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Abstract

Einstein field equations (EFEs) play an important role in understanding the theory of

general relativity and related phenomena such as gravitational waves. Since, in general,

it is almost impossible to find analytical solutions of EFEs, it is necessary to solve these

equations numerically (approximately).

In this work, we derive the Einstein field equations (EFEs) and the standard ADM

(Arnowitt, Deser and Misner) equations form of EFEs.

The ADM form consists of constraint equations and evolution equations for the raw spa-

tial metric and extrinsic curvature tensors. The corner stone in the derivation of this

form is “3+1 formalism”, where one splits spacetime into three-dimensional space on the

one hand, and time on the other.

We study the BSSN (Baumgarte, Shapiro, Shibata and Nakamura) formulation. In this

formulation the ADM equations were modified by factoring out the conformal factor and

introducing three connections. The evolution equations can then be reduced to wave

equations for the conformal metric components, which are coupled to evolution equa-

tions for the connection functions. Small amplitude gravitational waves were evolved

and a direct comparison of the numerical performance of the modified ADM equations

with the standard ADM equations was made. The results demonstrate that the standard

implementation of the ADM system of equations, consisting of evolution equations for

the bare metric and extrinsic curvature variables, is more susceptible to numerical insta-

bilities than the modified form of the equations based on a conformal decomposition as

suggested by Shibata and Nakamura.

Further, in this work, we consider the problem of specifying Cauchy initial data in the

case 3+1 formalism. We also apply the Optimal Homotopy Asymptotic Method, OHAM,

and solving the Einstein field equations corresponding to Schwarzschild geometry, i.e. we

determine the Schwarzschild solution using OHAM.
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Chapter 1

Introduction

The theory of general relativity (GR), proposed by Albert Einstein at the end of 1915,

[13], [14], is the modern theory of gravitation. It is the cornerstone of modern cosmology,

the physics of neutron stars and black holes, the generation of gravitational radiation,

and countless other cosmic phenomena in which strong-field gravitation plays a dominant

role. The general theory of relativity relates the energy-momentum content of the phys-

ical universe to the curvature of the model manifold through a set of partial differential

equations.

The key insight of Einstein was what is known as the Einstein equivalence principle,

the (local) equivalence of gravitation and inirtia. This led him to realization that grav-

ity is best described and understood not as a physical external force like in Newotonian

physics but rather as a manifistation of the geometry and curvature of spacetime itself. A

massive object produces a distortion in the geometry of spacetime about it, and in turn

this distortion affects the movement of physical objects. That is, GR explains gravitation

as a consequence of the curvature of spacetime, while in turn spacetime curvature is the

consequence of the presence of matter. Spacetime curvature affects the movement of mat-

ter, which reciprocally determines the geometric properties and evolution of spacetime.

The theory of general relativity is covered in many textbooks, for example, Shutz, A First

Course in Relativity [16]; Weinberg, Gravitation and Cosmology [5]; Misner, Thorne and

Wheeler, Gravitation [6] and Wald, General Relativity [17].
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The first solution presented to the Einstein field equations was published by Karl Schwarz-

schild in 1916, which has allowed researchers to make many physical predictions with

increased precision. It is the unique solution for the field outside a static, spherically

symmetric body. However, the Schwarzschild solution is not the only known solution

to the Einstein field equations. Some of the famous solutions include the Kerr solution,

for the spacetime surrounding a rotating mass, the Reissner-Nordström solution, for the

spacetime surrounding a charged mass, and the Kerr-Newman solution, for the spacetime

surrounding a charged and rotating mass, [9].

General Relativity of Einstein achieved a variety of other deep and subtle goals. It

drops e.g. the assumption that the set M of all events should admit a bijection onto R4.

It also explains why the (heavy) mass appearing in Newton’s law of gravitation is the

same as the (inertial) mass that appears in his first law of mechanics (the weak equiv-

alence principle). This equivalence means that the trajectory of a freely falling body is

completely determined by its initial position and velocity and it is independent of the

object’s mass or shape. In General Relativity this is explained by the fact that these

preferred free-fall trajectories are a part of the structure of the spacetime M , [10].

An important step in understanding general relativity is newotonian mechanics. When

describing physical phenomena on Earth, it is natural to use a coordinate system with

origin at the center of the Earth. This coordinate system is, however, not ideal for the

description of the motion of the planets around the Sun. A coordinate system with origin

at the center of the Sun is more natural. Since the Sun moves around the center of the

galaxy, there is nothing special about a coordinate system with origin at the Sun’s center.

This argument can be continued ad infinitum.

The fundamental reference frame of Newton is called absolute space. The geometrical

properties of this space are characterized by ordinary Euclidean geometry. This space

can be covered by a Cartesian coordinate system. A non-rotating reference frame at
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rest, or moving uniformly in absolute space is called a Galilean reference frame. With

chosen origin and orientation, the system is fixed. Newton also introduced a universal

time which proceeds at the same rate at all positions in space. Relative to a Galilean

reference frame, all mechanical systems behave according to Newton’s three laws.

Newton’s first law: Free particles move with constant velocity

u =
dr

dt
= constant (1.1)

where r is a position vector.

Newton’s second law: The acceleration a = du/dt of a particle is proportional to the

force F acting on it

F = mi
du

dt
(1.2)

where mi is the inertial mass of the particle.

Newton’s third law: If Particle 1 acts on Particle 2 with a force F12, then Particle 2

acts on Particle 1 with a force

F21 = −F12. (1.3)

The first law can be considered as a special case of the second with F = 0. Alternatively,

the first law can be thought of as restricting the reference frame to be non-accelerating.

This is presupposed for the validity of Newton’s second law. Such reference frames are

called inertial frames.

Note that in this thesis the Greek indices take the values 0, 1, 2, 3 while Latin indices

take the values 1, 2, 3. Further, during our work we use Einstein summation convention:

Indices that appear twice in an expression as sub and super indices are understood to be

summed over all their possible values.

Vectors and tensors are the most important mathematical tools used in both special and

general relativities. A “four−vector” V α is a quantity that undergoes the transformation

V α → V α′ = Λα
βV

β (1.4)

when the coordinate system is transformed by

xα → x′α = Λα
βx

β, (1.5)
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where Λα
β is constant, restricted by the conditions

Λα
γΛβ

σηαβ = ηγσ, (1.6)

with

ηαβ =


+1 : α = β = 1, 2, or 3

−1 : α = β = 0

0 : α 6= β = 0

(1.7)

More precisely, such a V α should be called contravariant four-vector, to distinguish it

from a covariant four-vector, defines as a quantity Uα whose transformation rule is

Uα → U ′α = Λβ
αUβ, (1.8)

where

Λβ
α ≡ ηαγη

βδΛγ
δ . (1.9)

The matrix ηβδ introduced here is numerically the same as ηβδ, that is,

ηβδ = ηβδ. (1.10)

Many physical quantities are not scalars or vectors, but more complicated objects called

tensors. A tensor has several contravariant and/or covariant indices with corresponding

Lorentz transformations properties, for example,

T γαβ → T ′γαβ = Λγ
δΛ

ε
αΛζ

βT
δ
εζ . (1.11)

A contravariant or covariant vector can be regarded as a tensor with one index, and a

scalar is a tensor with no indices, [9].

Using the notion of multi-linear functions, f is a multi-linear provided it is linear in all its

arguments, a tensor is defined as a multi-linear function that maps vectors and one-forms

(linear functionals) into R. We distinguish between covariant, contravariant and mixed

tensors. A covariant tensor maps vectors only, a contravariant tensor maps one-forms

only and a mixed tensor maps both vectors and one-forms.

The most important tensor that one can define on a manifold is the metric tensor, denoted
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by g (a basic block of Einstein field equations). It ia a bilinear functional that maps two

vectors into the number that is their inner product, i.e.

g(U, V ) ≡ U · V. (1.12)

Clearly the metric g is a symmetric second-rank tensor. Its covariant and contravariant

components are given by

gµν = g(eµ, eν) = eµ · eν and gµν = g(eµ, eν) = eµ · eν , (1.13)

where eµ are basis vectors that span the vector space tangent to the corresponding mani-

fold and eµ are the 1−forms dual basis to the vector basis eµ. The matrix [gµν ] containing

the contravariant components of the metric tensor is the inverse of the matrix [gµν ] that

contains its covariant components. The mixed components of g are given by

g(eν , eµ) = g(eµ, e
ν) = δνµ, (1.14)

where the last equality is a result of the reciprocity relation between basis vectors and

their duals, [11].

The physics of compact objects is entering a particularly exciting phase, as new instru-

ments can now yield unprecedented observations.

In order to learn from these observations, one has to predict the observed signal from

theoretical modeling. The most promising candidates for detection by the gravitational

wave laser interferometers are the coalescences of black hole and neutron star binaries.

Simulating such mergers requires self-consistent, numerical solutions to Einstein field

equations in 3 spatial dimensions, which is extremely challenging.

As stated before, according to Einstein gravitation is a manifestation of spacetime cur-

vature. The relationship between the curvature of spacetime and its matter and energy

content is encoded by Einstein field equations. Because of the symmetry, these equations

composed of six, second order in time, second order in space, coupled, highly nonlinear,

quasi-hyperbolic partial differential equations and four, second order in space, coupled,

highly nonlinear elliptic partial differential equations. Thus the Einstein field equations

are the set of ten equations in Albert Einstein’s general theory of relativity that describes
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the fundamental interaction of gravitation as a result of spacetime being curved by mat-

ter and energy.

The concept of spacetime is an elegant concept; it can be used to describe physics in

a different way. However, current numerical methods exist only for space (e.g. finite

differencing methods or finite element methods) and time (e.g. Runge-Kutta methods).

Therefore we want to decompose the spacetime into space and time, so that we can solve

the Einstein equations more easily.

The Einstein field equations may be written in the form, see next chapter for the meaning

of the involved variables and constants,

Rµν −
1

2
gµνR + gµνΛ =

8π

c4
GTµν . (1.15)

The structure of the spacetime is described by R, the Recci scalar and g, the metric tensor

while T pertains to matter and energy affecting that structure. When Λ, the cosmological

constant, is zero, the system of equations reduces to the original field equations of general

relativity. If T is zero, the field equation describes empty space (the vacuum).

The cosmological constant (Λ) has the same effect as an intrinsic energy density of the

vacuum, ρvac. In this context, it is commonly moved onto the right-hand side of the

equation, and defined with a proportionality factor of κ, Einstein’s constant, Λ = κρvac.

Rµν , the Ricci curvature tensor, is the part of the curvature of space-time that determines

the degree to which matter will tend to converge or diverge in time (via the Raychaudhuri

equation). It is related to the matter content of the universe by means of the equation,

Ricci scalar: R = Rµνgµν .

Note that the metric tensor is a central object in general relativity that describes the

local geometry of spacetime (as a result of solving the Einstein field equations). Us-

ing the weak-field approximation, the metric can also be thought of as representing the

“gravitational potential”. The metric tensor is often just called “the metric” and is used

to generate the connections that are used to construct the geodesic equations of motion

and the Riemann curvature tensor.

Solutions to Einstein field equations, except for a few idealized cases characterised by
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high degrees of symmetry, have not been obtained as yet for many of the important

dynamical scenarios though to occur in nature. With the development of computers,

it is now possible to tackle these complicated equations numerically and explore these

scenarios in detail. That is the main goal of numerical relativity, the art and science

of developing algorithms to solve Einstein’s equations for astrophisically realistic, high-

velocity, strong field systems, see [7]. Many numerical codes to solve Einstein’s equations

of general relativity in 3+1 dimensional spacetimes employ the standard 3+1 dimensional

Arnwowitt-Deser-Misner ADM form of the field equations. This form involves evolution

equations for the raw spatial metric and extrinsic curvature tensors, [1].

The goal of numerical relativity is to study spacetimes that cannot be studied by analytic

means. The focus is therefore primarily on dynamical systems. Numerical relativity has

been applied in many areas: cosmological models, critical phenomena, perturbed black

holes and neutron stars, and the coalescence of black holes and neutron stars, etc. In

any of these cases, Einstein’s equations can be formulated in several ways that allow us

to evolve the dynamics. While ADM methods have received a majority of the atten-

tion, characteristic and Reggi calculus based methods have also been used. All of these

methods begin with a snapshot of the gravitational fields evolve prescribed data on some

hypersurface, the initial data to neighboring hypersurfaces.

Before Einstein’s field equations can be solved numerically, they have to be cast into a

suitable initial value form. Most commonly, this is done via the standard 3+1 decom-

position of Arnowitt, Deser and Misner (ADM). In this formulation, the gravitational

fields are described in terms of spatial quantities (the spatial metric and the extrinsic

curvature), which satisfy some initial constraints and can then be integrated forward in

time.

The standard ADM form, derived in Chapter 2, involves evolution equations for extrinsic

curvature tensors and the raw spatial metric, as follows

d

dt
Kij = −DiDjα + α(Rij − 2KilK

l
i +KKij −Mij). (1.16)

Here γij is the raw spatial 3-metric, Rij contains the second derivatives of γij, Kij is the

extrinsic curvature tensors, Di denotes a spatial, covariant derivative with respect to the
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coordinate xi, β
i is the shift, and α is the lapse.

Note also that

γij = gij + ninj, Kij = −Dinj, ni =
Dit

|Dit|
. (1.17)

Further the mass of this spacetime, as measured by a distant static observer in the

vacuum exterior, is M , and ni is the unit normal to the slices. These variables, if known

everywhere, describe the whole spacetime. 3-metric and extrinsic curvature describe the

hypersurfaces themselves, lapse and shift describe the relation between hypersurfaces, [7],

[12]. Standard ADM can be modified to get better stability, the modified version, derived

in Chapter 3, reads

d

dt
φ =
−1

6
αK (1.18)

d

dt
K = −γijDjDiα + α(ÃijÃ

ij +
1

3
K2) +

1

2
α(ρ+ S), (1.19)

where γij is the metric, and Kij is the extrinsic curvature [1].

Since ADM formulation treated Einstein field equations as an initial value problem, initial

data are the starting point for any numerical simulation. In the case of numerical relativ-

ity, Einstein’s equations constrain the choices of these initial data. Several formalisms are

used for specifying Cauchy initial data in the 3+1 decomposition of Einstein’s equations,

see [8]. The focus of these formalisms is on the initial data needed for Cauchy evolutions

of Einstein’s equations. These initial data cannot be freely specified in their entirety.

Rather they are subject to certain constraints which must be satisfied. Because of the

nonlinearity of Einstein’s equations, there is no unique way of choosing which pieces of

the initial data can be freely specified and which are constrained.

The outline of the thesis is as follows. In the next chapter we derive Einstein fields equa-

tion. Chapter Three is devoted to the derivation of ADM and modified ADM methods,

further in this chapter we present some numerical tests. In chapter Four we discuss sev-

eral formalisms of constructing initial data of numerical relativity.

Finally, in Chapter Five, we present the semi-analytic method, Optimal Homotopy Asymp-

totic Method, and apply it to find the Schwarzschild solution.
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Chapter 2

Einstein Field Equations (EFEs)

Intoduction

This chapter is devoted to the derivation of Einstein field equations. As suggested by Ein-

stein himself, gravity is a manifestation of space time curvature induced by the presence

of matter. Thus the expected set of equations must describe quantitatively how the cur-

vature of spacetime at any event is related to the matter distribution at that event. These

equations will be the Einstein’s field equations. They relate the spacetime curvature to

its source, the energy-momentum of matter. In fact general relativity explains gravita-

tion as a consequence of the curvature of spacetime, while in turn spacetime curvature

is a consequence of the presence of matter, which reciprocally determines the geometric

properties of spacetime. This situation is described by John Wheeler as “spacetime tells

matter how to move and matter tells spacetime how to curve”[15].

Mathematically, these equations are a set of second order nonlinear partial differential

equations for the metric coefficients of spacetime, gµν . The nonlinearity in these equa-

tions representing the effect of graviation on itself.

Einstein field equations take the form

Rµν −
1

2
gµνR + gµνΛ =

8πG

c4
Tµν (2.1)

where Rµν is Ricci tensor, R is Ricci scalar, gµν is metric tensor, Λ is cosmological

constant, G is Newton’s gravitational constant, c is the speed of light, Tµν is the stress
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energy-momentum tensor and µ, ν take the values 0, 1, 2, 3.

In order to derive the set of equations (2.1), a background knowledge of basics of diffe-

rential geometry is needed. In the following sections we briefly present metric tensor,

Christoffel symbols (affine connections), Ricci tensor, and the stress-energy momentum

tensor. At the end of the chapter, we derive Einstein field equations.

