
i 

 

 

Deanship of Graduate Studies 

Al-Quds University 

 

 

 

 

Compactness and Lindelöfness of a topology with respect to 
another in bitopological spaces 

 

 

 

Faten Diab Aqel Turkman 

 

 

 

M.Sc. Thesis 

 

 

 

Jerusalem-Palestine 

1432\2011 

 



ii 

 

 

 

Compactness and Lindelöfness of a topology with 
respect to another in bitopological spaces  

 

 

By 

Faten Diab Aqel Turkman 

 

 

B.Sc.: College of Science and Technology 

Al-Quds University/ Palestine 

 

 

A Thesis Submitted in Partial Fulfillment of  Requirement for Degree of 
Master of Science, Department of Mathematics / Program of Graduate 
Studies.   

 

 

 

Al-Quds University 

2011 

 



iii 

 

 

 

The Program of Graduate Studies / Department of Mathematics 

Deanship of Graduate Studies 

 

Compactness and Lindelöfness of a topology with 
respect to another in bitopological spaces  

 

By 

Student Name: Faten Diab Aqel Turkman. 

Registration Number: 20810105 

Supervisor: Dr. Yousef  Bdeir 

 

Master thesis submitted and accepted, date: 

The name and signatures of the examining committee members are as 
follows: 

1- Dr. Yousef A. Bdeir        Head of committee    Signature ……………. 

2- Dr. Mohammad Khalil    Internal Examiner      Signature …………… 

3- Dr. Muhib Abuloha         External Examiner     Signature …………… 

 

Al-Quds University 

2011 

 



iv 

 

 

Declaration 

 

I certify that the thesis, submitted for the degree of Master, is the result of my own 
research except where otherwise acknowledged, and the thesis (or any part of the 
same) has not been submitted for a higher degree to any other university or institution. 

 

 

Signed ……………….. 

 

Faten Diab Aqel Turkman 

 

Date:  

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Dedication 

 

To my father, my mother, my brothers, my fiancé and my friends for their 
help and support.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Acknowledgement 

 

Thanks is given first to God. 

I would like to express my thanks to my supervisor, Dr. Yousef  Bdeir for 
his help and support during all phases of my graduate study. 

All my thanks to the other members of the department of mathematics at 
Al-Quds University. 

Also my thanks to Dr. Mohammad Khalil,  the Internal Examiner  and  to  

Dr. Muhib Abuloha , the External Examiner.           

Special thanks go to my family, they have given me a lot of love and 
power to concentrate on my study. 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Abstract 

 

In this thesis, two concepts are discussed, compactness and Lindelofness of a topology with 

respect to another in bitopological spaces.  

Also, other concepts in bitopological spaces are discussed, such as continuity, separation 

axioms, and their relations with compactness and Lindelofness of a topology with respect to 

another in bitopological spaces. 

Also, the hereditarity and productivity of these properties has been studied and some 

conditions has been considered to preserve them. 

The existence of a countable inadequate family of members of a topology τ with respect to 

another topology σ with no maximal countable inadequate family of members of τ with 

respect to σ and contains it has been proved.  

Finally, conversely Lindelof nonempty subsets of ( ,ℓ, ) has been classified.  
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 الملخص

لتبولوجيا بالنسبة لأخرى في فضاءات التبولوجيا لوف ندفي هذه الأطروحة تم بحث مفهومي التراص والل  

.الثنائية  

الفصل  و فرضيات  مثل الاتصال فضاءات التبولوجيا الثنائية   آذلك تم بحث بعض المفاهيم الأخرى في  

.واللندلوف لتبولوجيا بالنسبة لأخرى في فضاءات التبولوجيا الثنائية و علاقتهما بالتراص   

مع إضافة  لهذين المفهومين في فضاءات التبولوجيا الثنائيةو آذلك تم بحث خاصيتي الوراثة و الضرب   

.بعض الشروط لها   

مع عدم ت بالنسبة لتبولوجيا أخرى س تبولوجيا ناقصة قابلة للعد من عناصر ج  تم برهان وجود عائلةولقد 

     .جو تحتوي ت  بالنسبة ل س وجود عائلة ناقصة قابلة للعد عظمى من عناصر 

و التي   )س,م,ح ( تم تصنيف المجموعات الجزئية غير الخالية في التبولوجيا الثنائية, و أخيرا

.تكون لندلوف بالاتجاهين  
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Introduction 

In 1962, J.C. Kelly [9] has defined the concept of the bitopological spaces to be a 

nonempty set X on which two arbitrary topologies τ1 and τ2 are defined. This definition is 

denoted by the triple (X, τ1, τ2). Since this initiation, several authers have considered the 

problem of defining two concepts; compactness and Lindelofness in bitopological spaces. And 

in this thesis the definitions of compactness and Lindelofness in bitopological spaces were 

studied by Ian, E. Cooke and Ivan L. Reilly in [8] , Birsan in [4] , M.C. Datta in [5] , Adem 

Kilicman and Zabidin Salleh in [1] . 

In fact these definitions are summarized into eight definitions, namely semi compact    

( s- compact ), pairwise compact (p- compact ), Birsan compact ( conversely and B-compact ),  

semi Lindelof (s-Lindelof ), pairwise Lindelof (p-Lindelof ) and Birsan Lindelof (conversely 

and B- Lindelof ).      

           Whenever a bitopological space (X,τ1,τ2) is said to have a given topological property , 

it is ment that both (X,τ1) and (X,τ2) satisfy .  

ℓ will stand for the left ray topology for  , and   will stand for the right ray topology for 

. 

 Unless otherwise stated, i and j will stand for i , j   1,2  and i   j.  

 For a subset A of X, τ–cl(A) will stand for the closure of A in the topological space (X, τ).                              



 

2 
 

Chapter one is divided into two sections. Section one discusses mappings in 

bitopological spaces. It begins with defining continuity, open functions and homeomorphism. 

Separation axioms in bitopological spaces are introduced in section two, and many useful 

results and conclusions concerning regularity and normality in bitopological spaces are 

deduced. 

In section one of chapter two, definitions of four types of compactness in bitopological 

spaces are given (s-compactness, p-compactness, conversly compactess and B-compactness). 

The relations between them, and deduce the effect of pairwise Hausdorffness in comparison of 

topologies are studied.  In section two, we define the notion of compactness of a topology with 

respect to another for a subset of a bitopological space, and its relations with closedness and 

openness. In section three, the effect of continuous and open functions on conversely              

(B-) compact bitopological spaces are studied. In section four, generalization of Alexander and 

Tychonoff theorems in bitopological spaces are made. 

In section one of chapter three, four different definitions of Lindelofness in 

bitopological spaces (s-Lindelofness, p-Lindelofness, conversely Lindelofness and                 

B- Lindelofness) are given, and study the relations between them. And we deduce the effect of 

pairwise Hausdorffness in comparison of topologies. In section two, the notion of conversely 

Lindelof of a subspace of a bitopological space is defined, and its relations with closedness 

and openness. Also we discuss the relations between conversely Lindelof (conversely 

compact), p-regular and p1-normal.  In section three, the effect of continuous, open and 

surjective functions on conversely Lindelof (B-Lindelof) bitopological spaces are studied. In 

section four, productivity of conversely Lindelof is studied and a condition is considered to 

preserve productivity. Also an example of a product of P-spaces that is not P-space, despite of 
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a “theorem proved” in [3] is given. In section five, Tychonoff’s Theorem for conversely 

Lindelof bitopological spaces is studied, and  the existence of a countable inadequate family of 

members of a topology τ with respect to another topology σ with no maximal countable 

inadequate family of members of τ with respect to σ and contains it.  Conversely compact and 

conversely Lindelof subsets in ( ,ℓ,   and the relations between them are introduced in 

section six. Finally, Conversely compact and conversely Lindelof subsets in ( ,ℓ,   and the 

relations between them are introduced in section seven. 
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Chapter 1 

                                              Bitopological concepts  

1.1 Mappings in bitopological spaces 

1.1.1. Definition [11]: 

Let (X,τ1,τ2) and (Y,σ1, σ2) be two bitopological spaces, and let f :(X,τ1,τ2)  (Y,σ1, σ2) be 

a function, then: 

1) f is called i-continuous if the function f : (X,τi )  (Y,σi) is continuous. The function f is 

said to be continuous if it is i-continuous for each i=1,2.  

2) f is called i-open (resp.  i-closed) if the function   f : (X,τi ) (Y,σi ) is open (resp. closed).  

f  is said to be open (resp. closed ) if  f  is i-open (resp. i-closed) for each i=1,2. 

3) f  is called i-homeomorphism if the function f : (X,τi)  (Y,σi ) is homeomorphism, or 

equivalently, if  f is bijection, i-continuous and : (Y,σ1, σ2)  ( X,τ1,τ2) is i-continuous. 

The bitopological spaces (X,τ1,τ2) and (Y,σ1,σ2) are then called i-homeomorphic.               

A function f: (X,τ1,τ2)  (Y,σ1, σ2) is called homeomorphism if the function                          

f:(X,τi )  (Y,σi ) is homeomorphism for each i=1,2 , or equivalently, if  f is bijection, 

continuous and : (Y,σ1,σ2)  ( X,τ1,τ2) is continuous. The bitopological spaces 

(X,τ1,τ2) and (Y,σ1,σ2) are then called homeomorphic.   

 

 



 

5 
 

1.1.2. Example [2]: 

 Consider X ={a,b,c,d} with τ1  the discrete topology and topology τ2  ={ ,{a}, {a,b,c}, X} 

on X, and Y ={x , y , z , w} with topology σ1 ={ , {x},{y}, {x,y}, {y,z,w}, Y} and                

σ2 ={ , {x}, { y , z , w}, Y} on Y. Define a function  f :(X,τ1,τ2)  (Y,σ1,σ2), by f (a) = y,         

f (b) = f (d) = z, and  f (c) = w. Observe that the functions f :(X,τ1)  (Y,σ1) and                       

f :(X,τ2)  (Y,σ2) are continuous. Therefore the function f :( X,τ1,τ2)  (Y,σ1,σ2) is 

continuous. But the function f is not homeomorphism since it is not bijection.                        □                          

 

1.1.3. Example [2]:  

 Consider the bitopological spaces (X,τ1,τ2) and (Y,σ1,σ2) as in example (1.1.2). Define     

a function g: (X,τ1,τ2)  (Y,σ1,σ2) by g(a) = g(b) = x, g(c) = z and g(d) = w. The function        

g: (X,τ1)  (Y,σ1) is continuous and g: (X,τ2)  (Y,σ2) is not continuous since {y, z, w}  σ2 

but its inverse image g ({y,z,w}) = {c,d}  τ2. Thus g: (X,τ1,τ2)  (Y,σ1,σ2) is not 

continuous.                                                                                                                                  □ 

 

1.1.4 Example [2]: 

  Consider the function f : (X,τ1,τ2)  (Y,σ1,σ2) as in example (1.1.2). Observe that the 

function f : (X,τ2)  (Y,σ2) is not open since {a}   τ2 but  f ({a}) ={y}  σ2. Thus                    

f : (X,τ1,τ2)  (Y,σ1,σ2) is not open.                                                                                           □      

             Recall that, a property  on a topological space (X,τ) is called topological property if 

every topological space (Y,σ) homeomorphic to (X,τ) also satisfies the property .  
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 In the case of bitopological space (X,τ1,τ2), a property  will be called i-topological 

property if whenever (X,τ1,τ2) has the property , then every space i-homeomorphic to 

(X,τ1,τ2) also has the property . If homeomorphism considered for the pairwise topology, we 

will call such property  as bitopological property. 

 

1.2 Bitopological separation axioms 

 

      This definition is given before we start with separation axioms. 

1.2.1. Definition:    

         Let (X, τ1, τ2) be a bitopological space. Then a set G is said to be τi–open (resp.               

τi –closed) if G is open (resp. closed) in the topology τi in X. And G is said to be open (resp. 

closed) if it is τi–open (resp. τi –closed) for each i=1, 2. 

 

1.2.2. Definition [9]: 

A bitopological space (X,τ1,τ2) is said to be pairwise Hausdorff ( denoted p-Hausdorff) 

if for each pair of distinct points x and y in X there are disjoint open sets U τ1 and V τ2 such 

that x  U and y  V. 

 

 Recall that a topological space (X,τ) is said to be regular if for each point x  X and 

each closed set P such that x  P, there are two disjoint open sets U and V such that  x  U 

and P  V. 
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1.2.3 Definition [9]: 

 In a space (X,τ1,τ2), τ1 is said to be regular with respect to τ2 , if for each point x  X 

and each τ1-closed set P such that x  P, there are a τ1-open set U and a τ2-open set V such that  

x  U, P  V, and U ∩ V = . 

(X, τ1, τ2) is pairwise regular (denoted p-regular) if τ1 is regular with respect to τ2 and vice 

versa. 

 

1.2.4 Theorem [1]:   

A bitopological space  (X,τ1,τ2) is τi regular with respect to τj if and only if for each 

point x  X and τi-open set H containing x, there exists a τi-open set U such that                       

x U  τj-cl(U)  H. 

Proof: 

  ( ) Suppose τi is regular with respect to τj. Let x  X and H be a τi-open set containing 

x. Then G = X\H is a τi-closed set for which x  G. Since τi is regular with respect to τj then 

there are τi-open set U and τj -open set V such that x  U, G  V, and U ∩ V = . Since            

U  X \V, then τj -cl(U)  τj -cl(X\V) = X\V  X\G = H. Thus, x  U  τj -cl(U)  H as 

desired. 

  ( ) Suppose that the condition holds. Let x  X and P be a τi-closed set such that x  P. 

Then x   X\P, and by the hypothesis, there exists a τi-open set U such that                       

x  U  τj -cl(U)  X\P. It follows that x  U, P  X\ (τj -cl(U) ) and  U ∩ (X\ τj -cl(U)) = . 

This completes the proof.                                                                                                            □ 
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 Theorem (1.2.4) stated that τi is regular with respect to τj, if  and only if for each point     

x  X, there is a τi-neighbourhood base of τj -closed sets containing  x.  

        

       The following theorem shows that, pairwise regular spaces satisfy the hereditary property. 

1.2.5 Theorem [1]:  

 Every subspace of a pairwise regular bitopological space is pairwise regular. 

Proof:  

       Let (X,τ1,τ2) be a pairwise regular space and let (Y, τ1,Y ,τ2,Y ) be a subspace of (X,τ1,τ2). 

