium systems where most calculations are performed by making use of BUU 
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equation that has a collision term.  The time evolution of the one-body phase-space 

distribution  t;p,rf 1


 in its most general form can be written as (Engle et al., 1994): 

 
         (2.6)       t;p,rfIt;p,rf.rUt;p,rf.
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The first term on L.h.s is the scattering term (particles are scattered into and out of the 

phase space volume element pdrd


), where the second term represents the streaming term 

(particles pass in and out of the volume element around r


because of their motion).  The 

third term represents the change of the distribution function because of the applied external 

forces.  In equation (2.6)  rU is the particle mean-field potential and the term on the R.h.s 

is known as the collision term.  Since this term plays a vital role in this study, it needs to be 

discussed in more details. 

 

 

2.3.1 The collision terms 

        The general form of the two-body collision term can be written as (Wannier, 1966):  
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where 3g  for pions (three different values of isospin) 

        4g  for nucleons (two different values of spin and isospin) 

The 34,12W  is the transition probability for binary collisions causing the transition 2,14,3  , 

which assumed to be symmetric with respect to the exchange of 1 and 2 and 12,34W  is the 

transition probability causing the transition 4,32,1  ( Abu-Samreh, 1991). 
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  It is of great importance that the transition probability is introduced properly in 

order to calculate the time rate of change of the distribution function when the system 

evolves from one microstate to another.  The main idea in this case is to relate the transition 

probability to the  N and NN,N cross sections to ensure that collision effects are 

included (Abu-Samreh, 1991).  It has been shown that the transition probability can be 

related to the  N and NN,N  cross section by (Abu-Samreh, 1991): 
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differential cross sections, 4321 ,f,f,ff  are abbreviations for 

       t;4p4f,t;3p3f,t;2p2f,t;1p1f
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 used for the occupation probabilities.  The inclusion of 

delta functions in the collision term is to ensure that the conservation laws of momenta and 

energy are implemented and takes full account of Pauli Exclusion Principle.  Therefore, the 

brackets contain the usual occupancy for the loss process    4321 p,pp,p


 and the reverse 

process (gain)    2143 p,pp,p


 (Engle et al., 1994).  In the case of elastic scattering the 

nucleons and pions do not have the same transition probabilities and the condition of 

detailed balance can be written as:  
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If equation (2.8) is substituted into equation (2.7) and by making use of equation (2.9), the 

collisional form of the BUU equation can be rewritten as: 
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where 12


 is the relative velocity between particles 1 and 2 (Balescu, 1975). 

 In the present study, more than one scattering mechanism is expected to operate on 

the same system and several collision terms are expected to contribute in different particle 

scatterings.  Among, the collision term that represents the nucleon collisions, the one that 

represents the pion scatterings and others that represent the pion-nucleon scatterings.  Thus, 

each scattering process has a similar collision term as in equation (2.10) and we expect that 

each one is calculated in the absence of the other types of scattering mechanisms.  

Accordingly, the total collision term which represents all channels contribute to the 

scattering mechanisms in the reactions is obtained by summing over all terms.  In this case, 

the collision terms can be written as a combination of several sub-collision terms. 

Therefore, when all nuclear channels are included in the collision term, the general form of 

the collision term can be represented by: 
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We shall introduce each collision term separately.  

The collision term represents the reaction n πn π   (or  π nπ n ) which is 

resulted from the collision between the pion and the neutron.  In this case, the total collision 

term can be written as a combination of two collision terms as: 
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 Similarly, for the reaction p πp π   and its inverse, one may write   
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and the distribution function for the proton is similar to that of the neutron.   

 The collision term for the reaction n πpn    can be written as: 
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For the reaction n πnn  , one may write for the collision term     
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  For the reaction  πpp p   
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     Finally, for the reaction  πpn p      
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Clearly, one needs to know the differential cross sections in order to evaluate numerically 

each of the collision terms discussed above.  These will be introduced in the next section.   

 

2.3.2 The differential cross sections 

In this section, we shall try to evaluate the kinematics part of the cross section for 

the reaction 43   21   , where 1,2,3 and 4 represent particle species such as the nucleon and 

the pion.  In general, the cross section formula can be written as (Malfliet, 1980): 
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where M is the scattering amplitude of the two particle collisions.  The “flux factor”, 

2121 E  E 4

1

 υυ

1



,  can be rewritten  in a different way  by expanding this factor in terms of 

collinear velocities as (Terrall, 1970):  
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In the laboratory, by making use of equation (2.21), the differential cross section for 

particles scattering becomes: 

   
    (2.22)                2
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where we have made use of equation (2.22).   The scattering amplitude squared M
2
 is 

summed over spins of all particles (Rapp and Wambach, 1995). The final momenta can be 

determined by conservation of momentum (the delta functions) and are functions of the 

scattering angle cos θ and the incident momentum of the incident particle (or particle 1).  