2.1 Metric Tensor, gµν

In the mathematical field of differential geometry, a metric tensor is a type of function

which takes as input a pair of tangent vectors v and w at a point of a surface (or higher

dimensional differentiable manifold) and produces a real number g(v, w) in a way that

generalizes many of the familiar properties of the dot product of vectors in Euclidean

space. In the same way as a dot product, metric tensors are used to define the length

of and angle between tangent vectors. In general relativity (GR) we are concerned with

a particular class of differentiable manifolds known as Riemannian manifolds. A Rie-

mannian manifold is a differentiable manifold on which a distance, or metric, has been

defined. By manifold we mean any set that can be continuously parameterised. A mani-

fold is continuous if, in the neighbourhood of every point P , there are other points whose

coordinates differ infinitesimally from those of P . A manifold is differentiable if it is

possible to define a scalar field at each point of the manifold that can be differentiated

everywhere. The most important tensor that one can define on a manifold is the metric

tensor g. This defines a linear map of two vectors into the number that is their inner

product, i.e. g(u, v) = u · v. A rank-2 tensor (tensor of order 2) of particular importance

is the metric tensor gµν = eµ · eν , where eν are four basis vectors span the vector space

tangent to the spacetime manifold, the metric tensor is associated with the line element

as ds2 =
4∑

µ,ν=0

gµνdx
µdxν ≡ gµνdx

µdxν . The metric tensor is symmetric, i.e. gµν = gνµ,

non singular and satisfies the usual rank-2 tensor transformation law

g′µν =
∂ξα∂ξβ

∂xµ∂xν
gαβ. (2.2)

10



Further as matrix, gµν has four eigenvalues have signs (−,+,+,+), that is, one negative

eigenvalue associated with the time dimension, and three positive eigenvalues associated

with the spatial dimensions. In special relativity, the metric tensor reduces to the so-

called Minkowski metric: ds2 = −dt2 + dx2 + dy2 + dz2 ≡ ηµνdx
µdxν , which corresponds

to a flat space-time. The contravariant metric tensor gµν is defined by the requirement

gµβg
βν = δνµ where δνµ is Kronecker delta

δνµ = δµν = δµν =

 1, if µ = ν

0, if µ 6= ν

Thus gµν and gµν are matrix inverses. We may use contraction with the metric tensor to

raise and lower tensor indices. For example: Aµ = gµνAν . Thus, the scalar product of

vectors may also be expressed as A ·B = gµνA
µBν = AµB

ν . The Lorentz transformations

imply that the interval ds2 has the same value as measured by any observer [5]. This is a

direct consequence of the postulate of the invariance of the speed of light. Note that due

to the presence of a negative eigenvalue, the invariant distance is not positive definite. In

fact, from the metric one can distinguish events related to each other in three different

ways:

ds2 > 0, spacelike separation,

ds2 < 0, timelike separation,

ds2 = 0, null separation.

2.2 Christoffel Symbols, Γµνσ

In mathematics and physics, the Christoffel symbols are an array of numbers describing

an affine connection.

They are defined as Γµνσ =
∂xµ

∂ζα
∂2ζα

∂xν∂xσ
, where ζα(x) is the locally inertial coordinate

system [5]. Christoffel symbol is a nontensor quantity and associated with the spacetime

metric gµν . In tensor calculation, the Christoffel symbol is related to partial derivatives

of the metric, and it is given by, see [5] for the proof

Γµνσ = gµκΓκνσ =
1

2
gµκ
(
∂gκν
∂xσ

+
∂gκσ
∂xν

− ∂gνσ
∂xκ

)
11



or

Γκνσ =
1

2

(
∂gκν
∂xσ

+
∂gκσ
∂xν

− ∂gνσ
∂xκ

)
.

A useful usage of Christoffel symbol is in the context of covariant derivatives, ∇λV
µ =

∂V µ

∂xλ
+ ΓµλνV

ν and ∇λVµ =
∂Vµ
∂xλ
−ΓσλµVσ. These covariant derivatives can be extended to

general tensors in a natural way. Also Christoffel symbols appear in the definition of the

Riemann curvature tensor that used to distinguish between spaces that are not flat .

2.3 Ricci Tensor

Riemann curvature tensor measures the change of a vector as it is transported around

a closed circuit while keeping it always parallel to itself “parallel transport”. On a flat

space, the vector does not change when this is done, while on a curved space it does

change. The Ricci tensor, contracted from the Riemann curvature tensor, is the part

of the curvature of space-time that determines the degree to which matter will tend to

converge or diverge in time (via the Raychaudhuri equation). It is related to the matter

content of the universe by means of the Einstein field equations. If the Ricci tensor

satisfies the vacuum Einstein equation, then the manifold is an Einstein manifold, which

have been extensively studied. In this connection, the Ricci flow equation governs the

evolution of a given metric to an Einstein metric; the precise manner in which this occurs

ultimately leads to the solution of the Poincaré conjecture. The Ricci tensor Rµν is the

trace of Riemann curvature tensor given by:

Rµ
νσκ =

∂Γµνκ
∂xσ

+
∂Γµνσ
∂xκ

+ ΓµρσΓρνκ − ΓµρκΓ
ρ
νσ (2.3)

Therefore, The Ricci tensor and Ricci scalar are formed from the Riemann tensor as

follows

Rµν = Rσ
µσν , R = Rµ

µ = gµνRµν .

2.4 Energy-Momentum Tensor

The stress energy-momentum tensor (energy-momentum tensor) is a tensor quantity in

physics that describes the density and flux of energy and momentum in spacetime, gen-
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eralizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation,

and non-gravitational force fields. The stress-energy tensor is the source of the gravita-

tional field in the Einstein field equations of general relativity, just as mass density is the

source of such a field in Newtonian gravity. The stress energy-momentum tensor given

by T µν = ρuµuν , where ρ is the proper density of the fluid, i.e. that measured by an

observer moving with the local flow, and uµ is its 4-velocity. To give a physical interpre-

tation of the components of the energy-momentum tensor, it is convenient to consider

a local cartesian inertial frame at P in which the set of components of the 4-velocity

of the fluid is uµ = γu(c,
−→u ), where γu =

(
1− u2

c2

)− 1
2

. In this frame, writing out the

components in full we have

T 00 = ρu0u0 = γ2
uρc

2,

T 0i = T i0 = ρu0ui = γ2
uρcu

i,

T ij = ρuiuj = γ2
uρu

iuj.

Thus the physical meanings of these components in this frame are as follows: T 00 is the

energy density of the particles, T 0i is the energy flux×c−1 in the i-direction, T i0 is the

momentum density×c in the i-direction and T ij is the rate of flow of the i-component of

momentum per unit area in the j-direction. It is because of these identifications that the

tensor T is known as the energy-momentum or stress-energy tensor.

2.5 Einstein Field Equations

In this section we bring together metric tensor, Ricci tensor and momentum tensor to get

Einstein field equations (2.1). If the space is empty, i.e. free of gravitation, then EFEs

take the form Rµν = 0, which is similar to Laplace equation of empty space ∇2φ = 0,

but if we need to derive gravitational field equations affected by the matter or the mass

contained within it, this matter could be the mass inside the earth or the dust existing in

universe, we consider the general theory of relativity that is equivalent to Poisson equation

∇2φ = 4πρG. Here G is the gravitational constant, ρ is the density and φ, the sought

function, is the gradient of the gravitation field. Thus to get the required field equations,

13



the Ricci tensor must equal a nonzero tensor. The suitable tensor to be considered is

the contravariant tensor of energy T µν . Since Rµν is a covariant tensor then in order

to get equality we raise the indices of Ricci tensor using metric tensor. Thus we write

Rµν = gµρgνσRρσ. Therefore we take Rµν = kT µν where k is a constant, as a consequence

one gets in flat spacetime that T µν = 0. Because the spacetime curved partially due to

the existence of matter then k assigned small value. Hence in a flat spacetime we ignore

k. In Riemann geometry and depending on Bianchi identity we get, (see Hobson et.al.

[11]), (Rµν − 1

2
Rgµν);ν = 0, where (; ) stands for covariant differentiation of any tensor

field. Based on the conservation of energy and momentum we have T µν;ν = 0. Thus we

have immediately the Einstein field equations

Rµν − 1

2
Rgµν = kT µν (2.4)

We shall also use the equivalent form, [12]

−→γ ?R = 8π

(
−→γ ?T− 1

2
T−→γ ?g

)
(2.5)

where T := gµνTµν stands for the trace (with respect to g) of the stress-energy tensor T ,

−→γ is the “extended” induced metric γ with the first index raised by the metric g, and

we use the −→γ ? operation to extend the extrinsic curvature tensor K, defined a priori as

a bilinear form on Σ.

Multiplying the last equation by gµν and taking into consideration the constant tensors

T = gµνT
µν , R = gµνR

µν , δµν =

 1, µ = ν

0, µ 6= ν
(Kroenker delta) and noting that gµνgµν =

δρρ we get gµνR
µν− 1

2
Rgµνgµν = kgµνT

µν which implies that R− 1

2
(4)R = kT or we write

R = −kT. (2.6)

Equations (2.4) and (2.6) lead to Rµν = k(T µν − 1

2
gµνT ). In a vacuum T µν vanishes, so

from the last equation we see that the Einstein field equations in empty space are just

Rµν = 0 which is equivalent to Rµν = 0. Since gµν;ν = 0, Einstein introduced a scalar

multiple of the metric tenor to his field equations. This term is added on the base of

cosmological reasons. Therefore with k =
8πG

c4
Einstein field equations take the form

Rµν − 1

2
Rgµν − Λgµν =

8πG

c4
T µν . (2.7)
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2.6 Exact Solution of EFEs

Solutions of the Einstein field equations are spacetimes that result from solving the Ein-

stein field equations (EFEs) of general relativity. Solving the field equations actually

gives a Lorentz manifold.

The Einstein tensor is built up from the metric tensor and its partial derivatives; thus,

the EFEs are a system of ten partial differential equations to be solved for the metric.

Solving of the equations is important to realize that the Einstein field equations alone

are not enough to determine the evolution of a gravitational system in many cases. They

depend on the stress-energy tensor, which depends on the dynamics of matter and energy

(such as trajectories of moving particles), which in turn depends on the gravitational field.

If one is only interested in the weak field limit of the theory, the dynamics of matter can

be computed using special relativity methods and/or Newtonian laws of gravity and then

the resulting stress-energy tensor can be plugged into the Einstein field equations. But if

the exact solution is required or a solution describing strong fields, the evolution of the

metric and the stress-energy tensor must be solved for together.

To obtain solutions, the relevant equations are the above quoted EFEs plus the continuity

equation (to determine evolution of the stress-energy tensor):

T µν;ν = 0. (2.8)

This is clearly not enough, as there are only 14 equations (10 from the field equations and

4 from the continuity equation) for 20 unknowns (10 metric components and 10 stress-

energy tensor components). Equations of state are missing. In the most general case, it’s

easy to see that at least 6 more equations are required, possibly more if there are internal

degrees of freedom (such as temperature) which may vary throughout space-time.

In practice, it is usually possible to simplify the problem by replacing the full set of

equations of state with a simple approximation. Some common approximations are:

• Vacuum

Tµν = 0 (2.9)
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• Perfect fluid

Tµν = (ρ+ p)uµuν + pgµν where uµuµ = −1 (2.10)

Here ρ is the mass-energy density measured in a momentary co-moving frame, ua is the

fluid’s 4-velocity vector field, and p is the pressure.

• Non-interacting dust ( a special case of perfect fluid ):

Tµν = ρuµuν (2.11)

For a perfect fluid, another equation of state relating density ρ and pressure p must be

added. This equation will often depend on temperature, so a heat transfer equation is

required or the postulate that heat transfer can be neglected.

Next, notice that only 10 of the original 14 equations are independent, because the

continuity equation T µν;ν = 0 is a consequence of Einstein’s equations. This reflects the

fact that the system is gauge invariant (in general, absent some symmetry, any choice of a

curvilinear coordinate net on the same system would correspond to a numerically different

solution). A “gauge fixing” is needed, i.e. we need to impose 4 (arbitrary) constraints

on the coordinate system in order to obtain unequivocal results. These constraints are

known as coordinate conditions.

A popular choice of gauge is the so-called “De Donder gauge”, also known as the harmonic

condition or harmonic gauge

gµνΓσµν = 0. (2.12)

In numerical relativity, the preferred gauge is the so-called “3+1 decomposition”, based

on the ADM formalism. In this decomposition, metric is written in the form

ds2 = (−α + βiβjγij)dt
2 + 2βiγijdtdx

j + γijdx
idxj, where i, j = 1...3. (2.13)

α and βi are functions of spacetime coordinates and can be chosen arbitrarily in each

point. The remaining physical degrees of freedom are contained in γij, which represents

the Riemannian metric on 3-hypersurfaces t = const. For example, a naive choice of

α = 0, βi = 0, would correspond to a so-called synchronous coordinate system: one where

t-coordinate coincides with proper time for any comoving observer (particle that moves

along a fixed xi trajectory).
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Chapter 3

ADM Formalism of Einstein Field Equations

Intoduction

The ADM formalism, named for its authors Richard Arnowitt, Stanley Deser and Charles

W. Misner, is a Hamiltonian formulation of general relativity that plays an important

role in quantum gravity and numerical relativity. It was first published in 1959 [9]. Many

numerical codes to solve Einstein’s equations of general relativity in 3+1 dimensional

spacetime employ the standard ADM form of the field equations. This form involves

evolution equations for the raw spatial metric and extrinsic curvature tensors. Following

Shibata and Nakamura [3], these equations were modified by factoring out the conformal

factor and introducing three connection functions.

In the numerical relativity literature, the 3+1 Einstein equations are sometimes called

the ADM equations or standard ADM equations(
∂

∂t
− Lβ

)
γij = −2αKij, (3.1)(

∂

∂t
− Lβ

)
Kij = −DiDjα

+ α
{
Rij +KKij − 2KikK

k
j + 4π [(S − ρ)γij − 2Sij]

}
,

(3.2)

R +K2 −KijK
ij = 16πρ, (3.3)

DjK
j
i −DiK = 8πSi, (3.4)

where Lβ denotes the Lie derivative along na (the normal vector), Kij denotes the extrin-

sic curvature tensor, K denotes the mean curvature (the trace of the extrinsic curvature),
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Di denotes a spatial, covariant derivative with respect to the coordinate xi (intrinsic

derivative), γij denotes the metric tensor, α denotes the lapse function, Rij the Rieman

tensor, S denotes the matter stress tensor, E denotes the matter energy density, and pi

denotes the matter momentum density.

Modifying Einstein field equations by factoring out the conformal factor and introducing

three connection functions leads to the situation that, the evolution equations can then

be reduced to wave equations for the conformal metric components, which are coupled to

evolution equations for the connection functions (modified ADM equations or the BSSN

equations)

γij = e4φγ̃ij, Kij = e4φÃij +
1

3
γijK. (3.5)

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i. (3.6)

∂tK = −γijDjDiα + α

(
ÃijÃ

ij +
1

3
K2

)
+ 4πα(ρ+ S) + βi∂iK. (3.7)

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k. (3.8)

∂tÃij = e−4φ
(
−(DiDjα)TF + α(RTF

ij − 8πSTFij )
)

+ α(KÃij − 2ÃilÃ
l
j) + βk∂kÃij + Ãik∂jβ

k + Ãkj∂iβ
k − 2

3
Ãij∂kβ

k.
(3.9)

0 = H = γ̃ijD̃iD̃je
φ − eφ

8
R̃ +

e5φ

8
ÃijÃ

ij − e5φ

12
K2 + 2πe5φρ. (3.10)

0 = Mi = D̃j(e
6φÃij)− 2

3
e6φD̃iK − 8πe6φSi. (3.11)

∂tΓ̃
i =− 2Ãij∂jα + 2α

(
Γ̃ijkÃ

kj − 2

3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ

)
+ βj∂jΓ̃

i − Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j +
1

3
γ̃li∂l∂jβ

j + γ̃lj∂j∂lβ
i.

(3.12)

Γ̃i ≡ γ̃ikΓ̃ijk = −∂j γ̃ij. (3.13)

Note that obviously not all these variables are independent. In particular, the determinant

of γ̃ij has to be unity, and the trace of Ãij has to vanish. These conditions can either be

used to reduce the number of evolved quantities, or, alternatively, all quantities can be

evolved and the conditions can be used as a numerical check. In the following we will

derive both ADM and modified ADM methods.
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3.1 3 + 1 Spacetime Decomposition

The 3 + 1 spacetime decomposition consists of splitting spacetime as a series of spatial

hypersurfaces, parameterized by time t. We start by defining the lapse and the shift

functions. Consider the two hypersurfaces Σt and Σt+dt, see Figure 3.1. Suppose that

their 3-metrics are given by, respectively, gij(t, xk)dxidxj and gij(t + dt, xk)dxidxj. Let

the point P1, with coordinates (t, xi), be a point on Σt. We define the point P2 as being

the intersection of Σt+dt with the normal to Σt at P1. The proper time interval dτ = αdt

between P1 and P2 then defines the lapse function α(t, xk). Let us define the P3 point

on Σt+dt as being a point of this hypersurface having the same space coordinates as the

P1 point. The P3 point coordinates are thus (t + dt, xi) whereas the coordinates of P2

are (t + dt, xi − βidt). The vector binding P2 and P3 then defines the shift functions

βi(t, xk). Let P4 be the point on Σt+dt with coordinates (t + dt, xi + dxi) and the P6

point on Σt having the same space coordinates as P4, i.e. (t, xi + dxi). We define P5 as

being the intersection of the normal to Σt+dt in P4 with Σt. The P5 coordinates are then

(t, xi + dxi + βidt).

We are now able to express the line element ds2 between the P1 and P4 points with help of

the 3-metric gij, the shift and the lapse functions, [19]. Writing the Pythagoras theorem

in the non Euclidean 4-space with signature (−,+,+,+), it comes

ds2 = gµνdx
µdxν

= gij(t, x
k)(xi(P5)− xi(P1))(xj(P5)− xj(P1))− dτ 2

= gij(t, x
k)(dxi + βidt)(dxj + βjdt)− α2dt2

= gij(t, x
k)dxidxj + gij(t, x

k)βjdxidt+ gij(t, x
k)βidtdxj

+ gij(t, x
k)βiβjdt2 − α2dt2

(3.14)

from which we get for the metric

gµν =

g00 g0j

gi0 gij

 =

−α2 + gijβ
iβj gijβ

i

gijβ
j gij

 (3.15)
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Figure 3.1: The 3 + 1 spacetime decomposition.

or

gµν =

−α2 + βjβ
j βj

βi γij

 (3.16)

where gij = γij. Equivalently, the line element may be decomposed as

ds2 =

[
dt dxi

]−α2 + βjβ
j βj

βi γij


 dt
dxj


=

[
−α2dt+ βjβ

jdt+ βidx
i βjdt+ γijdx

i

] dt
dxj


(3.17)
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ds2 = −α2dt2 + βjβ
jdt2 + βidx

idt+ βjdtdx
j + γijdx

idxj

= −α2dt2 + γijβ
iβj︸ ︷︷ ︸ dt2 + γijβ

j︸ ︷︷ ︸ dxidt+ γijβ
i︸︷︷︸ dtdxj + γijdx

idxj

= −α2dt2 + γij(β
iβjdt2 + βidxidt+ βidtdxj + dxidxj)

= −α2dt2 + γij(β
jdt+ dxj)(βidt+ dxi),

(3.18)

then

ds2 = −α2dt2 + γij(β
jdt+ dxj)(βidt+ dxi). (3.19)

3.2 Framework and Symbols

3.2.1 Metric Tensor γij

It comes from the metric tensor gµν where µ and ν take the values 0, 1, 2, 3. From Equation

(3.16), we have

gµν =

−α2 + βjβ
j βj

βi γij

 (3.20)

The quantities α and βi, called the lapse and shift respectively, will be determined inde-

pendently of the Einstein equations, and Equation (3.20) will be used to determine the

time-varying spatial metric γij. The projection operator or the intrinsic 3−metric gij is

defined as

γµν = gµν + nµnν , where nµ = (−α, 0, 0, 0), (3.21)

nµ = gµνnν = (
1

α
,
−βi

α
) (3.22)

nµ is the unit normal vector of the spacelike hypersurface Σ.

