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Abstract

In this thesis, two concepts are discussed, compactness and Lindelofness of a topology with

respect to another in bitopological spaces.

Also, other concepts in bitopological spaces are discussed, such as continuity, separation
axioms, and their relations with compactness and Lindel6fness of a topology with respect to

another in bitopological spaces.

Also, the hereditarity and productivity of these properties has been studied and some

conditions has been considered to preserve them.

The existence of a countable inadequate family of members of a topology t with respect to
another topology o with no maximal countable inadequate family of members of t with

respect to o and contains it has been proved.

Finally, conversely Lindelof nonempty subsets of (R,#,7~) has been classified.
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Introduction

In 1962, J.C. Kelly [9] has defined the concept of the bitopological spaces to be a
nonempty set X on which two arbitrary topologies t; and 1, are defined. This definition is
denoted by the triple (X, 11, 12). Since this initiation, several authers have considered the
problem of defining two concepts; compactness and Lindelofness in bitopological spaces. And
in this thesis the definitions of compactness and Lindelofness in bitopological spaces were
studied by Ian, E. Cooke and Ivan L. Reilly in [8] , Birsan in [4] , M.C. Datta in [5] , Adem

Kilicman and Zabidin Salleh in [1] .

In fact these definitions are summarized into eight definitions, namely semi compact
( s- compact ), pairwise compact (p- compact ), Birsan compact ( conversely and B-compact ),
semi Lindelof (s-Lindelof ), pairwise Lindelof (p-Lindelof ) and Birsan Lindelof (conversely

and B- Lindelof).

Whenever a bitopological space (X,t;,12) is said to have a given topological property P,

it is ment that both (X,1;) and (X,1,) satisfy P.

£ will stand for the left ray topology for R, and 7~ will stand for the right ray topology for

R.

Unless otherwise stated, i and j will stand for i, j € {1,2} and i #j.

For a subset A of X, 1—cl(A) will stand for the closure of A in the topological space (X, 1).



Chapter one is divided into two sections. Section one discusses mappings in
bitopological spaces. It begins with defining continuity, open functions and homeomorphism.
Separation axioms in bitopological spaces are introduced in section two, and many useful
results and conclusions concerning regularity and normality in bitopological spaces are

deduced.

In section one of chapter two, definitions of four types of compactness in bitopological
spaces are given (s-compactness, p-compactness, conversly compactess and B-compactness).
The relations between them, and deduce the effect of pairwise Hausdorffness in comparison of
topologies are studied. In section two, we define the notion of compactness of a topology with
respect to another for a subset of a bitopological space, and its relations with closedness and
openness. In section three, the effect of continuous and open functions on conversely
(B-) compact bitopological spaces are studied. In section four, generalization of Alexander and

Tychonoff theorems in bitopological spaces are made.

In section one of chapter three, four different definitions of Lindelofness in
bitopological spaces (s-Lindelofness, p-Lindelofness, conversely Lindelofness and
B- Lindelofness) are given, and study the relations between them. And we deduce the effect of
pairwise Hausdorffness in comparison of topologies. In section two, the notion of conversely
Lindelof of a subspace of a bitopological space is defined, and its relations with closedness
and openness. Also we discuss the relations between conversely Lindelof (conversely
compact), p-regular and p;-normal. In section three, the effect of continuous, open and
surjective functions on conversely Lindelof (B-Lindelof) bitopological spaces are studied. In
section four, productivity of conversely Lindelof is studied and a condition is considered to
preserve productivity. Also an example of a product of P-spaces that is not P-space, despite of

2



a “theorem proved” in [3] is given. In section five, Tychonoff’s Theorem for conversely
Lindelof bitopological spaces is studied, and the existence of a countable inadequate family of
members of a topology T with respect to another topology o with no maximal countable
inadequate family of members of T with respect to o and contains it. Conversely compact and
conversely Lindelof subsets in (R,#,7) and the relations between them are introduced in
section six. Finally, Conversely compact and conversely Lindelof subsets in (R,#,8) and the

relations between them are introduced in section seven.



Chapter 1

Bitopological concepts

1.1 Mappings in bitopological spaces

1.1.1. Definition [11]:

Let (X,t1,12) and (Y,01, 62) be two bitopological spaces, and let f:(X,t;,12) — (Y,01, 62) be

a function, then:

1) fis called i-continuous if the function f: (X,t;) — (Y,0i) is continuous. The function f'is

said to be continuous if it is i-continuous for each i=1,2.

2) fis called i-open (resp. i-closed) if the function f: (X,1i) —(Y,0;) is open (resp. closed).

f 1s said to be open (resp. closed ) if f is i-open (resp. i-closed) for each i=1,2.

3) f is called i-homeomorphism if the function f: (X,ti)) — (Y,oi ) is homeomorphism, or
equivalently, if fis bijection, i-continuous and f~1: (Y,51, 62) — ( X,11,12) is i-continuous.
The bitopological spaces (X,t1,12) and (Y,051,62) are then called i-homeomorphic.

A function f; (X,t1,12) — (Y,01, 02) is called homeomorphism if the function

f(X,t;) — (Y,0i) is homeomorphism for each i=1,2 , or equivalently, if fis bijection,
continuous and f~!: (Y,01,60) — ( X,11,12) is continuous. The bitopological spaces

(X,11,12) and (Y,01,0,) are then called homeomorphic.



1.1.2. Example [2]:

Consider X ={a,b,c,d} with 1, the discrete topology and topology 1, ={®,{a}, {a,b,c}, X}
on X, and Y ={x , y, z, w} with topology o, ={@, {x},{y}, {xy}, {y,zWw}, Y} and
0, ={0, {x},{y,z,w}, Y} onY. Define a function f:(X,t;,1;) — (Y,01,02), by f(a) =y,
f () =f () =1z and f (c) = w. Observe that the functions f :(X,7;) — (Y,0;) and
f :(X,r2) — (Y,02) are continuous. Therefore the function f :( X,11,12) — (Y,01,02) 1S

continuous. But the function f'is not homeomorphism since it is not bijection. o

1.1.3. Example [2]:

Consider the bitopological spaces (X,t1,12) and (Y,51,02) as in example (1.1.2). Define
a function g: (X,11,12) — (Y,01,062) by g(a) = g(b) = x, g(c) = z and g(d) = w. The function
g: (X,11) — (Y,0)) is continuous and g: (X,12) — (Y,02) is not continuous since {y, z, W} €
but its inverse image g l({y,z,w}) = {c,d} &€ 1. Thus g: (X,1;,12) — (Y,01,62) is not

continuous. O

1.1.4 Example [2]:

Consider the function f: (X,11,T2) — (Y,01,02) as in example (1.1.2). Observe that the
function f : (X,12) — (Y,02) is not open since {a} € 1, but f ({a}) ={y} € o2. Thus

f: (X,t1,12) — (Y,01,02) 1s not open. O

Recall that, a property P on a topological space (X,t) is called topological property if

every topological space (Y,5) homeomorphic to (X,t) also satisfies the property P.



In the case of bitopological space (X,t1,12), a property P will be called i-topological
property if whenever (X,t1,72) has the property P, then every space i-homeomorphic to
(X,t1,12) also has the property P. If homeomorphism considered for the pairwise topology, we

will call such property P as bitopological property.

1.2 Bitopological separation axioms

This definition is given before we start with separation axioms.

1.2.1. Definition:

Let (X, t1, 12) be a bitopological space. Then a set G is said to be ti—open (resp.
t; —closed) if G is open (resp. closed) in the topology t; in X. And G is said to be open (resp.

closed) if it is t—open (resp. 1; —closed) for each i=1, 2.

1.2.2. Definition [9]:

A bitopological space (X,t;,12) is said to be pairwise Hausdorff ( denoted p-Hausdorft)
if for each pair of distinct points x and y in X there are disjoint open sets UEt; and V€T, such

thatx e Uandy € V.

Recall that a topological space (X,T) is said to be regular if for each point x € X and
each closed set P such that x & P, there are two disjoint open sets U and V such that x € U

and PC V.



1.2.3 Definition [9]:

In a space (X,1;12), T; 1s said to be regular with respect to 1, , if for each point x € X
and each t;-closed set P such that x & P, there are a 11-open set U and a 1,-open set V such that
x€U,PCV,andU NV =0.

(X, t1, T2) is pairwise regular (denoted p-regular) if 1, is regular with respect to 1, and vice

versa.

1.2.4 Theorem [1]:

A bitopological space (X,11,12) is T; regular with respect to 1; if and only if for each
point x € X and Tti-open set H containing x, there exists a tj-open set U such that
x €U € 15-cl(U) € H.

Proof:

(=) Suppose 1; is regular with respect to t;. Let x € X and H be a t;-open set containing
x. Then G = X\H is a 1;-closed set for which x € G. Since 1; is regular with respect to t; then
there are ti-open set U and T; -open set V such that x € U, G € V, and U N V =@. Since
U € XV, then 1; -cl(U) € 1; -cl(X\V) = X\V € X\G = H. Thus, x € U € 1;-cl(U) € H as
desired.

(<) Suppose that the condition holds. Let x € X and P be a t;-closed set such that x& P.
Then x € X\P, and by the hypothesis, there exists a Tti-open set U such that
x € U € 1i-cl(U) € X\P. It follows that x € U, P € X\ (1j-cl(U) ) and U N (X\ 7;-cl(V)) = @.

This completes the proof. i



Theorem (1.2.4) stated that t; is regular with respect to 1;, if and only if for each point

x € X, there is a 1i-neighbourhood base of 1;-closed sets containing x.

The following theorem shows that, pairwise regular spaces satisfy the hereditary property.

1.2.5 Theorem [1]:

Every subspace of a pairwise regular bitopological space is pairwise regular.
Proof:

Let (X,11,12) be a pairwise regular space and let (Y, 11y ,T2.y ) be a subspace of (X,1,12).
Furthermore, let F be a 1,y -closed set in Y, then F = A N'Y where A is a 1;-closed set in X.
Now ify € Y andy € F, theny € A, so there are 1; -open set U and 1, -open set V such that
y €U, A € V,and UNV=0.

UNY and VNY are 1,y -open set and 1,y -open set in Y respectively. Also y € UNY,
FCVNYand (UNY)N((VNY)=UNV)NY =0.
Similarly, let G be a 1,y -closed set in Y, then G = BNY where B is a 1, -closed set in X. Now
ify €Y andy € G, then y € B, so there are 1, -open set U and t; -open set V such thaty € U,
BcV,andUNV=0.
But UNY and VNY are 1,y -open set and T,y -open set in Y respectively. Also

y € UNY, G S VNY and (UNY) N (VNY) = @. This completes the proof. i

Recall that a topological space (X,t) is normal if given two disjoint closed sets A and

B, there exist two disjoint open sets U and V such that A€ Uand B € V.



1.2.6 Definition [9]:
A bitopological space (X, ti, 12) is said to be p-normal if given a 1) -closed set A and a
T, -closed set B with A N B =@, there exist a 1, -open set U and a 1, -open set V such that

ACUBCSVandUNV=0.

1.2.7 Theorem [1]:

A bitopological space (X,t1,12) is p-normal if and only if given a 1;-closed set C and a
ti-open set D such that C & D, there are a t; -open set G and a 7; -closed set F such that
CCGCFcD.

Proof:

(=) Suppose (X,t1,12) is p-normal. Let C be a 1; -closed set and D a 1i-open set such that
C € D. Then K = X\D is a 1; -closed set with K N C = @. Since (X,t1,12) is p-normal, there
exist a 1 -open set U and a t; -open set G such that K € U, C € G, and U N G = @. Hence
G c X\U € X\K=D. Thus C € G € X\U € D and the result follows by taking X\U = F.

(<) Suppose the condition holds. Let A be a 1; -closed set and B be a 1;-closed set with

A N B=0@. Then D = X\A is a ti-open set with B € D. By hypothesis, there are a t;-open set G
and a tj-closed set F suchthat B€ G € F € D.
It follows that A = X\D € X\F, B € G and (X\F) N G = @ where X\F is tj-open set and G is

ti-open set. This completes the proof. i

Now we define a new weaker form of pairwise normal bitopological spaces.



1.2.8 Definition [1]:

A bitopological space (X, t;, 12) is said to be p;-normal if given A and B are closed sets
with A N B = @, there exist a 1, -open set U and a 1;-open set V such that A € U, B C V, and

unv=a.

1.2.9 Theorem [1]:

A bitopological space (X,t,T2 ) is pi-normal if and only if given a closed set C and an
open set D such that C € D, there are a 1; -open set G and a T; -closed set F such that

CeGeFeDh.