Using the three momentum delta functions to eliminate the integration over particle 3 

momentum, the differential cross section will be reduced to  (Malfliet, 1980):  
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By making use of  
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 equation (2.23) can be rewritten as: 

 

 
)25.2(   

cosp Ep E

1

2

1

16

1

142414

4
2
42

2112
2 



pEEppp

dpp
M

d

d





 

Equation (2.25) will be used to calculate the differential cross section of the scattering 

particles. 

 

 

2.4 The relaxation-time approximation model 

The relaxation-time approximation (RTA) model will be used as a simple 

approximation to the collision term.  Consequently, estimation of the relaxation- rates or 

the resonance widths can be made possible.  In the RTA each collision term is inversely 

proportional to the relaxation-time which characterizes that scattering mechanism. Thus, 

        (2.26)                                              ,,,,
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 is the local equilibrium distribution with local temperature 

T=T(t), chemical potential μ(t)μ  and ν
-1

= the relaxation-time.  
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The relaxation-times can be calculated by equating the Uehling-Uhlenbeck collision term 

with the relaxation-time collision term (Wannier, 1966).  This can be rewritten as: 

     

       (2.27)                                         1111f                
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   According to equation (2.27), each collision term is inversely proportional to the 

relaxation-time which characterizes that scattering mechanism,so each mechanism 

contributes to the collision term and the total collision term which represents all the elastic 

scattering mechanisms should be written in the following manner: 
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     where   is the relaxation-time and 0f  is the thermalized distribution function. 

In particle physics, it is usually assumed that the lifetime of a resonance is given by 

the inverse of the total width


1
.  This assumption is also widely used in the transport 

simulations of nuclear collisions in order to describe the decays of various baryonic and 

mesonic resonances.  According, the combined relaxation-time can be defined as: 

       

(2.29)                                                                            11 
i i
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where i represents the scattering channel and   is relaxation-time inverse or the resonance 

width at which pions are produced.  The relaxation-time i  governs the approach to 

equilibrium of a non-equilibrium distribution function describing the ith collision 

mechanism and its value depends on the collision mechanism.  Thus, i  should be 

different for different collision mechanism. If the relaxation-time for one mechanism is 

much shorter than all others, scattering takes place predominantly via other mechanisms 

(Leupold, 2001). 

In the transport simulations one deals with the partial lifetime i  of resonances 

with respect to decay into different channels including absorption and scattering.  If one 

uses 

NNN

1
 as the lifetime of with respect to the NN decay channel, this correspond 

to the use of standard cross section 



d
NNNd  for the absorption channel, conversely if 

the partial lifetime is changed then the cross section has to be changed accordingly. 

Assuming that the overall lifetime is given by equation (2.29) and define a modified 

total width 1~   . In general, 
~  can be decomposed into modified partial widths 

