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Abstract 

 

The continuous outflow of thermal plasma escaping from the polar ionosphere at high 

latitudes to the magnetosphere along "open" geomagnetic field lines is called the polar 

wind, [Axford, 1968]. This plays an important role in the ionosphere-magnetosphere 

coupling. 

 

The heating of ions (i.e., acceleration of ions, which means, increases of velocity with 

altitude), owing to the interaction with electromagnetic turbulence (i.e., wave particle 

interactions), plays an important role in the outflow of the polar wind ions (i.e., O+ and H+) 

in the polar wind region. The effect of wave particle interaction (WPI) on H+ and O+ ions 

outflows in the polar wind region were investigated by using Monte Carlo Simulation. 

 

The Monte Carlo simulation is a simple concept, goes straight forward algorithms, and was 

developed to include the effects of altitude and velocity dependent wave particle 

interactions, gravitational force, polarization electrostatic field, and the divergence 

geomagnetic field, within the simulation tube (1.7 to 13.7RE). 

 

As a result of the effect WPI (i.e. the perpendicular heating), the temperature anisotropy 

)( TT⊥  for H+ ions is reduced at low altitudes, but it is reversed ( )(H    )(H ++
⊥ > TT  at 

higher altitudes. On the other hand, the temperature anisotropy )( TT⊥  for O+ ions 

increases with altitude at low altitude and at high altitude its average value is (~53), where  

)(O    )(O( ++
⊥ > TT  for all altitudes, where the perpendicular heating makes the O+ and H+ 

velocity distribution functions developed a conic shape at high altitudes. 

 

When an ion is heated and moves upward along the geomagnetic field lines, the Larmor 

radius ( La ) of that ion increases and it may become comparable to or greater than the 

wavelength electromagnetic turbulence (⊥λ ), then the ratio ( ⊥λLa ) exceeds unity, 

therefore, the perpendicular diffusion coefficient ( ⊥D ) becomes velocity dependent, 

consequently, the heating of the ions becomes self-limiting and the velocity distribution 

function of ions exhibits toroidal features. This result is consistent with the observation of 

both H+ and O+ toroidal distributions at high altitudes. The toroidal features of O + ions 



 8 

appear at lower altitudes compared with H+ ions (i.e. the saturation point of H+ ions 

occurred at higher altitudes than those for O+ ions). 

 

The most important result in this study is that, the wavelength of the electromagnetic 

turbulence equal 8km, )8.,.( kmei =⊥λ , since the simulation results of Barghouthi model 

represent the closest results to the observations, which obtained from different satellites. 

Finally, we can conclude that Barghouthi model is an excellent model in the polar wind 

region, since it produce acceptable simulation results when compared quantitatively and 

qualitatively to the corresponding observations. This close agreement between the 

simulation results and observations provides evidence that Barghouthi model described in 

this thesis is appropriate to be used, when modeling the heating of ions through the wave 

particle interaction in the polar wind region. 
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Chapter One 
 
 
Introduction 
 
1.1 Introduction 
 
The polar wind is an ambipolar outflow of thermal plasma (i.e. mainly H+, O+, He+ ions, 

and electrons) from the terrestrial ionosphere at high latitudes to the magnetosphere along 

the magnetic field lines of the Earth. The polar wind occurs inside the region of aurora 

ovals; which is a beautiful natural phenomenon, occurs most often in the polar region of 

the Earth, in the form of majestic, colorful, and irregular lights in the night sky, as shown 

in photo (1.1). 

 

Photo 1.1: A view of the entire auroral oval taken by satellite on October 2007 from high 

above the North Polar Region.  

http://earthobservatory.nasa.gov/IOTD/view.php?id=6226 (9/11/2008)  
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The Aurora oval takes a shape in the form of rough ring, whose radius about (2252.6 - 

2494km) around the Earth's magnetic poles. In addition, the ring generally located between 

65 and 75 degrees latitude in both poles of the Earth and its height from the surface of the 

Earth is about 96.5 km. However, the aurora can occur in both poles of the earth; the 

aurora that occurs in the northern pole is named Aurora Borealis but the aurora that occurs 

in the southern pole is named Aurora Australis. 

 

[Axford, 1968], coined the term "polar wind" to describe the continuous flow of thermal 

plasma escaping from the polar ionosphere at high latitudes to the magnetosphere along 

"open" geomagnetic field lines (i.e. the supersonic nature of thermal plasma expansion and 

outflows), in analogy to the supersonic expansion of the solar wind from the sun. As the 

polar wind expansion and flows, it undergoes four major transitions: from chemical to 

diffusion dominance, from subsonic to supersonic, from collision-dominated to 

collisionless regimes, and transition from heavy to light ions. Also, the polar wind plasma 

outflows change with geomagnetic activity, seasons, and solar cycles. 

 

The cloud of gas and suspended solids extending from the Earth surface out many 

thousands of kilometers is called the atmosphere of the Earth, which is varied in density 

and composition as altitude increases above the surface of the Earth. On the other hand, the 

name of the layer of the Earth's atmosphere, above around 80km that is ionized by solar 

radiation, is called the ionosphere, which is a mixture of charged particles (i.e. ions and 

electrons). The ionosphere considers the main source of the plasma (i.e. ions, electrons, 

and neutral atoms) which is supplied to the magnetosphere of the Earth, [Shelley et al., 

1972]. 

 

The magnetosphere is the region surrounding the Earth where the geomagnetic field is 

stronger than the interplanetary field, and in which appears the effect of the geomagnetic 

force on the ions and electrons. The magnetosphere is a dynamic region of flowing plasma 

controlled by the geomagnetic field, and it is contain cold plasma from the Earth's 

ionosphere and hot plasma from solar wind, which comes from the sun. The Earth's 

magnetic field extends far out into space for thousands of kilometers and it is like a dipole 

magnet near the surface of the Earth. 
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1.2 The polar wind 

 

The Earth is one of the planets that have a strong magnetic field. To describe the shape of 

the Earth magnetosphere, we must first discuss phenomena caused by the sun. The sun 

emits charged particles continuously from its extremely hot atmosphere. These charged 

particles is mostly electrons and protons, that are produced from the thermonuclear 

reactions inside the sun. Solar streams radiate into space in all directions at high speed, and 

pull the sun magnetic field with it. The energetic particles and the sun magnetic field that 

they pull into space are called the solar wind. The solar wind spreads in all directions in the 

space around the sun at velocities of 450 km/s or more, and collides with the planets, 

comets, moons, etc. 

 

The magnetosphere is the place of dynamic interactions between the solar wind and the 

Earth plasma. The solar wind plays an important rule in the shape of the magnetosphere. 

Therefore, the magnetic field lines of the Earth that are facing the sun (sunward side) will 

be compressed. On the other hand, the magnetic field lines on the opposite direction (anti 

sunward side) will be drags "elongated" into a magnetotail. The shape of the 

magnetosphere is illustrated in Fig.(1.1). 

 

 

Figure 1.1: The shape of geomagnetic field lines that is compressed from the sun side and 

elongated from the opposite side because of solar wind outflow. 

http://chandra.harvard.edu/photo/2005/earth/earth_mag_auro_illustration_label.jpg 

(15/10/2008) 
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The magnetopause is the boundary between the confined planetary magnetic field and the 

solar wind plasma in the magnetosheath. The long tail-like structure on the anti sunward 

side seen in Fig.(1.1)  allows thermal plasma (O+, H+, He+ ions, and electrons) to escape 

along these fields lines in the tail , since the pressure in the ionosphere is much greater than 

that in the magnetospheric tail, [Dessler and Michel,1966; Bauter,1966]. This continuous 

outflow of thermal plasma escaping from the polar ionosphere to the magnetosphere along 

open (more generally tail-like) magnetic field lines is called the polar wind, [Axford, 

1968], as shown in Fig.(1.2). 

 

                          

 

Figure (1.2): Schematic diagram of polar wind flow in the polar cap in the northern          

hemisphere. 

http://ssdoo.gsfc.nasa.gov/education/lectures/fig12.gif  (12/4/2008) 

 

When the charged particles of the solar wind approach to the Earth's magnetic field, they 

are forced to change their path, and begin a spiral motion along the magnetic field lines. 

Therefore, this spiral motion leads the charged particles to the northern and southern 

hemisphere of the Earth. At this region the Earth's magnetic field lines converge to form a 

shape of magnetic tube, which is called Polar Funnel. Therefore, the trapped charged 
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particles can be channeled into the polar funnel, and then enter the upper atmosphere of the 

earth as shown in Fig.(1.3). 

 

 

 

Figure 1.3: Solar wind enters the atmosphere according the polar funnel Region. 

http://en.wikipedia .org/wiki/Image:Magnetosphere schematic.jpg (5/3/2008) 

 

Solar wind has a large kinetic energy due to a high speed. Therefore. they enter the upper 

atmosphere, and collide with the atoms of the atmospheric gas. Because of these collisions, 

the electrons of atmospheric gas will be excited to higher states, when excited electrons 

return back to their original states in their atoms; they will emit energy in the form of light, 

this light which forms Aurora, as shown in Fig.(1.4). [Therodore p. Snow, The Dynamic 

universe, fourth Edition, 1993]. 

 

Also, when the solar wind hits the magnetic field of the Earth, a shock wave is form, 

known as the bow shock. Because the solar wind is supersonic, therefore, the charged 

particles of the solar wind are slowed down to be subsonic and large amount of the kinetic 

energy is converted to thermal energy. 
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Figure 1.4: The interaction of electrons from the sun with earth's magnetic shield cause the 

beautiful auroras we see in the sky 

http://z.about.com/d/weather/1/0/q/-/-/-/What_causes_aurora.gif  (4/2/2009). 

 

The region between the bow shock and the magnetopause is called the magnetosheath; the 

particles in this region originate from the shocked solar wind. The magnetosheath plasma 

is thermalized subsonic and the density of the magnetosheath plasma is greater than the 

solar wind plasma. Also, the magnetic fields is stronger in the magnetosheath region 

compared to out in the solar wind, in addition, the magnetosheath plasma is deflected 

around the Earth magnetic field. The magnetosheath region can be shown in Fig.(1.3).  

 

The classical polar wind is an outflow of thermal plasma in the polar cap region from the 

high latitude ionosphere to the magnetosphere as shown in Fig.(1.5). 
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Figure 1.5: Schematic diagram of polar wind flow in the polar ionosphere. The classical 

polar wind occurs in the polar cap region, [Yau et al., 2007]. 

 

The polar cap is the area around the geomagnetic pole bounded by the aurora ovals, as 

shown in Fig.(1.2). Polar caps are high latitude regions on both hemispheres with open 

magnetic field lines connecting directly to the interplanetary magnetic field. In addition, 

polar caps form one of the ionospheric sources of magnetospheric plasma. This is due to 

the so-called polar wind, first suggested from theoretical arguments [Banks and Holzer, 

1968; Axford, 1968]. The defining classical polar wind characteristics are that it is cold, 

field-aligned (out of the ionosphere), and the velocities are inversely correlated with ion 

mass, favoring lighter ions, (i.e. H+ and He+), [Banks and Holzer, 1969]. Later 

observations have revealed some new features in the polar wind. For example, there is 

clear day-night asymmetries in the ion and electron features, the ions velocity increases 

monotonically with altitude, and they become supersonic at high altitudes, [Abe et al., 

1993]. 

 

The outflow consists of light thermal ions (H+, He+) and heavy energized ions 

(O+,N+,O2
+,N2

+,NO+) and electrons. As shown in Fig.(1.5), as the polar wind ions flow 
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upward along “open” geomagnetic field lines and undergo anti-sunward convection in the 

polar cap, they generally increase in both drift speed and temperature. 

 

Since the ion is much more massive than electrons, so it experience a much larger 

gravitational force compared with electron. Therefore, spatial separation between the two 

is formed, this slight charge separation in quasi-neutral plasma forms an ambipolar electric 

field, were the polar wind plasma outflow results by accelerate the ions by the ambipolar 

electric field in order to achieve charge neutrality with fast upflowing electrons. Therefore, 

the polar wind outflow occur. Besides the ambipolar electric field there are another forces 

that affect in the polar wind plasma outflow such as, pressure gradient force (up ward), 

since the pressure in the ionosphere is greater than that in the magnetosphere tail, gravity 

(down ward), magnetic mirror force (upward), this force results from the motion of an ions 

in a medium which the magnetic field changes in it, and effect of the wave particle 

interaction (upward), this result from the interaction between ion and the electromagnetic 

turbulence. 

 

As the polar wind outflow it undergoes four major transitions: the transition from chemical 

to diffusion dominance, transition from subsonic to supersonic, transition from collision-

dominated to collision less regimes, and transition from heavy to light ions [Schunk, 1988]. 

But the most important transition is a transition from collision-dominated to collisionless 

region. Since these two regions are the most important regions in the polar wind. First, 

collision-dominated region which called ion-barosphere, the ions in this region behaves 

like fluid. Second, the collisionless regimes, which called exosphere, where each particle in 

this region is characteristics dominate the ion motion. These two regions are separated 

from each other by a transition layer, where the ions of the plasma change their behavior 

rabidly from collision-dominated to collisionless, as shown in Fig.(1.6). 

 

Over the past 40 years, since the papers of [Axford1968, Banks and Holzer1968, 

Marubashi 1970], observation from different polar-orbiting satellites (i.e. ISIS-2, DE-1, 

Akebono, and POLAR satellites over the altitude range from 1.16 to 9RE) have confirmed 

the existence of the polar wind and emerges its basic characteristics. 
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Figure 1.6: A schematic diagram for the different regions of the ion flow along diverging 

geomagnetic field lines, and the transition region embedded in between Barosphere and 

Exosphere, [Barghouthi et al., 1993]. 

 

The velocity of the polar wind ions increases with increasing altitude, also the electron 

temperature play important role in the ion outflow. When the electron temperature 

increased the velocity of the polar wind ions increased. In addition, the velocity of the 

polar wind ions in the dayside is higher than that on the nightside, owing to the increase of 

the ambipolar electric field or due to the presence of additional acceleration mechanisms, 

especially escaping atmospheric photoelectrons. In addition, the rate of the increase of 

velocity of the polar wind ions with altitude is greatest at low altitude on both dayside and 

nightside. Since the velocity of the polar wind ions increases with altitude, therefore by the 

time they reach 2.1RE all polar wind ions are supersonic. The temperature of the polar 

wind ions is generally low, and less than that of the electrons polar wind, [Yau et al., 

2007]. 

 

1.3 The sources of the polar wind 

 

The polar ionosphere plasma, which has a maximum density at around 300km altitude 

from the surface of the Earth, is a significant and at times dominant source of plasma to the 

magnetosphere, in addition to the direct or indirect entry of the solar wind plasma. The 

outflow of polar wind plasma is limited by the rate of production of the outflowing ions 
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and the effect of their Coulomb collisions with the other ions. Oxygen ions results from the 

photoionization reaction, which is given by: 

0A 911  at  ,                                eOhνO <+→+ + λ  

where hν  is the photon energy that interacts with the O atom, λ  is the wavelength of the 

photon in Angstrom (Aْ =10-10 m), which is in the ultraviolet range. On the other hand, at 

low altitudes, the dominant source of polar wind H+ ion is the accidental-resonant charge 

exchange reaction between hydrogen atoms and oxygen ions, which is given by: 

 OHHO +↔+ ++  

Therefore, the amount of H+ ions that outflow away from the Earth depends on the density 

of O+ ions in the polar ionosphere [Sojka et al., 1979]. 

 

The He+ ions are produced by photo-ionization of neutral helium, which is given by: 

eHehHe +→+ +ν  

where hv  the photon energy that interacts with the He atom and e is the electron. The 

density of He+ ions is decreased by the charge exchange between He+ and the molecules N2 

and O2, that given by: 

++

++

+→+

+→+

22

22

OHeOHe

NHeNHe
 

Therefore, the above equations produce N2
+ and O2

+ ions from the accidental-resonant 

charge exchange reaction. 

 

The polar wind plasma contains suprathermal components of both light (i.e. H+) and heavy 

ions (i.e. O+). It was believed that O+ ions are exist at low altitude only, since it is 

relatively heavy ions and experience large gravitational force compared to the light ions, 

but the observations assure that there is suprathermal and energetic O+ ions are present at 

high altitude(1.8 - 2.58RE) together with  H+ and He+ ions [Abe et al., 1993a,b]. 

 

The studies proved that the polar wind plays an important role in the ionosphere-

magnetosphere coupling, by transfer the mass, momentum, and energy between the 

different regions in the solar –terrestrial environment. Also there are three main ion sources 

of magnetosphere plasma; these are the polar cap, the aurora region, and the cusp. 
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The polar wind plasma outflow changes with the geomagnetic activity, season, and solar 

cycles. For example, the O+ ions flux reaches maximum in the summer, while the H+ ions 

flux exhibits a spring maximum. Also, the He+ ions flux reaches maximum in the winter, 

which is increases by a factor of 25 from summer to winter and it increases by a factor of 

two from solar maximum to solar minimum [Raitt and Schunk, 1983]. The activity of the 

sun changes periodically, which it takes 11-years for the sun to change from its low 

activity (Solar Minima) to its high activity (Solar Maxima), and then back to its Solar 

Minima, this phenomena is called 11-year solar cycle. 

 

In addition, the H+ ions flux is largest in the noon sector and smallest in the midnight 

sector. As the polar wind plasma outflow, a mixing of cold polar wind plasma with hot 

magnetospheric plasma result in stabilities, which increases the polar wind plasma outflow 

to higher altitude. In the high geomagnetic activity, a large amount of superthermal and 

energetic O+ ions are present in the magnetosphere [Yau et al., 1985; Moore et al., 1986a; 

Chappell et al., 1987]. The DE-1 satellite as shown in Fig.(1.7), and Akebono observations 

provide data, that explain how the polar wind velocity, temperature, flux, ion distribution, 

and ionospheric conditions changes with altitude, season, solar cycle, and geomagnetic 

activity. Also the data obtained by the PWI instrument on DE-1 space craft are help us to 

known the form of the diffusion coefficient ( )⊥D . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: The orbit of the DE-1, it gives excellent coverage of the polar cap, the auroral 

field lines and the equatorial region at radial distances extending out to 4.65RE [Gurnett et 

al., 1988]. 
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A well-known mechanism of the coupling between the ionosphere and the magnetosphere 

is the outflow of plasma along the magnetic field lines of the Earth at high latitudes from 

the ionosphere to the magnetosphere. The ion acceleration through wave particle 

interaction with electromagnetic turbulence at high latitudes can be accepted to explain the 

existence of ions at altitudes ranging from a few hundred kilometers to several Earth radii 

in the polar wind region. 

 

The plasma outflow from the polar ionosphere was first proposed by [Axford, 1968; Banks 

and Holzer, 1968; Marubashi, 1970]. This outflow was termed the "polar wind" in analogy 

with the solar wind, which had just been theorized and observed by [Parker, 1958; Bonetti 

et al., 1962, 1963; Neugebauer and Snyder, 1962; Snyder et al., 1963]. 

After few years, Observations from several polar orbiting satellites have confirmed the 

existence of the polar wind and established its basic characteristics (i.e. density, velocity, 

temperature, etc.). Therefore, there are several models were developed to study the 

behavior of the polar wind plasma (i.e. the ion outflow) and to explain the non-Maxwelian 

features of H+ and O+ ion velocity distribution at high latitudes, these models including: 

Hydrodynamics [Bank and Holzer 1968, 1969a, b], Hydromagnetic [Holzer et al., 1971], 

Generalized transport [Schunk and Watkins 1981, 1982], kinetic [Lemaire 1972, Lemaire 

and Scherer 1970, 1973], and Semi-kinetic [Barakat and Schunk 1983, 1984]. Some times 

many models are confused with each other to form new model such as, Monte Carlo and 

macroscopic PIC (Particle-In-Cell). 

 

[Schunk, 1988] made a detailed review for these models and the classical picture of the 

polar wind. However, it is worthwhile to distinguish among four types of models (i.e. 

kinetic, semi-kinetic, Monte Carlo, and macroscopic PIC) because these models are some 

times confused with each other. 

 

The kinetic models used the collisionless Boltzmann equations to describe species of 

plasma (ions and electrons) and solve them by Liouville theorem, [Lemaire and Scherer, 

1971]. On the other hand, semi-kinetic models used collisionless Boltzmann equations 

(Vlasov equation) to describe the ions behavior and Boltzmann relation to describe the 

electron behavior, [Barakat and Schunk, 1983, 1984]. Monte Carlo approach is used to 

include the effect of collisions in the Boltzmann relation, [Barakat and Lemaire, 1990; 

Barghouthi et al., 1993]. The PIC model used the simulation domain which is divided into 
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cells, and small steps of time (t∆ ) are used in order to do the simulation. In this simulation 

domain (magnetic tube) the ions are allowed to move under the effect of body forces (i.e. 

gravity and electrostatic field) and collisions. As a result we can compute the ion density, 

after ( t∆ ) the new body force is computed and do simulation again. 

 

The previous studies on the polar wind results in a classical picture of plasma, were the O+ 

ions are gravitationally bound, since it is a relatively heavy ion, but the H+ ions escape to 

higher altitude were they become supersonic and develop temperature anisotropy 

( ⊥> ΤΤ ll ), [ Barakat and Schunk, 1983]. By using the semi-kinetic model [Barakat and 

Schunk, 1983] showed that H+ distribution close to Maxwellian distribution at low 

altitudes (~ 1.7RE). The outflow of O+ ions was found to be improved due to the effect of 

high electron temperature, [Barakat and Schunk, 1983], high ion temperature, [Li et al., 

1988], and energetic magnetospheric electrons, [Barakat and Schunk, 1984].  In the model 

of [Lemaire and Scherer, 1972a], a monotonic potential energy altitude profile was 

assumed for each polar wind ion species. The species are divided into four trajectory types: 

ballistic, escaping, trapped, and incoming. All four trajectory types are allowed for 

particles such as O+ ions that have positive potential energies (i.e. electric plus 

gravitational) above the baropause, but only escaping and incoming trajectories are 

possible for particles such as H+ ions that have monotonically decreasing potential energy. 

 

The escape of O+ ions has a special important due to elevated plasma temperature and 

increase the energy of the magnetospheric electrons, [Barakat and Schunk 1983, 1984; Li 

et al., 1988]. Furthermore, [Wu et al., 1992 and Belelly et al., 1992] studied of the escape 

of O+ and H+ ions in the vertical directions in the topside high-latitude ionosphere by using 

European Incoherent Scatter (EISCAT) VHF radar. They were able to estimate vertical 

velocities and fluxes of H+ and O+ ions, and to determine the properties of polar wind 

plasma outflow, and hence the structure of that region can be described. 

 

In a series of studies, [Barakat and Schunk, 1987, 1989; Chen and Ashour-Abdalla, 1990] 

concluded that the polar wind could become unstable. By using plasma wave instrument 

(PWI) aboard on the DE-1 satellite significant levels of electromagnetic turbulence were 

observed at high altitude. This electromagnetic turbulence has an important effect on the 
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escape of heavy ionospheric ions (i.e. O+ ions) into magnetosphere by heating these ions 

due to cyclotron resonance with the electromagnetic turbulence. 

 

Several studies have been conducted of the effects that WPI have on ion outflow. The 

effects of WPI were first studied in the auroral region, because the observed levels of wave 

turbulence there are several orders of magnitude larger than those measured in the polar 

cap [Gurnett et al., 1984]. [Chang et al.,1986] and [Retterer et al., 1987] used a Monte 

Carlo simulation to study the perpendicular heating of O+ due to a cyclotron resonance 

with broadband electromagnetic turbulence (i.e. wave particle interaction). An imposed 

wave spectral density was used that was constant with altitude, and O+ conics were formed 

that had characteristics which were in agreement with the measurements. In addition, they 

studied the effect of wave particle interaction (WPI) on the outflow of O+ and H+ ions in 

the polar wind and aurora region, where they described the ion velocity by a quasi-linear 

diffusion equation that can be solved by using Monte Carlo simulation, and also adopted 

altitude-independent diffusion coefficient (⊥D ). 