Furthermore, let F be a τ1,Y -closed set in Y, then  F = A ∩ Y where A is a τ1-closed set in X. 

Now if y  Y and y  F, then y  A, so there are τ1 -open set U and τ2 -open set V such that      

y  U, A  V, and U∩V= . 

         U∩Y and V∩Y are τ1,Y -open set and τ2,Y -open set in Y respectively. Also y  U∩Y,     

F  V ∩Y and (U∩Y) ∩ (V∩Y) = (U∩V) ∩ Y = . 

Similarly, let G be a τ2,Y -closed set in Y, then G = B∩Y where B is a τ2 -closed set in X. Now 

if y  Y and y  G, then y  B, so there are τ2 -open set U and τ1 -open set V such that y  U,  

B  V, and U ∩ V = . 

But U∩Y and V∩Y are τ2,Y -open set and τ1,Y -open set in Y respectively. Also            

y  U∩Y, G  V∩Y and (U∩Y) ∩ (V∩Y) = . This completes the proof.                             □ 

 

Recall that a topological space (X,τ) is normal if given two disjoint closed sets A and 

B, there exist two disjoint open sets U and V such that A  U and B  V.    
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1.2.6 Definition [9]: 

A bitopological space (X, τ1, τ2) is said to be p-normal if given a τ1 -closed set A and a 

τ2 -closed set B with A ∩ B = , there exist a τ2 -open set U and a τ1 -open set V such that          

A  U, B  V and U ∩ V = .                

                                                                                          

1.2.7 Theorem [1]: 

A bitopological space (X,τ1,τ2) is p-normal if and only if given a τj -closed set C and a 

τi-open set D such that C  D, there are a τi -open set G and a τj -closed set F such that            

C  G  F  D. 

Proof: 

      ( ) Suppose (X,τ1,τ2) is p-normal. Let C be a τj -closed set and D a τi-open set such that   

C  D. Then K = X\D is a τi -closed set with K ∩ C = . Since (X,τ1,τ2) is p-normal, there 

exist a τj -open set U and a τi -open set G such that K  U, C  G, and U ∩ G = . Hence       

G  X\U  X\K = D. Thus C  G  X\U  D and the result follows by taking X\U = F.          

  ( ) Suppose the condition holds. Let A be a τi -closed set and B be a τj-closed set with  

A ∩ B = . Then D = X\A is a τi-open set with B  D. By hypothesis, there are a τi-open set G 

and a τj -closed set F such that B  G  F  D. 

It follows that A = X\D  X\F, B  G and (X\F) ∩ G =  where X\F is τj -open set and G is  

τi-open set. This completes the proof.                                                                                         □              

 

 

       Now we define a new weaker form of pairwise normal bitopological spaces. 
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1.2.8 Definition [1]:                               

         A bitopological space (X, τ1, τ2) is said to be p1-normal if given A and B are closed sets 

with A ∩ B = , there exist a τ2 -open set U and a τ1-open set V such that A  U, B  V, and 

U ∩ V = . 

                                                                                                                                   

1.2.9 Theorem [1]: 

       A bitopological space (X,τ1,τ2 ) is p1-normal if and only if given a closed set C and an 

open set D such that C  D, there are a τi -open set G and a τj -closed set F such that                

C  G  F  D. 

Proof: 

   ( ) Suppose (X,τ1,τ2) is p1–normal. Let C be a closed set and D be an open set such that 

C  D. Then K = X\D is a closed set with K∩C = . Since (X, τ1, τ2) is p1–normal, there exists 

a τj-open set U and a τi-open set G such that K  U, C  G, and U ∩G = . Hence                  

G  X\U  X\K = D. Thus C  G  X \U  D and the result follows by taking X\U = F. 

 ( ) Suppose the condition holds. Let A and B are closed sets with A ∩ B = . Then         

D = X\A is an open set with B  D. By hypothesis, there are a τi-open set G and a τj-closed set 

F such that B  G  F  D. 

It follows that A = X\D  X\F, B  G and (X\F) ∩G =  where X\ F is τj-open set and G is  

τi-open set. This completes the proof.                                                                                       □      
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       It is clear from the definition that every p-normal space is p1-normal. The converse is not 

true in general as shown in the following counterexample. 

1.2.10 Example [1]: 

       Consider X = {a, b, c, d} with topologies τ1 = { , {a,b},X} and τ2 = { , {a}, {b, c, d}, X} 

defined on X. Observe that τ1-closed subsets of X are , {c, d} and X, and τ2-closed subsets of 

X are ,{b, c, d},{a} and X. Hence (X, τ1, τ2) is p1-normal as we can check since the only 

closed sets of X are  and X. However (X,τ1,τ2) is not p-normal since the τ1-closed set            

A = {c, d} and τ2 -closed set B ={a} satisfy A ∩ B = , but there is no τ2 -open set U and       

τ1-open set V such that A  U, B  V and U ∩ V = .                                                              □  

 

1.2.11 Example: 

Consider the bitopological space ( , ℓ, ). It is clear that ( , ℓ, ) is p-regular and     

p-normal, but it is not p-Hausdorff.                                                                                             □ 

 

1.2.12 Theorem: 

Every closed subspace of a p–normal bitopological space is p-normal  

Proof: 

    Let (X,τ1,τ2) be a p-normal bitopological space, and let (Y,τ1Y,τ2Y) be a closed subspace 

of  X. If A and B are disjoint subsets of Y such that A is τ1Y -closed and B is τ2Y –closed, then 

A is τ1-closed in X and B is τ2–closed in X, and since X is p-normal there are U which is         

τ2–open set and V which is τ1–open set such that U ∩ V = , where A  U and B  V. Then  
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U  Y and V Y are disjoint τ2Y -open and τ1Y –open sets respectively. Also A  U Y and    

B V Y. Thus Y is p-normal.                                                                                                   □  

 

        The proof of the following theorem is similar to the proof of theorem (1.2.12).  

1.2.13 Theorem: 

         Every closed subspace of a p1–normal bitopological space is p1-normal.                       □ 

         

         The definitions of separation properties of two topologies τ1 and τ2 such as pairwise 

regularity, of course reduce to the usual separation properties of one topology τ1, such as 

regularity, when we take τ1 = τ2, and the theorems quoted above then yield as corollaries of the 

classical results of which they are generalizations. 
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Chapter two 

Compact topology with respect to another  

 2.1 Birsan and Conversely Compactness 

   In this chapter we consider some kinds of compactness in bitopological spaces, and the 

relations between them. Also, we deduce some related results and generalizations of some 

theorems in single topology. 

                

             Recall that a topological space (X,τ)is compact if for every cover for X has a finite 

subcover. 

2.1.1 Definition [10]:          

          A cover   of a bitopological space (X,τ1,τ2) is called τ1 τ2 -open cover if   τ1  τ2. 

 

2.1.2 Definition [6]:                  

         A τ1 τ2-open cover  of a bitopological space (X, τ1, τ2) is called p-open cover if  

contains at least one nonempty member of τ1 and a nonempty member of τ2. 

 

2.1.3 Definition [4]:                      

          We say that 1 = {Vi : i  I } is finer than  = {Uα : α  A } if for each i  I, there exists 

α  A such that Vi  Uα. 
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2.1.4 Definition [10]:            

          A bitopological space (X, τ1, τ2) is called semi compact (denoted s-campact) if every    

τ1 τ2 -open cover for X has a finite subcover. 

 

         Swart in [10] consider the above definition for compactness in bitopological spaces, and 

uses the term compact for s-compactness in (X, τ1, τ2). 

 

        We give in the next definition Fletcher, Holye and Patty definition of pairwise 

compactness in the bitopological space, denoted FHP–compactness.  

2.1.5 Definition [6]: 

         A bitopological space (X, τ1, τ2) is called pairwise compact (denoted p-compact) if every 

p-open cover of X has a finite subcover. 

 

        The following definition of bitopological spaces is due to Birsan. 

2.1.6 Definition [4]: 

         A bitopological space (X,τ1, τ2) is called τi-compact with respect to τj  if for each τi-open 

cover  for X, there is a finite family of τj-open sets finer than  and covers X.                                                  

The space is called conversely compact if it is τ1-compact with respect to τ2 and is τ2-compact 

with respect to τ1. 
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 2.1.7 Definition [4]:  

          A bitopological space (X,τ1,τ2) is called τi-compact within τj if for each τi-open cover  

for X, has a finite subcover of τj-open sets for X. The space is called B-compact if it is                

τ1-compact within τ2 and is τ2-compact within τ1. 

           Ian E. Cook and Ivan E. Reilly, called the τi-compact within τj , τi-compact with respect 

to τj , and refer this definition to Birsan. 

 

            In fact, τi-compactness of (X, τ1, τ2) within τj implies τi-compactness of (X,τ1,τ2) with 

respect to τj , but the converse need not be true, as the following example shows.                                               

2.1.8 Example [4]:                    

     Let  X = [0,1] , let                                                                                                                        

τ1 = {A  X: 0  A and X\A is finite} {A  (0,1) : (0,1)\ A is finite}  { },  and                   

τ2  = {A  X :1  A and X\A is finite} {A  (0,1) : (0,1)\ A is finite}  { }. Then (X ,τ1,τ2) is 

a bitopological space which is τ1-compact with respect to τ2 but not τ1-compact within τ2 , 

because {[0,1]\{1/2}, [0,1)} is τ1-open covering for X but has no finite τ2-open subcovering. □ 

 

       The following theorem illustrates the relation between s-compactness and p-compactness. 

2.1.9 Theorem [8]:                   

           The bitopological space (X,τ1,τ2) is s-compact if and only if it is p-compact, τ1-compact 

and τ2-compact. 
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Proof:                              

           Assume that the bitopological space (X, τ1, τ2) is s-compact, and let  be any p-open 

cover of the space X, then  is τ1τ2-open cover for X. Since X is s-compact, then  has a finite 

subcover for X. Thus X is p-compact. Also, let  be any τi-open cover of X, (i =1,2), then              

  τ1  τ2 , which means that  is τ1τ2 -open cover for X. Since (X,τ1,τ2) is s-compact, then 

there is a finite subcover of  for X, which implies that X is τi-compact (i=1,2).               

Conversely, assume that (X,τ1,τ2) is p-compact, τ1-compact and τ2-compact. Let  be any  

τ1τ2-open cover for X, then   τ1  τ2. 

Case 1:                                 

       If  contains at least one nonempty member of τ1, and at least one nonempty member of 

τ2 , then  is p-open cover.Thus there is a finite subcover of  for X (as X is p- compact ).  

Case 2:                                        

        If  is contained entirely in τ1 or τ2, then  is either τ1-open cover for X or τ2-open cover 

for X. In either case, there is a finite subcover of  for X (as X is τ1-compact and τ2-compact). 

Hence X is s-compact.                                                                                                                □ 

        

  The following example shows that: “Not every p-compact bitopological space is s-compact “. 

2.1.10 Example [7]:           

        Consider the bitopological space ( ,ℓ, ). Then ( , ℓ,τ2) is p-compact, but not s-compact.     
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 To show this, let  = {Uα : α  ∆} be a p-open cover for . Then there exist β , γ  ∆ such 

that Uβ  ℓ, Uγ  , Uβ ≠  and Uγ  ≠ . If Uβ =  or Uγ = , then  has a finite subcover for 

, namely { }. Otherwise, let Uβ = (-∞,x) and Uγ =( y,∞), for some x , y  . If x > y, then 

{Uβ , Uγ } is a finite subcover of   for  . If x = y, then there is some λ ∆ such that x Uλ 

and then {Uβ , Uγ , Uλ} is a finite subcover of   for  .                                                                                       

Now, let x < y. Let A = {z  [x,y] : there is no α  ∆ such that z  Uα    }. If A= Ø, then       

x  Uα    for some α  ∆ and then {Uβ , Uα} is a finite subcover of  for . If A ≠ , then A 

is bounded above and so, by completeness axiom for , it has a least upper bound, say t.          

Then x ≤ t ≤ y. 

Case 1: If t = x, then A = {x}. So there is no α  ∆ such that t  Uα  , then there exists δ  ∆ 

such that t Uδ   ℓ. If Uδ = , then  has a finite subcover for , namely { }. Otherwise             

Uδ = (-∞,z) for some z  . Then t < z. By definition of A and t, there exists λ  ∆ such that     

z  Uλ  , and then  has {Uδ ,Uλ} as a finite subcover for .  

Case 2: If t = y. Suppose now that there exists α ∆ such that t  Uα   . If Uα = , then  has 

a finite subcover for , namely { }. Otherwise, Uα = (z,∞) for some z   and z < t, and so 

there exists w  A such that z < w < t. It is clear that there exists λ  ∆ such that w  Uλ  ℓ, 

and then {Uα , Uλ } is a finite subcover of  for . Suppose now that there exists no α ∆ such 

that t  Uα   , then there exists α ∆ such that t  Uα   ℓ. If Uα= , then  has a finite 

subcover for , namely { }. Otherwise Uα = (-∞,z) for some z  , and then { Uα , Uβ } is a 

finite subcover of  for . 

 Case 3: If x < t < y. Suppose that there exists α  ∆ such that t  Uα   . If Uα = , then  has 

a finite subcover for , namely { }. Otherwise, Uα = (z,∞) for some z   and z < t, and so 
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there exists w A such that z < w < t. It is clear that there exists λ  ∆ such that w  Uλ  ℓ, and 

then {Uα , Uλ } is a finite subcover of  for . Suppose now that there exists no α  ∆ such that 

t  Uα   , then there exists α  ∆ such that t  Uα  ℓ. If Uα= , then  has a finite subcover 

for , namely { }. Otherwise Uα = (-∞,z) for some z   . Then t < z, and so there exists w  

 such that t < w < z. By definition of A and t, there exists λ  ∆ such that w  Uλ  , and 

then  has {Uα ,Uλ } as a finite subcover for . Hence, ( ,ℓ, ) is p-compact.                  

However ( , ℓ, ) is not s-compact, for (  , ℓ) is not compact.                                             □             

        

        The following example shows that if the bitopological space (X,τ1,τ2) is τi-compact,              

( i=1,2), then it is not necessarily that it is s-compact. 