Proof:
(=) Suppose (X,t1,72) is pi—normal. Let C be a closed set and D be an open set such that

C € D. Then K = X\D is a closed set with KNC = @. Since (X, 1y, 12) is pj—normal, there exists
a t-open set U and a ti-open set G such that K € U, C € G, and U NG = @. Hence
Gc X\U S X\K=D. Thus C € G € X \U € D and the result follows by taking X\U =F.

(&) Suppose the condition holds. Let A and B are closed sets with A N B = @. Then
D = X\A is an open set with B € D. By hypothesis, there are a ti-open set G and a tj-closed set
Fsuchthat BE GCS FCD.
It follows that A = X\D € X\F, B € G and (X\F) NG = @ where X\ F is 1;-open set and G is

ti-open set. This completes the proof. i

10



It is clear from the definition that every p-normal space is p;-normal. The converse is not

true in general as shown in the following counterexample.

1.2.10 Example [1]:

Consider X = {a, b, ¢, d} with topologies 1, = {@, {a,b},X} and 1, = {0, {a}, {b, c, d}, X}
defined on X. Observe that t;-closed subsets of X are @, {c, d} and X, and 1,-closed subsets of
X are @,{b, c, d},{a} and X. Hence (X, 1;, T2) is p;-normal as we can check since the only
closed sets of X are @ and X. However (X,11,12) is not p-normal since the t;-closed set
A = {c, d} and 1, -closed set B ={a} satisfy A N B = @, but there is no 1, -open set U and

T1-open set V suchthat ACU,BSCVandU NV =0. O

1.2.11 Example:

Consider the bitopological space (R, £, 7). It is clear that (R, ¢, ) is p-regular and

p-normal, but it is not p-Hausdorff. m

1.2.12 Theorem:

Every closed subspace of a p—normal bitopological space is p-normal
Proof:

Let (X,11,12) be a p-normal bitopological space, and let (Y,t;v,T2y) be a closed subspace
of X.If A and B are disjoint subsets of Y such that A is 1,y -closed and B is 1,y —closed, then
A is 1i-closed in X and B is 1—closed in X, and since X is p-normal there are U which is

T—open set and V which is t,—open set such that U N 'V =@, where A c U and B € V. Then

11



U NY and VNY are disjoint 1oy -open and 1y —open sets respectively. Also A € UNY and

B cVNY. Thus Y is p-normal. m

The proof of the following theorem is similar to the proof of theorem (1.2.12).

1.2.13 Theorem:

Every closed subspace of a pj—normal bitopological space is p;-normal. o

The definitions of separation properties of two topologies T, and 1, such as pairwise
regularity, of course reduce to the usual separation properties of one topology t;, such as
regularity, when we take 1, = 15, and the theorems quoted above then yield as corollaries of the

classical results of which they are generalizations.

12



Chapter two

Compact topology with respect to another

2.1 Birsan and Conversely Compactness

In this chapter we consider some kinds of compactness in bitopological spaces, and the
relations between them. Also, we deduce some related results and generalizations of some

theorems in single topology.

Recall that a topological space (X,t)is compact if for every cover for X has a finite

subcover.

2.1.1 Definition [10]:

A cover V of a bitopological space (X,t;,1;) is called t; 1, -open cover if V < 11y 2.

2.1.2 Definition [6]:

A 1) 12-open cover V of a bitopological space (X, 11, 12) is called p-open cover if V

contains at least one nonempty member of 1, and a nonempty member of 1,.

2.1.3 Definition [4]:

We say that V= {V;: i€ 1} is finer than V = {U, : a € A } if for each i € I, there exists

o € A such that V; c U,.

13



2.1.4 Definition [10]:

A bitopological space (X, 11, 12) is called semi compact (denoted s-campact) if every

T) T2 -open cover for X has a finite subcover.

Swart in [10] consider the above definition for compactness in bitopological spaces, and

uses the term compact for s-compactness in (X, 1, 12).

We give in the next definition Fletcher, Holye and Patty definition of pairwise

compactness in the bitopological space, denoted FHP—compactness.

2.1.5 Definition [6]:

A bitopological space (X, Ty, 12) is called pairwise compact (denoted p-compact) if every

p-open cover of X has a finite subcover.

The following definition of bitopological spaces is due to Birsan.

2.1.6 Definition [4]:

A bitopological space (X,t1, 1) is called t;-compact with respect to t; if for each 1;-open
cover V for X, there is a finite family of t;-open sets finer than V and covers X.
The space is called conversely compact if it is T;-compact with respect to 1, and is T,-compact

with respect to 1.

14



2.1.7 Definition [4]:

A bitopological space (X,t1,12) is called ti-compact within 7; if for each t;-open cover V
for X, has a finite subcover of 1;-open sets for X. The space is called B-compact if it is

T;-compact within 1, and is 1T,-compact within ;.

Ian E. Cook and Ivan E. Reilly, called the ti-compact within 1;, ti-compact with respect

to 1;, and refer this definition to Birsan.

In fact, ti-compactness of (X, 11, T2) within 1; implies ti-compactness of (X,t1,12) with
respect to T, but the converse need not be true, as the following example shows.
2.1.8 Example [4]:

Let X=10,1], let
11={A c X: 0 € A and X\A is finite} U{A c (0,1) : (0,1)\ A is finite} U {@}, and
T, ={A cX:1€ A and X\A is finite} U{A < (0,1) : (0,1)\ A is finite} U {@}. Then (X ,t;,12) is
a bitopological space which is 1;-compact with respect to 1, but not 1;-compact within 1, ,

because {[0,1\{1/2},[0,1)} is T;-open covering for X but has no finite 1,-open subcovering. O

The following theorem illustrates the relation between s-compactness and p-compactness.

2.1.9 Theorem [8]:

The bitopological space (X,11,12) is s-compact if and only if it is p-compact, T;-compact

and t,-compact.

15



Proof:

Assume that the bitopological space (X, 11, 12) is s-compact, and let V be any p-open
cover of the space X, then V is 112-open cover for X. Since X is s-compact, then V has a finite
subcover for X. Thus X is p-compact. Also, let V be any t;-open cover of X, (i =1,2), then
V c 11U 1, , which means that V is 1,1, -open cover for X. Since (X,t;,12) is s-compact, then
there is a finite subcover of V for X, which implies that X is ti-compact (i=1,2).
Conversely, assume that (X,t,12) is p-compact, t;-compact and t,-compact. Let V be any

T1T2-open cover for X, then V € 11U 15.

Case 1:

If V contains at least one nonempty member of t;, and at least one nonempty member of

T2, then V is p-open cover.Thus there is a finite subcover of V for X (as X is p- compact ).

Case 2:

If V is contained entirely in t; or 1, then V is either t;-open cover for X or 1-open cover
for X. In either case, there is a finite subcover of V for X (as X is 1;-compact and 1,-compact).

Hence X is s-compact. O

The following example shows that: “Not every p-compact bitopological space is s-compact “.

2.1.10 Example [7]:

Consider the bitopological space (R,?,7). Then (R, #,1,) is p-compact, but not s-compact.

16



To show this, let V = {U, : & € A} be a p-open cover for R. Then there exist B, y € A such
that Ug€ £, U, € 7, Ug# @ and U, # @. If Ug= R or U, = R, then V has a finite subcover for
R, namely {R}. Otherwise, let Ug= (-c0,x) and U, =( y,), for some x , y € R. If x >y, then
{Ug, U, } 1s a finite subcover of V for R . If x =y, then there is some AEA such that x €Uy
and then {Up, Uy, Uy} is a finite subcover of V for R.

Now, let x <y. Let A = {z € [x,y] : there is no a € A such that z € U, € » }. If A=, then

x € Uy € 7 for some o € A and then {Ug, U,} is a finite subcover of V for R. If A # @, then A
is bounded above and so, by completeness axiom for R, it has a least upper bound, say t.

Thenx <t<y.

Case 1: If t =x, then A = {x}. So there is no a € A such that t € U, € 7, then there exists 6 € A
such that t €Us€ £. If Us = R, then V has a finite subcover for R, namely {R}. Otherwise
Us = (-00,z) for some z € R. Then t < z. By definition of A and t, there exists A € A such that

z € Uy € 7, and then V has {Us,U,} as a finite subcover for R.

Case 2: If t = y. Suppose now that there exists a€A such that t € U, € 7. If U, = R, then V has
a finite subcover for R, namely {R}. Otherwise, U, = (z,0) for some z € R and z <'t, and so
there exists w € A such that z < w <t. It is clear that there exists A € A such that w € U, € £,
and then {U,, U, } is a finite subcover of V for R. Suppose now that there exists no a€A such
that t € U, € 7, then there exists a€A such that t € U, € £. If U,= R, then V has a finite
subcover for R, namely {R}. Otherwise U, = (-o0,z) for some z € R, and then { U,,Up } is a

finite subcover of V for R.

Case 3: If x <t <y. Suppose that there exists o € A such thatt € U, € . If U,= R, then V has

a finite subcover for R, namely {R}. Otherwise, U, = (z,0) for some z € R and z < t, and so
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there exists wEA such that z < w < t. It is clear that there exists A € A such that w € U,€ ¢, and
then {U,, Uy, } is a finite subcover of V for R. Suppose now that there exists no o € A such that
t € U, € 7, then there exists o € A such thatt € U, € £. If U= R, then V has a finite subcover
for R, namely {R}. Otherwise U, = (-0,z) for some z € R. Then t < z, and so there exists w €
R such that t < w < z. By definition of A and t, there exists A € A such that w € U, € 7, and
then V has {U, ,Up, } as a finite subcover for R. Hence, (R,#,7) is p-compact.

However (R, 2, ) is not s-compact, for (R , £) is not compact. O

The following example shows that if the bitopological space (X,1,12) is T;-compact,

(1=1,2), then it is not necessarily that it is s-compact.

2.1.11 Example [10]:

Let X=[0,1], 1;)={X, 0}U{ [0,b) : b € X}, ,={X, @, {1}}. Every t;-open cover V for X
must contain X, so (X,11) is compact. Also, (X,12) is compact as 1, is finite. However,
(X,t1,12) is not s-compact. Consider the following t,1,-open cover V for X, where
V={[0b)|be X }U{{1}}. Suppose there exists a finite subfamily of V which covers X.
This is equivalent to supposing that there is a subfamily {[0,b;) | i=1,2,...,n} of { [0,b) |b€ X }
that covers [0,1). Now each b; is in [0,1), so m = max{b;,b,,...,b,} satisfies 0 < m <1, and so
m ¢ U{[0,b;) | i=1,2,.....n}. Thus (X,11,12) is not s-compact.

Also, this implies that (X,t1,12) is not p-compact. Hence, not every compact bitopological

space (X,11,T2) [1.e. (X,11) and (X,12) are compact] is p-compact. i
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B-compactness and conversely compactness is independent of s-compactness and
p-compactness, because any finite bitopological space is s-compact and p-compact but may

not be B-compact as the following example shows.

2.1.12 Example [4]:

Let X ={a,b,c}, 11 ={0.X,{a,b},{c}}, and 17, = {0,X,{a},{b,c}}. Then (X,11,12) is
s-compact and p-compact, but it is not 1, -compact within t; as { {a},{b,c} } is a 1,-open cover
of X which has no t;-open subcover. Also { {a},{b ,c} } is a 1,-open cover of X which has
no finite family of rt;-open cover which is finer than this cover.

Hence, (X ,t1,12) is neither B-compact, nor conversely compact. i

The following example shows a bitopological space which is B-compact (and so

conversely compact), but not p-compact (and so not s-compact).
2.1.13 Example [4]:

Let X =[0,1], 71 ={X ,{0} } U {[0,a) : a € X} and ©,={X,{1}}U{(a,1]: a €X}. Then
(X,t1,12) 1s B-compact, for any t;-open cover of X or any t,-open cover for X must contain X
as a member. However (X,t;,12) is not p-compact (and so not s-compact), for the p-open cover

{{0}}U{ (a,1] : a€ X, a#0} of X has no finite subcover. O

2.1.14 Theorem [4]:

If the bitopological space (X,t1,12) is Ti—compact with respect to t; (conversely compact)

then (X,t;,17) 1s Ti—compact (compact).
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Proof:

Let V = {W,: a€EA} be any ti-open cover for X. Since (X, 11, T2) is Ti—compact with
respect to Tj, there is a finite tj-open cover V| = {Uy: k =1,.....,n} for X, such that V; is finer
than V. So, for each k =I,...,n, there exists ax € A such that Uy, € Way . Consider the ti-open
collection V, = { Woy : k =1,....,n}, then V, covers X because Uy € Way for each k=1,2,...n,
and V; covers X. Since V k =1,...,n, Wox € V, then V; is the desired finite subfamily of V that

covers X. Thus it means that (X,t;) is compact. O

We can replace conversely compact by B-compact in the above theorem because every

B-compact space is conversely compact.