 

The studies of the effects of WPI in the polar wind region were motivated by 

measurements of electromagnetic wave turbulence above the polar cap, [Gurnett and Inan, 

1988; Ludin et al., 1990]. In the polar cap, the electromagnetic turbulence levels are much 

smaller than those in the aurora region. [Barakat and Barghouthi, 1994] incorporated the 

effect of WPI on the polar wind ions into their steady-state collisionless kinetic 

calculations. They adopted an iterative approach in order to reach a self-consistent solution 

that accounted for both the WPI and the ions kinetic behavior. These initial studies were 

subsequently improved by allowing for an altitude variation of the electromagnetic 

turbulence level, which was guided by measurements, [Barghouthi, 1997]. The results 

indicated that, as expected, the effects of WPI are larger in the auroral region than in the 

polar cap, but they are important in both domains, were the WPI energize the ions and 

enhance their escape rates. 

 

Similar to an earlier study of the resonant interaction between electromagnetic turbulence 

and the O+ ions through wave particle interaction [Retterer et al., 1987], the effect of the 

WPI in the polar wind study was expressed in the form of an operator for perpendicular 

diffusion coefficient, and was taken into account by Monte Carlo simulations. The 
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perpendicular heating lead to parallel acceleration as the ions escape upward, because of 

the mirror force transferring their perpendicular energy to the field-aligned direction (i.e. in 

the parallel direction), [Retterer et al., 1987]. The results of the polar wind study indicated 

that both the density and outflow velocity of the O+ ions are strongly related to the level of 

the electromagnetic turbulence; the escape flux of these heavy ions (i.e. O+ ions) could be 

enhanced by a factor of 105 with strong WPI. In addition, [Pierrard and Barghouthi, 2006] 

have studied the effects of the WPI on the double-hump H+ ion velocity distribution 

function in the polar wind. 

 

The 16-moment models of [Ganguli et al., 1987] and [Demars and Schunk, 1989] predicted 

that, the velocity of the H+ polar wind ions was as large as 16 –20 km/s, at high altitudes  

and the parallel H+ ion temperature was greater than the perpendicular temperature 

between 2.7 and 6.6RE (i.e. above the collision dominated region; above 1.7RE). Also, 

[Ganguli, 1996] reviewed the various theoretical models and observations from different 

satellites of the polar wind in details. In addition, he survey the sources and characteristics 

of the polar wind. 

 

In the classical polar wind models, it was believed that O+ ions are exist at low altitude 

only, since it is considered too heavy to overcome their gravitational potential barrier and 

experience large gravitational force compared to the light ions. In contrast, significant 

acceleration of O+ ions is theoretically possible in the non-classical polar wind models and 

this consistent with observations, were suprathermal O+ ions with supersonic speed were 

observed in the polar cap magnetosphere by the DE-1 satellite [Gurgiolo and Burch, 1982; 

Waite et al., 1985]. Also, [Abe et al., 1993a, b] confirmed that there is suprathermal and 

energetic O+ ions are presented at high altitude (1.8 – 2.58RE) together with H+ and He+ 

ions There are a number of the non-classical polar wind ion acceleration (increase of 

velocity with altitude) models, which include centrifugal acceleration, enhanced electron 

temperature, enhanced ion temperature, strong ionosphere convection, escaping 

atmospheric photoelectrons, external ion heating, and wave particle interaction (WPI) [Yau 

et al, 2007], where we will use Barghouthi model to study the effect of velocity and 

altitude dependent WPI on O+ and H+ ions outflows in the polar wind region. 

In the Tam et al., [1995] model; they predicted that the perpendicular temperature 

comparable to the parallel temperature at high altitudes. Also, [Schunk and Watkins, 1982; 
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Demars and Schunk, 1987a, 1995] models predicted that the temperature anisotropy 

increases with altitude at high altitudes for the polar wind ions. 

 

Another series of studies, [Barakat and Barghouthi, 1994a, b], [Barghouthi and Barakat, 

1995], [Barghouthi, (1997), Barghouthi et al., (1998), and Barghouthi and Atout, (2006)], 

used Monte Carlo approach, in which the effect of body forces included, to investigate  the 

effect of wave particle interaction on the H+ and O+ ions outflow in the polar wind region. 

They conclude that the effect of finite gyroradius is the reason for produce of the H+ and 

O+ ions toroids at high altitudes above the polar cap, that are observed by TIDE and 

TIMAS ion instruments on board the polar spacecraft. In addition, they found that, the O+ 

ions are preferentially heated because of higher mass and owing to the pressure cooker 

effect. Furthermore, they conclude that the effect of the body forces is more important in 

the polar wind region than their effect in the auroral region on ions, and also, the effect of 

the body forces on O+ ions is more important than that on H+ ions. Furthermore, they found 

that the ions are more energetic in the auroral region than in the polar wind region. In 

addition, they modified the formula for diffusion coefficient ( ⊥D ) to take into account the 

effect of finite Larmor radius and used it to study the H+ and O+ ions outflow in the polar 

wind. At higher altitudes in the polar cap (~1.95RE), electromagnetic wave turbulence can 

significantly affect the ion outflow through the perpendicular ion heating that occurs as a 

result of wave particle interactions (Ludin et al., 1990; Barghouthi, 1997). 

 

[Su et al., 1998] reported the characteristics (i.e. velocity, density, parallel temperature, 

perpendicular temperature, parallel heat flux, and perpendicular heat flux) of H+, He+, and 

O+ ions on POLAR Satellite at both 1.8 RE and 8 RE altitude over the polar cap. In 

addition, they concluded the large velocities of the polar wind at very high altitudes reflect 

to the continuing acceleration due to a number of mechanisms, were there is a 

perpendicular ion heating of the polar wind plasma in the topside ionosphere. 

 

[Lemaire et al., 2007] review the history of development of polar wind models and theories 

and they account the early polar wind measurement, non-Maxwellian distribution of ion 

species, and account for collision processes. The most important and generally accepted 

mechanism for the non-Maxwellian distribution features is the wave particle interactions. 

In this mechanism, as the ions (i.e. H+ and O+ ions) drift upward along the magnetic field 
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lines of the earth, they interact with the electromagnetic turbulence, that observed at high 

altitude, and consequently, give the ions heat in the direction perpendicular to the magnetic 

field of the earth. In addition, the mirror force converts some of the gained ion energy in 

the perpendicular direction into kinetic energy in the parallel direction; therefore these 

effects combine to form a well known ion-conic distribution. In addition, to [Lemaire et al., 

2007], [Tam et al., 2007] reviewed the various collisional and collisionless kinetic models 

of the polar wind in details. Therefore, theoretical studies and observation conclude that, 

the wave particle interaction mechanism is generally accepted and play an important role 

in determines the behavior of H+ and O+ ion outflow. 

 

Recently, [yau et al., 2007] reviewed the history of development of polar wind models and 

theories, and they offered Statistical studies or surveys of polar wind ion observations 

using data from ten or more satellite orbit passes. These observations were made from the 

ISIS-2, DE-1, Akebono, and POLAR satellites over the altitude range of 1,000 to 50,500 

km, and spanned different phases of solar cycle, and they form a composite picture of the 

polar wind. 

 

This study is very important, since it is given theoretical explain for the existing of O+ ions 

(which is a heavy ions and gravitationally bound) at high altitude from the Earth (1.7 - 

13.7RE), and to collect information about the environmental space, in order to know how 

we will deal with environmental space when we send space craft. In addition, this study 

has important applications in space communications, Also, it provides addition knowledge 

to science of space physics. 

 

We can conclude that [Barghouthi, 1997] obtained an altitude diffusion coefficient and 

[Barghouthi et al., 1998] obtained a diffusion coefficient, which is velocity dependent. In 

this study we will use the form of diffusion coefficient that depends on altitude from 

[Barghouthi, 1997] and that depends on velocity from [Barghouthi et al., 1998] to 

investigate the H+ and O+ ions outflow in the polar wind region, especially we will use this 

developed model (Barghouthi model) to study the effect of velocity and altitude dependent 

wave particle interactions on H+ and O+ ions in the polar wind region, and we will compare 

between the simulation results wave-particle interaction model (Barghouthi model) with 

observations. 
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1.4 Statement of the problem 

 

Several wave particle interaction models (i.e. Barghouthi model, Bouharm model, and 

RCC model) have been suggested for investigating the energization of H+ and O+ ions in 

polar wind region and to explain the non-Maxwellian features of ions outflows in the polar 

wind region. 

 

In this thesis, we are interested to compare between the simulation results of Barghouthi 

model with observations (i.e. quantitative and qualitative comparison). Also we are going 

to explain the reason why the O+ ions (which is a heavy ions) are exist at high altitude from 

the Earth (1.7 – 13.7RE). 

 

This thesis is organized as follows: theoretical formulation for Boltzmann equatuion, 

wave-particle interaction, Barghouthi model, and Monte Carlo model that takes into 

account, polarization electrostatic field, diverging geomagnetic field, and the effects of 

velocity- and altitude-dependent wave-particle interactions are presented in chapter 2. We 

present the simulation results of Barghouthi model in chapter 3. In chapters 4 and 5, we 

compare between the simulation results for both O+ and H+ ions to the corresponding 

observations. Chapter 4 presents a quantitative comparison and chapter 5 presents 

qualitative comparison. 
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Chapter Two 
 
 
Theoretical Formulations 
 
2.1 Boltzmann Equation 
 
Plasma is the fourth state of matter in addition to gas, liquid, and solid, which consist of 

free charges (i.e. ions, electrons, and neutral atoms). The polar wind plasma consists of 

several species (i.e. H+, O+, He+, and electrons), were the flow of these species occurs 

under the effect of external forces (gravitational, magnetic, and polarization electrostatic) 

and the net collisions of species. 

 

Since we deal with polar wind plasma in the Barghouthi model, it is convenient to describe 

each species in polar wind plasma by a separate velocity distribution function ),,( trvf sss . 

The velocity distribution function is defined such that sssss drdvtrvf ),,(  which represents 

the number of particles of species s which at time t have velocities between sv  

and ss dvv + , and positions between sr  and ss drr + .  The evolution in time changes the 

distribution function (i.e. change of ss rv , ) because of the net effect of many external forces 

and the net collisions of species, which can be described by Boltzmann equation, [Schunk, 

R. W., Rev. Geophysics, 15, 429, 1977] 
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where (g) is the acceleration of gravity, (E) is the electric field, (B) is the magnetic field, 

(es, ms) are the charge and the mass of the species s respectively, (c) is the speed of light, 

(
t∂

∂
) is the time derivatives, (∇ ) is the coordinate space gradient, and (vs∇ ) is the velocity 
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space gradient. The right hand side of Boltzmann equation (
t

f s

δ
δ

) represents the rate of 

change of ),,( trvf sss  in a given region of phase space ),( ss rv  as a result of collisions. 

 

The solution of Boltzmann equation given the individual velocity distribution functions of 

the different species of the plasma, but the Boltzmann equation  is not easy to solve. 

Therefore, different approaches are used to find closed-form solutions to Boltzmann 

equation. These mathematical approaches are used, because the plasma flow conditions 

can change obviously within a given region or from one region to another. These 

mathematical approaches include: Hydrodynamics [Bank and Holzer 1968, 1969a, b], 

Hydromagnetic [Holzer et al., 1971], Generalized transport [Schunk and Watkins 1981, 

1982], kinetic [Lemaire 1972, Lemaire and Scherer 1970, 1973], and Semi-kinetic 

[Barakat and Schunk 1983, 1984], Monte Carlo [Barakat and Lemaire, 1990; Barghouthi et 

al., 1993, 2003a], and hybrid particle in cell (PIC) models [Demars and Schunk, 1987; 

Ganguli and Palmadesso, 1987; Wilson et al., 1990]. 

 

In this study we work in a collisionless region (1.7-13.7RE). Therefore, we concentrate on 

the effect of velocity and altitude dependent wave particle interaction, and neglect the 

collisions in this region. In addition, the flow of species not only under the effect of the 

influence of external forces (gravitational, magnetic, and polarization electrostatic), but 

there exist electromagnetic ion cyclotron waves (i.e. wave particle interaction), so the ions 

move in the collisionless region under the effects of these forces and the effect of wave 

particle interaction. 

 

In this thesis we will study the outflow of thermal plasma (i.e. O+, H+, and electrons) from 

the polar ionosphere to the magnetosphere along the geomagnetic field lines in the polar 

cap (i.e., polar wind). Also, we consider that the ions move under the effect of body forces 

(gravitational and polarization electrostatic), geomagnetic force, and the affect of wave 

particle interaction. 

 

The gravitational potential energy )(rgφ  for the polar wind ions is given by the following 

formula: 
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where G is the universal gravitational constant, EM  is the Earth mass,m is the ion mass, r 

is the distance between the ion and the Earth, and ER7.1 is the lower boundary for 

Barghouthi model in the polar wind, where EE RRr >> 7.1 , for more details see Appendix 

A. 

 

In the geocentric altitude which extend from 1.7 to 13.7RE (i.e. simulation region for 

Barghouthi model), the polar wind plasma considered to be collisionless. Since the 

electrons are very light in the ionosphere, therefore the electron escape away from the 

ionosphere a long the geomagnetic field lines by electrons pressure gradient force, but the 

heavier ions are bound by gravity and they can not move with the electrons. Therefore, 

when the electrons start to move away along the magnetic field lines, the ions and electrons 

are slightly charge separated and a polarization electrostatic field is occurred, due to a 

slight separation of charges. The polarization electrostatic field pulls back the electrons and 

pulls up the ions with equal force. 

 

The polarization electrostatic potential energy )(rEφ  is given by: 
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where k is the Boltzmann constant, eT  is the electron temperature, which is constant, en  is 

electrons density, and ( )oen  is the equilibrium electron density (i.e., the density at 1.7RE), 

for more details see Appendix B. 

Finally, the final potential energy profile )(rφ  owing to body forces (i.e. gravitational and 

polarization electrostatic) is given by [Barakat and Schunk, 1983]: 
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where k  is Boltzmann’s constant, eT  is the electron temperature, en  and 0)( en  are the 

electron densities at r and 1.7RE, respectively, which can be calculated from the quasi-

neutrality condition [ )()( ++ += HnOnne ], G is the gravitational constant, EM  is the mass 

of the Earth, and m  is the ions mass. 
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When a charged particle moves in a magnetic field it will be affected by magnetic force 

which known as the Lorentz force, that given as: 

(2.5)                                                                                                                     BvF ×=
c

q
 

where (q) is the charge of the particle, (v) is the velocity of the charged particle, (c) is the 

speed of light, and (B) is the magnetic field. The Lorentz force changes only the direction 

of ions velocity, but the amount of velocity do not changes. Therefore, the ion will move in 

a circular motion about the magnetic field, due to magnetic force. The radius of the circular 

path is called Larmor radiusLa , which it can be obtained by equating between the 

magnetic force and the centrifugal force. 
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where m  is the mass of the ion and ⊥v  the perpendicular component velocity. 
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Since the Lorentz force operates in the direction perpendicular to velocity vector ⊥v , 

therefore there is no work done on the ion and the total energy of the ion remains constant, 

for more details see Appendix C. 

 

On the other hand, the geomagnetic field is taken to be proportional to 3r −  where (r ) is 

the geocentric distance (
3r

1
    B α ). Therefore: 

3
0

r

B
B =                                                                                                                         (2.8) 

where oB  is the magnetic field of the Earth at the surface of the Earth. 

 

2.2 Wave Particle Interaction (WPI) 

 

The flow of plasma from the ionosphere toward the magnetosphere a long the geomagnetic 

field lines known as the polar wind.  This indicates that the ionosphere is the major source 

of ions provided to the magnetosphere. Several models were developed to study the 
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outflow of ions in the polar cap region (i.e. centrifugal acceleration, enhanced electron 

temperature, enhanced ion temperature, strong ionosphere convection, escaping 

atmospheric photoelectrons, external ion heating, and wave particle interaction, [Yau et al., 

2007]. In our study we use the wave particle interaction model to investigate the outflow of 

the polar wind plasma. 

 

Many theoretical investigations studied the polar wind plasma using WPI. [Ludin et al., 

1990; Barghouthi, 1997], concluded that, at high altitudes in the polar cap (~1.95RE), the 

electromagnetic turbulence can significantly affect the ion outflow through the 

perpendicular ion heating that occurs as a result of WPI. WPI are known to plays an 

important role in energizing polar wind ions comes from the ionosphere. This process is 

effective over a wide range of altitudes and is particularly important in polar cap. The WPI 

act to preferentially heat the ions in a direction perpendicular to magnetic field lines of the 

Earth, and then the ions are expelled via the mirror force, which yields from the gradient of 

the magnetic field with altitude. The heated ions are then driven upwards by the mirror 

force. 

 

The effects of WPI were first studied in the auroral region, since the observed levels of 

electromagnetic turbulence in the auroral region greater than that in the polar wind region. 

Therefore, the effect of WPI in the auroral region is more obviously, [Gurnett et al., 1984]. 

In addition, [Chang et al.,1986] and [Retterer et al., 1987] used a Monte Carlo technique to 

study the perpendicular heating of O+ due to a cyclotron resonance with the 

electromagnetic turbulence. As a result of WPI, the ions heated and energized to levels 

much higher than the gravitational and polarization potential energies and the result 

obtained a conic for O+ ions distribution, which in agreement with observations taken by 

(DE-1) satellite, [Barakat and Barghouthi, 1994b]. Therefore the effect of WPI is effective 

at high altitudes, were the ions gain more and more energy due to the effect of WPI. Since, 

it takes along time for the ion to reach high altitudes, the rate of perpendicular adiabatic 

cooling decreases because of the decreasing in magnetic field  at high altitudes. 

 

The early studies of the effects of WPI that have done on the polar wind were based on the 

Monte Carlo technique, where the diffusion coefficient is altitude independent (i.e. the 

effect of WPI is altitude independent), [Barakat and Barghouthi, 1994]. On the other hand, 

[Barghouthi, 1997] improved the expression of WPI to be altitude dependent by allowing 
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the electromagnetic turbulence level to be variable with altitude. The results indicated that, 

as expected, the effects of WPI are larger in the auroral region than in the polar cap, but 

they are important in both regions, where the WPI energize the ions and drift them 

upwards. 

 

Theoretical studies and observations show that the WPI plays an important role in 

determining the behavior of escaping of plasma (i.e. O+, H+, He+ ions, and electrons) and 

the strength of the effect of WPI are significant in comparison to other forces such as 

electrostatic, gravitational, and geomagnetic forces. As a result, the effect of WPI should 

be included in the models, as shown in Fig.(2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematic diagram showing the causes of ion outflow from the Earths 

ionosphere, [Schunk and Sojka, 1997]. 

 

To include the effect of the WPI in a collisionless region replace the collision term in 

Boltzmann equation by the term that is represent the interaction between ions and the 

electromagnetic turbulence, which is represented by particle diffusion in the velocity space 

such that [Retterer et al., 1987a]: 
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where ⊥D  is the quasi-linear velocity diffusion coefficient rate perpendicular to 

geomagnetic field lines. 

 

The influence of WPI on the ion species during t∆  under the effect of the gravitational, 

electrostatic, and geomagnetic forces, is taking into consideration by incrementing the ions 

perpendicular velocity by randomly increment ⊥∆v  such that: 

tDv ∆=∆ ⊥⊥ 4)( 2                                                                                                       (2.10) 

where t∆  is the time interval chosen randomly and ⊥D  is the perpendicular diffusion 

coefficient rate. 

 

To study the effect of WPI, we need to know the expression for the diffusion coefficient 

⊥D . [Barghouthi, (1997) and Barghouthi et al., (1998)] computed the altitude dependence 

of ⊥D  by analyzing experimental data obtained by PWI on board the DE-1 satellite. They 

obtained the following expression for the perpendicular diffusion coefficient rate ⊥D  in 

the polar wind plasma: 
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This expression for the altitude dependent diffusion coefficient did not produce results that 

agree with the observations. To producing these observations requires a velocity dependent 

diffusion rate as suggested by [Retterer et al., 1994], for more details see Appendix D. 

 

To model the heating process (i.e. wave-particle interactions), we specify a model for the 

diffusion coefficient ⊥D  as a function of perpendicular velocity ⊥v  and position ERr  

along magnetic field lines of the Earth. For the spatial variation, (i.e. the altitude 

dependence) we choose the form obtained by [Barghouthi, 1997], equation (2.11), while 

for the velocity dependence, we choose the form obtained by [Barghouthi et al., 1998]. 
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2.3 Barghouthi model 

 

[Retterer et al., 1987b]; assumed the wavelength (⊥λ ) of the electromagnetic turbulence to 

be much greater than the ions Larmor radius La  








Ω
⊥⊥

i

vk
ei .,. . However, the ions of the polar 

wind plasma are accelerated owing to the WPI. So, they are escape upward along the 

magnetic field lines of the Earth, but the magnetic field intensity (B) of the Earth 

decreasing when the altitude increasing, where the geomagnetic field is taken to be 

proportional to 3r − (where r  is the geocentric distance and 
3r

1
    B α ). However, the ions 

Larmor radius (La ) inversely proportional to the magnetic field intensity (B) as shown in 

equation (2.6). Therefore, the ions Larmor radius (La ) increasing rapidly with altitude. As a 

result, at high altitudes, the ions Larmor radius (La ) may become comparable to or even 

more than the perpendicular electromagnetic turbulence ( ⊥λ ) as shown in Fig.(2.2), and 

consequently the quantity 
Ω

⊥⊥vk
 becomes greater than one. As a result, the assumption 

made by [Retterer et al., 1987b] and the diffusion coefficient expression )( ⊥D  which is 

velocity independent becomes in accurate. 

 

[Barghouthi, 1997 and Barghouthi et al., 1998] obtained a new form for diffusion 

coefficient ( ⊥D ) for the case the ions Larmor radius (La ) is comparable or larger than the 

perpendicular electromagnetic turbulence (⊥λ ), which is altitude and velocity dependent: 
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where the diffusion coefficient ⊥D (r) is given in equation (2.11). This form of the 

diffusion coefficient ( ⊥D ) (i.e., altitude and velocity dependent) is the solution of equation 

(2.9), for more details see Appendix E. 
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Figure 2.2: Schematic diagram that illustrates the gyrating motion of a single ion     across 

electromagnetic turbulence perpendicular to the geomagnetic field [Barghouthi and Atout, 

2006]. 

 

2.4 Monte Carlo method (MC method) 

 

The expression "Monte Carlo method" is actually very general. Monte Carlo (MC) method 

based on the use of random numbers and probability statistics to investigate problems. The 

beginning of Monte Carlo method as a highly universal numerical technique became 

applicable just with appearance of computers (i.e.1949) and its name refers to a city in 

Monaco in Canada, [Belotserkovskii and Khlopkov, 2006]. 

 

The use of Monte Carlo method to model physical problems allows us to examine more 

complex systems by solving equations which describe the interactions between hundreds 

or thousands of ions. Therefore, with Monte Carlo method we can use Monte Carlo 

technique to solve Boltzmann's equation, which described in the section (2.1) 

Monte Carlo simulation is a simple concept compared with the other simulation models. It 

goes straight forward algorithms, and it is a powerful technique to solve Boltzmann’s 

equation by a particle simulation, in order to find the velocity distribution function and its 

moments (i.e. density, drift velocity, parallel temperature, and perpendicular temperature). 