The hypersurface is said to be, [12],

• Spacelike iff the metric γ is positive definite, i.e. has signature (+,+,+);

• Timelike iff the metric γ is Lorentzian, i.e. has signature (−,+,+);

• Null iff the metric γ is degenerate, i.e. has signature (0,+,+).
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3.2.2 Intrinsic Derivative Di

Returning to the formal derivation of the 3 + 1 decomposition we will also need a 3-

dimensional covariant derivative that maps spatial tensors into spatial tensors. It is

uniquely defined by requiring that it be compatible with the 3-dimensional metric γij.

We can construct this derivative by projecting all indices present in a 4-dimensional

covariant derivative into Σ. For a scalar f , for example, we define

Dif ≡ γji∇jf (3.23)

and for a rank
(

1
1

)
tensor T ki

DiT
j
k ≡ γliγ

j
eγ

f
k∇lT

e
f . (3.24)

The extension to other type tensors is obvious. Note that γji is the orthogonal projection

γji = δji + njni.

The 3-dimensional covariant derivative can be expressed in terms of 3-dimensional con-

nection coefficients, which, in a coordinate basis, are given by

Γijk =
1

2
γil(∂kγjl + ∂jγkl − ∂lγjk). (3.25)

The 3-dimensional Riemann tensor associated with γij is defined by requiring that

2D[iDj]ωk = (DiDj −DjDi)ωk = Rl
kjiωl and Rl

kjinl = 0, (3.26)

for any spatial vector ωl. In a coordinate basis, the components of the Riemann tensor

can be computed from

Rl
ijk = ∂jΓ

l
ik − ∂iΓljk + ΓeikΓ

l
ej − ΓejkΓ

l
ei (3.27)

3.2.3 The Lapse Function α

The timelike and future-directed unit vector n normal to the slice Σ is necessarily collinear

to the vector
−→
∇t associated with the gradient 1-form dt, where Σ is defined as a level

surface of a scalar field t, i.e. t=constant. The vector
−→
∇t defines the unique direction

normal to Σ. In other words, any other vector υ normal to Σ must be collinear to
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−→
∇t, υ = λ

−→
∇t. Notice a characteristic property of null hypersurfaces is a vector normal to

them is also tangent to them. This is because null vectors are orthogonal to themselves.

Hence we may write

n := −α
−→
∇t (3.28)

with

α := (−
−→
∇t ·
−→
∇t)−

1
2 (3.29)

where Σ is not null, we can re-normalize
−→
∇t to make it a unit vector.

The minus sign in Equation (3.28) is chosen so that the vector n is future-oriented if the

scalar field t is increasing towards the future. Notice that the value of α ensures that n

is a unit timelike vector

n · n = −1

.

The scalar field α hence defined is called the lapse function, [12].

Notice that by construction Equation (3.29),

α > 0. (3.30)

In particular, the lapse function never vanishes for a regular foliation. Equation (3.28)

also says that −α is the proportionality factor between the gradient 1-form dt and the

1-form n associated to the vector n by the metric duality

n = −αdt. (3.31)

3.2.4 The Shift Vector β

The difference between ∂t (the time vector) and m (the normal evolution vector m = αn)

is called the shift vector and is denoted by β

∂t =: m+ β. (3.32)

By combining the equations

< dt, ∂t >= 1, < dt,m >= ∇mt = mµ∇µt = 1, (3.33)
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we get

< dt, β >=< dt, ∂t > − < dt,m >= 1− 1 = 0, (3.34)

or equivalently, since dt = −α−1n, we have

n = −αdt, n · β = 0. (3.35)

Hence the vector β is tangent to the hypersurfaces Σ.

We write Equation (3.32) as

∂t = αn+ β. (3.36)

Since the vector n is normal to Σ and β tangent to Σ, Equation (3.36) is a decomposition

of the time vector ∂t.

The scalar square of ∂t is deduced immediately from Equation (3.36), taking into account

n · n = −1 and Equation (3.35)

∂t · ∂t = −α2 + β · β. (3.37)

Hence we have the following

∂t is timelike ⇔ β · β < α2, (3.38)

∂t is null ⇔ β · β = α2, (3.39)

∂t is spacelike ⇔ β · β > α2. (3.40)

Since β is tangent to Σ, let us introduce the components of β and the metric dual form

β with respect to the spatial coordinates (xi) according to

β =: βi∂i and β =: βidx
i. (3.41)

Equation (3.36) then shows that the components of the unit normal vector n with respect

to the natural basis (∂µ) are expressible in terms of α and (βi) as

nµ =

(
1

α
,
−β1

α
,
−β2

α
,
−β3

α

)
(3.42)

Notice that the covariant components (i.e. the components of n with respect to the basis

(dxµ) of T ∗p (M) are immediately deduced from the relation n = −αdt, Equation (3.31),

nµ = (−α, 0, 0, 0). (3.43)
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Figure 3.2: A foliation of the spacetime M. The hypersurfaces Σ are level surfaces of the coordinate time t, Ωµ = ∇µt.

The normal vector nµ is orthogonal to these t = constant spatial hypersurfaces.

3.2.5 Foliations of spacetime

We assume that the spacetime (M, gµν) can be foliated into a family of nonintersecting

spacelike 3-surfaces Σ, which arise, at least locally, as the level surfaces of a scalar function

t that can be interpreted as a global time function (see Figure 3.2 for an illustration).

From t we can define the 1-form Ωµ = ∇µt, which is closed by construction,

∇[µΩν] = ∇[µ∇ν]t = 0. (3.44)

The 4-metric gµν allows us to compute the norm of Ω, which we call −α−2,

‖Ω‖2 = gµν∇µt∇νt ≡ −
1

α2
. (3.45)

As we will see more clearly later, α measures how much proper time elapses between

neighboring time slices along the normal vector Ωµ to the slice, and is therefore called
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the lapse function. We assume that α > 0, so that Ωµ is timelike and the hypersurface Σ

is spacelike everywhere.

The normalized 1-form ωµ ≡ αΩµ is rotation-free

ω[µ∇νωκ] = 0

.

We can now define the unit normal to the slices as

nµ ≡ −gµνων . (3.46)

Here the negative sign has been chosen so that nµ points in the direction of increasing t,

nµωµ = −gµνωµων = 1. (3.47)

By construction, nµ is normalized and timelike,

nµnµ = gµνωµων = −1, (3.48)

and may therefore be thought of as the 4-velocity of a “normal” observer whose worldline

is always normal to the spatial slices Σ.

With the normal vector we can now construct the spatial metric γij that is induced by

gij on the 3-dimensional hypersurfaces Σ,

γij = gij + ninj. (3.49)

3.2.6 The extrinsic curvature tensor and mean curvature

Einstein’s equations relate contractions of the 4-dimensional Riemann tensor Rµ
νσκ to the

stress-energy tensor. Since we want to rewrite these equations in terms of 3−dimensional

objects, we decompose Rµ
νσκ into spatial tensors. Not surprisingly, this decomposition

involves its 3−dimensional form Rµ
νσκ, but obviously this cannot contain all the informa-

tion needed. Rκ
µνσ is a purely spatial object and can be computed from spatial derivatives

of the spatial metric alone, while Rκ
µνσ is a spacetime creature which also contains time
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derivatives of the 4−dimensional metric. Stated differently, the 3−dimensional curvature

Rµ
νσκ only contains information about the curvature intrinsic to a slice Σ, but it gives no

information about what shape this slice takes in the spacetime M in which it is embed-

ded. This information is contained in a tensor called the extrinsic curvature.

The extrinsic curvature Kij can be found by projecting gradients of the normal vector

into the slice Σ. We will also see that the extrinsic curvature is related to the first time

derivative of the spatial metric γij. The metric and the extrinsic curvature (γij, Kij) can

therefore be considered as the equivalent of positions and velocities in classical mechanics,

they measure the “instantaneous” state of the gravitational field, and form the funda-

mental variables in our initial value formulation.

The projection of the gradient of the normal vector γki γlj ∇k nl can be split into a

symmetric part, also known as the expansion tensor

θij = γki γ
l
j∇(knl), (3.50)

and an antisymmetric part, also known as the rotation 2−form or twist,

ωij = γki γ
l
j∇[knl], (3.51)

We now define the extrinsic curvature, Kij, as the negative expansion

Kij ≡ −γki γlj∇(knl) = −γki γlj∇knl. (3.52)

By definition, the extrinsic curvature is symmetric and purely spatial. It measures the

gradient of the normal vectors ni. Since the latter are normalized, they can only differ in

the direction in which they are pointing, and the extrinsic curvature therefore provides

information on how much this direction changes from point to point across a spatial

hypersurface. As a consequence, the extrinsic curvature measures the rate at which the

hypersurface deforms as it is carried forward along a normal.

Alternatively, we can express the extrinsic curvature in terms of the acceleration of the

unit normal vector field

ii ≡ nj∇jni. (3.53)
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Expanding the right hand side of Equation 3.52 and using the identity nl∇knl = 0

together with the definition of Equation (3.53) we find

Kij = −γki γlj∇knl

= −(δki + nin
k)(δlj + njn

l)∇knl

= −(δki + nin
k)δlj∇knl = −∇inj − niij

= −∇inj − ninj∇jni.

(3.54)

Finally, we can write the extrinsic curvature as

Kij = −1

2
Lnγij, (3.55)

where Ln denotes the Lie derivative along ni, see the next subsection. The trace of the

extrinsic curvature, often called the mean curvature, K = gijKij = γijKij. Taking the

trace of Kij, we find that

K = γijKij = −1

2
γijLnγij = − 1

2γ
Lnγ = − 1

γ
1
2

Lnγ
1
2 = −Ln ln γ

1
2 . (3.56)

Since γ
1
2d3x is the proper volume element in the spatial slice Σ, the negative of the mean

curvature measures the fractional change in the proper 3−volume along ni, [7].

3.2.7 The Lie derivative

Consider a (nonzero) vector field Xµ in a manifold M . We can find the integral curves

xµ(λ) (or orbits, or trajectories) of Xµ by integrating the ordinary differential equations

dxµ

dλ
= Xµ(x(λ)). (3.57)

Here λ is some affine parameter, and we use notation x instead of index notation xµ for

the coordinate location in the argument to make the expressions more transparent.

We would now like to define a derivative of a tensor field, say T µν , using Xµ. This involves

comparing the tensor field at two different points along Xµ, say P and Q, see Figure 3.3,

and taking the limit as Q tends to P .

Now, by comparing two tensors at two different locations in the manifold M , we could

simply compare components of the tensor field T µν at P , T µν (P ), and at Q, T µν (Q). This
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Figure 3.3: A vector field Xµ generates a congruence of curves xµ, dragging a tensor Tµν from P to Q.

leads to the definition of the partial derivative. We have to drag one tensor to the other

point before we can compare the two tensors. For example, we can drag T µν (P ) along Xµ

to the point Q. At Q, we can then compare the dragged tensor, which we will denote

with primes, T µ
′

ν′ (Q), with the tensor already present at Q, T µν (Q).

Parallel-transporting, leads to the definition of the covariant derivative, is not the only

way of dragging T µν along Xµ. We can view the dragging as a coordinate transformation

from P to Q. This, viewing defines the concept of the Lie derivative.

Thus the Lie derivative along a vector field Xµ measures by how much the changes

in a tensor field along Xµ differ from a mere infinitesimal coordinate transformation

generated by Xµ. Unlike the covariant derivative, the Lie derivative does not require an

affine connection and hence requires less structure.

Consider now the infinitesimal coordinate transformation

xµ
′
= xµ + δλXµ(x), (3.58)

which maps the point P , with coordinates xµ, into the point Q, with coordinates xµ
′
. We

regard this as an active coordinate transformation, which maps points (and tensors) to

new locations in the old coordinate system.

Assuming a coordinate basis, we can differentiate Equation (3.58) to find

∂xµ
′

∂xν
= δµν + δλ∂νX

µ, (3.59)
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and, to first order in δλ,

∂xµ

∂xν′
= δµν − δλ∂νXµ. (3.60)

We now start at point P , where the components of the tensor field T µν are T µν (x). We

map this tensor into the primed tensor T µ
′

ν′ (x) at Q with the help of the coordinate trans-

formation Equation (3.58)

T µ
′

ν′ (x
′) =

∂xµ
′

∂xσ
∂xκ

∂xν′
T νκ (x)

= (δµσ + δλ∂σX
µ)(δκν − δλ∂νXκ)T σκ (x)

= T µν (x) + δλ(∂σX
µT σν (x)− ∂νXσT µσ (x)) +O(δλ2).

(3.61)

For the purpose of defining the Lie derivative this is the result of dragging T µν along Xµ

from P to Q. The components of the unprimed tensor already present at Q, T µν x
′, can

be related to T µν x
′ by Taylor expanding

T µν x
′ = T µν x

σ′ = T µν (xσ + δλXσ)

= T µν (x) + δλXσ∂σT
µ
ν +O(δλ2).

(3.62)

We now denote the Lie derivative of T µν with respect to Xµ as LXT µν and define

LXT µν ≡ lim
δλ→0

(
T µν (x′)− T µ

′

ν′ (x
′)

δλ

)
. (3.63)

An important consequence of this is that the Lie derivative along m of any tensor field

T tangent to Σt is a tensor field tangent to Σt

T tangent to Σt ⇒ LmT tangent to Σt (3.64)

This definition holds for any tensor of arbitrary rank and type i.e., covariant and con-

travariant.

Note that we evaluate both tensors at the same point, so that the Lie derivative of a

tensor is again a tensor, and moreover a tensor of the same rank. Note also that the

expression LXT µν = (LXT )µν implies that the Lie derivative of the tensor T µν is again a

tensor of rank
(

1
1

)
; it does not denote the Lie derivative of the µ − ν component of T µν .

For our tensor T µν of rank
(

1
1

)
we can insert Equations (3.61) and (3.62) into Equation
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(3.63) to find

LXT µν = Xσ∂σT
µ
ν − T µν ∂σXµ + T µσ ∂νX

σ. (3.65)

The Lie derivative of a general tensor field can be found by first taking a partial deriva-

tive of the tensor and contracting it with Xµ, and then adding additional terms involving

derivatives of Xµ as in Equation (3.65) for each index, with a negative sign for contravari-

ant indices and a positive sign for covariant indices.

3.3 The equations of Gauss, Codazzi and Ricci

The metric γij and the extrinsic curvature Kij cannot be chosen arbitrarily. Instead,

they have to satisfy certain constraints, so that the spatial slices fit into the spacetime

M . In order to find these relations, we have to relate the 3-dimensional Riemann tensor

Ri
jkl of the hypersurfaces Σ to the 4-dimensional Riemann tensor Rµ

νσκ of M . To do so,

we first take a completely spatial projection of Rµ
νσκ, then a projection with one index

projected in the normal direction, and finally a projection with two indices projected in

the normal direction. All other projections vanish identically because of the symmetries

of the Riemann tensor. A decomposition of Rµ
νσκ into spatial and normal pieces therefore

involves these three different types of projections.

We can write the 4-dimensional Riemann tensor Rµνσκ as

Rµνσκ = γλµγ
υ
ν γ

ζ
σγ

ξ
κRλυζξ − 2γλµγ

υ
ν γ

ζ
[σnκ]n

ξRλυζξ

− 2γλσγ
υ
κγ

ζ
[µnν]n

ξRλυζξ + 2γλµγ
ζ
[σnκ]nνn

υnξRλυζξ

− 2γλν γ
ζ
[σnκ]nµn

υnξRλυζξ.

(3.66)

The above projections give rise to the equations of Gauss, Codazzi and Ricci, which we

will derive below. Given that Rµ
νσκ involves up to second time derivatives of the metric,

while Ri
jki only contains space derivatives, we may already anticipate that these relations

will involve the extrinsic curvature and its time derivative.

The Riemann tensor is defined in terms of second covariant derivatives of a vector. To

relate the 4-dimensional Riemann tensor to its 3-dimensional counterpart, it is therefore
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natural to start by relating the corresponding covariant derivatives to each other. We

first expand the definition of the spatial gradient of a spatial vector V j as

DiV
j = γpi γ

j
q∇pV

q = γpi (g
j
q + nqn

j)∇pV
q = γpi∇pV

p − γpi njV q∇pnq,

= γpi∇pV
j − njV eγpi γ

q
e∇pnq = γpi∇pV

j + njV eKie,

(3.67)

where we have used nqV
q = 0, and hence nq∇pV

q = −V q∇pnq , as well the definition of

the extrinsic curvature Equation 3.52.