according to  
i

ii

~~~
 : .  One of the most important aspects in this case is that the 

modified branching ratios 





~

~
i  have to be the same as the original ones 



i .   This implies 

that choosing   1

~~ 





  i

i

i
  ensures that the measurable cross sections for multi 

step processes are correct (Larionov and Effenberger, 2001).  Accordingly, the probabilities 



 xliii 

of processes where the   resonance is present in the initial state are all multiplied by the 

same factor   1

~




  to keep the branching ratios constant: 

   (2.30)                                                                               
1~ 


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Thus, the differential cross section can be writes as: 

  (2.31)                                                                     
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where 



d

d NNN  is the usual differential cross section represented by equation (2.27) 

(Larionov and Effenberger, 2001). 

         After the completion of introducing the differential cross sections needed for 

calculating the distribution functions from equation (2.27), by making use of numerical 

calculations.  Finally, the obtained distribution function will be used for calculating the 

relaxation-times.  This procedures will continue until the system reaches the equilibrated 

state.  The general method will be discussed in the next chapter. 

 

 

CHAPTER  THREE 

Results and Discussion 

3.1 Introduction 

The BUU equation describes the time evolution of the one-body phase space 

distribution under the influence of a self consistent mean field and hard core collisions 

which obey the Pauli principle.  As this equation predicts well the experimental observables 
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for light system, the application to heavier targets, however, is more demanding (Köhler, 

1985).  For the same bombarding energy we have to ensure the stability of the system for a 

large time duration needed to complete the reaction (Aichelin, 1991).  Recently numerical 

solutions of the BUU equation were advanced and an agreement between the experimental 

data and the numerical results of BUU model has been achieved (Leupold, 2001).  The 

nucleon-nucleon reactions have been investigated using the Uehling-Uhlenbeck-Nordheim 

modification in nuclear matter by Abu-Samreh and Köhler (1993). The relaxation-times for 

the equilibration as a function of density and final temperature of the equilibrated system 

have been also investigated by Abu-Samreh (1991).   

In this study, the pion-nucleons reactions in a microscopic transport model of the 

BUU type which propagates nucleons and pion resonances explicitly in space and time has 

been analyzed.  We shall consider only the processes that lead to thermal equilibrium for 

pions in hot hadronic matter.  Elastic pion collisions were considered to be the principal 

thermalizing process.  Then, we estimate the characteristic time scale for chemical 

equilibrium of pions in hadronic matter, first with pions, and then later including 

resonances. 

 

 

3.2 Results and discussion 

In this study the collision processes of various channels were followed for an initial 

system composed of two Fermi-spheres.  The spheres radii are chosen in such a way to 

meet the intermediate energy regime.  Typical values of Fermi momentum that vary from 

1.36-5 fm
-1

 can be used.   
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The collision integral depends crucially on the phase-space distribution function 

),( prf


 .  Traditionally, the Wigner phase-space distribution is applied to the evaluation of 

the collision integral.  In order to simplify the problem, the dependence of the distribution 

function on space can be neglected without loosing any physics.  This is because the 

Wigner distribution is equivalent to the Fourier transform of the one body density matrix 

over the relative coordinates.  Besides, the energy depends mainly on Fermi momentum 

which represents the major part of the problem.  Accordingly, one can take the momentum 

dependence.  The initial distribution function can be chosen as: 

(3.1)                                                                                        ))(()(1 ppf  


  

where µ is the chemical potential and  is the step function.  This choice is reasonable for 

Fermi system. Because of cylindrical symmetry of the two Fermi spheres, one can make 

use of cylindrical coordinated and choose a certain cylindrical box to put the spheres in. 

 The time evolution of the distribution function is described by the Collis- ional part 

of the BUU equation, which is solved using a high speed computers.  The integrals at the 

right-hand side of equation (2.10) are integrated numerically in momentum-space and the 

new distribution function is evaluated on the grids.  The angular integrations are calculated 

by using Gaussian numerical method (8 points Gaussian quadrature), while the integration 

over momenta are done by using Simpson’s rule.  The range of momenta are as follows: -5 

≤  p ≤ 5.  The distribution function is assumed to be zero outside the region bounded by the 

two Fermi spheres. 

The collision between nucleons and pions will start when the two spheres collide.  

The pions collision is assumed at certain lab energies (E > 100 MeV/nucleon). The corner 

stone in these calculations is the particles cross section. We shall start by testing the 

differential cross sections to be used in the calculations in order to evaluate the relevant 
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collision integrals.  The hadronic cross sections have been calculated from effective 

differential cross sections.  The elastic differential cross sections for the  

 N and NN,N  collisions are calculated using equation (2.25) by assuming the 

principle of isospin invariance ( Acherstaff et al., 2002) as: 
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All processes included in the calculation are summarized and results for invariant 

amplitudes are presented in equation (3.1) which follows from the isospin – invariance of 

the pion – nucleon interaction. 

The differential cross section of a resonance formation R with mass m in particle-

particle collision averaged over all spins of initial particles and summed over the spins of 

final particles is given as (Larionov and Effenberger, 2001): 