 

 

Spiral path  
of the ion

Injected ion 

Electromagnetic
 turbulence

iρλ >⊥
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MC simulation developed to include the effect of body forces (i.e. gravitational and 

polarization electrostatic), geomagnetic force, and the effect of WPI, which make it the 

best technique, are used in the space plasma physics. Therefore, we use it to solve 

Boltzmann’s equation to find the velocity distribution function and the moments of the 

ions. In other words, we will use the MC technique to solve equation (2.9) to obtain the ion 

velocity distribution and its moments. 

 

In the MC method we can follows the motion of the individual particles such  as O+ or H+ 

ion and to continually monitor its velocity. We can simulate the motion of an ion in the 

polar wind region at high altitude and high latitude, which is collisionless regime. We deal 

the polar wind plasma as a steady state flow of the three main component of the polar wind 

plasma (i.e. +H , +O , and electrons). Hence, the simulation region is a geomagnetic tube 

extending from r = 1.7RE to r = 13.7RE, as shown in Fig.(2.3). 

 

The ion is injected into the simulation region from the lower boundary (i.e. 1.7RE) with a 

random initial velocity that corresponds to the ion distribution function immediately below 

the lower boundary. The test ion moves under the influence of body forces (gravitational 

and polarization electric field), magnetic mirror force, and the effect of WPI. 

 

The influence of WPI on the tested ion during short time interval ( t∆ ) under the effect of 

the gravitational force, electrostatic force, and geomagnetic force, is taking into 

consideration by incrementing the ions perpendicular velocity by randomly increment 

(∆ ⊥v ) such that,( ) tDv ∆=∆ ⊥⊥ 42 , where t∆  is the time interval chosen randomly and ⊥D  

is the perpendicular diffusion coefficient rate, which is given in equation (2.12). The 

behavior of the ion during short time interval (t∆ ) is determined by the conservation of 

energy, and the conservation of the first adiabatic invariant µ, where
B

mv

2

2
⊥=µ . 
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Figure 2.3: A schematic representation of the model considered by the Monte Carlo 

method [Barakat and Barghouthi, 1994a, b]. 

 

The above procedures are repeated until the tested ion exits the simulation region at either 

boundary (i.e. lower boundary(1.7RE) or higher boundary (13.7RE)). After that, another test 

ion is initiated at the starting point (i.e. 1.7RE). In the simulation process we need to inject 

107 ions from the starting point, in order to get a complete picture on the behavior of the 

ions, also, since the O+ ions are gravitationally bound, so not all O+ ions that enter the 

simulation region can escape to high altitude, since the potential energy of O+ ions is 

positive and increases with altitude. These ions will be monitored until they escape from 

the simulation region which extends from r = 1.7 RE to r = 13.7RE, and at each altitude the 

behavior of these ions is registed by a two dimensional grid in velocity space (i.e. parallel 

and perpendicular velocities to the geomagnetic field lines ). 

 

The velocities of the tested ions, that they cross one of the monitoring altitude, can be used 

to compute the moments of the distribution function at that altitude. Also, the time that an 

ion spends in each bin divided by the bin's volume is taken to be proportional to the ion 

velocity distribution function at the center of the bin, [Barghouthi et al. 2003a]. 

The moments of the distribution function are given by the following expressions: 

( )      (2.13)                                                                                                         3
ssss vdvfn ∫=

 



 47 

( )
( )

           (2.14)                                                                                                    
3

3

∫
∫=

sss

ssslls

s
vdvf

vdvfv
u

   

( ) ( )
( )

    (2.15)                                                                                 
3

32

∫

∫ −
=

sss

sssslls
s

lls
vdvf

vdvfuv
k

m

T

 

( )
( )

       (2.16)                                                                                             2
3

3

∫

∫ ⊥

⊥ =
sss

sss
ss

s
vdvf

vdvfv
k

m

T

 

The above equations (2.13) – (2.16) are the ion density, drift velocity, parallel temperature, 

perpendecular temperature, respectivly, and s denotes the type of the ion (i.e. H+ or O+), for 

more details see Appendix F. 

 

In this study, the Monte Carlo simulation was run for Barghouthi model, were the 

perpendicular diffusion coefficient ),( ⊥⊥ vrD is given in equation (2.12), and in each 

simulation we used 107 tested ions, in order to get a complete picture on the behavior of the 

ions, also, since the O+ ions are gravitationally bound, so not all O+ ions that enter the 

simulation region can escape to high altitude, since the potential energy of O+ ions is 

positive and increases with altitude. As a result, we can compute the ion distribution 

function and also the profiles of its velocity moments (i.e. density, drift velocity, parallel 

temperature, and perpendicular temperature) for both H+ and O+ ions. The boundary 

conditions selected for polar wind region are similar to those of [Barghouthi et al., 1998]. 

 

The effects of WPI were introduced via a Monte Carlo technique by using Compaq Visual 

Fortran programming language, and an iterative approach was used in order to converge to 

self-consistent results. In practice, an iterative approach was used to find the electrostatic 

potential. The model was run to solve the case of altitude dependent and velocity 

independent WPI as a starting point. The resulting electrostatic potential and consequently, 

the potential energy due to body force (i.e. equation (2.4)), was then used in the model to 

find n(O+) and n(H+) with altitude and velocity dependent wave-particle interactions, 

which were substituted in [ )()( ++ += HnOnne ] and in equation (2.4) in order to compute 

and improved value of )(rφ . The new profile of )(rφ  was then used to compute new 
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density profile. The iteration process was continued until convergence was reached, which 

happened to occur in few (3–4) steps. 
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Chapter Three 
 
 
The results 
 
3.1 Introduction 
 
The energization of charged particles, due to the interaction with electromagnetic 

turbulence (i.e. wave particle interaction) has a significant influence on ions transport in 

space. The effects of altitude and velocity dependent wave particle interactions on +H  and 

+O  ions outflow in the polar wind region have been investigated by using Monte Carlo 

simulation. 

 

To model the heating process, (i.e. wave particle interactions), we specify a model for the 

velocity diffusion coefficient ( ⊥D ) as a function of perpendicular velocity )( ⊥v  and 

position )( ERr along geomagnetic field line. For the spatial variation, (i.e. the altitude 

dependence) we chose the form obtained by [Barghouthi, 1997], while for the velocity 

dependence, we chose the form obtained by [Barghouthi et al., 1998]. The final expression 

is called the Barghouthi model, which is given in equation (2.12). 

 

The boundary conditions selected for the polar wind region are similar to those of 

[Barghouthi et al., 1998], at lower boundary (i.e.1.7 RE). We set the O+ ion drift velocity at 

0 cmsec-1, the oxygen ion density at 100cm-3, and the O+ ion temperature at 3000˚K. In 

addition, the boundary condition for the H+ polar wind ion, we set at the lower boundary 

(i.e.1.7 RE) the H+ ion drift velocity at 11 kms-1, the hydrogen ion density at 200cm-3, and 

the H+ ion temperature at 3000˚K. Also, the electron temperature was kept constant at 

1000˚K along the entire simulation tube (1.7 – 13.7RE). In addition, the velocity 

distribution function for both H+ and O+ ions is supposed to be Maxwellian (i.e. the 
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perpendicular temperature equal the parallel temperature, in other words, there is no 

temperature anisotropy) at the lower boundary (i.e. at 1.7RE). 

We considered a wide range of characteristic wavelengths for the waves (electromagnetic 

turbulence) [ ⊥λ = ∞, 50, 20, 8, and 1km] that covers the circumstances expected to occur in 

the polar wind region, since the data obtained by the Plasma Wave Instrument (PWI) on 

Dynamic Explorer-1(DE-1) satellite do not include information about (⊥λ ), (i.e. 

perpendicular wavelength of the electromagnet turbulence). In addition, there is no detailed 

information about the spectrum of the electromagnet turbulence. 

 

In previous studies, the ions Larmor radius (La ) is assumed to be less than the wavelength 

of the electromagnetic turbulence (⊥λ ). However, the ions of the polar wind plasma is 

accelerated owing to the WPI. So, they are escape upward along the geomagnetic field 

lines. As a result, the ions Larmor radius (La ) increasing rapidly with altitude. Therefore, at 

high altitudes, the ions Larmor radius (La ) will be comparable to or exceeds the wavelength 

of the electromagnetic turbulence (⊥λ ). As a result, [Barghouthi, 1997 and Barghouthi et 

al., 1998] obtained a new forms for diffusion coefficient ( ⊥D ) for the case the ions Larmor 

radius ( La ) is comparable or exceeds the perpendicular electromagnetic turbulence (⊥λ ), 

which called the Barghouthi model, which is include the effects of altitude  and velocity 

dependent WPI. 

 

3.2 O+ ions 

 

To study the effect of altitude and velocity dependence WPI on the O+ ions, we computed 

the distribution function )O( +f  at several altitudes extended from 1.7 to 13.7RE for 

different values of the perpendicular electromagnetic turbulence ( ⊥λ ), which are [ ⊥λ = ∞, 

50, 20, 8, and 1km]. The Barghouthi model simulation results of the O+ ions velocity 

distribution function )O( +f  are shown in Fig.(3.1). We supposed wide range of )( ⊥λ  in 

the O+ ions case, where (1st panel)  ∞→⊥λ , (2nd panel) km 50=⊥λ , (3rd panel) 

km 20=⊥λ , (4th panel) km 8=⊥λ ,  and  (5th panel) km 1=⊥λ . 
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Figure 3.1: O+ ions velocity distribution functions at different geocentric distances (1.7, 

4.27, 5.29, 5.97, 6.66, 7.0, 7.34 and 8.69RE) for different electromagnetic turbulence 

wavelengths (⊥λ ), the wavelengths considered here are ∞→⊥λ  (1st panel), km =⊥ 50λ  

(2nd panel),    20 km=⊥λ  (3rd panel),   8km=⊥λ  (4th panel), and   1km=⊥λ (5th panel). 

)( +Of  is represented by equal values contours in the normalized velocity ( ⊥cc ~,~ ) plane, 

where [ ] ( ) ( )[ ] 21
OO2)(O~ +++= mkTu-vc . The contour levels decrease successively by a 

factor 
21e  from the maximum. 

 

For the case ( ∞→⊥λ ), the diffusion coefficient )( ⊥D  become altitude dependent and 

velocity independent, since the perpendicular wave vector 
⊥

⊥ =
λ
π2

k . So, the perpendicular 

wave vector 0→⊥k , since ∞→⊥λ . As a result, from Barghouthi model expression (i.e. 

equation (2.12)), the effect of WPI become velocity independent (i.e. the effect of WPI is 

altitude dependent only). From Barghouthi model, simulation results for the case ∞→⊥λ  

(1st panel of Fig.(3.1)) we see that at the exobase (i.e.1.7RE) in the 1st panel the distribution 

function )O( +f  shows Maxwellian features, because the perpendicular diffusion 

coefficient )(O+
⊥D  is very small at low altitude, so the effect of WPI is negligible. As the 

geocentric altitude increases, the diffusion coefficient )(O+
⊥D  increases, as shown in 

equation (2.11), then the role of WPI becomes more significant in heating the ions in the 

perpendicular direction (i.e. the strength of WPI increases). As a result, the distribution 

function )O( +f  develops large temperature anisotropy, [i.e. )(O    )(O ++
⊥ > TT ], which 

forming "pancake-like" distributions that folds into O+ conics due to the effect of mirror 

force (i.e. diverging magnetic field), as shown in (1st panel of Fig.(3.1)) at geocentric 

altitudes start from ER27.4  to high altitudes. 

 

But for the case ( km 50=⊥λ ), the behavior of ions remains the same as the case of 

∞→⊥λ  up to altitude ~ ER0.7 , where the toroidal features starts to appear at altitude 

~ ER34.7  and become obvious at altitude ~ ER69.8 , and saturated above this level (1st and 

2nd panels of Fig.(3.1)). This means that, the general shape of )O( +f becomes invariable 

with altitude . For the case km 20=⊥λ  the distribution functions behaves as in the case of 
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∞→⊥λ  and km 50=⊥λ  up to ~ ER97.5 , but the toroidal distribution appears at lower 

altitude (i.e. ~ ER66.6 ), which form completely at ~ ER43.7 , and saturated above this level 

(3rd panels of Fig.(3.1)). However, for ⊥λ = km8 , the toroidal shape appears at lower 

altitudes. It starts to appear at altitude ~ ER97.5  and becomes well established at altitude 

~ ER66.6  (4th panel of Fig.(3.1)). Moreover, for the case km 1=⊥λ  the toroidal features 

appear at a lower altitude ~ ER27.4 , which become obvious at geocentric altitude ~ ER29.5  

(5th panel of Fig.(3.1)), and the distribution function )O( +f becomes saturated above that 

level (i.e. above ER29.5 ). 

 

The formation of ion toroids can be explained if we return back to equation (2.12), which 

represent the expression of Barghouthi model, the diffusion coefficient ( ⊥D ) has maximum 

value near zero perpendicular velocity (i.e. 1<Ω⊥⊥vk ), and decreases rapidly for large 

values of ( ⊥v ) (i.e. 1≥Ω⊥⊥vk ). Therefore, the ions (H+ or O+) tend to move out of the 

region of large diffusion coefficient (⊥D ) (i.e. 1<Ω⊥⊥vk ) and accumulate in the region 

of relatively low diffusion coefficient ( ⊥D ) (i.e. 1≥Ω⊥⊥vk ) forming the aforementioned 

toroidal distribution. 

 

For the cases km  =⊥ 50λ ,    20 km=⊥λ ,    8 km=⊥λ , and    1 km=⊥λ , the O+ velocity 

distribution function )O( +f  saturates after forming the toroidal shape(i.e. the general 

shape of the distribution function )O( +f  becomes invariable with altitude), because the 

perpendicular heating becomes invariable (i.e. the perpendicular heating become self-

limiting). We also notice that as electromagnetic turbulence ( ⊥λ ) decreases, the argument 

⊥λ
La

 approaches one at low altitudes, and consequently the toroidal distribution appears at 

lower altitudes, namely for the case km 1=⊥λ  the toroidal become to appear at altitude 

~ ER27.4 . The toroidal features become completely at altitude ER29.5~  (5th panel of 

Fig.(3.1)). 
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In addition we see in Fig.(3.2) the altitude profiles of lower order moments of O+ ions, 

which include; density )(O+n , drift velocity )(O+u , parallel temperature )(O+T , and 

perpendicular temperature )(O+
⊥T ) for wide range of the electromagnetic turbulence ( ⊥λ ). 

[ ∞→⊥λ (double-dotted dashed), km 50=⊥λ  (dotted dashed), km 20=⊥λ  (dotted), 

km 8=⊥λ  (dashed) and km 1=⊥λ  (solid)]. 
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Figure 3.2: Altitude profiles of the lower order O+ moment for different electromagnetic 

turbulence wavelengths ( ⊥λ ). The wavelengths considered here are ∞→⊥λ  (double-

dotted dashed line), km  =⊥ 50λ  (dotted dashed line),    20 km=⊥λ  (dotted line), 

   8 km=⊥λ  (dashed line),    1 km=⊥λ  (solid line). The O+ moments considered here are: 

density )O( +n  (top left), drift velocity  )(O +u  (top right), perpendicular temperature 

)(O+
⊥T  (bottom left), and parallel temperature )O( +T  (bottom right). 
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The drift velocity of O+ ions )(O+u (top right panel of Fig.(3.2)) increases with altitude, 

which can be explained as follow: the effect of WPI heating the ions in the perpendicular 

direction, which increases the upward mirror force, and so increases the acceleration of the 

ions in the upward direction, (i.e. increases of drift velocity with altitude). However, we 

note that, the drift velocities at low altitudes (i.e. below ER5.4 ) are coincided for different 

values of the perpendicular electromagnetic turbulence ( ⊥λ ), which are [ ⊥λ = ∞, 50, 20, 8, 

and 1km], since the argument (
⊥λ
La

) is less than unity (i.e. the behavior of O+ ions below 

the saturation point is the same for all values (⊥λ ), that is, the ion self-limiting is 

negligible. For the case km 50=⊥λ , the acceleration rate decreases, and so )O( +u  

decreases above the saturation point which occurs at altitude ~ ER 5.7  in comparison with 

the case ∞→⊥λ , and this is obvious result of the energization self-limiting nature, which 

occurs when 
⊥λ
La

 exceeds unity (i.e. above saturation point). For the case km 20=⊥λ , we 

see that the saturation level appears earlier ~ER6.5 , as ⊥λ  decreases more (i.e. km 8=⊥λ ). 

The saturation level appears at lower altitude ~ER0.6 , for smaller values ⊥λ  

(i.e. km 1=⊥λ ). )O( +u is reduced and the saturation level appears at lower altitude 

~ ER5.4 . These results have a close agreement with the distribution function results 

displayed in Fig.(3.1). 

 

The drift velocity of O+ ions )O( +u  (top right panel of Fig.(3.2)) decreases as 

electromagnetic turbulence wavelength (⊥λ ) decreases, because of the reduction of the 

heating rate, this can be explained as follow: the expression for the diffusion coefficient 

)( ⊥D  is a function of altitude and velocity as shown in equation (2.12). As electromagnetic 

turbulence wavelength (⊥λ ) decreases therefore, the wave vector 







=

⊥
⊥ λ

π2
k increases. So 

the argument 








Ω
⊥⊥vk

 increases, and hence the expression 
3−

⊥⊥ 








Ω
vk

decreases, so the 

diffusion coefficient )( ⊥D  decreases. As a result, the strength of WPI decreases and 

reduction the heating rate. 
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To study the effect of finite electromagnetic turbulence wavelength (⊥λ ) on the O+ 

density )O( +n , we first set the following argument. For the range of ( km1≥⊥λ )  

considered here, the finite electromagnetic turbulence wavelength (⊥λ ) effect occurs at 

relatively high altitude ( ER5.4≥ ) where the kinetic energy of the ion becomes more than 

the energy needed to escape and cross the potential barrier. Therefore, the drift velocity 

)O( +u  is trans-sonic, and since the O+  ions are in the flux-limiting flow condition 

[Barakat and Schunk, 1983], a corresponding increases in the ions drift velocity (top right 

panel of Fig.(3.2)) is expected to compensate in the decreases in the ions density (top left 

panel of Fig.(3.2)), and hence to keep the net escape flux constant, where in the steady-

state polar wind ion flow, the continuity equation required that: iii vnF = , where F, in , 

and iv  are the flux, density, and velocity of the polar wind ions. As electromagnetic 

turbulence wavelength (⊥λ ) decreases the increased scale height starts at lower altitudes, 

which consistent with the drift velocity )O( +u . 

 

The WPI (i.e. perpendicular heating) has two opposing effects on the O+ ions 

density )O( +n . It increases the number of O+ ions that can escape and crossing the 

potential barrier and reach to higher altitudes, this slightly dominates at low altitudes. In 

contrast, WPI increases the drift velocity of O+ ions, which reduce the density of O+ ions, 

this effect dominates at high altitudes. This explains the slight increase in density at low 

altitudes and large increases in it at high altitudes, due to WPI effects. 

 

The behavior of O+ ions temperature (perpendicular or parallel) is a result of balance 

between WPI heating affect in the perpendicular direction and perpendicular adiabatic 

cooling (i.e.
B

mv

2

2
⊥=µ ); but the O+ ions perpendicular temperature )O( +

⊥T  is increasing 

monotonically with altitude; which means that at all  altitudes the effect WPI is greater (i.e. 

WPI is dominant) than that of perpendicular adiabatic cooling. At lower altitudes the 

heating is enhanced owing to the "pressure cooker effect", which results from the 

temporary trapping of O+ ions between the lower magnetic deflection point and  the upper 

gravitational point, when an ion bounces between these deflection points, it is accelerated 

in the perpendicular direction (i.e. the ion energized to higher perpendicular temperature). 
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The profiles of O+ ions parallel temperature )O( +T  (right bottom panel of Fig.(3.2)) is 

influenced by WPI, where as O+ ions perpendicular heating increases, part of this energy is 

transfer from the perpendicular direction to the parallel direction, and consequently, the 

parallel temperature increases at high altitude, but at low altitude O+ ions parallel 

temperature )O( +T decreases with altitude, owing to parallel adiabatic cooling.  However, 

as )O( +
⊥T  decreases due to the effect of finite Larmor radius this on the other hand 

decreases the O+ parallel temperature )O( +T . In general, we see that perpendicular 

temperature )O( +
⊥T  and parallel temperature )O( +T  display much more changes 

(several orders of magnitude) with electromagnetic turbulence wavelength (⊥λ ) than 

density )O( +n  and drift velocity )O( +u . 

 

Finally, from the profiles of lower order moments of O+ ions are shown in Fig.(3.2), we 

note that the behavior of O+ ions for each profile at low altitudes (i.e. below ER3.4 ) 

coincide for all the values of ⊥λ , that is because the argument 
⊥λ
La

 is less than unity. For 

instance, the drift velocity of O+ ions )O( +u  (top right panel of Fig.(3.2)) decreases as 

electromagnetic turbulence wavelength (⊥λ ) decreases, because of the reduction of the 

heating rate, and the density of O+ ions )O( +n  (top left panel of Fig.(3.2))  increases as 

electromagnetic turbulence wavelength (⊥λ ) decreases to keep the escape flux constant. 

Also as electromagnetic turbulence wavelength (⊥λ )  decreases, the growth rate of )O( +
⊥T  

(bottom left panel of Fig.(3.2)) and so )O( +T  (bottom right panel of Fig.(3.2)) is reduced 

owing to the significant reduction in the heating rate above the saturation levels. Generally, 

the saturation level appears at low altitudes for small values of electromagnetic turbulence 

wavelength ( ⊥λ ) as discussed above. 

 

3.3 H+ ions 

 

To study the effect of the wave particle interaction on the H+ ions, we calculated velocity 

distribution function )H( +f  at different altitudes extended from 1.7 to 13.7RE and for 

different values of the perpendicular electromagnetic turbulence ( ⊥λ ), which are ⊥λ = ∞, 
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50, 20, 8, and 1km. The Barghouthi model simulation results of the H+ ions velocity 

distribution function )H( +f  are shown in Fig.(3.3). we supposed a wide range of ⊥λ  as in 

the O+ ions case (1st panel)  ∞→⊥λ , (2nd panel) km 50=⊥λ , (3rd panel) km 20=⊥λ , (4th 

panel) km 8=⊥λ ,  and  (5th panel) km 1=⊥λ . 

 

For the case ∞→⊥λ , the diffusion coefficient )( ⊥D  become altitude dependent and 

velocity independent as shown in section (3.2) for the O+ ions case. From the simulation 

results for the case ∞→⊥λ  (left panel of Fig.(3.3)), we note that at the exobase (i.e. 

1.7RE), the distribution function shows Maxwellian features, because the perpendicular 

diffusion coefficient )(H+
⊥D  is very small at low altitude. As the geocentric altitude 

increases, the diffusion coefficient )(H+
⊥D  increases, as shown in equation (2.11), and 

then the strength of WPI increases. As result, the distribution function )H( +f  develops 

large temperature anisotropy. For example, at ER29.5  there are temperature anisotropy 

where )(HT  )(H +
⊥

+ >T , but at ER19.8  the temperature anisotropy inverted [i.e. 

)(H    )(H ++
⊥ > TT ]. This is because the effect of WPI increases with altitude, so as the 

ions drift upward the WPI heat the ions in the perpendicular direction, which yields an 

increasing of the perpendicular ions temperature )(H+
⊥T as shown in Fig.(3.4). At high 

altitudes, the role of the WPI become significant in heating the ions in the perpendicular 

directions. This causes the forming "pancake-like" distributions )(H    )(H ++
⊥ > TT , that 

folds into H+ conics due to the effect of mirror force (i.e. diverging magnetic field), as 

shown in (1st panel of Fig.(3.3)) at geocentric altitude (~ ER19.8 ), which become obvious 

at altitude (~ ER1.11 ) and above this level the conics features is saturates. This means that 

the general shape of  the distribution function )H( +f  becomes invariable with altitude. 
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Figure 3.3: H+ ions velocity distribution functions at different geocentric distances (1.7, 

5.29, 8.19, 9.39, 11.1, 12.8, and 13.7RE) for different electromagnetic turbulence 

wavelengths (⊥λ ). The wavelengths considered here are ∞→⊥λ  (1st panel), km =⊥ 50λ  

(2nd panel),    20 km=⊥λ  (3rd panel),   8km=⊥λ  (4th panel), and   1km=⊥λ (5th panel). 