In example (2.1.12), (X, 11) and (X,12) are compact, but the bitopological space (X,t1,12)
is neither B-compact, nor conversely compact, so the converse of the pervious theorem is not

true.

2.1.15 Corollary:

Let (X,11,12) be a bitopological space, if X is conversely compact and p-compact, then

(X, 11, T2) 1S s-compact.

Proof:

Since (X,11,12) 1s conversely compact then (X, ;) and (X, 12) are compact by theorem

(2.1.14) and since (X, Ty, T2) is p-compact, so by theorem (2.1.9), (X, 1y, T2) is s-compact. O
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The collection of closed sets plays an important role in B-compactness and conversely

compactness.
2.1.16 Theorem [4]:

Let (X, 11, T2) be a bitopological space, then the following are equivalent:
a) X is ti-compact with respect to 1;.

b) For any family {F,: a € A} of ti-closed sets which has empty intersection, there exists a
finite family {Gy : k =1,...,n} of tj-closed sets with empty intersection and satisfies the
condition that V k=1,2,...,n, 3 ox € A such that Gy D Fo.

c) For any family V ={ F,: a € A}of ti-closed sets with the property that every finite family
{Gk : k =1,...,n} of 1;-closed sets which satisfies the condition that V k =1,2,...,n, 3 ax € A

such that Gy D Fox has nonempty intersection, it results that V has nonempty intersection.
Proof: (a) = (b)

Assume (a) and let {F,: a € A} be any family of 1i-closed sets which has empty
intersection, then the family V ={U,: U,= X\F, , a € A} is a family of ti-open sets which
covers X because Ugep Uy =Ugen X\Fy =X\Ngea Fy = X\0 = X.

By the hypotheses of (a), there is a finite family V= { Vi.: k=1,2,...,n } of 1;-open sets which
covers X such that Vk=1,2,.....n, 3 ax€A with ViCUa. Define G,=X\Vy, then for each k, Gy

is 7j—closed set and G=X\V 2 X\Ua= Fax, and Ni—; Gx= Ni=1 ( X\Vi)=X \UR=;1 VieX\X= 0.

(b) = (a):
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Assume (b), and let V = {U, : a € A} be any ti-open cover for X. Then the family
{X\U, : o € A} is a family of ti-closed sets such that Ngep X\Uy =X\ Ugea Uo=X\X=0 , i.c.
has empty intersection. Consequently, the hypotheses in (b) implies that there is a finite family
{Gx:k =1,...,n} of ti—closed sets such that Vk, Jax €EA such that Gy O X\Ua and Ny—; G=0.
Consider Vi=X\ Gy, then Vk, Vi is tj—open and Ug-; Vi = Ug=; X\Gx = X\Ng=; G = X\@ =X.
Since Vk, Vi= X\G € X\(X\Uax) =Uay, then the finite family {Vi: k=1,2,...,n} of t;—open sets

covers X and satisfies the desired condition. Hence (X,t;,12) is ti-compact with respect to ;.
(b) = (¢):

Assume (b), and let V = {F,: a€A} of ti-closed sets with the property stated in (c).
Suppose that Nyep Fo = @. By the hypotheses in (b), there is a finite family {Gx: k =1,...,n} of
tj—closed sets with empty intersection such that Vk, Jo€A with Gy DFey, and this contradicts

the property of the family V. Hence Nyep Fy # 0.
(c) = (b):

Assume (c), and let {F,: a € A} of 1i-closed sets which has empty intersection. Suppose
that there exists no finite family of the form {Gyi : k =1,...,n} of t; —closed sets with empty
intersection and satisfies the condition that Vk, 3 ax € A with Gy DFo. This means that every
finite family of the form {Gy: k =1,...,n} of t;—closed sets which satisfies the condition Vk,
3 ox € A with Gg DF«, has nonempty intersection.

By (¢), {F,: o € A} has nonempty intersection, and this contradict the assumption. So there
exists a finite family {Gy: k =1,...,n} of 1;-closed sets with empy intersection and satisfies the

condition that V k=1,2,....,n, 30xEA such that GO Fo . O
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2.1.17 Theorem [4]:

Let (X,11,12) be a p-Hausdorff bitopological space and let (X,r;) be a compact

topological space. Then 1) C 15.

Proof:

To prove this, it is sufficient to show that every ti-closed set is t,-closed set. Let A be
11—closed, then A is 1;-compact. Let x € A. Since (X,ty,12) is p-Hausdorff, then for each a € A,
there exist ti-open set V(a) and a t,-open set U(a) such that a € V(a), x € U(a), and
V(a) N U(a) = @. The family {V(a) : a € A } forms a t;-open cover of A, and so by
compactness of A, we find a finite subcover {V(a;) ,V(az) ,....,V(ay)} of {V(a):a € A } for A.
For each V(ay), k=1,2,....,n , there is a corresponding t,-open sets U(ax), and hence
B=Np-; U(ay) is 12-open set containing x. Now B N V(ax) =@ for each k =1,2,....n, for if this
not true, then B N V(a;) # @ for some i =1,....,n, and then U(a;) N V(a;) # ® as B c U(ay) for
each k =1,2,....n , and this is the contrary to the way V(ax) and U(ax) were chosen. Define
C=Ug=1 V(ak) which is 1;-open, then we have B N C = @ and this implies that B N A = @.

Therefore x € B € X\A which means that A is T, -closed. O

2.1.18 Corollary [4]:

Let the bitopological space (X,1,12) be a p-Hausdorff:

(a) If the topologies t; and 1, are compact, then 1, = 15.

(b) If (X,11,12) 1s T;-compact with respect to 1, , then 1,C 15.

(c) If (X,11,12) is conversely compact, then t; = 1.
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(d) If (X,11,12) 1s B-compact, then 1, = 1. O

2.1.19 Example [4]:

Let X = [0,1]. Let t; be the usual topology on [0,1], and T, be the discrete topology on
[0,1]. Then (X,1, 12) is p-Hausdorff bitopological space, and T, is compact with respect to 1.
But the topology 1, is not compact with respect to t;, and so 1, is not compact within ;.

Consequently (X,11,12) is neither B—compact, nor conversely compact. o

2.1.20 Example [4]:

Let X = [0,0), let 1; be the discrete topology, and 1, be the co-countable topology.
(X,t1,12) is p-Hausdorff, and p-normal. The topologies t; and 1, are not compact and
consequently (X, 1, T2) is neither B-compact nor conversely compact. To see that 1, is not
compact consider the t-open covering {(X\N)U{i}: i€N} for X which has no finite

subcovering for X. O

2.1.21 Example [4]:

Let X =[0,1], 11 be the topology induced on X by the standard topology on R, and t, be
the topology generated by the union of families of t; and the families of sets whose
complements are countable as a subbase. The bitopological space (X,11,12) is p-Hausdorff and

T-compact with respect to 1, (it is even t;-compact within T, ), but it is not p-normal. i
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2.1.22 Example [4]:

Let X:{a,b,C}, T1:{¢, {a},{a,C},{b,C},{C},X}, T2:{®,{b},{b,C},{a,b},{a},X}. Therefore
in (X,11,12), 71 # T2. (X, 11, T2) is p-regular, p-normal and conversely compact. But it is not
p—Hausdorff, as t; and 1, are finite and so, they are compact. Since 1, # 12, then by corollary

(2.1.19.a) it is not p-Hausdorft. O

2.1.23 Example [4]:
Let X = {a,b,c}, 11 = {0,{a},X}, and 1, = {@,{b},{b,c},X}. The bitopological space
(X,t1,12) is p-normal and B-compact but not p-regular.

The bitopological space (X,11,12) 1s :

1) p-normal, because {b,c} is the only nonempty proper t;-closed subset. And the only
nonempty proper T, -closed subset of X that is disjoint from {b,c} is {a}, and {b,c} is

T, -open, and {a} is t;-open.

2) B-compact, because each t;-open or 1-open cover for X must contain X as a member.

3) Not p-regular, because {a,c} is 1,-closed and b&{a,c}, the 1,-open set that contains b is {b},

and the only 1;-open set which contains {a,c} is X. So, 1, is not regular with respect to ;. O

2.1.24 Corolary:

Let (X,t;,12) be a bitopological space, if X is conversely compact and p-Hausdorff, then

(X, 11, T2) 1s p-regular and p-normal.
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Proof:

By corollary (2.1.19) since (X, T, T2) is conversely compact and p— Hausdorff, then 1,= 15,

the result follows from the single topology theory. o

2.2 Conversely compactness of sets in bitopological spaces:

2.2.1 Definition [4]:

Let (X,t1,12) be a bitopological space, and let A € X. We say that the set A is 1; -compact
with respect to T [resp. conversely compact], if the bitopological subspace (A, Tia, T2a) 1S
Tia - compact with respect to Tjs [resp. conversely compact]; where 114 = {A N U :U€ 1,} and

TA={ANV:VETD}.

2.2.2 Theorem [4]:

Let A be a set in a bitopological space (X,t;, 12). Then:
(a) A sufficient condition for the set A to be ti-compact with respect to 1; is:
for every t;-open cover V of A, there is a finite t;-open cover V; of A finer than V.
(b) If the set A is tj-open, then a necessary condition for A to be t;-compact with respect to T;

is: for every ti-open cover V of A, there is a finite t;—open cover V;of A finer than V.
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Proof: (a)

Let V= {U,N A : a€A}, where U, € t; for each a € A, be a Tia-open cover for A. Then,
U{(U,NA):a €A} = A. So, U{U,: a€A}NA = A, and so, U{U, : o« € A} D A. ie.
V> ={U: a €A} is a 1;-open cover for A. By the hypothesis, there is a finite t; -open cover
for A; say 1V’ = {W : k =1,2,....,n} finer than V’. This means that V k =1,2,....,n, there is
a € A such that Wy © U, This implies that V k =1,2,...n, 3 o € A such that
(W N A) € (U, N A). Hence, the collection V; = {WyN A : k=1,2,...,n} is the desired finite

Tija-open cover for A which is finer than V.

Proof: (b)

Let A be a tj -open set that is t—compact with respect to t; , and let the collection
V ={U,: a € A} be a 1i-open cover for A. Then V,;={ U, N A : o € A} is a tjs-open cover for
A, so by the hypothesis, there is a finite family V, of tja-open sets finer than V), that covers A,
say Vo= {Wi N A: k=1,2,....n} where Wy € 1;, V k =1,2,...,n. Since A is T1;-open then for
eachk =1,2,....n, W N A is tj-open set, and so {Wi N A : k=1,2,....,n} is the desired finite

family of tj-open sets which is finer than V and covers A. O

The following example shows that the converse of Theorem (2.2.2.a) is not necessarily true

if A is not tj-open set.

27



2.2.3 Example [4]:

Let X :{a,b,C}, le{wa{a}a {a,C},{b,C},{C}, X}a and 2 :{Qa {b},{a,b},{a},X}. Let A:{C},
and consider the t;-open cover {{b,c}}for A, then there is no t,-open cover for A finer than
{{b,c}}. So A does not satisfy the condition in theorem (2.2.2.a) even though (A ,T1a ,T24 ) 1S

T-compact with respect to 1,. O

Even though, the union of finite family of compact subsets of a topological space is

compact, but this result is not necirsserily true for t;-compact with respect to 1;.

2.2.4 Theorem [4]:

Let A and B be tj-open sets, each of which is t;-compact with respect to t; , then there
union (AUB) is ti-compact with respect to Tj.
Proof:

Let V= {U,: a € A} be a t-open cover for AUB, then V is ti-open cover for A and for B.
By our hypothesis of A and B, and according to Theorem (2.2.2), there are two finite t; -open
covers for A and B, say S; and S, respectively such that each of S; and S, is finer than V.
Therefore S1US; is a finite 1 -open cover for AUB, and S;U S; is finer than V. It follows that

AUB is 1;-compact with respect to t; by Theorem (2.2.2). O

The following corollary follows by mathematical induction.
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2.2.5 Corollary:

Let {A1, Ay, .... ,An} be a finite family of t;-open sets, each of which is ti-compact with

respect to Tj, then UL, A; is Ti-compact with respect to ;. o

The following example shows that the condition that A and B are t;-open sets in theorem

(2.2.4) is essential.

