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Abstract

Many concepts of mathematics can be generalized. In this thesis, we discuss
the generalization of the concept of derivatives to include the derivatives of fractional
derivatives. Two approaches to the definition of fractional derivatives are given and
proved that are equal.

We introduce an approach to the fractional derivatives of the functions using
the Taylor series of analytic functions. In order to calculate the fractional derivatives
of /, it is not sufficient to know the Taylor expansion of /; but we should also know the
constants of all consecutive integrations of £, The method of calculating the fractional
derivatives very often requires a summation of divergent series, and thus in this note,
we first introduce a method of such summation of series via analytical continuation of
functions.

A derivative of a function of order «, for any real number a( called a
fractional derivative) is the subject of this thesis. Here the definition will depend on
the formal power series summation. We used this definition to find the fractional
derivative of the constant functions and the polynomials. The result was the same
result by using the known definitions of fractional derivatives until now. Also, we
proved properties of the fractional derivative. And we proved that the fractional

derivative of order @ € R of the exponential function e*is the exponential function
e’ and this help us in finding the fractional derivatives of the tri gonometric functions

and hyperbolic functions.

'Finally, we introduce a characteristic class of so called ideal functions, which
admit arbitrary fractional derivatives.
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Introduction

e traditional integral and derivative are, to say the least, a staple for the technology
ofessional, essential as a means of understanding and working with natural and artificial
stems. Fractional Calculus is a field of mathematic study that grows out of the traditional
:finitions of the calculus integral and derivative operators in much the same way fractional
tponents is an outgrowth of exponents with integer value. Consider the physical meaning of the
tponent. According to our primary school teachers exponents provide a short notation for what
essentially a repeated multiplication of a numerical value. This concept in itself is easy to
asp and straight forward. However, this mathematical definition can clearly become confused
hen considering exponents of non integer value. While almost anyone can verify that x* =
x.x, how might one describe the mathematical meaning of x3/%, or moreover the
anscendental exponent x%4. One cannot conceive what it might be like to multiply a number or
iantity by itself 3.4 times, or % times, and yet these expressions have a definite value for any
ilue x, verifiable by infinite series expansion, or more practically, by calculator.

ow, in the same way consider the integral and derivative. Although they are indeed concepts of
higher complexity by nature, it is still fairly easy to physically represent their meaning. Once
astered the idea of completing numerous of these operations, integrations or differentiations
llows naturally. Given the satisfaction of a very few restrictions (e.g. function continuity),
ympleting n integrations can become as methodical as multiplication.

ut the curious mind can not be restrained from asking the question what if 7 were not restricted
- an integer value? Again, at first glance, the physical meaning can become convoluted, but as
is report will show, fractional calculus flows quite naturally from our traditional definitions.
nd just as fractional exponents such as the square root may find their way into innumerable

juations and applications, it will become apparent that integrations of order = and beyond can
nd practical use in many modern problems.

n

he fractional derivative is natural a natural extension of the familiar derivative where

dx™

=0,1,2,...to arbitrary numbera (( integral, rational, irrational or complex)). Fractional
fferentiation is of use in the solution of ordinary, partial, and integral equations as well as in
e contexts, a few of which are indicated in the bibliography although other methods of solution
¢ available, the fractional derivative approach to these problems often suggests methods that
€ not obvious in a classical formulation. The fractional calculus forms a special chapter in the
m-general "Operation Calculus" which considers functions of the differential operator "D"

ore general that D¢.

ractional Calculus is the branch of calculus that generalizes the derivative of function to non-
teger order allowing calculations such as deriving a function to 1/2 order despite generalized
ould be a better option, the name "Fractional" is used for denoting this kind of derivative, see

1.
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The simplest approaches to the definition of fractional differentiation begin by looking at a few
well-known functions, and try to find various derivatives by means of an intuitive approach. We
will be making use of the usual notation for derivatives, see [2], and we get the following:

D (x) = lim h™ Z (=)™ (:;) F(x + (n—mh)

m=0

Differentiation and integration are usually regarded as discrete operations, in the sense that we
differentiate or integrate a function once, twice, or any whole number of times. However, in
some circumstances it’s useful to evaluate a fractional derivative. In a letter to L’Hospital in
1695, Leibniz raised the possibility of generalizing the operation of differentiation to non-integer
orders, and L’Hospital asked what would be the result of half-differentiating x. Leibniz replied
The paradoxical “It leads to a paradox, from which one day useful consequences will be drawn”.

The idea of generalizing the concepts of differentiation and integration to non-integer (fractional)
orders has a long mathematical history. It was first discussed in the correspondence of G.W.
Leibniz around 1690. Over the centuries many famous mathematicians including Euler,
Riemann, Liouville and Weyl have built up a body of mathematical knowledge on fractional
integrals and derivatives that is known under the name of fractional calculus.

In chapter (2) an approach to the fractional derivative of order @ € R of a function is given. This
definition will depend on the formal power series summation. We used this new definition to
find the fractional derivative of the constant functions and polynomials. The result was the same
result by using the known definitions of fractional derivatives until now. Also, we proved
properties of the fractional derivative. Finally, a proof of the well known fact that fractional
derivative of e** of order a € R Is equal to A%e**, Also, we proved that sin{® (x) = sin (x +
arn/2) and cos®(x) = cos (x + an/2).