)( +Hf  is represented by equal values contours in the normalized velocity ( ⊥cc ~,~ ) plane, 

where [ ] ( ) ( )[ ] 21
HH2)(H~ +++= mkTu-vc . The contour levels decrease successively by a 

factor 
21e  from the maximum. 

 

We also note that for the case km50=⊥λ  the distribution function remains the same as the 

case ∞→⊥λ  at all geocentric altitudes (1st and 2nd panels of Fig.(3.3)). Furthermore, for 

the case ( km 20=⊥λ ) the distribution function remains the same as the cases ∞→⊥λ  and 

km 50=⊥λ  up to ER 12.8  (1st, 2nd, and 3rd panels of Fig.(3.3)), but at high altitudes 

~ ER7.13  the distribution function begins to display toroidal features. In addition, the case 

km 8=⊥λ  the distribution function remains the same as the cases ∞→⊥λ , km 50=⊥λ , 

and km 20=⊥λ  up to ~ ER 11.1  (1st, 2nd, 3rd, and 4th panels of Fig.(3.3)), but at high 

altitudes (~ ER8.12 ) the distribution function starts to display toroidal features, which 

becomes obvious at ).7.13( ER  

 

As previously discussed, at high altitudes, the ions Larmor radius (La ) will be comparable 

to or exceeds the wavelength of the electromagnetic turbulence ( ⊥λ ). Also, as 

electromagnetic turbulence ⊥λ  decreases, the argument 
⊥λ

a
 approaches one at lower 

altitudes, and consequently the toroidal distribution appears at lower altitudes, namely for 

the case km 8=⊥λ  at altitude ~ ER8.12 . The toroidal features become more obvious at 

altitude ER7.13~  (4th panel of Fig.(3.3)). Moreover, for the case km 1=⊥λ  the toroidal 

features appear at a lower altitude ~ ER39.9 , and become more pronounced at geocentric 

altitude ~ ER1.11  (5th panel of Fig.(3.3)). 
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After forming the toroidal shape of distribution function )H( +f , it becomes saturates as 

shown in (5th panel of Fig.(3.3)) at high altitude (i.e. ER8.12  and ER7.13 ), since the 

perpendicular heating becomes self-limiting. 

 

Fig.(3.4) shows the altitude profiles for H+  lower order moments (i.e. density )(H+n , drift 

velocity )(H+u , parallel temperature )(H+T , and perpendicular temperature )(H+
⊥T ) for 

wide range of the electromagnetic turbulence (⊥λ ), [ ∞→⊥λ (double-dotted dashed line), 

km 50=⊥λ  (dotted dashed line), km 20=⊥λ  (dotted line), km 8=⊥λ  (dashed line) and 

km 1=⊥λ  (solid line)]. 
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Figure 3.4: Altitude profiles of the lower order H+ moment for different electromagnetic 

turbulence wavelengths ( ⊥λ ). The wavelengths considered here are ∞→⊥λ  (double-

dotted dashed line), km  =⊥ 50λ  (dotted dashed line),    20 km=⊥λ  (dotted line), 
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   8 km=⊥λ  (dashed line),    1 km=⊥λ  (solid line). The H+ moments considered here are: 

density )( +Hn  (top left), drift velocity  )(H +u  (top right), perpendicular temperature 

)H( +
⊥T  (bottom left), and parallel temperature )H( +T  (bottom right). 

 

The drift velocity of H+ ions )(H+u (top right panel of Fig.(3.4)) increases with altitude, 

owing to the effect of WPI and heating in the perpendicular direction, which increases the 

upward mirror force, and hence, accelerate the H+ ions in the upward direction. 

 

However, we note that, the lower order H+ moment at low altitudes are superimposed for 

different values of the perpendicular electromagnetic turbulence ( ⊥λ ), which are [ ⊥λ = ∞, 

50, 20, 8, and 1km], because the argument 
⊥λ
La

 is less than unity (i.e. the behavior of H+ 

ions below the saturation point is the same for all values ⊥λ ), that is, the ion self-limiting is 

negligible. The cases km and,50,20 ∞=⊥λ  are same as ∞→⊥λ , where the two cases 

are coincide for all altitudes in the simulation tube.  But for the case km 20=⊥λ , the 

acceleration rate decreases, and so drift velocity )H( +u  decreases above the saturation 

point which occurs at altitude ER0.12  in comparison with the case ∞→⊥λ , where the two 

cases are coincide for all altitude below ER0.12 . This is more obvious if we look at the 

perpendicular and parallel temperature. This is an obvious result of the energization self-

limiting nature which occurs when 
⊥λ
La

 exceeds unity (i.e. above saturation point). For the 

case km 8=⊥λ , we note that the saturation point appears earlier ~ ER0.51 . For smaller 

values of electromagnetic turbulence (⊥λ ) (i.e. km 1=⊥λ ), )H( +u  is reduced more and 

more and the saturation point occurs at lower altitude ~ ER7.8 . These results have a close 

agreement with the distribution function results displayed in Fig.(3.3). 

 

The drift velocity of H+ ions )H( +u  (top right panel of Fig.(3.4)) decreases as 

electromagnetic turbulence wavelength ⊥λ  decreases, because of the reduction of the 

heating rate. This can be explained as follows. The expression for the diffusion coefficient 

⊥D  is a function of altitude and velocity as shown in equation (2.12). As electromagnetic 
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turbulence wavelength ⊥λ  decreases. The expression 
3−

⊥⊥ 








Ω
vk

decreases, so the diffusion 

coefficient ⊥D  decreases. As a result, the strength of WPI decreases, which means, 

reduction the heating rate. The density of H+ ions )H( +n  (top left panel of Fig.(3.4)) 

increases as electromagnetic turbulence wavelength ( ⊥λ ) decreases to keep the escape flux 

constant, since the H+  ions are in the flux-limiting flow condition [Barakat and Schunk, 

1983]. A corresponding increases in the ions drift velocity (top right panel of Fig.(3.4)) is 

expected to compensate for the decreases in the ions density (top left panel of Fig.(3.4)), 

and hence to keep the net escape flux constant. 

 

Also, as electromagnetic turbulence wavelength (⊥λ ) decreases, the growth rate of 

)H( +
⊥T  (bottom left panel of Fig.(3.4)) and so )H( +T  (bottom right panel of Fig.(3.4)) is 

reduced, owing to the significant reduction in the heating rate above the saturation levels. 

Generally, the saturation level appears at low altitudes for smaller values of 

electromagnetic turbulence wavelength (⊥λ ). 

 

The behavior of H+ ions perpendicular temperature )H( +
⊥T  is a result of balance between 

WPI heating affecting in the perpendicular direction and perpendicular adiabatic cooling 

(i.e.
B

mv

2

2
⊥=µ ); but the H+ ions perpendicular temperature )H( +

⊥T  is increasing 

monotonically with altitude at high altitude, since the effect WPI is greater than that of 

perpendicular adiabatic cooling (i.e. WPI is dominant). But at low altitude the H+ ions 

perpendicular temperature )H( +
⊥T  is decreasing with altitude, since the adiabatic cooling 

is greater than that of the effect of WPI in the perpendicular direction. 

 

The profiles of parallel temperature )H( +T  (right bottom panel of Fig.(3.4)) is influenced 

by WPI, where the effect of WPI have a three-folder effect on parallel temperature 

)(H+T : First, the perpendicular heating enhances the upward mirror force and 

consequently, the parallel adiabatic cooling is strengthened. Second, as the ions move 

upward along the divergent magnetic field lines, result in parallel temperature )(H+T  

increases due to the energy transfer from the perpendicular to the parallel directions. Third, 
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the effect of velocity dependent diffusion coefficient, which decreases the heating in 

perpendicular direction, the net result of these effects determines the behavior of parallel 

temperature )(H+T . 

 

Since H+ ions perpendicular heating increases at high altitude, since the WPI is the 

dominant, which causes heating in the perpendicular directions, part of this energy is 

transferred from the perpendicular direction to the parallel direction, and consequently, the 

parallel temperature increases at high altitude, but at lower altitude H+ ions parallel 

temperature )H( +T decreases with altitude, since the parallel adiabatic cooling is the 

dominant and the effect of WPI is too weak. On the other hand, at relatively higher altitude 

the effect of WPI is strengthened, but parallel adiabatic cooling is still the dominant, 

therefore H+ ions parallel temperature )H( +T decreases slowly with altitude. However, as 

)H( +
⊥T  decreases due to the effect of finite Larmor radius this also decreases the H+ 

parallel temperature )H( +T . In general, we see that perpendicular temperature )H( +
⊥T  

and parallel temperature )H( +T  display much more changes (several orders of 

magnitude) with electromagnetic turbulence wavelength ( ⊥λ ) than density )H( +n  and drift 

velocity )H( +u . 

 

The behavior of O+ ions different from that of H+ ions, under the effect of WPI. This is due 

to two reasons: First, the potential energy of the H+ ions is negative and decreasing with 

altitude, while the potential energy for O+ ions is positive and monotonically increasing 

with altitude, as we well show in chapter five, second, the diffusion coefficient of O+ ions 

)( +
⊥ OD greater than the diffusion coefficient of H+ ions )( +

⊥ HD , and so O+ ions is 

preferentially heated compared with H+ ions. 

 

Also, the differences between the behavior of H+ and O+ under the effect of finite Larmor 

radius can be owing to two factors: First, the mass of O+ ion is much large comparable to 

that of H+ ion [ )H(16)O( ++ ×= mm ]. Second, the preferential heating of O+ ion seemed at 

lower altitudes, and so the saturation levels occur earlier because of the self-limiting 

heating. 
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Chapter Four 
 
 
Quantitative Comparison 
 
4.1 Introduction 
 
The Monte Carlo (MC) simulation was used in order to study the effect of wave particle 

interaction on H+ and O+ outflow at high altitudes and high latitudes in the polar wind 

region. The MC technique considered WPI in addition to the mechanisms included in the 

classical polar wind studies such as gravity, polarization electrostatic field, and divergence 

of magnetic field of the Earth. In this study the Monte Carlo simulation was run for 

Barghouthi model, were the perpendicular diffusion coefficient ),( ⊥⊥ vrD is given in 

equation (2.12), and in each simulation we used 107 tested ions in order to compute the ion 

distribution function and also compute the profiles of its velocity moments (i.e. density, 

drift velocity, parallel temperature, and perpendicular temperature) for both H+ and O+ 

ions. The boundary conditions selected for polar wind region are similar to those of 

[Barghouthi et al., 1998]. 

 

From the year of 1968 (i.e. over the past 40 years), since the seminal papers of Nishida, 

[1966] and others Axford, [1968], Banks and Holzer, [1968], and Marubashi, [1970], 

observations from several polar orbiting satellites have confirmed the existence of the polar 

wind and established its basic characteristics (i.e. density, velocity, temperatur ect). 

 

Statistical studies or surveys of polar wind ion observations using data from ten or more 

satellite orbit passes, these observations were made from the ISIS-2, DE-1, Akebono, and 

POLAR satellites over the altitude range of 1,000 to 50,500 km (i.e. 1.16 to 9RE) and 

spanned different phases of solar cycle. The polar wind ion observations made on all four 

satellites, the ISIS-2 and DE-1 observations covered the 1,000 – 4,000 km altitude range, 

but the POLAR observations were made at solar minimum, and were made over one year 
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period. Also, it focused on the altitude ranges 5,000 – 6,000 km and 29,000 – 50,500 km 

altitude (i.e. near the POLAR perigee and apogee) region, respectively. The Akebono 

observations were made over a 10-year period spanning two 11-year solar cycles, and 

focused on the altitude range 1,000 –10,000 km. Table (4.1) summarizes the properties of 

some polar wind satellites. 

 

Table 4.1: summarizes the properties of some polar wind satellites 

 

Altitude(km) Satellite Epoch Observed Species Reference 

1,400 ISIS-2 1971–1972 H+, He+, O+ Hoffman,1980 

1,000 – 4,000 DE-1 1981–1983 H+, He+, O+ Chandler,1991, 

1995 

1,000 – 10,000 Akebono 1989–1998 H+, He+, O+, e- Abe, 1993, 2004; 

Yau, 1995 

5,000 – 6,000 POLAR 1996 H+, O+ Su, 1998;  

Huddleston, 2005 

7,000 – 23,300 DE-1 1981–1982 e- Persoon 1983 

50,500 POLAR 1996 H+. He+, O+ Su, 1998; Elliott, 

2001 

 

In this thesis, we focus on the observations over the altitude range of 4,438 to 80,518 km 

(i.e. from 1.7RE to 13.7RE), which is the simulation tube in the Monte Carlo technique. For 

the sake of comparison, we chose to present the simulation results of Barghouthi model for 

the perpendicular electromagnetic turbulence wave length )8( km=⊥λ , since these 

simulation results represent the closest to the observations, which obtained from different 

satellites. 

 

In this study, we compared between the simulation results of Barghouthi model to the 

corresponding observations from different satellites and simulation result from previous 

models. Also, we classify our comparison into two chapters: Chapter four presents 

quantitative comparison (section 4.2), and chapter five presents qualitative comparison 

(section 5.1). 
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4.2 Quantitative comparison 

 

In this section, we present the quantitative characteristics of the polar wind ions (i.e. O+ 

and H+ ions) from different satellite observations and some simulation results from 

previous models. 

 

Nagai et al. [1984] observed cold (i.e. <1 eV temperature) H+ polar wind ions in the 

nightside polar cap near 2RE altitude using DE-1 satellite. This study confirmed the 

supersonic nature of the H+ polar wind at high altitudes, and motivated the survey of 

Chandler et al. [1991] using DE-1 data and that of Abe et al. [1993a, 2004] using Akebono 

data. 

 

At high (~2 RE) altitude outside the plasmasphere, were the polar wind ions density was 

typically less than 103 cm-3 and the DE-1 spacecraft was often charged to a few positive 

volts, and this causes the lowest energy polar wind ions to repelled by the spacecraft 

potential. But Nagai et al. [1984] used a negative bias aperture in the DE-1 RIMS 

instrument to partially overcome the positive spacecraft potential, and successfully 

detected both H+ and He+ polar wind ions down to about zero Ev. As a result, the velocity 

of H+ ions ranges from 16 to 25 km/s and there temperature ranges from 0.12 to 0.2 eV. 

Chandler et al. [1991] concluded that, the averaged H+ polar wind velocity observed on 

DE-1 increased with altitude, from about ~3.5km/s below 1.32RE to ~11km/s above 1.5RE. 

 

The data collected from Akebono satellite used by Abe et al. [1993a], and  they concluded 

that the dayside and nightside profiles were qualitatively similar for all three polar wind 

species (i.e. H+, He+, and O+ ions); approximately monotonic increase in velocity with 

altitude and the velocity of these ions dependent on their masses. The H+ velocity typically 

reached 1 km/s near 1.32RE and the O+ velocities near 1.95RE. This means that the O+ ions 

attain significant average upward velocity at higher altitudes compared with H+ ions. Also 

they concluded that, for all three polar wind ions, the velocity on the dayside was 

significantly larger than that on the nightside. In addition, they obtained the H+ and O+ 

velocity at 2.58RE to be about 12 and 3km/s, respectively.  
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The survey of Abe et al. [1993a] found the observed ion velocity of all polar wind species 

to be highly variable, and the O+ polar wind ions above 1.79RE to have upward velocity up 

to 4km/s. 

 

Drakou et al. [1997] observed downward flowing He+ and O+ ions with a net downward 

velocity less than 1.5 km/s below 2.1RE on the nightside, the contribution of the 

perpendicular ion velocity component, downward flowing He+ and O+ ions were clearly 

present in the polar cap, but were less frequent with increasing altitude compared with their 

upward flowing counterparts. 

 

Su et al. [1998] used data from POLAR satellite at 5,000km (i.e.1.79RE) altitude and they 

found the following characteristics of the H+ polar wind ion at this altitude: Its density 

ranged from less than 0.1 to 100cm-3, and its average was 10cm-3; the parallel velocity 

ranged from 10 to 21km/s, and its average was ~15km/s; and the averaged parallel and 

perpendicular temperature was ~0.12 and ~0.23eV, respectively.  

 

In addition, to properties H+ ions, Su et al. [1998] obtained the following characteristics of 

the O+ ions at 5000km. The O+ density ranged from 0.1 to 100cm-3, and its average was 

7.7cm-3; its parallel velocity ranged from −3 to 2km/s and its average was −0.9km/s, which 

means that the ions moving downward, were both upward and downward velocities are 

observed; finally, its averaged parallel and perpendicular temperature was ~0.34 and 

~0.61eV, respectively. 

 

Furthermore, Su et al. [1998] used data from POLAR satellite at 50,500 km (i.e. 9RE) 

altitude and they obtained the following characteristics of the H+ and O+ polar wind ion at 

this altitude. First, for H+ ions, the H+ density ranged from 0.01 to 2cm-3 and its average 

was ~0.3cm-3; its parallel velocity ranged from 20 to 110 km/s and its average was ~45 

km/s; and its averaged perpendicular temperature was ~1.1 eV. Second, for O+ ions, the O+ 

parallel velocity ranged from 8 to 32 km/s, and its average was ~17 km/s, which means 

that all observed velocities were upward at the POLAR apogee. 

 

Su et al. [1998] surveyed the characteristics of H+ and O+ polar wind ions on POLAR 

satellite at 44,380km (i.e.8 RE) altitude over the polar cap, and found the averaged O+ 
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velocities to be ~27 km/s. This large velocities reflect the continuing acceleration of the 

polar wind at very high altitudes due to a number of mechanisms. 

 

The major polar wind ions consist primarily from H+, He+, and O+ ions and have a 

significant drift velocity component in the upward direction ( opposite to the magnetic 

field in the northern hemisphere), the averaged parallel velocity at high altitude for H+ ion 

is 14km/s at altitude range 2.26-2.42RE, Drakou et al. [1997]. 

 

Yau et al. [2007] reviewed the polar wind models and observations, and they conclude that 

the generalized transport equations based models predict that the supersonic H+ ions flow 

at high altitudes at velocity as large as 16-20km/s at or below 2.9RE. In addition, Drakou et 

al. [1997] and Su et al. [1998] observed from satellites that the temperature of polar wind 

ions (i.e. H+ and O+ ions) is generally low, and is in the range of 0.05–0.35 eV between 2.1 

and 2.58RE. 

 

Recently, Nilsson et al. [2008] demonstrated that, the velocity of O+ ion at 5RE is about 

20km/s; they used this value as an initial value of the O+ ion velocity in their model. 

Finally, we compared between the above observations and simulation results of Barghouthi 

model, for both H+ ion observations and O+ ion observations. The comparison is 

summarized in the following two tables; Table (4.2) shows the comparison for H+ ions, and 

Table (4.3) shows the comparison for O+ ions. 

 

The simulation results of Barghouthi model are obtained from; the profiles of the 

distribution function velocity moments (i.e. density, drift velocity, parallel temperature, 

and perpendicular temperature) for both H+ and O+ ions (i.e. Fig.(4.1)), the altitude profile 

of ions temperatures (i.e. Fig.(4.2) for both H+ and O+ ions), the  altitude profile of ions 

velocity for both H+ and O+ ions (i.e. Fig.(4.3)), and altitude profile of ions parallel 

velocity for both H+ and O+ ions (i.e. Fig.(4.4)). 
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Figure 4.1: Altitude profiles of the lower order moment for the electromagnetic turbulence 

wavelength km8=⊥λ , for O+ ions (solid line) and H+ ions (dashed line).  The moments 

considered here are: density ][ 3−cmn  (top left), drift velocity  [cm/s] u  (top right), 

perpendicular temperature ][kT⊥  (bottom left), and parallel temperature ][kT  (bottom 

right). 

 

The ion velocity vector can be analyzed into two orthogonal components, with respect to 

the direction of the magnetic field (oB ), these two components are: one parallel to (oB ), 

which represented by (v ) and the other perpendicular to (oB ) which represented by (⊥v ). 

Therefore, it is recommended to write: 

(4.1)                                                                                                                     ⊥+= vvv  
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Figure 4.2: Altitude profile of ions temperatures for O+ ions (solid line) and H+ ions 

(dashed line), according to Barghouthi model and for the electromagnetic turbulence 

wavelength km8=⊥λ . 

 

The random thermal velocity is defined as suvc ss −= . From the expectation value of the 

kinetic energy ( 2

2

1
smc ), we can obtain the thermal energy ( skT

2

3
), [Barghouthi et al., 2003] 

( )[ ] ( )
( )∫

∫ ⊥+−
=

sss

sssssss

s
vdvf

vdvfvuvm
kT

3

322

2

1

2

3
                                                                     (4.2) 

from the above equation (i.e. equation (4.2)), we can simplify it to obtain equation (4.3): 

)(
2

1

2

3 22 uvmkT −=                                                                                                        (4.3) 

Therefore, the velocity of the ions is given by: 

m

mukT
v

23 +=                                                                                                             (4.4) 

 

In addition, to derive the parallel velocity of the ions, equation (4.2) can be written as 

[Barghouthi et al., 2003]: 
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From equation (4.5), we can write the following equation: 

( )
( )

,
)(

2

1

2

1
3

32

∫

∫ −
=

sss

ssssss

s
vdvf

vdvfuvm
kT                                                                      (4.6) 

and the above equation can be simplified to obtain equation (4.7) 

mkT s 2

1

2

1 = 2v 2

2

1
mu−                                                                                              (4.7) 

Therefore, the parallel velocity of the ions is given by: 

=v [(k  sT + m u2)/m]1/2                                                                                              (4.8) 

 

Finally, we calculated the velocity and parallel velocity for both H+ and O+ ions at all 

geocentric altitude in the simulation tube. After that we plot the altitude profile of the ions 

velocity as shown in Fig.(4.3), and the altitude profile of the ions parallel velocity as 

shown in Fig.(4.4). 
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Figure 4.3: Altitude profile of ions velocity, for O+ ions (solid line) and H+ ions (dashed 

line), according to Barghouthi model and for the electromagnetic turbulence wavelength 

km8=⊥λ . 
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Figure 4.4: Altitude profile of ions parallel velocity, for O+ ions (solid line) and H+ ions 

(dashed line), according to Barghouthi model and for the electromagnetic turbulence 

wavelength km8=⊥λ . 

 

The following two tables summarize the quantitative comparison between the observations 

and the simulation results of Barghouthi model for both H+ ions (i.e. Table (4.2)) and 

O+ions (i.e. Table (4.3)), which gives evidence for Barghouthi model. 

 

We can see from these two tables that the simulation results of Barghouthi model in an 

excellent agreement with observations from different satellites for both O+ and H+ ions for 

the following quantity: density, velocity, parallel velocity, parallel temperature, 

perpendicular temperature, temperature, and temperature anisotropy at different altitudes. 

As an example, Su et al. [1998] obtained the temperature of H+ ions at 4.2RE to be 0.02eV 

from observations. To be specific, Barghouthi model produced similar results to the 

observations of Su et al. [1998], where the temperature of H+ ions at 4.2RE is 0.03eV as 

obtained from Barghouthi model. Another example, Su et al. [1998] found that, the parallel 

velocity of O+ ions at 9RE in the range (8 – 32km/s), this is consistent with the simulation 

results of Barghouthi model, where the parallel velocity equal to 27.5km/s at 9RE. 

Therefore, Barghouthi model produce acceptable simulation results when compared 

quantitatively to the corresponding observations for both O+ and H+ ions when km8=⊥λ . 
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Table 4.2: Comparison between the observations and simulation results of Barghouthi 

model for H+ ions. 