2.1.11 Example [10]:                                                                                                                                  

        Let X=[0,1], τ1={X , } { [0,b) : b  X}, τ2={X , , {1}}. Every τ1-open cover  for X 

must contain X, so (X,τ1) is compact. Also, (X,τ2) is compact as τ2 is finite. However,     

(X,τ1,τ2) is not s-compact. Consider the following τ1τ2-open cover  for X, where                    

 = { [0,b) | b  X } {{1}}. Suppose there exists a finite subfamily of  which covers X. 

This is equivalent to supposing that there is a subfamily {[0,bi) | i=1,2,...,n} of { [0,b) | b  X } 

that covers [0,1). Now each bi is in [0,1), so m = max{b1,b2,…,bn} satisfies 0 <  m < 1, and so                         

m  {[0,bi) | i=1,2,…..n}. Thus (X,τ1,τ2) is not s-compact.                                                                                

Also, this implies that (X,τ1,τ2) is not p-compact. Hence, not every compact bitopological 

space (X,τ1,τ2) [i.e. (X,τ1) and (X,τ2) are compact] is p-compact.                                              □ 
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      B-compactness and conversely compactness is independent of s-compactness and                    

p-compactness, because any finite bitopological space is s-compact and p-compact but may 

not be B-compact as the following example shows.  

2.1.12 Example [4]:                               

          Let X ={a,b,c}, τ1 ={ ,X,{a,b},{c}}, and τ2 = { ,X,{a},{b,c}}. Then (X,τ1,τ2) is           

s-compact and p-compact, but it is not τ2 -compact within τ1 as { {a},{b,c} } is a τ2-open cover 

of  X which has no τ1-open subcover. Also { {a},{b ,c} } is a τ2-open cover of  X which has 

no finite family of τ1-open cover which is finer than this cover.                        

Hence, (X ,τ1,τ2) is neither B-compact, nor conversely compact.                                               □                        

      

        The following example shows a bitopological space which is B-compact (and so 

conversely compact), but not p-compact (and so not s-compact).      

2.1.13 Example [4]:                              

         Let X = [0,1], τ1 ={X ,{0} }  { [0,a) : a  X}  and τ2={X,{1}} {(a,1]: a X}. Then 

(X,τ1,τ2) is B-compact, for any τ1-open cover of  X or any τ2-open cover for X must contain X 

as a member. However (X,τ1,τ2) is not p-compact (and so not s-compact), for the p-open cover 

{{0}} { (a,1] : a  X, a≠0} of  X has no finite subcover.                                                □    

 

2.1.14 Theorem [4]:                                                      

         If the bitopological space (X,τ1,τ2) is τi –compact with respect to τj (conversely compact) 

then (X,τ1,τ2) is τi –compact (compact). 
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Proof:         

         Let  = {Wα : α ∆} be any τi-open cover for X. Since (X, τ1, τ2) is τi –compact with 

respect to τj, there is a finite τj-open cover 1 = {Uk: k =1,…..,n} for X, such that 1 is finer 

than . So, for each k =1,…,n, there exists αk  ∆ such that Uk  Wαk . Consider the τi-open 

collection 2 = { Wαk  : k =1,….,n}, then 2 covers X because Uk  Wαk  for each k =1,2,…n, 

and 1 covers X. Since  k =1,…,n, Wαk  , then 2  is the desired finite subfamily of  that 

covers X. Thus it means that (X,τi) is compact.                                                                         □                         

       We can replace conversely compact by B-compact in the above theorem because every  

B-compact space is conversely compact. 

         

        In example (2.1.12), (X, τ1) and (X,τ2) are compact, but the bitopological space (X,τ1,τ2) 

is neither B-compact, nor conversely compact, so the converse of the pervious theorem is not 

true.   

    

2.1.15 Corollary:       

         Let (X,τ1,τ2) be a bitopological space, if  X is conversely compact and p-compact, then 

(X, τ1, τ2) is s-compact. 

Proof: 

         Since (X,τ1,τ2) is conversely compact then (X, τ1) and (X, τ2) are compact by theorem 

(2.1.14) and since (X, τ1, τ2) is p-compact, so by theorem (2.1.9), (X, τ1, τ2) is s-compact.      □ 
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           The collection of closed sets plays an important role in B-compactness and conversely 

compactness. 

 2.1.16 Theorem [4]:              

       Let (X, τ1, τ2) be a bitopological space, then the following are equivalent:  

a) X is τi-compact with respect to τj. 

b) For any family {Fα : α  ∆} of τi-closed sets which has empty intersection, there exists a 

finite family {Gk : k =1,…,n} of τj-closed sets with empty intersection and satisfies the 

condition that   k=1,2,…,n ,  αk  ∆ such that Gk  Fαk .                                                           

 c) For any family  ={ Fα: α  ∆}of τi-closed sets with the property that every finite family   

{Gk : k =1,…,n} of τj -closed sets which satisfies the condition that  k =1,2,…,n,  αk  ∆  

such that Gk  Fαk  has nonempty intersection, it results that  has nonempty intersection.  

Proof: (a)  (b) 

     Assume (a) and let {Fα : α  ∆} be any family of τi-closed sets which has empty 

intersection, then the family  ={Uα : Uα = X\Fα  , α  ∆} is a family of τi-open sets which 

covers X because  U  ∆  = X\∆   =X\ ∆  = X\  = X. 

 By the hypotheses of (a), there is a finite family 1 = { Vk : k=1,2,…,n } of τj-open sets which 

covers X such that   k =1,2,….,n,  αk ∆ with Vk Uαk. Define Gk=X\Vk, then for each k, Gk  

is τj –closed set and Gk= X\Vk X\Uαk= Fαk, and G =  X\V )=X \ V =X\X= .   

(b)  (a):               
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        Assume (b), and let  = {Uα : α  ∆} be any τi-open cover for X. Then the family    

{X\Uα : α  ∆} is a family of τi-closed sets such that X\U∆  =X\ U∆ =X\X=  ,  i.e. 

has empty intersection. Consequently, the hypotheses in (b) implies that there is a finite family 

{Gk : k =1,…,n} of  τj–closed sets such that k, αk ∆ such that Gk  X\Uαk  and G = . 

Consider Vk =X\ Gk, then k, Vk is τj–open and V  = X\G  = X\ G  = X\  =X. 

Since k, Vk= X\Gk  X\(X\Uαk) =Uαk, then the finite family {Vk: k=1,2,…,n} of τj–open sets 

covers X and satisfies the desired condition. Hence (X,τ1,τ2) is τi-compact with respect to τj.                             

(b)  (c):                                                    

         Assume (b), and let  = {Fα: α ∆} of τi-closed sets with the property stated in (c). 

Suppose that  F∆  = . By the hypotheses in (b), there is a finite family {Gk: k =1,…,n} of 

τj –closed sets with empty intersection such that  k, αk ∆ with Gk Fαk , and this contradicts 

the property of the family . Hence F∆  ≠ . 

(c)  (b):                                                                               

          Assume (c), and let {Fα: α  ∆} of τi-closed sets which has empty intersection. Suppose 

that there exists no finite family of the form {Gk : k =1,…,n} of τj –closed sets with empty 

intersection and satisfies the condition that  k ,  αk  ∆  with Gk Fαk. This means that every 

finite family of the form {Gk: k =1,…,n} of  τj –closed sets which satisfies the condition k,   

 αk  ∆ with  Gk Fαk has nonempty intersection.                                                                       

By (c), {Fα : α  ∆} has nonempty intersection, and this contradict the assumption. So there 

exists a finite family {Gk : k =1,…,n} of τj -closed sets with empy intersection and satisfies the 

condition that   k =1,2,….,n , αk ∆ such that Gk  Fαk .                                                        □ 
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2.1.17 Theorem [4]: 

         Let (X,τ1,τ2) be a p-Hausdorff  bitopological space and let (X,τ1) be a compact 

topological space. Then τ1  τ2. 

Proof: 

         To prove this, it is sufficient to show that every τ1-closed set is τ2-closed set. Let A be 

τ1–closed, then A is τ1-compact. Let x  A. Since (X,τ1,τ2) is p-Hausdorff, then for each a  A, 

there exist τ1-open set V(a) and a τ2-open set U(a) such that a  V(a), x  U(a), and               

V(a) ∩ U(a) = . The family {V(a) : a  A } forms a τ1-open cover of A, and so by 

compactness of A, we find a finite subcover {V(a1) ,V(a2) ,….,V(an)} of {V(a) : a  A } for A. 

For each V(ak), k=1,2,….,n , there is a corresponding τ2-open sets U(ak), and hence 

B= U a ) is τ2-open set containing x. Now B ∩ V(ak) =  for each k =1,2,….n, for if this 

not true, then  B ∩ V(ai) ≠  for some i =1,….,n, and then U(ai) ∩ V(ai) ≠  as B  U(ak) for 

each k =1,2,….n , and this is the contrary to the way V(ak) and U(ak) were chosen. Define 

C= V a ) which is τ1-open, then we have B ∩ C =  and this implies that B ∩ A = . 

Therefore x  B  X\A which means that A is τ2 -closed.                                                         □ 

  

2.1.18 Corollary [4]: 

Let the bitopological space (X,τ1,τ2) be a p-Hausdorff: 

(a) If the topologies τ1 and τ2 are compact, then τ1 = τ2. 

(b) If (X,τ1,τ2) is τ1-compact with respect to τ2 , then τ1  τ2. 

(c) If (X,τ1,τ2) is conversely compact, then τ1 = τ2. 
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(d) If (X,τ1,τ2) is B-compact, then τ1 = τ2.                                                                                   □ 

 

2.1.19 Example [4]: 

       Let X = [0,1]. Let τ1 be the usual topology on [0,1], and τ2 be the discrete topology on 

[0,1]. Then (X,τ1, τ2) is p-Hausdorff bitopological space, and τ1 is compact with respect to τ2. 

But the topology τ2 is not compact with respect to τ1, and so τ2 is not compact within τ1. 

Consequently (X,τ1,τ2) is neither B–compact, nor conversely compact.                                   □                          

 

2.1.20 Example [4]: 

        Let X = [0,∞), let τ1 be the discrete topology, and τ2 be the co-countable topology.            

(X,τ1,τ2) is p-Hausdorff, and p-normal. The topologies τ1 and τ2 are not compact and 

consequently (X, τ1, τ2) is neither B-compact nor conversely compact. To see that τ2 is not 

compact consider the τ2-open covering {(X\ ) {i}: i } for X which has no finite 

subcovering for X.                                                                                                                     □ 

 

2.1.21 Example [4]: 

        Let X = [0,1], τ1 be the topology induced on X by the standard topology on , and τ2 be 

the topology generated by the union of families of τ1 and the families of sets whose 

complements are countable as a subbase. The bitopological space (X,τ1,τ2) is p-Hausdorff and 

τ1-compact with respect to τ2 , (it is even τ1-compact within τ2 ), but it is not p-normal.          □  
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2.1.22 Example [4]:  

          Let X={a,b,c}, τ1={ , {a},{a,c},{b,c},{c},X}, τ2={ ,{b},{b,c},{a,b},{a},X}. Therefore 

in (X,τ1,τ2), τ1 ≠ τ2. (X, τ1, τ2) is p-regular, p-normal and conversely compact. But it is not      

p–Hausdorff, as τ1 and τ2 are finite and so, they are compact. Since τ1 ≠ τ2, then by corollary 

(2.1.19.a) it is not p-Hausdorff.                                                                                                 □ 

 

2.1.23 Example [4]: 

        Let X = {a,b,c}, τ1 = { ,{a},X}, and τ2 = { ,{b},{b,c},X}. The bitopological space 

(X,τ1,τ2) is p-normal and B-compact but not p-regular. 

   The bitopological space (X,τ1,τ2) is : 

1) p-normal, because {b,c} is the only nonempty proper τ1-closed subset. And the only 

nonempty proper τ2 -closed subset of X that is disjoint from {b,c} is {a}, and {b,c} is             

τ2 -open, and {a} is τ1-open. 

2) B-compact, because each τ1-open or τ2-open cover for X must contain X as a member. 

3) Not p-regular, because {a,c} is τ2-closed and b {a,c}, the τ2-open set that contains b is {b}, 

and the only τ1-open set which contains {a,c} is X. So, τ2 is not regular with respect to τ1. □                         

 

 2.1.24 Corolary: 

        Let (X,τ1,τ2) be a bitopological space, if  X is conversely compact and p-Hausdorff, then 

(X, τ1, τ2) is p-regular and p-normal. 
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Proof: 

       By corollary (2.1.19) since (X, τ1, τ2) is conversely compact and p– Hausdorff, then τ1= τ2, 

the result follows from the single topology theory.                                                                    □  

 

2.2 Conversely compactness of sets in bitopological spaces: 

2.2.1 Definition [4]: 

        Let (X,τ1,τ2) be a bitopological space, and let A  X. We say that the set A is τi -compact 

with respect to τj [resp. conversely compact], if the bitopological subspace (A, τ1A, τ2A) is       

τiA - compact with respect to τjA  [resp. conversely compact]; where τ1A = {A ∩ U :U  τ1} and        

τ2A = {A ∩ V : V  τ2}.                                                                                                                

 

2.2.2 Theorem [4]: 

        Let A be a set in a bitopological space (X,τ1, τ2). Then: 

(a) A sufficient condition for the set A to be τi-compact with respect to τj is: 

     for every τi -open cover  of A, there is a finite τj-open cover 1 of A finer than .  

(b) If the set A is τj -open, then a necessary condition for A to be τi -compact with respect to τj 

       is: for every τi-open cover  of A, there is a finite τj –open cover 1of A finer than . 
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Proof: (a) 

       Let  = {Uα  A : α ∆}, where Uα  τi for each α  ∆, be a τiA-open cover for A. Then, 

U A : α ∆  = A. So, U : α ∆} A = A, and so,   U  : α   ∆}  A. i.e.              

’ = { Uj : α  ∆} is a τi -open cover for A. By the hypothesis, there is a finite τj -open cover 

for A; say ’1 = {Wk : k =1,2,….,n} finer than ’. This means that  k =1,2,….,n, there is       

α  ∆ such that Wk  Uα. This implies that  k =1,2,…,n,  α  ∆ such that                       

(Wk ∩ A)  (Uα ∩ A). Hence, the collection 1 = {Wk ∩ A : k =1,2,…,n} is the desired finite 

τjA-open cover for A which is finer than . 