Also, we can obtain the following equations

∇iV
i =

1

α
Di(αV

i), (3.68)

for any spatial vector V i and

DiDjV
k = Di(DjV

k) = γpi γ
l
jγ

k
e∇p (γql γ

e
r∇qV

r)

= γpi γ
l
jγ

k
e

nq∇pnlγ
e
r∇qV

r + γql∇pn
e nr∇qV

r︸ ︷︷ ︸
=−V r∇qnr

+γql γ
e
r∇p∇qV

r


= γpi γ

l
jγ

k
r∇pnln

q∇qV
r − γpi γ

q
jγ

k
eV

r∇pn
e∇qnr + γpi γ

q
jγ

k
r∇p∇qV

r

= −Kijγ
k
rn

p∇pV
r −Kk

i KjpV
p + γpi γ

q
jγ

k
r∇p∇qV

r.

(3.69)

We can now use Equation (3.69) to relate the 3- and 4-dimensional Riemann tensors to

each other. Writing the definition of the 3-dimensional Riemann tensor (3.26) as

Rlk
jiVl = 2D[iDj]V

k (3.70)

we can insert the second derivative Equation (3.69) to find

Rlk
jiVl = 2γpi γ

q
pγ

k
r∇[p∇q]V

r − 2K[ij]γ
k
rn

p∇pV
r − 2Kk

[iKj]pV
p. (3.71)

The second term on the right hand side vanishes because Kij is symmetric, and the first

term can be rewritten in terms of the 4-dimensional Riemann tensor, which yields

RlkjiV
l = γpi γ

q
jγ

r
cRlrqpV

l − 2Kk[iKj]lV
l (3.72)

after relabeling some indices and lowering the index k. Since this relation has to hold for

any arbitrary spatial vector V l, we have

Rijkl +KikKjl −KilKkj = γpi γ
q
jγ

r
kγ

s
lRpqrs. (3.73)
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This equation is called Gauss’ equation. It relates the full spatial projection of Rµ
νσκ to

the 3-dimensional Ri
jkl and terms quadratic in the extrinsic curvature.

Next, we want to consider projections of Rµ
νσκ with one index projected in the normal

direction. This will involve a spatial derivative of the extrinsic curvature

DiKjk = γpi γ
q
jγ

r
k∇pKqr = −γpi γ

q
jγ

r
k(∇p∇qnr +∇p(nqir)). (3.74)

Since γqbnq = 0, only the gradient of nq will give a nonzero contribution in the second

term, namely

γpi γ
q
jγ

r
kir∇pnq = −ikKij. (3.75)

We therefore have

DiKjk = −γpi γ
q
jγ

r
k∇p∇qn

r + ikKij. (3.76)

Since Kij is symmetric, the last term disappears when antisymmetrizing to give

D[iKj]k = −γpi γ
q
jγ

r
k∇[p∇q]n

r. (3.77)

By the definition of the Riemann tensor, this can be rewritten as

DjKik −DiKjk = γpi γ
q
jγ

r
kn

sRpqrs. (3.78)

This equation is known as the Codazzi equation. Note that Gauss Equation (3.73) and the

Codazzi Equation (3.78) depend only on the spatial metric, the extrinsic curvature and

their spatial derivatives. They can be thought of as the integrability conditions allowing

the embedding of a 3-dimensional slice Σ with data (γij, Kij) inside a 4-dimensional

manifold M with gij. As we will see in the next section, these two equations give rise to

the constraint equations.

However, we first consider the last remaining projection of Rµ
νσκ, namely with two indices

projected in the normal direction. This will involve a time derivative of Kij, and therefore

we first compute

LnKij =nk∇kKij + 2Kk(i∇j)n
k

=− nk∇k∇inj − nk∇k(niij)− 2Kk(K
k
j) − 2Kk(inj)i

k.

(3.79)

33



Here we have used Equation (3.54) to expand both terms. We can now insert

Rκνµσn
κ = 2∇[σ∇µ]nν , (3.80)

which yields

LnKij =− nlnkRljik − nk∇i∇knj − nkij∇kni

− nkni∇kij − 2Kk
(iKj)k − 2Kk(inj)i

k.

(3.81)

Using the definition of ij = nk∇knj and the relation

nk∇i∇knj = ∇iij − (∇in
k)(∇kn

j) = ∇iij −Kk
kKkl − niikKkj, (3.82)

several terms cancel and we find

LnKij = −nlnkRljik −∇iij − nkni∇kij − iiij −Kk
jKik −Kkinji

k. (3.83)

Since LnKij is purely spatial, projecting the two free indices in Equation (3.83) leaves

the left hand side unchanged and results in

LnKij = −nlnkγqi γrjRlrqk − γqi γrj∇qir − iiij −Kk
jKik. (3.84)

Finally, we simplify Equation (3.84) with the help of equation

Diij = −iiij +
1

α
DiDjα, (3.85)

and find

LnKij = −nlnkγqi γrjRlrqk −
1

α
DiDjα−Kk

jKik. (3.86)

Equation (3.86) is Ricci equation. It relates the time derivative of Kij to a projection of

the 4-dimensional Rieman tensor with two indices projected in the time direction, [7].

3.4 The constraint and evolution equations

To rewrite Einstein’s field equations in a 3 + 1 form, we need to take the equations of

Gauss, Codazzi and Ricci and eliminate the 4-dimensional Rieman tensor using Einsteins

equations

Gµν ≡ Rµν −
1

2
Rgµν = 8πTµν . (3.87)
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To accomplish this aim, we will first derive the constraint equations from Gauss Equation

(3.73) and the Codazzi Equation (3.78), and will then derive the evolution equations from

Equation (3.55) and the Ricci Equation (3.86).

Contracting Gauss Equation (3.73) once, we find

γprγqjγ
s
lRpqrs = Rjl +KKjl −Kk

l Kkj, (3.88)

where K is the trace of the extrinsic curvature, K = Ki
i . A further contraction yields

γprγqsRpqrs = R +K2 −KijK
ij. (3.89)

The left hand side can be expanded into

γprγqsRpqrs = (gpr + npnr)(gqs + nqns)Rpqrs = R + 2npnrRpr. (3.90)

Note that the term npnrnqnsRpqrs vanishes identically because of the symmetry properties

of the Riemann tensor. We also have

2npnrGpr = 2npnrRpr − npnrgprR = 2npnrRpr − npnr(γpr − npnr)R

= 2npnrRpr +R = γprγqsRpqrs,

(3.91)

where we have used Equation (3.90) in the last equality. Inserting this into the contracted

Gauss Equation (3.89) yields

2npnrGpr = R +K2 −KijK
ij. (3.92)

We now define the energy density ρ to be the total energy density as measured by a

normal observer ni,

ρ ≡ ninjT
ij. (3.93)

Using Einstein’s Equation (3.87) together with Equations (3.92) and (3.93), we get

R +K2 −KijK
ij = 16πρ. (3.94)

Equation (3.94) is the Hamiltonian constraint.

Contracting the Codazzi Equation (3.78) once gives

DjK
j
i −DiK = γpi γ

qrnsRpqrs. (3.95)
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The right hand side is

γpi γ
qrnsRpqrs = −γpi (gqr + nqnr)nsRqprs = −γpi nsRps − γpi nqnrnsRqprs. (3.96)

The last term vanishes again because of the symmetries of Refgd, while the first term on

the right hand side can be rewritten using

γqi n
sGqs = γqi n

sRqs −
1

2
γqi n

sgqsR = γqi n
sRqs. (3.97)

Here the last equality holds because γqi n
sgqs = γisn

s = 0. Collecting terms and inserting

into Equation (3.95) we get

DjK
j
i −DiK = −γqi nsGqs. (3.98)

Now define Si to be the momentum density as measured by a normal observer ni,

Si ≡ −γji nkTjk, (3.99)

and find

DjK
j
i −DiK = 8πSi. (3.100)

Equation (3.100) is the momentum constraint.

The evolution equations that evolve the data (γij, Kij) forward in time can be found from

Equation (3.55), which can be considered as the definition of the extrinsic curvature, and

the Ricci Equation (3.86). However, the Lie derivative along ni, Ln, is not a natural time

derivative since ni is not dual to the surface 1-form Ωa = ∇at, i.e., their dot product is

not unity but rather

niΩi = −αgij∇it∇jt = α−1. (3.101)

Instead, consider the vector

ti = αni + βi, (3.102)

which is dual to Ωi for any spatial shift vector βi,

tiΩi = αniΩi + βiΩi = 1. (3.103)
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Note that we use ∂t = t = αn+ β.

Consider now the Lie derivative of Kij along ti,

LtKij = Lαn + βKij = αLnKij + βKij, (3.104)

which follows from the definition of the Lie derivative. Here we can insert the Ricci

Equation (3.86) to eliminate LnKij.

Before we do so, we first rewrite the projection of Rijkl that appears in Equation (3.86)

as

nlnkγqi γ
r
jRlrkq = γklγqi γ

r
jRlrkq − γqi γrjRrq. (3.105)

Next we can replace the first term on the right hand side above by substituting Gauss

Equation (3.88) and the second term by substituting Einstein’s equations

nlnkγqi γ
r
jRlrkq = Rjl +KKjl −Kk

l Kkj − 8πγqi γ
r
j (Trq −

1

2
grqT ), (3.106)

where T = Tijg
ij. We now define the spatial stress and its trace according to

Sij ≡ γki γ
l
jTkl S ≡ Sii . (3.107)

We can then evaluate the last term in Equation (3.106) as

γqi γ
r
j grqg

efTef = γij(γ
ef − nenf )Tef = γij(S − ρ). (3.108)

Inserting these expressions into Equations (3.86) and (3.104), we get

LtKij = −DiDjα+α(Rij − 2KikK
k
j +KKij)− 8πα(Sij −

1

2
γij(S− ρ)) +LβKij. (3.109)

This is the evolution equation for the extrinsic curvature. Note that all differential

operators and the Ricci tensor Rij are associated with the spatial metric γij.

The evolution equation for the spatial metric γij, the last missing piece, can be found

directly from Equation (3.55), again using Equation (3.102),

Ltγij = −2αKij + Lβγij. (3.110)

For t equal to normal evolution vector m, we get:

Lmγ = −2αK. (3.111)
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The coupled evolution Equations (3.109) and (3.110) determine the evolution of the grav-

itational field data (γij, Kij). Together with the Constraint Equations (3.94) and (3.100)

they are completely equivalent to Einstein’s Equations 3.87. Note we have succeeded in

recasting Einstein’s equations, which are second order in time in their original form, as a

coupled set of partial differential equations that are now first order in time. As in elec-

trodynamics, the evolution equations conserve the constraint equations, i.e., if the field

data (γij, Kij) satisfy the constraints at some time t and are evolved with the evolution

equations, then the data will also satisfy the constraint equations at all later times, [7].

3.5 3+1 decomposition of the stress-energy tensor

Let us assume that the spacetime (M, g) is globally hyperbolic and let (Σt)t∈R be a foli-

ation of M by a family of spacelike hypersurfaces. The foundation of the 3+1 formalism

amounts to projecting the Einstein equation onto Σt and perpendicularly to Σt. To this

purpose let us first consider the 3+1 decomposition of the stress-energy tensor.

From the definition of a stress-energy tensor, the matter energy density as measured by

the Eulerian observer introduced is

E := T(n,n). (3.112)

This follows from the fact that the 4-velocity of the Eulerian observer in the unit normal

vector n.

Similarly, also from the very definition of a stress-energy tensor, the matter momentum

density as measured by the Eulerian observer is the linear form

p := −T(n,−→γ (.)). (3.113)

i.e. the linear form defined by

∀υ ∈ Tp(M), 〈p, υ〉 = −T(n,−→γ (υ)). (3.114)

In components

pα = −Tµνnµγνα. (3.115)
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Notice that, p is a linear form tangent to Σt.

Finally, still from the very definition of a stress-energy tensor, the matter stress tensor

as measured by the Eulerian observer is the bilinear form

S := −→γ ?T, (3.116)

or, in components,

Sαβ = Tµνγ
µ
αγ

ν
β . (3.117)

As for p, S is a tensor field tangent to Σt. Let us denote by S the trace of S with respect

to the metric γ (or equivalently with respect to the metric g)

S := γijSij = gµνSµν . (3.118)

3.6 Projection of the Einstein equations and derivation of ADM

equations

There are only three possibilities of projection of the Einstein equation:

Full projection onto Σt

This amounts to applying the operator −→γ ? to the Einstein equation. Doing so we get

−→γ ?R = 8π

(
−→γ ?T− 1

2
T−→γ ?g

)
, (3.119)

where −→γ ?R is given by the 3 + 1 decomposition of the Riemann tensor,

−→γ ?R =
−1

α
LmK− 1

α
DDα + R +KK− 2K ·

−→
K, (3.120)

and in components

γµσγ
ν
κRµν = − 1

α
LmKσκ −

1

α
DσDκα +Rσκ +KKσκ − 2KσµK

µ
κ . (3.121)

Inserting this expression into Equation (3.119), we get

−1

α
LmK− 1

α
DDα + R +KK− 2K ·

−→
K = 8π

(
S− 1

2
(S − E) γ

)
, (3.122)
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or equivalently

LmK = −DDα + α
{

R +KK− 2K ·
−→
K + 4π [(S − E)γ − 2S]

}
, (3.123)

where −→γ ?T =S, T = S − E, −→γ ?g is simply γ.

In components

LmKσκ = −DσDκα

+ α {Rσκ +KKσκ − 2KσµK
µ
κ + 4π[(S − E)γαβ − 2Sσκ]} .

(3.124)

Notice that each term in the above equation is a tensor field tangent to Σt. For LmK,

this results from the fundamental property Equation (3.64) of Lm. Consequently, we may

restrict to spatial indices without any loss of generality and write Equation (3.109) as

LmKij = −DiDjα +
{
Rij +KKij − 2KikK

k
j + 4π[(S − E)γij − 2Sij]

}
. (3.125)

Therefore, we get the first equation of the ADM equations(
∂

∂t
− Lβ

)
Kij =−DiDjα

+ α
{
Rij +KKij − 2KijK

k
j + 4π [(S − E)γij − 2Sij]

}
.

(3.126)

To summarize, the Einstein equation is equivalent to the system of the three Equations

(3.126),(3.94),(3.110) and (3.100).

3.7 Einstein equations in 3+1 form

3.7.1 Lie derivatives along m as partial derivatives

Let us consider the term LK which occurs in the 3 + 1 Einstein Equation (3.126). With

the aid of ∂t =: m + β, we can write

LmK = L∂tK− LβK. (3.127)

This implies that L∂tK is a tensor field tangent to Σt, since both LmK and LβK are

tangent to Σt, the former by the property Equation (3.64) and the latter because β and

K are tangent to Σt. Moreover, if one uses tensor components with respect to a coordinate
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system (xα) = (t, xi) adapted to the foliation, the Lie derivative along ∂t reduces simply

to the partial derivative with respect to t [cf. Eq. (A.3), [7]]

L∂tKij =
∂Kij

∂t
. (3.128)

By means of formula (A.6, [7]), one can also express LβK in terms of partial derivatives

L∂tKij = βk
∂Kij

∂xk
+Kij

∂βk
∂xi

+Kik
∂βk

∂xj
. (3.129)

Similarly, the relation Equation (3.111) between Lβγ and K = Kij becomes

L∂tγ − Lβγ = −2αK, (3.130)

with

L∂tγij =
∂γij
∂t

(3.131)

and, evaluating the Lie derivative with the connection covariant derivatives D instead of

partial derivatives [cf.Eq. (A.8), [7]]

Lβγij = βkDkγij︸ ︷︷ ︸
=0

+γkjDiβ
k, (3.132)

i.e.

Lβγij = Diβj +Djβi. (3.133)

Using Equations (3.127) and (3.128), as well as Equations (3.130) and (3.131), we rewrite

the 3+1 Einstein system Equations (3.109), (3.94) and (3.100) as(
∂

∂t
− Lβ

)
γij = −2αKij, (3.134)

(
∂

∂t
− Lβ

)
Kij = −DiDjα

+ α
{
Rij +KKij − 2KikK

k
j + 4π [(S − ρ)γij − 2Sij]

}
,

(3.135)

R +K2 −KijK
ij = 16πρ, (3.136)

DjK
j
i −DiK = 8πSi, (3.137)
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In this system, the covariant derivatives Di can be expressed in terms of partial derivatives

with respect to the spatial coordinates (xi) by means of the Christoffel symbols Γijk of D

associated with (xi)

DiDjα =
∂2α

∂xi∂xj
− Γkij

∂α

∂xk
(3.138)

DjK
j
i =

∂Kj
i

∂xj
+ ΓjjkK

k
i − ΓkjiK

j
k, (3.139)

DiK =
∂K

∂xi
. (3.140)

The Lie derivatives along β can be expressed in terms of partial derivatives with respect

to the spatial coordinates (xi), via Equations (3.129) and (3.133)

Lβγij =
∂βi
∂xj

+
∂βj
∂xi
− 2Γkijβk (3.141)

LβKij = βk
∂Kij

∂xk
+Kkj

∂βk

∂xi
+Kik

∂βk

∂xj
. (3.142)

Finally, the Ricci tensor and scalar curvature of γ are expressible according to the stan-

dard expressions

Rij =
∂Γkij
∂xk
− ∂Γkik

∂xj
+ ΓkijΓ

l
kl − ΓlikΓ

k
lj (3.143)

R = γijRij. (3.144)

For completeness, let us recall the expression of the Christoffel symbols in terms of partial

derivatives of the metric

Γkij =
1

2
γkl
(
∂γli
∂xi

+
∂γil
∂xj
− ∂γij
∂xl

)
. (3.145)

The determinant γ = det(γij) of the spatial metric and the trace K = Ki
i of the extrinsic

curvature satisfy the equations

∂t ln γ1/2 = αK +Diβ
i (3.146)

and

∂tK = −D2α + α(KijK
ij + 4π(ρ+ S)) + βiDiK, (3.147)

where D2 = γijDiDj is the Laplace operator associated with γij. The matter source

terms appearing in the above equations are defined by

ρ = ninjT
ij, Si = −γijnkTkj, Sij = γikγjlT

kl, S = γijSij. (3.148)
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Assuming that matter “source terms” (E, pi, Sij) are given, the system Equations (3.134)

- (3.137), with all the terms explicated according to Equations (3.138) - (3.145) constitutes

a second-order non-linear PDE system for the unknowns

(γij, Kij, α, β
i).