2.2.6 Example [4]:

Let X = {a,b}, 11 = {9, {a}, {b}, X} , and 1,={@, X}. The sets {a}, {b} are T;-compact
with respect to 12, but {a}U{b} = X is not 1;-compact with respect to 1. Note that {a} and {b}

are not 1,-open. a

2.2.7 Theorem [4]:

Let the bitopological space (X,t1,12) be 1; -compact with respect to t; [resp. conversely
compact |, and let the subset A of X be t;-closed [resp. closed ]. Then A is t; -compact with

respect to T [resp. conversely compact].

Proof:

Assume that A is ti-closed and that (X,t;,12) is ti-compact with respect to T;.
Want to show that the subspace (A,tia,T24) 1s Tia-compact with respect to Tja.
Let V ={U,: o € A} be any Tijp-open cover of A, then for each a€A, U, = W,NA; for some
W, € 1 . Since A is t-closed, then X\A 1is t-open, and so the collection

Vi={Wy:a €A} U {X\A} is a 1--open cover of X. By 1; -compactness of X with respect to 1;,
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there is a finite t;-open cover for X, say V, such that V, is finer than V;. Let the collection V3
be the set of all elements of 1V, which are not subsets of X\A. Then V3= {Ci : k =1,2,..,n} is
a family of tj-open sets which is finer than V; and covers A. Consequently the collection
Vi={CcN A :k=1,2,...,n } is the desired tja-open cover for A which is finite and finer than
V. This means that A is ti-compact with respect to t;.We use the same argument to complete

the proof of the theorem.

2.3 Continuous (open) functions and conversely compactness in

bitopological spaces

2.3.1 Theorem [4]:

If the bitopological space (X,t1,12) is ti-compact with respect to 7;, and if the function

/(X ,11,12) — (Y,01,62) 1s i-continuous and j-open, then f(X) is o;-compact with respect to o;.

Proof:

Let V’= {U,: a€A} be a ci-open cover for f(X) in (Y,01,02). Because f is i-continuous,
then the collection V = { f~1(U,) : a € A} is 1; -open cover for X, and therefore there exists
a finite 1;-open cover say {Wi: k=1,2,...,n} for X finer than V. That is to say that Vk, 3 ox € A,
such that Wy < f~}(Uw). Since the function f is j-open, then the collection
{f (W) : k=1.2,...n} is o; -open cover of f (X) which is finite and finer than V’ because
vV k=1,2,...,n, 3 ax€A , such that f(Wy ) € U .This implies that /' (X) is ci-compact with

respect to 6j, by Theorem (2.2.2.a). o
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The following corollary follows directely.

2.3.2 Corollary [4]:

If the bitopological space (X,t1,T2) is conversely compact, and if the function
f: (X ,11,12) = (Y,01,02) is continuous and open, then f(X) is a conversely compact subset of

the space (Y,01,02). o

2.3.3 Theorem:

If the bitopological space (X,t1,12) 1s ti-compact within 1, and if the function

/(X ,11,12) — (Y,01,02) is i-continuous and j-open, then f'(X) is ci-compact within o;.

Proof:
Let V = {Uy: a€EA} be a oi(x)-open cover for f(X). Because f'is i-continuous, then the
collection V1 = {f~1(U,):0. € A} is 1; -open cover for X, and therefore there exists a finite

7;-open subcover of V1 say {f *(Ua): k =1,2,...,n} for X.

The function fis j-open, so f f "1(Ua ) € 6; ¥ k=1,2,...,n. And since /' f ~1(Uay ) = Uoy
V k=1,2,...,n then the collection { Uax: k =1,2,...,n} is a finite o;j sx) -open subcover of V for

f(X). Thus f(X) is 6;-compact within o;. i

2.3.4 Corollary [4]:

If we add to the hypothesis of corollary (2.3.2), the hypothesis that (Y,01,62) is

p-Hausdorff, then 6, = 6, and ( f(X), 61 =0, ) is a compact topological space.
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Proof:

By corollary (2.3.2), ( f(X) , 61, 62) is conversely compact. Then by Corollary (2.1.19 -c)
o1 = 03. Since ( /(X),01,02) is conversely compact, then f(X) is o;-compact with respect to o, ,

1.e. (f(X),o01) is a compact topological space, according to corollary (2.1.19). i

2.3.5 Corollary [4]:

In the bitopological space (X,t1,12), the image of the t;-open (resp. open ) subset A of X
which is ti-compact with respect to T1; (resp. conversely compact ) by a function
f: (X ,11,12) — (Y,01,62) which is i-continuous and j-open (resp. f is continuous and open) is
oi-compact with respect to o; (resp. conversely compact ).

Proof:

The proof is similar to the proof of Theorem (2.3.1), using Theorem (2.2.2). i

The following example proves that it is not sufficient to suppose that /" is only continuous

in Theorem (2.3.1).

2.3.6 Example [4]:
Let X={a, b, c}, 11 = 1, = the discrete topology. Let Y={1, 2, 3}, 6,;={0, {1},{2,3},Y},

o= {0,{1,2},{3},Y}. Define the function f by f(a) =1, f(b) =2, f(c) = 3. We observe that:

1) (X,t1,12) is conversely compact (there is exactly one compact topological space).
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2) f'is continuous function, as 1; and 1, are the discrete topologies .

3) (Y,01,0,) is neither 6;-compact with respect to 6,, nor 6, -compact with respect to o;.

Proof:

The proof of (1) and (2) are direct. To prove (3) we notice that V1={{1},{2,3}} is 6;-open
cover for Y, but there is no 6,-open cover for Y that is finer than V. Also, Vo= {{1,2},{3}} is

o2-open cover for Y, but there is no o;-open cover for Y that is finer than V,. O

2.4 Alexander’s, Tychonoff’s theorems and conversely compactness in

bitopological spaces

In single topology we have , if { (Xj, i) :1 €1} is a family of topological spaces , then
the product topology ( [lie1X; , p) is the topology generated by the collection
{m1(U): U € ;i€ 1} as a subbase, where 7; is the natural projection from ( [Tie X; , p)

onto (Xj, 7; ). In bitopological spaces we have the following analogous definition.

2.4.1 Definition [5]:

Let {(Xi, T ,7% ) : kEA } be a family of bitopological spaces. On the product set
X = Jlxer Xk . We define a bitopological structure ( p; , p) by taking p; as the product
topology generated by the 1°;‘s, and p, as the product topology generated by the t%¢s . The
resulting bitopological space (X, pi1, p2) will be called the product bitopological space

generated by the family {(Xy, °1,7%) : k€A }.
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2.4.2 Theorem [10]:

Let {(Xk, T ,T% ) : KEA } be an arbitrary family of nonempty bitopological spaces.

Then for each fixed k, the natural projection map, nx: (X, p1, p2) — (Xx, ™ ,’Ekz) 1s continuous.

Proof: The result follows directely from single topology theory. i

2.4.3 Definition [4]:

A family F of t;-open sets in the bitopological space (X,t;,12) is called t; -inadequate in
X ,11, 1), 1=1,2 , if it fails to cover X. The family F of ti-open sets is called finitely T;-
inadequate with respect to tjin X if and only if no finite family of tj-open sets which is finer

than F covers X.

We can easily see that the bitopological space (X,t1,12) is ti-compact with respect to T; if

and only if each finitely 1; -inadequate family with respect to t; in X, is t; -inadequate.

2.4.5 Lemma [4]:

If F i1s a finitely ti-inadequate family with respect to 1; in the bitopological space
(X,t1,72), then there 1s a maximal finitely ti-inadequate family with respect to t; in (X,7; ,72),

say D, and F cD.

Proof:

Let & be the family of all finitely ti-inadequate families with respect to t;. F is finitely

ti-inadequate family with respect to 1j, so F € &.
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Define a partial order <on &, by V C,,C, € &, C < G iff Cic Co.

{F} is a chain in &, then by Hausdorff maximal principle, there is a maximal chain B such that
{F} c B.

Let D = UB. Each elment of B is finitely t;-inadequate family with respect to 1;, then each

element of B is a family of t;-open sets, so D = UB is a family of t;-open sets .

Want to prove: 1) D is finitely t;-inadequate family with respect to .

i1) D is maximal finitely t;-inadequate family with respect to 1;, and F c D.

1) Suppose that D has a finite family of tj-open sets finer than D and covers X say
U={Ux:k=1,2,...n}. Vk=1,2,...n, choose Vi € D with Uy c V.

Then D’={Vy k=1,2,....n} €D . Bis achain, so D’c E for some E € B. Since D’ has a finite
family of tj-open sets finer than D’ and covers X, and D’c E, then E has a finite family of ;-
open sets finer than E and covers X, and this contradict the fact that E is a finitely 1;-
inadequate family with respect to ;.

Thus, D is a finitely t;-inadequate with respect to T;.

ii) Suppose that D is not maximal finitely ti-inadequate family with respect to 7, then there
exists G € 1, such that D U{G} is still finitely t;-inadequate family with respect to t;, then
B U{DU{G}} is a chain contains B properly which contradicts the fact that B is maximal
chain.

So, D is maximal finitely ti-inadequate family with respect to ;.

Since D = UB, and F € B, then FcD. |
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2.4.6 Lemma [4]:

Let (X,t1,12) be a bitopological space. If D is a maximal finitely t;-inadequate family with
respect to Tp, and if some member of D contains NiL; G; , where each G; is Tj-open, then

Gy € D for some k in {1,2,...,n}.

Proof:

First suppose that n = 2. Suppose that G; € D and G, € D. Then by maximality of D,
D U{G;} and D U{G,} are not finitely t;-inadequate with respect to 1, , then for DU{G,},
A, A,.., An, A, where A;, A are 1,-open sets, i=1,2,...,m , and ACG, , and A; cA’; for

some A€ D ,Vi=1,2,...m, suchthat AjU A U....UALU A =X.

And for D U{G;}, 3 12 -open sets By, B,,..., B, B, such that B;U B,U...UB; U B = X, where

BcG; and B;cB’; for some B’€ D, V j=1,2,....t.

Claim: (ANB) UA; U...UA,U BjU....UB=X.

It is clear that (ANB) UA; U...UA,U BjU....UB;c X.

Now, let x € X. If either x€A;, for some i=1,2,..., m , or X€ B;, for some j=1,2,....t, then
XE(ANB) UA; U...UA,U B U....UB; . If not, then xEA and x€B and so x € (ANB). So

X c (ANB) UA| U...UA,,U B1U....UBq. Then our claim is true.

Since A € G; and B € G,, then (A N B) € (G; N Gy). But (GNG; ) is contained in some
element of D,so (ANB), Aj ,...,An, Bi,....,B; is a finite family of 1,-open sets that is finer
than D and covers X, this contradicts that D is finitely 1;-inadequate with respect to ..

So G; € D or G; € D. So the result holds for n=2.
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The result for arbitrary n€EN follows by mathematical induction. o

2.4.7 Theorem (Alexander) [4]:

Let (X,t;,12) be a bitopological space, and assume that § is a subbase of the topology t;
such that, for each t;-open cover V for X by members of S, there is a finite family of t;-open

sets finer than V that covers X, then (X,11,12) is ti-compact with respect to 1;.

Proof:

Let B be a finitely ti-inadequate family with respect to 1j, then by lemma (2.4.5) there is a
maximal finitely t;-inadequate family with respect to tj, say D and B c D. If we prove that D

is ti-inadequte, then B is also ti-inadequate.

Since § is a subbase of 1, and D is a family of 1; -open sets, then (SND) is a family of t;-open
sets. Let A € D, then A € 1, and § is a subbase of T;, then there is a finite intersection of
elements of § which is contained in A, then one of these elements of S is an element of D. So
(SND) is a nonempty family of ti-open sets contained in D, since (SND) < D, then (SND) is
a finitely 1;-inadequate family with respect to t;. Which means that there is no finite family of
Ti-open sets finer than (SND) and covers X. And since (SND) c §, (SN D) is ti-open family of

S which does not cover X. Hence, (S ND) is 1i-inadequate.

Want to prove that U{C: C€ D} =U{C:C € (SND)}.

Since SND cD,so U{C: Ce(SND)} cU{C:C€D} i (1)
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Let x € U{C : C€D}; then 3 A € D s.t. X € A, since A is 1i-open, then there is a finite
intersection of elements of § containing x and contained in A. By maximality of D, one of

these elements of § is an element of D, sox € U{C: C € (SND)} .iiiiiiinnin (2)
Hence, U{C: C €D} =U{C:Ce(SND)}, from (1) and (2).