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Where 
2

M is a spin averaged matrix element squared, 34 12 p andp  are center-of-mass 

momentum of incoming and outgoing particles, E is the total center of mass energy  2MA  

is the spectral function of the resonance and RJ  is the spin of the resonance.  

        The elastic scattering cross sections used in calculating Γ for energies up to labT  ≈100 

–1000 MeV ( labT  is the kinetic energy for incident particles in the lab system) were 

assumed to be isotropic and were approximated on the basis of the experimental total cross 

sections.  We examined several πN channels (systems listed in equation (3.1)), by assuming 

a low pion concentration in the range 
NN

N  ≈0 –0.2 to all channels.  

        The p cross sections were obtained using a computer program written in Fortran 

language that recovers the cross sections from the experimental elastic scattering at 

energies above 500 MeV.  The calculated differential cross sections for various channels 

are displayed in Figures 3.1 all the way up to Figure 3.7. 
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Figure 3.1. The total cross section for (pp) reaction where:   
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.  (The data were taken from Acherstaff et al. (2002)).  
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 Figure 3.2. The total cross section for npnp  reaction.  (The data were taken from 

Acherstaff et al. (2002)). 
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Figure 3.3.  The total cross section for pp    reaction.  The total cross section for 

p  reaction where: )()( nn
d

d
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d

d 


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
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
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. (The data were 

taken from Effenberger et al. (1999)). 
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Figure 3.4. The total cross section for np 0   reaction.  (The data were taken from 

Effenberger et al. (1999)). 
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 Figure 3.5. The total cross section for pp    reaction.  (The data were taken from 

Effenberger et al. (1999)). 
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Figure  3.6.  The total cross section for p  reaction where: 
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Acherstaff et al. (2002)). 
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Figure  3.7.  The total cross section for p  reaction where: 
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. (The data were taken from Acherstaff 

et al. (2002)). 

                In this study, initial distribution is represented by two Fermi spheres. In 

momentum space the particles (pions and nucleons) are assumed to stream each other until 

collisions thermalize the system around a time τ.  The free streaming allows the distribution 

in momentum-space to change drastically. This is exhibited in Figure 3.8.  Initially, the 

pions have large longitudinal momentum due to high relative energy of the incoming 

nucleons in the nucleus-nucleus collisions. However, in the one-dimensional free streaming 

expansion of the system at later times only those pions with similar longitudinal velocity 

will travel together locally in space and time.  The phase space separates the longitudinal 

momenta and the distribution function changes from a wide to narrow one in zp , locally in 

space and time as seen from Figure 3.8.  
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Figure 3.8. Three dimensional surface plots of the distribution function 1f  of two 

equal Fermi spheres of radii 3 fm
-1

. 
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Collisions between particles will then attempt to thermalize the system towards an 

isotropic distribution. High energy nucleon–pion collision offers a unique opportunity to 

explain the macroscopic scale properties of nuclides.  Hence, secondary interactions among 

the produced particles are necessary to achieve equilibrium.  Particles attain thermal 

equilibrium in a time of 13-18 fm/c in hot hadronic matter where the distribution is 

expected to be of the form of equation (2.3).  We shall consider the processes that lead to 

thermal equilibrium for pions in hot hadronic matter and elastic pion collision, 

nn   , turn out to be the principle thermalizing process. 

It was found that the longitudinal expansion extended the system to a size similar to 

the transverse size at a time of order the nuclear transverse dimension τ~R where the  three-

dimensional expansion takes over, the densities will decrease rapidly and this is resulted in  

reducing collisions drastically and a free streaming scenarios is again likely.  Around, the 

same time, however, the system may breakup, freeze out and fragment.   

In the ideal case, a strong narrow resonance in the πN cross section fairly well 

isolated from other resonances should manifest itself as fairly sharp minima in the 

temperature dependence of the relaxation–time.  In the actual case of πN systems, the 

proximity of particle overlapping with other resonance’s, and the width of the resonance 

complete with the NN cross section and a minimum in the temperature dependence curve 

becoming somewhat smoothed out or even degenerating into inflection point is expected. 

The resonance character of the cross section is more clearly manifest in the N  system 

than in the N  system.  This is due to the fact that the resonance’s in the  N  cross 

sections are fewer in number and better separated than these in the N  cross sections and 

don’t overlap one another.  In N scattering the only possible intermediate states are these 
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with isospin 
2

3T resonance’s.  On the other hand, N  scattering goes via two 

channels with 
2

1T and 
2

3T , so in the N  cross sections, we see that not only the 

2
3T  resonance, but also the 

2
1T  resonance’s (Gasiorowicz, 1966).  The 

considerable discrepancy between the N  and  N curves at low temperatures is due to 

the fact that at low energies,  N scattering gives mainly via  
2

3T state (Gasiorowicz, 

1966).   

 Pions are produced dominantly by the baryon resonance decays therefore the pion 

multiplicity is very sensitive to the number of resonances present in the system.  The two-