Remark: In the numerical relativity literature, the 3+1 Einstein Equations (3.134) -

(3.137) are sometimes called the “ADM equations”.

3.8 Recasting the evolution equation

Recasting Maxwell’s equations

Maxwell’s equations naturally split into two groups. The first group can be written as

DiE
i − 4πρ = 0 (3.149)

DiB
i = 0, (3.150)

where Ei and Bi are the electric and the magnetic fields and ρ is the charge density. Here

Di denotes a spatial, covariant derivative with respect to the coordinate xi. In flat space

and Cartesian coordinates, it reduces to an ordinary partial derivative.

The above equations involve only spatial derivatives of the electric and magnetic fields

and hold at each instant of time. They therefore constrain any possible configurations of

the fields, and are correspondingly called the constraint equations.

We can bring Maxwell’s evolution equations in a Minkowski spacetime into the form

∂tAi = −Ei −DiΦ (3.151)

∂tEi = −DjDjAi +DiD
jAj − 4πji. (3.152)

Where Ai is the three-vector potential, the magnetic field satisfies Bi = εijkD
jAk and

therefore is automatically divergence-free, φ is a gauge potential, and the electric field Ei
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has to satisfy the constraint equation 3.149,

DiE
i = 4πρ. (3.153)

In the above equations ρ is the electric charge density and ji the current density. In

“ADM equations” we have discussed some of the similarities of Maxwell’s equations in

the above form with the ADM Evolution Equations 3.154 and 3.155, namely

∂tγij = −2αKij +Diβj +Djβi (3.154)

and

∂tKij =α(Rij − 2KikK
k
j +KKij)−DiDjα− 8πα(Sij −

1

2
γij(S − ρ))

+ βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k.

(3.155)

If we identify the vector potential Ai with the spatial metric γij and the electric field

Ei with the extrinsic curvature Kij, we see that the right-hand sides of both Equations

(3.151) and (3.154) contain a field variable and a spatial derivative of a gauge variable,

while the right-hand sides of both equations involve (3.152) and (3.154) matter sources as

well as second spatial derivatives of the second field variable. In Equation (3.155) these

second derivatives are hidden in the Ricci tensor Rij, which we can write, for example,

as

Rij =
1

2
γkl (∂l∂iγkj + ∂j∂kγij − ∂j∂iγkl − ∂l∂kγij) + γkl

(
Γmil Γmkj − ΓmijΓmkl

)
. (3.156)

We can now exploit these similarities by focusing on the simpler Maxwell system of equa-

tions to identify some of the computational shortcomings of these forms of the evolution

equations.

First note that Equations (3.151) and (3.152) almost can be combined to yield a wave

equation, which would make the system symmetric hyperbolic. To see this, take a time

derivative of Equation (3.151) and insert Equation (3.152) to form a single equation for

the vector potential Ai

−∂2
tAi +DjDjAi −DiD

jAj = Di∂tΦ− 4πjj. (3.157)
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On the left-hand side, the second time derivative combines with the Laplace operator

DjDjAi to form a wave operator (d′Alembertian). Equations 3.151 and 3.152 would then

constitute a wave equation for the components Ai if it weren’t for the mixed derivative

term DiD
jAj. In general relativity the situation is very similar. The Ricci tensor Rij on

the right hand side of Equation (3.155) contains three mixed derivative terms in addition

to the term with a Laplace-like operator acting on γij, i.e., γkl∂l∂kγij. Without these

mixed derivative terms the standard ADM equations could be written as a set of wave

equations for the components of the spatial metric, which would make them symmetric

hyperbolic.

These considerations suggest that it would be desirable to eliminate the mixed derivative

terms. In electrodynamics, three different approaches can be taken to eliminate the

DiD
jAj term: one can make a special gauge choice; one can bring Maxwell’s equations

into a first order symmetric hyperbolic form; or, one can introduce an auxiliary variable.

Regarding the third strategy, we introduce the auxiliary variable Γ defined by Γ = DiAi.

We treat this variable as a new, independent field that we evolve. We can derive an

evolution equation for Γ from Equation 3.151,

∂tΓ = ∂tD
iAi = Di∂tAi = −DiEi −DiD

iΦ = −DiD
iΦ− 4πρ. (3.158)

In terms of Γ, the Evolution Equation 3.152 for Ei becomes

∂tEi = −DjD
jAi +DiΓ− 4πji. (3.159)

In this formulation the mixed derivative term DiD
jAj has been eliminated without using

up any gauge freedom, which is still imposed via the choice of Φ. A similar situation

could be applied to Einstein field equations.

3.9 Conformal transformation of the spatial metric

Consider the equation for the electric field Ei

DiE
i = 4πρ. (3.160)
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Given an electrical charge density ρ, we can solve this equation for one of the components

of Ei, but not all three of them. For example, we could make certain choices for Ex and

Ey, and then solve Equation (3.160) for Ez, even though we might be troubled by the

asymmetry in singling out one particular component in this approach. Alternatively, we

may prefer to write Ei as some “background” field Ēi times some overall scaling factor,

say ψ

Ei = ψĒi (3.161)

We could now insert Equation 3.161 into Equation 3.160, make certain choices for all

three components of the background field Ēi, and then solve Equation (3.160) for the

scaling factor ψ. Though it might not be so useful for treating Maxwell’s equations, such

an approach leads to a very convenient and tractable system for Einstein’s equations.

By analogy with our electromagnetic example Equation (3.161) we begin by writing

the spatial metric γij as a product of some power of a positive scaling factor ψ and a

background metric γ̄ij

γij = ψ4γ̄ij. (3.162)

This identification is a conformal transformation of the spatial metric. We call ψ the

conformal factor, and γ̄ij the conformally related metric. We take conventionally ψ to

the fourth power. In three dimensions it is natural to use

γ̄ij = γ−1/3γij, (3.163)

where γ is the determinant of γij and γ = ψ12. This particular choice results in γ̄ = 1.

Loosely speaking, the conformal factor absorbs the overall scale of the metric, which

leaves five degrees of freedom in the conformally related metric.

Superficially, the conformal transformation (3.162) is just a mathematical trick, namely,

rewriting one unknown as a product of two unknowns in order to make solving some

equations easier. At a deeper level, however, the conformal transformation serves to

define an equivalence class of manifolds and metrics.

Inserting the transformation law Equation (3.162) into Equation 3.145 we find that, in
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three dimensions, the connection coefficients must transform according to

Γijk = Γ̄ijk + 2(δijD̄k lnψ + δikD̄j lnψ − γ̄ikγ̄ilD̄l lnψ). (3.164)

Here we have used

γij = ψ−4γ̄ij, (3.165)

where γ̄ij is the inverse of γ̄ij. Note that bar mean objects associated with the conformal

metric γ̄ij. In equations ψ must be treated as a scalar function in covariant derivatives

(as opposed to a scalar density; cf. Appendix A.3, [7]).

The covariant derivative associated with the connection 3.164 is compatible with the

conformally related metric,

D̄iγ̄jk = 0. (3.166)

For the Ricci tensor we similarly find

Rij =R̄ij − 2(D̄iD̄j lnψ + γ̄ij γ̄
lmD̄lD̄m lnψ

+ 4((D̄i lnψ)(D̄j lnψ)− γ̄ij γ̄lm(D̄l lnψ)(D̄m lnψ)),

(3.167)

and for the scalar curvature

R = ψ−4R̄− 8ψ−5D̄2ψ. (3.168)

Here D̄2 = γ̄ijD̄iD̄j is the covariant Laplace operator associated with γ̄ij.

3.10 The BSSN formulation of ADM

The BSSN formalism adopts a similar strategy to simplify the three-dimensional, spatial

Ricci tensor. In addition, the conformal factor and the trace of the extrinsic curvature

are evolved separately in the BSSN formalism, which follows the philosophy of separating

transverse from longitudinal, or, equivalently, radiative from nonradiative, degrees of

freedom.

To derive this formulation, we begin by writing the conformal factor ψ as ψ = e4φ, so

that we have

γ̃ij = e−4φγij. (3.169)
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We then require that the determinant of the conformally related metric γ̃ij be equal to

that of the flat metric ηij in whatever coordinate system we are using, i.e.,

φ =
1

12
ln

(
γ

η

)
. (3.170)

and choose

e4φ = γ1/3 ≡ det(γij)
1/3, (3.171)

so that the determinant of γ̃ij is unity. We also write the trace-free part of the extrinsic

curvature Kij as

Aij = Kij −
1

3
γijK, (3.172)

where K = γijKij. It turns out to be convenient to introduce

Ãij = e−4φAij. (3.173)

Indices of Ãij will be raised and lowered with the conformal metric γ̃ij, so that Ãij =

e−4φAij.

Evolution equations for φ and K can now be found by taking the trace of the evolution

equations (3.146) and (3.147), to give

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i (3.174)

and

∂tK = −γijDjDiα + α(ÃijÃ
ij +

1

3
K2) + 4πα(ρ+ S) + βi∂iK. (3.175)

Subtracting these equations from the evolution equations (3.154, 3.155) leaves the trace-

less parts of the evolution equations for γ̃ij and Ãij according to

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k, (3.176)

and

∂tÃij =e−4φ
(
−(DiDjα)TF + α(RTF

ij − 8πSTFij )
)

+ α(KÃij − 2ÃilÃ
l
j

+ βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k.
(3.177)

Note that, the superscript TF denotes the trace-free part of a tensor, e.g., RTF
ij = Rij −

γijR/3 also in Equation (3.174) through Equation (3.177) the shift terms arise from Lie
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derivatives Lβ of the respective evolution variable appearing on the left-hand side. The

divergence of the shift, ∂iβ
i, appears in the Lie derivative because the choice γ̃ = 1 makes

φ a tensor density of weight 1/6, and γ̃ij and Ãij tensor densities of weight −2/3.

According to Equation (3.167) we can split the Ricci tensor into two terms

Rij = R̃ij +Rφ
ij, (3.178)

where only Rφ
ij depends on the conformal function φ. We can identify the form of Rφ

ij

by inserting φ = lnψ into equation 3.167. We could compute the conformally related

Ricci tensor R̃ij by inserting γ̃ij into Equation (3.156), but that would again introduce

the mixed second derivatives that we are trying to avoid. Analogously to the way we

introduced a new variable Γ to eliminate the mixed derivatives in Maxwell’s evolution

equations, we can now define “conformal connection functions”

Γ̃i ≡ γ̃ikΓ̃ijk = −∂j γ̃ij, (3.179)

to accomplish the same task in the above evolution equations for the gravitational field.

Here the Γ̃ijk are the connection coefficients associated with γ̃ij, and the last equality holds

in Cartesian coordinates when γ̃ = 1. In terms of these conformal connection functions

we can now write the Ricci tensor as

R̃ij = −1

2
γ̃lm∂m∂lγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)
(3.180)

The only explicit second-derivative operator acting on γ̃ij in this expression involves a

Laplacian, γ̃lm∂m∂l all other second derivatives are absorbed in first derivatives of Γ̃i.

Adopting this approach requires us to derive separate evolution equations for the Γ̃i. By

analogy with the derivation of Equation (3.158) we interchange a partial time and space

derivative in the definition Equation (3.179) to obtain

∂tΓ̃
i = −∂j

(
2αÃij − 2γ̃m(j∂mβ

i) +
2

3
γ̃ij∂lβ

l + βl∂lγ̃
ij

)
. (3.181)

We can now eliminate the divergence of the extrinsic curvature with the help of the

momentum constraint (3.100), which then yields the desired evolution equation

∂tΓ̃
i =− 2Ãij∂jα + 2α

(
Γ̃ijkÃ

kj − 2

3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ

)
+ βj∂jΓ̃

i − Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j +
1

3
γ̃li∂l∂jβ

j + γ̃lj∂j∂lβ
i.

(3.182)
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Equations (3.174) through (3.177), together with Equation (3.182), form a new system

of evolution equations that is equivalent to Equations (3.154) and (3.155). Since the Γ̃i

are evolved as independent functions, the defining relation Equation (3.179) serves as a

new constraint equation, in addition to Equations (3.94) and (3.100).

Summary

In the BSSN formulation of the 3 + 1 equations the spatial metric γij is decomposed into a

conformally related metric γ̃ij with determinant γ̃ = 1 (assuming Cartesian coordinates)

and a conformal factor eφ,

Ãij = e−4φAij. (3.183)

We also decompose the extrinsic curvature into its trace and traceless parts and confor-

mally transform the traceless part as we do the metric,

Kij = e4φÃij +
1

3
γijK. (3.184)

In terms of these variables the Hamiltonian constraint (3.94) becomes

0 = H = γ̃ijD̃iD̃je
φ − eφ

8
R̃ +

e5φ

8
ÃijÃ

ij − e5φ

12
K2 + 2πe5φρ, (3.185)

while the momentum constraint (3.100) becomes

0 =Mi = D̃j(e
6φÃij)− 2

3
e6φD̃iK − 8πe6φSi. (3.186)

The Evolution Equation (3.146) for γij splits into two equations,

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i (3.187)

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k, (3.188)

while the Evolution Equation (3.155) for Kij splits into the two equations

∂tK = −γijDjDiα + α(ÃijÃ
ij +

1

3
K2) + 4πα(ρ+ S) + βi∂iK. (3.189)

∂tÃij =e−4φ
(
−(DiDjα)TF + α(RTF

ij − 8πSTFij )
)

+ α(KÃij − 2γ̃ilÃ
l
j

+ βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂k

(3.190)

50



In the last equation the superscript TF denotes the trace-free part of a tensor, e.g.,

RTF
ij = Rij − γijR/3. We also split the Ricci tensor into Rij = R̃ij + Rφ

ij, where Rφ
ij can

be found by inserting φ = ln(ψ) into Equation (3.167). We express R̃ij in terms of the

conformal connection functions Γ̃i ≡ γ̃jkΓ̃ijk = −∂j γ̃ij, which yields

R̃ij = −1

2
γ̃lm∂m∂lγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)
. (3.191)

The Γ̃i are now treated as independent functions that satisfy their own evolution equa-

tions,

∂tΓ̃
i =− 2Ãij∂jα + 2α

(
Γ̃ijkÃ

kj − 2

3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ

)
+ βj∂jΓ̃

i − Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j +
1

3
γ̃li∂l∂jβ

j + γ̃lj∂j∂lβ
i.

(3.192)

Both the standard 3 + 1 ADM and BSSN systems give very similar results early on, but

the standard system crashes very soon, while the BSSN system remains stable. Similar

improvements have been found for many other applications that employ a BSSN scheme,

including the propagation of nonlinear gravitational waves and the evolution of space-

times containing black holes and neutron stars. The BSSN system, or a variation closely

related to it, is currently the form of the Einsteins equations most commonly used in

numerical relativity.

3.11 Crank Nicolson method

The Crank Nicolson method is a finite difference method used to solve the partial differen-

tial equations numerically. It is a second-order implicit method in time. It is numerically

stable, in the sense that small error due either to arithmetic inaccuracies or to the trun-

cation approximation of the involved derivatives leads to small error in the output.

For the differential equation

ut = F, (3.193)

where F depends on u, the first and the second partial derivatives of u, letting u(N∆t,I∆x,

J∆y,K∆ z)= uNIJK , the equation for Crank Nicolson method is a combination of the for-
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ward Euler method at N and the backward Euler method at N + 1 as follows:

uN+1
IJK − uNIJK

∆t
= FN

IJK (explicit forward Euler) (3.194)

uN+1
IJK − uNIJK

∆t
= FN+1

IJK (implicit backward Euler). (3.195)

Then Crank Nicolson reads

uN+1
IJK − uNIJK

∆t
=

1

2
[FN+1
IJK + FN

IJK ]. (3.196)

Note that the first and second partial derivatives appear in the right hand side of Crank

Nicolson are approximated by central schemes.

3.12 Numerical Implementation

In order to compare the properties of standard ADM system and BSSN system, we

implemented them numerically in an identical environment. We integrate the evolution

equations with a two-level, iterative Crank-Nicholson method. The iteration is truncated

after a certain accuracy has been achieved. However, we iterate at least twice, so that

the scheme is second order accurate. The gridpoints on the outer boundaries are updated

with a Sommerfeld condition,

lim
r→∞

(e2φ∂t + α∂r)rQ = 0. (3.197)

Hence we assume that on the outer boundaries, the fundamental variables behave like

outgoing radial waves

Q(t, r) =
G(αt− e2φr)

r
. (3.198)

where Q is any of the fundamental variables (except for the diagonal components of γ̃ij,

for which the radiative part is Q = γ̄ii − 1), and G can be found by considering back-

ward characteristic to the previous timestep and interpolating linearly the corresponding

variable to that point. we assume actant symmetry in order to minimize the number of

gridpoints, and impose corresponding symmetry boundary conditions on the symmetry

plains. The calculations presented in this thesis were taken from [1]. The calculations
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Figure 3.4: Evolution of the trace of the extrinsic curvature K for a small amplitude wave in geodesic slicing at the

origin. The solid line is the result for System II, and the dashed line for System I. The dotted line is the approximate solution

K ∼ 3K0
3−K0(t−t0)

.
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were performed on grids of (32)2 gridpoints, and used a Courant factor of 1/4. The spa-

tial domain considered is [−4, 4]3 and a uniform grid with step size h = 1
8

is used. Hence

the timestep is taken to be ∆t = h
8
.

3.13 Results

3.13.1 Initial data

For the initial data we choose a linearized wave solution that evolved with the full non-

linear systems ADM and BSSN.