So, D is 1 -inadequate, and so B is Ti-inadequate.Therefore each finitely t; -inadequate family

with respect to 7 is T;-inadequate. So X is t; -compact with respect to t;. m

2.4.8 Theorem: (Tychonoff) [4]:

Let the bitopological space (X, pi, p2) be the product bitopological space of the family of
bitopological spaces {(Xkx, ™ ,rkz) :k € A }. Then (X, p1, p2) 1s p; -compact with respect to p;
(conversely compact ), if and only if each factor space (X, 7 ,rkz) is 75 -compact with respect

to Tkj (conversely compact ).

Proof:
=) The natural projections are continuous and open, therefore theorem (2.3.1) and

corollary (2.3.3) prove (i).

&) Let § = {m; }(Uy) : UEt*, k€A }, where 7y is the natural projection into the k-th
coordinate space Xy, then § is a subbase for the topology p;. In view of theorem (2.4.7), the
product bitopological space (X, p1, p2) will be p; -compact with respect to p; if each subfamily
A of § which is finitely pi-inadequate with respect to p; in (X, p1, p2) is pi-inadequate. For each
index k€A, Let By be the family of all sets Uy € 7i* such that 7z 1(Uy) € A. Then By is finitely

kK - . . . . .
T; -inadequate with respect to Tjk in (X, ’Elk , rzk). Since (Xx, ’Elk , rzk) 1S rik -compact with
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respect to Tjk, then By is ‘Cik -inadequate in (X, le . rzk ). So, there is xx € X \Ux for each
Uk€ Bk. Consider the point x € X whose k-th coordinate is xi, then x belongs to no member of
A, and consequently, A is pi-inadequate in (X, p;, p2). Hence the product bitopological space

(X, p1, p2) 1s pi -compact with respect to p;. i
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Chapter Three

Lindelofness of a topology with respect to another

3.1 Birsan and conversely Lindelof

In this chapter, some kinds of Lindelofness in bitopological spaces, and the relations

between them are discussed.

Recall that a topological space (X,t) is Lindelof if every open cover for X has a countable

subcover.

3.1.1 Definition [3]:

A bitopological space (X,t;.12) is called semi Lindelof (s-Lindelof) if every t;12-open

cover for X has a countable subcover.

3.1.2 Definition [3]:

A bitopological space (X,t;,12) is called pairwise Lindelof (denoted p-Lindelof ) if every

p-open cover of X has a countable subcover.

3.1.3 Definition [4]:

A bitopological space (X,t1,12) is called ti-Lindelof with respect to t; if for each t;-open

cover V for X, there is a countable family of tj-open sets finer than V and covers X.
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The space is called conversely Lindelof if it is t;-Lindelof with respect to 1, and is 1, -Lindelof

with respect to t;.

3.1.4 Definition [3]:

A bitopological space (X, 11, 12 ) is called 1i-Lindelof within 7; if for each t;-open cover
P for X, has a countable subcover of t; open sets for X. The space is called B-Lindelof if it is

T1-Lindelof within 1, and is 1, -Lindelof within t;.

In fact, ti-Lindelofness of (X,t1,12) within 1; implies t;-Lindelofness of (X,t1,12 ) with

respect to T;, that is every B-Lindelof is conversely Lindelof but the converse need not be true.

As in example (2.1.8), since X is t;-compact with respect to 1, then it is 1;-Lindelof with
respect to 1, . But it is not t;-Lindelof within 1, , since { [0,1]\{1/2} , [0,1) } is T; —open cover

which has no countable 1, —open subcover.

3.1.5 Note:

Let (X,t1,12) be a bitopological space , then :

1) If X is compact, then it is Lindelof.
i1) If X is s-compact, then it is s-Lindelof.

1i1) If X is p-compact, then it is p-Lindelof.
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1v) If X is t;-compact with respect to t; , then it is 7i-Lindelof with respect to ;.

v) If X is 1i-compact within 7;, then it is 7;-Lindelof within 1;. O

It is knowing from single topology theory that if (X,7) is a second countable space, then
(X,7) is Lindelof.

Then the following corollary follows directely.

3.1.6 Theorem [1]:

If (X ,t1,12) 1s second countable space, then (X ,t;,12 ) is Lindelof. m)

The following theorem illustrates the relation between s-Lindelofness and p-Lindel6fness.

3.1.7 Theorem:

The bitopological space (X,t1,t2) is s-Lindelof if and only if it is p-Lindel6f, and
Lindelof.

Proof:

Assume that the bitopological space (X,11,12) is s-Lindelof, and let V be any p-open cover
of the space X, then V is 1112-open cover for X. Since X is s-Lindeldf, then V has a countable
subcover for X. Thus X is p-Lindelof. Also, let V be any ti-open cover of X, where i € {1,2},
then V C 1,U 15, which means that V is t,1;-open cover of X. Since (X,t;,1;) is s-Lindel6f,
then there is a countable subcover of V for X, which implies that X is t;-Lindel6f for each

i=1,2. Conversely, assume that (X, 1y, 12) is p-Lindelof, 1,-Lindelof and t, -Lindeldf. Let V be
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any 1;T2-open cover for X, then V C 1;U 1,.

Casel:

IfV contains at least one nonempty member of 1, and at least one nonempty member of

T, then V is p-open.Thus there is a countable subcover of V for X (as X is p-Lindelof).

Case 2:

If V is contained entirely in 1) or 1, then V is either 1;-open cover for X or T, -open
cover for X. In either case, there is a countable subcover of V for X (as X is Lindelof).

Hence X is s-Lindelof. O

3.1.8 Theorem:

If the bitopological space (X,t1,12) 1s Ti-Lindelof with respect to 1; then (X,1;) is Lindelof.

Proof:

Let V = { Wy a€A} be any 1;-open cover for X. Since (X,t;,12) is 1;-Lindelof with respect
to 1;, there is a countable t;-open cover V={Uy : k €N} for X, such that V; is finer than V.
So, for each k € N, there exists ax € A such that Uy € Way, Consider the ti-open collection
V, = { Wax : k € N}. Then PV, covers X because Uy cWaoy for each k € N and V,covers X.
Since V k € N, Way € V, then V; is the desired countable subfamily of V that covers X, which

means that (X,t;) is Lindelof. O
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3.1.9 Corollary:

If the bitopological space (X,t;,12) is conversely Lindel6f, then (X,11,12) is Lindelof. ©

The following example shows that the converse of corollary (3.1.9) is not true.

3.1.10 Example:

Consider the bitopological space (R, ¢, 77). Then (R ,£,#) is second countable as
Bi={(-»,a) : a€Q} is a countable base for the left ray topology on R, and B,={(b,») : bEQ} is

a countable base for the right ray topology on R, so (R ,#,7") is Lindelof.

But not every £ -open cover of R has a countable family of 7-open sets finer than € -open
cover and covers R, such as {(-oo,n) : n € N}.

Hence, (R, #,) is not £ -Lindel6f with respect to 7, and so it is not conversely Lindelof.
So, not every second countable bitopological space is conversely Lindelof.

Also, being Lindelof bitopological space doesn’t imply being conversely Lindelof and so

doesn’t imply being B-Lindelof. m

3.1.11 Theorem:

Let (X, 11, 12) be a bitopological space. If X is conversely Lindelof and p-Lindelof, then

(X, 11, T2) 1s s-Lindel6f.
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Proof:

Since (X,t1,12) is conversely Lindelof, then (X,t;) and (X,1;) are Lindel6f by corollary

(3.1.9), and by p-Lindelotness, (X, t1, T2) is s-Lindelof. i

The following example shows that the converse of theorem (3.1.11) is not true.

3.1.12 Example:

Let X ={a,b,c}, 11 = {0, X, {a}, {bc} }, .= {0 , X, {a,b} ,{c} }. Then (X,11,12) is
Lindelof, s-Lindel6f and p-Lindeldf, but it is not t;-Lindeldf with respect to 1o, as { {a},{b,c}}
is a tj-open cover for X which has no countable family of 1,-open sets finer than it and covers
X. Also, (X,t1,12) is not 1,-Lindelof with respect to 11, as { {a,b}, {c} } is a T,-open cover of
X which has no countable family Tt;-open finer than it and covers X.

Hence, (X,11,12) is neither B-Lindelof nor conversely Lindelof. O

3.1.13 Theorem:

Let (X, 11, T2) be a bitopological space, then the following are equivalent:

a) X is ti-Lindel6f with respect to .

b) For any family {F,: a € A} of ti-closed sets which has empty intersection, there exists
a countable family {Gy : k € N} of tj—closed sets with empty intersection and satisfies the

condition that Vk € N, 3 oy € A such that Gy D Fo,.
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c) For any family V = { F,: a € A} of 1i-closed sets with the property that every countable
family {Gi: k € N} of 1j—closed sets which satisfies the condition that Yk € N, 3 ox € A such

that Gx O Fo, has nonempty intersection, it results that 1V has nonempty intersection.

Proof: (a) = (b)

Assume (a) and let {F,: a € A} be any family of 1;-closed sets which has empty
intersection, then the family V ={U,: U,= X\F,, o € A} is a family of t,—open sets which
covers X because Ugep Uy = Ugea X\Fy = X\Ngen Fy = X\0 = X.

By the hypotheses of (a), there is a countable family V= {Vy: k € N}of t;-open sets which
covers X such that Vk € N, 3 oy € A with Vi € Uay . Define G = X\Vy, then for each k, Gy is

ti—closed set and Gy = X\Vi DX\Uax =Foy, and Nygeny Gk = Ngen X\Vk = X\ Ugen Vi =X\X =0.

(b)= (a):

Assume (b), and let V = {U,: a € A} be any ti—open cover of X. Then the family
{X\Uy : o € A} is a family of ti-closed sets such that Ngep X\Uy = X\Ugea U= X\X =0,
1.e. has empty intersection. Consequently, the hypotheses in (b) implies that there is
a countable family {Gy : k € N} of tj-closed sets such that V k ,3 ax € A such that Gy D X\Uey
and Ng=; G=@. Consider Vi = X\Gg . Then Vk, Vy is ti—open and
Uzt Vi = Uger X\Gie= X\Ngz; G= X\@ =X. Since Vk, V= X\Gy € X\(X\Uq ) = Ug, then
the countable family {Vi: k € N} of ti—open sets covers X and satisfies the desired condition.

Hence (X,11,12) is 1;-Lindelof with respect to 1;.

(b) = (c):

46



Assume (b), and let V = { F, : a € A}of ti-closed sets with the property stated in (c).
Suppose that Ngep Fy = @. By the hypotheses in (b), there is a countable family {Gy: k € N}
of ti—closed sets with empty intersection such that Vk, 3 ox € A with Gk D Fo. And this

contradicts the property of the family V. Hence, Ngep Fo # 0.

(c) = (b):

Assume (c), and let {F,: o € A} of 1i-closed sets which has empty intersection. Suppose
that there exists no countable family of the form {Gy : k € N} of 1; —closed sets with empty
intersection and satisfies the condition that Vk, 3 ox € A with Gx DF« .This means that every
countable family of the form {Gy : k € N} of tj—closed sets which satisfies the condition Vk ,
3 ok € A with G D Fox has nonempty intersection.

By (¢), {Fq,: a € A} has nonempty intersection, and this contradict the assumption. m

We introduce the following definition before proving theorem (3.1.15).

3.1.14 Definition [3]:

A bitopological space (X,t;,T7) is said to be i-P-space if countable intersection of i-open
sets in X is i-open. X is said P-space if it is i-P-space for each i = 1; 2.

3.1.15 Theorem:
Let (X,t1,12) be a p-Hausdorff, t;-P-space bitopological space and let (X,t;) be a Lindelof

topological space. Then 1; C 1j.
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Proof:

To prove this, it is sufficient to show that every t;-closed set is 1;-closed set. Let A be
ti—closed, then A is 1i—Lindelof. Let x € A. Since (X,t1,12) is p-Hausdorff, then for each a€A,
there exist ti-open set V(a) and a tj-open set U(a) such that a € V(a), x € U(a), and
V(a)NU(a) = @. The family {V(a) : a € A } forms a 1i-open cover for A, and so by
Lindelofness of A, there is a countable subcover {V(ax) : k € N} of {V(a): a€A } for A. For
each V(ay), k € N, there is a corresponding tj-open sets U(ax). Then B=Ny_, U(ay) is
Tj-open set containing x since X is 1;-P-space. Now B N V(ay) = @ for each k € N, for if this
not true, then B N V(a,) #@ for some n € N, and then U(a,) N V(a,) # @ as B c U(ay) for
each k€N, and this is the contrary to the way V(ax) and U(ax) were chosen. Define
C = Uy, V(ag) which is ti—open, then we have B N C = @ and this implies that B N A = @.