pion production model was applied in the pion-nucleon reaction, especially in the vicinity 

of the reaction threshold.  In this case, both baryonic and mesonic intermediate resonances 

have been considered explicitly (Mueller, 1993).    The model is good enough to reproduce 

the total cross sections in the intermediate vicinity of the threshold and for pions having 

incident kinetic energies above 250 MeV.  The low energy pion-nucleon data were 

investigated for isospin invariance by comparing charge exchange amplitudes derived from 

charge-exchange data with those predicted from recent p


 elastic scattering through the 

application of isospin invariance and a clear indications of isospin breaking data in the 

pion-nucleus interaction has been observed(Gibbs and Kaufmann, 1994). 

            The calculated distribution functions, displayed in Figure 3.8 were used in 

calculating the average kinetic energy of particles, especially the pions.  The average 

kinetic energy of pions  is calculated using: 
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where g is the spin isospin degeneracy factor, and 
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(3.4)                                                                                               )(
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is the kinetic energy of the nucleon, and ),( tpf is the distribution function given by Bose-

Einstein for pions and Fermi-Dirac distribution for nucleons. 

The pionic total energy can be written as: 
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Expanding the above equation, the following equation can be obtained (Danielewicz, 1979) 
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Where 21,KK  are the modified Bessel functions. 

The chemical potential is determined from the number density.  In this case, the 

number of pions does not change, and, after kinetic equilibrium has been established, the 

pions are distributed according to a Bose-Einstein distribution.  Thus,  
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by assuming normal nuclear matter density, 3.17.0  fmnucleon
V

N
 . A suitable 

expansion and integration of right-hand side of the above equation gives (Danielewicz, 

1979): 
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Where 2K  is the modified Bessel function. 

A plot between the ratio of pion to nucleon numbers versus temperatures is shown 

in Figure 3.9.  There will be 5 pion per nucleon at T= 100 MeV, and then flattens out 
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nuclear matter is gradually transformed into a hadron (Stöcker and Greiner,1986).  At low 

temperatures of the order of 50 MeV or less, most of the pions reside in the condensed zero 

momentum state (Han and Stöcker, 1986).  At higher temperatures, the pion yield is due to 

nuclear resonance’s.  The massive pion resonance’s become important at temperatures 

about T≈ 100MeV.  As the temperature rises smoothly with the bombarding energy, 

reaches about T≈ 100 MeV and T≈ 200 MeV deconfinment will take place.  At energies in 

the range of relativistic heavy ion collisions. At high temperatures, the production of 

resonance’s can be achieved explicitly using the statistical mechanics approach.  The 

resonance’s can be viewed as excited nucleons (resonance pair production) and a 

Boltzmann distribution for the excitation probability of the ith resonance can be assumed at 

temperatures above 100 MeV. 

 

 

                             Temperature (MeV) 

Figure 3.9.  Pion multiplicities versus the temperature for baryon densities two 

times (solid line) and four times (dashed line) normal nuclear matter 

density.  The curves describe the properties of a hot and dense piece of 

infinite nuclear matter (Hahn and Stöcker, 1986 ). 
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The pion number as a function of temperature is shown in Figure 3.10. 

         

                 Figure 3.10. Density of pion for hot nuclear matter, (Danielewics, 1984). 

 

The π-meson density dependence on temperature is shown in Figure 3.10, when the 

densities are high enough, the Fermi energy starts to approach the lowest resonance.  In 

such case, the resonance was described by Boltzmann statistics.  In the presence of excited 

states, i.e. resonances, the number of pions is changed by the decay process of resonances 

(and vice versa). 
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Figure 3.11.  Pion to nucleon ratio of the fireball as a function of critical 

density for the collision of equal mass nuclei (Kapusta, 1977).  

  Calculations have been also extended to study the behavior of a single state 

relaxation-time on a microscopic basis. The states relaxation-times are carried out in two-

steps. First the BUU collision integral for the distribution function representing two Fermi-

spheres is calculated exactly by numerical methods. Second, calculation of 0
11 ff   is 

made after both the distribution function 1f and the thermalized distribution function 0
1f  

are calculated.  The relaxation-times is then followed using the expression  
1

1
0

1
fI

ff

p
τ


  

were this equation represents a state described by a distribution function 1f , by which the 

system has been started, and which decays the characteristic relaxation-time  p
  .      The 

calculated relaxation-times are measured in cfm /  units and all relaxation-times of 

cfm /100 or higher are considered to be infinite. The best way to read these relaxation-

times is to make contour plots of the relaxation-time inverse. In this case infinite relaxation-
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times can be represented by no contour lines when 

1

 is plotted. We present in Figure 3.12 

three dimensional surface plots of the relaxation-times of NN scattering processes.  Similar 

results were obtained for the rest of channels in equation (1.1).  
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Figure 3.12.  Three dimensional surface plots of the time evolution of the 

relaxation-time in the scattering plane ),( zkk  resulting of two 

equal Fermi spheres. 

 

Figure 3.13 displays contour plots of the relaxation-time inverse of states belonging 

to the same two equal Fermi-spheres system discussed above. The lowest collision rate 

value is represented by the outer contour line and is indicated by “bas”, while the distance 