We follow Teukolsky, [4], and construct the solution (called by Teukolsky even-parity

L = 2, M = 0 solution).

ds2 = −dt2 + (1 + Afrr)dr
2 + 2Bfrθrdrdθ + 2Bfrφr sin θdrdφ

+ (1 + Cf
(1)
θθ + Af

(2)
θθ )r2dθ2 + [2(A− 2C)fθφ]r2 sin θdθdφ

+ (1 + Cf
(1)
φφ + Af

(2)
φφ )r2 sin2 θdφ2,

(3.199)

where

A = 3

[
F (2)

r3
+

3F (1)

r4
+

3F

r5

]
, (3.200)

B = −
[
F (3)

r2
+

3F (2)

r3
+

6F (1)

r4
+

6F

r5

]
, (3.201)

C =
1

4

[
F (4)

r
+

2F (3)

r2
+

9F (2)

r3
+

21F (1)

r4
+

21F

r5

]
, (3.202)

F = F (t− r) = 10−3
(
e(t−r)2

+ e(t+r)2
)
, F (n) ≡

[
dnF (x)

dxn

]
x=t−r

, (3.203)

and

frr = 2− 3 sin2 θ, frθ = −3 sin θ cos θ, frφ = 0, f
(1)
θθ = 3 sin2 θ,

f
(2)
θθ = −1, fθφ = 0, f

(1)
φφ = −f (1)

θθ , f
(2)
φφ = 3 sin2 θ − 1.

(3.204)

Further, the outer boundary conditions are imposed at x, y, z = 4. The initial data

evolved for zero shift βi = 0, and compare the performance of systems ADM and BSSN

for both geodesic and harmonic slicing.
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3.13.2 Geodesic Slicing

In geodesic slicing, the lapse is unity

α = 1. (3.205)

Since the acceleration of normal observers satisfies aa = Da lnα = 0, these observers

follow geodesics. The energy content of even a small, linear wave packet will therefore

focus these observers, and even after the wave has dispersed, the observers will continue

to coast towards each other. Since βi = 0, normal observers are identical to coordinate

observers, hence geodesic slicing will ultimately lead to the formation of a coordinate

singularity even for arbitrarily small waves.

The timescale for the formation of this singularity can be estimated from equation

d

dt
K = −γijDjDiα + α(ÃijÃ

ij +
1

3
K2) +

1

2
α(ρ+ S),

with α = 1 and βi = 0. The Ãij, which can be associated with the gravitational waves,

will cause K to increase to some finite value, say K0 at time t0, even if K was zero

initially. After roughly a light crossing time, the waves will have dispersed, and the

further evolution of K is described by ∂tK ∼ K3/3, or

K ∼ 3K0

3−K0(t− t0)
(3.206)

Obviously, the coordinate singularity forms at t ∼ 3/K0 + t0 as a result of the nonlinear

evolution.

We can now evolve the wave initial data with Systems I and II and compare how well

they reproduce the formation of the coordinate singularity.

In Figure (3.4), we show K at the origin (x = y = z = 0) as a function of time both for

System I (dashed line) and System II (solid line). We also plot the approximate analytic

solution Equation (3.206) as a dotted line, which we have matched to the System I

solution with values K0 = 0.00518 and t0 = 10. For these values, Equation (3.206)

predicts that the coordinate singularity appears at t ∼ 590. In the insert, we show a

blow-up of System II for early times. It can be seen very clearly how the initial wave

content lets K grow from zero to the “seed” value K0. Once the waves have dispersed,
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Figure 3.5: Evolution of the extrinsic curvature component Kzz at the origin in geodesic slicing. The solid line is the

result for System II, and the dashed line for System I. For System II, we constructed Kzz from Ãzz, φ, K and γ̃zz

.
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System II approximately follows the solution (3.206) up to fairly late times. System I,

on the other hand, crashes long before the coordinate singularity appears.

In Figure (3.5), we compare the extrinsic curvature component Kzz evaluated at the

origin. The noise around t ∼ 8, which is present in the evolutions of both systems, is

caused by reflections of the initial wave off the outer boundaries. It is obvious from

these plots that System II evolves the equations stably to a fairly late time, at which the

integration eventually becomes inaccurate as the coordinate singularity approaches. We

stopped this calculation when the iterative Crank-Nicholson scheme no longer converged

after a certain maximum number of iterations. It is also obvious that System I performs

extremely poorly, and crashes at a very early time, well before the coordinate singularity.

It is important to realize that the poor performance of System I is not an artifact of

our numerical implementation. For example, the ADM code currently being used by the

Black Hole Grand Challenge Alliance, is based on the equations of System I, and also

crashes after a very similar time. This shows that the codes crashing is intrinsic to the

equations and slicing, and not to our numerical implementation.

3.13.3 Harmonic Slicing

Since geodesic slicing is known to develop coordinate singularities for generic, nontrivial

initial data, it is obviously not a very good slicing condition. We therefore also compare

the two Systems using harmonic slicing. In harmonic slicing, the coordinate time t is a

harmonic function of the coordinates ∇α∇αt = 0, which is equivalent to the condition

Γ0 ≡ gαβΓ0
αβ = 0, (3.207)

where the Γαβγ are the connection coefficients associated with the four-dimensional metric

gαβ. For βi = 0, the above condition reduces to

∂tα = −α2K. (3.208)

Inserting d
dt
φ = −1

6
αK, this can be written as

∂t(αe
−6φ) = 0 or α = C(xi)e6φ, (3.209)
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Figure 3.6: Evolution of the extrinsic curvature component Kzz at the origin in harmonic slicing. The solid line is the

result for System II, and the dashed line for System I. For System II, we constructed Kzz from Ãzz, φ, K and γ̃zz

.

where C(xi) is a constant of integration, which depends on the spatial coordinates only.

In practice, we choose C(xi) = 1. In Figure (3.6), we show results for the same initial data

as in the last section. Obviously, both Systems do much better for this slicing condition.

System I crashes much later than in geodesic slicing (after about 40 light crossing times,

as opposed to about 10 for geodesic slicing), but it still crashes. System II, on the other

hand, did not crash after even over 100 light crossing times.
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Chapter 4

The Initial Data Problem

Intoduction

The goal of numerical relativity is to study spacetime that cannot be studied by analytic

means. The focus is therefore primarily on dynamical systems. Numerical relativity

has been applied in many areas such that: cosmological models, critical phenomena,

perturbed black holes and neutron stars, and the coalescence of black holes and neutron

stars. In any of these cases, Einstein field equations can be formulated in several ways that

allow us to evolve the dynamics. While Cauchy methods (standard ADM) have received

a majority of the attention, characteristic and Reggi calculus based methods have also

been used. All of these methods begin with a snapshot of the gravitational fields on some

hypersurface, the initial data, and evolve these data to neighboring hypersurfaces. The

material of this chapter covered in [7], [8], [12], [18].

4.1 Initial Data

Initial data are the starting point for any numerical simulation. In the case of numerical

relativity, Einstein field equations constrain the choices of these initial data. We will

examine several of the formalisms used for specifying Cauchy initial data in the 3+1 de-

composition of Einstein field equations. We will then explore how these formalisms have

been used in constructing initial data for spacetime containing black holes and neutron

stars.
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An important problem is to find initial data which represents two black holes which,

when evolved, orbit about each other and eventually collide and merge into a single black

hole, spewing forth gravity waves along the way. There is a great deal of freedom in

developing initial data compatible with the constraints, but it is not so clear how to find

data which is physically relevant to black hole collisions.

In the Cauchy formulation of Einstein field equations, we begin by foliating the 4-

dimensional manifold as a set of spacelike, 3-dimensional hypersurfaces (or slices) Σ.

These slices are labeled by a parameter t or, more simply, each slice of the 4-dimensional

manifold is a t = constant hypersurface. Following the standard 3+1 decomposition, we

let nµ be the future-pointing timelike unit normal to the slice, with

nµ ≡ −α∇µt. (4.1)

Here, α is the lapse function. The scalar lapse function sets the proper interval measured

by observers as they move between slices on a path that is normal to the hypersurface

(so-called normal observers)

ds|along nµ = αdt. (4.2)

To formulate the initial data problem for general relativity, we start by foliating spacetime

with a family of spacelike hypersurfaces Σt parameterized by t. The normal vector to

these surfaces nµ and the generator of time translations (the time vector) tµ satisfy

tµ = αnµ + βµ, (4.3)

where

βµnµ ≡ 0. (4.4)

Here, βµ is the shift vector. Because of Equation (4.4), βµ has only three independent

components and is a spatial vector, tangent to the hypersurface on which it resides. At

this point, it is convenient to introduce a coordinate system adapted to the foliation Σ.

Let xi be the spatial coordinates in the slice. The fourth coordinate, t, is the parameter
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labeling each slice. With this adapted coordinate system, we find that 3-dimensional co-

ordinate values remain constant as we move between slices along the tµ direction Equation

(4.3). The four parameters, α and βi, are a manifestation of the 4-dimensional coordinate

invariance, or gauge freedom, in Einstein’s theory. If we let γij represent the metric of the

spacelike hypersurfaces, then we can rewrite the interval ds2 = gµνdx
µdxν as Equation

(3.19). In the language of the 3 + 1 decomposition, initial data for the Einstein field

equations (and any matter evolution equations) are a set of 24 functions representing the

components of α, βi, γij, Kij, ρ, S and Sij on the initial slice Σt that together satisfy the

constraint equations [18].

In the Cauchy formulation of Einstein field equations, γij is regarded as the fundamental

variable and values for its components must be given as part of a well-posed initial-value

problem. Since Einstein’s equations are second order, we must also specify something

like a time derivative of the metric. For this, we use the second fundamental form, or

extrinsic curvature, of the slice, Kij, defined by

Kij ≡ −
1

2
Lnγij, (4.5)

where Ln denotes the Lie derivative along the nµ direction.

Together, γij and Kij are the minimal set of initial data that must be specified for a

Cauchy evolution of Einstein’s equations. The metric γij on a hypersurface is induced

on that surface by the 4-metric gµν . This means that the values γij receives depend on

how Σ is embedded in the full spacetime. In order for the foliation of slices Σ to fit

into the higher-dimensional space, they must satisfy the Gauss-Codazzi-Ricci conditions.

Combining these conditions with Einstein’s equations, and using Equation (3.19), the six

evolution equations become

∂tKij =α(Rij − 2KikK
k
j +KKij)−DiDjα− 8πα(Sij −

1

2
γij(S − ρ))

βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k.

(4.6)

Here, Di is the spatial covariant derivative compatible with γij, Rij is the Ricci tensor

associated with γij, K ≡ Ki
i , ρ is the matter energy density, Sij is the matter stress tensor,

and S ≡ Sii . The set of second-order evolution equations is completed by rewriting the
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definition of the extrinsic curvature (4.5) as

∂tγij = −2αKij +Diβj +Djβi. (4.7)

Equations (4.6) and (4.7) are a first-order representation of a complete set of evolution

equations for given initial data γij and Kij. However, the data cannot be freely specified

in their entirety. The four constraint equations are

R +K2 −KijK
ij = 16πρ, (4.8)

and

Dj

(
Kij − γijK

)
= 8πSi. (4.9)

Here, Si is the matter momentum density, and ρ is the matter energy density. Equation

(4.9) is referred to as the momentum or vector constraints. Valid initial data for the

evolution equations (4.6) and (4.7) must satisfy this set of constraints.

The Hamiltonian constraint (4.8) most naturally constrains the 3-metric γij, while the

momentum constraints (4.9) naturally constrain the extrinsic curvature Kij.

The four constraint equations, Equations (4.8) and (4.9), represent conditions which the

3-metric and extrinsic curvature must satisfy. But, they do not specify which components

(or combination of components) are constrained and which are freely specifiable.

The goal is to transform the equations into standard elliptic forms which can be solved

given appropriate boundary conditions. Each different decomposition yields a unique set

of elliptic equations to be solved and a unique set of freely specifiable parameters which

must be fixed somehow.

4.1.1 York-Lichnerowicz Conformal Decompositions

For general initial-data configurations, the most common procedure of constraint decom-

positions are the York-Lichnerowicz conformal decompositions [8]. At their center are a

conformal decomposition of the metric and certain components of the extrinsic curvature,

together with a transverse-traceless decomposition of the extrinsic curvature.

First, the metric is decomposed into a conformal factor ψ (a positive scaling factor)
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multiplying an auxiliary 3-metric γ̃ij (a background metric)

γij ≡ ψ4γ̃ij. (4.10)

γ̃ij carries five degrees of freedom. Its natural definition is given by

γ̃ij = γ−1/3γij, (γ = det(γij)) (4.11)

leaving the determinant of γ̃ = 1. Using Equation (4.10), we can rewrite the Hamiltonian

constraint as

∇̃2ψ − 1

8
ψR̃− 1

8
ψ5K2 +

1

8
ψ5KijK

ij = −2πψ5ρ, (4.12)

where ∇̃2 ≡ ∇̃i∇̃i is the scalar Laplace operator, and ∇̃i and R̃ are the covariant deriva-

tive and Ricci scalar associated with γ̃ij. Equation (4.12) is a quasilinear elliptic equation

for the conformal factor ψ, and we see that the Hamiltonian constraint naturally con-

strains the 3-metric.

The conformal decomposition of the Hamiltonian constraint was proposed by Lichnerow-

icz. But, the key to the full decomposition is the treatment of the extrinsic curvature

introduced by York. This begins by splitting the extrinsic curvature into its trace (K)

and tracefree (traceless Aij) parts

Kij = Aij +
1

3
γijK. (4.13)

The decomposition proceeds by using the fact that we can covariantly split any symmetric

tracefree tensor as follows

Sij ≡ (LX)ij + T ij. (4.14)

Here, T ij is a symmetric, transverse-traceless tensor (i. e., ∇jT
ij = 0 and T ii = 0) and

(LX)ij ≡ ∇iXj +∇jX i − 2

3
γij∇`X

`. (4.15)

After separating out the transverse-traceless portion of Sij, what remains, (LX)ij, is

referred to as its “longitudinal” part. We now want to apply this transverse traceless

decomposition to the tracefree part of the extrinsic curvature Aij.

The goal of the decomposition is to produce a coupled set of elliptic equations to be solved
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with some prescribed boundary conditions. We have already reduced the Hamiltonian

constraint to an elliptic equation being solved on a background space in terms of differ-

ential operators that are compatible with the conformal 3-metric. In the end, we want

to reduce the momentum constraints to a set of elliptic equations based on differential

operators that are compatible with the same conformal 3-metric.

Conformal Transverse-Traceless Decomposition

Let us first consider decomposing Aij with respect to the conformal 3-metric. As we

will see, when certain assumptions are made, this decomposition has the advantage of

producing a simpler set of elliptic equations that must be solved. The first step is to

define the conformal tracefree extrinsic curvature Ãij by

Aij ≡ ψ−10Ãij or Aij ≡ ψ−2Ãij. (4.16)

Next, the transverse-traceless decomposition is applied to the conformal extrinsic curva-

ture,

Ãij ≡ (L̃X)ij + Q̃ij. (4.17)

Note that the longitudinal operator L̃ and the symmetric, transverse-tracefree tensor Q̃ij

are both defined with respect to covariant derivatives compatible with γ̃ij.

Applying equations (4.10), (4.13), (4.15), (4.16), and (4.17) to the momentum constraints,

we find that they simplify to

∆̃LX
i =

2

3
ψ6∇̃iK + 8πψ10Si, (4.18)

where

∆̃LX
i ≡ ∇̃j(L̃X)ij = ∇̃2X i +

1

3
∇̃i(∇̃jX

j) + R̃i
jX

j, (4.19)

and we have used the fact that

∇̄jS
ij = ψ−10∇̃j(ψ

10Sij), (4.20)

for any symmetric tracefree tensor Sij.

In deriving equation (4.18), we have also used the fact that Q̃ij is transverse (i. e. ∇̃jQ̃
ij).
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However, in general, we will not know if a given symmetric tracefree tensor, say M̃ ij, is

transverse. By using (4.14) we can obtain its transverse-traceless part Q̃ij via

Q̃ij ≡ M̃ ij − (L̃Y )ij, (4.21)

and using the fact that if Q̃ij is transverse, we find

∇̃jQ̃
ij ≡ 0 = ∇̃jM̃

ij − ∆̃LY
i. (4.22)

Thus, Equations (4.21) and (4.22) give us a general way of constructing the required

symmetric transverse-traceless tensor from a general symmetric traceless tensor. Using

the linearity of L, we can rewrite (4.17) as

Ãij = (L̃V )ij + M̃ ij, (4.23)

where

V i ≡ X i − Y i. (4.24)

Similarly, using the linearity of ∆̃L, we can rewrite (4.18) as

∆̃LV
i =

2

3
ψ6∇̃iK − ∇̃jM̃

ij + 8πψ10Si. (4.25)

By solving directly for V i, we can combine the steps of decomposing M̃ ij with that of

solving the momentum constraints.

After applying (4.13) and (4.16) to the Hamiltonian constraint (4.12), we obtain the

following full decomposition

γij =ψ4γ̃ij,

Kij =ψ−4

(
Ãij +

1

3
γ̃ijK

)
,

Ãij =(L̃V )ij + ψ−6M̃ ij,

∆̃L + 6(L̃V )ij∇̃j lnψ =
2

3
∇̃iK − ψ−6∇̃jM̃

ij + 8πψ4Si,

∇̃2ψ − 1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ5ÃijÃ

ij =− 2πψ5ρ.

(4.26)

In the decomposition given by Equation (4.26), we are free to specify a symmetric tensor

γ̃ij as the conformal 3-metric, a symmetric tracefree tensor M̃ ij, and a scalar function
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K. Then, with given matter energy and momentum densities, ρ and Si, and appropriate

boundary conditions, the coupled set of constraint equations for ψ and V i are solved.

Finally, given the solutions, we can construct the physical initial data, γij and Kij.

The decomposition outlined above has the interesting property that if we choose K to be

constant and if the momentum density vanishes, then the momentum constraint equations

fully decouple from the Hamiltonian constraint.

4.1.2 Conformal Thin-Sandwich Decomposition

The resulting constraint equations are independent of the kinematical variables α and βi

that govern how the coordinates move through spacetime, and thus there is no connection

to dynamics. York’s conformal thin-sandwich decomposition takes a different approach

by considering the evolution of the metric between two neighboring hypersurfaces (the

thin sandwich).