Therefore x € B ¢ X\A which means that A is 1;-closed. O

3.1.16 Corollary:

Let the bitopological space (X,11,12) be a p-Hausdorff. Then:

(a) If the topologies 1; and T, are Lindel6f and P-spaces, then 1, = 1.
(b) If (X, 71, 12) 1s T;-Lindelof with respect to 1; and 1;-P-space, then t; C 1;.
(c) If (X, 11, 12) is conversely Lindelof and P-space, then t; = 1,.

(d) If (X,t1,12) is B-Lindelof and P-space, then 1 = 1,. i
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3.2 Conversely Lindel6fness of sets in bitopological spaces

3.2.1 Definition:

Let (X,11,12) be a bitopological space, and let AcX. We say that the set A is ;- Lindelof
with respect to 7; [resp. conversely Lindelof ], if the bitopological subspace (A, Tia, T24) 1S
Tia-Lindelof with respect to tja [resp. conversely Lindelof]; where tja= {A N U : U € 11} and

TA={ANV:VET}. O

3.2.2 Theorem:

Let A be a set in a bitopological space (X, Ty, 12). Then:

a) A sufficient condition for the set A to be 1;-Lindelof with respect to 1; is:
for every t;-open cover V of A, there is a countable t;-open cover V; of A finer than
V.

b) If the set A is 1 —open set, then a necessary condition for A to be t;-Lindeldf with

respect to t;is: for every 1 -open cover V of A, there is a countable 1 -open cover V,

for A finer than V.

Proof: (a)

Let V = {U,NA : o € A}, where U, € 1; for each a € A, be a t-open cover for A. Then,
U{(UgsNA):a€eA} = A. So, U{Ug: o € A} NA = A, and so U{U,: o € A} D A.
re. V’ = { U,: a € A} is a ti-open cover for A. By the hypothesis, there is a countable t;-open
cover for A; say V’; = {Wx: k € N} finer than V’. This means that V k € N, there is o € A such

that Wy € U,. This implies that V k € N, 3 o € A such that (W N A) € (U, N A). Hence, the
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collection V; = {Wi N A: k € N} is the desired countable tjs-open cover for A which is finer

than V.

Proof: (b)

Let A be 1;-open, and let the collection V = {U, : a € A} be a 1; -open cover for A. Then
Vi={ U, N A :a €A} is a Tjp-open cover for A, so by the hypothesis, there is a countable
family V, of tja-open sets finer than V; that covers A, say Vo={Wi N A : k € N }, where
Wi € 13 Vk € N. Since A is 1; -open then for each k € N, Wi N A is 1; -open, and so
{WKNA : k € N} is the desired countable family of t; -open sets which is finer than V and

covers A. O

The following example shows that the converse of theorem (3.2.2.a) is not necessarily true

if A is not T;-open.

3.2.3 Example:

Let X ={a,b,c}, 1={0,{a},{a,c},{b,c},{c},X }, and 1;={®,{b},{a,b},{a}, X}. Let A={c},
and consider the t;-open cover { {b,c} }for A, then there is no 1,-open cover for A finer than
{ {b,c} }. So A does not satisfy the condition in theorem (3.2.2.a) even though (A, T4, T24) is

11-Lindelof with respect to . O

3.2.4 Theorem:

Let A and B be tj-open sets, each of which is 1i-Lindel6f with respect to 7, then there
union (AUB) is 1;-Lindel6f with respect to 1;.
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Proof:

Let V = {U,: a € A} be a 1;-open cover for AUB, then V is 1; -open cover for A and for
B. By our hypothesis of A and B, and according to theorem (3.2.2.b), there are two countable
i -open covers for A and B, say S| and S, respectively such that each of S; and S; is finer than
V. Therefore S;U S, is a countable T; -open cover for AUB, and S|U S, is finer than V. It

follows that AUB is 1; -Lindelof with respect to tj, by theorem (3.2.2.a). m

3.2.5 Theorem:

Let {A,: n € N} be a countable family of t; -open sets, each of which is 1; -Lindel6f with

respect to T, then U, A, is 7 -Lindelof with respect to 7.

Proof:

Let V = {U,: o € A} be a t; -open cover for UpZ; A,, then V is 1; -open cover for A,,
V n € N. By our hypothesis of A;, ¥V n € N, and according to theorem (3.2.2.b), for each A,
there is a countable t;-open cover S,, such that each of S, is finer than V, V n € N. Therefore
Un=1 Sy is a countable tj-open cover for U=, Ay, and Up-; Sy, is finer than V. It follows that

Un=1 A, is 1 -Lindeldf with respect to tj, by theorem (3.2.2.a). O

The following example shows that the condition that A and B are t;—open in theorem

(3.2.4) is essential.
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3.2.6 Example:

Let X ={a,b}, 11= {0, {a}, {b} , X}, and 1= {@ , X}. The sets {a}, {b} are T, -Lindel6f
with respect to 1o, but {a}U{b} = X is not 1,-Lindel6f with respect to 1,. Note that {a} and {b}

are not T-open. m

3.2.7 Theorem:

Let the bitopological space (X,t1,12) be t; -Lindelof with respect to t;, and let the subset A
of X be 1i-closed. Then every ti—open cover V for A has a countable tj-open cover for A finer

than V.

Proof:

Assume that A is 1; -closed and that (X,t1,12) is 1; -Lindelof with respect to 7 .
LetV = {W,: a € A} be any 1i-open cover of A. Since A is 1; -closed, then X\A is 1;-open, and
so the collection V= {W,: a € A}JU{X\A} is a t; -open cover of X. By t;-Lindelofness of X
with respect to 1, there is a countable 1;-open cover for X, say V, such that V, is finer than V.
Let the collection V5 be the set of all elements of V, which are not subsets of X\A.
Then V3= {Ci: k € N} is the desired countable family of tj-open sets which is finer than V and

covers A. O

The following corollary follows directly from theorem (3.2.7) and theorem (3.2.2).

52



3.2.8 Theorem [1]:

Let the bitopological space (X,t1,12) be t; -Lindeldf with respect to 1; [resp. conversely
Lindelof ], and let the subset A of X be ti-closed [resp. closed]. Then A is 1 -Lindelof with

respect to T [resp. conversely Lindelof ].

3.2.9 Theorem [1]:

Every pairwise regular and conversely Lindel6f bitopological space (X,t;,12) 1S p; -normal.

Proof:

Let A and B be closed sets with A N B = @ in X. Then A and B are both t; -closed and
T, -closed set in X. Since (X,t1,12) is pairwise regular, then by theorem (1.2.6), for each x in B,
for the tj;-open set X\A that contains x, there is a Tt-open set Py such that
X € Py € 15-cl(Px ) € X \A, i.e. To-cl(Px )NA=@. The collection {Py : x € B} forms a 1;-open
cover for B. Since (X,11,T2) is conversely Lindelof, and B is t;-closed subset of X.
So, by theorem (3.2.7), there is a countable 1,-open cover for B and finer than {Py : x € B},
which we denote by {P’; : 1 € N}.
Similarly, for each y in A, for the 1,-open set X\B contains y, there is a 1,-open set Qy such
that y € Qy € 11-cl(Qy ) € X\B, i.e. 11-cl(Qy) N B = @. The collection {Qy : y € A} forms a
T,-open covering of A. Since (X,t;,12) is conversely Lindel6f, and A is 1»-closedsubset of X.
So, by theorem (3.2.7), there is a countable t;-open cover for A finer than {Q, : y € A}, which
we denote by {Q’; :1 € N}.

Let U,=Qy\ U{t-cl(Py) :i<n} and V,=P,\ U{t;-cl(Q)) :i<n}.
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Since U, N 1o-cl (Pp) =@ V m <n, then U, N P, = @ ¥V m <n, it follows that U, NV, =@ for
m<n.

Similarly, Vi, N 11-cl(Q,) = @ for each n < m, then V;,, N1 Q, = @ V n < m. It follows that
Vi N Up=0 ¥n <m. Thus U, N V,, = @ for all m and n, and consequently U = U{U,: n € N}
is disjoint from V =U{V,: n € N}. Finally, 1,-cl(P; ) N A and t;-cl(Q; ) N B are empty set for
all i and hence the set U contains A and is T,-open set, while the set V contains B and is

T1-open. The proof is complete. i

3.2.10 Corollary:

Let (X, 11, T2) be a bitopological space, if X is conversely compact and p-regular, then

(X, 11, T2) 1S pj-normal. O

3.3 Mappings on conversely and Birsan Lindel6f bitopological spaces

It is known from single topology theory that the continuous image of Lindelof
topological space is Lindel6f. In this section we study mappings on conversely Lindel6f and

Birsan Lindel6f bitopological spaces.

The following corollary follows directly from single topology theory.
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3.3.1 Cororllary [2]:

Let /: (X,11,12) — (Y,01,02) be an i-continuous and surjective function. If (X,t;,1;) is

;i -Lindel6f, then (Y,01,67) is o; -Lindel6f. O

3.3.2 Corollary [2]:

The Lindelof property is both topological property and bitopological property. O

3.3.3 Theorem:

Let f: (X,11,72) — (Y,01,62) be an i-continuous, surjective and j-open function. If (X ,11,12)

is 7;-Lindelof with respect to 1;, then (Y,01,02) is 6;-Lindel6f with respect to o;.

Proof:

Let {Gy : k € A} be a 6; —open cover for Y. Since f'is i-continuous, then f~(Gy) € 1; for
eachk € A, and X = f1(Y) = f " (Uxea Gi) = Uea f ' (Gi) -
Hence {f "%(Gy) : k € A } is a 1; —open cover for X. Since X is t;-Lindeldf with respect to 1;,
there exists a countable family of 7; —open sets finer than {f ~(Gy) : k € A} and covers X, say
{Vqo:a € N}. Since fis j-open and V,, € 1j, Va €N, then f(V,) Ecj, Va EN .
Since fis surjective, Y=f(X) =f (Uxen Vo) = Uaen f (Vo) -
And since V o € N, 3 k € A such that V, € f~1(Gy), then V o € N, 3 k € A such that
S(Va) € ff7HG) = Gk
Hence {f(V.): a € N} is a countable cj-open cover for Y and finer than {Gy: k € A}.

Thus, Y is o;-Lindeldf with respect to o;. O
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3.3.4 Corollary:

Let : (X,t1,712) — (Y,01,02) be a continuous, surjective and open function. If (X,t;,17) is

conversely Lindel6f, then (Y,01,62) is conversely Lindelof. O

3.3.5 Theorem [2]:

Let f: (X,11,12) — (Y,01,62) be an i-continuous, surjective and j-open function. If

(X,t1,72) 15 Ti-Lindelof within t;, then (Y,61,62) is oi-Lindelof within o;.

Proof:

Let {Gy : k € A} be a 6; —open cover for Y. Since fis i-continuous, then f~1(Gy) € t;
Vk €A, and X = f7H(Y) = f " (Uea Gi)=Ukea f (G-
Hence {f ~1(Gy): k € A} is a 1; —open cover for X. Since X is t;-Lindeldf within 1, there exists
a countable subfamily of t; —open sets of {f ~1(Gy): k € A} and covers X, say
{f "1(Gy) : ko € N}. Since fis j-open and f~1(Gyq) € 7}, V ko EN, f(f "1(Gyy)) € 65, ¥ ky € N.
Since fis surjective, since V k,€ N, such that f f 71(Gy,) = Gy, then
Y=/ (X) = (Ukaen f (G ke)) = Uaen f (f 7 (Gka)) =Uen Gi,, - And Hence {Gi, : ko € N}

is a countable subcover of ci—open sets of {Gy: kEA} for Y. Thus, Y is o;-Lindelof within ;.0

3.3.6 Corollary [2]:

Let f: (X,11,12) — (Y,01,62) be a continuous, surjective and open function. If (X,t;,12) is

B-Lindelof, then (Y,01,62) is B-Lindelof. O
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3.3.7 Corollary [2]:

Being conversely Lindelof and B-Lindel6f are bitopological properties. i

3.3.8 Theorem:

Let f :(X,11,12) — (Y,01,62) be an i-continuous, surjective function. If (X,74,12) is

1i-Lindel6f with respect to 1, then (Y,01,02) is 6;-Lindelof.

Proof:

(X,t1,72) 1s T; -Lindeldf with respect to tj, so (X,t;) is Lindelof. By i-continuity of £, (Y,o;) is

Lindelof, and so (Y,0;,62 ) is oj -Lindelof. O

3.3.9 Corollary:

Let f: (X,t1,T2) — (Y,01,02) be a continuous and surjective function. If (X,t;,12) is

conversely Lindel6f, then (Y,0,,6) is Lindelof. i

3.3.10 Theorem:

Let f: (X, 11, 12) — (Y, 01, 02) be i-continuous and j-open function. And let A be tj-open

set and t1;-Lindeldf subset of X with respect to tj, then /' (A) is o; -Lindelof with respect to o;.