Proof: (b) 

       Let A be a τj -open set that is τi–compact with respect to τj , and let the collection              

 = {Uα : α  ∆} be a τi -open cover for A. Then 1={ Uα ∩ A : α  ∆} is a τiA-open cover for 

A, so by the hypothesis, there is a finite family 2 of  τjA-open sets finer than 1 that covers A, 

say 2 = {Wk ∩ A :  k=1,2,…,n} where Wk  τj ,  k =1,2,…,n. Since A is τj -open then for 

each k =1,2,…,n , Wk ∩ A is  τj-open set, and so {Wk ∩ A : k =1,2,….,n} is the desired finite 

family of τj-open sets which is finer than  and covers A.                                                         □ 

  

     The following example shows that the converse of Theorem (2.2.2.a) is not necessarily true 

if A is not τj-open set. 
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2.2.3 Example [4]: 

       Let X ={a,b,c}, τ1={ ,{a}, {a,c},{b,c},{c}, X}, and τ2 ={ , {b},{a,b},{a},X}. Let A={c}, 

and consider the τ1-open cover {{b,c}}for A, then there is no τ2-open cover for A finer than    

{{b,c}}. So A does not satisfy the condition in theorem (2.2.2.a) even though (A ,τ1A ,τ2A ) is 

τ1-compact with respect to τ2.                                                                                                     □   

 

          Even though, the union of finite family of compact subsets of a topological space is 

compact, but this result is not necirsserily true for τi-compact with respect to τj.  

2.2.4 Theorem [4]: 

        Let A and B be τj-open sets, each of which is τi-compact with respect to τj , then there 

union (A B) is τi-compact with respect to τj . 

 Proof: 

        Let  = {Uα : α  ∆} be a τi-open cover for A B, then  is τi-open cover for A and for B. 

By our hypothesis of A and B, and according to Theorem (2.2.2), there are two finite τj -open 

covers for A and B, say S1 and S2 respectively such that each of S1 and S2 is finer than . 

Therefore S1 S2 is a finite τj -open cover for A B, and S1  S2 is finer than . It follows that 

A B is τi -compact with respect to τj by Theorem (2.2.2).                                                         □ 

 

    The following corollary follows by mathematical induction. 
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2.2.5 Corollary: 

      Let {A1, A2, …. ,An} be a finite family of τj-open sets, each of which is τi-compact with 

respect to τj , then A  is τi-compact with respect to τj .                                                        □       

 

       The following example shows that the condition that A and B are τj-open sets in theorem 

(2.2.4) is essential.                                                                                                                            

2.2.6 Example [4]: 

         Let X = {a,b}, τ1 = { , {a}, {b}, X} , and τ2={ ,  X}. The sets {a}, {b} are τ1-compact 

with respect to τ2, but {a} {b} = X is not τ1-compact with respect to τ2. Note that {a} and {b} 

are not τ2-open.                                                                                                                           □ 

 

2.2.7 Theorem [4]: 

          Let the bitopological space (X,τ1,τ2) be τi -compact with respect to τj [resp. conversely 

compact ], and let the subset A of X be τi-closed [resp. closed ]. Then A is τi -compact with 

respect to τj [resp. conversely compact]. 

Proof: 

       Assume that A is τi-closed and that (X,τ1,τ2) is τi-compact with respect to τj.                        

Want to show that the subspace (A,τ1A,τ2A) is τiA-compact with respect to τjA.                       

Let  ={Uα : α  ∆} be any τiA-open cover of A, then for each α ∆, Uα = Wα∩A; for some             

Wα   τi . Since A is τi-closed, then X\A is τi-open, and so the collection                        

1 = {Wα : α  ∆}  {X\A} is a τi-open cover of X. By τi -compactness of X with respect to τj , 
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there is a finite τj-open cover for X, say 2 such that 2 is finer than 1. Let the collection 3 

be the set of all elements of 2 which are not subsets of X\A. Then 3 = {Ck : k =1,2,..,n} is     

a family of τj-open sets which is finer than 1 and covers A. Consequently the collection         

4 = {Ck ∩ A : k =1,2,…,n } is the desired τjA-open cover for A which is finite and finer than 

. This means that A is τi-compact with respect to τj.We use the same argument to complete 

the proof of the theorem. 

                                                                                                             □ 

2.3 Continuous (open) functions and conversely compactness in 

bitopological spaces 

2.3.1 Theorem [4]: 

      If the bitopological space (X,τ1,τ2) is τi-compact with respect to τj , and if the function              

f : (X ,τ1,τ2)  (Y,σ1,σ2) is i-continuous and j-open, then f (X) is σi-compact with respect to σj.  

Proof:  

       Let ’= {Uα : α ∆} be a σi-open cover for  f (X) in (Y,σ1,σ2). Because  f  is i-continuous, 

then the collection  = { (Uα) : α  ∆} is τi -open cover for X, and therefore there exists     

a finite τj -open cover say {Wk: k=1,2,…,n} for X finer than . That is to say that k,  αk  ∆, 

such that Wk  (Uαk). Since the function f is j-open, then the collection                        

{ f (Wk) : k =1,2,…,n} is σj -open cover of f (X) which is finite and finer than ’ because              

 k=1,2,…,n,   αk ∆ , such that  f (Wk )  Uαk .This implies that f (X) is σi-compact with 

respect to σj, by Theorem (2.2.2.a).                                                                                             □ 
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     The following corollary follows directely.  

2.3.2 Corollary [4]: 

      If the bitopological space (X,τ1,τ2) is conversely compact, and if the function                       

f : (X ,τ1,τ2) → (Y,σ1,σ2) is continuous and open, then  f (X) is a conversely compact subset of 

the space (Y,σ1,σ2).                                                                                                                      □                      

 

2.3.3 Theorem: 

      If the bitopological space (X,τ1,τ2) is τi-compact within τj, and if the function                       

f : (X ,τ1,τ2)  (Y,σ1,σ2) is i-continuous and j-open, then f (X) is σi-compact within σj.    

Proof: 

       Let  = {Uα: α ∆} be a σif (X)-open cover for  f (X). Because f is i-continuous, then the 

collection 1 = { (Uα):α  ∆} is τi -open cover for X, and therefore there exists a finite        

τj -open subcover of 1 say { (Uαk ): k =1,2,…,n} for X.             

 The function f is j-open, so f  (Uαk )  σj  k=1,2,…,n. And since f  (Uαk ) = Uαk                 

 k =1,2,…, n  then the collection { Uαk : k =1,2,…,n} is a finite σj f (X) -open subcover of  for       

f (X). Thus f (X) is σi-compact within σj.                                                                                   □  

 

2.3.4 Corollary [4]: 

       If we add to the hypothesis of corollary (2.3.2), the hypothesis that (Y,σ1,σ2) is                 

p-Hausdorff, then σ1 = σ2 and ( f (X), σ1 = σ2 ) is a compact topological space. 
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Proof: 

       By corollary (2.3.2), ( f (X) , σ1 , σ2 ) is conversely compact. Then by Corollary (2.1.19 -c) 

σ1 = σ2. Since ( f (X),σ1,σ2) is conversely compact, then f (X) is σ1-compact with respect to σ2 , 

i.e. ( f (X),σ1) is a compact topological space, according to corollary (2.1.19).                        □ 

 

2.3.5 Corollary [4]: 

        In the bitopological space (X,τ1,τ2), the image of the τj -open (resp. open ) subset A of  X 

which is τi-compact with respect to τj (resp. conversely compact ) by a function                        

f : (X ,τ1,τ2) → (Y,σ1,σ2) which is i-continuous and j-open (resp. f is continuous and open) is 

σi-compact with respect to σj (resp. conversely compact ). 

Proof: 

      The proof is similar to the proof of Theorem (2.3.1), using Theorem (2.2.2).                      □  

  

      The following example proves that it is not sufficient to suppose that f  is only continuous 

in Theorem (2.3.1).                                                    

 

2.3.6 Example [4]:  

        Let X={a , b , c}, τ1 = τ2 = the discrete topology. Let Y={1 , 2 , 3}, σ1={ , {1},{2,3},Y}, 

σ2 = { ,{1,2},{3},Y}. Define the function f by f (a) = 1, f (b) = 2, f (c) = 3. We observe that: 

1) (X,τ1,τ2) is conversely compact (there is exactly one compact topological space). 
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2) f is continuous function, as τ1 and τ2 are  the discrete topologies . 

3) (Y,σ1,σ2) is neither σ1-compact with respect to σ2, nor σ2 -compact with respect to σ1. 

Proof: 

       The proof of (1) and (2) are direct. To prove (3) we notice that 1={{1},{2,3}} is σ1-open 

cover for Y, but there is no σ2-open cover for Y that is finer than 1. Also, 2 = {{1,2},{3}} is 

σ2-open cover for Y, but there is no σ1-open cover for Y that is finer than 2.                         □                          

 

2.4 Alexander’s, Tychonoff’s  theorems and conversely compactness in  

bitopological spaces 

        In single topology we have , if { (Xi , τi ) : i  I } is a family of topological spaces , then 

the product topology ( ∏ X  , ρ) is the topology generated by the collection                       

{ π (U) : U  τi ; i  I } as a subbase, where πi is the natural projection from ( ∏ X  , ρ) 

onto (Xi , τi ). In bitopological spaces we have the following analogous definition. 

 

 2.4.1 Definition [5]: 

         Let {(Xk, τk
1 ,τk

2 ) : k ∆ } be a family of bitopological spaces. On the product set            

X = ∏ X∆  . We define a bitopological structure ( ρ1 , ρ2) by taking ρ1 as the product 

topology generated by the τk
1‘s, and ρ2 as the product topology generated by the τk

2‘s . The 

resulting bitopological space (X, ρ1, ρ2) will be called the product bitopological space 

generated by the family {(Xk, τk
1 ,τk

2 ) : k ∆ }.    
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2.4.2 Theorem [10]: 

       Let {(Xk, τk
1 ,τk

2 ) : k ∆ } be an arbitrary family of nonempty bitopological spaces.                        

Then for each fixed k, the natural projection map, πk: (X, ρ1, ρ2)  (Xk, τk
1 ,τk

2 ) is continuous. 

Proof: The result follows directely from single topology theory.                                           □   

 

2.4.3 Definition [4]: 

         A family  of τi-open sets in the bitopological space (X,τ1,τ2) is called τi -inadequate in 

(X ,τ1 , τ2), i=1,2 , if it fails to cover X. The family  of τi-open sets is called finitely τi-

inadequate with respect to τj in X if and only if no finite family of τj-open sets which is finer 

than  covers X.  

       We can easily see that the bitopological space (X,τ1,τ2) is τi-compact with respect to τj if 

and only if each finitely τi -inadequate family with respect to τj in X, is τi -inadequate. 

 

2.4.5 Lemma [4]: 

       If   is a finitely τi-inadequate family with respect to τj in the bitopological space            

(X,τ1 ,τ2), then there is a maximal finitely τi-inadequate family with respect to τj in (X,τ1 ,τ2), 

say , and   . 

Proof: 

        Let ξ be the family of all finitely τi-inadequate families with respect to τj.  is finitely        

τi-inadequate family with respect to τj , so   ξ.                                                                    
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Define a partial order ≤ on ξ, by  C1 ,C2  ξ , C1 ≤ C2 iff C1  C2.                                          

{ } is a chain in ξ, then by Hausdorff maximal principle, there is a maximal chain  such that 

{ }  .                                                                                                                                       

Let  = . Each elment of   is finitely τi-inadequate family with respect to τj , then each 

element of  is a family of τi-open sets, so  =  is a family of τi-open sets .                        

Want to prove:  i)  is finitely τi-inadequate family with respect to τ.           

                          ii)  is maximal finitely τi-inadequate family with respect to τj , and   . 

i) Suppose that  has a finite family of τj-open sets finer than  and covers X say                   

U ={Uk : k= 1,2,…n}.  k =1,2,…n , choose Vk   with Uk  Vk .                                    

Then ’={Vk :k=1,2,…,n}   .  is a chain, so ’  E for some E   . Since ’ has a finite 

family of τj-open sets finer than ’ and covers X, and ’  E, then E has a finite family of τj-

open sets finer than E and covers X, and this contradict the fact that E is a finitely τi-

inadequate family with respect to τj.                                                                                      

Thus,  is a finitely τi-inadequate with respect to τj. 

ii) Suppose that  is not maximal finitely τi-inadequate family with respect to τj , then there 

exists G  τi, such that  {G} is still finitely τi-inadequate family with respect to τj, then       

  { {G}} is a chain contains  properly which contradicts the fact that  is maximal 

chain.                                                                                                                                              

So,  is maximal finitely τi-inadequate family with respect to τj.                                               

Since  = , and   , then .                                                                                        □ 
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2.4.6 Lemma [4]: 

       Let (X,τ1,τ2) be a bitopological space. If  is a maximal finitely τ1-inadequate family with 

respect to τ2, and if some member of  contains G  , where each Gi is τ1-open, then            

Gk   for some k in {1,2,…,n}. 

Proof: 

       First suppose that n = 2. Suppose that G1   and G2  . Then by maximality of  ,            

 {G1}  and   {G2} are not finitely τ1-inadequate with respect to τ2 , then for  {G1},        

 A1 , A2 ,..., Am , A, where Ai , A are τ2-open sets, i=1,2,…,m , and A G1 , and Ai A’i  for 

some A’i   ,  i=1,2,…m ,  such that A1  A2 …..  Am  A =X. 

And for  {G2},  τ2 -open sets  B1, B2,…, Bt , B, such that B1  B2 … Bt  B = X, where  

B G2 and Bi B’i for some  B’i  ,  j=1,2,…,t. 

Claim: (A∩B) A1 … Am  B1 …. Bt = X. 

It is clear that (A∩B) A1 … Am  B1 …. Bt  X.  

Now, let x  X. If either x Ai , for some i=1,2,…, m , or  x  Bj , for some  j=1,2,…,t, then 

x (A∩B) A1 … Am  B1 …. Bt . If not, then x A and x B and so x  (A∩B). So           

X  (A∩B) A1 … Am  B1 …. Bt. Then our claim is true. 

Since A  G1 and B  G2, then (A ∩ B)  (G1 ∩ G2). But (G1∩G2 ) is contained in some 

element of ,so (A∩B), A1 ,…,Am , B1,….,Bt  is a finite family of τ2-open sets that is finer 

than  and covers X, this contradicts that  is finitely τ1-inadequate with respect to τ2.          