The decomposition begins with the standard conformal decomposition of the 3-metric

(4.10). However, we next make use of the evolution equation for the metric in order to

connect the 3-metrics on the two neighboring hypersurfaces. Label the two slices by t and

t′, with t′ = t+ δt, then γ′ij = γij + (∂tγij)δt. We would like to specify how the 3-metric

evolves, but we do not have full freedom to do this. We know we can freely specify only

the conformal 3-metric, and similarly, we are free to specify only the evolution of the

conformal 3-metric. We make the following definitions

uij ≡ γ1/3∂t(γ
−1/3γij), (4.27)

ũij ≡ ∂tγ̃ij, (4.28)

and

γ̃ijũij ≡ 0. (4.29)

The latter definition is made for convenience, so that we can treat ψ, γ̃ij, and ũij as regu-

lar scalars and tensors instead of as scalar- and tensor-densities within this thin-sandwich

formalism.
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Now, by previous way, we find group together all the equations that constitute the con-

formal thin-sandwich decomposition

γij =ψ4γ̃ij,

Kij =ψ−10Ãij +
1

3
ψ−4γ̃ijK,

Ãij =
1

2α̃

(
(Lβ)ij − ũij

)
,

∆̃Lβ
i − (L̃β)ij∇̃j ln α̃− 4

3
α̃ψ6∇̃iK =α̃∇̃j(

1

α̃
ũij) + 16πα̃ψ10Si,

∇̃2ψ − 1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ−7ÃijÃ

ij =− 2πψ5ρ.

(4.30)

In this decomposition (4.30), we are free to specify a symmetric tensor γij as the conformal

3-metric, a symmetric tracefree tensor ũij, a scalar function K, and the scalar function

α̃. Solving this set of equations with appropriate boundary conditions yields initial data

γij and Kij on a single hypersurface.

4.1.3 Stationary Solutions

When there is sufficient symmetry present, it is possible to construct initial data that

are in true equilibrium. These solutions possess at least two Killing vectors, one that is

timelike at large distances and one that is spatial, representing an azimuthal symmetry.

When these symmetries are present, solving for the initial data produces a global solution

of Einstein’s equations and the solution is said to be stationary. The familiar Kerr-

Neumann solution for rotating black holes is an example of a stationary solution in

vacuum. Stationary configurations supported by matter are also possible, but the matter

sources must also satisfy the Killing symmetries, in which case the matter is said to be

in hydrostatic equilibrium.

The basic approach for finding stationary solutions begins by simplifying the metric to

take into account the symmetries. Many different forms have been used for the metric.

I will use a decomposition that makes comparison with the previous decompositions

straightforward. First, define the interval as

ds2 = −ψ−4dt2 + ψ4
[
A2(dr2 + r2dθ2) +B2r2 sin2 θ(dφ+ βφdt)2

]
. (4.31)
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This form of the metric can describe any stationary spacetime. Notice that the lapse is

related to the conformal factor by

α = ψ−2, (4.32)

and that the shift vector has only one component

βi = (0, 0, βφ) (4.33)

I have used the usual conformal decomposition of the 3-metric (4.10) and have written

the conformal 3-metric with two parameters as
A2 0 0

0 A2r2 0

0 0 B2r2 sin2 θ

 (4.34)

The four functions ψ, βφ, A, and B are functions of r and θ only.

The equations necessary to solve for these four functions are derived from the constraint

equations, and the evolution equations. For the evolution equations, we use the fact that

∂tγij = 0 and ∂tKij = 0. The metric evolution equation defines the extrinsic curvature

in terms of derivatives of the shift

Kij ≡
1

2α
(∇̄iβj + ∇̄jβi). (4.35)

With the given metric and shift, we find that K = 0 and the divergence of the shift also

vanishes. This means we can write the tracefree part of the extrinsic curvature as

Aij = ψ−10Ãij =
1

2
ψ−2(L̃β)ij. (4.36)

We find that the Hamiltonian and momentum constraints take on the forms given by the

conformal thin-sandwich decomposition (4.30) with ũij = K ≡ 0 and α̃ ≡ ψ−8. Only one

of the momentum constraint equations is non-trivial, and we find that the constraints

yield elliptic equations for ψ and βφ. What remains unspecified as yet are A and B (i.e.,

the conformal 3-metric).

The conformal 3-metric is determined by the evolution equations for the traceless part of

the extrinsic curvature. Of these five equations, one can be written as an elliptic equation

for B, and two yield complementary equations that can each be solved by quadrature for

A. The remaining equations are redundant as a result of the Bianchi identities.
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4.2 Linearized waves-vacuum solutions

Gravitational waves are ripples in the curvature of spacetime that propagate at the speed

of light. Once the waves move away from their source in the near zone, their wavelengths

are generally much smaller than the radius of curvature of the background spacetime

through which they propagate. The waves usually can be described by linearized theory

in this far zone region. Introducing Minkowski coordinates, one has

gµν = ηµν + hµν , |hµν | � 1, (4.37)

where we assume Cartesian coordinates and, ignoring any quasistatic contributions to the

perturbations hµν from weak-field sources, consider only the wave contributions. Defining

the trace-reversed wave perturbation h̄µν according to

h̄µν = hµν −
1

2
hccηµν , (4.38)

the key equation governing the propagation of a linear wave in vacuum is

�h̄µν ≡ ∇c∇ch̄µν = 0 (vacuum). (4.39)

Assuming it satisfies the Lorentz gauge condition

∇ν h̄
µν = 0. (4.40)

Return now to Einstein’s linearized equations (4.39) in vacuum,

�h̄µν = 0. (4.41)

Just as in electrodynamics, this type of equation admits simple plane wave solutions of

the form

h̄µν = Re(Aµνe
ikcxc). (4.42)

Here kµ = (ω, ki) is a 4-dimensional wave vector, xµ = (t, xi) denote the inertial co-

ordinates of a point in spacetime and Aµν is a constant tensor representing the wave

amplitude. Einstein’s equations (4.41) then demand that kµ be a null vector,

kµK
µ = 0, (4.43)
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whereby ω = |ki|. This dispersion relation implies that gravitational waves propagate at

the speed of light. The Lorentz condition (4.40) requires

kµAµν = 0, (4.44)

implying that gravitational waves are transverse. The above results are quite general,

since we can always decompose an arbitrary, linear gravitational wave propagating in a

nearly flat, vacuum spacetime into a superposition of the plane wave solutions (4.42).

From a numerical point of view the plane wave solutions found above are not the most

useful. Most numerical simulations treat spacetimes with finite, bounded sources, for

which the waves propagate radially outward at large distance. Moreover such spacetimes

approach asymptotic flatness at least as fast as r−1. Clearly spacetimes containing with

plane waves Equation (4.42) do not share these properties. More useful for simulation

purposes are multiple expansions of linear, vacuum solutions to Equation (4.42) expressed

in terms of tensor spherical harmonics. When working in spherical coordinates, it is more

convenient to express the two polarization states of gravitational radiation in terms of

polar and axial modes.

For polar quadruple modes, the metric takes the form

ds2 =− dt2 + (1 + Afrr)dr
2 + (2Bfrθ)rdrdθ + (2Bfrφ)r sin θdrdφ

+ (1 + Cf
(1)
θθ + Af

(2)
θθ )r2dθ2 + [2(A− 2C)fθφ]r2 sin θdθdφ

+ (1 + Cf
(1)
φφ + Af

(2)
φφ )r2 sin2 θdφ2.

(4.45)

Here the coefficients A, B and C can be constructed from an arbitrary function F (x),

where we have x = t− r for an outgoing solution or x = t+ r for an ingoing solution. In

the general case, we may take

F = F1(t− r) + F2(t+ r), (4.46)

and define

F (n) ≡
[
dnF1(x)

dxn

]
x=t−r

+ (−1)n
[
dnF2(x)

dxn

]
x=t+r

. (4.47)

In terms of F (x) and its derivatives we then have

A = 3

[
F (2)

r3
+

3F (1)

r4
+

3F

r5

]
(4.48)
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B = −
[
F (3)

r2
+

3F (2)

r3
+

6F (1)

r4
+

6F

r5

]
(4.49)

C =
1

4

[
F (4)

r
+

2F (3)

r2
+

9F (2)

r3
+

21F (1)

r4
+

21F

r5

]
. (4.50)

The angular functions fij in the metric Equation (4.45) depend on the axial parameter,

denoted by M . We list these functions in the order M = ±2,±1, 0, with the functions

corresponding to the upper sign displayed on top of those corresponding to the lower

sign:

frr = sin2 θ

(
cos 2φ

sin 2φ

)
, 2 sin θ cos θ

(
cosφ

sinφ

)
, 2− 3 sin2 θ,

frθ = sin θ cos θ

(
cos 2φ

sin 2φ

)
, (cos2 θ − sin2 θ)

(
cosφ

sinφ

)
, − 3 sin θ cos θ,

frφ = sin θ

(
− sin 2φ

cos 2φ

)
, cos θ

(
− sinφ

cosφ

)
, 0,

f
(1)
θθ =(1 + cos2 θ)

(
cos 2φ

sin 2φ

)
, 2 sin θ cos θ

(
− cosφ

− sinφ

)
, 3 sin2 θ,

f
(2)
θθ =

(
− cos 2φ

− sin 2φ

)
, 0, − 1,

fθφ = cos θ

(
sin 2φ

− cos 2φ

)
, sin θ

(
− sinφ

cosφ

)
, 0,

f (1) =− f (1)
θθ

f
(2)
φφ = cos2 θ

(
cos 2φ

sin 2φ

)
, 2 sin θ cos θ

(
− cosφ

− sinφ

)
, 3 sin2 θ − 1.

(4.51)

Similarly, the axial metric takes the form

ds2 =− dt2 + dr2 + (2Zdθ)rdrdθ + (2Zdrφ)r sin θdrdφ+ (1 + V dθθ)r
2dθ2

+ (2V dθφ)r2 sin θdθdφ+ (1 + V dφφ)r2 sin2 θdφ2.

(4.52)

Here we construct the coefficients Z and V from a function

G = G1(t− r) +G2(t+ r), (4.53)

and its derivatives

G(n) ≡
[
dnG1(x)

dxn

]
x=t−r

+ (−1)n
[
dnG2(x)

dxn

]
x=t+r

, (4.54)

according to

Z =
G(2)

r2
+

3G(1)

r3
+

3G

r4
, (4.55)
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V =
G(3)

r
+

2G(2)

r2
+

3G(1)

r3
+

3G

r4
. (4.56)

The angular functions dij are again listed in the order M = ±2,±1, 0, yielding

drθ =4 sin θ

(
cos 2φ

sin 2φ

)
, − 2 cos θ

(
cosφ

sinφ

)
, 0

drφ =− 4 sin θ cos θ

(
sin 2φ

− cos 2φ

)
, − 2(cos2 θ − sin2 θ)

(
sinφ

− cosφ

)
,

4 cos θ sin θ,

dθθ =− 2 cos θ

(
cos 2φ

sin 2φ

)
, − sin θ

(
cosφ

sinφ

)
, 0,

dθφ =(2− sin2 θ)

(
sin 2φ

− cos 2φ

)
, cos θ sin θ

(
sinφ

− cosφ

)
, − sin2 θ,

dφφ =2 cos θ

(
cos 2φ

sin 2φ

)
, sin θ

(
cosφ

sinφ

)
, 0.

(4.57)

4.3 Black Hole Initial Data

In this section, we will look at Cauchy initial data that represent one black hole in an

asymptotically at spacetime (Schwarzschild geometry).

Next, we will explore one of the existing black-hole solution and the scheme for generating

it.

4.3.1 Classic Solution (Schwarzschild)

The simplest black-hole solution is the Schwarzschild solution. It represents a static

spacetime containing a single black hole that connects two causally disconnected, asymp-

totically at universes. There are actually many different coordinate representations of

the Schwarzschild solutions. The simplest representations are time-symmetric (Kij = 0),

and so exist on a “maximally embedded” spacelike hypersurface (K = 0). These choices

fix the foliation Σ. Spherical symmetry fixes two of the three spatial gauge choices. If we

choose an “areal-radial coordinate”, then the interval is written as

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (4.58)
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If we choose an isotropic radial coordinate, then the interval is written as

ds2 = −

(
1− M

2r̃

1 + M
2r̃

)2

dt2 +

(
1 +

M

2r̃

)4

(dr̃2 + r̃2dθ2 + r̃2 sin2 θdφ2). (4.59)

In both Equations (4.58) and (4.59), M represents the mass of the black hole as measured

at spacelike infinity. Both of these solutions exist on the same foliation of t = const. slices.

But, notice that the 3-geometry of the slice associated with Equation (4.59) is confor-

mally flat, while the 3-geometry associated with Equation (4.58) is not.

The solution given in Equation (4.59) is easily generated by any of the methods in Section

(York-Lichnerowicz Conformal Decompositions) or Section (Conformal Thin-

Sandwich Decomposition). By choosing a time-symmetric initial-data hypersurface,

we immediately get Kij = 0, which eliminates the need to solve the momentum con-

straints. If we choose the conformal 3-geometry to be given by a flat metric (in spherical

coordinates in this case), then the vacuum Hamiltonian constraint (3.94) becomes

∇̃2ψ = 0, (4.60)

where ∇̃2 is the flat-space Laplace operator. For the solution ψ to yield an asymptotically

flat physical 3-metric, we have the boundary condition that ψ(r̃ →∞) = 1. The simplest

solution of this equation is

ψ = 1 +
M

2r̃
, (4.61)

where we have chosen the remaining integration constant to give a mass at infinity of M .

We now have full Cauchy initial data representing a single black hole. If we want to

generate a full solution of Einstein’s equations, we must choose a lapse and a shift vector

and integrate the evolution equations. In this case, a reasonable approach for specifying

the lapse is to demand that the time derivative of K vanish. For the case of K = 0, this

yields the so-called maximal slicing equation which, for the current situation, takes the

form

∇̃2(αψ) = 0. (4.62)
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If we choose boundary conditions so that the lapse is frozen on the event horizon (α(r̃ =

M/2) = 0) and goes to one at infinity, we find that the solution is

α =
1− M

2r̃

1 + M
2r̃

. (4.63)

If we now choose βi = 0, we find that the left-hand sides of the evolution equations vanish

identically, and we have found the static solution of Einstein’s equations given in (4.59).

We can, of course, recover the usual Schwarzschild coordinate solution (4.58) by using

the purely spatial coordinate transformation r = r̃(1 + M
2r̃

)2.

It is interesting to examine the differences in these two representations of the Schwarzschild

solution. The isotropic radial coordinate representation is well behaved everywhere ex-

cept, it seems, at r̃ = 0. However, even here, the solution is well behaved. The 3-geometry

is invariant under the coordinate transformation

r̃ →
(
M

2

)2
1

r′
. (4.64)

The event horizon at r̃ = M
2

is a fixed-point set of the isometry condition (4.64) which

identifies points in two causally disconnected, asymptotically flat universes. We see that

r̃ = 0 is simply an image of infinity in the other universe.

Given our choice for the lapse (4.63), which is frozen on the event horizon, we find that

the solution can cover only the exterior of the black hole. To cover any of the interior

with the lapse pinned to zero at the horizon would require we use a slice that is not space-

like everywhere. This is exactly what happens when the usual Schwarzschild areal-radial

coordinate is used. At the event horizon, r = 2M , there is a coordinate singularity, and

inside this radius the t = const. hypersurface is no longer spacelike. It is impossible to

perform a Cauchy evolution interior to the event horizon using the areal-radial coordinate

and the given time slicing.

We find that a Cauchy evolution, using the usual Schwarzschild time slicing that is frozen

at the horizon, is capable of evolving only the region exterior to the black hole’s event

horizon. Portions of the interior of the black hole can be covered by an evolution that

begins with data on a standard Schwarzschild time slice, but the result is not a time-

independent solution. As we will see later, there are other slicings of the Schwarzschild
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spacetime that cover the interior of the black hole and yield time-independent solutions.

Here we will construct maximal slicing of the same spacetime, one that gives a time-

dependent or “dynamical slicing” of a Schwarzschild black hole. This spacetime is also

analytic, if by “analytic” we allow 1- dimensional quadratures. The metric for this so-

lution has some generic features that characterize the metric that develops at late times

during stellar collapse to a black hole when maximal slicing is employed. Not only will

our examination of this solution be useful to illustrate how maximal slicing works, but

our reconstruction of the solution will provide a convenient opportunity to review the

typical steps required to build a spacetime in the 3 + 1 formalism, at least in spherical

symmetry.

We start with the line element in the form

ds2 = −(α2 − β2/A)dt̄2 + 2βdt̄dr + Adr2 + r2(dθ2 + sin2 θdφ2), (4.65)

where r is the Schwarzschild radial coordinate (we drop the subscript “s” in this section),

β = βr = Aβr, t̄ is the maximal time coordinate, and the functions α, β and A depend

only on t̄ and r. Given this form of the metric we compute all the 3-dimensional Christoffel

symbols, which we will need in the evaluation of the standard 3 + 1 or ADM equations.

We find

Γrrr =∂rA/(2A), Γrθθ = −r/A, Γrφφ = −r sin2 θ/A,

Γθrθ =Γθθr = 1/r, Γθφφ = − sin θ cos θ,

Γφθφ =Γφφθ = cot θ, Γφrφ = Γφφr = 1/r,

(4.66)

with the remaining coefficients equal to zero.