between the contour lines is indicated by “inc”.  That is, the contour line values are 

increased by “inc” when going from outside to inside in each contour plot.  The inside 

contour line represents the peak of the collision rate. The time steps represented by t are 

taken to be a multiple of 10
-21

 sec. At t = 0.01 sec, before the collision starts, nucleons are 

occupying states to MeVT 0  Fermi spheres, hence the relaxation-times are infinite and 

no contour plot appears in this case. When the collision starts and the system start to 

disassemble, nucleons make transitions into states of finite relaxation-times. Apparently, 

these states are located above the Fermi surface close to the contact zone. Initially, rare 

collisions between nucleons from each polar region being scattered into the equatorial 

region may contribute to the relaxation.  Therefore, contour lines of 

1

, which represents 

states of short relaxation-times, appear Figure 3.8 as solid line.  As the time continues to 

evolve, nucleons will continue to scatter in and out of states.  This in turn creates a number 

of short relaxation-time states below the Fermi surface as well above it, and the nucleons 

are then allowed to scatter into these unoccupied states.  Hence the contour lines quickly 

spread uniformly over the whole system. At the later stages, say at sec1015. 21t , when 

the system has developed a thermalized distribution, the states have long relaxation-times 

and the contour lines start to disappear.  The reason that states may have an infinite 
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relaxation-time is because the scattering of a given nucleon out of the state is exactly 

balanced by the scattering of other nucleons into the state.  This means that the probability 

of scattering “out” a nucleon from that state remains the same in equilibrium and may never 

change. 
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Figure 3.13. Contour plots of the time evolution of the distribution function 1f                        

in the scattering plane ),( zkk  resulting of two equal Fermi spheres. 
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The average relaxation-time of a nucleon in nuclear matter dependence on 

temperature in the temperature range 20-80 MeV and different nuclear matter densities 

were displayed in Figure 3.14.  The curves show almost the same behavior.  The presence 

of the curvature is associated with the production of resonance particles, namely, the pions.  
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      Figure 3.14.  The dependence of nucleons relaxation-time on temperature and   density. 

 

Let us now discuss hadronic matter relaxation-times at low temperatures which 

mainly consists of pions (Figure 3.15).   The relaxation-time estimated to be about 14 fm/c 

at T = 30 MeV (about 20 fm/c with MeV138  at the same temperature) for such state.  

This is very large compared to the size of the hot matter produced in nucleus-nucleus 

collisions.  This implies that the thermal equilibrium would not be reached in the expanding 

hot hadronic matter consisting of pions only.  Generally speaking, the πN collision at the 

center-of-mass energies Eππ≤ 1GeV are predominantly elastic, the pion number is 

conserved during the expansion in A +A collision. The relaxation from non-equilibrium 

state  to the equilibrated state is characterized by a collision frequency that is density 

dependent (Emelyanov and Pantis, 1994).  



 lxiv 

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

(
fm

/c
)

T(MeV)

  

            Figure 3.15.  The dependence of  hadronic matter relaxation-times at low 

temperatures. 

  The thermodynamic equilibration in a hadronic system is driven by multiple 

collisions among particles in the system.  Generally the equilibration time is directly 

proportional to the collision rate.  In an expanding system, therefore, the collision rate 

should be much larger than the expansion rate of the system in order to maintain 

thermodynamic equilibrium.  As long as the expansion velocity of the system does not 

exceed the most probable velocity of the thermal particles in the system, this condition is 

satisfied if the mean free path of a particle is shorter than the size of the system.  In the 

following we determine the relaxation-times of pions assuming that the system is slightly 

deviated from the equilibrium state, i.e. in the relaxation-time approximation.   

Since the system still remains in thermal equilibrium, the state can be characterized 

by a maximum of the entropy consistent with the conservation laws of energy, momentum 

and of relevant particle numbers. Since we neglect dissipative, i.e. pion number changing, 

such processes implies that entropy as well as the pion number is conserved in the 
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expansion.  As a result of keeping the pion number constant, the chemical potential will 

rise. This is due to the overpopulation of pionic states due to the decay of the resonances.  It 

has been estimated that pion chemical potential is about 86 MeV at freeze-out temperature 

(Song and Koch, 1993).  

In Figure 3.15 the thermal relaxation-times for each process as a function of 

temperature was displayed. The total relaxation-time is determined by including all true 

pion number changing processes.  Due to the hadronic resonances, the resulting relaxation-

time is almost an order of magnitude shorter than that previously obtained within chiral 

perturbation theory (Negele, 1982). With µ= 100 MeV we find that  ~ 10 fm/c at T ~ 150 

MeV.   A relaxation-time of about 5 fm/c at T ~ 180MeV was found  and such value 

increases to about 10 fm/c at T = 150 MeV.   At a temperature of T = 150 MeV the total 

relaxation-time is about 10 fm/c, which is comparable to typical system sizes created in 

ultrarelativistic heavy ion collisions involving heavy nuclides.  However, the corresponding 

temperature, for which the thermal relaxation-time assumes the same value of 10 fm/c is 

considerably low, namely about 110 MeV.   From these numbers we expect that even with 

the inclusion of the resonance chemical freeze-out takes place before the thermal one. 

Moreover, the above estimate has assumed that the resonances are formed instantaneously.  

Thus, the chemical relaxation-times may be slightly larger once the formation of the 

resonances is taken into account properly. 