Proof:

The proof is similar to the proof of theorem (2.3.5). O
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3.4 Product of conversely and Birsan Lindel6f bitopological spaces

Before studying productivity of conversely Lindel6f bitopological spaces, we will study

some properties of P-spaces.

3.4.1 Lemma:

The bitopological space (X,t;,12) is Ti-P-space if and only if any countable intersection

of basic Ti-open sets is Ti-open.

Proof:

=) It is obvios since every basic Ti-open set is Ti-open.

<) Let {U, : n € N} be any countable collection of ti-open sets of X. Want to prove that
Npen Uy, 1s a Ti-open set of X.
Let x € Npen Uy, then x € U, V nEN. Since x € U, € T; V n€EN, there exists a basic Ti-open
set B, such thatx € B,c U,, Vn € N. So x € Ny By and Npeny By 18 a ti-open set in X
since it is the intersection of a countable collection of basic Ti-open sets. Thus Nyey Uy, is @
union of ti-open sets. Hence N,cy Uy, 1s @ Ti-open set in X.

So X is Ti-P-space. O

3.4.2 Lemma [3]:

Let (X,11,T2) be Ti-P-space and (Y,01,02) be o;-P-space. Then (XY, p1,0) is pi-P-space

where p; is the product topology.
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Proof:
By Lemma (3.4.1), we will restrict our attention to the collection of basic pi—open sets in

XxY.

Let {V,xW;: n€ N} be a countable collection of basic p; —open sets in XxY. Where V,, and W,
are ti—open sets and o;-open sets of X and Y respectively, V n€ N.
Now,Npen(Va X W) = (Npen Vo) X( Npey Wh ) is a pi—open set, since X is Ti-P-space and Y

is o;-P-spaces. So XxY is pi-P-space. i

The following corollary follows by mathematical induction.

3.4.3 Corollary [3]:

Let { (Xk ,‘Clk, 9 k =1,2,...,n} be a collection of 7*-P-spaces. Then (k=1 Xk » p1, p2)
p k=1

is pi-P-space, where p; is the product topology. O

Adem Kilicman and Zabidin Salleh claim, in proposition (3.2) in [3], that the product of
arbitrary family of P-spaces is P-space, and gave a “proof” for that. Despite of this we give

here a counter example to show that this result is not true.

3.4.4 Example:

Let Ax={k, k+V2 }, k€N, and le , ‘Czk be the discrete topology for Ax. (Ax, rlk, rzk) is
a P-space, YKEN.

Let A = [[xen Ak » and p; be the product topology. Take By = 1 *({k}) € pi ,VkeEN.
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Nien Bk = [lken{Kk} € pi, even though By € p;, VKEN. Hence (A, p1, p2) is not P-space. O

3.4.5 Definition [3]:

A bitopological space X is said to be (i, j)-P-space if every countable intersection of
1-open sets in X is j-open. X is said to be B-P-space if it is (1, 2)-P-space and (2,1)-P-space.

Note that if (X, ,12) is B-P-space, then 1, =1, .

The proof of the following Lemma is similar to the the proof of lemma (3.4.1).

3.4.6 Lemma:

The bitopological space (X,11,T2) is (i,))- P-space if and only if any countable

intersection of ti-basic open sets is Tj-open. O

3.4.7 Lemma [3]:
Let (X,11,12) be a (1 ,17) —P-space and (Y,51,62) be a ( 6; ,6; )-P-space. Then (XxY, p1, p2)

1s (pi,p; )-P-space, where p; is the product topology , i=1,2 .

Proof: Similar to the proof of lemma (3.4.2). O

3.4.8 Corollary [3]:

Let { (Xk 00 ) k=1,2,.. .,n} be a collection of ( T ,Tjk )— P-spaces. Then (TTp=; Xk, p1, p2)

is (pi ,pj) —P-space, where p; is the product topology .
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Proof: Follows by induction on k. m

The previous corollary is not true for arbitrary collection of bitopological spaces. Take

example (3.4.4).

3.4.9 Theorem:

A bitopological space (X ,t;,12 ) is 7; —Lindelof with respect to t; if and only if every
cover F of basic ti—open sets for X has a countable family of tj—open sets finer than F and
covers X.

Proof:

=) It is obvious, as every basic 1; —open set is T; —open.

<) Let { Uy : v € A} be a 1;—open cover for X, and let B= {B, : o € A } be a 1; —base,
then each U, is a union of members of B.
LetBi={Bi:t€ Aand B;c U, for some a EA} = { Bi: t € A}, then AjC A.
Then Uiep1 Bt = UgeaUg = X. So {Bi:t € A; } is a 1j—open cover for X consisting of
elements from the base of ;. By the assumption, there exists a countable family © of t;—open
sets finer than {B;:t € V,} and covers X, say S={ W,:n €N }. Then Vn €N, 3t € A such
that W, B;. But B,c U, for some y € A, so W, © U, for some y € A. Then {W,: n € N} is
a countable family of tj—open sets finer than {U,: y € A} and covers X.

Hence (X,t; ,12 ) is t; —Lindel6f with respect to ;. O
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3.4.10 Theorem:

Let (X,t1 ,72 ) be a t; —Lindeldf with respect to t; , and (Y,51 ,62 ) is o; -compact with
respect to 6; . Then (XXY, pi, p2) is pi-Lindelof with respect to p; , where p; is the product

topology.

Proof:

We will restrict our attention to the p;i —open cover { V, XWg: o € A }consisting of basic
pi— open sets by theorem (3.4.9).
Fixx € X.VyE€Y, 3x,ay €A such that (x,y) € Vx,ay XWx,ay, Where Vx,ay € 1; and Wx,ay €EG;.
The family {Wx,ay:y € Y} is o; —open cover of Y, and since Y is o;-compact with respect to
o; , there exists a finite family of 6;—open sets covers Y and finer than {W x,0,: y € Y}, say
{ W’ x0y1, W x,0y2,...c0, W X,0ynx |-

Let Tx = Ng=q V., -Then Ty € 1, since each Vx,ay € 7; foreachk=1,2, ..., n.

g
{Tx : x € X} is a t; —open cover for X, and since X is t; —Lindeldf with respect to 1;, then there
exists a countable family of 1;, say {T xn: m € N} finer than {T, : x € X} and covers X.

Then { T’xm X W’xp,ayc: k=1,...,n0xn , m € N } is a countable p; —open cover for XxY and
finer than {V,xW, : a € A}.

Hence, XxY is p;-Lindel6f with respect to p;. i

62



3.4.11 Corollary:

Let (X,11,T2) be conversely Lindelof, and (Y,0,62) is conversely compact. Then

(XXY, p1, p2) 1s conversely Lindel6f, where p; is the product topology. i

3.4.12 Corollary:

Let { (X, ,11" ;2" ) : a€EA} be a collection of 1, —compact with respect to ;" (conversely
compact ),but for some B €A, (Xp 1 P ) is t? —Lindelsf with respect to er (conversely
Lindelof ). Then (JTqea X« » p1 5 p2) is pi-Lindelof with respect to p; (conversely Lindeldf ),

where p; is the product topology. i

3.4.13 Example [3]:

Let Bi= {R} U{{x} : x € R\{0} } and B,= {R} U{{x} : x € R\{1} }. Lett; and 1, be
the topologies on R generated by B; and B, respectively as bases.
Then (R,t;,12) is B-Lindel6f and conversely Lindelof, for any ti-open cover of R must
contain R as a member. We see that (R x R, 1;% 11, ToX 12 ) is B-Lindel6f and conversely
Lindelof, since any (1ix 1; ) — open cover of R % R must contain R X R as a member.

Actually (R x R, 11X 11, T2% 12 ) is B—compact and so is conversely compact. O

The product of two t; — Lindel6f with respect to 1, spaces is not necessarily

T1% 1;- Lindelof with respect to 1% 1,.

63



3.4.14 Example:

Let 1, denote the Sorgenfrey topology on R, and 14 denote the discrete topology on R,
then the bitopological space (R ,15,14) is T,-Lindel6f with respect to t4 (ts-Lindeldf within tq) .
However (RxR, 14X T, TgX T4) 1S not 14X 15 —Lindelo6f with respect to t4x 14 (and so not
1x T—Lindelof within t4x t4), since (RxR, 14X 15) is not Lindelof, as the closed subset

L={(x,-x) : x € R } which is uncountable set with the discrete topology is not Lindelof. ©

3.4.15 Theorem:
Let (X,11,12) be a 1i—Lindelof with respect to 1;and 1;-P-space, and (Y,01,62) be 6; -Lindelof
with respect to ;. Then (X*Y, p1, p» ) is pi-Lindeldf with respect to p;, where p; is the product

topology.

Proof:

We will restrict our attention to the p;i —open cover {V, XW, : a€A} consisting of basic

pi—open sets, by theorem (3.4.9) .

Fixx€X.Vy€Y,3x,0, €A suchthat (x,y) € Vx,ay X Wx,ay, where Vx,ay € 7; and

Wx,ay € 0j .

So the family { W x,ay: y € Y} is o; —open cover for Y, and since Y is o; -Lindelof with respect
to o , then there exists a countable family of 6;—open sets cover Y and finer than

{Wxoy:y €Y}, say {W’xayn :n €N},

Let Hy = Np=1 Vie v .Then Hy € 1; , since each Vx,ay € 1; and X is 1; —P-space .

{Hx : x € X} is a 1; —open cover for X, and since X is t; —Lindel6f with respect to T, this
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implies that there exists a countable family of tj—open sets, say { H’xn: m € N } finer than
{ Hx : x € X} and covers X .

Then { H’xm X W’xm ,ayn : n, m € N} is a countable p; —open cover for XxY and finer than
{ Ve xWy:a €A}

Hence, XxY is p;-Lindelof with respect to p;. mi

Example (3.4.14) shows that being 1;—P-space is essential as (R , 15, T4) is Ts-Lindelof

with respect to 14, but (R x R, 14X 15 ,TgX T4 ) 1S not 1% 15 —Lindel6f with respect to t4x 14.

Note that (R, T, t4) is not ts—P-space, as Npen [2 — % 2+ %) = {2} & 15 even though

2-1 2+ e vneN.
n n

3.4.16 Corollary:

Let (X,t1,12) be a conversely Lindel6f and P-space, and (Y,01,62) is conversely Lindelof.

Then (XXY, p1, p2) is conversely Lindelof, where p; is the product topology. o

3.4.17 Corollary:

Let (X, 11 ,T2) be a conversely Lindel6f and t; -P-space, and (Y,51,0) is conversely
Lindeldf and oj-P-space. Then (X*Y, p1, p2) is conversely Lindelof, where p; is the product

topology. i

By mathematical induction the following corollary follows.
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3.3.18 Corollary:

Let { (Xk T ) : k=1,2,...,n} be a collection of 7 —Lindelsf with respect to Tjk
(conversely Lindelof) and 1, —P-space, but for some p € {1....n}, (Xp 4P ") is 1 —Lindelof
with respect to er (conversely Lindel6f). Then ([[x=; Xk » 21, p2) is pi-Lindel6f with respect to

pj (conversely Lindelof), where p; is the product topology. i

The proof of the following theoerem is similar to the proof of theorem (3.4.15).

3.4.19 Theorem:

Let (X ,11,72 ) be a tj —Lindelof with respect to 1; and (1;,7; ) -P-space, and (Y,01 ,62 ) is
o; -Lindelof with respect to o;. Then (XXY, p1, p2) is pi-Lindeldf with respect to p;, where p; is

the product topology. i

3.4.20 Corollary:

Let (X, 11, 12) be a conversely Lindelof and B-P-space, and (Y,o; ,0; ) is conversely

Lindelof. Then (XXY, p1, p2) is conversely Lindelof, where p; is the product topology. mi

3.4.21 Corollary:

Let { (Xi T 0 ) : k=1,2,...,n} be a collection of Tjk — Lindelof with respect to 7 and
(rik , Tjk) —P-space ,but for some § € {1,..,n}, (X ,rlﬁ ,‘CzB ) is 1 — Lindelof with respect to Tjﬁ .

Then ([Tg=; Xk » o1, p2) is pi-Lindel6f with respect to pj, where p; is the product topology. o
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3.4.22 Theorem:

Let (X ,t1,12 ) be a 1; —Lindel6f with respect to t;, and (Y,01 ,02 ) 1s 6i—P-space. Then the

projection my: (X X Y, p1, p2 ) — (Y,01,62 ) is 1 —closed , where p; is the product topology.