Next we insert the Christoffel symbols in Equation (2.3) to calculate the nonvanishing

components of the 3-dimensional Riemann tensor, Rij, obtaining

Rrr = ∂rA/(rA), Rθθ = Rφφ/ sin2 θ = 1− 1/A+ r∂rA/(2A
2). (4.67)

We now can get R = Ri
i, required to solve the Hamiltonian constraint equation (3.94)

R = 2∂rA/(rA
2) + 2(1− 1/A)/r2. (4.68)
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The nonvanishing components of the extrinsic curvature may be calculated from Equation

(3.154), yielding

Krr = − (∂r̄A+ β∂rA/A− 2∂rβ) /(2α), Kθθ = Kφφ/ sin2 θ = rβ/(αA). (4.69)

Maximal slicing requires K = KiKi = 0, in which case equation (4.69) implies

Krr = −2β/(αr) KijK
ij = 6(β/αAr)2 (4.70)

and

∂t̄ lnA+ (β + A)∂r ln(β2r3/A) = 0. (4.71)

The Hamiltonian constraint (3.94) reduces to

R = KijK
ij, (4.72)

which, inserting Equations (4.68) and (4.70), yields

3β2/(α2A) = A− 1 + r∂rA/A. (4.73)

When combined with Equation (4.70) for Krr, the radial component of the momentum

constraint (3.100) may be evaluated to give

∂r ln(βr2/Aα) = 0. (4.74)

Maximal slicing also requires ∂t̄K = 0, in which case Equation (3.147), combined with

equation (4.72), gives D2α = αR. Substituting Equation (4.68) in the right-hand side

and expanding the derivative on the left-hand side yields an equation for the lapse,

∂r∂rα + 2∂rα/r − (∂r lnA)∂rα/2 = 2α(A− 1 + r∂r lnA)/r2. (4.75)

Finally, the evolution equation (4.6) for Krr gives

∂t̄ ln(β/α) =(3β/A+ α2A/β − α2/β)/r

+ 3(∂rβ)/A+ (α2/β − 4β/A)(∂r lnA)/2

− (β/A+ α2/β)∂r lnα,

(4.76)

where we have used Equation (4.70) to replace Krr, Equation (4.67) for Rrr, and Equation

(4.75) for ∂r∂rα.
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Chapter 5

Einstein Field Equations and OHAM method

Introduction

In this chapter we apply OHAM, Optimal Homotopy Asymptotic Method, to find the

static spherically symmetric solution of Einstein equations, which is called Schwarzschild

solution. In the next section we present the Schwarzschild geometry and solution. In

Section 5.2 we present OHAM, and finally in Section 5.3 we apply OHAM and derive

Schwarzschild solution. The material of Sections 5.1 and 5.2 are covered in [20,21].

5.1 Einstein Field Equations and Schwarzschild Solution

As mentioned before Einstein equations

Gµν = Rµν −
1

2
Rgµν = 8πTµν , (5.1)

determine the geometry of spacetime by providing the definition of distance theorem of

Pythagora, based on the matter content in that spacetime. On the other hand, motion

of matter is determined by this geometry.

The fact that the motion of matter is determined by properties of geometry is called the

equivalence principle, and is built in the Einstein equations.

Following we will demonstrate all this in the simplest nontrivial case of the static spheri-

cally symmetric solution of Einstein equations, called Schwarzschild geometry. We begin
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from flat Minkowski spacetime with the line element

ds2 = −dt2 + dx2 + dy2 + dz2, (5.2)

and introduce spherical coordinates via the change of variables z = r cos θ,

x = r cosϕ sin θ, y = r sinϕ sin θ and use

ds2 = −dt2 + dx2 + dy2 + dz2

= −dt2 +

(
∂x

∂r
dr +

∂x

∂θ
dθ +

∂x

∂ϕ
dϕ

)2

+

(
∂y

∂r
dr +

∂y

∂θ
dθ +

∂y

∂ϕ
dϕ

)2

+

(
∂z

∂r
dr +

∂z

∂θ
dθ +

∂z

∂ϕ
dϕ

)2

= −dt2 +
(
cos2 ϕ sin2 θ + sin2 ϕ sin2 θ + cos2 θ

)
dr2

+
(
r2 cos2 ϕ cos2 θ + r2 sin2 ϕ cos2 θ + r2 sin2 θ

)
dθ2

+
(
r2 sin2 ϕ sin2 θ + r cos2 ϕ sin2 θ

)
dϕ2

= −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2.

(5.3)

This is still a flat-spacetime line element, just expressed in curvilinear coordinates. We

generalize this line-element in such a way to allow for curvature, while preserving the

requirements of geometry being static and spherically symmetric. Static means that the

metric should not depend on time, while spherically symmetric means that it should not

depend on angles θ and ϕ. Thus it is enough to consider the following generalization for

the line element

ds2 = −e2F (r)dt2 + e2H(r)dr2 + r2dθ2 + r2 sin2 θdϕ2, (5.4)

where F (r) and H(r) are two functions to be determined by Einstein equations. Note

that these terms are written in the exponent because of computational convenience. So

we construct first the left-hand side of Einstein equations. We get the metric and inverse

metric tensors using the line element (5.2)

[gµν ] =



−e2F (r)

e2H(r)

r2

r2 sin2 θ


(5.5)
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[gµν ] =



−e−2F (r)

e−2H(r)

1
r2

1
r2 sin2 θ


(5.6)

Next we construct the Ricci tensor. The nonzero components are

Rtt = e2F−2H

(
F ′′ + (F ′)2 − F ′H ′ + 2

r
F ′
)

Rrr = −
(
F ′′ + (F ′)2 − F ′H ′ − 2

r
H ′
)
,

Rθθ = 1− e−2H(1 + rF ′ − rH ′),

Rφφ = Rθθ sin2 θ.

(5.7)

Contract the Ricci tensor with the metric to obtain the Ricci scalar

R = −2e−2H

[
F
′′

+

(
F ′ +

2

r

)
(F ′ −H ′) +

1

r2
(1− e2H)

]
. (5.8)

Finally, we put all this together to form the Einstein tensor

Gtt = − 1

r2
e2F−2H(1− 2rH ′ − e2H),

Grr =
1

r2
(1 + 2rF ′ − e2H),

Gθθ = r2e−2H

[
F ′′ +

(
F ′ +

1

r

)
(F ′ −H ′)

]
,

Gφφ = Gθθ sin2 θ.

(5.9)

Note that the Gtt component of the Einstein tensor can be rewritten in the form

Gtt =
1

r2
e2F d

dr
[r(1− e−2H)]. (5.10)

Now we consider the right-hand side of the Einstein equation. We are interesting of the

simplest possible stress-energy tensor, namely one that represents a static ball of radius

R and density ρ(r) with the center in r = 0. The general formula for the stress-energy

tensor of a fluid element with density ρ, pressure P , and 4-velocity uµ is

Tµν = (ρ+ P )uµuν + Pgµν . (5.11)

We wish to describe the static fluid (ur = uθ = uϕ = 0). So the stress-energy takes the

form

Ttt = ρutut + P (utut + gtt), Trr = Pgrr, Tθθ = Pgθθ, Tϕϕ = Pgϕϕ, (5.12)
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while other components vanish. Next, the 4-velocity vector must be normalized, uµuνg
µν =

1, which means that utut = −gtt = e2F , so we have

Ttt = ρe2F , Trr = Pe2H , Tθθ = Pr2, Tϕϕ = Pr2 sin2 θ. (5.13)

The density and pressure of the fluid can depend only on r due to the spherical symmetry,

and must be zero for r > R, that is, outside the ball.

Finally, after substituting all these results into Einstein equations, Gµν = 8πTµν , we get

t− t, r − r, θ − θ equations. Straightforward integration gives

H(r) = −1

2
ln

(
1− 2m(r)

r

)
, where m(r) ≡ 4π

∫
dr r2ρ2(r). (5.14)

Choosing the initial condition m(0) = 0, we can interpret m(r) as the total mass inside

radius r, since it is defined as an integral of mass density ρ over the volume of a ball of

radius r.

Next, we discuss the r − r equation. Solve it for F to obtain

F (r) =

∫
dr
m(r) + 4πr3P (r)

r[r − 2m(r)]
. (5.15)

For r > R we have m(r) = M (total mass of the ball) and P (r) = 0 (zero pressure in

vacuum), so F (r) can be easily integrated by partial fraction, we get

F (r) =

∫
− 1

2r
+

1

2(r − 2M)
dr. (5.16)

The result is

F (r) =
1

2
ln

(
1− 2M

r

)
, (5.17)

where the constant of integration has been chosen so that in the limit r → ∞ the line

element recovers its Minkowski form (far away from the ball spacetime should be flat).

Finally, we discuss the θ− θ equation. Substitute all previous results and (after a tedious

calculation) obtain the following result

P ′(r) + F ′(r)(ρ(r) + P (r)) = 0. (5.18)

This is a differential equation that determines the radial pressure distribution of matter

within the ball. This distribution is such that the repulsive pressure balances attractive
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gravity everywhere, thereby maintaining static configuration of matter inside the ball.

Therefore for the geometry outside the ball (for r > R). The line element has the form

ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2dθ2 + r2 sin2 θdϕ2. (5.19)

This is the famous Schwarzschild solution of Einstein equations, and defines the so-called

Schwarzschild geometry.

5.2 Basic Formulation of Optimal Homotopy Asymptotic Method

(OHAM)

Consider the operator equation of the form, [2],

A(y(x)) + f(x) = 0, (5.20)

where A is an operator, y(x) is unknown function, and f(x) a known analytic function.

Assume that A can be decomposed into two operators L (simple) and N (the rest) such

that

A = L+N. (5.21)

According to OHAM , one can construct an optimal homotopy map

y(x, p) : Ω× [0, 1]→ R, (5.22)

that satisfies the homotopy equation

Ĥ(y(x, p), p) =(1− p)L(y(x, p)) + f(x)

− C(p)A(y(x, p)) + f(x) = 0,

(5.23)

where the auxiliary C(p) function is nonzero for p 6= 0; C(0) = 0 and p ∈ [0, 1] is an

embedding parameter. Equation (5.23) is called optimal homotopy equation or zero-

order homotopy equation. Note that if p = 0, we get y(x, 0) = y0(x), and when p = 1,

we obtain y(x, 1) = y(x); the exact solution. Thus, as p varies from 0 to 1, the solution

y(x, p) arrives from y0(x) at y(x), where y0(x) is the solution of Equation (5.23) when we

substitute p = 0, i.e y0(x) satisfies

L(y0(x)) + f(x) = 0. (5.24)
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Next, we choose the auxiliary function C(p) to be the power series in p; C(p) = pc1 +

p2c2 + ..., where ci are constants for all i, i = 1, 2, ... To get an approximate solution, we

expand y(x, p, c1, c2, ...) by Taylor’s series, about p in the following manner

y(x, p, c1, c2, ...) = y0(x) +
∞∑
k=1

yk(x, c1, ..., ck)p
k, (5.25)

Substituting from Equation (5.25) into Equation (5.23) and equating the coefficients of

like powers of p, we obtain the following zeroth to the kth order problems governing

equations of

y0(x), y1(x, c1), ..., yk(x, c1, ..., ck) :

L(y0(x)) + f(x) = 0, L(y1(x, c1))− L(y0(x)) = c1N0(y0(x)),

L(y2(x, c1, c2))− L(y1(x, c1)) = c2N0(y0(x)) + c1L(y1(x, c1))+

+N1(y0(x), y1(x, c1),

L(yk(x, c1, ..., ck))− L(y(k−1)(x, c1, ..., c(k−1))) =

= ckN0(y0(x)) +
k−1∑
i=1

ci[L(y(k−i)x, c1, ..., c(k−i)))+

+N(k−i)(y0(x), y1(x, c1), ..., y(k−i)(x, c1, , c(k−i)))

(5.26)

for k = 2, 3, ... whereN(k−i) are the coefficient of p(k−i) in the expansion of forN(y(x, p, c1, c2, ...))

about the embedding parameter p;

N(y(x, p, c1, c2, ...)) =N0(y0(x))+

+
∞∑
k=1

Nk(y0(x), y1(x, c1), ..., yk(x, c1, ..., ck)p
k).

(5.27)

Note that the governing equations are linear and can be easily solved for yk, k ≥ 0.

It has been observed that the convergence of the series in Equation (5.25) depends upon

the auxiliary constants c1, c2, c3, ....

If it is convergent at p = 1, one get

y(x, 1, c1, c2, ...) = y0(x) +
∞∑
k=1

yk(x, c1, ..., ck). (5.28)

This equation is the source of the required approximate solutions. Substituting from

Equation (5.25) into

L(y(x)) + f(x) +N(y(x)) = 0, (5.29)
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leads to the following residual formula

R(x, c1, c2, ...) = L(y(x, c1, c2, ...)) + f(x) +N(y(x, c1, c2, ...)). (5.30)

If R(x, c1, c2, ...) = 0 then y(x, c1, c2, ...) is the exact solution of the problem. For the

determination of auxiliary constants ci; i = 1, 2, ...,m, there are different methods. One

method is the Least Squares;

J(c1, c2, ..., cm) =

∫ b

a

R2(x, c1, c2, ..., cm)dx, (5.31)

where [a, b] is an interval depending on the given problem. The unknown constants ci

can be identified from the conditions

∂J

∂c1

=
∂J

∂c2

= ... =
∂J

∂cm
= 0. (5.32)

With these constants known, the approximate solution is well-determined as

y(m)(x) = y0(x) + y1(x, c1) + y2(x, c1, c2) + ...+ ym(x, c1, ..., cm). (5.33)

5.3 Finding Schwarzschild Solution Using OHAM

We consider the Einstein equation

Gµν = Rµν −
1

2
Rgµν = 8πTµν ,

and construct the homotopy equation

(1− p)(L(gµν(r, p))) = c1p(Gµν(r, p)− 8πTµν(r, p)),

where the operator L is defined to be

L(gµν(r, p)) = −8πTµν(r, p).

Note that C(p) is taken to be c1p. Then

(1− p)(−8πTµν(r, p)) = c1p(Gµν(r, p)− 8πTµν(r, p)),

clearly setting p = 1, leads to

Gµν(r, p)− 8πTµν(r, p) = 0,
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while taking p = 0, gives

Tµν(r, p) = 0.

In the following we follow schwarzschild and apply OHAM to (t, t) and (r, r) equations.

First case (µ, ν) = (t, t).

For this case we have

L(gtt(r, p)) = −8πTtt(r, p) = −8πρ(r)e2F (r,p) = 0,

where ρ(r) = 0 (zero density in Vacuum).

Hence, we get

(1− p)(−8πρ(r)e2F (r,p)) = c1p(Gtt(r, p)− 8πρ(r)e2F (r,p)).

Therefore

c1pGtt(r, p) = 0.

But from Equation (5.10)

Gtt(r, p) =
1

r2
e2F (r,p) d

dr
[r(1− e−2H(r,p))].

Thus

c1p

r2
e2F (r,p) d

dr
[r(1− e−2H(r,p))] = 0,

or

d

dr
[r(1− e−2H(r,p))] = 0.

Integrating with respect to r gives

r(1− e−2H(r,p)) = c,

where c is arbitrary constant.

Hence

1− e−2H(r,p) =
c

r
,

or

−e−2H(r,p) =
c

r
− 1.
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Therefore

e−2H(r,p) = 1− c

r
.

Apply

H(r, p) = H(0)(r) + pH(1)(r, c1), (5.34)

we get

e−2H(0)(r)−2pH(1)(r,c1) = 1− c

r
,

or

e−2H(0)(r)e−2pH(1)(r,c1) = 1− c

r
,

with the aid of the approximation

e−2pH(1)(r,c1) ' 1− 2pH(1)(r, c1),

we obtain in an approximate sense

e−2H(0)(r)
(
1− 2pH(1)(r, c1)

)
= 1− c

r
,

or we write

e−2H(0)(r) − 2pH(1)(r, c1)e−2H(0)(r) = 1− c

r
.

Equating the coefficient of powers of p, we obtain

−2H(1)(r, c1)e−2H(0)(r) = 0, and H(1)(r, c1) = 0.

Thus

e−2H(0)(r) = 1− c

r
.

Taking the logarithm of both sides implies

−2H(0)(r) = ln
(

1− c

r

)
,

or

H(0)(r) = −1

2
ln
(

1− c

r

)
.

Hence Equation (5.34) gives

H(r, p) = −1

2
ln
(

1− c

r

)
.
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Second case (µ, ν) = (r, r).

For this case

L(grr(r, p)) = −8πTrr(r, p) = −8πP (r)e2H(r,p) = 0,

where P (r) = 0 (zero pressure in Vacuum).

Thus

(1− p)(−8πPe2H(r,p)) = c1p(Grr(r, p)− 8πPe2H(r,p)).

Therefore

c1pGrr(r, p) = 0,

Grr(r, p) = 0.

Again Grr(r, p) is found to be, Equation (5.9),

Grr(r, p) =
1

r2
(1 + 2rF

′
(r, p)− e2H(r,p)).

Hence

1 + 2rF
′
(r, p)− e2H(r,p) = 0,

or

1 + 2rF
′
(r, p)− 1

1− c
r

= 0,

or

2rF
′
(r, p) =

1

1− c
r

− 1.

Thus

F
′
(r, p) =

1

2

(
1

r − c
− 1

r

)
.

Integrating with respect to r, we obtain

F (r, p) =
1

2
(ln(r − c)− ln(r)) ,

or

F (r, p) =
1

2
ln
r − c
r

,

or

F (r, p) =
1

2
ln
(

1− c

r

)
,
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where the constant of integration has been chosen so that is limit r →∞ the line element

recover its Minkowski form.

Since

F (r, p) = F (0)(r) + pF (1)(r, c1), (5.35)

we can write

F (0)(r) + pF (1)(r, c1) =
1

2
ln
(

1− c

r

)
.

Similar to first case we have

F (1)(r, c1) = 0,

and

F (0)(r) =
1

2
ln
(

1− c

r

)
.

Therefore Equation (5.35) implies

F (r, p) =
1

2
ln(1− c

r
).

Since c was arbitrary, we choose it to be 2M .

Hence we get the line element

ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2dθ2 + r2 sin2 θdφ2,

which is exactly the Schwarzschild solution, Equation (5.19).
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