First we consider resonance decays.  In this case the relaxation-time, which is a 

measure of how fast the relative chemical equilibrium between pions and nucleons is 

reached, will be inversely proportional to the decay width. The general behavior of 

chemical relaxation –time can be expressed as (Song and Koch, 1993). 

 (3.9)                                                                                                
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where   is the equilibrium density of pions and N  is the nuclear matter equilibrium 

density.  It was found that chem  values range from 0.2 to 0.8 fm/c.  This is very short, and 

to a good approximation we can assume that pions are always in relative chemical 

equilibrium. 

   The elastic πN and ππ scattering have been extensively studied by means of chirial 

symmetry (Robilotta, 1985).  An agreement with experiment is good both below threshold 

and for pion energy up to 350 MeV, actual calculations require the knowledge of various 

parameters entering equation (3.9) (Robilotta, 1985).  For Nb+Nb collision up to 400 MeV, 

)103sec1(sec104.1 2322

c

fm
  . Let us also assume, for a moment, that the time 

scale for the collision processes are long compared to the lifetime of the system, whereas 

the elastic processes, which are responsible for the kinetic equilibration, are fast.  In this 

case, the number of pions does not change, and, after kinetic equilibrium has been 

established, the pions are distributed according to Bose-Einstein distribution. 

The thermal equilibration of pions at low temperatures will be governed by elastic 

two body collisions.  As long as we consider elastic two-body collisions, the thermal 

relaxation time τth is given by (Song and Koch, 1993) 
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where if ’s are Bose-Einstein distribution function.  The factor 1/4 in front comes from 

identity of particles at initial and final states and the sum is over the spin and isospin 

degeneracy of particles 2, 3 and 4. The second term (∼ e
−E

) indicates the contribution from 
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inverse reaction. Note that this result is obtained in the relaxation-time approximation.  The 

mean relaxation-time is defined as: 

 
   
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 )11.3(pfpηpd

pfpd

1
aaatha

3

aaa
3thη  

When we using a suitable numerical calculations and simplifying algebra the mean 

relaxation-time is simplified to (Song and Koch, 1993): 
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With this approximation it has been shown that the mean relaxation-time is about 5 fm/c at 

T = 150 MeV (Song and Koch, 1993).   Since the mean free path λ ≈ τ in the relativistic 

limit, the result can be compared to the size of the system.  Here we assume that the radius 

of the hot matter would be 5 ∼ 10 fm.  This implies that pions are in thermal equilibrium in 

hadronic matter, mainly due to the two body elastic collisions. 

 At temperatures close to the phase transition, other heavy mesons like kaons, vector 

mesons, etc., become increasingly abundant.  Thus, a reduction of  thermalization time 

becomes more and more noticible.  Consequently, pions can maintain thermal equilibrium 

in hot hadronic matter even at comparatively low temperatures.  From formula equation 

(3.12) we expect a freeze-out temperature ≤ 130 MeV for a small system such as S + S or S 

+ Au.   This is somewhat lower than the values extracted from experiment, which are  150 

MeV.   The reason for this slight discrepancy is most likely due to the flow generated in the 

reaction, which reduces the effective system size.  We also expect that light vector mesons, 

ρ, ω, φ, reach thermal equilibrium in hot hadronic matter.   For ρ, ω the dominant reactions 

will be the collisions with thermal pions through heavy resonances such as π + ρ → π + ρ 

and π + ω → π + ω , (Song and Koch, 1993).  In this reference it has also been shown that 
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the various collisions in hot hadronic matter make it possible for phi mesons to be in 

thermal equilibrium. 

      Relatively speaking, in a hadronic system consisting of only pions, the number of 

pions cease to change at the early stage of the expansion even if the system is out of 

equilibrium at the beginning of the evolution.  Once we include resonances, additional 

processes help to change the pion number.  Again we assume that the decay processes such 

as  and N are fast enough to maintain the relative chemical equilibrium even if pions 

have a finite chemical potential.   

We show the relaxation-time with µ = 100 MeV becomes short compared to the size of 

the system. Thus the number of pions would be changed in hot hadronic matter even near 

the thermal freeze-out temperature. Especially axial vector mesons such as ρ-meson are 

easily interact with pions and annihilate into two pions.  However, we should note that the 

thermal freeze-out temperature is also reduced when we include a finite pion chemical 

potential (Song and Koch, 1993).  The above result, of course, implies that also the number 

of vector and axial vector mesons changes as quickly as that of the pions. Moreover, the 

total chemical relaxation-time is changed with pion chemical potential at fixed temperature.  

Even at T =150 MeV, the pion relaxation-time is comparable to the size of the hot system 

as long as the pions have a finite chemical potential;  5 fm/c at µ = 50 MeV.  If the 

hadronic system is produced out of equilibrium, for example with µ = 100 MeV, the 

excess of pions will be reduced by the inelastic reactions involving vector and axial vector 

mesons.  These number changing processes will lead to the decrease of pion chemical 

potential and finally cease to be effective as the chemical potential is reduced below a 

certain value. In this study, the pions were found to freeze out within 13 fm/c in Au +Au 

collisions. Experimental results predicts a similar time scale for the emission of high energy 
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pions (Bass et al., 1995).  According to calculations, the nuclear matter density exceeds 

twice saturation value in central Au +Au collisions at 1 GeV/nucleon within the first 15 

fm/c.  Therefore, given a freeze-out temperature of about 150 MeV we would expect the 

pion chemical potential not to exceed a value of  50 MeV. 