So G1   or G2   . So the result holds for n=2.  
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The result for arbitrary n  follows by mathematical induction.                                              □ 

 

2.4.7 Theorem (Alexander) [4]: 

       Let (X,τ1 ,τ2) be a bitopological space, and assume that  is a subbase of the topology τi 

such that, for each τi-open cover  for X by members of , there is a finite family of τj-open 

sets finer than  that covers X, then (X,τ1 ,τ2) is τi-compact with respect to τj. 

Proof: 

        Let  be a finitely τi-inadequate family with respect to τj, then by lemma (2.4.5) there is a 

maximal finitely τi-inadequate family with respect to τj, say  and   . If we prove that  

is τi-inadequte, then  is also τi-inadequate.  

Since  is a subbase of τi, and  is a family of τi -open sets, then ( ∩ ) is a family of τi-open 

sets. Let A  , then A  τi, and  is a subbase of τi, then there is a finite intersection of 

elements of  which is contained in A, then one of these elements of  is an element of . So 

( ∩ ) is a nonempty family of τi-open sets contained in , since ( ∩ )  , then ( ∩ ) is   

a finitely τi-inadequate family with respect to τj. Which means that there is no finite family of 

τj-open sets finer than ( ∩ ) and covers X. And since ( ∩ )  , ( ∩ ) is τi-open family of 

 which does not cover X. Hence, (  ∩ ) is τi-inadequate. 

Want to prove that {C : C  } = {C : C  ( )}. 

Since   , so {C: C  ( )}  {C :C   }                                  ………………(1) 
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Let x   {C : C }; then  A   s.t. x  A, since A is τi-open, then there is a finite 

intersection of elements of  containing  x and contained in A. By maximality of , one of 

these elements of  is an element of , so x  {C: C  ( )}                    ……………..(2)                         

Hence, {C : C   } = {C : C  ( )}, from (1) and (2). 

So,  is τi -inadequate, and so  is τi-inadequate.Therefore each finitely τi -inadequate family 

with respect to τj is τi-inadequate.  So X is τi -compact with respect to τj .                                 □ 

 

 2.4.8 Theorem: (Tychonoff) [4]: 

       Let the bitopological space (X, ρ1, ρ2) be the product bitopological space of the family of 

bitopological spaces {(Xk, τk
1 ,τk

2 ) : k  ∆ }. Then (X, ρ1, ρ2) is ρi -compact with respect to ρj 

(conversely compact ), if and only if each factor space (Xk, τk
1 ,τk

2 ) is τk
i -compact with respect 

to τk
j (conversely compact ).    

Proof:                                                                                                                                         

        ) The natural projections are continuous and open, therefore theorem (2.3.1) and 

corollary (2.3.3) prove (i). 

        ) Let  = { (Uk) : Uk τ1
k

 , k ∆ }, where πk is the natural projection into the k-th 

coordinate space Xk , then  is a subbase for the topology ρ1. In view of theorem (2.4.7), the 

product bitopological space (X, ρ1, ρ2) will be ρi -compact with respect to ρj if each subfamily 

 of  which is finitely ρi-inadequate with respect to ρj in (X, ρ1, ρ2) is ρi-inadequate. For each 

index k ∆, Let k be the family of all sets Uk  τi
k such that (Uk)  . Then k is finitely  

τi
k

 -inadequate with respect to τj
k in (Xk , τ1

k
 , τ2

k). Since (Xk , τ1
k

 , τ2
k) is τi

k -compact with 
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respect to τj
k, then k is τi

k -inadequate in (Xk , τ1
k

 , τ2
k ). So, there is xk  Xk\Uk  for each          

Uk  k. Consider the point x  X whose k-th coordinate is xk , then x belongs to no member of 

, and consequently,  is ρi-inadequate in (X, ρ1 , ρ2).  Hence the product bitopological space 

(X, ρ1, ρ2) is ρi -compact with respect to ρj.                                                                                 □ 
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Chapter Three 

               Lindel fness of a topology with respect to another 

3.1 Birsan and conversely Lindel f     

      In this chapter, some kinds of Lindelofness in bitopological spaces, and the relations 

between them are discussed. 

       Recall that a topological space (X,τ) is Lindelof if every open cover for X has a countable 

subcover.  

 3.1.1 Definition [3]:               

         A bitopological space (X,τ1.τ2) is called semi Lindelof (s-Lindelof) if every τ1τ2-open 

cover for X has a countable subcover. 

 

3.1.2 Definition [3]:             

         A bitopological space (X,τ1,τ2) is called pairwise Lindelof (denoted p-Lindelof ) if every 

p-open cover of X has a countable subcover. 

 

3.1.3 Definition [4]:                       

         A bitopological space (X,τ1,τ2) is called τi-Lindelof with respect to τj if for each τi-open 

cover  for X, there is a countable family of τj-open sets finer than  and covers X.                   
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The space is called conversely Lindelof if it is τ1-Lindelof with respect to τ2 and is τ2 -Lindelof 

with respect to τ1. 

 

3.1.4 Definition [3]: 

         A bitopological space (X, τ1, τ2 ) is called τi-Lindelof within τj if for each τi-open cover 

 for X, has a countable subcover of τj open sets for X. The space is called B-Lindelof if it is 

τ1-Lindelof within τ2 and is τ2 -Lindelof within τ1. 

        In fact, τi-Lindelofness of (X,τ1,τ2) within τj implies τi-Lindelofness of (X,τ1,τ2 ) with 

respect to τj , that is every B-Lindelof is conversely Lindelof but the converse need not be true.   

 

        As in example (2.1.8), since X is τ1-compact with respect to τ2 then it is τ1-Lindelof with 

respect to τ2 . But it is not τ1-Lindelof within τ2 , since { [0,1]\{1/2} , [0,1)  } is τ1 –open cover 

which has no countable τ2 –open subcover.      

 

3.1.5 Note: 

         Let (X,τ1,τ2) be a bitopological space , then : 

i) If X is compact, then it is Lindelof.                                                                                         

ii) If X is s-compact, then it is s-Lindelof.                                                                                        

iii) If X is p-compact, then it is p-Lindelof.                                                                                    
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iv) If X is τi-compact with respect to τj , then it is τi-Lindelof with respect to τj .                          

v) If X is τi-compact within τj , then it is τi-Lindelof within τj .                                                 □ 

        

        It is knowing from single topology theory that if (X,τ) is a second countable space, then 

(X,τ ) is Lindelöf. 

        Then the following corollary follows directely.  

3.1.6 Theorem [1]: 

        If (X ,τ1,τ2) is second countable space, then (X ,τ1 ,τ2 ) is Lindelöf.                                   □                    

 

       The following theorem illustrates the relation between s-Lindelöfness and p-Lindelöfness. 

3.1.7 Theorem:       

        The bitopological space (X,τ1,τ2) is s-Lindelöf if and only if it is p-Lindelöf, and 

Lindelöf.                                                                                                                                    

Proof:  

       Assume that the bitopological space (X,τ1,τ2) is s-Lindelöf, and let  be any p-open cover 

of the space X, then  is τ1τ2-open cover for X. Since X is s-Lindelöf, then  has a countable 

subcover for X. Thus X is p-Lindelöf. Also, let  be any τi-open cover of X, where i  {1,2}, 

then   τ1  τ2, which means that  is τ1τ2-open cover of X. Since (X,τ1,τ2) is s-Lindelöf, 

then there is a countable subcover of  for X, which implies that X is τi-Lindelöf for each 

i=1,2. Conversely, assume that (X, τ1, τ2) is p-Lindelöf, τ1-Lindelöf and τ2 -Lindelöf. Let  be 
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any τ1τ2-open cover for X, then   τ1  τ2.                                                                                

Case1: 

         If  contains at least one nonempty member of τ1, and at least one nonempty member of 

τ2, then  is p-open.Thus there is a countable subcover of  for X (as X is p-Lindelöf).                      

Case 2:  

           If  is contained entirely in τ1 or τ2, then  is either τ1-open cover for X or τ2 -open 

cover for X. In either case, there is a countable subcover of  for X (as X is Lindelöf).    

Hence X is s-Lindelöf.                                                                                                                □        

 

3.1.8 Theorem:                                                                                                             

       If the bitopological space (X,τ1,τ2) is τi-Lindelöf with respect to τj then (X,τi) is Lindelöf. 

Proof:                               

       Let  = { Wα: α ∆} be any τi -open cover for X. Since (X,τ1,τ2) is τi-Lindelöf with respect 

to τj, there is a countable τj-open cover 1={Uk : k } for X, such that 1 is finer than .     

So, for each k   , there exists αk  ∆ such that Uk  Wαk, Consider the τi-open collection                  

2 = { Wαk : k   }. Then 2 covers X because Uk Wαk for each k    and 1covers X. 

Since  k   , Wαk   , then 2 is the desired countable subfamily of  that covers X, which 

means that (X,τi) is Lindelöf.                                                                                                      □                         
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3.1.9 Corollary:                                                                  

         If the bitopological space (X,τ1,τ2) is conversely Lindelöf, then (X,τ1,τ2) is Lindelöf.     □                         

 

      The following example shows that the converse of corollary (3.1.9) is not true. 

3.1.10 Example: 

       Consider the bitopological space ( , ℓ, ). Then (  ,ℓ, ) is second countable as            

1={(-∞,a) : a } is a countable base for the left ray topology on , and 2={(b,∞) : b } is 

a countable base for the right ray topology on , so  (  ,ℓ, ) is Lindelöf. 

But not every ℓ -open cover of  has a countable family of -open sets finer than ℓ -open 

cover and covers , such as {(-∞,n) : n   }.                                                                      

Hence, ( , ℓ,) is not ℓ -Lindelöf with respect to , and so it is not conversely Lindelöf.                

So, not every second countable bitopological space is conversely Lindelöf.                          

Also, being Lindelöf bitopological space doesn’t imply being conversely Lindelöf and so 

doesn’t imply being B-Lindelöf.                                                                                                □ 

 

3.1.11 Theorem: 

      Let (X, τ1, τ2) be a bitopological space. If X is conversely Lindelöf and p-Lindelöf, then 

(X, τ1, τ2) is s-Lindelöf.                                                                                 
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Proof: 

       Since (X,τ1,τ2) is conversely Lindelöf, then (X,τ1) and (X,τ2) are Lindelöf by corollary 

(3.1.9), and by p-Lindelöfness, (X, τ1, τ2) is s-Lindelöf.                                                             □        

 

     The following example shows that the converse of theorem (3.1.11) is not true. 

3.1.12 Example:   

       Let X ={a,b,c}, τ1 = { , X, {a}, {b,c} }, τ2 = {  , X, {a,b} ,{c} }. Then (X,τ1,τ2) is  

Lindelöf, s-Lindelöf and p-Lindelöf, but it is not τ1-Lindelöf with respect to τ2, as { {a},{b,c}} 

is a τ1-open cover for X which has no countable family of τ2-open sets finer than it and covers 

X. Also, (X,τ1,τ2) is not τ2-Lindelöf with respect to τ1, as { {a,b}, {c} } is a τ2-open cover of  

X which has no countable family τ1-open finer than it and covers X.                        

Hence, (X,τ1,τ2) is neither B-Lindelöf nor conversely Lindelöf.                                                □        

 

  3.1.13 Theorem:                    

       Let (X, τ1, τ2) be a bitopological space, then the following are equivalent: 

a) X is τi-Lindelöf with respect to τj. 

b) For any family {Fα : α  ∆} of τi-closed sets which has empty intersection, there exists          

a countable family {Gk : k   } of τj–closed sets with empty intersection and satisfies the 

condition that  k    ,  αk  ∆ such that Gk  Fαk.                                   
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 c) For any family   = { Fα : α  ∆} of τi-closed sets with the property that every countable 

family {Gk : k   } of τj–closed sets which satisfies the condition that k   ,   αk  ∆ such 

that Gk  Fαk has nonempty intersection, it results that  has nonempty intersection.  

Proof: (a)  (b)                                                                                                 

       Assume (a) and let {Fα : α  ∆} be any family of τi-closed sets which has empty 

intersection, then the family  ={Uα : Uα= X\Fα , α  ∆} is a family of τi–open sets which 

covers X because U  ∆  = \∆   = X\ ∆  = X\  = X. 

 By the hypotheses of (a), there is a countable family 1 = {Vk : k   }of τj-open sets which 

covers X such that k  ,  αk  ∆ with Vk  Uαk . Define Gk = X\Vk , then for each k, Gk  is 

τj–closed set and Gk  = X\Vk X\Uαk =Fαk, and G  = X\V  = X\ V  =X\X = . 

(b)   (a):  

           Assume (b), and let  = {Uα : α  ∆} be any τi–open cover of X. Then the family         

{X\Uα : α  ∆} is a family of τi-closed sets such that X\U∆  = X\ U∆ = X\X = ,      

i.e. has empty intersection. Consequently, the hypotheses in (b) implies that there is                  

a countable family {Gk  : k   } of τj-closed sets such that  k ,  αk  ∆ such that Gk  X\Uαk   

and G = . Consider Vk = X\Gk . Then k, Vk  is τj–open and                                                                     

V  = X\G = X\ G = X\  =X. Since k, Vk = X\Gk  X\(X\Uαk ) = Uαk, then 

the countable family {Vk : k   } of τj–open sets covers X and satisfies the desired condition. 

Hence (X,τ1,τ2) is τi-Lindelöf with respect to τj.                                                                                                    

(b)  (c):                                                                                 



 

47 
 

          Assume (b), and let  = { Fα : α  ∆}of τi-closed sets with the property stated in (c). 

Suppose that  F∆  = . By the hypotheses in (b), there is a countable family {Gk : k   } 

of τj–closed sets with empty intersection such that k,  αk  ∆ with Gk   Fαk. And this 

contradicts the property of the family . Hence, F∆  ≠ . 

(c)  (b):         

          Assume (c), and let {Fα: α  ∆} of τi-closed sets which has empty intersection. Suppose 

that there exists no countable family of the form {Gk : k   } of τj –closed sets with empty 

intersection and satisfies the condition that k,  αk  ∆ with Gk Fαk .This means that every 

countable family of the form {Gk : k   } of τj–closed sets which satisfies the condition k ,  

 αk  ∆ with Gk  Fαk has nonempty intersection.                                                                                   

By (c), {Fα : α  ∆} has nonempty intersection, and this contradict the assumption.              □ 

 

We introduce the following definition before proving theorem (3.1.15). 