 

Barghouthi 
model 

Observations Characteristics Altitude (RE)  
H+ ions 

100 (0.1 - 100), [Su et al., 1998] Density  
n (cm-3)  

1.79RE 

0.7 (0.01 - 2), [Su et al., 1998] Density  
n (cm-3)  

9.0RE 

15.2 11, [Chandler et al., 1991] Velocity 
 v (km/s) 

1.7RE 

16.1 (16 – 25), [Nagai et al.,1984] Velocity 
 v (km/s) 

2.0RE 

17.2 12, [Abe et al., 1993a]  Velocity 
 v (km/s) 

2.58RE 

17.8 (16 – 20), [Generalized 
transport models] 

Velocity 
 v (km/s) 

2.89RE 

13.4 (10 – 21), [Su et al., 1998] Parallel velocity  
)/( skmv  

1.79RE 

16.1 14  [Drakou et al., 1997] Parallel velocity  
)/( skmv  

2.26RE –2.42RE 

22.8 (20 – 110), [Su et al., 1998] Parallel velocity  
)/( skmv  

9.0RE 

0.22 0.23, [Su et al., 1998] Perpendicular 
Temperature 

 (eV) ⊥T  

1.79RE 

0.7 1.1, [Su et al., 1998] Perpendicular 
Temperature 

 (eV) ⊥T  

9.0RE 

0.082 0.12, [Su et al., 1998] Parallel 
Temperature 

(eV) T  

1.79RE 

0.15 <1, [Nagai et al., 1984] Temperature  
T (eV) 

2.0RE  

0.15 0.12 – 0.2), [Nagai et al., 1984]( Temperature  
T (eV) 

2.0RE  

(0.11-0.07) (0.05 – 0.35), [Drakou et al., 
1997 and Su et al.,1998] 

Temperature  
T (eV) 

2.1RE –2.58RE 

0.03 0.02, [Su et al.,1998] Temperature  
T (eV) 

4.2RE 

0.37 0.52, [Su et al.,1998]  
 

1.78RE 

 

 

)( ⊥TT
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Table 4.3: Comparison between the observations and simulation results of Barghouthi 

model for O+ ions.  

 

Barghouthi 
model 

Observations Characteristics Altitude (RE)  
O+ ions 

30 (0.1-100), [Su et al., 1998] Density  
n (cm-3)  

1.79RE 

2.15 4, [Abe et al., 1993a] Velocity 
 v (km/s) 

1.79RE 

2.2 1, [Su et al., 1998] Velocity 
 v (km/s) 

1.95RE 

2.2 1.5, [Drakou et al., 1997] Velocity 
 v (km/s) 

2.1RE 

2.3 3, [Abe et al., 1993a] Velocity 
 v (km/s) 

2.58RE 

14 20, [Nilsson et al., 2008] Velocity 
 v (km/s) 

5.0RE 

33 27, [Su et al., 1998] Velocity 
 v (km/s) 

8.0RE 

1.3 (-3 – 2), [Su et al., 1998] Parallel velocity  
)/( skmv  

1.79RE 

27.5 (8 – 32), [Su et al., 1998] Parallel velocity  
)/( skmv  

9.0RE 

0.28 0.61, [Su et al., 1998] Perpendicular 
Temperature 

 (eV) ⊥T  

1.79RE 

0.28 0.34, [Su et al., 1998] Parallel 
Temperature 

(eV) T  

1.79RE 

0.25 (0.05 – 0.35), [Drakou et al., 
1997 and Su et al.,1998] 

Temperature  
T (eV) 

2.1RE – 
2.58RE 

0.95 0.55, [Su et al.,1998]  
 

1.78RE 

 

 

 

 

 

 

 

 

 

)( ⊥TT
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Chapter Five 

 

 

Qualitative Comparison 

 

5.1 Qualitative comparison 

 

In this section, we present the qualitative characteristics of the polar wind ions (i.e. O+ and 

H+ ions) from various satellite observations and simulation results from previous models. 

Also, the qualitative comparison between the simulation results of Barghouthi model from 

one hand and observations and simulation results on the other hand has been investigated. 

 

The simulation results of Barghouthi model are obtained from: the profiles of the 

distribution function moments (i.e. density, drift velocity, parallel temperature, and 

perpendicular temperature) for both H+ and O+ ions (i.e. Fig.(4.1)), altitude profile of ions 

temperatures for both H+ and O+ ions (i.e. Fig.(4.2), altitude profile of ions velocity for 

both H+ and O+ ions (i.e. Fig.(4.3)), altitude profile of ions parallel velocity for both H+ and 

O+ ions (i.e. Fig.(4.4)), altitude profile of ions potential energy for both H+ and O+ ions (i.e. 

Fig.(5.1)), altitude profile of ions temperature anisotropy )( TT⊥  for both H+ and O+ 

ions (i.e. Fig.(5.2)), altitude profile of ions temperature anisotropy )( ⊥TT  for both H+ 

and O+ ions (i.e. Fig.(5.3)), and altitude profile of ions energy for both H+ and O+ ions (i.e. 

Fig.(5.4)). 
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Figure 5.1: Altitude profile of ions potential energy )(φ due to the body force for O+ ions 

(solid line) and H+ ions (dashed line), according to Barghouthi model and for the 

electromagnetic turbulence wavelength km8=⊥λ . 
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Figure 5.2: Altitude profile of ions temperature anisotropy )( TT⊥  for O+ ions (solid 

line) and H+ ions (dashed line), according to Barghouthi model and for the electromagnetic 

turbulence wavelength km8=⊥λ . 
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Figure 5.3: Altitude profile of ions temperature anisotropy )( ⊥TT , for O+ ions (solid 

line) and H+ ions (dashed line), according to Barghouthi model and for the electromagnetic 

turbulence wavelength km8=⊥λ . 

 

Since the Lorentz force operates in the direction perpendicular to velocity vector (⊥v ), 

therefore there is no work done on the ion and the total energy of the ion that is moving 

along the magnetic field lines remains constant, [Tsurutani and Lakhina, 1997]. 

(5.1)                                                                        
2

1

2

1

2

1 222
⊥⊥ +=+== EEmvmvmvET  

where TE , E  and ⊥E  are the total, parallel, and perpendicular kinetic energy of the ion 

respectively. On the other hand, the total energy of the ion is given by: 

(5.2)                                                                                                            kT
2

3

2

1 2 == mvET  

where ,,vm and T  are the mass, velocity, and temperature of the ions, respectively, and k  

is the Boltzmann's constant. Therefore, we find the energy of the polar wind ions (i.e. O+ 

and H+) at different altitudes in the simulation region, after that we plot altitude profile of 

ions energy for both H+ and O+ ions (i.e. Fig.(5.4)). 
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Figure 5.4: Altitude profile of ions energy for O+ ions (solid line) and H+ ions (dashed 

line), according to Barghouthi model and for the electromagnetic turbulence wavelength 

km8=⊥λ . 

 

Finally, the polar wind ions consider supersonic if their thermal velocity greater than their 

velocity, were the thermal velocity for both O+ and H+ ions are given by: 

kTmvth 2

3

2

1 2 =                                                                                                                   (5.3) 

Therefore, the thermal velocity is given by: 

m

kT
vth

3=                                                                                                                      (5.4) 

where m  is the mass the ions, T  is the temperature of the ions at the lower boundary (i.e. 

1.7RE), and k  is the Boltzmann's constant, Therefore,thv  reads 

5.5) (                                                                           
 Ofor                        2.16km/s

Hfor                        8.62km/s













=
+

+

thv  

On the other hand, the velocity of the polar wind ions can be obtained from Fig.(4.3) at any 

altitude in the simulation region, which extends from 1.7 to 13.7RE. 

 

The qualitative comparisons between the simulation results of Barghouthi model and 

observations give evidences that Barghouthi model described in this thesis is appropriate to 
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be used when modeling the heating of ions through the wave particle interaction with 

electromagnetic turbulence in the polar wind region. 

 

Experimental verification from different satellites and simulation results from different 

models that confirmed Barghouthi model predictions are given as follow: In the model of 

Lemaire and Scherer [1971], the potential difference between 1.32 and 4.15RE was about 

1.7V. This resulted in the acceleration of the H+ ions to above supersonic velocities, and 

the transition from O+ ions dominant to H+ ions dominant occurs above 1.87RE. This result 

is agreement with the simulation results from Barghouthi model as shown in Fig.(4.1), 

where the density for O+ ions is smaller than that for H+ ions above 1.7RE, where the 

density for both O+ and H+ ions at 1.87RE equals to 19 and 120cm-3, respectively. So the 

H+ ion is the major species above 1.87RE. 

 

After few years, Hoffman and Dobson [1980] concluded that the polar wind is composed 

primarily of electrons and ions (i.e. H+, He+ and O+), which varies with the solar cycle, and 

is dominated in density by O+ ions up to at least 1.63RE and perhaps 1.95 –2.1RE.This 

result is agreement with the results of Barghouthi model, which produce the density of O+ 

and H+ ions at 1.95RE to be 20 and 110cm-3, respectively. Also, at 2.1RE the density of O+ 

ions is 3.2 and that for H+ ions is 79cm-3
. Therefore, above 1.7RE the H+ ions is the 

dominant, as shown in Fig.(4.1). After that, Abe et al. [1993a] concluded that, the 

transition from dominant O+ ions at low altitudes to dominant H+ ions at high altitudes is 

expected to occur between 1.63RE and 2.18RE, depending on the neutral hydrogen density, 

since the dominant source of polar wind H+ ion is the accidental-resonant charge exchange 

reaction between hydrogen atoms and oxygen ions. This result agreement with the results 

of Barghouthi model, where H+ is the major ion above 1.7RE, as shown in Fig.(4.1). The 

density of O+ and H+ ions at 2.18RE are 1.4 and 59cm-3, respectively, so above 2.18RE the 

H+ is the dominant and the transition from dominant O+ ions to dominant H+ ions occurs 

below 1.7RE. 

 

In the 16-moment model of Demars and Schunk [1994], which included H+, He+, and O+  

ions as major species and a number of other ions as minor species, in the supersonic case, 

the H+
 density decreasing with increasing altitude. To be specific, the simulation results 

from Barghouthi model is consistent with the results predicted from in the 16-moment 

model of Demars and Schunk [1994], where the density of H+ ions decreasing almost 
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linearly with increasing altitude, which decreases from 180 to 25cm-3 when altitude 

increases from 1.7 to 3RE. Also, it deceases to 0.13 cm-3 at 13.7RE, as shown in Fig.(4.1). 

Furthermore, the H+ ions are supersonic above 1.7RE. 

 

In addition, observations from the POLAR satellite, especially near the POLAR satellite 

apogee (i.e. near 9RE), the density of the polar wind ions was very low (typically < 10cm-

3), Moore et al. [1995]. This result is consistent with the results obtained by Barghouthi 

model, where we obtained the density for both O+ and H+ ions at 9RE equals to 6×10-5 and 

0.7cm-3, respectively, where the density for both ions is very low. 

 

On the other hand, the composition ratio of the observed density and velocity between H+, 

O+ provides interesting insight into the relative energy gains of the polar wind ion species. 

Su et al. [1998] found good correlation between the densities of the polar wind ion species 

and between their parallel velocities. On average, n(H+) : n(O+) ~ 1 : 0.17 and v//(H
+) : 

v//(O
+) ~1 : 0.38. The results from Barghouthi model for the density ratio between the H+ 

and O+ ions is n(H+) : n(O+) ~ 1 : 0.1 at 2RE, which is consistent with that result obtained 

by Su et al. [1998]. Also, the parallel velocity ratio between the H+ and O+ ions at 5RE, 

which is calculated by using Barghouthi model, is given as v//(H
+) : v//(O

+) ~ 1 : 0.31, 

which is very similar to the observation especially at 5RE.  

 

Furthermore, Su et al. [1998] concluded that the observation from POLAR satellite near 

solar minimum shows that the polar wind is dominated by H+ ions at 9RE, in terms of 

density and the He+ ions are a minor constituent at this altitude. On the other hand, 

Barghouthi model simulation results obtained the densities of O+ and H+ ions at 9RE to be 

1.6×10-5 and 0.7cm-3, respectively. So, at this altitude H+ ion is the dominated species of 

the polar wind ions, as shown in Fig.(4.1), this result is consistent with observation. 

Moreover, the density of the O+ polar wind ions was an order of magnitude smaller than of 

the H+ polar wind ions in the geocentric altitude (4.5 –7.8RE), Elliott et al. [2001]. To be 

specific, this result is in a close agreement with the simulation result obtained from 

Barghouthi model, where the density for O+ ions is smaller than that for H+ ions in the 

altitude range (4.5 – 7.8RE) as shown in Fig.(4.1). From Fig.(4.1) we note that the density 

for both O+ and H+ ions at 6RE equals to 1.1×10-4 and 2.5cm-3, respectively. Also, Yau et 

al. [2007] demonstrated from previous papers, at high altitude (~2 RE) outside the 

plasmasphere that the density of the polar wind ions was typically less than 103 cm-3. This 
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result is consistent with the results of Barghouthi model, which produce the density of O+ 

and H+ ions at 2RE to be about 13cm-3 and 100cm-3 respectively, which are less than 

103cm-3. 

 

At high altitude, the median electron density follows a power law relationship with 

geocentric altitude with a power law index of – 3.85, (i.e., neα Rα) where α = – 3.85±0.32, 

and the electron density ranges from ~35 to ~1 cm-3 when altitude ranges from 2.1 to 

4.66RE altitude, which cause an approximately linear increase in the polar wind ion 

velocity with geocentric altitude over (2.1 to 4.66RE) altitude range, Persoon et al. [1983]. 

On the other hand, Barghouthi model results show the increase of velocity for both O+ and 

H+ ions with geocentric altitude is approximately linear in the altitude range (2.1 to 

4.66RE), as shown in Fig.(4.3). This result is consistent with the observation obtained from 

different satellites. 

 

The O+ velocity increases from <1 km/s to a few km/s at high altitudes, Barakat and 

Schunk [1983]. This is consistent with simulation result from Barghouthi model, where the 

O+ velocity increases from 2.15 to 13km/s, when altitude varies from 1.7 to 5RE, owing to 

the effect of WPI and heating in the perpendicular directions.  

 

Also, the 16-moment models of Ganguli et al. [1987] and Demars and Schunk [1989] 

predicted that the velocity of the H+ polar wind ions was as large as 16 –20 km/s, at high 

altitudes. This result is agreement with the simulation results obtained from Barghouthi 

model, where the H+ velocity varies from 15 to 23.7km/s, when altitude varies from 1.7to 

8RE, and it is equal to 18km/s at 2.89RE, as shown in Fig.(4.3). 

 

Abe et al. [1993a] found that the observed ion velocity of all species of the polar wind to 

be highly variable in the altitude range (1.16 -2.58RE), this consistent with Barghouthi 

model results, where the O+ velocity varies from 2.2 to 2.3km/s, when altitude varies from 

1.7 to2.58RE. Also, the H+ velocity varies from 15.5 to 18km/s, when altitude varies from 

1.7 to2.58RE. Therefore, this agreement with observation, where the velocity of the polar 

wind ions is highly variable. This suggested significant upward O+ polar wind flow, 

contrary to classical polar wind theory predictions, and motivated the interest on the O+ 

component of the polar wind in the subsequent studies of Chandler [1995] and of Su et al. 

[1998]. Also, Abe et al. [1993a] demonstrated that the velocity of polar wind ions increases 
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with altitude, and it is related with the electron temperature at a given altitude. The effect 

of electron temperature on O+ polar wind flow studied by Barakat and Schunk [1983]. 

They assumed that the ambipolar electric field to be approximately proportional to the 

electron temperature (i.e. E// α − kTe α  ne, where Te is electron temperature and ne is 

electron density). As a result, they found that the O+ velocity, at high altitudes, increases 

from <1 km/s to a few km/s. This demonstrates the relationship between the magnitude of 

polar wind ion acceleration and that of the ambipolar electric field responsible for the 

acceleration. On the other hand, the results of Barghouthi model produce the O+ velocity 

increases almost monotonically with altitude as shown in Fig.(4.3), which increases from 

2.2 to 58km/s, when altitude varies from 1.7 to13.7RE. Also, the H+ velocity increases 

almost linearly with altitude as shown in Fig.(4.3), which increases from 16 to 50km/s, 

when altitude varies from 1.7 to13.7RE. So, the velocity of polar wind ions increases with 

altitude. On the other hand Barghouthi model explain the increases of the polar wind ions 

with altitude owing to the effect of WPI and heating in the perpendicular direction, 

especially for O+ ions (i.e. acceleration of ions). Another result concluded by Abe et al. 

[1993a] is that the O+ ions attain significant average upward velocity at higher altitudes 

compared with H+ and He+ ions. This results is excellent agreement with the simulation 

results obtained by Barghouthi model, where for example, the H+ velocity equal 17km/s at 

2RE, but the O+ velocity equal 2.2km/s at this altitude and its velocity becomes equal to 

17km/s at ~5.3RE. Therefore, the O+ ions attain significant average upward velocity at 

higher altitudes compared with H+ ions at low altitude, as shown in Fig.(4.3). 

 

In addition, Abe ea al. [1993a] used the data collected from Akebono satellite to confirm 

that the velocity for both O+ and H+ ions is approximately monotonic increases with 

altitude and for both polar wind ion species. The velocity on the dayside was significantly 

larger than that on the nightside. On the dayside, the average O+ velocity began to increase 

near 1.87RE, and reached a maximum of about 4 km/s near apogee. Comparing these 

results with the simulation results of Barghouthi model, Barghouthi model results are very 

close to these result as shown in Fig.(4.3), where the velocity of O+ ions increases 

monotonically with altitude, which increases from 2.2 to 58km/s, when altitude varies from 

1.7 to13.7RE. Also, the velocity of H+ ions increases monotonically with altitude, which 

increases from 15 to 50km/s, when altitude varies from 1.7 to 13.7RE. Also, the velocity of 

O+ ions begins to increase monotonically with altitude around 2.3RE, as shown in Fig.(4.3). 

Further more, the O+ ion velocity increases with altitude, Abe et al. [1993a, b, and 1996]. 
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On the other hand, the simulation result from Barghouthi model produce the velocity of O+ 

ions which increases monotonically with altitude as shown in Fig.(4.3), which increases 

from 2.2 to 58km/s, when altitude varies from 1.7 to13.7RE. So, the velocity of O+ polar 

wind ions increases with altitude. 

 

The velocity of the polar wind ions (i.e. O+ and H+) increases with altitude, Drakou et al. 

[1997]. Also, the simulation result from Barghouthi model produce the velocity of O+ ions 

increases monotonically with altitude as shown in Fig.(4.3), which increases from 2.2 to 

58km/s, when altitude varies from 1.7 to13.7RE. Also, the H+ velocity increases almost 

linearly with altitude as shown in Fig.(4.3), which increases from 15 to 50km/s, when 

altitude varies from 1.7 to13.7RE. So, the velocity of polar wind ions increases with 

altitude. The large velocities of the polar wind ions reflect to the continuous acceleration of 

the polar wind at very high altitudes due to a number of mechanisms, Su et al. [1998]. This 

agreement with the Barghouthi model results, where the velocity for both O+ and H+ ions is 

38 and 26km/s respectively, at 9RE. Also, their velocities at 13.7RE are 58 and 50km/s, 

respectively, which are very large velocities. In addition, Barghouthi model says that the 

acceleration of the polar wind ions to large velocities, at high altitude, owing to the effect 

of WPI mechanism and heating in the perpendicular direction. 

 

One of the important simulation results from Barghouthi model is the rate of increase of 

velocity larger at low altitudes and smaller at high altitudes. For example, the O+ velocity 

increases from 2.2 to 2.3km/s, when altitude varies from 2 to 3RE (i.e. low altitude), but at 

high altitude the O+ velocity increases from 26.9 to 30.9km/s, when altitude varies from 7 

to 8RE, which means the rate of increase of velocity larger at low altitudes, similarly for H+ 

ions, where the rate of increase of velocity larger at low altitudes, as shown in Fig.(4.3). 

This result of Barghouthi model is confirmed by Abe et al. [2004], where they concluded 

that the rate of increase of velocity larger at low altitudes and smaller at high altitudes for 

high the solar radio flux (i.e. in maximum solar activity). Also, Abe ea al. [2004] presented 

that, the velocity of O+ ions in the sunlit region remained below 1 km/s below 2.03RE but 

increased with altitude above this altitude. This result is consistent with the simulation 

results of Barghouthi model, where the velocity of O+ ions at 2.03RE is 2.2km/s and it 

increases monotonically with altitude above 2.03RE, as shown in Fig.(4.3). 
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Yau et al. [2007] concluded that; as the polar wind ions flow upward along “open” 

magnetic field lines of the Earth in the polar cap and dayside cusp poleward of the 

plasmasphere, they increases in both drift speed and temperature. This result is consistent 

with the simulation results of Barghouthi model, where the drift velocity of O+ ions 

increases with altitude as shown in Fig.(4.1), which increases from 6.5×10-4 to 45km/s, 

when altitude increases from 1.7 to13.7RE. Also, the drift velocity of H+ ions increases 

with altitude as shown in Fig.(4.1), which increases from 12 to 37km/s, when altitude 

increases from 1.7 to13.7RE. On the other hand, the temperature of O+ ions increases with 

altitude at all altitude, but for H+ ions it increases with altitude at high altitude (i.e. above 

~5RE), as shown in Fig.(4.2). 

 

From several observations obtained by many satellites such as POLAR, DE-1 and 

Akebono, Su et al. [1998] and Abe et al. [1993a], Yau et al. [2007] concluded that the 

velocity ratio between ion species of the polar wind spans a wide range of values, and on 

average lies between unity and the inverse square root mass ratio of the ions  

(i.e.1<v//(H+)/v//(O+) < [m(O+)/m(H+)]1/2 = 4). This suggests that the total ion acceleration 

produces from a number of processes and factors of comparable energy gain probably. 

simulation results from Barghouthi model yields that the parallel velocity ratio between H+ 

and O+, when altitude varies from1.7 to 7.4RE as, 1 < v//(H+) / v//(O+) < 10. This is 

agreement with the concluded result by Yau et al. [2007]. 

 

Nagai et al. [1984], Chandler et al. [1991],  Abe et al. [1993a], and Drakou et al. [1997] 

concluded that the polar wind ions are supersonic by the time they reach 2.1RE, and we 

obtained the velocity for both O+ and H+ ions to be equals to 2.2 and 16.9km/s at 2.1RE. So, 

they are supersonic ions by the time they reach this altitude, since their velocities at 2.1RE 

greater than their thermal velocities, where the thermal velocity for both O+ and H+ ions 

are 2.16 and 8.62km/s, respectively. This explain, owing to several factors contribute in the 

increasing of the polar wind ions with altitude such as, WPI and heating the perpendicular 

direction.  

 

In addition, Yasseen and Retterer [1991] model predicted the subsonic to supersonic 

transition altitude for the H+ polar wind ions (i.e. the sonic point) is typically near 1.24RE, 

the sonic point corresponds to a singularity in a system of moment equations, making its 

numerical solution intrinsically difficult to obtain in moment based polar wind models. 
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Simulation results from Barghouthi model yields that the velocity of H+ ions equals to 

15km/s (i.e. supersonic, since the thermal velocity of H+ ions is 8.62km/s) at 1.7RE, and 

above this altitude it increases with altitude, so the H+ ions is supersonic above 1.7RE and 

the sonic occur below 1.7RE, which consistent with Yasseen and Retterer [1991] model. 