     As the system expands and pions develop the chemical potential the relaxation-time 

becomes shorter than that obtained ones near equilibrium obtained from Figure 3.12.  We 

find that the  is reduced by half at T = 150 MeV ( ~ 5 fm/c) due to the pion chemical 

potential.  However, even with the induced pion chemical potential the chemical relaxation-

time is considerably larger than the thermal relaxation-time at the same temperature.   

      The dependence of all the rates on the pion concentration (i.e the ratios 

NN N

N
and

N

N   ) can be approximated to same degree of accuracy by a straight line. 

Generally speaking, the relaxation–times were found to increase with increasing the 

temperature only as BTeT   in the temperature range T ≈ 20 – 150 MeV (Gupta, 

1988).  The lifetime τ is given with the sum of the pionic decay rate as 



c

h
 , where,  , 

is the width of the reaction.  The presence of positive pions was found to be more effective 

than that of negative pions in altering the relaxation–times of nuclear matter.   

      Comparing with previous calculations (Song and Koch, 1993) based on chiral 

perturbation theory, the inclusion of the resonances has reduced the chemical relaxation-

time by about a factor of 10.  When we neglect the formation time of these resonances, the 

resulting chemical relaxation time of pions is 10 fm/c at temperature, T = 150 MeV.  This 

value is comparable to the size of the hot system produced the collision of large nuclei. 

Given a system size of 5 ~ 10 fm we obtain a thermal freeze-out temperature which is small 

compared to those extracted from experiments (Song and Koch, 1993).  This might be due 
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to flow effects which lead to smaller effective system sizes.  If we take the thermal freeze-

out temperature be about 150 MeV, then the freeze-out size of the system would be 2 ~ 3 

fm.  On the other hand the chemical relaxation time for a system of this size would be at 

temperature, T = 170 MeV.  This implies that chemical freeze-out of pions happens at 

considerably higher temperatures than thermal freeze-out. Where pion spectra and particle 

abundances could be reproduced assuming the same freeze-out conditions.  In order to 

properly assess the magnitude and importance of this discrepancy, a detailed transport 

calculation including all the number changing processes presented here is needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 lxxi 

 

 

 

CHAPTER FOUR 

Conclusions and Future Work 

     We have investigated the effect of the presence of pions in the nuclear matter 

system.  The mean characteristic features of differential cross sections of N  and N  

have been investigated, the N  and N curves differ from NN curve in the irregularity 

of their behavior they have inflection pionts and some evident maxima and minima.  It has 

been found that the pionic entrance channels are especially sensitive to the pion dynamics 

and a good agreement for differential inelastic scattering and the exclusive ( NP,  ) 

reactions in the delta resonance region have been obtained (Engle et al., 1994).  

We have studied the thermal and chemical relaxation-time scales of pions in hot 

hadronic matter using the non-equilibrium statistical mechanics.  From the explicit 

calculation, it has been found that pions in hot hadronic matter are in a phase where elastic 

collisions rates are very fast compared to typical expansion rates of the system.  For 

chemical equilibration the dominant contribution comes from the inelastic collision 

involving a1l mesons.  For a temperature of T ≈ 150 MeV, a relaxation-time of τ ≈ 10 fm/c 

was obtained, this is a typical time of hadronic matter. 

      The temperature dependence of relaxation–times for the ( NN ) systems were 

displayed in Figure 3.14.  Such a temperature dependence of the transport relaxation–time 

is associated with nucleonic resonance’s in the πN elastic interactions.   
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We have also studied the effect of baryons on the chemical relaxation-time of pions. 

At temperature, T = 150 MeV with a chemical potential, µ = 100 MeV the relaxation-time 

is about 5 fm/c which is certainly comparable to the system size at freeze-out. However, we 

should note that the thermal freeze-out temperature is also reduced when we include a finite 

pion chemical potential (Song and Koch, 1993).  We found that in this case the chemical 

relaxation time is about 5 fm/c at temperature, T =150 MeV.  For systems which are larger 

than 5 fm we, therefore, expect that the chemical potential at freeze-out will be 

considerably smaller than the value of 86 MeV, which has been obtained without taking 

number changing processes into account.  

 In conclusion, as long as the effective system size is not considerably smaller than 

5 fm, a buildup of a pion chemical potential larger than 100 MeV would be very difficult to 

understand.  At the same time, we also predict a considerable difference between the 

chemical and thermal freeze-out temperatures.  To which extent that is reflected in the data 

needs to be investigated within a transport calculation. 

Furthermore, Pion scattering provides a good result the neutron-proton (or 

equivalently isospin) character of a transition because of a useful property of the pion-

nucleon interaction., the norp    cross sections exceed the porn    cross 

section by a factor of  9. 

  Future work will concentrate on a transport theoretical calculation of the chemical 

equilibration.  We also plan to extent the present study to include the reactions involving 

strange particles.  Therefore in order to improve this model, we suggest the following: 

1-  In addition several effects have been neglected such as the coulomb effects, the     

higher order collision effects, such as the triple collision effects.   

2-  Investigations should be extended to include triple and higher order collisions. 
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3- Investigations that include the viscosity dependent in order to exhibit their effect on the 

relaxation-times. 

4- This model can also be modified to include the electric and magnetic field effects on 

thermalization and relaxation-times. 

5-  For a complete study, the inelastic collision process between particles should be studied.   
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