Proof:

Let U be a p; —losed set in X xY, and let y, € ny (U). Clearly Xx{ y,} N U= 0.
So V x € X, the point (x,y,) € U has a p; —basic neighborhood Vy xWy, disjoint from U,
where V is 1; —open set in X containing x, and Wy y, 1S 6; —open set in Y containing y, . Now
{Vx xWyy0: x € X} forms a p; —open cover of X x{ y,} by p; —open sets in XxY, {V,:x € X}
is a Ty —open cover for X, and since X is 1; —Lindelof with respect to 1;, then there exist a

countable family of t; —open sets {V’xc: k € N } finer than {V, : x € X } and covers X.

Let W = Npeny Wy, y,- Since Y is 6;-P-space, W is 6; —open set in Y and a 6; —open

neighborhood of y,. We need to prove that W Nz, (U) = @.

Suppose that W N zty (U) # @, then there exist y; € (W N my (U)). y1 € W then y; € Wynyo

V n € N. y; € m, (U) means for some x, € X, (Xo,y1) € U. Since {V’x: k € N } is a cover for
X, then x, € V’x for some k € N, which implies (X, , y1) € (V’xk X W) C (Vxg X Winyo ) for
some n €N , and this is a contradiction since (Vx, X Wxny, ) 1 U=0,V n EN . Hence

W Nz, (U) = 0. So, W is ci-open neighborhood of y, disjoint from =, (U). So m, (U) is

o; —closed set in Y. Hence the projection =, : (XxY, p1, p2) — (Y,61,02) 1s i—closed. i
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3.5 Tychonoff Theorem for Conversely Lindelof Bitopological Spaces

3.5.1 Definition:

The family F of t;-open sets is called countably 7; -inadequate with respect to t; in X if no

countable family of tj-open sets which is finer than F covers X.

We can easily see that the bitopological space (X,t1,12) 1s 1 -Lindelof with respect to 1; if

and only if each countably 7;-inadequate family with respect to 7 in X is t; -inadequate.

3.5.2 Lemma:

Let (X,t1,12) be a bitopological space. If D is a maximal countably t;-inadequate family
with respect to T, and if some member of D contains NjL; G; , where each G; is ti-open , then

Gx € D for some k in {1,2,...,n}.

Proof:

First suppose that n = 2. Suppose that G; € D and G; € D. Then by maximality of D,
DU{G;} and DU{G,} are not countably 1;-inadequate with respect to ;. Then for DU{G,},
IA A ,A ..., Ay,..., where A, Ay are T1j-open sets VKEN, AcGy, and Ay A’y for some
A’ € D, V keN, such that AU ( Ugeny Ak ) = X.

And for DU{G»}, 3 tj-open sets B, By, By,..., By,..., such that B U (Upen By, ) = X, where
B c Gyand B, € B’, for some B’, € D, V neEN.

Claim: (ANB) U ( Ugen Ak ) U (UpenBn ) = X.

It is clear that: (ANB) U ( Ugeny Ak ) U (UpenBn ) € X.

Now, let x€X. If either x € Ay, for some k € N, or x € B,,, for some n € N, then
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X € (ANB) U (Uken Ak ) U (Upen Bn ). If not, then x € A and x € B and so x € (ANB).

So, X € (ANB) U ( Ugen Ak ) U (Upen By )- This completes the proof of the claim.

Since A c G; and B € G, then ANB € G;NG;. But G;NG; is contained in some element of
D, so (ANB) U {Ax: k€N } U {B, : n€N} is a countable family of t;-open sets that is finer
than D and covers X, this contradicts that D is countably t; -inadequate with respect to ;.

So G; € D or G, € D. So the result holds for n = 2.

The result for arbitrary n€EN follows by mathematical induction.

3.5.3 Theorem (Alexander):

If (X,11,T2) be a bitopological space in which every countably t; -inadequate family with
respect to T, say B, there is a maximal countably t; -inadequate family with respect to 7; in
(X,t1,12), say D, and that B € D, and if S is a subbase of the topology 7i such that, for each t; -
open cover V for X by members of S, there is a countable family of 1;-open sets finer than V

that covers X, then (X,1,12) is 1; -Lindelof with respect to ;.

Proof:

Let B be a cuontably 1; -inadequate family with respect to t;, then there is a maximal
countably 1;-inadequate family with respect to 1;, say D and B c D. If we prove that D is

Ti -inadequte, then B is also T1; -inadequate.

§ is a subbase of 1;, and since D is a family of 1;-open sets, then (SND) is a family of t;-open
sets. Let A € D, then A € 1;, and S is a subbase of 1; , then there is a finite intersection of

elements of § which is contained in A, then one of these elements of § is an element of D.
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So (SND) is a nonempty family of 1;-open sets contained in D, since (SND) € D, then (SND)
is a countably 1; -inadequate family with respect to 1. Which means that there is no countable
family of 1 -open sets finer than (SND) and covers X. And since (SND) € S. So (SN D) is

i -open family of § which does not cover X. Hence, (S ND) is t; -inadequate.

Want to prove that U{C : C€ D} =U{C: C € (SND)}.

Since (SND) € D, so U{C: C € (SND)} c U{C: C e D} e (1)

Letx eU{C: C € D}; then 3 A € D such that x € A. Since A is 1;-open, then there is a finite
intersection of elements of § containing x and contained in A. By maximality of D, one of

these elements of § is an element of D, so

xeU{C:CeSND)Y ©)

Hence, U{C: Ce D} =U{C: C € (§ND)}, from (1) and (2).

So, D is ti -inadequate, and so B is 1; -inadequate. Therefore each countably 7; -inadequate

family with respect to t; is 7i -inadequate. So X is t;-Lindeldf with respect to Tj. m

3.5.4 Theorem (Tychonoff):

Let the bitopological space (X,t,t”) be the product bitopological space of the family of

bitopological spaces {(Xj,t;,1i’): 1€I}. Then

i. ) If (X,1,7°) is T -Lindel6f with respect to t’(conversely Lindelof), then each factor space

(Xi,t3,717) 1s 13 -Lindelof with respect to 1;” (conversely Lindelof).
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ii. ) If for every countably 1; -inadequate family with respect to 1, say B, in the product
bitopological space (X,t,17°), there is a maximal countably t; -inadequate family with
respect to 7 in (X,1,7°), say D, and B <D, then the converse of (i) is true. (X,t,t’) is
t-Lindel6f with respect to t°(conversely Lindelof ), if for every i€ I, the bitopological
space (X, Ti, ;") is 1; -Lindelof with respect to 1;’(conversely Lindelof).

Proof:
(1) The natural projections are continuous, surjective and open, then each component (X, ti,T;")

is 7;-Lindeldf with respect to 1;’(conversely Lindelof).

(ii) Let § ={ m; *(U;) : Ui€t;, i€l }, where m; is the natural projection into the i-th coordinate
space Xj , then § is a subbase for the topology 1. In view of Theorem (3.5.3), the product
bitopological space (X,t,7°) will be 1-Lindel6f with respect to t° if each subfamily A of
which is countably t-inadequate with respect to t’ in (X,1,7’) is t-inadequate. For each index
i€l, Let B; be the family of all sets U; € 1; such that ; *(U;) € A. Then B; is countably T; -
inadequate with respect to 7’ in (X, Ti, Ti’). Since (Xj, T, Ti") 1s T; -Lindelof with respect to i,
then B; is 1;-inadequate in (X, T;, T;"). So, there is x; € X;\U; for each U; € B; . Consider the
point x € X whose i-th coordinate is x; , then x belongs to no member of A, and consequently,
A is t-inadequate in (X,t,7”). Hence the product bitopological space (X, t, t°) is T-Lindelof

with respect to 1. i

3.5.5 Example:

In example (3.4.13), (R ,15,74) is T,-Lindelof with respect to 14 . However

(R xR, 15X 15 ,TgX T4 ) 1S not T 15 —Lindeldf with respect to t4x 14.
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By theorem (3.5.4), there exists a countably 1,x 15 -inadequate family with respect to t4 X14 ,
say B, which has no maximal countably 1 X t,-inadequate family with respect to 14 Xtg4 in

(R xR, t5% 15 ,T4% 14 ), say D, and that B cD. ]

3.6 Conversely compact and conversely Lindelof Subsets of (R, €, #)

In this section, compactness and Lindeldfness of subsets in the bitopological space

(R,?,7) are studied.

We note that (R, €, 7 ) is neither £-compact(Lindel6f) with respect to #~ nor #*-compact

(Lindelof) with respect to €.

3.6.1 Theorem [4]:

A nonempty subset A of (R, €, # ) is £-compact with respect to 7 if and only if A is

bounded above and contains its supremum.

Proof:

=) Suppose that A is not bounded above, we can find {x, : nEN} c A such that

X1<Xp <...<Xp<....,and n <x,,V n€N.

Then there exists {a, : n€EN } such that x; <o <xz <0z <...<Xp< 0l ...
{ (00,01, ): nEN } is an £-open cover of R, so V = { (-o0,0, ) N A : nEN } is an £5-open cover
for A, and the only 7~ 4-open set that is contained in any element of V is @. Thus V does not

have a finite 7 4-open cover for A finer than V.
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Hence, A is not £-compact with respect to #-, and this is a contradiction. So A is bounded

above, and it has a supremum, say t.

Suppose that t € A, then Yn€ N there exist x, € A such that t- % <xp<t.
V= {(-, t- %) N A :n€N } is an £5-open cover for A. IfUE #, U N A # @, thent € U.

UNA & (-, t- % )N A,V neN. So A is not £-compact with respect to 7+, and this is a

contradiction.
<) Suppose that A is bounded above and contains its supremum, say t.

Let V= { (-0,0) N A:a € A} be any €4 —open cover for A. t € (-0,a) for some o € A, then
(-o0,0) N A=A € 7 .So {A} is the 4 —open cover for A which is finer than V.

Hence A is £-compact with respect to 7. i

The following theorems are proved similarly.

3.6.2 Theorem:

A nonempty subset A of (R, €, #) is £-Lindelof with respect to #~ if and only if A is

bounded above and contains its supremum. i

3.6.3 Theorem [4]:

A nonempty subset A of (R, €, #) is #~-compact (Lindel6f) with respect to € if and only

if A is bounded below and contains its infimum. O
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3.6.4 Corollary:

For arbitrary nonempty subset A of (R, £, #), the following are equivalent:

1) A is bounded and contains its infimum and its supremum.
i1) A is conversely compact.

111) A is conversely Lindelof. O

3.7 Conversely compact and conversely Lindelof Subsets of (R, €, S)

Conversely compact and conversely Lindelof Subsets of (R, €, § ) are studied, where

R is the set of real numbers, € is the left ray topology, § is the standard topology.
It is clear that £ € §, and since € is Lindelof, then R is € Lindel6f with respect to S.

Also, every subset of R is £-Lindeldf, and then every subset of R is € Lindelof with respect to
8. But not every subset of R is § Lindelof with respect to €. To show this, take any subset U
of R and suppose that x and y are any two distinct points of U, such that x <y. Let

V= {(x,0)NU, (-0,y)NU} be an Sy -open cover for U then there is no €y open set finer
than V contains y. Hence U is not § Lindelof with respect to €, and therefore not § compact

with respect to €.

3.7.1 Theorem:

Every nonempty subset A of R is £-compact with respect to § if and only if it is

bounded above and contains its supremum.
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Proof:

=) Suppose that A is not bounded above, we can find {x,: n€EN} c A such that

X1<Xy <...<Xp<....,and n <x,,V n€N.

Then there exists {a, : n€EN } such that x; <a; <xx <0y <...<Xx< 0y ...

{ (0,0, ): nEN } is an £-open cover of R, so V = { (-o0,a, ) N A : n€N } is an £5-open cover

for A which has no finite subcover. So A is not £-compact and therefore is not £-compact
with respect to § which is a contradiction. Hence A is bounded above, and so has

a supremum say t.

Suppose that t € A, then Vn€ N there exist x, € A such that t- % <x,<t.

V= {(-o0, t- % ) N A :n€eN } is an £5-open cover for A which has no finite subcover. So A is
not £-compact, and therefore A is not £-compact with respect to § which is a contradiction.

<) Suppose that A is bounded above and contains its supremum, say t.

Let V= {(-0,0) N A:a €A } be any £4 —open cover for A. t € (-o0,a) for some o € A, then
(-0,0) N A=A €84 .So {A} is the § o—open cover for A which is finer than V.

Hence A is £-compact with respect to §.
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