 

Furthermore, Su et al. [1998] calculated the Mach number (i.e. the ratio of ion drift 

velocity over ion thermal velocity) for the polar wind ions by using the data obtained from 

POLAR satellite. They found the Mach number of H+ ranged from ~2 to 7, with an average 

of 4.6; and the Mach number of O+ ranged from ~1 to 8, with an average of 3.5. As a 

result, polar wind ion species are supersonic at POLAR apogee (i.e. 9RE). To be specific, 

Barghouthi model produced similar results to the observations of Su et al. [1998], where 

the velocity of both O+ and H+ ions is 27.3 and 25.9km/s, respectively, at 9RE, so both ions 

are supersonic at this altitude, since the thermal velocity for both O+ and H+ ions are 2.16 

and 8.62km/s, respectively. 

 

Su et al. [1998] concluded that H+ ion is supersonic, while O+ ion is subsonic at 1.8RE; and 

for H+ polar wind ion the perpendicular temperature exceeds the parallel temperature, this 

reflects to perpendicular ion heating of the polar wind plasma in the topside ionosphere. 

This is in a close agreement with the simulation results from Barghouthi model, where we 

calculated the velocity of both O+ and H+ ions at 1.8RE equals to 2.15 and 16km/s, 

respectively. So, H+ ions are supersonic, while O+ ions are subsonic, since the thermal 

velocity for both O+ and H+ ions are 2.16 and 8.62km/s, respectively. In addition, we 

confirmed that the perpendicular temperature higher than parallel temperature for H+ ions, 

where the parallel and perpendicular temperature of H+ ions at 1.8RE is 1100 and 3000k, 

respectively, owing to the WPI with the electromagnetic turbulence and heading in the 

perpendicular direction and this cause the acceleration of the polar wind ions to large 

velocities at high altitude. This mechanism (i.e. WPI) is suggested in Barghouthi model. 

Also, Su et al. [1998] demonstrated that the parallel to perpendicular temperature ratio is 

less than unity at low altitudes, which is equal to 0.52 for H+ and 0.55 for O+ at 1.8RE. On 

the other hand, at high altitude it more than unity. This results is consistent with the 

simulation results from Barghouthi model. We obtain the following results: the parallel to 

perpendicular temperature for both O+ and H+ ions equal to 0.8 at 2.5RE, were it is less 

than unity at low altitude for both ions. Another result is the parallel to perpendicular 

temperature ratio is about 0.37 for H+ at 1.8RE, which agreement with the observation 
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results with the same scale. Also, for O+ ions the parallel to perpendicular temperature ratio 

is about 0.95 for at 1.8RE, and this result is agreement with observation with the same 

scale. Finally, the parallel to perpendicular temperature ratio exceeds unity for H+ ions 

between 2.7RE and 6.6RE (i.e. high altitude), which is equal to 4 at 4.9RE , as shown in 

Fig.(5.3), where this results consistent with observations. 

 

The observed parallel to perpendicular temperature ratio from POLAR satellite of the polar 

wind ion species was significantly different at the perigee (i.e.5000km or 1.8RE) and 

apogee (i.e. 50500km or 9RE) of the POLAR satellite. Su et al. [1998] calculated the ratio 

of the averaged parallel to perpendicular temperature to be ~ 0.46, and 0.58 for H+ and O+, 

respectively, at POLAR perigee. Also, they concluded that the perpendicular to parallel 

temperature ratio for H+ decreasing with altitude in the altitude range (1.79 -1.95RE) 

presumably reflects the conversion of perpendicular to parallel ion energy along the 

diverging magnetic field line owing to conservation of the first adiabatic invariant. These 

observations obtained from the POLAR satellite are agreement with the simulation results 

calculated by using Barghouthi model in polar wind region. These results include: First, 

the parallel to perpendicular temperature ratios for O+ ions at 1.8RE and 9RE are 1 and 

0.02, respectively. Also, for H+ ions the ratios are 0.37 at 1.8RE and 0.0625 at 9RE, 

therefore the ratio of both ions was significantly different at the two altitudes (i.e. at the 

POLAR apogee and perigee). Second, the parallel to perpendicular temperature ratio is 

about 0.37 for H+ at 1.8RE. It is very consistent with the ratio obtained from observation, 

which equal to 0.37 at the same altitude. Third, the parallel to perpendicular temperature 

ratio is about 0.95 for O+ at 1.8RE, which is with the same order with the ratio calculated 

from observation. Forth, the averaged perpendicular to parallel temperature ratio for H+ 

decreasing with altitude in the altitude range (1.7 -5RE) as shown in Fig.(5.2), owing to the 

conservation of the first adiabatic invariant, which cause conversion of perpendicular to 

parallel ion energy along the diverging magnetic field line and additional ion acceleration 

or heating along the field line such as WPI and heating in the perpendicular directions, due 

the presence of the electromagnetic turbulence. 

 

Moreover, the composition ratios of parallel and perpendicular temperatures between the 

polar wind ion species are of interest. Su et al. [1998] observed O+/H+ parallel temperature 

ratio to be about 4.6 at 1.87RE, while the corresponding perpendicular temperature ratio is 

about 3.4 at 1.87RE. Therefore, the O+ ions have a higher temperature than the H+ ions in 
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both the parallel and perpendicular directions. These observations are in close agreement 

with the simulation results of Barghouthi model, where we calculated the O+/H+ parallel 

temperature ratio at 1.87RE to be ~ 3.52 and the O+/H+ perpendicular ratio at 1.87RE is 

about ~2 and at 2.5RE ~ 3.4, which is very close to the corresponding value observation. 

This means that, the parallel and perpendicular temperature of O+ ions greater than that of 

H+
 ions at all altitude as shown in Fig.(4.1). 

 

In the 13-moment of Schunk and Watkins [1981,1982] model, the parallel H+ ion 

temperature at high altitudes was greater than the perpendicular temperature. This is 

consistent with the results obtained from Barghouthi model, where the parallel to 

perpendicular temperature ratio exceeds unity for H+ ions between 2.7RE and 6.6RE (i.e. 

high altitude), which is equal to 4 at 4.9RE. Also, Barghouthi result consistent with the 16-

moment models of Ganguli et al. [1987] and Demars and Schunk [1989] resulting in, the 

parallel H+
 ion temperature was greater than the perpendicular temperature between 2.7 

and 6.6RE (i.e. above the collision dominated region; above 1.7RE). 

 

In the Tam et al. [1995] model, they predicted that the perpendicular temperature 

comparable to the parallel temperature at high altitudes. This result consistent with the 

simulation results of Barghouthi model where the parallel to perpendicular temperature 

ratio is about one for O+ at 1.7RE, but for H+ ions the ratio is about one at 2.7RE and at 

6.6RE, (i.e. high altitude). So at these geocentric altitude Tam et al. [1995] model is 

consistent with Barghouthi model. 

 

Schunk and Watkins [1982] and Demars and Schunk [1987a, 1995] models predicted that 

the temperature anisotropy increases with altitude at high altitudes for the polar wind ions. 

Also, Barghouthi model produces the same results, where the temperature anisotropy for 

O+ ions increases with altitude. Also, for H+ ions the anisotropy is increases with altitude, 

except at 2.7RE and 6.6RE, where there is no anisotropy (i.e. the perpendicular temperature 

equal to the parallel temperature), as shown in Fig.(5.2). 

 

Most models predict that the perpendicular temperature is decreasing with altitude, while 

the parallel temperature is less dependent on altitude, Drakou et al. [1997]. On the other 

hand, the simulation results of Barghouthi model are agreement with the above results, 

where the perpendicular temperature of H+ ions decreases with altitude in the geocentric 
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altitude (1.7RE – 4.9RE) as shown in Fig.(4.1), and the parallel temperature of H+ ions is 

not varying significantly with altitude, which varies from 0.07 to 0.05eV when altitude 

increases from 2RE to 10RE as shown in Fig.(4.1). In addition, for O+ ions the parallel 

temperature varies from 0.95 to 1.9eV, when altitude increases from 6RE to 13.7RE as 

shown in Fig.(4.1). Therefore, the parallel temperature for both O+ and H+ ion is 

significantly variable with altitude. When plasma reached altitudes 5RE or above, it 

developed large temperature anisotropy (i.e. the parallel temperature greater than the 

perpendicular temperature, Persoon et al. [1983] and Biddle et al. [1985]. Also, Barghouthi 

model produces results that agreement with these results such as, the parallel temperature 

exceeds the perpendicular temperature for H+ ions between 2.7RE and 6.6RE, where the 

parallel to perpendicular temperature ratio equal to 4 at 4.9RE, (i.e. it develops large 

temperature anisotropy). 

 

Drakou et al. [1997] demonstrated that the parallel to perpendicular temperature ratio was 

in the range                                   by using data from Akebono. This result is consistent 

with the simulation result from Barghouthi model, where the parallel to perpendicular 

temperature ratio of H+ ions is                                 , when altitude changes from 1.7 to 

4.9RE. In addition, Drakou et al. [1997] and Su et al. [1998]  concluded that the 

temperature of polar wind ions is generally low, and is in the range of 0.05–0.35eV when 

altitude varies between 2.1 and 2.58RE, which consistent with the results of Barghouthi 

model, where the temperature of O+ ions varies from 0.26 to 57eV, when the altitude 

changes from 1.7 to13.7RE. Also, for H+ ions the temperature varies from 0.2 to 3.9eV, 

when the altitude changes from 1.7RE to13.7RE and the temperature at 5.3RE equals 10 and 

0.03 eV for O+ and H+ ions, respectively. Therefore, the polar wind ions temperature is 

generally low. In addition, the temperature of O+ ions varies from 0.26 to 0.265eV, when 

the altitude changes from 2.1RE to2.58RE. Also, for the temperature of H+ ions varies from 

0.11 to 0.07eV, when the altitude changes from 2.1 to2.58RE, which is in the observation 

range for temperature 0.05–0.35eV. 

 

At the POLAR apogee (i.e. 9RE) and perigee (i.e. at 1.8RE), O+ ions has a higher 

temperature than H+ ions, and the observed temperature of both polar wind species is 

higher than that from polar wind model predictions, Su et al. [1998]. On the other hand, 

this result is consistent with the simulation results from Barghouthi model, where the 

temperature for both O+ and H+ ions at 1.8RE equals to 0.26 and 0.18eV, respectively, and 
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at 9RE it equal to 36eV for O+ and 0.5eV for H+, as shown in Fig.(4.2). Therefore, the 

temperature of O+ ions exceeds the temperature of H+ ions at all altitudes. 

 

Drakou et al. [1997], concluded that the temperature of the polar wind ions (i.e. O+ and H+) 

is little dependence on altitude. On the other hand, Barghouthi model produces the 

temperature of O+ ions which varies from 0.26 to 0.265eV, when the altitude changes from 

1.7 to 2.58RE. Also, for H+ ions it varies from 0.2 to 0.08eV, when the altitude changes 

from 1.7 to 2.58RE. So, the polar wind ions temperature did not vary significantly with 

altitude. 

 

Yau and André. [1997] classified outflows, which occur in the polar ionosphere into two 

groups: bulk ion flows with energies up to a few eV, such as the polar wind, and energetic 

ion outflows. The energy of the H+ ions, which calculated from Barghouthi model varies 

from 0.3 to 6eV, when the altitude changes from 1.7 to13.7RE. But for the O+ ions it varies 

from (0.38 to 105eV), when the altitude changes from 1.7 to13.7RE. From these results, we 

note that the energies are few eV for H+ for all altitude, but the energies are few eV for O+ 

ions at low altitude only. 

 

In the model of Lemaire and Scherer [1972a], a monotonic potential energy altitude profile 

was assumed for each polar wind ion species. The species are divided into four trajectory 

types: ballistic, escaping, trapped, and incoming. All four trajectory types are allowed for 

particles such as O+ ions that have positive potential energies (i.e. electric plus 

gravitational) above the baropause, but only escaping and incoming trajectories are 

possible for particles such as H+ ions that have monotonically decreasing potential 

energies. To be specific, Barghouthi model produces simulation results which is consistent 

with the results obtained in the model of Lemaire and Scherer [1972a] as shown in 

Fig.(5.1) for both O+ and H+ ions. From this Fig.(5.1), we note that the potential energy of 

O+ ions is positive and increasing with altitude. On the other hand, the potential energy for 

H+ ions is negative and almost linearly decreasing with altitude. 

 

Barghouthi model produces, the O+ and H+ ions distributions above 1.7RE, which is not 

Maxwellian, but they  become  conic distributions at some altitude and then they become 

toroidal distributions at higher altitude, this occur owing to temperature anisotropy, which 

results from different factors such as the effect of WPI and pressure cooker effect. These 
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results are agreement with the results obtained by Drakou et al. [1997]. They concluded 

that the actual ion distributions are not maxwellian due to higher energy tail component 

drifting at higher velocity. 

 

Finally, the H+ distribution close to Maxwellian distribution at low altitudes (~ 1.7RE) by 

using the semi-kinetic model, Barakat and Schunk [1983]. To be specific, the simulation 

results from Barghouthi model obtained consistent results, where the distribution of the H+ 

ions is Maxwellian at low altitudes (i.e. 1.7RE) by using the Barghouthi model. 

 

We can conclude that Barghouthi model is an excellent model in the polar wind region, 

since it produces acceptable simulation results when compared qualitatively to the 

corresponding observations. So far, Barghouthi model is the best model that produces 

simulation results when compared to the corresponding observations from different 

satellite. 

 

We summarized the Barghouthi model predictions (i.e. the simulation results of 

Barghouthi model) and experimental verification (i.e. observations) in Tables (5.1-A, B, C, 

D, E, F) as shown below. 

 

Table 5.1-A: Barghouthi Model Predictions and Experimental Verification 
 
 

Barghouthi Model Predictions Experimental Verifications 
The density of O+ and H+ ions at 2RE are 
13cm-3 and 100cm-3 respectively, which 

are less than 103cm-3. 

1. At high altitude (~2 RE) outside the 
plasmasphere, the plasma density is 
typically below 103cm-3.   
[Yau et al., 2007] 

The density of O+ and H+ ions at 1.95RE 
are 20 and 110cm-3, respectively. Also, at 

2.1RE the density are 3.2 and 79cm-3 
respectively, and above 1.7RE the H+ ions 

is the dominant as shown in Fig.(4.1). 

2. The polar wind is dominated in density 
by O+ ions up to at least 1.63RE and 
perhaps 1.95 –2.1RE. 
[Hoffman and Dobson,1980] 
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Table 5.1-B: Barghouthi Model Predictions and Experimental Verification 
 

The density for both O+ and H+ ions at 
9RE equals to 6*10-5 and 0.7cm-3, 

respectively. Therefore, the density for 
both ions is very low at this altitude. 

3. The polar wind plasma density is very 
low (typically <10cm-3) near 9RE.  
[Moore et al.,1995]  
 

The density ratio between the H+ and O+ 
ions at 2RE is 

n(H+) : n(O+) ~ 1 : 0.1 
 

4. The correlation between the densities 
of the O+ and H+ ions on average are: 
n(H+) : n(O+)  ~ 1 : 0.17 
[Su et al.,1998]  

The densities of O+ and H+ ions at 9RE 
are 1.6*10-5 and 0.7cm-3, respectively. So, 

at this altitude H+ ion is the dominated 
species, as shown in Fig.(4.1).  

5. The polar wind is dominated by H+ 
ions at 9RE. 
[Su et al.,1998]  

The density for O+ ions is smaller than 
that for H+ ions in the altitude range(4.5 – 

7.8RE), as shown in Fig.(4.1).  

6. O+ density is an order of magnitude 
smaller than the H+ density in the 
geocentric altitude (4.5 –7.8RE). 
[Elliott et al.,2001]  

Above 1.7RE H+ is the major ion, as 
shown in Figure (4.1). The density of O+ 
and H+ ions at 2.18RE is 1.4 and 59cm-3, 
respectively. So, above 2.18RE the H+ is 

the dominant ion. 

7. The transition from dominant O+ at 
low altitudes to dominant H+ at high 
altitudes is expected to occur between 
1.63 and 2.18RE, depending on the 
neutral hydrogen density. 
[Abe et al., 1993a]  

The O+ velocity varies from  
2.2 to 2.3km/s, when altitude varies from 

1.7 to 2.58RE. Also, the H+ velocity 
varies from 15.5 to 18km/s, when altitude 
varies from 1.7 to 2.58RE. Therefore, the 
velocity of the polar wind ions is highly 

variable in this altitude range. 

8. The observed ion velocity of all polar 
wind species is highly variable in the 
altitude range (1.16 -2.58RE).  
 [Abe et al., 1993a]  
 

The velocity for both O+ and H+ ions is  
38 and 26km/s respectively, at 9RE. Also, 

their velocities at 13.7RE are 58 and 
50km/s, respectively, which are very 

large velocities. 

9. At very high altitudes (above ~9RE), 
the polar wind ions have large velocities.  
[Su et al.,1998] 
 

The drift velocity of O+ ions increases 
with altitude as shown in Fig.(4.1), which 
increases from 6.5*10-4 to 45km/s, when 

altitude increases from 1.7 to13.7RE. 
Also, the drift velocity of H+ ions 

increases with altitude as shown in 
Fig.(4.1), which increases from 12 to 

37km/s, when altitude increases from 1.7 
to13.7RE. 

10. As the polar wind ions flow upward, 
increase in drift speed of the polar wind 
ions. 
[Yau et al., 2007] 
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Table 5.1-C: Barghouthi Model Predictions and Experimental Verification 

The O+ velocity increases almost 
monotonically with altitude as shown in 

Fig(4.3), which increases from 2.2 to 
58km/s, when altitude varies from 1.7 

to13.7RE. Also, the H+ velocity increases 
almost linearly with altitude as shown in 

Fig.(4.3), which increases from 16 to 
50km/s, when altitude varies from 1.7 

to13.7RE. So, the velocity of polar wind 
ions increases with altitude. 

11. On average, the velocity of polar 
wind ions increases with altitude. 
[Abe et al., 1993a]  
 

The O+ velocity increases from  
5 to 14km/s, when altitude varies from 4 

to 5RE (i.e. low altitude), but at high 
altitude the O+ velocity increases from 
34.5 to 37.5km/s, when altitude varies 

from 8 to 9RE, which means the rate of 
increases of velocity larger at low 

altitudes, as shown in Fig.(4.3).  

12. The rate of increase of velocity of 
polar wind ions larger at low altitudes 
and smaller at high altitudes.  
[Abe et al., 2004]  
 

The H+ velocity equal 17km/s at 2RE, but 
the O+ velocity equal 2.2km/s at this 

altitude and its velocity becomes equal to 
17km/s at (~5.3RE). Therefore, the O+ 
ions attain significant average upward 
velocity at higher altitudes Compared 

with H+ ions at low altitude, as shown in 
Fig.(4.3).   

13. O+ ions attain significant average 
upward velocity at higher altitudes 
Compared with H+ ions below 2.58RE. 
 [Abe et al., 1993a]  
 

The increase of velocity for both O+ and 
H+ ions with geocentric altitude is 

approximately linear in the altitude range 
(2.1 to 4.66RE), as shown in Fig.(4.3). 

14. Linear increase in the polar wind ion 
velocity with geocentric distance over 
(2.1 to 4.66RE) altitude range. 
 [Persoon et al., 1983] 
 

The velocity of O+ increases 
monotonically with altitude as shown in 

Fig.(4.3), which increases from 2.2 to 
58km/s, when altitude varies from 1.7 

to13.7RE. Also, the velocity of H+ 
increases with altitude as shown in 

Fig.(4.3), which increases from 15 to 
50km/s, when altitude varies from 1.7 to 

13.7RE. 

15. The velocity for both O+ and H+ ions 
is (approximately) monotonic increases 
with altitude. 
 [Abe ea al., 1993a] 
 

The velocity of O+ begins to increase 
monotonically with altitude around 2.3RE 

as shown in Fig.(4.3). 

16. The averaged O+ velocity begins to 
increase near 1.8RE. 

 [Abe ea al., 1993a] 
The velocity of O+ ions at 2.03RE is 
2.2km/s and it increases monotonically 
with altitude above 2.03RE, as shown in 
Fig.(4.3). 

17. The velocity of O+ ions is increasing 
with altitude above 2.03RE. 
[Abe ea al., 2004]  
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Table 5.1-D: Barghouthi Model Predictions and Experimental Verification 

The velocity of O+ ions increases 
monotonically with altitude as shown in 

Fig.(4.3), which increases from 2.2 to 
58km/s, when altitude varies from 1.7 

to13.7RE. Also, the H+ velocity increases 
almost linearly with altitude as shown in 

Fig.(4.3), which increases from 15 to 
50km/s, when altitude varies from 1.7 

to13.7RE. So, the velocity of polar wind 
ions increases with altitude. 

18. The velocity of the polar wind ions 
(i.e. O+ and H+) increases with altitude. 
[Drakou et al., 1997]. 
 

The velocity of O+ ions increases 
monotonically with altitude as shown in 

Fig.(4.3), which increases from 2.2 to 
58km/s, when altitude varies from 1.7 
to13.7RE. So, the velocity of O+ polar 

wind ions increases with altitude. 

19. The O+ ion velocity increases with 
altitude. 

[Abe et al.,1993a,b, and 1996] 
 

The parallel velocity ratio between H+ 
and O+ ions, when altitude varies from1.7 

to 7.4RE.  
1 < v//(H

+) / v//(O
+) < 10. 

Therefore, this ratio spans wide range.  

20. The velocity ratio between ion 
species spans a wide range of values, and 
on average:   
1 < v//(H

+) / v//(O
+) < [m(O+)/m(H+)]1/2 =4 

 [Su et al.,1998] and [Abe et al., 1993a]  
The parallel velocity ratio between the H+ 

and O+ ions at 5RE is 
v//(H+) :  v//(O+) ~ 1 : 0.31 

21. The correlation between the parallel 
velocities of the O+ and H+ ions on 
average is 
 v//(H+) :  v//(O+)  ~ 1 : 0.38  
[Su et al.,1998] 

The velocity for both O+ and H+ ions 
equals to 2.2 and 16.9km/s at 2.1RE. So, 
they are supersonic ions by the time they 

reach this altitude, since the thermal 
velocity for both O+ and H+ ions are 2.16 

and 8.62km/s, respectively.  

22. The polar wind ions are supersonic by 
the time they reach 2.1RE.  
 [Chandler et al., 1991] [Nagai et 
al.,1984] [Abe et al., 1993a]. 

The velocity of both O+ and H+ ions is 
27.3 and 25.9km/s, respectively, at 9RE. 

So, they are supersonic at this altitude, 
since the thermal velocity for both O+ and 

H+ ions are 2.16 and 8.62km/s, 
respectively. 

23. The polar wind ions are supersonic at 
9RE.  
[Su et al.,1998]  
 

The velocity of both O+ and H+ ions at 
1.8RE equals to 2.15 and 16km/s, 
respectively. So, H+ ions are supersonic, 
while O+ ions are subsonic, since the 
thermal velocity for both O+ and H+ ions 
are 2.16 and 8.62km/s, respectively. 

24. At 1.8RE, H+ ions are supersonic, 
while O+ ions are subsonic. 
[Su et al.,1998]  
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Table 5.1-E: Barghouthi Model Predictions and Experimental Verification 

The velocity for both O+ and H+ ions at 
2.1RE equals to 2.2 and 16.9km/s, 

respectively. In addition, the velocity for 
both ions increases with altitude. So, they 
are supersonic, since the thermal velocity 

for both O+ and H+ ions are 2.16 and 
8.62km/s, respectively.  

25. The polar wind species are supersonic 
above 2.1RE.  

[Drakou et al., 1997]  
 

The velocity of H+ ions equals to 15km/s 
at 1.7RE and above this altitude its 

velocity increases with altitude. So the H+ 
ions is supersonic above 1.7RE, since its 

thermal velocity equals to 8.62km/s.  