3.1.14 Definition [3]: 

     A bitopological space (X,τ1,τ2) is said to be i-P-space if countable intersection of i-open 
sets in X is i-open. X is said P-space if it is i-P-space for each i = 1; 2. 
 

3.1.15 Theorem: 

       Let (X,τ1,τ2) be a p-Hausdorff, τj-P-space bitopological space and let (X,τi) be a Lindelöf 

topological space. Then τi  τj . 
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Proof:                                                                                     

       To prove this, it is sufficient to show that every τi -closed set is τj-closed set. Let A be     

τi–closed, then A is τi–Lindelöf. Let x  A. Since (X,τ1,τ2) is p-Hausdorff, then for each a A, 

there exist τi-open set V(a) and a τj-open set U(a) such that a  V(a), x  U(a), and            

V(a)∩U(a) = . The family {V(a) : a  A } forms a τi-open cover for A, and so by 

Lindelöfness of A, there is a countable subcover {V(ak) : k   } of {V(a): a A } for A. For 

each V(ak), k  , there is a corresponding τj-open sets U(ak). Then B= U a ) is              

τj -open set containing x since X is τj-P-space. Now B ∩ V(ak) =  for each k   , for if this 

not true, then B ∩ V(an) ≠   for some n    , and then U(an) ∩ V(an) ≠  as B  U(ak) for 

each k , and this is the contrary to the way V(ak) and U(ak) were chosen. Define                  

C = V a ) which is τi –open, then we have B ∩ C =  and this implies that B ∩ A = . 

Therefore x  B  X\A which means that A is τj -closed.                                                         □  

 

3.1.16 Corollary: 

Let the bitopological space (X,τ1,τ2) be a p-Hausdorff. Then:  

(a) If the topologies τ1 and τ2 are Lindelöf and P-spaces, then τ1 = τ2.                                           

(b) If (X, τ1, τ2) is τi-Lindelöf with respect to τj and τj -P-space, then τi  τj .                             

(c) If (X, τ1, τ2) is conversely Lindelöf and P-space, then τ1 = τ2.                                              

(d) If (X,τ1,τ2) is B-Lindelöf and P-space, then τ1 = τ2.                                                               □       
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3.2 Conversely Lindelöfness of sets in bitopological spaces 

3.2.1 Definition: 

       Let (X,τ1,τ2) be a bitopological space, and let A X. We say that the set A is τi- Lindelöf 

with respect to τj [resp.  conversely Lindelöf ], if the bitopological subspace (A, τ1A, τ2A) is  

τiA-Lindelöf with respect to τjA  [resp. conversely Lindelöf]; where τ1A = {A ∩ U : U  τ1} and    

τ2A = {A ∩ V : V  τ2}.                                                                                                              □         

 

3.2.2 Theorem:  

      Let A be a set in a bitopological space (X, τ1, τ2). Then: 

a) A sufficient condition for the set A to be τi -Lindelöf with respect to τj is:                                     

for every τi -open cover  of A, there is a countable τj -open cover 1 of A finer than 

. 

b) If the set A is τj –open set, then a necessary condition for A to be τi-Lindelöf with 

respect to τj is: for every τi -open cover  of A, there is a countable τj -open cover 1 

for A finer than .           

Proof: (a) 

       Let  = {Uα A : α  ∆}, where Uα  τi  for each α  ∆, be a τi-open cover for A. Then, 

U A : α ∆  = A. So, U : α   ∆} A = A, and so   U : α   ∆}   A.                        

i.e. ’ = { Uα : α  ∆} is a τi-open cover for A. By the hypothesis, there is a countable τj -open 

cover for A; say ’1 = {Wk : k  } finer than ’. This means that  k   , there is α  ∆ such 

that Wk  Uα. This implies that  k   ,  α  ∆ such that (Wk ∩ A)  (Uα ∩ A). Hence, the 
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collection 1 = {Wk ∩ A: k   } is the desired countable τjA-open cover for A which is finer 

than . 

Proof: (b)  

       Let A be τj -open, and let the collection  = {Uα : α  ∆} be a τi -open cover for A. Then 

1={ Uα ∩ A : α  ∆} is a τiA-open cover for A, so by the hypothesis, there is a countable 

family 2 of  τjA-open sets finer than 1 that covers A, say 2={Wk ∩ A : k   }, where      

Wk   τj  k   . Since A is τj -open then for each k   , Wk ∩ A is τj -open, and so             

{Wk∩A : k   } is the desired countable family of τj -open sets which is finer than  and 

covers A.                                                                                                                                     □       

 

     The following example shows that the converse of theorem (3.2.2.a) is not necessarily true 

if A is not τj -open. 

3.2.3 Example: 

      Let X ={a,b,c}, τ1={ ,{a},{a,c},{b,c},{c},X }, and τ2={ ,{b},{a,b},{a}, X}. Let A={c}, 

and consider the τ1-open cover { {b,c} }for A, then there is no τ2-open cover for A finer than  

{ {b,c} }. So A does not satisfy the condition in theorem (3.2.2.a) even though (A, τ1A, τ2A) is 

τ1-Lindelöf with respect to τ2.                                                                                                     □    

 

3.2.4 Theorem: 

       Let A and B be τj-open sets, each of which is τi-Lindelöf with respect to τj, then there 

union (A B) is τi -Lindelöf with respect to τj. 
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 Proof: 

        Let  = {Uα : α  ∆} be a τi -open cover for A B, then  is τi -open cover for A and for 

B. By our hypothesis of A and B, and according to theorem (3.2.2.b), there are two countable      

τj -open covers for A and B, say S1 and S2 respectively such that each of S1 and S2 is finer than 

. Therefore S1  S2 is a countable τj -open cover for A B, and S1  S2 is finer than . It 

follows that A B is τi -Lindelöf with respect to τj, by theorem (3.2.2.a).                                 □ 

 

3.2.5 Theorem: 

Let {An : n   } be a countable family of τj -open sets, each of which is τi -Lindelöf with 

respect to τj, then A  is τi -Lindelöf with respect to τj . 

 Proof: 

        Let  = {Uα : α  ∆} be a τi -open cover for A , then  is τi -open cover for An,       

 n   . By our hypothesis of An,  n   , and according to theorem (3.2.2.b), for each An 

there is a countable τj -open cover Sn, such that each of Sn is finer than ,  n   . Therefore 

S  is a countable τj -open cover for A , and S  is finer than . It follows that 

A  is τi -Lindelöf with respect to τj, by theorem (3.2.2.a).                                                 □ 

 

            The following example shows that the condition that A and B are τj –open in theorem 

(3.2.4) is essential. 
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3.2.6 Example: 

         Let X ={a,b}, τ1 = { , {a}, {b} , X}, and τ2 = {  , X}. The sets {a}, {b} are τ1 -Lindelöf 

with respect to τ2, but {a} {b} = X is not τ1-Lindelöf with respect to τ2. Note that {a} and {b} 

are not τ2-open.                                                                                                                            □ 

 

3.2.7 Theorem: 

        Let the bitopological space (X,τ1,τ2) be τi -Lindelöf with respect to τj , and let the subset A 

of X be τi-closed. Then every τi –open cover  for A has a countable τj-open cover for A finer 

than .  

Proof: 

       Assume that A is τi -closed and that (X,τ1,τ2) is τi -Lindelöf with respect to τj .                        

Let  = {Wα : α  ∆} be any τi-open cover of A. Since A is τi -closed, then X\A is τi -open, and 

so the collection 1 = {Wα : α  ∆} {X\A} is a τi -open cover of  X. By τi-Lindelöfness of X 

with respect to τj, there is a countable τj -open cover for X, say 2 such that 2 is finer than 1. 

Let the collection 3 be the set of all elements of 2 which are not subsets of X\A.              

Then 3 = {Ck: k   } is the desired countable family of τj-open sets which is finer than  and 

covers A.                                                                                                                                    □  

 

The following corollary follows directly from theorem (3.2.7) and theorem (3.2.2).    
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3.2.8 Theorem [1]: 

        Let the bitopological space (X,τ1,τ2) be τi -Lindelöf with respect to τj  [resp. conversely 

Lindelöf ], and let the subset A of X be τi-closed [resp. closed]. Then A is τi -Lindelöf with 

respect to τj [resp.  conversely Lindelöf ]. 

 

3.2.9 Theorem [1]: 

      Every pairwise regular and conversely Lindelöf bitopological space (X,τ1 ,τ2) is p1 -normal. 

Proof: 

      Let A and B be closed sets with A ∩ B =  in X. Then A and B are both τ1 -closed and      

τ2 -closed set in X. Since (X,τ1,τ2) is pairwise regular, then by theorem (1.2.6), for each x in B, 

for the τ1-open set X\A that contains x, there is a τ1-open set Px such that                        

x  Px  τ2-cl(Px )  X \A, i.e. τ2-cl(Px )∩A= . The collection {Px : x  B} forms a τ1-open 

cover for B. Since (X,τ1,τ2) is conversely Lindelöf, and B is τ1-closed subset of X.                

So, by theorem (3.2.7), there is a countable τ2-open cover for B and finer than {Px : x  B}, 

which we denote by {P’i : i  }. 

Similarly, for each y in A, for the τ2-open set X\B contains y, there is a τ2-open set Qy such 

that y  Qy  τ1-cl(Qy )  X\B, i.e. τ1-cl(Qy) ∩ B = . The collection {Qy : y  A} forms a      

τ2-open covering of A. Since (X,τ1,τ2) is conversely Lindelöf, and A is τ2-closedsubset of X. 

So, by theorem (3.2.7), there is a countable τ1-open cover for A finer than {Qy : y  A}, which 

we denote by {Q’i : i  }.   

 Let  Un = Qn\ {τ2-cl(Pi) : i ≤ n}  and  Vn = Pn\ {τ1-cl(Qi) : i ≤ n}. 
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Since Un ∩ τ2-cl (Pm) =   m ≤ n, then Un ∩ Pm =   m ≤ n, it follows that Un ∩Vm =  for 

m ≤ n. 

Similarly, Vm ∩ τ1-cl(Qn) =  for each n ≤ m, then Vm ∩ Qn =    n ≤ m. It follows that       

Vm ∩ Un=  n ≤ m. Thus Un ∩ Vm =  for all m and n, and consequently U = {Un: n  } 

is disjoint from V = {Vn: n  }. Finally, τ2-cl(Pi ) ∩ A and  τ1-cl(Qi ) ∩ B are empty set for 

all i and hence the set U contains A and is τ2-open set, while the set V contains B and is        

τ1-open. The proof is complete.                                                                                                  □     

 

 3.2.10 Corollary: 

       Let (X, τ1, τ2) be a bitopological space, if X is conversely compact and p-regular, then      

(X, τ1, τ2) is p1-normal.                                                                                                              □ 

 

3.3 Mappings on conversely and Birsan Lindelöf bitopological spaces 

        It is known from single topology theory that the continuous image of Lindelöf 

topological space is Lindelöf. In this section we study mappings on conversely Lindelöf and 

Birsan Lindelöf bitopological spaces. 

 

           The following corollary follows directly from single topology theory. 
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 3.3.1 Cororllary [2]: 

       Let f : (X,τ1,τ2) → (Y,σ1,σ2) be an  i-continuous and surjective function. If (X,τ1,τ2) is       

τi -Lindelöf, then (Y,σ1,σ2) is σi -Lindelöf.                                                                                 □   

 

3.3.2 Corollary [2]: 

      The Lindelöf property is both topological property and bitopological property.                  □   

 

3.3.3 Theorem: 

      Let f : (X,τ1,τ2) → (Y,σ1,σ2) be an i-continuous, surjective and j-open function. If (X ,τ1,τ2) 

is τi -Lindelöf with respect to τj, then (Y,σ1,σ2) is σi -Lindelöf with respect to σj. 

Proof: 

      Let {Gk : k  ∆ } be a σi –open cover for Y. Since f is i-continuous, then (Gk)  τi for 

each k  ∆, and X =  (Y) = ( G∆ ) = G∆  .                                                  

Hence { (Gk) : k  ∆ } is a τi –open cover for X. Since X is τi -Lindelöf with respect to τj, 

there exists a countable family of τj –open sets finer than { (Gk) : k  ∆} and covers X, say 

{Vα : α   }. Since f is j-open and Vα  τj, α   , then  f (Vα)  σj,  α    .                            

Since f is surjective, Y= f (X) = f ( V ) = V ) .                                                            

And since  α  ,  k  ∆ such that Vα  (Gk), then  α   ,  k  ∆ such that                   

f (Vα )  f (Gk)  Gk .                                                                                                          

Hence {f (Vα): α  } is a countable σj-open cover for Y and finer than {Gk: k  ∆}.                                         

Thus, Y is σi-Lindelöf with respect to σj.                                                                                   □ 
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3.3.4 Corollary: 

        Let f : (X,τ1,τ2) → (Y,σ1,σ2) be a continuous, surjective and open function. If (X,τ1,τ2) is 

conversely Lindelöf, then (Y,σ1,σ2) is conversely Lindelöf.                                                      □        

 

3.3.5 Theorem [2]: 

         Let f : (X,τ1,τ2) → (Y,σ1,σ2) be an i-continuous, surjective and j-open function. If          

(X,τ1 ,τ2) is τi-Lindelöf within τj, then (Y,σ1,σ2) is σi-Lindelöf within σj. 

Proof: 

          Let {Gk : k  ∆} be a σi –open cover for Y. Since f is i-continuous, then (Gk)  τi     

 k  ∆, and X = (Y) = ( G∆ )= G∆ .                                                       

Hence { (Gk): k  ∆} is a τi –open cover for X. Since X is τi -Lindelöf within τj, there exists 

a countable subfamily of τj –open sets of { (Gk): k  ∆} and covers X, say                           

{ (Gkα) : kα   }. Since f is j-open and (Gkα)  τj,  kα   ,  f ( (Gkα))  σj,  kα   .                        

Since f is surjective, since  kα  , such that f (Gkα) = Gkα, then                                                                   

Y= f (X) = f ( G  )) = G )) = G  . And Hence {Gkα : kα  } 

is a countable subcover of σj–open sets of {Gk: k ∆} for Y. Thus, Y is σi -Lindelöf within σj.□                         

 

3.3.6 Corollary [2]: 

        Let f : (X,τ1,τ2) → (Y,σ1,σ2) be a continuous, surjective and open function. If (X,τ1,τ2) is 

B-Lindelöf, then (Y,σ1,σ2) is B-Lindelöf.                                                                                   □   
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3.3.7 Corollary [2]:  

      Being conversely Lindelöf and B-Lindelöf are bitopological properties.                             □        

 

3.3.8 Theorem: 

      Let f :(X,τ1,τ2) → (Y,σ1,σ2) be an i-continuous, surjective function. If (X,τ1,τ2) is                 

τi-Lindelöf with respect to τj , then (Y,σ1,σ2) is σi-Lindelöf. 