In chapter (3) we introduce an alternative definition of the fractional derivatives and also a
characteristic class of so called ideal functions, which admit arbitrary fractional derivatives (also
integrals). Further are found the expansions of the functions

xe*

k
. X 5
el tanh x, and some other functions of the form Y5 _ ., a, — » which enables us to
P — !

calculate any fractional derivative of these functions at x = 0. These calculations lead to
representations of the Bernoulli and Euler numbers By, and E, for any complex number k
via fractional derivatives of some functions at x = 0.
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Chapter 1

Riemann-Liouville Operator

The concept of non-integral order of integration can be traced back to the genesis of
differential calculus itself: the philosopher and creator of modern calculus G.W. Leibniz
made some remarks on the meaning and possibility of fractional derivative of order

@ € R in the late 17:th century. However a rigorous investigation was first carried out by
Liouville in a series of papers from 1832-1837, where he defined the first outcast of an
operator of fractional integration. Later investigations and further developments by
among others Riemann led to the construction of the integral-based Riemann-Liouville
fractional integral operator, which has been a valuable cornerstone in fractional calculus
ever since.

Prior to Liouville and Riemann, Euler took the first step in the study of fractional
integration when he studied the simple case of fractional integrals of monomials of
arbitrary real order in the heuristic fashion of the time; it has been said to have lead him
to construct the Gamma function for fractional powers of the factorial [2, p. 243]. An
carly attempt by Liouville was later purified by the Swedish mathematician Holmgren,
who in 1865 made important contributions to the growing study of fractional calculus.
But it was Riemann [4] who reconstructed it to fit Abel's integral cquation, and thus made
it vastly more useful. Today there exist many different forms of fractional integral
operators, ranging from divided-difference types to infinite-sum types [1, p. xxxi], but the
Riemann-Liouville Operator is still the most frequently used when fractional integration
is performed.

1.1 The Gamma function:

As will be clear later, the gamma function is intrinsically tied to fractional calculus. The
simple interpretation of the gamma function is simply the generalization of the factorial
for all real numbers. The definition of the gamma function is given by

I'fz) = fome‘” u”ldu, forallz €R (D

The beauty of the gamma function can be found in its properties. First as seen in (2), this
function is unique in that the value for any quantity is , by consequence of the form of the
integral, equivalent to that quantity z minus one times the gamma of the quantity minus
one,

[(z+1)=2zI(z), also,whenz€N*, I'(z)=(z—1)! (2)

This can be shown through a simple integration by parts. The consequence of this relation
for integer values of z is the definition for factorial. Note that at negative integer values,
the gamma function goes to infinity, yet is defined at non-integer values.



Now, we give an example.,
Example 1.1.1

Using equation (2), then we get

1.2 Beta function:

Also known as the Euler Integral of the First Kind, the Beta Function is in important
relationship in fractional calculus. Equation (3) demonstrates the Beta Integral and its
solution in terms of the Gamma function.

o= (Y1 — 0 P-1 4914, — L@@ _ s
B(p, q): fo(l u) u?l*du Tt B(q,p), where p,q € R* (3)

Now, we give an example.
Example 1.2.1

Using equation (3), then we get

1.3 Riemann-Liouville integral:

The fractional derivative of order @ € R of a function f is

d®f (x)

dx®

1 f £(6)
[(—a) / CE — Fjent

= f@(x) = dt

Where I'(n) is the Euler's Gamma function.
Now, we give an example.

Example 1.3.1

The (1/2) th derivatives of the functions f(x) = x and g(x) = Vx are



FAZ () = % and g8 (%) = g
Solution:

Using this definition, the (1/2) th derivative of the function f(x) = x, is given by

f(l/z)(x) = dt

1 f t
I'(—(1/2)) g = t)%*'l

i s
:mfu(l—u) 2 “du

__x r@re=a/2)
F=1/2) 1(G/2)

i

Also, using the same definition, the (1/2) th derivatives of the functions g(x) =
Vx is given by

gD = dt

1 f Vit
CCVE) N

1 1 s
=mbf"“(l“” o

_ 1 TE/r-/2)
r=@/2) I
Vi

= i

Now we will give several properties of the fractional derivatives.

Theorem 1.3.2 :[4]

x—(t’

If f(x) = ¢, where ¢ is constant, then f'@(x) = D



Proof:

Using the definition, the a th derivative of the function is

] : C
(a) =
FOW = s f e
And so,
1 ; ¢
(a) =
) = o f G-t

1
o -

= ¢ TIilri-a)
Cx2(=a) T(1—a)

—-a

T I(1-a)

Theorem 1.3.3 :[4]

I'(n+1) n-a

If fx)=x"n €2, then f@(x) = =20

Proof:

Using the definition, the a th derivative of the function is

1 [ @
(a) e
O = s f : dt

W t)rr+1

And so

1 [ e
a) s
P r(~a)0f ==

XH—U. 2
= n 1 = —a—1
F(—a)fu (1 — i) du
0




Conclusion

We have studied in this thesis the background of the concept of fractional derivatives,
fractional differentiation and fractional integration, by providing two different
approaches of the concept of fractional derivatives. In the beginning, we have
introduced the concept of fractional derivatives as defined by the Riemann - Liouville
which has been generalized to include also the real numbers, not integers only. After
that we discussed in many of the characteristics of this definition. The second concept
depends on the formal power series summation. We used this definition to find the
fractional derivatives of the constant functions and polynomials. The result was the
same result by using the known definitions of fractional derivatives until now. Also,
we proved several properties of the fractional derivatives.

Finally, we preseuted introduce an alternative definition of the fractional derivatives
and also a characteristic class of so called ideal functions, which admit arbitrary
fractional derivatives (also integrals). Further, we are found the expansions of the
functions
xe* 1

k
5 . 55 x g
T tanh x, an me other functions of the form Z: e a; — , which
eX-1" cos (x) , and so 0 k=—o0 Akt 77>

enables us to calculate any fractional derivative of these functions at x = 0.
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