26. The H+ polar wind ion is supersonic 
at high altitude.  

[ Nagai et al.,1984]  
 

The parallel to perpendicular temperature  
ratio for both O+ and H+ ions equal to 0.8 

at 2.5RE, where the parallel to 
perpendicular temperature ratio for O+ 

ions less than unity at all altitude, but for 
H+ ions it is less than unity in the altitude 

ranges (1.7 -2.7RE) and (6.6 -13.7RE). 
Therefore at low altitude the parallel to 
perpendicular temperature ratio is less 

than unity.   

27. The parallel to perpendicular 
temperature ratio is less than unity at low 
altitudes for the polar wind ions. 
[Su et al.,1998] 
 

The parallel to perpendicular temperature 
ratios for O+ ions at 1.8RE and 9RE are 1 
and 0.02, respectively. Also, for H+ ions 

the ratios are 0.37 at 1.8RE and 0.0625 at 
9RE. Therefore, the ratios of both ions are 
significantly different at the two altitudes.  

28. The parallel to perpendicular 
temperature ratio of the O+ and H+ ions is 
significantly different at two altitudes 9 
and 1.8RE. 
[Su et al.,1998]  
 

The perpendicular to parallel temperature 
ratio for H+ is decreasing with altitude 
from 1.7 to 5RE as shown in Fig.(5.2).  

29. The averaged perpendicular to 
parallel temperature ratio for H+ is 

decreasing with altitude in the altitude 
range (1.79 -1.95RE).  

[Su et al.,1998]  
The O+/H+ parallel temperature ratio at 
1.87RE is  
<T// (O+) /T// (H+)> ~ 3.52  

30. The O+/H+ parallel temperature ratio, 
<T// (O+) /T// (H+)> ~ 4.6 at 1.87RE. 

 [Su et al.,1998]  
The O+/H+ perpendicular temperature 

ratio at 1.87RE is <T⊥(O+) /T⊥(H+)> ~ 2, 

and at 2.5RE is <T⊥(O+) /T⊥(H+)> ~ 3.4. 
 

31. The O+/H+ perpendicular temperature 

ratio is <T⊥(O+) / T⊥(H+)> ~ 3.4 at 1.87RE.  

[Su et al.,1998] 

The parallel and perpendicular 
temperature of O+ ions are greater than 

that of H+
 ions at all altitudes, as shown in 

Fig.(4.1). 

32. The O+
 ions have a higher 

temperature than the H+
 ions in both the 

parallel and perpendicular directions. 
[Su et al.,1998] 
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Table 5.1-F: Barghouthi Model Predictions and Experimental Verification 

The parallel and perpendicular 
temperature of H+ ions at 1.8RE is 1100 
and 3000k, respectively, where the 
perpendicular temperature higher than 
parallel temperature for H+ ions. 

33. The perpendicular temperature 
exceeds the parallel temperature for H+ 
ions at 1.8RE. 
[Su et al.,1998] 

The temperature of O+ ions varies from 
0.26 to 0.265eV, when the altitude 

changes from 2.1RE to2.58RE. Also, for 
the temperature of H+ ions varies from 

0.11 to 0.07eV, when the altitude changes 
from 2.1RE to2.58RE. Therefore, the 

temperature of the polar wind ions is low 
in this altitude range. 

34. The temperature of polar wind ions is 
generally low and it is in the range of 
0.05 – 0.35 eV between 2.1and 2.58RE. 
[Drakou et al.,1997] and [Su et al.,1998]  
 

The temperature for both O+ and H+ ions 
at 1.8RE equals to 0.26 and 0.18eV, 

respectively, and at 9RE it equals to 36eV 
for O+ and 0.5eV for H+. Therefore, the 

temperature of O+ ions exceeds the 
temperature of H+ ions at both altitudes, 

as shown in Fig.(4.2).  

35. O+ ions have a higher temperature 
than H+ ions, at 1.8 and 9RE. 
[Su et al.,1998]  

 

The temperature of O+ ions varies from 
0.26 to 0.265eV, when the altitude 

changes from 1.7 to 2.58RE, also for H+ 
ions it varies from 0.2 to 0.08eV, when 

the altitude changes from 1.7 to 2.58RE. 
So the polar wind ions temperature did 

not vary significantly with altitude. 

36. The temperature of the polar wind 
ions (i.e. O+ and H+) is little dependence 
on altitude.  
[Drakou et al., 1997]. 
 

The temperature of O+ ions increases 
with altitude at all altitude, but for H+ 
ions it increases with altitude at high 

altitude (i.e. above ~5RE), as shown in 
Fig.(4.2).  

37. As the polar wind ions flow upward, 
increases in temperature of the polar wind 
ions. 
[Yau et al., 2007] 
 

The energy of the H+ ions varies from 
0.31 to 5.8eV, when the altitude changes 
from 1.7 to 13.7RE, but for the O+ ions it 

varies from 0.39 to 105eV, when the 
altitude changes from 1.7 to13.7RE. 

38. Polar wind ion flows with energies up 
to a few eV.  
[Yau and André,1997]  
 

 
 

We also summarized the simulation results from different models that consistent with 

Barghouthi model predictions in Table (5.2-A, B, C) as shown below. 
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Table 5.2-A: Barghouthi Model Predictions and simulation results Verification 

Barghouthi Model Predictions Simulation result Verifications 
The density for O+ ions is smaller than 

that for H+ ions above 1.7RE, where the 
density for both O+ and H+ ions at 1.87RE 

equals to 19 and 120cm-3, respectively. 
So, the H+ ion is the major species above 

1.87RE, as shown in Fig.(4.1).  

1. The transition from O+ to H+, as the 
major ion species, occurs above 1.87RE.  

[Lemaire and Scherer,1971]  
 

The density of H+ ions is decreasing 
almost linearly with increasing altitude as 
shown in Fig.(4.1), which decreases from 

180 to 25cm-3 when altitude increases 
from 1.7 to 3RE. Also, it is deceased to 

0.13 at 13.7RE, where the H+ ions above 
1.7RE are supersonic, since the H+ 

velocity greater than its thermal velocity 
above 1.7RE. 

2. In the supersonic case, the H+
 density is 

decreasing with increasing altitude. 
[Demars and Schunk,1994] 

 

The H+ velocity varies from 15 to 
23.7km/s, when altitude varies from 1.7 

to 8RE, and it is equal to 18km/s at 
2.89RE, as shown in Fig.(4.3).  

3. The predict ions velocity is as large as 
16 –20 km/s at high altitude (~2.89RE).  

[Ganguli et al, 1987] and [Demars and 
Schunk, 1989].  

The O+ velocity increases from  
2.15 to 13km/s, when altitude varies from 

1.7 to 5RE.  

4. The O+ velocity increases from <1 
km/s to a few km/s at high altitudes. 
[Barakat and Schunk,1983]  

The velocity of H+ ions equals to 15km/s 
(i.e. supersonic) at 1.7RE and above this 
altitude it increases with altitude. Since 

the thermal velocity of H+ ions is 
8.62km/s, so the H+ ions is supersonic 

above 1.7RE. Therefore, the sonic point 
occurs below 1.7RE.  

5. The subsonic to supersonic transition 
altitude for the H+ polar wind (i.e. the 
sonic point) is typically near 1.24RE. 
[Yasseen and Retterer,1991] 
 

The parallel to perpendicular temperature 
ratio exceeds unity for H+ ions between 

2.7 and 6.6RE (i.e. high altitude), which is 
equal to 4 at 4.9RE. 

6. The parallel H+ ion temperature at high 
altitudes is greater than the perpendicular 
temperature.  
[Schunk and Watkins, 1981, 1982]  

The parallel to perpendicular temperature 
ratio exceeds unity for H+ ions between 

2.7 and 6.6RE (i.e. above the collision 
dominated region, were it is less than 

1.7RE), where the ratio equal to 4 at 
4.9RE. 

7. The parallel H+ ion temperature is 
greater than the perpendicular 
temperature above the collision 
dominated region. 
[Ganguli et al, 1987] and [Demars and 
Schunk, 1989].  

The parallel to perpendicular temperature 
ratio is about one for O+ at 1.7RE, but for 

H+ ions the ratio is about one at two 
altitudes 2.8 and 6.6RE, (i.e. high 

altitude).  

8. The perpendicular temperature 
comparable to the parallel temperature 

occurs at high altitudes. [Tam et al., 
1995]  
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Table 5.2-B: Barghouthi Model Predictions and simulation results Verification 

The temperature anisotropy for O+ ions 
increases with altitude. Also, for H+ ions 
the anisotropy is increases with altitude, 

except at 2.8RE and 6.6RE, where there is 
no anisotropy (i.e. The perpendicular 

temperature equal to the parallel 
temperature), as shown in Fig.(5.2).  

9. The temperature anisotropy increases 
with altitude at high altitudes. 

[Schunk and Watkins, 1982;Demars and 
Schunk,1987a,1995] 

 

The perpendicular temperature of H+ ions 
decreases with altitude in the geocentric 

altitude (1.7 – 4.9RE), where the effect of 
WPI is negligible and the ions in this 

range are dominated by the effect of the 
perpendicular adiabatic cooling.  

10. Most models predict that the 
perpendicular temperature is decreasing 

with altitude at low altitude.  
[Drakou et al., 1997] 

The parallel temperature of H+ ions is not 
varying significantly with altitude, which 
varies from 0.07 to 0.05eV when altitude 
increases from 2 to 10RE. In addition, for 

O+ ions it varies from 0.95 to 1.9eV, 
when altitude increases from 6 to 13.7RE. 

Therefore the parallel temperature for 
both O+ and H+ ion is significantly 
variable with altitude as shown in 

Fig.(4.1). 

11. Most models predict that the parallel 
temperature is less dependent on altitude. 

[Drakou et al., 1997] 

The parallel temperature exceeds the 
perpendicular temperature for H+ ions 

between 2.8 and 6.6RE, where the parallel 
to perpendicular temperature ratio equal 

to 4 at 4.9RE, (i.e. it develops large 
temperature anisotropy). 

12. When plasma reach altitudes 5RE or 
above, it develop large temperature 

anisotropy (i.e. the parallel temperature 
greater than the perpendicular 

temperature).  
[Persoon et al., 1983; Biddle et al., 1985]. 

The potential energy for O+ ions is 
positive and increasing with altitude, but 

the potential energy of H+ ions is negative 
and almost linearly decreasing with 

altitude as shown in Fig.(5.1).  

13. O+ ions have positive potential 
energies (i.e. electric plus gravitational) 
above the baropause. In contrast, H+ ions 
have monotonically decreasing potential 
energies with altitude. 

[Lemaire and Scherer,1972a] 
 

We can conclude that Barghouthi model is an excellent model in the polar wind region, 

since it produces acceptable simulation results when compared quantitatively and 

qualitatively to the corresponding observations. So far, Barghouthi model is the best model 

that produces simulation results when compared to the corresponding observations. In 

addition, Barghouthi model is also the best model that can be used in the aurora region, 

since it produces simulation results when compared to the corresponding observations, 

[Barghouthi, 2008]. This close agreement between the simulation results and observations 
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provides and evidence that Barghouthi model described in this thesis is appropriate to be 

used when modeling the heating of ions through the wave particle interaction in the polar 

wind region. 

 

The most important result in this study is that the wavelength of the electromagnetic 

turbulence equals 8km, since the simulation results of Barghouthi model represent the 

closest results to the observations, which are obtained from different satellites. We can 

apply this model (i.e. Barghouthi model), that produces consistent simulation results when 

compared to the corresponding observations, on the solar wind, since it is "similar" to the 

polar wind with different boundary conditions. 

 

5.2 Summary and conclusion 

 

A Monte Carlo technique was used in order to study the effect of wave particle interaction 

(i.e. altitude and velocity dependent) on the H+ and O+ ions outflow at high altitudes and 

high latitudes in the polar wind region. This technique also includes the effects of body 

forces (i.e. gravity and polarization electrostatic field) and divergence of magnetic field of 

the Earth. The effects of wave particle interaction on the H+ and O+ ions outflows (i.e. the 

ions perpendicular heating and acceleration of the ions in the upward direction, owing to 

the conservation of the first adiabatic invariant) was modeled, developing a form for the 

perpendicular diffusion coefficient ),( ⊥⊥ vrD as a function of the position )( ERr  along 

the magnetic field lines of the Earth and perpendicular velocity )( ⊥v . In this study, the 

Monte Carlo simulation was run for Barghouthi model, where the perpendicular diffusion 

coefficient ),( ⊥⊥ vrD is given in equation (2.26), and in each simulation we used 107 tested 

ions in order to compute the ion distribution function and also compute the profiles of its 

velocity moments (i.e. density, drift velocity, parallel temperature, and perpendicular 

temperature) for both H+ and O+ ions. The boundary conditions selected for polar wind 

region are similar to those of [Barghouthi et al., 1998], with the effect of body forces, 

divergence of magnetic field, and WPI. 

 

As a result, we have found that: 
1) The temperature anisotropy )( TT⊥  for H+ ions was reduced at lower altitudes, 

but it is reversed ( )(H    )(H ++
⊥ > TT  at higher altitudes. On the other hand, the 
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temperature anisotropy )( TT⊥  for O+ ions increases with altitude at low 

altitude, and at high altitude it's average value is (~53), where 

)(O    )(O( ++
⊥ > TT for all altitudes. 

2) The O+ and H+ velocity distribution functions [i.e. )( +Of and )( +Hf ] develop 

conic features, owing to the effect of WPI (i.e. the ion perpendicular heating) and 

mirror force (i.e. diverging of the magnetic field), were the perpendicular 

temperature becomes greater than the parallel temperature. The O+ ions develop 

conic features at (~ ER27.4 ), while the H+ ions develop the conic features at 

(~ ER1.11 ), for the perpendicular electromagnetic turbulence ( km8=⊥λ ). 

3) Above a certain point, called saturation point, the effect of altitude- and velocity-

dependent WPI is the dominant and the ion heating becomes self-limiting. The 

saturation point for H+ ions occurs at (~ ER10.5 ), while for O+ ions occurs at 

(~ ER5.97 ), for the perpendicular electromagnetic turbulence ( km8=⊥λ ). 

4) The O+ ion is preferentially heated comparing with H+ ion, where the temperature 

of O+ ion higher than that of H+ ion at all altitude. This is owing to the potential 

energy of the H+ ions is negative and decreasing with altitude, while the potential 

energy for O+ ions is positive and monotonically increasing with altitude, in 

addition, the diffusion coefficient of O+ ions )( +
⊥ OD greater than the diffusion 

coefficient of H+ ions )( +
⊥ HD . 

5) The O+ ions are heated more efficiently than the H+ ions at low altitudes due to 

pressure cooker effect. 

 

As the polar wind ions heated in the perpendicular direction, they moved in the upward 

direction, and then their Larmor radius (La ) increases (i.e. the ions Larmor radius (La ) 

increasing rapidly with altitude), and may become comparable to or exceeds the 

wavelength of the electromagnetic turbulence (⊥λ ). The effect of this phenomenon was 

studied by assuming a wide range of the wavelength of the electromagnetic turbulence 

( ⊥λ ), [i.e. ⊥λ = ∞, 50, 20, 8, and 1km],.As a result, we conclude that: 

1) At low altitudes, the wave length of the electromagnetic turbulence (⊥λ ) is   much 

greater than the ions Larmor radius (La ). Therefore, the simulation results of 

Barghouthi model are independent of the wavelength of the electromagnetic 
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turbulence ( ⊥λ ), but at high altitudes and above a certain point (called the 

saturation point) the ions Larmor radius (La ) may become comparable to or even 

more than the perpendicular electromagnetic turbulence ( ⊥λ ). Consequently, the 

heating of the ions becomes self-limiting. The saturation point for H+ ions occurs 

at (~ ER10.5 ) for the perpendicular electromagnetic turbulence ( km8=⊥λ ). On the 

other hand, the saturation point for O+ ions occurs at (~ ER6.0 ) for the same 

perpendicular electromagnetic turbulence. 

2) Above the saturation point, the ions velocity distribution function displays toroidal 

features, because the ions tend to move out of the region of large diffusion 

coefficient ( 0≅⊥v ) and accumulate in the region of relatively low diffusion 

coefficient (i.e. the ions tend to diffuse out of the heating zone in the velocity 

space). The velocity distribution function of H+ ions displays toroidal features at 

(~ ER8.12 ), but for O+ ions the toroidal features appear at (~ ER97.5 ), for the 

perpendicular electromagnetic turbulence ( km8=⊥λ ). 

3) The ion heating is dramatically reduced above the saturation point, since the ions 

tend to move out of the region of large diffusion coefficient ( 0≅⊥v ) and 

accumulate in the region of relatively low diffusion coefficient (i.e. the ions tend 

to move out of the heating zone into a region of negligible WPI, and we explain 

this in the peaked nature of the diffusion coefficient). Therefore, the effect of WPI 

becomes negligible (i.e. the ion heating rate is reduced). 

4) Since the ions Larmor radius (La ) will be comparable to or exceeds the wavelength 

of the electromagnetic turbulence (⊥λ ) at high altitude, also as electromagnetic 

turbulence ( ⊥λ ) decreases, the argument (
⊥λ
La

) approaches one at lower altitudes, 

then the saturation point occurred earlier, and consequently, the toroidal features 

appears at lower altitudes. For H+ ions, namely for the case km 8=⊥λ  the toroidal 

features appear at ~ ER8.12 , but for the case km 20=⊥λ  at geocentric altitude 

~ ER7.13  the velocity distribution function begins to display toroidal features. In 

addition, for O+ ions, namely, for the electromagnetic turbulence wavelength 

km 20=⊥λ , the toroidal features appears at altitude ~ ER66.6 , but for the case 
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⊥λ = km8 , the toroidal appears at lower altitudes, where it starts to appear at 

geocentric altitude ~ ER97.5 . 

5) The toroidal features of O + ions appear at lower altitudes compared with H+ ions 

(i.e. the saturation point of H+ ions is occurred at higher altitudes than those for O+ 

ions), where the toroidal features of H+ ions appear at ~ ER8.12 , but for O+ ions 

the toroidal features appear at ~ ER97.5 , for the perpendicular electromagnetic 

turbulence wavelength km8=⊥λ . This is owing to two reasons: First, the mass of 

O+ ion is much large comparable to that of H+ ion [ )H(16)O( ++ ×= mm ]. Second, 

the potential energy of O+ ions larger than that of H+ ions, where the potential 

energy of the H+ ions is negative and decreasing with altitude, while the potential 

energy for O+ ions is positive and monotonically increasing with altitude. 

 

From the comparison of the simulation results of Barghouthi model quantitatively and 

qualitatively with observations from different satellites, we confirm that the 

electromagnetic turbulence wavelength equals 8km, )8..( kmei =⊥λ , since the simulation 

results of Barghouthi model represent the closest results to the observations when the 

electromagnetic turbulence wavelength km8=⊥λ , [Barghouthi, 2008], concluded that the 

wavelength of electromagnetic turbulence km8=⊥λ  in the aurora region. Therefore, our 

study confirmed that the wavelength of the electromagnetic turbulence equals to 8km 

)8..( kmei =⊥λ . 

 

Finally, we can say, as an important result from this study, that Barghouthi model is an 

excellent model in the polar wind region, since it produces acceptable simulation results 

when compared quantitatively and qualitatively to the corresponding observations; and 

consequently, Barghouthi model so far, is the best model that produces simulation results 

when compared to the corresponding observations. In addition, Barghouthi model also the 

best model that can be used in the aurora region, since it produces simulation results which 

are compared with the obsevations, [Barghouthi, 2008]. 
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Appendices 

 

Appendix A: Gravitational Force 

 

Newton's law of gravity states that the mutual attractive force between two particles in the 

universe is directly proportional to the product of their masses and inversely proportional 

to the square of the distance between them, regardless of the medium that separates them. 

If an ion of mass (m) separated by a distance (r) from the Earth, then the ion will 

experience an attractive force (gravitational force) given by: 

( ) A.1) (                                                                                                        ˆ
2

 rrF
r

mGM E−=  

where G is the universal gravitational constant, EM  is the Earth mass, r̂  is a unit vector 

directed from the center of the Earth to the ion with mass (m), and the negative sign 

indicates that the gravitational force is attractive. Therefore, the ion is attracted to the 

Earth. 

 

The acceleration of gravity commonly is denoted by ( g ), which is produced by 

gravitational force from the Earth on the ion; g is given by: 

(A.2)                                                                                                         ˆ
2

 r
F

g
r

GM

m
E−==  

The gravitational potential energy ( )rgφ  can be found from the definition of work done by 

the force: 

( ) ( ) (A.3)                                                                        )(
7.1
∫−=∆−=−−=
r

R

gg

E

o
drW r.rFφφφ  

where r  and ER7.1  are the geocentric distance to the location of the ion, gφ  and
ogφ  are the 

gravitational potential energy at altitudes r  and ER7.1 , respectively. We can use the above 

equations to find the formula of gravitational potential energy as a function of r , which is 

the separated distance in the Earth-ion system, by substitute the gravitational force of 

equation (A.1) into equation (A.3) to obtain the following formula, [Barghouthi, 2008]. 

( ) (A.4)                                                           
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E

r

R

Eg

E
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where r is the distance separated the Earth- ion system and provided that EE RRr >> 7.1 . 
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Appendix B: Polarization Electrostatic Field 

 

To describe the outflow of plasma under the effect of polarization electric field, many 

approximations are used. A diffusion approximation is one of these approximations, which 

we use it. In this approximation the wave phenomena are neglected and the flow of plasma 

is considered to be subsonic. 

 

In addition, because the ions and electrons move with each other, a net zero current 

conditions prevail, also the heat flow can be ignored, for partially ionized plasma. 

Therefore, the momentum equation of electrons can be written as [Schunk and Nagy, 

2000]: 

( ) ( ) ( )eneneeeieieeeeee mnmnmnenp uuuugEτe −+−=−+∇+∇ υυ.                  (B.1) 

where ep  is electrons partial pressure, E  is the polarization electrostatic field that 

develops due to the very slight charge separation, eτ  is electrons stress tensor, en  is 

electrons density, em  is the mass of electron, g  is the component of acceleration due to 

gravity along the geomagnetic field lines, υ  is the collision frequency and, iu  is the drift 

velocity of ions, and eu  is the drift velocity of electrons. 

 

However, in many applications it is needed to get the electrostatic potential ( )EV , which 

can be obtained from an explicit expression for the electric field created owing to the 

movements of electrons. This electric field can be obtained from equation (B.1) under 

some conditions; which are the terms containing em  is neglected, since the mass of 

electron is small. In addition, the electron-ion collision term is dropped. Therefore, 

equation (B.1) becomes as: 

(B.2)                                                                                                                
1

e
e

p
n

e ∇−=E

The expression is valid regardless of the number of ion species in the plasma. 

For alternate form of isothermal electron gas, it is valid to write ( )rEV−∇=E , and letting 

pE φ−∇= , and eTp knee = , where pφ  is the potential energy to the polarization electric 

field, k is the Boltzmann constant, and assuming that eT  is constant, which is the electron 

temperature. So equation (B.2) reads: 
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( )
(B.3)                                                                                                      
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∂

∂
 

where (r ) is the spatial coordinate either along or perpendicular to magnetic field lines of 

the Earth (B ). To get the electrostatic potential ( )EV , we treat equation (B.3), by 

integration it, to get the well-known Boltzmann relation: 

( ) (B.4)                                                                                                                 
V

kT

e

oee

E

enn =  

where ( )oen  is the equilibrium electron density that prevails when 0V =E . We can now 

find the electrostatic potential ( )EV  as: 

( ) ( ) (B.5)                                                                                                   lnV 




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
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Therefore, the polarization electrostatic potential energy )(rEφ  is given by, [Barghouthi, 

2008] 

(B.6)                                                                                                     
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Appendix C: Charged Particles in a Magnetic Field 

 

It is known that when an ion of charge (q) and velocity (v) enters a uniform magnetic field, 

then it will be experienced by magnetic force, which is represented in Gaussian system of 

units as: 

(C.1)                                                                                                                      BvF ×=
c

q
 

where c  is the speed of light. When a positive ion moves perpendicular in a uniform 

magnetic field oB , the magnetic force (Lorentz force) can change only the direction of 

ion's velocity, with the same speed. Therefore, the ion will move in a circular motion about 

the magnetic field. The radius of the circular path is called Larmor radius (guroradius) 

which it can be obtained by equating between the magnetic force and the centrifugal force 

to have: 

(C.2)                                                                                                                    
B

v

q

mc
aL

⊥=

The quantity 








mc

qB0  is called the Larmor frequency, which is denoted by: 
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(C.3)                                                                                                                       0

mc

qB
c =Ω  

However, the path of positive ion in a uniform magnetic field can be represented by a 

spatial path as shown in Fig.(C.1). 