Proof: 

      (X,τ1,τ2) is τi -Lindelöf with respect to τj, so (X,τi) is Lindelöf. By i-continuity of f, (Y,σi) is 

Lindelöf, and so (Y,σ1 ,σ2 ) is σi -Lindelöf.                                                                  □              

 

3.3.9 Corollary: 

       Let f : (X,τ1,τ2) → (Y,σ1,σ2) be a continuous and surjective function. If (X,τ1,τ2) is 

conversely Lindelöf, then (Y,σ1,σ2) is Lindelöf.                                                                         □      

 

3.3.10 Theorem: 

        Let f: (X, τ1, τ2) → (Y, σ1, σ2) be i-continuous and j-open function. And let A be τj-open 

set and τi-Lindelöf subset of X with respect to τj, then f (A) is σi -Lindelöf with respect to σj. 

Proof: 

    The proof is similar to the proof of theorem (2.3.5).                                                            □                           
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3.4 Product of conversely and Birsan Lindelöf bitopological spaces 

       Before studying productivity of conversely Lindelöf bitopological spaces, we will study 

some properties of P-spaces.   

3.4.1 Lemma: 

    The bitopological space (X,τ1,τ2) is τi-P-space if and only if any countable intersection 

of basic τi-open sets is τi-open.   

 Proof: 

  ) It is obvios since every basic τi-open set is τi-open. 

     ) Let {Un : n  } be any countable collection of τi-open sets of  X. Want to prove that 

U  is a τi-open set of  X.                                                                                                      

Let x  U , then x  Un   n . Since x  Un  τi   n , there exists a basic τi-open 

set  Bn such that x  Bn  Un ,  n  . So x   B  and B   is a τi-open set in X 

since it is the intersection of a countable collection of basic τi-open sets. Thus U  is a 

union of τi-open sets. Hence  U  is a τi-open set in X.                                                                           

So X is τi-P-space.                                                                                                                      □ 

 

3.4.2 Lemma [3]:  

         Let (X,τ1,τ2) be τi-P-space and (Y,σ1,σ2) be σi-P-space. Then (X×Y, ρ1,ρ2) is ρi-P-space 

where ρi is the product topology. 
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Proof: 

         By Lemma (3.4.1), we will restrict our attention to the collection of basic ρi–open sets in 

X×Y.         

Let {Vn×Wn: n  } be a countable collection of basic ρi –open sets in X×Y. Where Vn and Wn 

are τi–open sets and σi-open sets of X and Y respectively,  n  .                            

Now, V W ) = V ×( Wn ) is a ρi–open set, since X  is τi-P-space and Y 

is σi-P-spaces. So X×Y is ρi-P-space.                                                                                       □                           

       

        The following corollary follows by mathematical induction. 

3.4.3 Corollary [3]: 

       Let { (Xk ,τ1
k, τ2

k) : k =1,2,…,n} be a collection of  τi
k-P-spaces. Then ( ∏ X  , ρ1, ρ2 ) 

is  ρi-P-space, where ρi  is the product topology.                                                                        □                        

 

        Adem Kilicman and Zabidin Salleh claim, in proposition (3.2) in [3], that the product of 

arbitrary family of P-spaces is P-space, and gave a “proof” for that. Despite of this we give 

here a counter example to show that this result is not true.         

 3.4.4 Example: 

         Let Ak = { k , k+√2 }, k  , and τ1
k , τ2

k be the discrete topology for Ak. (Ak, τ1
k, τ2

k) is          

a P-space, k .                                                                                                                                            

Let A = ∏ A  , and ρi be the product topology. Take Bk = π ({k})  ρi , k .    
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B   = ∏ k   ρi , even though Bk  ρi, k . Hence (A, ρ1, ρ2) is not P-space.     □                    

 

3.4.5 Definition [3]: 

      A bitopological space X is said to be (i, j)-P-space if every countable intersection of          

i-open sets in X is j-open. X is said to be B-P-space if it is (1, 2)-P-space and (2,1)-P-space.   

 Note that if (X,τ1 ,τ2) is B-P-space, then τ1 = τ2  .                                                                

       

        The proof of the following Lemma is similar to the the proof of lemma (3.4.1). 

3.4.6 Lemma: 

    The bitopological space (X,τ1,τ2) is (i,j)- P-space if and only if any countable 

intersection of τi-basic open sets is τj-open.                                                                              □ 

 

3.4.7 Lemma [3]: 

       Let (X,τ1,τ2) be a (τi ,τj ) –P-space and (Y,σ1,σ2) be a ( σi ,σj )–P-space. Then (X×Y, ρ1, ρ2) 

is (ρi ,ρj )-P-space, where ρi is the product topology , i=1,2 .      

Proof: Similar to the proof of lemma (3.4.2).                                                                            □ 

 

 3.4.8 Corollary [3]: 

Let { (Xk ,τ1
k ,τ2

k ): k =1,2,…,n} be a collection of ( τi
k ,τj

k ) – P-spaces. Then (∏ X , ρ1, ρ2 ) 

is  (ρi ,ρj) –P-space, where ρi  is the product topology .                                                        
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 Proof:  Follows by induction on k.                                                                                          □   

         The previous corollary is not true for arbitrary collection of bitopological spaces. Take 

example (3.4.4).  

 

3.4.9 Theorem: 

           A bitopological space (X ,τ1 ,τ2 ) is τi –Lindelöf  with respect to τj  if and only if every 

cover  of  basic τi–open sets for X has a countable family of τj–open sets finer than  and 

covers X.                                                                                                                               

Proof:                                                                                                     

        ) It is obvious, as every basic τi –open set is τi –open. 

         ) Let { Uγ : γ  ∆} be a τi –open cover for X, and let  = {Bα : α  Λ } be a τi –base, 

then each Uγ is a union of  members of .                                                                                        

Let 1 ={ Bt : t  Λ and Bt  Uγ for some α  ∆} = { Bt : t  Λ1}, then  Λ1  Λ.                    

Then B  = U∆  = X. So {Bt : t  Λ1 } is a τi –open cover for X consisting of  

elements from the base of τi. By the assumption, there exists a countable family  of τj –open 

sets finer than {Bt : t  V1} and covers X, say  = { Wn : n   }. Then  n   ,  t  Λ such 

that Wn  Bt . But Bt  Uγ for some γ  ∆, so Wn  Uγ for some γ  ∆. Then {Wn: n  } is     

a countable family of τj –open sets finer than {Uγ: γ  ∆} and covers X.                                      

Hence (X,τ1 ,τ2 ) is τi –Lindelöf with respect to τj .                                                                  □ 
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3.4.10 Theorem: 

       Let (X,τ1 ,τ2 ) be a τi –Lindelöf with respect to τj , and (Y,σ1 ,σ2 ) is σi -compact with 

respect to σj . Then (X×Y, ρ1, ρ2) is ρi-Lindelöf with respect to ρj , where ρi is the product 

topology.  

Proof: 

       We will restrict our attention to the ρi –open cover { Vα ×Wα: α  ∆ }consisting of  basic 

ρi – open sets by theorem (3.4.9).                                                                                               

Fix x  X.  y  Y,  x,αy  ∆ such that (x,y)  Vx,αy ×Wx,αy , where Vx,αy  τi and Wx,αy σi.                         

The family {Wx,αy : y  Y} is σi –open cover of Y, and since Y is σi -compact with respect to 

σj , there exists a finite family of σj –open sets covers Y and finer than {W x,αy : y  Y}, say    

{ W’ x,αy1 , W’ x,αy2 ,….., W’ x,αynx }.                                                                                        

Let Tx = Vx,α yk .Then Tx  τi , since each Vx,αyk  τi  for each k = 1, 2 , … , n.                     

{Tx : x  X} is a τi –open cover for X, and since X is τi –Lindelöf with respect to τj, then there 

exists a countable family of τj, say {T’xm : m   } finer than {Tx : x  X} and covers X.         

Then { T’xm × W’xm ,αyk : k = 1,…,nxm , m    } is a countable ρj –open cover for X×Y and 

finer than {Vα×Wα : α  ∆}.                                                                                                

Hence, X×Y is ρi -Lindelöf with respect to ρj .                                                                          □ 
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3.4.11 Corollary: 

       Let (X,τ1,τ2) be conversely Lindelöf, and (Y,σ1,σ2) is conversely compact.  Then            

(X×Y, ρ1 , ρ2) is conversely Lindelöf, where ρi is the product topology.                                    □   

3.4.12 Corollary: 

       Let { (Xα ,τ1
α ,τ2

α ) : α ∆} be a collection of  τi
α –compact with respect to τj

α (conversely 

compact ),but for some β ∆, (Xβ ,τ1
β ,τ2

β ) is τi
β –Lindelöf with respect to τj

β (conversely 

Lindelöf ). Then (∏ X∆  , ρ1 , ρ2) is ρi-Lindelöf with respect to ρj  (conversely Lindelöf ), 

where ρi is the product topology.                                                                                                □ 

 

3.4.13 Example [3]: 

         Let 1 = {  {{x} : x   \{0} } and  2 = {  {{x} : x   \{1} }. Let τ1 and τ2 be 

the topologies on  generated by 1 and 2 respectively as bases. 

Then ( ,τ1,τ2) is  B-Lindelöf and conversely Lindelöf , for any τi-open cover of    must 

contain  as a member. We see that (  × , τ1× τ1 , τ2× τ2 ) is B–Lindelöf and conversely 

Lindelöf, since any (τi× τi ) – open cover of   ×  must contain  ×  as a member.  

Actually (  × , τ1× τ1 , τ2× τ2 ) is B–compact and so is conversely compact.       □ 

 

        The product of two τ1 – Lindelöf with respect to τ2 spaces is not necessarily                      

τ1× τ1- Lindelöf with respect to τ2× τ2. 
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3.4.14 Example: 

        Let τs denote the Sorgenfrey topology on , and τd denote the discrete topology on , 

then the bitopological space (  ,τs,τd) is τs-Lindelöf with respect to τd  (τs-Lindelöf within τd) .                        

However ( × , τs× τs, τd× τd) is not τs× τs –Lindelöf with respect to τd× τd  (and so not            

τs× τs–Lindelöf within τd× τd), since ( × , τs× τs) is not Lindelöf, as the closed subset             

 = { (x,-x) : x   } which is uncountable set with the discrete topology is not Lindelöf.     □                          

 

3.4.15 Theorem: 

      Let (X,τ1,τ2) be a τi–Lindelöf with respect to τj and τi-P-space, and (Y,σ1,σ2) be σi -Lindelöf 

with respect to σj. Then (X×Y, ρ1, ρ2 ) is ρi-Lindelöf with respect to ρj , where ρi is the product 

topology. 

Proof: 

         We will restrict our attention to the ρi –open cover {Vα ×Wα : α ∆} consisting of  basic 

ρi –open sets, by theorem (3.4.9) .   

Fix x  X.  y  Y ,  x,αy  ∆  such that (x,y)  Vx,αy × Wx,αy , where Vx,αy  τi and                

W x,αy  σi .                                                                                                                                 

So the family { W x,αy : y  Y} is σi –open cover for Y, and since Y is σi -Lindelöf with respect 

to σj , then there exists a countable family of σj –open sets cover Y and finer than                     

{W x,αy : y  Y}, say {W’ x,αyn  : n   }.                                                                                    

Let Hx = Vx,α   .Then Hx  τi  , since each Vx,αyk  τi and X is τi –P-space .                     

{Hx : x  X} is a τi –open cover for X, and since X is τi –Lindelöf with respect to τj, this 
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implies that there exists a countable family of τj –open sets, say { H’xm : m    } finer than     

{ Hx : x  X} and covers X .                                                                                                                           

Then { H’xm × W’xm ,αyn : n, m   } is a countable ρj –open cover for X×Y and finer than        

{ Vα ×Wα : α  ∆ }.                                                                                                                 

Hence, X×Y is ρi-Lindelöf with respect to ρj .                                                                         □ 

 

             Example (3.4.14) shows that being τi –P-space is essential as (  , τs, τd) is τs-Lindelöf 

with respect to τd, but (  × , τs× τs ,τd× τd ) is not τs× τs –Lindelöf with respect to τd× τd . 

Note that (  , τs, τd) is not τs –P-space, as 2  ,2   = {2}  τs  even though           

[2-  , 2+ )  τs n   .  

 

3.4.16 Corollary: 

       Let (X,τ1,τ2) be a conversely Lindelöf and P-space, and (Y,σ1,σ2) is conversely Lindelöf. 

Then (X×Y, ρ1, ρ2) is conversely Lindelöf, where ρi is the product topology.                           □ 

 

3.4.17 Corollary: 

        Let (X, τ1 ,τ2) be a conversely Lindelöf  and τi -P-space, and (Y,σ1,σ2) is conversely 

Lindelöf and σj-P-space. Then (X×Y, ρ1, ρ2) is conversely Lindelöf, where ρi is the product 

topology.                                                                                                                                     □    

 

      By mathematical induction the following corollary follows. 
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3.3.18 Corollary: 

      Let { (Xk ,τ1
k ,τ2

k ) : k =1,2,…,n} be a collection of τi
k –Lindelöf with respect to τj

k 

(conversely Lindelöf) and τi
k –P-space, but for some β  {1,..,n},  (Xβ ,τ1

β ,τ2
β ) is τi

β –Lindelöf 

with respect to τj
β (conversely Lindelöf). Then (∏ X  , ρ1 , ρ2) is ρi -Lindelöf with respect to 

ρj (conversely Lindelöf), where ρi is the product topology.                                                      □       

 

      The proof of the following theoerem is similar to the proof of theorem (3.4.15).  