 

 

 

 

 

 

 

 

Figure C.1: Spiral motion of a charged particle in a uniform magnetic field [Tsurutani and 

Lakhina, 1997]. 

 

The ion velocity vector can be analyzed into two orthogonal components, with respect to 

the direction of the magnetic field (oB ). These two components are: one parallel to oB , 

which represented by v  and the other perpendicular to oB  which represented by ⊥v . 

Therefore, it is recommended to write: 

(C.4)                                                                                                                   ⊥+= vvv  

Assume that there are no forces exerted on the ion in the parallel direction of the uniform 

magnetic field ( oB ); this implies that the ion moves unimpeded with a constant v  along 

the uniform magnetic field.  This yields a cyclotron motion (as shown in the Fig.(C.1)), 

which is associated with the ⊥v  velocity component and with larmor radius depends on the 

perpendicular velocity component. 

In this cyclotron motion the magnitude of ⊥v  remains constant (unchanged), but the 

direction of the perpendicular velocity ⊥v  change continuously in a uniform magnetic 

field, as shown in Fig.(C.1). According to Lorentz force, the positive ions (i.e. O+) gyrate 

in an opposite direction of gyration for negative ions (i.e. electrons), because the positive 

ions gyrate in a left-hand sense relative to the uniform magnetic field. The central field line 

about which the ions gyrate is called guiding center. When there is a strong magnetic field 

gradient in certain regions (i.e. non uniform magnetic field), the ion mirrored by Lorentz 
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force. At the moment in time when the ion is being mirrored, vv =⊥  and 0=v (i.e. all 

velocity of the ion is in the perpendicular component), the ion accelerates in a direction 

anti parallel to the magnetic field, since the Lorentz force has a component toward the left. 

Since the Lorentz force operates in the direction perpendicular to velocity vector ⊥v , there 

is no work done on the ion, and the total energy of the ion remains constant: 

(C.5)                                                                     
2

1

2

1

2

1 222
⊥⊥ +=+== EEmvmvmvET  

where TE , E  and ⊥E  are the total, parallel, and perpendicular kinetic energy of the ion 

respectively.However, for ion moves from left to right in magnetic field gradient as shown 

in Fig.(C.2), when E  decreases, and ⊥E  increases, keeping TE  constant.  The mirror 

point occurs when  TEE =⊥  and 0=E , then the ion starts to be mirrored and so E  

begin to increase as ⊥E  decreases.  By the mirror force, the ion will be move in spiral 

motion a long the magnetic field lines and also bounce back and forth between mirror 

points [Tsurutani and Lakhina, 1997]. 

 

 

 

 

 

 

 

Figure C.2: Magnetic bottles for plasma particles [Tsurutani and Lakhina, 1997] 

 

Appendix D: Wave Particle Interaction (WPI) 

 

To include the effect of the WPI in a collisionless region, replace the binary collision term 

(i.e. right-hand side Boltzmann equation) by the term that is represent the interaction 

between ions and the electromagnetic turbulence, which is represented by particle diffusion 

in the velocity space such that [Retterer et al., 1987a]: 
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where ⊥D  is the quasi-linear velocity diffusion coefficient rate perpendicular to 

geomagnetic field lines. 

 

The influence of WPI on the ion species during t∆  under the effect of the gravitational, 

electrostatic, and geomagnetic forces, is taking into consideration by incrementing the ions 

perpendicular velocity by randomly increment ⊥∆v  such that: 

tDv ∆=∆ ⊥⊥ 4)( 2                                                                                                         (D.2) 

where t∆  is the time interval chosen randomly and ⊥D  is the perpendicular diffusion 

coefficient rate. 

The perpendicular diffusion coefficient rate ⊥D  is given by the following expression 

[Retterer et al., (1987b)]: 

( ) ( )vknA
nKdd
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q
D n

n

−Ω−




 Ω= ∑ ∫ ∫
∞

−∞=
⊥ ωπδ

ωππ
ω 2

3

3

2

2

22
                    (D.3) 

with 

( ) ( ) ( )ωωω ,
2

1
,,

2

1 22
1

2
22

22
1 kEJkE

v

Jv
kEJA Rn

n

Lnn +
⊥

− +











+=                   (D.4) 

In the above equations, q is the ions charge, m is the ions mass, Ω  is the ions 

gyrofrequency (i.e. larmor frequency), ω  is the angular frequency of the electromagnetic 

turbulence, K is the wave vector of the electromagnetic turbulence, 
2

LE  and 
2

RE  are the 

spectral densities of the electric field in the two perpendicular polarizations, 










Ω
= ⊥⊥vk

JJ nn  is the standard Bessel function. 

[Retterer et al., 1987b], assumed the wavelength (⊥λ ) of the electromagnetic turbulence to 

be much greater than the ions Larmor radius (La ), and assumed ( )Ω<<vk , 1=n  

and 






 <<
Ω

⊥⊥ 1
vk

, and found that ⊥D  can be simplified as: 

  )(
4

2

2

2

Ω==⊥ ωη
xE

m

q
D                                                                            (D.5) 

where )()(
22 ωηω xl EE = , 

2

xE  is the measured spectral density of the wave 

(electromagnetic turbulence), and η  is the proportion of the measured spectral density by 
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plasma wave instrument (PWI) on board (DE-1) satellite that corresponds to a left-hand 

polarized wave. 

 

However, the diffusion coefficient (⊥D ) given in equation (D.5) is independent of 

velocity, and it depends on position (altitude) through the variation of the ion 

gyrofrequency (Ω ) along the magnetic field lines of the Earth, where the ion 

gyrofrequency depends on the magnetic field intensity, which is decreasing when the 

altitude is increasing. 

 

To improve the altitude dependence of ⊥D  [Barghouthi, 1997 and Barghouthi et al., 1998] 

computed the altitude dependence of ⊥D  by analyzing experimental data obtained by PWI 

on board the DE-1 satellite. They obtained the following expressions for the perpendicular 

diffusion coefficient rate ( ⊥D ) in the polar wind plasma. 

 

D.6) (                                        
 Ofor                ,sec cm  )Rr(109.55

Hfor                 ,seccm  )Rr(105.77
)(

3-213.3
E

2

-327.95
E

3




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







×

×
=

+

+

⊥ rD  

 

However, this expression for the altitude dependent diffusion coefficient did not produced 

results that agree with the observations. To produce these observations requires a velocity 

dependent diffusion rate as suggested by [Retterer et al., 1994]. 

 

Appendix E: Barghouthi model 

 

[Barghouthi, 1997 and Barghouthi et al., 1998] obtained a new forms for diffusion 

coefficient ( ⊥D ) for the case where the ions Larmor radius (La ) is comparable or larger 

than the perpendicular electromagnetic turbulence (⊥λ ) by dividing the general form of the 

diffusion coefficient ( ⊥D ) giving in equation (D.3) by the simplified form of the diffusion 

coefficient ( ⊥D ) giving in equation (D.5) to get the following ratio, which denoted by R, 

[Barghouthi, 2008]. 
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They plot the ratio R against the argument of Bessel function ivk Ω⊥⊥  as shown in 

Fig.(2.5); they have two cases from the figure. First, when the argument ivk Ω⊥⊥  is less 

than one, the ratio R is one, which means that the diffusion coefficient ( ⊥D ) is true. They 

reproduce [Retterer et al., 1987] simplified form for the diffusion coefficient ( ⊥D ), which 

given in equation (2.23) (i.e. the diffusion coefficient ( ⊥D ) is still velocity-independent). 

Second, the ratio R decreases as 3)( −
⊥⊥ Ω ivk , when the argument ivk Ω⊥⊥  becomes 

greater than one as shown in Fig.(E.1). In this case, the diffusion coefficient ( ⊥D ) giving 

in equation (D.5) needs modifications by multiply it by the quantity 3)( −
⊥⊥ Ω ivk  (i.e. it 

becomes velocity dependent). 

 

Finally, they obtained the following form for the diffusion coefficient ( ⊥D ), which is 

altitude and velocity dependent: 
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where the diffusion coefficient ⊥D (r) is given in equation (D.6). 
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Figure E.1: The ratio R given in equation (E.1) versus the argument ivk Ω⊥⊥ . The straight 

line is the adopted dependence of the ratio R when the argument  ivk Ω⊥⊥  is greater than 

one, [Barghouthi, 2008]. 

 

Appendix F: Monte Carlo method 

 

F.1 Generation of ions velocity 

 

The starting point of most plasma simulations is the injection ion into the simulation region 

with a random initial velocity that corresponds to the ion distribution function at the 

injection point. Which in our study is the lower boundary (i.e. r = 1.7RE), the ion velocity 

distribution functions assumed to be Maxwellian at the top of the barosphere (just below 

the exobase), [Barghouthi et al., 2003a, b], which written as: 

( ) kT

mv

e
kT

m
nf 2

2

3 2

2

−






=
π

v                                                                                        (F.1) 

where k  is Boltzmann's constant, T  is the temperature at the injection point (i.e. from 

boundary conditions), n  is the number density, m  is the mass of the ion, and v  is the 

velocity vector of the injected ion. 
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The ion velocity vector can be analyzed into two orthogonal components, with respect to 

the direction of the magnetic field (oB ). These two components are: one parallel to oB , 

which represented by v  and the other perpendicular to oB  which represented by ⊥v , 

therefore it is recommended to write as ⊥+= vvv . Therefore, it is recommended to 

write 2v  as 222
⊥+= vvv .So, we can write the equation (F.1) as: 

( ) kT

vvm

e
kT

m
nf 2

)(
2

3 22

2

⊥+−






=
π

v                                                                                     (F.2) 

This can be written as: 
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(F.4)                                                                                                  )
2

()(
2
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=
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where ( )vf  is the injected ions velocity distribution function parallel to the geomagnetic 

field lines and ( )⊥vf  is the injected ions velocity distribution function perpendicular to the 

geomagnetic field lines. Using these distribution functions, parallel and perpendicular 

velocities to the geomagnetic field lines (i.e. sv  and sv⊥ ) of the injected ions can be 

generating. 

 

F.2 Generation of sv⊥  

 
By using the probability density, we want to get the values for random variable of ions 

perpendicular velocity ( sv⊥ ) at the starting point (injection point) which is distributed over 

the interval( )∞,0 , [Aldrich, 1985], with probability density equal to one, which given by: 

( ) ( )sss vfvvp ⊥⊥⊥ = π2                                                                                            (F.5) 
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By taking the total probability from 0 tosv⊥ , that equal to a random number (G ) which has 

values between ( )1,0 as in equation (F.6), which obtained by the substitute )( ⊥vf  from 

equation (F.3) into equation (F.5) to obtain: 

( ) G '

0

' =⊥⊥∫
⊥

s

v

s dvvP
s

                                                                                                      (F.6) 

The value of ions perpendicular velocity (sv⊥ ) can be obtained by solving equation (F.6), 

which is equal to: 

( )G1ln
22 −


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
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−=⊥

s

s
s m

kT
v                                                                                                  (F.7) 

Therefore, the ion is injected or initiated with a random ions perpendicular velocity (sv⊥ ) 

at the starting point or the exobase. 

 

F.3 Generation of sv  

 
At this stage, we must differentiate between the local number of ions with sv  and the 

actual number of those ions which can cross the lower boundary of the simulation region, 

which in the polar wind region is a geomagnetic tube extending from r = 1.7RE to r = 

13.7RE, (i.e. those ions with 0<sv  will not cross the assumed injected boundary).  The 

probability of finding an ion pass through the lower boundary (injection point) is 

proportional to the flux of those ions (i.e. the probability of those ions with 0>sv , were 

they can reach and cross the lower boundary), which is given by: 

( ) ( ) α××= slocalss vvpvp                                                                                    (F.8) 

where 

( ) ( )
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2
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m
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This is given from equation (F.4) and α  is normalizing constant (i.e. ( ) 1 
0

=∫
∞

ss dvvp ). 

From the previous equations we obtain the formula for the probability density, which given 

by: 
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The value of ions parallel velocity (sv ) can be obtained by solving the above equation (i.e. 

equation (F.9)), same as we solved equation (F.6), which is equal to: 

( ) (F.10)                                                                                                G1ln
22 −








−=

s

s
s

m

kT
v  

We must keep in mind that the formulas for ions perpendicular velocity ( sv⊥ ), which given 

in equation (F.7) and ions parallel velocity (sv ), which given in equation (F.10) are 

similar, but they have different numerical values owing to a random number (G ) which 

has values between( )1,0 . This gives random generation of an ion from Maxwellian 

distribution at the boundary level. 

 

F.4 Distribution Function 

 

As we mentioned in the previous sections we need in the simulation process to inject 107 

ions from the starting point (r = 1.7RE). Where we deal with polar wind ions as a steady 

state flow of the three main component of the polar wind ions (i.e. +H , +O  and electrons), 

these ions will be monitored until they escape from one ends of the simulation region, 

which is a geomagnetic tube extending from r =1.7RE to r =13.7RE. At each altitude in the 

simulation region the behavior of these ions were monitored by a two dimensional grid in 

velocity space ( ss vv ⊥, ), in order to compute the distribution function. 

The velocities of the tested ions that they cross one of the monitoring altitude, can be used 

to compute the moments of the distribution function at that altitude. Also, the time that an 

ion spend in each bin divided by the bin's volume is taken to be proportional to the ion 

velocity distribution function at the center of that bin, [Barghouthi et al. 2003a]. 

 

To simplify the registration process, we use the symmetry in the azimuthal direction. 

Therefore, the bin's volume in velocity space can be represented as ⊥⊥ ∆∆=∆ vvvv π23 , 

and f(v)d3v is equal to the number of test ions with velocities between v and dvv + . 

From the above, if the width of the bin was chosen to be arbitrary constant such as 1c , then 

the time needed for the ion to cross that bin is: 
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Keep in mind that the volume of the bin does not change, but these bins differ in volume, 

this makes that the distribution function to be written as: 

( )
v

c
vf s =                                                                                                                 (F.14) 

where c  is constant. 

At each predetermined altitude, we can determine the location of the tested ion by knowing 

the ion parallel velocity ( sv ) and the ion perpendicular velocity (sv⊥ ) of the tested ion, in 

order to make the registration process in the grid bins to be more easy. 

 

The way of registration is described as the following; we use two integers such as J   and 

I  to determine the location of the ion where ( )svINTJ ⊥= 3 and we take in consideration 

that ion parallel velocity ( sv ) is symmetric around the ion perpendicular velocity ( sv⊥ ). 

Therefore, J  takes integer from 0  to 10 , the higher value for J  was selected to be 10 , 

because it corresponds to a velocity three times higher than the thermal velocity of the 

background ions, which is difficult for the tested  ion to reach it. Therefore, we put a 

restriction on the values ofJ , such that ( )10,JMinJ =  owing to make sure that the sorting 

is inside the array. On the other hand, we get the parallel direction (i.e. the value of I ) by 
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considering the boundaries of the bins at ( )5.9,5.8,........,5.8,5.9 −− , since there is no 

azimuthal symmetry, where the value of I  can be calculated by ( )svNINTI ×= 3 , which 

take the values between (-10, 10), after the above steps, every bin can be described by  (I , 

J and altitude). After we had determined the location of the test ions (i.e. the bin) and if 

the tested ion crossed through a certain bin, we can put the numerical value of ( )ss vf  in 

that bin. after that, if another tested ion passed through the same bin we add its numerical 

value of ( )ss vf  to the previous one. We repeat the above procedure until we finished all 

the ions. After we finished all the tested ions (i.e. after running the Barghouthi model), we 

get the numerical values for all bins. Finally, we get the graph of the distribution function 

of these ions at each altitude by connecting between the bins of the same numerical values 

of ( )ss vf , [Barghouthi et al., 2003]. 

 

F.5 Moments of the distribution function 

 

After we obtained the distribution function from the previous section, in this section we 

seek to obtain the moments of the ions (i.e. density n, drift velocity u, parallel 

temperatureT , and perpendicular temperature⊥T ). 

The distribution function can be written as: 

( )
( ) ( )

i
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s v
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v
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= ∑ π
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2

1
9 2                                                                      (F.15) 

where ( )xδ  is the Dirac delta function [Barakat and Schunk 1982c], the superscript i  

denotes that the summation is over all continuous segments of the monitored ion trajectory 

in the velocity space. 

We used the above distribution function to find the expression for the moments of the 

tested ions in the next subsections. 

 

F.5.1. Density: 

 

The number density n of the test ion s can be written as, [Barghouthi et al., 2003]. 



 124 

( ) ( ) sssssssss dvvdvvfvdvfn ⊥⊥∫∫ == π23  

( ) ( )
∑ ∫

⊥

⊥⊥⊥⊥ −−
=

i
i

s
i
s

sss
i
ss

i
ss

vv

dvvdvvvvv
c

π

δδ
π

2
29 2  

)(F.16                                                                                                               
1

9 2∑=
i
s

i
v

cn  

Therefore, after the calculating of the location of the test ion (i.e. the bin) we add the 

density store
i
sv

1
. 

 

F.5.2. Drift velocity: 

 

The drift velocity u  of the test ion s  is equal to the expectation value of sv  (i.e. sv ): 
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where sign means (+) or (-). 

 

F.5.3. Perpendicular temperature: 

 

The random thermal velocity is defined as suvc ss −= . From the expectation value of the 

kinetic energy ( 2

2

1
smc ), we can obtained the thermal energy ( skT

2

3
), which is given by 
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The perpendicular temperature is given by the expectation value of 
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i.e. which is the second term of the above equation, therefore sT⊥  can be represented by: 
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F.5.4. Parallel temperature: 

 

From equation (F.18), the parallel temperature is defined as: 
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and so, it is can be written as: 
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where sign means (+) or (-). 

 

Therefore, we found the solution of Boltzmann's equation i.e. the distribution function 

( )ss vf  and the moments of the distribution function by using the Monte Carlo Simulation. 
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دراسة مقارنة بين المشاهدات العملية والنتائج الحاسوبية لنموذج البرغوثي المسـتخدم           

الهيدروجين من ارتفاعات منحفضة    ايونات  في تفسير كيفية هروب ايونات الاكسجين و      

 .القطب الجنوبي للارضعالية في منطقتي القطب الشمالي والى ارتفاعات 

 
 شريف حسن محمود غيظان: اعداد

 
 عماد احمد البرغوثي. أ: اشراف

 

 :ملخّص
 

 من طبقة الايونسفير الى طبقة المغنتوسفير في منطقـة          ةح القطبي اتسمى عملية هروب بلازما الري    

 Polar)فتوحة بالرياح القطبيةمجال الغناطيسي الارضي شبه المدوائر العرض العليا مع خطوط ال

Wind) ،المغنتوسفيرسفير ويونالتي تشكل عنصرا مهما في الربط ما بين طبقتي الاو. 

  

ناتجة عن تفاعل هذه الايونات     ) +O(ايونات الأكسجين   و) +H(إن عملية تسخين ايونات الهيدروجين    

والتي  لها تأثير مباشر على ، (Wave Particle Interaction)مع الاضطراب الكهرومغناطيسي 

) +H(اعـل ايونـات الهيـدروجين     لقد تم دراسة اثر تف    ،  انتشار البلازما في منطقة الرياح القطبية     

 لقد  . باستخدام طريقة محاكاة مونتي كارلو     ةالامواج الكهرومغناطيسي  مع) +O(وايونات الأكسجين   

، ة الارضـي ة على تاثير تسارع الجاذبي (Monte Carlo Simulation) الحاسوبياحتوى النموذج

 بالاضافة الى تـأثير تفاعـل       ،المجال الكهربائي المستقطب، وانحدار المجال المغناطيسي الارضي      

 أضـعاف نصـف قطـر    (1.7-13.7 والتي تقع ة المحاكاة، ضمن منطق  (WPI)الموجة والايون

 ).الارض

 

)( تبين أن النسبة     ،ةالدراسمن خلال هذه     TT⊥    لايونات اليدروجين (H+)      تقل تـدريجيا عنـد 

 النسـبة تـنعكس اذ تصـبح        ولكـن هـذه   ،  نخفضـة وهـي اقـل مـن واحـد         مالارتفاعات ال 

)(H    )(H ++
⊥ > TT (وذلك نتيجة التسخين بالاتجاه المتعامد مع خطـوط   ،عند الارتفاعات العالية

)( فان النسبة (+O) اما بالنسبة لايونات الاكسجين. (WPI)المجال المغناطيسي الأرضي  TT⊥  

ولكنها عند الارتفاعات العالية تصبح ثابتـة        ،ت المنخفضة اتزيد تدريجيا مع الارتفاع عند الارتفاع     

O)(    O)(اذ ان  ،53تقريبا وقيمتها المتوسطة حوالي   ++
⊥ > TT  عند كل الارتفاعات ويتبع ذلـك
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 في فضاء السـرعة يأخـذ شـكلا    (+H)ايونات الهيدروجين    و (+O)أن التوزيع لايونات الأكسجين   

 .مخروطيا

 

النـاتج  ) +O(ايونات الأكسجين و) +H(نتيجة للتسخين العمودي لايونات الهيدروجين    كما تبين انه     

فان الايونات تكسب طاقة وتهرب الى       ،ات مع الاضطراب الكهرومغناطيسي   عن تفاعل هذه الايون   

باستخدام اثر تفاعل الموجات الكهرومغناطيسية المعتمدة على سرعة الايونات فان       ارتفاعات عالية و  

 ـ )self-limiting heatingََ (خين تصبح محدودة ذاتياقوى التس  ي، وبالتالي يظهر الشـكل الحلق

 عند ارتفاعـات    +O)(يظهر الشكل الحلقي لايونات الأكسجين       .لتوزيع الايونات في فضاء السرعة    

الأمـواج  وذلك لان تأثير التفاعل بـين       ، +H)(اقل من تلك التي يظهر عندها لايونات الهيدروجين         

حيث ، ايونات الأكسجين له اثر أكبر مما هو علية بالنسبة لايونات الهيدروجين          ناطيسية و الكهرومغ

 .تكون عملية التسخين لايونات الأكسجين أكثر فاعلية منها في حالة ايونات الهيدروجين
 

هـو ان طـول موجـة الاضـطراب         ،  ان اهم نتيجة تم الحصول عليهـا مـن هـذة الدراسـة            

)8(كم8الكهرومغناطيسي تساوي    km=⊥λ ،        وذلك لان النتائج الحاسوبية التي تم الحصول عليها

من نموذج البرغوثي تتوافق بشكل كبير مع المشاهدات التي تم الحصـول عليهـا مـن الاقمـار                  

 .الاصطناعية

 

) +H(نموذج البرغوثي يعد انسب نموذج لدراسة تفاعل ايونات الهيدروجين نستطيع القول ان، اخيرا

وذلك بسبب  ، مع  الاضطراب الكهرومغناطيسي في منطقة الرياح القطبية       ) +O(يونات الأكسجين   او

 .المشاهداتمع التقارب الكبير بين النتائج الحاسوبية التي تم الحصول عليها من نموذج البرغوثي 
 