3.4.19 Theorem: 

      Let (X ,τ1 ,τ2 ) be a τj –Lindelöf with respect to τi  and (τi ,τj ) -P-space, and (Y,σ1 ,σ2 ) is    

σi -Lindelöf with respect to σj . Then (X×Y, ρ1, ρ2) is ρi-Lindelöf with respect to ρj , where ρi is 

the product topology.                                                                                                                 □ 

 

3.4.20 Corollary: 

       Let (X, τ1, τ2) be a conversely Lindelöf and B-P-space, and (Y,σ1 ,σ2 ) is conversely 

Lindelöf. Then (X×Y, ρ1, ρ2) is conversely Lindelöf, where ρi is the product topology.          □ 

 

3.4.21 Corollary: 

       Let { (Xk ,τ1
k ,τ2

k ) : k =1,2,…,n} be a collection of τj
k – Lindelöf with respect to τi

k and  

(τi
k , τj

k) –P-space ,but for some β  {1,..,n}, (Xβ ,τ1
β ,τ2

β ) is τi
β – Lindelöf with respect to τj

β . 

Then (∏ X  , ρ1 , ρ2) is ρi -Lindelöf with respect to ρj, where ρi is the product topology.     □ 
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3.4.22 Theorem:  

      Let (X ,τ1 ,τ2 ) be a τi –Lindelöf with respect to τj , and (Y,σ1 ,σ2 ) is σi–P-space. Then the 

projection πy : (X × Y, ρ1, ρ2 )  (Y,σ1 ,σ2 ) is i –closed , where ρi is the product topology. 

Proof: 

       Let U be a ρi –closed set in X ×Y, and let yo  πy (U). Clearly X×{ yo} ∩ U = .                

So  x  X, the point (x,yo)  U has a ρi –basic neighborhood  Vx ×Wx,yo  disjoint from U, 

where Vx is τi –open set in X containing x, and  Wx,yo  is σi –open set in Y containing  yo . Now 

{Vx ×Wx,yo : x  X} forms a ρi –open cover of X ×{ yo} by ρi –open sets in X×Y, {Vx : x  X} 

is a τi –open cover for X, and since X is τi –Lindelöf  with respect to τj , then there exist a 

countable family of τj –open sets {V’xk : k    } finer than {Vx : x  X } and covers X. 

Let W = W , . Since Y is σi-P-space, W is σi –open set in Y and a σi –open 

neighborhood of yo. We need to prove that W ∩ πy (U) = . 

Suppose that W ∩ πy (U) ≠ , then there exist y1  ( W ∩ πy (U)). y1  W then  y1  Wxn,yo            

 n  .  y1  πy (U) means for some xo  X, (xo , y1)  U. Since {V’xk : k    } is a cover for 

X, then  xo  V’xk  for some k   , which implies (xo , y1)  (V’xk × W)  (Vxk  × Wxn,yo ) for 

some n  , and this is a contradiction since (Vxn  × Wxn,yo  )  U =  ,  n  . Hence               

W ∩ πy (U) = . So, W is σi-open neighborhood of yo disjoint from πy (U). So πy (U) is             

σi –closed set in Y. Hence the projection  πy : (X×Y, ρ1, ρ2)  (Y,σ1,σ2) is i–closed.             □                         
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3.5 Tychonoff Theorem for Conversely Lindelöf Bitopological Spaces  

3.5.1 Definition:                                               

       The family  of τi-open sets is called countably τi -inadequate with respect to τj  in X if no 

countable  family of τj -open sets which is finer than  covers X. 

         We can easily see that the bitopological space (X,τ1,τ2) is τi -Lindelöf with respect to τj  if 

and only if each countably  τi -inadequate family with respect to τj in X is τi -inadequate. 

 

3.5.2 Lemma:  

         Let (X,τ1,τ2) be a bitopological space. If  is a maximal countably τi-inadequate family 

with respect to τj, and if some member of  contains G  , where each Gi is τi -open , then 

Gk    for some k in {1,2,…,n}. 

Proof: 

         First suppose that n = 2. Suppose that G1    and G2   . Then by maximality of , 

{G1} and  {G2} are not countably τi -inadequate with respect to τj. Then for  {G1},  

 A, A1 , A2 ,…., Ak ,… , where A, Ak are τj -open sets  k ,  A G1, and Ak A’k  for some 

A’k  ,  k , such that A  ( A  ) = X.                                                                      

And for {G2},  τj -open sets B, B1, B2,…, Bn,…, such that B  ( B  ) = X, where     

B  G2 and Bn  B’n for some B’n  ,  n .                                                                         

Claim: (A∩B)  ( A  )  ( B  ) = X.                                                                             

It is clear that: (A∩B)  ( A  )  ( B  )  X.                                                                  

Now, let x X. If either x  Ak, for some k   , or x  Bn, for some n   , then                        
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x  (A∩B)  ( A  )  ( B  ). If not, then x  A and x  B and so x  (A∩B).                

So, X  (A∩B)  ( A  )  ( B  ). This completes the proof of the claim. 

Since A  G1 and B  G2, then A∩B  G1∩G2. But G1∩G2 is contained in some element of 

, so (A∩B)  {Ak : k  }  {Bn : n } is a countable family of τj-open sets that is finer 

than  and covers X, this contradicts that  is countably τi -inadequate with respect to τj.            

So G1   or G2  . So the result holds for n = 2. 

The result for arbitrary n  follows by mathematical induction.                                               □ 

 

3.5.3 Theorem (Alexander): 

        If (X,τ1,τ2) be a bitopological space in which every countably τi -inadequate family with 

respect to τj , say  , there is a maximal countably τi -inadequate family with respect to τj in 

(X,τ1,τ2), say , and that    , and if  is a subbase of the topology τi such that, for each τi -

open cover  for X by members of , there is a countable family of τj -open sets finer than  

that covers X, then (X,τ1,τ2) is τi -Lindelöf with respect to τj. 

Proof: 

      Let  be a cuontably τi -inadequate family with respect to τj, then there is a maximal 

countably τi -inadequate family with respect to τj, say  and    . If we prove that  is         

τi -inadequte, then  is also τi -inadequate.  

 is a subbase of τi, and since  is a family of τi -open sets, then ( ∩ ) is a family of τi -open 

sets. Let A   , then A  τi , and  is a subbase of τi , then there is a finite intersection of 

elements of  which is contained in A, then one of these elements of  is an element of .       
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So ( ∩ ) is a nonempty family of τi -open sets contained in , since ( ∩ )  , then ( ∩ ) 

is a countably τi -inadequate family with respect to τj. Which means that there is no countable 

family of τj -open sets finer than ( ∩ ) and covers X. And since ( ∩ )   . So ( ∩ ) is     

τi -open family of  which does not cover X. Hence, (  ∩ ) is τi -inadequate. 

Want to prove that {C : C   } = {C : C  ( )}. 

Since ( )  , so {C: C  ( )}  {C : C   }                              . …………(1) 

Let x {C : C   }; then  A   such that x  A. Since A is τi -open, then there is a finite 

intersection of elements of  containing x and contained in A. By maximality of , one of 

these elements of  is an element of , so             

 x  {C: C  ( )}                                                                                      ………….(2) 

Hence, {C: C   } = {C: C  ( )}, from (1) and (2). 

So,  is τi -inadequate, and so  is τi -inadequate. Therefore each countably τi -inadequate 

family with respect to τj is τi -inadequate. So X is τi -Lindelöf with respect to τj .                  □ 

 

 3.5.4 Theorem (Tychonoff): 

       Let the bitopological space (X,τ,τ’) be the product bitopological space of the family of 

bitopological spaces {(Xi,τi,τi’): i I}. Then  

i. ) If (X,τ,τ’) is τ -Lindelöf with respect to τ’(conversely Lindelöf), then each factor space 

(Xi,τi,τi’) is τi -Lindelöf with respect to τi’ (conversely Lindelöf).    
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ii. ) If for every countably τi -inadequate family with respect to τj , say  , in the product 

bitopological space (X,τ,τ’), there is a maximal countably τi -inadequate family with 

respect to τj in (X,τ,τ’), say , and  , then the converse of (i) is true. (X,τ,τ’) is            

τ-Lindelöf  with respect to τ’(conversely Lindelöf ), if for every i  I, the bitopological 

space (Xi, τi, τi’) is τi -Lindelöf with respect to τi’(conversely Lindelöf ).  

Proof:                                                                                                                                     

(i) The natural projections are continuous, surjective and open, then each component (Xi,τi,τi’) 

is τi -Lindelöf with respect to τj’(conversely Lindelöf ).   

(ii) Let  ={ (Ui) : Ui τi , i I }, where πi is the natural projection into the i-th coordinate 

space Xi , then  is a subbase for the topology τ. In view of Theorem (3.5.3), the product 

bitopological space (X,τ,τ’) will be τ-Lindelöf with respect to τ’ if each subfamily  of  

which is countably τ-inadequate with respect to τ’ in (X,τ,τ’) is τ-inadequate. For each index 

i I, Let i be the family of all sets Ui  τi such that (Ui)  . Then i is countably τi -

inadequate with respect to τ’i in (Xi, τi, τi’). Since (Xi, τi, τi’) is τi -Lindelöf with respect to τi’, 

then i is τi -inadequate in (Xi, τi, τi’). So, there is i  Xi\Ui for each Ui  i . Consider the 

point   X whose i-th coordinate is i , then  belongs to no member of , and consequently, 

 is τ-inadequate in (X,τ,τ’). Hence the product bitopological space (X, τ, τ’) is τ-Lindelöf 

with respect to τ’.                                                                                                                        □ 

 

3.5.5 Example: 

        In example (3.4.13), (  ,τs,τd) is τs-Lindelöf with respect to τd . However                        

(  × , τs× τs ,τd× τd ) is not τs× τs –Lindelöf with respect to τd× τd .   
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By theorem (3.5.4), there exists a countably τs× τs -inadequate family with respect to τd ×τd , 

say  , which has no maximal countably τs × τs-inadequate family with respect to τd ×τd  in    

(  × , τs× τs ,τd× τd ), say , and that  .                                                                           □ 

 

3.6 Conversely compact and conversely Lindelöf Subsets of (  ,  ,  )  

       In this section, compactness and Lindelöfness of subsets in the bitopological space 

( ,ℓ, ) are studied.  

       We note that (  ,  ,  ) is neither -compact(Lindelöf) with respect to  nor -compact 

(Lindelöf) with respect to .    

 

3.6.1 Theorem [4]: 

          A nonempty subset A of (  ,  ,  ) is -compact with respect to   if and only if  A is 

bounded above and contains its supremum. 

Proof: 

           ) Suppose that A is not bounded above, we can find {xn : n }  A such that            

x1 < x2 <…< xn<…. , and n < xn ,  n . 

Then there exists {αn : n  } such that  x1 < α1 <x2 < α2 <…< xn< αn …                                    

{ (-∞,αn ): n  } is an -open cover of , so  = { (-∞,αn ) ∩ A : n  } is an A-open cover 

for A, and the only A-open set that is contained in any element of  is . Thus  does not 

have a finite A-open cover for A finer than . 
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Hence, A is not -compact with respect to , and this is a contradiction. So A is bounded 

above, and it has a supremum, say t.       

 Suppose that t  A, then n   there exist xn  A such that t-  < xn < t.                                  

 = {(-∞, t-  )  A : n  } is an ℓA-open cover for A. If U  , U  A ≠ , then t  U.          

U  A  (-∞, t-  )  A ,  n . So A is not -compact with respect to , and this is a 

contradiction. 

        ) Suppose that A is bounded above and contains its supremum, say t. 

  Let  = { (-∞,α) ∩ A : α  ∆ } be any A –open cover for A. t  (-∞,α) for some α  ∆, then  

(-∞,α) ∩ A = A  A .So {A} is the A –open cover for A which is finer than .                     

Hence A is -compact with respect to .                                                                                  □ 

 

        The following theorems are proved similarly. 

3.6.2 Theorem: 

          A nonempty subset A of (  , , ) is -Lindelöf with respect to   if and only if A is 

bounded above and contains its supremum.                                                                                □ 

 

3.6.3 Theorem [4]: 

          A nonempty subset A of ( , , ) is -compact (Lindelöf) with respect to  if and only 

if A is bounded below and contains its infimum.                                                                     □ 
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3.6.4 Corollary: 

          For arbitrary nonempty subset A of (  , , ), the following are equivalent:  

i) A is bounded and contains its infimum and its supremum.                                                                 

ii) A is conversely compact.                                                                                                                     

iii) A is conversely Lindelöf.                                                                                                      □           

 

3.7 Conversely compact and conversely Lindelöf Subsets of (  ,  ,  )  

           Conversely compact and conversely Lindelöf Subsets of (  ,  ,  ) are studied, where 

 is the set of real numbers, ℓ is the left ray topology,  is the standard topology. 

It is clear that ℓ    , and since ℓ is Lindelöf, then  is  Lindelöf with respect to . 

Also, every subset of  is ℓ-Lindelöf, and then every subset of  is  Lindelöf with respect to 

. But not every subset of   is  Lindelöf with respect to . To show this, take any subset U 

of   and suppose that x and y are any two distinct points of U, such that x   y.   Let              

  x,∞ U,  ‐∞,y U  be an  U –open cover for U then there is no  U open set finer 

than   contains y. Hence U is not   Lindelöf with respect to , and therefore not   compact 

with respect to . 

 

3.7.1 Theorem: 

        Every nonempty subset A of  is -compact with respect to  if and only if it is 

bounded above and contains its supremum. 
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Proof: 

           Suppose that A is not bounded above, we can find {xn: n }  A such that                      

x1 < x2 <…< xn<…. , and n < xn ,  n . 

Then there exists {αn : n  } such that  x1 < α1 <x2 < α2 <…< xn< αn …                                    

{ (-∞,αn ): n  } is an -open cover of , so  = { (-∞,αn ) ∩ A : n  } is an A-open cover  

for A which  has  no finite subcover. So A is not  -compact and therefore is not  -compact 

with respect to  which is a contradiction. Hence A is bounded above, and so has                  

a supremum say t. 

Suppose that t  A, then n   there exist xn  A such that t-  < xn < t.                                   

 = {(-∞, t-  )  A : n  } is an ℓA-open cover for A which has no finite subcover. So A is 

not  -compact, and therefore A is not  -compact with respect to  which is a contradiction. 

        ) Suppose that A is bounded above and contains its supremum, say t. 

  Let  = { (-∞,α) ∩ A : α  ∆ } be any A –open cover for A. t  (-∞,α) for some α  ∆, then  

(-∞,α) ∩ A = A   A .So {A} is the  A –open cover for A which is finer than .                     

Hence A is -compact with respect to  .                                                                                   
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